DICAMES logo

Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/20.500.12177/8255
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.advisorHazoume, Roger Paul-
dc.contributor.authorOrou, Jean Chabi B.-
dc.contributor.authorJohnson III, Joseph A.-
dc.date.accessioned2022-06-29T14:12:22Z-
dc.date.available2022-06-29T14:12:22Z-
dc.date.issued1994-05-25-
dc.identifier.urihttps://hdl.handle.net/20.500.12177/8255-
dc.description.abstractIn this study of the theory of homogeneous condensation, we have proposed another approach beyond the classical theory of homogeneous nucleation. A stochastic model has been proposed for the droplet growth. We start from the Landau-Ginsburg theory; we have obtained a langevin type equation. The Langevin type equation for the radius of the nucleus is transformed to a Fokker-Planck equation for the distribution function .We calculate the number of simple water molecules that can be fixed by the isolated liquid droplet from which the probability P(r) of finding water within a given volume around the critical droplet is computed. P(r) is not strictly zero inside the critical radius; it's the soft core mode. In the hard core model the rate of growth of the droplet has been found analytically where as in the soft core model the rate of growth can be found only numerically.en_US
dc.format.extent105fr_FR
dc.publisherUniversité nationale du Béninfr_FR
dc.subjectFreefr_FR
dc.subjectEvolutionfr_FR
dc.subjectTurbulencefr_FR
dc.subjectHomogeneousfr_FR
dc.titleThe evolution of vorticity in a free shear layer with compressible turbulence and theory of homogeneous condensationfr_FR
dc.typeThesis-
Collection(s) :Thèses soutenues

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
CS_03066.pdf2.69 MBAdobe PDFMiniature
Voir/Ouvrir


Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.