DICAMES logo

Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/20.500.12177/2256
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorGarrigós, Gustavo-
dc.contributor.authorBonami, Aline-
dc.contributor.authorBékollé, David-
dc.date.accessioned2021-02-12T23:51:06Z-
dc.date.accessioned2019-05-07T03:55:22Z-
dc.date.available2021-02-12T23:51:06Z-
dc.date.available2019-05-07T03:55:22Z-
dc.date.issued2012-02-20-
dc.identifierhttp://imhotep-journal.org/index.php/imhotep/article/view/15fr_FR
dc.identifier.urihttps://dicames.online/jspui/handle/20.500.12177/2256-
dc.description.abstractWe obtain a Whitney decomposition of a symmetric cone Ω, analogtothatofthepositivereallineintodyadicintervals[2j,2j+1). This gives a natural tool for developing a Littlewood-Paley theory for spaces of functions with spectrum in Ω. Such functions extend into holomorphic functions on the tube TΩ. We consider here the mixed norm Bergman spaces Ap,2(T ), for which we find νΩ a Littlewood-Paley characterization. As a consequence, we obtain optimal results for the boundedness of the Bergman projector Pν in Lp,2(T ). When the projector is unbounded, a precise descrip- νΩ tion of P (Lp,2) is also given, as a space of equivalence classes of νν holomorphic functions in relation with the dual of Ap′,2(T ).fr_FR
dc.format.extent1-30fr_FR
dc.language.isoen_USfr_FR
dc.subjectBergman projectorfr_FR
dc.subjectLittlewood-Paleyfr_FR
dc.subjectSymmetric conefr_FR
dc.subjectWhitney decompositionfr_FR
dc.titleLittlewood-Paley decompositions related to symmetric conesfr_FR
dc.typeArticlefr_FR
dcterms.bibliographicCitationIMHOTEP: African Journal of Pure and Applied Mathematicsfr_FR
Collection(s) :Articles publiés dans des revues à comité scientifique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
15-45-1-PB.pdf277.37 kBAdobe PDFMiniature
Voir/Ouvrir


Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.