DICAMES logo

Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/20.500.12177/2248
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorLele, Celestin-
dc.contributor.authorTsafack, S. Atamewoue-
dc.contributor.authorNdjeya, Selestin-
dc.date.accessioned2021-02-12T23:43:04Z-
dc.date.accessioned2019-03-10T00:02:03Z-
dc.date.available2021-02-12T23:43:04Z-
dc.date.available2019-03-10T00:02:03Z-
dc.date.issued2017-10-10-
dc.identifierhttp://imhotep-journal.org/index.php/imhotep/article/view/134/130fr_FR
dc.identifier.urihttps://dicames.online/jspui/handle/20.500.12177/2248-
dc.description.abstractThe notion of hyperrings (hyperfields) is a generalization of the notion of rings (fields) where the additive composition ” + ” and/or the multiplicative composition ” · ” are changed to a hyperoperation. Similarly, there is the notion of hypervector space and hypermodule where internal and/or external compositions on the classical form have been generalized. In this paper, we define linear codes and cyclic codes over a finite Krasner hyperfield and we characterize these codes by their generator matrices and parity check matrices. We also demonstrate that codes over finite Krasner hyperfields are more interesting for code theory than codes over classical finite fields.fr_FR
dc.format.extent1-8fr_FR
dc.format.extent1-8fr_FR
dc.language.isoen_USfr_FR
dc.subjecthypervector spacefr_FR
dc.subjecthypermodulefr_FR
dc.subjectmathematicsfr_FR
dc.subjectthe notion of hyperrings (hyperfields)fr_FR
dc.titleSome Applications of Hyperstructures in Coding Theoryfr_FR
dc.typeArticlefr_FR
dcterms.bibliographicCitationIMHOTEP: African Journal of Pure and Applied Mathematicsfr_FR
Collection(s) :Articles publiés dans des revues à comité scientifique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
134-370-1-PB.pdf425.5 kBAdobe PDFMiniature
Voir/Ouvrir


Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.