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Abstract

This thesis attempts a combination of three important areas of mathematics,
namely universal algebra, residuation theory and fuzzy set theory. A fuzzy
subalgebra of a universal algebra A := (A; F4) of type F under a residuated
lattice £ := (L; A, V, &, =, —o; 0, 1), called an L-fuzzy subalgebra of A,
is a map from A to L which is A-compatible with the fundamental operations
of A. This notion was introduced by V. Murali [29] in 1991, under the unit
interval [0, 1] of real numbers, and generalized by B. Seselja [35] in 1996,
under partially ordered sets.

Given a residuated lattice £ and a universal algebra A of type F with
a residuated lattice Sub(A) := (Sub(A); N, U, ®, —, ~»; Sg(#), A) on
the set of its subuniverses, the set Fu(A, L) of L-fuzzy subsets of A forms
a residuated lattice Fu(A, L) = (Fu(A,L); A, V, 6, —», —o; 0, l) that
extends both £ and the Boolean algebra P(A) of subsets of A. The set
Fs(A, L) of L-fuzzy subalgebras of A forms a bounded lattice Fs(A, L) :=
(FS(A, L); A, U Xsg@), l), but not necessarily a residuated lattice, which
extends both the bounded lattices of £ and Sub(A). When L is a finite linearly
ordered Brouwerian algebra, F's(A, L) forms an algebraic residuated lattice
Fs(A, L) := (FS(.A, L); A, U, ®, =, 5 Xsg(0) l) that extends both £ and
Sub(A).

The condition on the residuated lattice £ of the preceding result being
rather restrictive, it is natural to look for some classes of algebras for which
the latter is more general. In this thesis, two solutions to this problem are
proposed, in the classes of mono-unary algebras and rings, and some of their
properties are investigated.

Key Words: Universal algebra, Lattice, Residuated lattice, Brouwerian
algebra, MV -algebra, Boolean algebra, Mono-unary algebra, Ring, Lukasiewicz

ring, Subuniverse, Ideal, L-fuzzy subalgebra, L-fuzzy ideal, Category, Functor.
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Résumeé

Cette thése tente une combinaison de trois domaines importants des mathé-
matiques, & savoir ’algébre universelle, la théorie des résidus et la théorie des
ensembles flous. Une sous-algébre floue d'une algébre universelle A := (A; F4)
de type F sous un treillis résidué £ := (L; A, V, ©, —, —o; 0, 1), appelée une
L-sous-algébre floue de A, est une application de A vers L qui est A-compatible
avec les opérations fondamentales de A. Cette notion a été introduite par V.
Murali [29] en 1991, sous l'intervalle unité [0, 1] des nombres réels, et général-
isée par B. Seselja [35] en 1996, sous les ensembles partiellement ordonnés.

Etant donnés un treillis résidué £ et une algébre universelle A de type F
avec un treillis résidué Sub(A) := (Sub(A); N, U, ®, —, ~»; Sg(0), A) sur
’ensemble de ses sous-univers, I’ensemble Fu(A, L) des L-sous-ensembles flous
de A forme un treillis résidué Fu(A, L) := (Fu(A, L); A, V, ©, -, —o; 0, l)
qui prolonge a la fois £ et l'algébre de Boole P(A) des sous-ensembles de A.
L’ensemble F's(A, L) des L-sous-algébres floues de A forme un treillis borné
Fs(A, L) := (Fs(.A, L); A, Ui Xsg@), l), mais pas nécessairement un treillis
résidué, qui prolonge a la fois les treillis bornés de £ et Sub(A). Lorsque £
est une algébre de Brouwer finie et linéairement ordonnée, F's(.A, L) forme un
treillis résidué algébrique Fs(A, L) := (FS(A, L); A, U, ®, =, ¥ Xsg(0) l)
qui prolonge a la fois £ et Sub(A).

La condition sur le treillis résidué £ du résultat précédent étant plutot
restrictive, il est naturel de chercher des classes d’algebres pour lesquelles cette
derniére est plus générale. Dans cette thése, deux solutions & ce probléme
sont proposées, dans les classes des algebres mono-unaires et des anneaux, et
certaines de leurs propriétés sont étudiées.

Mots clés: Algebre universelle, Treillis, Treillis résidué, Algébre de Brouwer,
MV -algebre, Algeébre de Boole, Algébre mono-unaire, Anneau, Anneau de
Lukasiewicz, Sous-univers, Idéal, L-sous-algébre floue, L-idéal flou, Catégorie,
Foncteur.
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INTRODUCTION

It is well known that life is uncertain, knowledge is limited, measures are impre-
cise, and future events can only be predicted with some confidence. Because of
this, traditional mathematics, supported by Boolean logic, is unable to model
complex systems. In 1965, L.A. Zadeh [41] introduced fuzzy set theory, which
led to a revision of mathematics, to formalize the concept of set membership
under uncertainty. In order to satisfy the needs of fuzzy reasoning, several
kinds of algebraic structures were then considered.

Since the introduction of the idea of residuation by R. Dedekind [11] in
1894, several researchers have approached it in a general way. In 1939, M.
Ward and R.P. Dilworth [40] introduced the notion of residuated lattice, as the
lattices on which a multiplication or residuation operation is defined. During
the same year, R.P. Dilworth [12]| introduced the notion of non-commutative
residuated lattice and investigated some of its properties among which decom-
positions into primary and semi-primary elements. In 1990, V. Novdk [31, 32]
introduced first-order fuzzy logic and proved that the algebra of this logic is
a residuated lattice. Since then, there has been substantial research regard-
ing some specific classes of residuated lattices as RL-monoids, MT L-algebras,
BL-algebras, MV -algebras,... (See, [10, 16, 20, 34]).

In 1967, J.A. Goguen [18] generalized the Zadeh’s concept of fuzzy subset
to L-fuzzy subset, replacing the unit interval [0, 1] of real numbers by the
underlying set L of an appropriate structure of truth values. He described one
of his motivating examples as follows:

«A housewife faces a fairly typical optimization problem in her grocery
shopping. She must select among all possible grocery bundles one that meets
as well as several criteria of optimality such as coast, nutritional value, quality
and variety. The partial ordering of the bundles is an intrinsic quality of this
problem. It seems to be unnatural to describe the criteria of optimality by
a linear ordering as the unit interval. Why should the nutritional value of a
given product be described by 0.6 (instead of 0.65, or any other value from
[0, 1]), and why should a product with a high nutritional value be better than

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures 1
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a product with a high quality since those criteria are usually incomparable?».

In 1988, U.M. Swamy and K.L.N. Swamy [37] used the Goguen’s concept
to introduce the concept of L-fuzzy ideals of a ring, where L is the underlying
set of a complete meet-distributive lattice. In 1996, B. Seselja [35] general-
ized the Murali’s concept, of fuzzy subalgebra of a universal algebra [29], to
L-fuzzy subalgebra, where L is the underlying set of a partially ordered set
L, by considering compatibility rather on levels sets. He also characterized
classes of algebras for which the partially ordered set of L-fuzzy subalgebras
is a lattice, and pointed out the fact that its definition coincides with that of
V. Murali when L is a bounded lattice.

Given a residuated lattice £ := (L; A, V, ©, —, —o; 0, 1) and a uni-
versal algebra A := (A4; F4) of type F with a residuated lattice structure
Sub(A) = (Sub(A); N, U, ® —, ~; Sg(0), A) on the set of its sub-
universes, this thesis investigates possibilities to define a residuated lattice
structure on the set F's(A, L) of L-fuzzy subalgebras of A which extends both
L and Sub(A). The dissertation contains four chapters and a conclusion in
which the main results of the research are summarized, indications for future

work are given and open problems are suggested.

In Chapter 1, we give the mathematical background on universal algebra,
residuation theory and fuzzy sets theory, and collect some results that will be
used later.

In Chapter 2, given a complete meet-distributive residuated lattice £ and
a universal algebra A, we set up a mimetic construction of the L-fuzzy subal-
gebra of A generated by an L-fuzzy subset of A, and characterize atoms and
co-atoms of the lattice Fs(A, L). When L is algebraic, we characterize compact
elements of Fs(A, L) and show that the latter is algebraic. Furthermore, when
L is a finite linearly ordered Brouwerian algebra and Sub(A) supports a quan-
tale structure Sub(.A), we show that Fs(A, L) supports an algebraic quantale
which is both an extension of £ and Sub(A). Finally, given a complete resid-
uated lattice £ and a mono-unary algebra A, we define a residuated lattice
structure Fs(A, L) on the set of L-fuzzy subalgebras of A which is both an
extension of £ and the Heyting algebra Sub(.A) on the set of subuniverses of
A. Also, we show that Fs(A, L) is an MV-algebra (resp., a Boolean algebra)
if and only if £ is an MV-algebra (resp., a Boolean algebra) and Sub(A) is a
Boolean algebra.

In Chapter 3, given a complete meet-distributive residuated lattice £ and

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka
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a unital ring A, we define a residuated lattice structure Fid(A, L) on the set
of L-fuzzy ideals of A which is both an extension of £ and the residuated lat-
tice Zd(.A) on the set of ideals of A. Furthermore, we show that Fid(A, L) is
commutative (a Brouwerian algebra, a Boolean algebra) if and only if so are £
and Zd(A). Also, we characterize prime elements of Fid(.A, L) and investigate
some embedding properties of the lattice of its filters. Finally, we introduce
the concept of Lukasiewicz rings under £ and establish its connection with
rings whose L-fuzzy ideals form an MV -algebra.

In Chapter 4, given a complete meet-distributive residuated lattice £, we
characterize L-fuzzy ideals of a quotient ring, and investigate some of their
properties. Finally, we define some functors from the category of unital rings
to the category of po-monoids, and study some of their properties.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



CHAPTER ONE

MATHEMATICAL BACKGROUND

In this thesis, we assume familiarity with the most basic concepts from math-
ematical logic, set theory, order theory, lattice theory (as found in [6]), ring
theory (as found in [25]) and category theory (as found in [36]).

1.1 Universal algebra

We recall here some basic concepts from universal algebra (See, [6] for a de-
tailed exposition). Recall that the notion of universal algebra, sometimes called
general algebra or algebra for short, was introduced to extract, whenever pos-
sible, the common elements of several seemingly different types of algebraic
structures.

Definition 1.1.1. A type (or language) of algebras is a pair F := (F; o),
where F' is a set of function symbols and o a map from F to the set N of

nonnegative integers.

For any f in F, o(f) is called the arity (or rank) of f, and f is said to be

an o(f)-ary function symbol. Furthermore, F' = |J F,,, where each F,, is the
neN
set of n-ary function symbols in F'.

Definition 1.1.2. An algebra of type F is a pair A := (A; F4); where, A
is a nonempty set (called the universe of A), FA .= {f*: f € F} and each
A A — Ais an o(f)-ary operation on A, called a fundamental operation

of A.

UFE={f1,fo. .., fu}witho(fi) >0o(fz) > ... > 0o(fn), then we also write
(A; I E ,frf‘) and (o(f1),0(f2),...,0(fn)) for A and F, respectively.

Example 1.1.3. (a) A Heyting algebra is an algebra (A; A, V, —; 0, 1) of
type (2,2,2,0,0) such that (A; A, V; 0, 1) is a distributive bounded lattice
and which satisfies for any x,y,z € A: (x »y) ANz =z Ay, (r > y) Ny =1y,
x> (YNz)=(r >y AN(x —>2), (@Vy) > 2= (x> 2) Ay —> 2) and

r—»x=1.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures 4



1.1 Universal algebra 5

(b) A Boolean algebra is an algebra (A; A, V; '; 0, 1) of type (2,2,1,0,0)
such that (A; A, V, —; 0, 1), where x — y = 2’ Vy for all z,y € A, is a
Heyting algebra; x' is then called the complement of x.

In particular, the set P(E) of subsets of a set E, called the power set of E,
forms a Boolean algebra P(E) = (P(E); N, U; (); 0, E); where, B = E\ B
for all B € P(E).

The class of Boolean lattices is precisely the class of reducts of Boolean
algebras to {A, V; 0, 1}.

Definition 1.1.4. Let A and B be two algebras of the same type F.

(i) B is called a subalgebra of A if B C A and for any n-ary f in F, fP is the
restriction of f4 to B".

(ii) A mapping h : A — B is called a homomorphism from A to B if for
any n-ary f in F, we have h(f*(a1,...,a,)) = fB(h(ar),...,h(ay)) for all
a,...,a, € A. If in addition:

e h is one-to-one, then it is called an embedding of A into B, and A is said to
be embedded into B;

e h is onto, then it is called an epimorphism from A to B, and B is said to be
a homomorphic image of A;

e h is bijective, then it is called an isomorphism from A to B, and A is said

to be isomorphic to B.

Remark 1.1.5. Let A = (A; Aa, Va) and B = (B; Ap, Vg) be two complete
lattices. A mapping h: A — B is a:
e complete lattice morphism if and only if

A L)= A h(a) and h(\/ L) = \/ h(a) for all L C A;

acl acl

e complete lattice embedding if and only if it is a one-to-one complete lattice

morphism.

Definition 1.1.6. Let A be an algebra of type F. A subset B of A is called a
subuniverse of A if for any n-ary f in F, we have f4(ai,...,a,) € B for all
a1,...,0, € B.

Remark 1.1.7. (a) The ideals of a lattice L = (L; M, U) are just subuniverses
of the algebra £ = (L; U; (Mmq)acr), where my(x) = aNx for all a,x € L.

(b) The normal subgroups of a group G = (G; -, ~1, e) are just subuniverses of
the algebra G = (G; +; ~Y, (Ma)eec; €), where my(z) = axva™ for all a,x € G.
(¢) The ideals of a ring R = (R; +, -3 —; 0) are just subuniverses of the

algebra R = (R; +; —, (I)acr, (Ta)acr; 0), where ly(z) = ax and r4(z) = za
for all a,x € R.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



1.1 Universal algebra 6

Definition 1.1.8. Let Sub(A) be the set of subuniverses of A.

(i) The subuniverse of A generated by a subset X of A, denoted by Sga(X)
or simply Sg(X), is ({B € Sub(A) : X C B}, i.e., the smallest subuniverse
of A containing X .

(ii) A is called F-trivial if Fo # 0 and A = Sq(0).

Example 1.1.9. If A is a semigroup (resp., a group), then Sgi(0) = 0 (resp.,
Sga(0) = {e}).

Note that our definition of a F-trivial algebra does not always coincide
with the definition of trivial algebra; that is, an algebra with a single element

(See, [6]).

Proposition 1.1.10. (See, [6], Corollary 3.3.) The set of subuniverses of A
forms an algebraic lattice Sub(A) = (Sub(A); N, U; Sg(0), A); where, N
is the intersection of sets and U is defined by: B U C = Sg(BUC) for all
B,C € Sub(A). Furthermore, compact elements of Sub(A) are ezxactly of the
form Sqg(X); where, X is a finite subset of A.

Theorem 1.1.11. (See, [6], Theorem 3.5.) Every algebraic lattice is isomor-
phic to the lattice of subuniverses of an algebra.

Definition 1.1.12. Let X be a set of variables and F a type of algebras.
The set T(X,F) of terms of type F over X is the smallest set satisfying the
following conditions:

e XUF, CT(X,F).

o Ifty,...,t, € T(X,F) and f € F,, then f(t1,...,t,) € T(X,F).

Usually, the set X of variables is omitted if it is understood or of no par-

ticular importance.

Definition 1.1.13. Given an algebra A of type F and a term t(zy,...,x,) of
type F, the evaluation (or term function) t* of t(xy, ..., x,) on A is the n-ary
operation on A defined as follows:

o ift(xy,...,x,) is a variable x;, then t*(ay, ... ,a,) = a; forallay,...,a, € A
(t* is the i-th projection on A");

o ift(xy,...,x,) is of the form f(tl(xl, ey T)y e te(T, ,xn)), where f €
Fy., then

tA(ay,. .. a,) = fA<t‘14(a1, ), .t (ag, . ,an)) forall ay,..., a, € A.

Definition 1.1.14. (i) An identity of type F is an expression of the form
t =~ s, wheret and s are terms of type F.

(i) A class K of algebras of type F is called equational if there is a set of
identities 3 such that K = Modz(X), that is the set of algebras of type F

satisfying 3; in this case we say that IC is axiomatized by 3.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



1.2 Residuation theory 7

Theorem 1.1.15. (See, [6], Theorem 11.9. (Birkhoff)) A class of algebras
of the same type is equational if and only if it is a variety (closed under the
operator H, S and P).

1.2 Residuation theory

1.2.1 Residuated lattices

We gather here some definitions and results on residuated lattices, most of
them being well known (See, [10, 12, 16, 20, 22]).

Definition 1.2.1. [/20] An algebra (L; A, V, ©, —, —o; e) of type (2,2,2,2,2,0)
is called a residuated lattice-ordered monoid (or residuated lattice for short) if
it satisfies the following conditions:
(RL1) (L; A, V) is a lattice;
(RL2) (L; &, e) is a monoid;
(RL3) for any z,y,z € L,

(a) xSy <z ifand only if t <y — z,

(b) xcy<zifand only ify <z —o z;

where, < 1s the partial order of the lattice.

Definition 1.2.2. A residuated lattice (L; N, V, ©, —, —o; e) is said to be
complete if its lattice (L; A, V) is complete.

Let us now adopt the notion of quantale, which is not usual, but which is
equivalent to that of complete residuated lattices.

Definition 1.2.3. A quantale is an algebra (L; N, V, ©, —, —o; €) of type
(2,2,2,2,2,0) satisfying the following conditions:

(Q1) (L; A, V) is a complete lattice;

(Q2) (L; ©, e) is a monoid;

(Q3) as (VX)= Vaszand (\V/X)Sa= \/xE&a foralla € L and
X g L; zeX zeX

(Q4) x »y=\V{z€L: z6zx<y}landx —y=\{z€L: 6z <y} for
all x,y € L.

The usual definition of quantale [33] is simply the {—, —o}-reduct (reduct
to {A, V, ©, =, —o; e}) of the above definition. In practice, we will very

often confuse the signatures of the two definitions.

Remark 1.2.4. [20] An algebra (L; A, V, &, —, —o; ¢) of type (2,2,2,2,2,0)
is a residuated lattice if and only if (L; A, V) is a lattice, (L; ©, €) is a monoid,
© 15 order-preserving in each argument and the inequality r ©y < z has a

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



1.2 Residuation theory 8

largest solution for x (namely y — z) and for y (namely x —o z). Intuitively,
the residual operations — and —o serve as generalized division operations, and
are called left residue and right residue of ©, respectively.

Example 1.2.5. [2] A lattice-ordered group (called l-group for short) is an

algebra (G; A, V, - 7Y e) of type (2,2,2,1,0) such that (G; A, V) is a
lattice and (G; -, ~1, e) is a group compatible with the lattice order. It induces
a residuated lattice (G; A, V, -, —», —o; ¢); where, v — y = y -z ' and

x—oy=a -y foralxycd.

Proposition 1.2.6. [20] In a residuated lattice, the following hold (whenever
N\ and \/ ezist) for any a € L, B,C C L and --+€ {—, —o}:
(1) VB e(VO)= V boc

beB, ceC

(2) a--+»(ANB)= A(a--+b) and (\/ B) ~—»a= A (b--+a).
beB beB
Furthermore, the following identities or quasi-identities and their mirror im-

ages (obtained by replacing x©y by ySx and interchanging x — y with x —o y)
also hold:

(3) (r >y ox)Vy=y.

(4) If e Ny==x, thenz©z=(x02)AN(y©z2),y—>2=(y > 2)A\(xr — 2)
and z » x = (z > ) A (z > ¥).

(5)e—»zx=u.

(6) e=¢N(z— x).

Proposition 1.2.7. [20] The class of residuated lattices is a finitely based
equational class RL := Mod(X), where ¥ consists of the defining equations for
lattices and monoids together with the identities x = x N\ [y —» ((m oy)V z)} ,
6 (yVz)=(z0y)V(r0=2), [(y > z)Oy] Vo =z and their mirror images.

Definition 1.2.8. [20] A residuated lattice (L; A, V, ©, —», —o; €) is called:
e commutative if t Sy =y x for all x,y € L, in this case -»=— and it s
simply written (L; A, V, ©, —; €);

e a Brouwerian algebra if t Sy =x Ny for all x,y € L;

e integral if x < e for all x € L (e is the top element of L).

Definition 1.2.9. In the rest of this work, by a residuated lattice we will
designate an algebra L := (L; N, V, ©, =, —o; 0, 1) of type (2,2,2,2,2.0,0)
such that (L; N, V, ©, —, —o; 1) is an integral residuated lattice and O is
the bottom element of L.

Residuated lattices are sometimes called non-commutative residuated lat-
tices, pseudo-residuated lattices or bounded integral residuated lattices (See,
[10, 22, 34]).
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1.2 Residuation theory 9

Example 1.2.10. (a) The Gdadel structure is the residuated lattice
L= (L; N\, V, A\, =; 0, 1) given by L = [0, 1], x Ay = min(z,y), zVy =
max(z,y) and

) <
x—»y:{ fo_.y, for all x,y € L.
y otherwise.

(b) The product (or Gaines) structure is the residuated lattice
L= (L; N\, V, ©, —; 0, 1) given by L =10, 1], z Ay = min(z,y), xVy =

max(z,y), © ©y = xy (the usual multiplication of real numbers) and

1 <
Ty = fo_y,. for all x,y € L.
y/x otherwise.

(¢) The Lukasiewicz structure of order p € N* is the residuated lattice
L= (L; N\, V, ©, —; 0, 1) given by L =10, 1], z Ay = min(z,y), x Vy =
max(z, y),

Oy = {/max(0,2P + y? — 1) and  — y = min (1, YT — 2?7 + yP) for all
x,y € L.

If p =1, we obtain the Lukasiewicz structure.
Proposition 1.2.11. (See, [22]) In a residuated lattice L, for any x € L,
T:=x—0and T :=1x — 0 (mirror image of T)

are called left annihilator and right annihilator of x, respectively. Furthermore,
the following identities and quasi-identities and their mirror images hold for
any x,y wn L:

(7)) 260=0 and 0 = 1.

(8) v =x Ay if and only if v — y = 1.

(9) x=x Ny impliesy =y NT.

(10)T0x=0,r =2 AT and T = 7.

(11) zoy=(z0y) A(zAy) and ((z »y) S z)V(zAy) =z Ay.

For any x € L and a non negative integer n, " is defined inductively by

20 =e and 2" = 2" O 2.

Definition 1.2.12. A residuated lattice L is called:

e an RL-monoid if (xt »y)Srx=acANy=a26 (x —y) foral x,y € L;

e a MTL-algebra if (x — y)V(y - z) =1 = (x — y)V (y — x) for all
x,y € L;

e a BL-algebra if it is both an RL-monoid and a MT L-algebra;

e a Gaodel algebra if it is both a M'T L-algebra and a Brouwerian algebra;

e an MV -algebra if it is a BL-algebra satisfying T = x = ¥ for all x € L;

e an n-fold Boolean algebra if t NV a" =1 =2V a" for all v € L;

e trivial if L = {0, 1}.
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1.2 Residuation theory 10

Definition 1.2.13. A residuated lattice L is called:

e meet-distributive if so is its lattice, that is v A (\/ B) = \/ (r A'b) for all
beB
r € L and B C L, whenever both \/ exist;

o join-distributive if so is its lattice, that isrV (AN B) = \ (rvb) forallr € L
beB
and B C L, whenever both )\ exist.

Remark 1.2.14.

o Gddel and Gaines structures are BL-algebras, and Lukasiewicz structures
are MV -algebras (See, [7]).

e A Heyting algebra (A; A, V, —; 0, 1) may be viewed as a Brouwerian
algebra (A; A, V, A, =, —; 0, 1), and conversely.

o A residuated lattice is a Boolean algebra if and only if it is both a Heyting
algebra and an MV -algebra, if and only if it is both a B L-algebra and an 1-fold
Boolean algebra (See, [4]).

o The identities TAy =TV and T Ay = TV 7 hold in every MTL-algebra
(See, [10], Proposition 4.1).

e The lattice of an RL-monoid (resp., a complete RL-monoid) is distributive
(resp., meet-distributive) (See, [10], Proposition 4.7).

Definition 1.2.15. A residuated lattice L is said to be:
(i) ©-distributive (or product-distributive) if t © (y A z) = (x S y) A (x © 2)
and (YyNz)ox=(yox)AN(z0x) for all z,y,z € L;

(ii) completely S-distributive (or product-distributive) if r&(/\ B) = N (reb)
beB
and (NB)er= N\ (ber) forallr € L and B C L whenever both |\ exist.
beB

Definition 1.2.16. A residuated lattice L is said to be:

(i) join-implicative if for any x,y,z € L, v — (yV 2) = (x - y) V (v — 2)
andx —o (yV z) = (x —y) V (z — z);

(it) completely join-implicative if for any x € L and B C L, z — (\/ B) =
\V z—bandz — (\/ B) = \/ © — b whenever both \/ exist.

beB beB

Note that Brouwerian algebras and linearly ordered residuated lattices are

product-distributive, and Boolean algebras are join-implicative.

Example 1.2.17. Let L = {0, n, a, b, ¢, d, e, f, m, 1} be a lattice such
that 0 <n<a<c<e<m<l1l,0<n<b<d<f<m<l, b<cand
d < e; where, a,b, c,d and e, f are incomparable, respectively. Define the
binary operations © and — by the two tables below:

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



1.2 Residuation theory 11

©l0|n|alblc|dle| f|lm]1
0/0[0[0]O[O]O]O]|O]O0]O
n{0[00l0|0l0[0O][0]O0|n
a|0]0la|0]lal|0]|a|0]a]|a
b {0000 ]0I0|O|b|b|Db
c10{0]al0la|0|a|b| c]|c
d|0|0]0|0O]|O|b|b|d|d]| d
e |0]0|lal|0|la|blc|d|e]e
f1010(0|b|b|d|d|f|f]|f
m|0[0]a|b|lc|d|e|f|m|m
110|lnja|blc|d|le|f|lm]|1
= |0 |n|lalblc|d|le|]f|m]|1
Of(1 (111111111
n | m|1|1|1|1]1]1]1]1]1
a | flfIL]fl1]fl1]f]1]1
b lelelell|1]1]|1|1]1]1
cld|dle|l fl1]|f|l1]f]1]1
d|clclclelell|1]1|1]1
e|b|blcld|le|fl1]f]1]1
flalalalclclelell]1]1
m|n|njalblcldje|f|]1]1
1|0 |nja|blcl|dlelf|m]|l1l

As Exzample 3.7. in [27] shows, L = (L; A, V, ©, —; 0, 1) is a distributive
residuated lattice which is not:

e product-distributive, since m S (aAb) =moen=0#n=aAb=(mea)A
(meb);

e join-implicative, since ¢ - (aVb) =1#m=eV f = (c—>a)V (c—>b).

Some researchers have found some logics that have some subclasses of the
variety of residuated lattices as models (See, |23, 31, 32|). For example, M'V-
algebras (resp., BL-algebras, MT L-algebras) are the algebraic counterpart of

Lukasiewicz logic (resp., Basic Logic, Monoidal T-norm Logic).

1.2.2 Prime elements and filters of a residuated lattice

In this subsection, £ = (L; A, V, ©, —, —o; 0, 1) is a residuated lattice.

Prime elements

Definition 1.2.18. A ©-prime (or prime) element of L is a proper element
p of L (p# 1) such that: for any x,y € L, x ©y < p implies < p ory < p.
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1.2 Residuation theory 12

A ©-prime element of £ is A-prime (that is a prime element of the lattice

of £), but the converse is not necessarily true as the following example shows.

Example 1.2.19. Let L be the Gaines structure (See, Example 1.2.10). Since
L is linearly ordered, each of its proper elements are N\-prime. For any x €
10, 1[, we have Jx © \/x = x and \Jx £ x. Thus, 0 is the only &-prime
element of L.

Proposition 1.2.20. A mazimal element (co-atom) of L is a prime element

of L.

Proof. Let p be a maximal element of £. For any x,y € L such that zoy < p,
r¥pandyLp wehavel=161=(zVp)O(yVp) =@y V(zep)V
(poy)V(pop) <pand, p=1; which is a contradiction. Hence, p is a prime
element of L. ]

Definition 1.2.21. Let Spec(L) be the set of prime elements of L. The radical
of an element x of L, denoted by \/x, is defined by:

V= N\{p € Spec(L) : © < p}, whenever \ exists.

Definition 1.2.22. A S-primary (or primary) element of L is a proper ele-
ment p of L such that: for any v,y € L, v ©y < p implies x < p ory < /p.

A primary element of L is also called a right primary element of £. If £ is
commutative, then right primary and left primary elements of £ are confused;

furthermore, any prime element of £ is a primary element of L.

Definition 1.2.23. (i) An element x of L is said to have a primary decompo-
sition (or to be decomposable into primary elements, or primary decomposable)

if there exist primary elements py,...,p, of L such that x = N\ p;.

1<i<n
(ii) If any proper element of L has a primary decomposition, then L is said

to be primary decomposable.

Example 1.2.24. (a) Let L be the Gadel structure. Since Spec(L) = [0, 1]
is also the set of all primary elements of L, L is primary decomposable.

(b) Let L be the Gaines structure. Since Spec(L) = {0}, we have v/0 = 0 and
V= N\0=1 for all z €]0, 1]; thus, [0, 1] is the set of all primary elements
of L. So, L is primary decomposable.

(c) Let L be the Lukasiewicz structure. We have Spec(L) = (); indeed,

e 0 is not a prime element of L, since %@% = max(O, 2+—— ) = max(0,0) =

0 and % ﬁ 0;

e any p €]0, 1[ is not a prime element of L, since \/p © \/p = max((), VP +

\/ﬁ—l):max(o, 2\@—1) <p and \/p £ p.

It follows that \O = 1 is the only radical of L. Consequently, [0, 1] is the set
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1.2 Residuation theory 13

of all primary elements of L. Hence, L is primary decomposable.

(d) Let L be the Lukasiewicz structure of order 2. We have Spec(L) = (;
indeed,

e 0 is not a prime element of L, since

262 = \fmar(0, () + (2P ~1) =0 nd % £0;

e any p €0, 1] is not a prime element of L, since

\/ﬁeﬁ:\/max((), 2p—1) <p and\/}_ﬁfp.

It follows that \O = 1 is the only radical of L. Consequently, [0, 1[ is the set
of all primary elements of L. Hence, L is primary decomposable.

Proposition 1.2.25. (See, [30]) Let p and q be two primary elements of L
such that \/p = \/q. Then the following hold:
(1) VP=VPNa= /1

(2) p A q is a primary element of L.

Definition 1.2.26. A primary decomposition of an element is called normal
(or short [30]) when superfluous are removed and the primary components with

the same radical are combined.

Filters

Definition 1.2.27. (See, [10, 22]) A nonempty subset F' of L is called a ©-
filter (or filter) of L if it satisfies the following conditions for any x,y € L:
(F1) x€ F andy € F implyz Sy € F.

(F2) x <yandx € F implyy € F.

A o filter of L is a A-filter of £ (that is a filter of the lattice of £), but
the converse is not necessarily true (See, [10], Remark 3.5). For any nonempty
subset F of L, the following are equivalent (See, [10, 22]):

(1) Fis a filter of L.

(2) 1€ Fandforany z,y € L, (r € Fand z - y € F) imply y € F.
(3) 1l e Fandforany z,y € L, (r € Fand x —oy € F) imply y € F.
The filter of £ generated by a subset X of L is given by

(X)={yel: 1101,6...6z, <y for some z1,...,v, € X, n € N*};

in particular, the principal filter generated by an element x of L is given by
) ={a € L: 2" < a for some n > 1}. The set Fil(L) of filters of £ forms
a Heyting algebra Fil(L) := (Fil(ﬁ); N, U, =; {1}, L); where, N is the
intersection of sets, F1LUFy := [F1UFy) and F} = Fy :={z € L: [z)NF} C Fyp}.
The lattice of Fil(L) is algebraic and its compact elements are exactly the
principal filters of £ (See, [10, 22]).
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1.2 Residuation theory 14

1.2.3 FLukasiewicz semi-rings and MV -algebras

The following approach to MV-algebras was initiated by G. Georgescu and
A. Torgulescu in [17] to generalize the commutative one introduced by C.C.
Chang in [9].

Definition 1.2.28. An MV -algebra is an algebra M := (M; &, @; —, ~; 0, 1)
of type (2,2,1,1,0,0) satisfying the following conditions:

(MV1) (M; &, 0) is a monoid and 1~ =0 = 17.

(MV2) Foranyze M, x®1=1=1x and (z7)~ = x.

(MV3) For any x,y € M, (y~®z~)" =20y=(y @z ), 20 (x” Gy) =
(@Y™ )Oyandzd (2~ 0y)=yd (¥ ox)=(r0y )dy=(yor )P,

Remark 1.2.29. (See, Definition 1.2.12) The two definitions of M'V -algebras
are equivalent through the following transfer:

o If (M; @, ® —, ~; 0, 1) is an MV -algebra, then (M; A, V, ®, —o, —»
; 0, 1) is a distributive MV -algebra; where, the operations A\, V, —o and — on
M are given by x\y = 20 (2~ ©y) = yO(y ©z) = (2@y~) Oy = (y®r~) O,
zVy=(z0y )dy=2® (@~ Qy),r —oy=ydz~ andr »y=a" Dy
and the order < on M is giwwen by x <y iff t- y=1iffydax™~ = 1.

o If(L; N\, V, ©, =, —o; 0, 1) is an MV -algebra, then (L; &, ©; ~, —; 0, 1)
1s an MV -algebra; where the binary operation & on L is given by x @y =

YeT=yer=y—»>r =72 —.

Example 1.2.30. (a) The MV -algebra ([0, 1; &, ®; =, 75 0, 1), where
r@®y=min{l, 4y}, rOy =max{0, x+y— 1} and 2= = 1 — x, is the
Ltiukasiewicz structure. It is also called the fukasiewicz chain.

(b) Let G = (G; A, V, +; —; 0) be an arbitrary l-group, u a strong unit of G
(u is a positive element of G and for any g € G there exists an integer n > 1
such that —nu < g < nu) and I'(G,u) the lattice interval [0, u] of G. Then
(T(G,u); ®, ®; =, ~; 0, u) is an MV -algebra, where x ®y = (z +y) Au,
rQy=(r—ut+y) V0,2~ =u—2x and 2~ = —x + u.

Every MV-algebra is meet-distributive and join-distributive (See, [34],
psmu — ca9 and psmuv — co3 of Theorem 4.6.), completely product-distributive
(See, |34], psmv — co6 and psmuv — co7 of Theorem 4.6.) and isomorphic to an
MV -algebra of the form

(T(G,u); ®, ®; ~, ~; 0, u) (See, [13], Theorem 3.9.).

Every complete MV-algebra is commutative (that is @ is commutative) (See,
[13], Theorem 4.2. and [14], Proposition 6.4.14).

Proposition 1.2.31. (See, [21], Proposition 2.1.) From an MV -algebra M =
(M; &, ®; =, ~; 0, 1), one can extract the algebra (M; V, ®; —, ~; 0, 1)
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1.3 L-fuzzy subsets of a set 15

of type (2,2,1,1,0,0), which is called a Lukasiewicz semi-ring since it satisfies
the following conditions:
(LS1) (M; V, ®) is an additively idempotent semi-ring with an additive iden-
tity 0 and a multiplicative identity 1.
(LS2) — and ~ satisfy the following conditions for any x,y € M:
(iP)zoy=0iff c <y~ iff y <z ; where, x <y iff tVy=y.
(i6) (¢~ )" ©a™)" =V y = (" © (y e ))
(i) (= © )" = (o= )",
Remark 1.2.32. Let (M; VvV, @; =, ~; 0, 1) be a Lukasiewicz semi-ring with
the relation < defined for any x,y € M by: © <y if and only if x Vy = y.
Then the following are satisfied (See, [21], Lemma 2.2.):
e The relation < is an order on M that is compatible with V and ©.
e 0 =1=0"and1-=0=1".
o Foranyz e M, 2~ 0rx=0=z0z" and (x7)~ = (z~)".
o Forany x,y € M, x <y impliesy~ <z~ and y~ < x".
o (M; A, V, ®; 0, 1) is a bounded lattice-ordered semi-ring; where, for any
ryeM, (z-Vy )"=xAy=(z"Vy~) .

Proposition 1.2.33. (See, [21], Proposition 2.3. and Proposition 2.5.)

(1) A Lukasiewicz semi-ring (M; VvV, @; —, ~; 0, 1) induces an MV -algebra
(M; &, @; =, ~; 0, 1); where, t @y = (y~ ©a~)" foralx,yec M.

(2) There is a duality between MV -algebras and Lukasiewicz semi-rings.

1.3 L-fuzzy subsets of a set

In this section, £ := (L; A, V, ©, —, —o; 0, 1) is a complete residuated

lattice, unless otherwise specified.

1.3.1 Residuated lattice of L-fuzzy subsets

Definition 1.3.1. Let A be a nonempty set. A fuzzy subset of A under L, or
an L-fuzzy subset of A, is a map from A to L.

For any B C A, a € A and r,s € L, the following functions from A to L
are L-fuzzy subsets of A:

if B
Bi(z) = { s 1 TEL for all x € A,
r if not.

B, := B}, B := Bl, a! .= {a}$, a, := a}) (L-fuzzy point of A), B; =: x5 := B’
(characteristic function of B), x4 := X{a} and A, =: 1 := (" (constant L-fuzzy
subset of A with value r). For any L-fuzzy subset pu of A and r € L, the sets
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1.3 L-fuzzy subsets of a set 16

Supp(p) :=={z € A: p(x) # 0}
Im() = {u(x) : = € A}
U(p,r) :={x e A: plx) >r}

are called the support, the image and the r-level set (or r-cut) of p, respectively.
The partial order relation < on the set Fu(A, L) of L-fuzzy subsets of A is
defined as follows: for any p,v € Fu(A, L),

p < v if and only if p(x) < v(z) for all x € A.
The relation < on Fu(A, L) is defined as follows: for any u,v € Fu(A, L),
p < v if and only if 4 < v and there is € A such that u(z) < v(z).

The set Fu(A, L) forms a complete lattice Fu(A, L) := (Fu(A, L); A, V5 0, l)
and a residuated lattice Fu(A, L) := (Fu(A,L); A, V, ©, -, —o; 0, l);
where, the binary operations A, V, &, —, —o are defined componentwise.
Since the class of residuated lattices is a variety, £ and Fu(A, L) satisfy the
same residuated lattice identities.

Remark 1.3.2. ¢ The map ¢ : L — Fu(A, L), given by ¢(r) =r forallr € L,
is a complete residuated lattice embedding of L into Fu(A, L).

e The map v : P(A) — Fu(A, L), given by ¥(B) = By for all B € P(A),
is a complete residuated lattice embedding of the Boolean algebra P(A) into
Fu(A, L).

1.3.2 L-fuzzy subalgebras of an algebra

In the rest of this section, unless otherwise specified, A := (4; F4) is an
algebra of type F.

Let f be an nm-ary operation on A. The n-ary operation f* on P(A) is
defined by: for any By,..., B, € P(A),

f+(Bla---7Bn) = {f([]?l,...,xn): T EBl,...,xn EBn}

By the Zadeh’s extension principle [41], f induces on Fu(A, L) an n-ary oper-
ation f defined by: for any uq,...,u, € Fu(A, L),

f(pl,...,un)(y) =V{ A wi(z): (z,...,2,) € f7Hy)} for all y € A.

1<i<n
For any f € Fy, we have (f4)* = {f%} and ]/071 = X/A.

Lemma 1.3.3. Let {B;}1<i<n € P(A), {riti<i<cn € L and f be an n-ary
operation on A. Then f((Bi)r,--.,(Bn)r,) = (f7(Bi,...,By)) I

1<i<n
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1.3 L-fuzzy subsets of a set 17

Proof. If there is 1 < iy < n such that By, = (), then (By), = 0 and

FH(By,..., By) = 0; thus, f((Bi)r,- -, (Bu)r) = 0= (f*(B,...,B,)) A

1<i<n

Now, suppose that B; # () for all 1 < i < n. For any y € fT(By,...,B,),
there are a; € By, ...,a, € B, such that (ay,...,a,) € f~(y); thus,

/\ r; > f((Bl)m:"'?(Bn)Tn)(y) > /\ (Bl)n(al) - /\ T

1<i<n 1<i<n 1<i<n

and, f((Bl)m...,(Bn)rn)(y) = A ri. Now, lety & fT(By,...,B,). For

1<i<n
any (z1,...,7,) € f7'(y), there is 1 < ig < n such that z;, € B,; thus,

(Bio)n'o (xio) =0 and? /\ (BZ)H ($Z) = 0. SO7

F((Bry. - (Ba)r) () = V{0} = 0.
Hence, f((Bi)rs- - (Ba)r) = (J¥(Br,.. o Ba)) o O

1<i<n

Definition 1.3.4. The universal algebras AT := (P(A); {(f")*: f € F})
and A = (Fu(A, L); {fA: fe F}) are respectively called the power (com-
plex) algebra and the L-fuzzy algebra induced by A.

Proposition 1.3.5. The function ¢ : P(A) — Fu(A, L), given by ¢(B) = B;
for all B € P(A), is an embedding of A" into A

Proof. For any [ € F,, we have ¢((fA)+) = o({f}) = {f*} = XA = fZ‘
For any f € F,, and X;,..., X, € P(A), from Lemma 1.3.3, we have

O (Xr o X)) = (P (X0 X)) = FA(X), - 6(X,)).

Since ¢ is clearly one-to-one, it is an embedding of A" into A. n

Definition 1.3.6. An L-fuzzy subset p of A is called an L-fuzzy subalgebra of

A if it satisfies the following conditions:

(FS1) For any f € Fy, p(f*) = 1.

(FS2) For any f € F, and ay,...,a, € A, p(fA(ar,...,a,)) = N pla).
1<i<n

Proposition 1.3.7. Let u be an L-fuzzy subset of A. Then p is an L-fuzzy

subalgebra of A if and only if the following conditions are satisfied:

(1) For any f € Fy, J/”Z < pu.

(2) For any f € F,, ]/C’\“(,ul,...,,un) < p; where, pr = ... = i, = [t

Proof. (=) Assume that p is an L-fuzzy subalgebra of A. For any f € Fp, we
have fA(f4) = 1 = u(f*) and fA(y) = 0 < p(y) for all y # f* in A; thus,
]/“Z < u. Now, let f € F,. For any y € A such that (f*)~!(y) # 0, we have

A nla) < p(fAar, ... a,) = ply) for all (ai,...,a,) € (f*) " (y); thus,

1<i<n
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1.3 L-fuzzy subsets of a set 18

fz(u,...,u)(y) < u(y). For any y € A such that (fHYy) = 0, we have
Ay m)(y) =V 0 =0 < u(y). Hence, fA(k, ..., 1) < p.
(<) Assume conditions (1) and (2) are satisfied. For any f € Fp, we have
pw(f4) > F“(fA) =1and, u(f*) =1. For any f € F,, and ay,...,a, € A, we
have (a1, ...,a,) € (f*)7*(f*(a1, ..., a,)); thus,

n(fAar, . an) = fA ) (fHar, . an)) > 1</\< pi(a;).

Hence, p is an L-fuzzy subalgebra of A. O

Proposition 1.3.8. Let p be an L-fuzzy subset of A.

(1) If v is an L-fuzzy subalgebra of A, then all its cuts are empty or subuni-
verses of A.

(2) If U(u,1) # 0, then p is an L-fuzzy subalgebra of A if and only if all its

cuts are subuniverses.

Proof. (1) Assume that p is an L-fuzzy subalgebra of A. Let r € L such that

U(p,r) # 0. For any f € Fy, we have u(f4) =1>r and, f4 € U(u,r). For

any f € F,and aq,...,a, € U(p,r), wehave pu(f4(ar,...,a,)) > N pla;) >
1<i<n

A r=rand, f4ai,...,a,) € U(p,r). Hence, U(u,r) is a subuniverse of
1<i<n

A.
(2) Assume that U(u,1) # 0. By (1), it suffices to show the second impli-
cation. So, assume that cuts of u are subuniverses of A. For any f € Fq,

we have f4 € U(p,1) and, u(f4) = 1. For any f € F, and a4,...,a, € A,
we have ai,...,a, € U(p, A pla;)); thus, f4(ar,...,a,) € U(p, A p(ar))
1<i<n 1<i<n

and, ,u(fA(al, o 7an)) > A w(a;). Hence, p is an L-fuzzy subalgebra of

1<i<n

A. O

Lemma 1.3.9. Let p be an L-fuzzy subalgebra of A. For any n-ary term
t(zy,...,x,) of type F, ,u(tA(al, o ,an)) > A wla;) forallay,... a, € A.

1<i<n
Proof. We use induction on the n-ary term t(zy,...,x,) of type F.
If t(x1,...,2,) is a nullary function symbol, then for any aq,...,a, € A,
t4(ay,...,a,) is a nullary fundamental operation; thus, u(tA(al, . ,an)) =
1> A pla)

1<i<n

If t(z1,...,3,) is a variable z; (1 < j < n), then p(t*(a1,...,a,)) = pla;) >
N w(a;) for all aq,...,a, € A.

1<i<n

Now, suppose that t(z1,...,2,) = f(t1(z1, ..., 20),. .., tm(21, ..., 20)), Where

f € Fy and for any 1 < j < m, p(tf(by,...,bn)) > A p(b;) for all

bi,...,b, € A. For any aq,...,a, € A, we have =
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1.3 L-fuzzy subsets of a set 19

p(tt(ar, ... a)) = p[fANar, . an), .t (ar, . an))]

> A p(tiar,. .., an))

1<j<m

A A pla)

1<j<m 1<i<n

= A la)

1<i<n

A%

Hence, the desired result follows. n

Proposition 1.3.10. Let pu be an L-fuzzy subalgebra of A.

(1) For any a € Sg(0), we have p(a) = 1.

(2) For any a,b € A such that Sg(a) = Sg(b), we have u(a) = u(b).

Proof. (1) For any a € Sg(0) \ F3', we have a = tA(f4,..., f4) for some term
Han,....2n) and f € Fy: thus, u(a) > A p(f4) = p(f4) = 1 and, p(a) = 1.

1<i<n

(2) Let a,b € A such that Sg(a) = Sg(b). If a € Sg(), then b € Sg(0) and,
u(a) =1 = p(b). Now, suppose that a € Sg(). Since a € Sg(b), we have
a =t4(b,...,b) for some term t(xy,...,x,); thus, u(a) > A wu(b) = u(b). A

1<i<n

similar reasoning shows that p(b) > p(a). Hence, pu(a) = u(b). O

For any pu € Fu(A, L), u is the L-fuzzy subset of A given by

Hes 2= 4V X Sg(0);
furthermore, p, = p if and only if Sg(0) C U(u, 1).

Proposition 1.3.11. Let B be a subuniverse of A and r,s € L such that
r <s. Then (B). is an L-fuzzy subalgebra of A.

Proof. For any f € Fj, we have

(B)«(f") = xsg0)(f*) = 1 and, (B)).(f*) = L.
Now, let f € F,, and a4, ...,a, € A.
o If fA(ay,...,a,) € Sg(0), then (B:).(f*(ai,...,a,)) =1, since
(Bf‘)*(fA(ala s ,CL,J) > XSg(0) (fA<a1a s 7an)) =1L
o If f4(ay,...,a,) € B\ Sg(0), then a;, ¢ Sg(P) for some 1 < iy < n; thus,

(By)«(fA(ar,- - an)) = s > (B)(az) > 1</'\< (B7)+(as)-
o If f4(ay,...,a,) & B, then a;, ¢ B for some 1 < iy < n; thus,
(By)«(f(ar,- .. a)) =7 = (B)u(ai) = N (B})u(a).

1<i<

Hence, (B?). is an L-fuzzy subalgebra of A. O
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CHAPTER TwO

RESIDUATED LATTICE OF L-FUZZY
SUBALGEBRAS OF AN ALGEBRA

In this chapter, unless otherwise specified, £ := (L; A, V, ©, —, —o; 0, 1)
is a complete residuated lattice and A := (A4; F4) is an algebra of type F.
In Section 2.1, given a complete meet-distributive residuated lattice £ and an
algebra A, we set up a mimetic construction of the L-fuzzy subalgebra of A
generated by an L-fuzzy subset of A. We also characterize atoms, co-atoms
(when L is distributive) and compact elements of the lattice Fs(.A, L), and
show that the latter is algebraic (when L is algebraic). When L is a finite
linearly ordered Brouwerian algebra and Sub(.A) supports a quantale structure
Sub(A), we show that Fs(A, L) supports an algebraic quantale structure which
is both an extension of £ and Sub(A). In Section 2.3, given a mono-unary
algebra A, we define a residuated lattice structure Fs(A, L) on the set of L-
fuzzy subalgebras of A which is both an extension of £ and the Heyting algebra
Sub(A) on the set of subuniverses of A. Furthermore, we show that Fs(A, L)
is an MV -algebra (resp., a Boolean algebra) if and only if £ is an MV -algebra
(resp., a Boolean algebra) and Sub(.A) is a Boolean algebra.

2.1 Lattice of L-fuzzy subalgebras of an alge-
bra

2.1.1 Lattice of L-fuzzy subalgebras

Proposition 2.1.1. The set Fs(A, L) of L-fuzzy subalgebras of A is closed
under the infimum of Fu(A, L).

Proof. Let {ux}aea C F's(A, L). For any f € Fy, we have
(Am)(fY) = Am(f* = A1=1
AEA AeA AeA

For any f € F,, and aq,...,a, € A, we have
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2.1 Lattice of L-fuzzy subalgebras of an algebra 21

( /\ NA) (fA(al, e aan)) = /\ MA(fA(al, o aan))

AEA AEA
> AN N (@)
AeA 1<i<n

>N A (A paa))

A€A 1<i<n Ae€A

= A ( A Mx(az‘))

1<i<n A€A

= A (Am)(a).

1<i<n AEA

Hence, A p» is an L-fuzzy subalgebra of A. O
AEA

For any L-fuzzy subset p of A, the L-fuzzy subset of A given by
Nrv € Fs(A L) : p < v}, and denoted by Fsg(u), is according to Prop-
position 2.1.1 the smallest L-fuzzy subalgebra of A containing pu. Fs(A, L)
forms the complete lattice Fs(A, L) := (FS(A, L); A, U Xsg(0); l), where the
binary operation U is defined by: pUv = Fsg(pu VvV v) for all u,v € Fs(A,L).
Furthermore, for any L-fuzzy subsets p and v of A, we have p < Fsg(u),
Fsg(Fsg(pn)) = Fsg(p), and Fsg(p) < Fsg(v) whenever p < v.

Proposition 2.1.2. Let B be a subset of A and r,s € L such that r < s.
Then Fsg(Bs) = (Sg(B)3)..

Proof. By Proposition 1.3.11, (Sg(B)ﬁ)* is an L-fuzzy subalgebra of A con-
taining B?. Finally, let 1 be an L-fuzzy subalgebra of A containing B;.
e For any a € Sg(0)), we have (Sg(B):) (a) =sV1=1= p(a).
e For any a € Sg(B)\ Sg(0), there are a term ¢(x1,...,z,) and a4, ...,a, € B
such that a = t*(ay, ..., a,); thus,

(S9(BR).0) =5 = A Bla) < A pla) < pl(oneo.a0)) = o).

<i<n 1<i<n

e For any a ¢ Sg(B), we have a € B; thus,

(Sg(B);),(a) = r = B;(a) < p(a).
So, (Sg(B):), < p. Hence, Fsg(B:) = (Sg(B)3). . O

r

Proposition 2.1.3. The map ¢ : Sub(A) — Fs(A, L), given by ¢(B) = By
for all B € Sub(A), is a complete lattice embedding (See, Remark 1.1.5) of
Sub(A) into Fs(A, L).

Proof. Let {Bx}xea C Sub(A).
We have \ (By): < V(L Bx)1 = (L) Bx)i- Now, let p be an L-fuzzy
AEA

AEA AEA AEA
subalgebra of A containing \/ (B));. For any a € || B,, there are a term
AEA AEA

t(zy,...,x,) of type F, A1, ..., A\p € Aand ay, € By,,...,ay, € B, such that
a=tYay,,...,ay,); thus,
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2.1 Lattice of L-fuzzy subalgebras of an algebra 22

wa)> A wlan) > A Bia) = A 1=1

1<i<n 1<i<n 1<i<n
and, p(a) = 1. So, (|| Ba)1 < u. Hence,
AEA
o(LUBy) = (B = (LB = LBy
AEA AEA AEA AEA
Furthermore,
?(NBx) =(NB1= A (B)r= A o(By).
AeA AEA AEA AEA
Since ¢ is clearly one-to-one, the result follows from the above. O

Proposition 2.1.4. Suppose that A is not F-trivial. The map ¢ : L —
Fs(A, L), given by ¥(r) = (r)« for all v € L, is a complete lattice embedding
(See, Remark 1.1.5) of the lattice of L into Fs(A, L).

Proof. Let {ry}xea C L.
e For any a € Sg()), we have

(A )@ = A@)i(a) = Al=1=(An),(a)

AEA AEA AEA AEA

e For any a & Sg()), we have

(A (ma))@) = A (ma)i(a) = Ara=(Ar),(a).

A€A A€A A€A AEA

Thus, (A7) = (A/E\ATA)* = A/E\A(T_A)* = A/E\A@/J(TA); and, (V7)) = V ¢(r))

AEA AEA AEA
by similar arguments. Since A is not F-trivial, ¢ is one-to-one. Hence, 9 is a

complete lattice embedding. O]

Note: If A is F-trivial, then F's(A, L) = {1} and v is a constant map with
value 1.

Theorem 2.1.5. Suppose that Fy = (). Then Fs(A, L) is linearly ordered if
and only if one of the following conditions is satisfied:

(1) L is linearly ordered and Sub(A) is trivial.

(2) Sub(A) is linearly ordered and L is trivial.

Proof. (=) Assume that Fs(A, L) is linearly ordered. Suppose condition (1)
does not hold. Sub(.A) is linearly ordered by Proposition 2.1.3. Since L is lin-
early ordered by the hypothesis, Sub(.A) is nontrivial by the fact that condition
(1) does not hold; thus, there is B € Sub(.A) such that B # () and B # A. For
any r € L, we have r < By or By < r; thus, r = r(a) < Bi(a) = 0 for some
a g Borl=Bb) <r(b) =rfor someb e B;so, =0 or r = 1; that is
r € {0, 1}. Hence, L = {0, 1} and, £ is trivial. Therefore, one of conditions
(1) and (2) is satisfied.

(<) Suppose condition (1) holds. Let p € F's(A,L). For any x,y € A such
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2.1 Lattice of L-fuzzy subalgebras of an algebra 23

that pu(z) < u(y), we have v € A =U(u, u(y)) and, p(z) = p(y). Thus, p=r
for some r € L. Hence, F's(A,L) = {r : r € L}. Therefore, Fs(A, L) is
linearly ordered, since L is linearly ordered.

Now, suppose condition (2) holds. Let u € F's(A,L). For any ¢ U(u,1),
we have p(z) # 1 and, pu(z) = 0. Thus, p = By for some B € Sub(A). So,
Fs(A,L) = {By: B € Sub(A)}. Hence, Fs(A, L) is linearly ordered, since
Sub(A) is linearly ordered. O

2.1.2 Atoms, co-atoms and compact elements

Theorem 2.1.6. Atoms of Fs(A, L) are exactly of the form (Sg(a)r)*, where
r and Sg(a) are atoms of L and Sub(A), respectively.

Proof. (=) Let u be an atom of Fs(A, L). Since there is a € A\ Sg(0) such
that p(a) # 0, we have ysy0) < (S9(a) u(a) ) < pand, p = (Sg(a)u) ) Since

} 7 Xsg(0), we have p(a) # 0 and Sg(a) # Sg(0).
e For any r € L such that 0 < r < p(a), we have xsy0) < (Sg(a), ) <

(S9(a)u),; thus, (Sg(a),), = (Sg9(a)uw)), and, r = p(a). Hence, p(a) is an
atom of L.

e For any B € Sub(A) such that Sg(0) C B C Sg(a), we have xgq0) <
(Buw), < (S9(a)u)..; thus, (Buw), = (S9(@)u), and, B = Sg(a). Hence,
Sg(a) is an atom of Sub(A).

(<) Let s be an atom of £ and a € A such that Sg(a) is an atom of Sub(A).
We have (Sg(a)s)* # Xsg(0), since s # 0 and Sg(a) # Sg(0). Now, let u €
Fs(A, L) such that xse0) < p# < (Sg(a)s),. Since there is b € Sg(a) \ Sg(0)
such that 0 < u(b) < s, we have Sg(a) = Sg(b) and, p(a) = u(b) = s.

o For any 7 € Sg(a) \ Sg(0), we have ju(z) > p(a) = 5 = (Sg(a),), () > ()
and, u(x) =

e For any = € Sg(a), we have 0 < p(z) < (Sg(a)s),(z) = 0 and, pu(x) = 0.

It follows that p = (Sg(a),),. Hence, (Sg(a)s), is an atom of Fs(A,L). O

Lemma 2.1.7. Suppose that L is distributive and let p € F's(A, L) and r € L.
Then vV u is an L-fuzzy subalgebra of A.

Proof. For any f € Fj, we have

(eVu)(FY) =rVu(fY) =rvi=1

For any f € F, and aq,...,a, € A, we have

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



2.1 Lattice of L-fuzzy subalgebras of an algebra 24

(£v ) (far,. o an)) =7V p(fa. .. a)
Z7’\/( A M(%‘))

1<i<n

= A (rVu(a)

1<i<n
= /\ (rV ) (a).
1<i<n

Hence, r V p is an L-fuzzy subalgebra of A. O

Theorem 2.1.8. Suppose that L is distributive and A is not F-trivial. Then
co-atoms of Fs(A, L) are exactly of the form B®, where s and B are co-atoms

of L and Sub(A), respectively.

Proof. (=) Let u be a co-atom of Fs(A, L). For any a,b & U(u,1), we have
p<pla)Vp<land p < pb)Vp < 1;thus, pla) Vi =p=pb) Ve and,
w(a) :_u(b) It follows that p = (U(p,1))” for some s € L. -

Since p # 1, we have s # 1 and U(u, 1) # A.

e For any r € L such that s <r <1, we have y <rVpu <1land, rVp=1;
thus, » =7V s = 1. Hence, s is a co-atom of L.

e For any D € Sub(A) such that U(u,1) C D C A, we have p < D® <1 and,
D?® = 1; thus, D = A. Hence, U(u, 1) is a co-atom of Sub(A).

(<) Let s and B be co-atoms of £ and Sub(.A), respectively. We have B® # 1,
since s # 1 and B # A. For any u € Fs(A, L) such that B® < u < 1, we
have B = U(B*,1) C U(u,1) € A and a € B such that s < u(a) < 1; thus,
BCU(u,1) CAand a € U(u,1)\ B;so, BCU(u,1) C Aand, U(u,1) = A;
i.e., i = 1. Hence, B* is a co-atom of Fs(A, L). ]

Theorem 2.1.9. Suppose that L is meet-distributive, and let u € Fu(A, L)
and p, € Fu(A, L) defined by: p,(z) =\/{r € L: z € Sg(U(p,r))} for all
x € A. Then py is the smallest L-fuzzy subalgebra of A containing p.

Proof. For any a € A, we have a € U(p,p(a)) € Sg(U(p, p(a))) and,
wla) < pe(a). Thus, p < p.. We next show that pu, is an L-fuzzy subal-
gebra of A.

For any f € Fy, we have u,(f4) =\ L= 1. Now, let f € F,, and a4, ...,a, €

A. For any rq,...,r, € L such that a; € Sg(U(p,m1)),...,a, ESg( u,rn)),

Wehaveal,...,anGSg(U(,u, A r,)) and, f4(ay,...,a )GSg( Z)),
1<i<n 1<7,<ﬂ,

thus, ;L*<fA(a1,...,an)) > A 7. So, ,u*(fA(al, . .,an)) > A (@)
1<i<n 1<i<n

Hence, u, is an L-fuzzy subalgebra of A.

Finally, let v be an L-fuzzy subalgebra of A containing p. Let u € A\ Sg(0).
For any r € L such that u € Sg(U(u, 7’)), there are a term t(xy,...,z,) of
type F and uy,...,u, € U(v,r) such that u = t*(uy, ..., u,); thus,
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r< A vlw) <v(tt(u,. . uw) = v(uw).

1<i<n

So,
pe(u) <\V{reL: ueSg(U(,r)} <v(u).

Hence, p, < v. Therefore, pu, is the smallest L-fuzzy subalgebra of A contain-
ing p. [
The above result generalizes that obtained by M. Tonga in [38§].

Proposition 2.1.10. Suppose that L is meet-distibutive, and let a € A\ Sg(0)
and c € L. Then Fsg(ac) is a compact element of Fs(A, L) if and only if ¢ is

a compact element of L.

Proof. (=) Assume that Fsg(a.) is a compact element of Fs(A,L). Let
{ri}icr C L such that ¢ < \/r;. Since

el
Fsg(a.) < Fsglay ) = Fsg(V ar,) = [ Fsg(ar,),
iel i€l el
there is {41,...,4,} C I such that Fsg(a.) < || Fsg(a,, )= Fsgla v . );
1<j<p ! 1<<p
thus, ¢ = Fsg(a.)(a) < Fsg(a v . )(a) = \/ r;,. Hence, cis a compact
1<j<p ? 1<j<p

element of L.

(<) Assume that c is a compact element of £. Let {ux}rea € F's(A, L) such

that Fsg(ac) < |]pa. Since ¢ < (V ), (a) and ¢ is a compact element
AEA AEA

of L, there are r,...,r, € L such that a € [) Sg(U( V uA,ri)) and ¢ <
AEA

1<i<n

\/ 7. For any 1 < i < n, there are a term t;(z;1,...,z;y,) of type F and
1<i<n

Uity -+, Uik, € A such that a = t2(u, ..., ug,) and r; <\ py(uyy) for all
AEA

1 <J< ki; thusa ri < /\ (\/ :u/\(ulj)) = V /\ luAij(uij)' SO?

1<j<k; €A ()\il,...,)\iki)EAki 1<5<k;

c< V A b (uig);
LI<n (A, Ay, JEART 1<5<ks
ie., ¢ < V V' A, (uy). Since ¢ is a compact

1<i<n 1<j<k;
. . I AK; =t SISRG
<()\”"”’)\1ki))ISiSn€1§i§n 7

element of L, there is a finite subset €2 of A such that

c< V Voo A g (ug);

. 1<i<n 1<j<k;
(()\ila~--»)\iki))1<. € [I ki == ISIEE
SISn 1<i<n

thus,
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c <V V A o (uij)

1<i<n (A1 )\Zkl)eﬂkz 1<5<k;

-----

=V A (Vm)(uy)

1<i<n 1<j<k; A€Q

<V A (V) (uy)

1<i<n 1<j<k; AeQ

< V(o) (#(a, - wi,))

1<i<n  Ae

=V (Vm),()

1<i<n A€

= (Y0
= ( L MA) (a).

AEQ
For any u € Sg(a) \ Sg(0), we have
Fsg(ac)(u) = ¢ < (AEQMA)(G) < (A|E|QNA)(U)

For any u ¢ Sg(a), we have
Fsgla)(u) = 0 < (L] i) (w).

Thus, Fsg(ac)(u) < (] pa)(u) for all u € A; i.e., Fsg(ac) < || pa.
AEQ AEQ
Hence, F'sg(a.) is a compact element of Fs(A, L). ]

Note: For any a € Sg(0) and ¢ € L, Fsg(a.) = xsg(0) is a compact element
of Fs(A, L).

Definition 2.1.11. For any compact element ¢ of L and a € A, Fsg(a.) will
be called a compact principal L-fuzzy subalgebra of A.

Theorem 2.1.12. Suppose that L is distributive and algebraic.

(1) Compact elements of Fs(A, L) are exactly finite suprema of compact prin-
cipal L-fuzzy subalgebras of A.

(2) Fs(A, L) is an algebraic lattice.

Proof. (1) A finite supremum of compact principal L-fuzzy subalgebras of .4

is a finite supremum of compact elements of Fs(A, L) by Proposition 2.1.10;

thus, it is a compact element of Fs(A, L).

Conversely, let 1 be a compact element of Fs(A, L). Since = | | Fsg(a,ua)),
acA

there are ay, ..., a, € Asuchthat p = || Fsg((a;)u(a)- Since L is algebraic,

1<i<n
for any 1 < i < n, there is a family {c¢;};e;, of compact elements of £ such

that p(a;) = V ¢;. It follows that
Jjel;
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po= L FSQ((ai)vcj)

1<i<n JEI;

= U Fsg(V (@).,)

1<i<n jEL

= U UFsg((ae,)

1<i<n j€I;

- L L FSQ((ai)cji)-
(J1seees jn)el<1j< I; 1<i<n

Since u is compact, there is a family {K;}1<;<p of finite sets such that K; C I;

forall 1 <i<nandp= L] L] Fsg((ai)cji). Hence, by Propo-

(j1,-sdn)€ T1 Ki 1<i<n
1<i<n

sition 2.1.10, p is a finite supremum of compact principal L-fuzzy subalgebras
of A.

(2) Since Fs(A, L) is complete, it suffices to show that it is compactly gen-
erated. So, let u € Fs(A,L). Since L is algebraic, for any a € A, there

is a family {c;,}icr, of compact elements of £ such that p(a) = \ ¢
i€l,
Hence, p = || Fsg(avy ,) = |l LlFsg(a,), and for each a € A and
acA '

1€lq a€A i€l,

1€ I, Fsg(aci,a) is compact by Proposition 2.1.10. Therefore, Fs(A, L) is
algebraic. O]

2.2 Quantale of L-fuzzy subalgebras of an al-
gebra

In this section, L is a finite linearly ordered Brouwerian algebra and the lattice
Sub(A), of subuniverses of 4, supports a quantale structure whose product is
denoted by ©.

2.2.1 Quantale structure

Proposition 2.2.1. Let {y}rea be a family of L-fuzzy subalgebras of A and

reL. Then U( | pr,r) = []U(pr 7).
AEA AEA

Proof. Let a € U(|]pa,7). Since r < Fsg('\/ p)(a), there is s € L such
AEA AEA

that a € Sg(U( \/uA,s)) and r < s; thus, there are a term t(zy,...,x,)
AEA

of type F and ay,...,a, € U( V u,\,s) such that a = t*(ai,...,a,). For
AEA
any 1 < i < n, there is A\; € A such that s < py,(a;) and, r < py,(a;);
thU.S, a; € U(M)\ivr) - I_IU(M)\ar)' SO, a = tA<a17--->an) € |_| U(/L)\7T).
A€A AEA
Consequently,
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U( I_l H)\,T') - I_l U(M)\7T); andu U( I_l IU)”T) = |_| U([,L)\,T');
AEA AEA AEA AEA

since, | JU(ua,m) € LU(U pa,) =U(L pasr). =
AEA AEA  AEA AEA

Proposition 2.2.2. Let u,v € Fs(A, L). The L-fuzzy subset p®@v of A, given
by (u@y) (x)=\V{reLl: xeU(u,r)0U(vr)} forallx € A, is an L-fuzzy
subalgebra of A.

Proof. For any f € F,, we have (u@u)(fA) =\ L =1. Now, let f € F, and
ai,...,a, € A. Forany ry,...,r, € Land a1 € U(u,r1) ©U(v,r1),...,a, €
Ulp,ry) ® U(v, 1), we have ay,...,a, € Ulp, A 7)) ©U(v, A i) and,

1<i<n 1<i<n

fAa1,...,a,) € U(u, A ri)QU(V, A 7‘1»); thus, (M®V) (fA(al,...,an)) >

1<i<n 1<i<n

A ri. So, (@ v)(fAa,...,a,)) > A (p®v)(a;). Hence, p ® v is an
1<i<n

1<i<n

L-fuzzy subalgebra of A. o ]

Lemma 2.2.3. Let p and v be two L-fuzzy subalgebras of A and r € L. Then
Ulpev,r)=Upr)oU(v,r).

Proof. For any a € U(p, ) ® U(v, 1), we have
r<(p®v)(a) and, a € U(p@v,r).

Thus, U(u,r) ©U(v,r) CU(p @ v, 7).
Now, let a € U(p ® v,r). Since r < (u @ v)(a), there is s € L such that

r<sandaé€U(us)®U(v,s);

thus, a € U(p,r) © U(v,r). So, U(p ® v,r) C U(u,r) ® U(v,r). Hence,
Upv,r)=U(ur)oU(y,r). O

Theorem 2.2.4. Fs(A, L) := (FS(.A, L), A, U, ®; l) is a quantale.

Proof. We have already proved that Fs(A, L) is a complete lattice. Now, let
w,v, 8 € Fs(A, L). For any a € A, we have

(p@v)®6)(a) =V{reL: acU(uov,r)oU®,r)}
=V{reL: ac (Upr)oU,r) U@}
—\V{reL: acU(ur)o U,r)oU®6, )}
—V{rel: acU(u,r)oUWpesr)
= (e (ved)(a)
Thus, (4 ® V) ® 6 = 4 & (v ® 8). For any p € Fs(A, L), we have
(n®1)(@)=V{reL: acUur)® A} =V{reL: a€U(ur)} = ula)
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for all @ € A; thus, 4 ® 1 = u; and, 1 ® u = p by similar arguments. Hence,
(Fs(A,L); ®, 1) is a monoid.
For any {ux}aea C F's(A, L) and p € Fs(A, L), we have

(ne Um)a) =V{reL: acU(ur)oU(pu,r)}

- =\V{reL: acU(pr) o AIEI:;E;LM)}
—\V{reL:ac A|E|AU(u,r) O U(pa,7)}
=V{reL:ac U(emr)}
=V{reL: acU(llpemr))

= (U p®mp)(a) for all a € A;
AEA

thus, @ ([ pa) = Up® pa and, () @ p = [ pr © p by similar
AEA AEA AEA AEA

arguments. Hence, Fs(A, L) is a quantale. O

Remark 2.2.5.

(1) The map ¢ : Sub(A) — Fs(A, L), given by ¢(B) = By for all B € Sub(A),
is a quantale embedding of Sub(A) into Fs(A, L).

(2) If A is not F-trivial, then the map v : L — Fs(A, L), given by ¥ (r) = (r).
for allr € L, is a quantale embedding of L into Fs(A,L).

In the rest of this work the results of the preceding remark will be general-
ized in mono-unary algebras and rings. Furthermore, in each case the residual

operations will be explixed.

2.3 Residual transfer in fuzzy mono-unary al-

gebras

Note that by «Residual transfer in a fuzzy algebra» we mean the embedding of
a residuated lattice (through all its operations, residual operations included)
on the subuniverses of an algebra into a residuated lattice on the set of fuzzy
subalgebras of the same algebra.

2.3.1 Lattice of L-fuzzy subalgebras

Definition 2.3.1. (See, [5/)
(i) A mono-unary algebra, also called a unar, is an algebra of type (1); that is
an algebra with one unary operation and no other operation.

(ii) An element x of a mono-unary algebra (A; f) is said to be cyclic if there
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is some integer p > 1 such that fP(x) = x; where, for any nonnegative integer
n, f* is defined inductively by: f°(a) = a and f"(a) = f(f"(a)) for all
a€ A.

Let A := (A; f) be a mono-unary algebra. The Heyting algebra of sub-
universes of A is given by Sub(A) := (Sub(A); N, U, =; 0, A); where, the
binary operation = is defined for any B,C' € Sub(A) by:

B= C:=J{D e Sub(A): DNBCC}.

Remark 2.3.2. An L-fuzzy subset u of A is an L-fuzzy subalgebra of A if
and only if pu(f(x)) > p(x) for all z € A, if and only if all its levels sets are

subuniverses of A.

The set of L-fuzzy subalgebras of A forms a complete lattice Fs(A, L) :=
(Fs(.A, L); A, V; 0, l). The subuniverse of A generated by an element z of A
is given by Sg(z) = {f*(x) : k € N}. Now, define C* :={a € A: f*(a) = '}
for all x € A and k € N.

Theorem 2.3.3. Let p be an L-fuzzy subset of A. The L-fuzzy subalgebra of
A generated by p is defined by: p(z) =\ '\ wp(a) for all x € A.

keN qeCk
Proof. Since p.(z) > \/ pla) = V{u(x)} = p(z) for all z € A, we have

aeC?
1 < pt.. We next show that u, is an L-fuzzy subalgebra of A.

For any x € A, we have

w(f(@) =V V pla)= V p]Vv[V V ua);

keN aEC’Jf(x) a€Cy keN aEC’f“(J;l)
since, CF C C'];(J;, we have p, (f(z)) >V V pla) >V V pla) = ().
keN aeC’k+1) kEN acCk

e
Hence, u, is an L-fuzzy subalgebra of A.
Finally, let v be an L-fuzzy subalgebra of A which contains pu. Let x € A.
For any k € N and a € C*, we have v(z) = v(f*(a)) > v(a) > p(a). Thus,

x )

v(z) > \ wpla) for all k € N; de, v(z) >\ V wla); ie., v(z) > p(x).

acCh keN qeCk
So, i < v. Hence, u, = Fsg(p). O
Lemma 2.3.4. Let x € A. Then Sg(x) is an atom of Sub(A) if and only if x
18 cyclic.

Proof. Assume that Sg(x) is an atom of Sub(A). Since O C Sg(f(z)) € Sg(x),
we have Sg(f(z)) = Sg(z); thus, there is n € N such that f*(f(z)) = z; so,
[ (x) = z. Hence, x is cyclic.

Conversely, assume that z is cyclic of order n. Let B be a subuniverse of A
such that ) € B C Sg(z). Since there is m < n such that f™(z) € B, we have
v = fr(z) = fr"(f™(x)) € B; thus, Sg(z) C B and, Sg(z) = B. Hence,
Sg(x) is an atom of Sub(A). O
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Theorem 2.3.5. Atoms of Fs(A, L) are exactly the L-fuzzy subalgebras Sg(x),,

where r is an atom of L and x is a cyclic element of A.
Proof. Immediate consequence of Theorem 2.1.6 and Lemma 2.3.4. [

Theorem 2.3.6. Co-atoms of Fs(A, L) are exactly the L-fuzzy subalgebras B?,
where s and B are co-atoms of L and Sub(A), respectively.

Proof. Immediate consequence of Theorem 2.1.8 and the fact that without dis-
tributivity of £ the following holds: for any r in L and any L-fuzzy subalgebra
wof A, rV pis also an L-fuzzy subalgebra of A. O

Lemma 2.3.7. Let ¢ be a compact element of L and a € A. Then Sg(a). is a
compact element of Fs(A, L).

Proof. Let {p;}ier C Fs(A, L) such that Sg(a). < \/ ;. Since ¢ < \/ u;(a),
iel i€l
there is a finite subset Iy of I such that ¢ < \/ p;(a). For any x € Sg(a), we
i€lp

have Sg(a)e(z) = ¢ < V pi(a) < V pi(x) = (V ;) (2); thus, Sg(a)e < V .

i€ly i€lp i€lp i€lp

Hence, Sg(a). is a compact element of Fs(A, L). O

Theorem 2.3.8. If L is algebraic, then Fs(A, L) is algebraic and its compact

elements are exactly finite suprema of compact principal L-fuzzy subalgebras of

A.

Proof. Similar to the proof of Theorem 2.1.12. m

2.3.2 Residuated lattice of L-fuzzy subalgebras

Let A := (A; f) be amono-unary algebra. F's(A, L) is closed under the binary
operation © of the residuated lattice Fu(A, L) of L-fuzzy subsets of A, but
the binary operations — and —o are not necessarily well defined on F's(A, L)
as the following example shows.

Example 2.3.9. Let L = {0, «, B, 7, 1} be a lattice such that 0 < a < B, <
1; where, 8,7 are incomparable. Consider the binary operations &, —, —o given
by the following Cayley tables:

e|0la|B|v]|1 - |0|la|B |71 — [0 |a|B|v]|1
00010100 O(111]1]1]1 O |1 |1j1]1]1
al0[/00]a|« a |y 1|1]1]1 a |11 ]1]1
BlO0jla|Blal|p Blylv|[1]|r]1 B 1Oy |1]v]|1
Y{O0[O0]0 |y |~ Y |08 B ]1]1 Y |B|B|B]1]1
1{0la|B|v]1 110ja|p|y]|1 1 10ja|B|y]|1
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Then L = (L; A, V, ©, —, —o; 0, 1) is a residuated lattice. Consider the
Peano algebra N = (N; o), given by o(z) = x + 1 for all x € N, and the
L-fuzzy subalgebras pn and v of N defined for any x € N by:

~J 0dfz=0, ~J 0dfz=0,
,u(:r)—{ B if not. and V(x)_{ v if not.

The L-fuzzy subset p — v of N is not an L-fuzzy subalgebra of N, since

(> v)(0(0) =(n>v) 1) =B>7=7%1=0->0= (u—>)(0).
Theorem 2.3.10. Let p be an L-fuzzy subset of A. The L-fuzzy subset u* of
A, given by

w(x) = k/e\Nu(fk(x)) for all x € A,

is the biggest L-fuzzy subalgebra of A contained in .

Proof. We have p* < p, since p*(z) < p(f°(x)) = p(z) for all z € A. We next
show that p* is an L-fuzzy subalgebra of A.
For any x € A, we have

p(f(@) = Ap(f (@) = u(f2@) A A p(fH (@) = ().

keN keN

Hence, p* is an L-fuzzy subalgebra of A.
Finally, let v be an L-fuzzy subalgebra of A contained in p. For any x € A,
we have v(z) < v(f*(z)) < p(f*(x)) for all k € N; thus,

a) < Ap(fHe) = (o)

Hence, v < p*. Therefore, p* is the biggest L-fuzzy subalgebra of A contained
in p. O]

Theorem 2.3.11. For any p,v € Fs(A, L), set p — v = (u — v)* and
uwd vi=(u—orv)*. Then Fs(A,L):= (FS(A, L), A, V, ©, =, %5 0, l)
15 a complete residuated lattice.

Proof. We only have to show that p < v = max{§ € Fs(A,L): dou<v}
and 9 v =max{é € Fs(A,L): ped <v}forall u,ve Fs(A,L). So, let
w,v € Fs(A, L). We have
(w=vop=p-—>vyops(pr>v)op<v.

Moreover, for any 0 € F's(.A, L) such that 6 ©u < v, we have 6 < p — v; thus,
0 <(u—v)*=p—v. Hence, p = v =max{d € Fs(A,L): 06u < v} and,
w9t v=max{d € Fs(A,L): pn© ¢ < v} by similar arguments. Therefore,
Fs(A, L) is a complete residuated lattice. O
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Theorem 2.3.12. The map ¢ : Sub(A) = Fs(A, L), given by ¢(B) = By for
all B € Sub(A), is a complete residuated lattice embedding.

Proof. By Proposition 2.1.3, ¢ is a complete lattice embedding of Sub(A) into
Fs(A, L). Since we have ¢(BNC) = (BNC); = B16C) = ¢(B)e¢(C) for all
B,C € Sub(A), it suffices to show that ¢(B) — ¢(C) = ¢(B = C) = ¢(B) &
#(C). So, let B,C € Sub(A). For any x ¢ B = C, we have Sg(z) N B ¢ C,
thus, f*(z) € B and f*o(x) ¢ C for some kq € N; so,

(6(B) = ¢(C))(z) = (B1 = C1)(x)
= [Bi(f*(2)) = Ci(f*(@))]A
[ABi(f*H () = Ci(f* ()]

it
= (1= O A[AB(1) = O (7 (@)
=0

= (B = 0)i(x)

= (B = C)(a).

Now, let x € B = C and D € Sub(A) such that DN B C C and z € D.
e For any n € Q(B) := {k € N: f*) € B}, we have f*(z) € DN B C C;
thus, f"(z) € B and f"(x) € C; so,

Bi(f™(x)) - Ci(f"(z)) =1—>1=1.
e For any n ¢ Q(B), we have
Thus,
(¢(B) = ¢(0))(z) = (B = Ci)(x)
= [ A Bi(f*(2)) = Ci(f*@))]A

kEQ(B)

[ A Bi(fM(=@) - Ci(fF ()]

kgQ(B)

=( A DACAT)

keQ(B) kZQ(B)

=1A1

=1

= (B = C)i(x)
= 6(B = C)(a).
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Hence, ¢(B = C) = ¢(B) — ¢(C) and, ¢(B = C) = ¢(B) & ¢(C) by similar
arguments. Therefore, ¢ is a complete residuated lattice embedding of Sub(.A)
into Fs(A, L). O

Theorem 2.3.13. The map ¥ : L — Fs(A, L), given by (r) = r for all
r € L, is a complete residuated lattice embedding.

Proof. By Proposition 2.1.4, ¢ is a complete lattice embedding of the lattice
of £ into Fs(A, L). Now, let r,s € L. For any x € A, we have

=r(z) & s(z)
= ¢ (r)(z) © ¥(s)(x)
= (¥(r) o ¢¥(s)) (@)
Thus, ¥(r & s) = ¥(r) ©¥(s).
For any = € A, we have
U(r > s)(z) =r—>s
= A o (@) = s(f*())
= A (@) = () (M)
= (¥(r) = ¥(s))(x).

Thus, ¥(r — s) = ¥(r) < ¥(s) and, Y(r — s) = ¥(r) & (s) by similar
arguments.
Hence, 1 is a complete residuated lattice embedding of £ into Fs(A,L). O

2.3.3 Mono-unary algebras and MV -algebras

Let A := (A; f) be a mono-unary algebra. Since A, V and © are defined
componentwise on F's(A, L), £ and Fs(A, L) satisfy the same bounded lattice-
ordered monoid identities.

Proposition 2.3.14. (See, [5]) Let Sym(A) be the permutation group of A.
The following hold:

(1) If Sub(A) is a Boolean lattice, then f € Sym(A).

(2) If f is of finite order in Sym(A), then Sub(.A) is a Boolean lattice.

(3) If A is finite, then Sub(.A) is a Boolean lattice if and only if f € Sym(A).
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Lemma 2.3.15. The following statements are equivalent:
(a) For any p € Fu(A,L), p € Fs(A, L) iff u(f(x)) = p(z) for all z € A.
(b) Sub(.A) is a Boolean lattice.

Proof. Suppose that (a) is satisfied. Let B € Sub(A). For any x € B, we have
Bi(f(z)) = Bi(z) = 0 and, f(z) € B. Thus, B € Sub(A). Hence, Sub(A) is
a Boolean lattice.

Conversely, suppose that (b) is satisfied. Let u € F's(A,L). For any = € A,

we have f(z) € U[p, p(f(z))] € Sub(A); thus, z € U[u, u(f(x))]; so,
p(x) > p(f(x)) and, p(f(2)) = p(@).
Whence the result. ]

Theorem 2.3.16. Fs(A, L) is a subresiduated lattice of Fu(A, L) if and only
if Sub(\A) is a Boolean lattice.

Proof. Assume that Fs(A, L) is a subresiduated lattice of Fu(A,L). Let B
be a subuniverse of A. For any z € B, we have
Bi(f(z)) =0 = Bi(f(2)) » 0(f())

> (B = 0)(x)

= (B1 = 0)(z)

= Bi(z) - 0(2)

=0—0

—1;
thus, By (f(z)) - 0 =1and, B;(f(z)) = 0; i.e., f(z) ¢ B and, f(z) € B. So,
B is a subuniverse of A. Hence, Sub(A) is a Boolean lattice.

Conversely, assume that Sub(A) is a Boolean lattice. Let p and v be two
L-fuzzy subalgebras of A. For any = € A, we have

(= v)(x) = A p(ff) > (i)

keN

— A\ nlx) > vla)

keN
— p(x) > v(x)
— (4= v)(@).

Thus, 4 < v = u — v. Hence, < is the restriction of — to F's(A,L). A
similar reasoning shows that % is the restriction of —o to F's(A, L). Therefore,
Fs(A, L) is a subresiduated lattice of Fu(A, L). O
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Let I be a class of residuated lattices such that
Mod(Id(K)U{z @y =z Ay})

is included in the class of Boolean algebras; for example, the class of MV-
algebras.

Theorem 2.3.17. Fs(A, L) = Id(K) if and only if L | Id(K) and Sub(.A)
15 a Boolean algebra.

Proof. If Fs(A, L) = 1d(K), then Sub(A) = Id(K) and L = Id(K) by Theo-
rem 2.3.12 and Theorem 2.3.13, respectively; thus, Sub(.A) is a Boolean algebra
and L = 1d(K).

Conversely, assume that £ = Id(K) and Sub(A) is a Boolean algebra. Then
Fs(A, L) is a subresiduated lattice of Fu(A, L) by Theorem 2.3.16. Conse-
quently, Fs(A, L) = Id(K), since L = Id(K). O

If Fs(A, L) is an RL-monoid, then £ is an RL-monoid by Theorem 2.3.13;
but the converse is not necessarily true as the following example shows.

Example 2.3.18. Let L = {0, a, 8, 1} be a lattice such that 0 < o < § < 1.

Define the binary operations © and — on L as follows:

Ol0|la|p|1 - |0 |a|p]|1
0/0[0]0O0 O|1|11]1
al0]0|al«a alall|1]1]
Bl1O0la|p|p 610la|l]l
110|la|p|1 1 10|la|pg|1l
Then L = (L; A, V, ©, =, —; 0, 1) is an RL-monoid. Consider the mono-
!
0]0
unary algebra A given by the table| , | o |, and the L-fuzzy subalgebras o and
b|a
cl|b

7 of A defined for any x € A by:

1 of x=0,
o(x)=4 B if v€{a, b}, and7(z) = {

a if r=c.

1 4o =0,
a if vefa, b, c}.

Since 0 — T = 7, we have ((c = 7)©0)(c) = (TO0)(c) =a0a =0 #
a= (o AT)(c); thus, (0 = T) S0 # o AT. It follows that Fs(A, L) is not an
RL-monoztd.
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Proposition 2.3.19. If Fs(A, L) is an RL-monoid, then for any x € A and
B € Sub(A), we have x € B if and only if Sg(x) N B # 0.

Proof. Assume that Fs(A, L) is an RL-monoid. Let x € A and B € Sub(A).
It is clear that Sg(x) N B # () for all x € B.

Conversely, assume that Sg(r) N B # ). Since there is ko € N such that
f*o(x) € B, we have

thus, B(z) =0 and, v € B. O

If Fs(A, L) is a MT L-algebra, then Sub(A) and £ are MT L-algebras by
Theorem 2.3.12 and Theorem 2.3.13, respectively; but the converse is not

necessarily true as the following example shows.

Example 2.3.20. Let L = {0, «, B, 7, 1} be a lattice such that 0 < a <
B,y < 1; where, 3, are incomparable. Define the binary operations &, —»

and — on L as follows:

Ol0la|f|y|1||=>|0|la|B|v|1||]—=|0|la|p]|y]|1
O/0jO0jO0O(O[OflO |21 |1|{1|1],O0 |1 11|11
al0|0|lal|0|lalla|B|1|1]|1 1| a|y|1]1]1]1
B1OJO0[B|0[B | B0y [Ty |1} B [r]r]|L][r]]
YO0 lalaly |y ||y |B|B|B|1|1|| v |0]|B|B]1]1
110ja|pB|y]|1 1 10ja|(Bly|1|| 1 |0jla|B|y|1

Then L= (L; A, V, ©, =, —o; 0, 1) is a MT L-algebra. Consider the unar
A given in Ezample 2.53.18. The subuniverses of A are By = (), By = {a},
Bs = {a, b}, By = {a, b, ¢}, Bs = {0}, B¢ = {0, a}, B; = {0, a, b} and
Bg = A. The binary operation = of Sub(A) is given by
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~ | ¢ | B, | B, | B, | B. | B¢ | B. | 4
0 A A A A A A
By Bs Bs A
B; Bs Bg Bs A
B, Bs Bg B, A Bs Bg B, A
B; By By By By A A
Bg 0 B, B, B, Bs A
By 0 By Bj By Bs Bg A
A 0 By Bs By Bs Bg By A

It is easy to check that Sub(A) is a MT L-algebra. Consider the L-fuzzy sub-
algebras o and T of A defined for any x € A by:

1 if 2=0, 1 if 2=0,
olx)=¢ B if v€{a, b}, and7(x)=<¢ v if v €{a, b, ¢}, .
a if x=c. 0 if x=c.

Then ¢ — 7 = 0; V{a, b}, Vo and 7 — o = 01V {a, b, c}g; thus,
(0 = 71)V(r=o0)(c)=8#1 8o, (6 = 7)V(r = o) # 1. Hence,
Fs(A, L) is not a MT L-algebra.

Proposition 2.3.21. If Fs(A, L) is a MT L-algebra, then for any x € A and
B, D € Sub(A), we have Sg(x) C BUD or Sg(x) C BUD.

Proof. Assume that Fs(A, L) is a MT L-algebra. Let + € A and B,D €
Sub(A). Suppose that Sg(z) € B U D. Since there is ky € N such that
f*o(z) ¢ BU D, we have

(Bl — Dl)(@ < B1(fk°(x)) - Dl(fko(x)) =1=0=0
and, (B; = D;)(z) = 0. Since
(D1 — Bl)<l’) =0V (D1 — Bl)(l‘) = (Bl — D1)<CL’) V (D1 — Bl)(l‘) = 1,

we have
Di(f*(x)) = Bi(f*(z)) =1for all k € N;
thus,
ff(x) € DN B for all k € N;
i.e., f*(x) € DU B for all k € N and, Sg(x) C DU B. O
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CHAPTER THREE

RESIDUAL TRANSFER IN FUZZY
RINGS

In this chapter, unless otherwise specified, £ := (L; A, V, ©, —, —o; 0, 1)
is a complete meet-distributive residuated lattice (See, Definition 1.2.13) and
A:=(A; +, -; —; 0) is a unital ring with unity 1. The binary operation - will
be denoted by juxtaposition.

In Section 3.1, we define a residuated lattice structure Fid(.A, L) on the set
of L-fuzzy ideals of A which is both an extension of £ and the residuated lat-
tice Zd(.A) on the set of ideals of A. Furthermore, we show that Fid(A, L) is
commutative (resp., a Brouwerian algebra) if and only if so are £ and Zd(A).
In Section 3.2, we characterize prime elements of Fid(A, L) and investigate
some embedding properties of the lattice of its filters. In Section 3.3, we show
that Fid(A, L) is a Boolean algebra if and only if so are £ and Zd(A). Fur-
thermore, we introduce the concept of Lukasiewicz rings under £ and establish
its connection with rings whose L-fuzzy ideals form an MV -algebra.

3.1 Residuated lattice of L-fuzzy ideals of a
ring
3.1.1 Lattice of L-fuzzy ideals
Remark 3.1.1. The complete residuated lattice of ideals of A is defined by:
Zd(A) = (Id(A); N, +, ©, =, ~; {0}, A);

where, for any I,J € Id(A), [+ J={z+y: x €l andy € J},

I@J::[J:{inyi: Ty xp €1 and yr, ...,y € J},
i—1

I—-J={xcA: zICJ}and I~ J={ze€A: [z C J}.

Recall that for any {I,}xepn C Id(A), we have
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L] I ={>_a,: Qis a finite subset of A and ay € I, for all A € Q}.
AEA AEQ

Remark 3.1.2. According to Definition 1.3.6 and (c) of Remark 1.1.7, an L-
fuzzy subset p of A is an L-fuzzy ideal of A if and only if p(0) =1, p(zx—y) >
u(z) A ply) and p(zy) > p(z) vV ply) for all z,y € A.

The set Fiid(A, L) of L-fuzzy ideals of A forms a lattice Fid(A, L) := (Fid(A, L);
A, +; Xo, l); where, for any u,v € Fid(A, L), p+ v := Fidg(p V v) is the
L-fuzzy ideal of A generated by V. U.M. Swamy and K.L.N. Swamy showed
in [37] that: for any pu,v € Fid(A, L), {ux}rean C Fid(A, L) and z € A,

(1+v)(2) = V{ula) Av(b) : @ = a+b}

(L) (@) = V{ A ma(ay) : Qis a finite subset of A and z = Y ay}.
AEA AeQ AEQ

According to Subsection 2.1.2, atoms of Fid(.A, L) are exactly of the form
(Idg(a),)«; where, r and Idg(a) are atoms of £ and Zd(.A), respectively. Co-
atoms of Fid(A, L) are exactly of the form M"; where, r and M are co-atoms
of £ and Zd(A), respectively. If L is algebraic, then Fid(A, L) is algebraic;
moreover, its compact elements are exactly finite suprema of compact principal
L-fuzzy ideals of A. 1. Jahan showed that Fid(A, L) is modular (See, [19],
Theorem 3.5.).

3.1.2 Residuated lattice of L-fuzzy ideals

This subsection outlines the construction of the residuated lattice Fid(.A, L)
of L-fuzzy ideals of A.

Definition 3.1.3. For any u,v € Fu(A, L), pov denotes the L-fuzzy subset
of A defined by: (pov)(z)=\{ula) ©v(b): z=ab} foralzx e A.

Lemma 3.1.4. The binary operation o on Fu(A, L) is associative.

Proof. Let p,v,0 € Fu(A,L) and x € A. Let a,b € A such that + = ab. For
any up, vy € A such that b = u,vy,, we have x = a(upvy) = (aup)vy and,

4(a) © (v(us) © () = (1la) © vlmw)) © (wy)
< (pov)(aw) © (vp)
< ((nov)od)().

Thus, p(a)© (vo ) )g(,uoy 00)(z). So, (po(rod))(z) < ((nov)od)(z)
and, ( (pov) ) () < (no(vo 5))( ) by snnllar arguments. It follows that
:( o

(1o (vo )
o 18 associative. O]

v) o d)(xz). Hence, po (vod) = (uowv)od. Therefore,

Proposition 3.1.5. For anyn > 2, py, fo, ..., pn € Fu(A, L) and x € A,
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(miopso...op)(x)=V{m(a)©pa(as) ©...0 pplay) : z=aras...a,}.

Proof. We proceed by induction on the number of L-fuzzy subsets of A.

If n = 2, then the result follows from Definition 3.1.3.

Now, let n > 2 such that for any puq,...,u, € Fu(A,L) and = € A, we have
(,ul Oflp0...0 un) (x) = V{pi(ar) © pa(az) © ... 0 up(ay) : ©=aras...a,}.
Let p1,... pny1 € Fu(A,L) and x € A. Let a,b € A such that x = ab.
For any aq,...,a, € A such that a = ay...a,, we have x = a;...a,b and
(11(a1) © ... © pnlan)) © pina(b) = piar) © ... © pn(an) © pnra(b); thus,
(Nl(al) ©...0 Mn<an)) O pny1(b) < Vo (@) © .. O pnyi(@nyg). So,

T=a1...0n4+1

(o om)@Epn®) <V (@) ... 8 () and,

r=aj...an+1

(mo...opnir)(@) = [(po.. o) o pni] (@)
< Vo m(a) © . O pnyi(angr).

T=a1.-an i1
For any a,...,a,11 € Asuchthat x = a;...a,11, we have z = (ay ... a,)an41;
thus,
pr(ar) © . O pingr(angr) = (palar) © ... O pnlan)) © pinga(ants)
< [(po...omm) 0 pnn] (@)
= (p10-..0 pint1) ().
So, Vo (a) ©.. 6 pnga(ans1) < (g1 o0 pinsr) (2). It follows that

T=a102...Gn 41

(o cop)(@)= V  pular) ©...0 pnsi(ang).
T=a102...0n4+1
Hence, the desired result follows. O

Proposition 3.1.6. Letr,s € L, x € A, I € Id(A) and p,v € Fid(A,L).
(1) pov<puoSw.

(2) v, 0opu <vifand only if (x,). o p < v.

(3) .0 (Is). = (x])r0s VO,

Proof. (1) Let y € A. For any a,b € A such that y = ab, we have

(a) & v(b) < plab) & v(ab) = p(y) & vly) = (1 v)(y).

Thus, (pov)(y) < (n&v)(y). So, pov < psw.
(2) Assume that 2, opu < v. Let a # 0 in A. For any u,v € A such that
a = uv, we have u # 0; thus,

(50)+(0) © (o) = 22(1) © u(0) < (22 0 1) (0) < i)
So, ((z,)« o pt)(a) < v(a). Hence, (). o < v. The converse is obvious, since

o is order-preserving.

(3) (20 (I,):)(0) = r, since
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r=rol=u.(z) O (I).(0) < (2, 0 (L).)(0) <r.
Let a € I \ {0}. For any v € A such that a = zv, we have

{r@s if vel,

r o (I).(v) = ro0=0 if v .’

Thus, (z, 0 (L;).)(a) <165 = z,.(2) © (L) (u) < (2, 0 (I,):)(a) for some
u# 0 in I such that a = zu. So, (z, o (L).)(a) =7 Os.
Now, let @ &€ xI. For any v € A such that a = zv, we have v & [I; thus,
16 (I5)(v) =r©0=0. So, (z, o (I,):)(a) = \V{0} = 0.
Hence, z, o (1), = (21);0s V 0. O

For any L-fuzzy ideal p of A, z € A and r € L, one can easily verify that
roou=0=poxgand 0, 0opu =0, =po0,.

Proposition 3.1.7. Let u,v € Fid(A,L). Then the L-fuzzy subset u @ v of
A, given for any x € A by

(p@v)(z)=V{ A wla)ov): = Zaibi and ay, ..., a, € A},
1<i<n Py
is the smallest L-fuzzy ideal of A containing pov; i.e., Fidg(pov) = p® v.

Proof. 1t is clear that © ® v contains o v. Next we show that y ® v is an
L-fuzzy ideal of A.

We have (u® v)(0) = 1, since (u®@v)(0) > pu0)orv0)=161=1.

Now, let z,y € A. Set X = {(ai,bi)i<i<min : T = Zaibi and —y =

=1

m4+n P
Z abiy and Y o= {(uj,vj)i<j<p 1 T —y = Zujvj}. Then X C Y.
i=m-+1 j=1

Furthermore, for any (a;, b;)1<i<m+n € X, we have

(A wla)ovO)A( A wa)ovd) = A pla)ovb)

1<i<m m+1<i<m+n 1<i<m+n
< (nev)(r—y).

Thus, (p@v)(z) A (p@v)(y) < (n@v)(z—y). For any a1,by,...,a,,b, € A

m

such that x = Z a;b;, we have xy = Z a;(b;y) and,

i=1 =1

A na)evb) < A wla) e vlby) < (1o v) ().

1<i<m 1<i<m
Thus, (p®@v)(z) < (p®@v)(zy). Similarly, we obtain (p®@v)(y) < (L@v)(zy).
So, (k@v)(zy) > (k@V)(z)V (@v)(y). Hence, p@v is an L-fuzzy ideal of A.
Finally, let 6 be an L-fuzzy ideal of A containing pov. For any ay,by, ..., ay,,b, €
A such that x = Z a;b;, we have

i=1
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n

A pla) e vb) < (mov)(aibi) < A d(ab) < 5()  abi) = d(x).

1<i<n 1<i<n 1<i<n i=1

Thus, (p® v)(z) < §(z). Hence, p @ v < §. Therefore, p ® v is the smallest
L-fuzzy ideal of A containing p o v. O

Remark 3.1.8. For any i, ..., 1, € Fid(A,L) and x € A, we have

Fidg(pio...op)(x) =V{ N m(a))©...0 p(a}): x:Za;...a?}.

1<j<p
Proposition 3.1.9. The binary operation ® on Fid(A, L) is associative.

Proof. Let p,v,6 € Fid(A,L). Let © € A. Let ay,by,...,a,,b, € A such

that z = Zaibi. Let 1 < ¢ < n. For any ¢;,,d;,,...,¢;,,d;, € A such that

=1
p

b; = Z c;;d;;, we have for each 1 < k < p,

J=1

p(ai) © (1</\< v(e,) ©0(diy)) < pla;) © (v(ey) ©0(dyy))
(:U’(ai) S V<Cik)> © 5(dlk>
< (@ v)(aicy) ©d(dyy,)
((h®v) @ 9)((aici,)ds,)
(r®v)®6)(ai(cidi));
thus,
pla) o (N viey)edd,) < A (rev)@d)(aled,))

1<j<p 1<j<p
p

< (n@v)@8) (Y aileidy))

=1
p

= ((rov)®6)(a ) e,d)

= ((p®@v)®06)(ab;).
So, u(a;) © (v ®@6)(b;) < ((n®@v) @ 6)(azb;). It follows that
A wa)eved)d)< A (pov)®d)(ab) < (Hev)®6)(z).

1<i<n 1<i<n
Hence, (p@(v®9))(z) < ((n@v)@0)(2) and, ((p@v)@0)(r) < (p@(v®9))(z)
by similar arguments. Therefore, 1 ® (v ® ) = (L @ v) ® 0. O

Corollary 3.1.10. Fid(A, L) := (Fid(A,L); ®, 1) is a monoid.
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Proof. Since ® is associative by Proposition 3.1.9, it suffices to show that 1 is
the unity of Fid(A, L). So, let p be an L-fuzzy ideal of A. Let z € A. For

any ai,by,...,a,,b, € Asuch that x = Zaibi, we have
i=1

A wla)oll)= A wa)ol= A pla)< A plab) < p(z).

1<i<n 1<i<n 1<i<n 1<i<n
Thus, (1®1)(z) < p(z). Furthermore, (p®1)(z) > p(z) ©1(1) = p(z) 61 =
w(z). So, (k@ 1)(z) = p(z). Hence, p® 1 = p; and, 1 ® p = p by similar
arguments. Therefore, 1 is the unity of Fid(A, L). O

Proposition 3.1.11. For anyn > 2, we have i1 ®. . . @, = Fidg(py0...0u,)
for all py, ..., p, € Fid(A,L).

Proof. We proceed by induction on the number of L-fuzzy ideals of A.

If n = 2, then the result follows from Proposition 3.1.7.

Now, let n > 2 such that u; ®... Q@ u, = Fidg(uio...opuy,) forall puy, ... pu, €
Fid(A, L). Let py, ..., pnr1 € Fid(A, L). Since o is order-preserving, we have

@ pnr = Fidg[(1n ® ... @ 1) © 1]
= Fidg[Fidg(pi o ...0 ) © flni1)
> Fidg(py0...0 fing1)-

Finally, we show that py ® ... ® ppi1 < Fidg(py o ... 0 ping1). So, let x €
A. Let r € L such that z € Idg[U((t1 ® ... ® pin) © fins1,7)]. There are
a,bi,...,ap,b, € Aand uy,...,u, € U((,ul ® . @ ) ounﬂ,r) such that

P
x = Zakukbk. Since r < [(11 ® ... ® ) © fing1] (uy) for all 1 < k < p, we
k=1

have r < A [(ul ®...®un)oun+1} (ug).
1<k<p
Let vy, wy,...,vp, w, € A such that v, = vjwy,...,u, = vyw,. Let 1 <k <p.
q
For any z,ﬁl,...,zgl,...,z,iq,...,zgq € A such that v, = Zzéj .. 2}, We have

j=1

( A N1<Zlij) ©...0 Nn(ZI?j)) O Hn+1(w)

1<5<q

< A i) S S () © s (wy)

1<j<q
q
< Fidg(py0...0 piny1) [Z z,ij e zgjwk]
j=1
q
= Fidg(pt1 0 ...0 finy1) [(Z z,ij e sz)wk]
j=1

= Fidg(p o ... 0 fypi1)(vrwy)

= Fidg(p1 0 ... 0 piny1)(ug)-
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Thus, (11 ® ... ® py) (V) © pnsr (wi) < Fidg(pr o ... 0 piny1)(ug). So,

A (1@ @ pn) (k) © pinga(wy) < A Fidg(po. ..o pingr)(us)

1<k<p 1<k<p
< A Fidg(po.. .0 pni1)(arugby)
1<k<p
S deg(ul o0...0 Mn-&-l)(z akukbk)

k=1
= Fidg(pr 0.0 ping1)(2).

Consequently, A [(11® ... ® fin) 0 1] (i) < Fidg(pir 0.0 1) () and,

1<k<p

r < Fidg(puy o...0 pye1)(x). Thus,

(11 @ @ pnga)(2) = Fidg[(1n ® ... @ pin) © pinga] (2)
< Fidg(pa o ... 0 fing1)().
SO, 11 ®@ ... ® pin1 < Fidg(py o ... 0 pyeq) and,
1 ® ... ® pingr = Fidg(pno... 0 finy1).

Hence, the desired result follows. n

Definition 3.1.12. For any L-fuzzy subsets y and v of A, u — v and p & v
denote the L-fuzzy subsets of A defined for any x € A by:

(n—=v)(x)y=\{rel: z,op<v}
(nrv)(@)=V{rel: pox, <v}.

Proposition 3.1.13. Let u and v be two L-fuzzy ideals of A. Then p — v
and & v are L-fuzzy ideals of A.

Proof. Since 01 0 = xo < v, we have 1 < (p < v)(0) and, (p <= v)(0) = 1.
Now, let z,y € A. Let r,s € L such that z,opu <vand ysou < v. Let a € A.
Let b, c € A such that a = be.
o If b# x —y, then (z — y)as(b) © p(c) =06 p(c) =0 < v(a).
o If b=1x —y, then
(= y)ens(b) © plc) = (rAs) o plc)
('f’@u ) (s© ulc))
= (wn(2 ) (45(y) © n(©))
(2,0 ) A (ys 0 1) (ye)
v(ze) A I/(yc)

v(ze—yc) = v(a).

IN A

IN
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Thus, ((z — y)ras o ) (a) < v(a). So,
(r—y)msop<vand, rAs<(u—v)(zr—y).

It follows that (u — v)(z) A (p — v)(y) < (= v)(z —y). Now, let r € L
such that x, opu <wv. Let a € A. Let b,c € A such that a = bc.

e If b # xy, then (xy),(b) © u(c) =06 u(c) =0 < v(a).

o If b = xy, then

(zy)r(b) © plc) =16 p(c)
= 2,(z) © p(c)
< z.(7) © p(yc)

Thus, ((zy), o p)(a) < v(a). So, (zy),op < vand, r < (p = v)(zy). It
follows that (1 = v)(z) < (1 <= v)(zy).

Now, let r € L such that y,ou < v. Let a € A. Let b,c € A such that a = bc.
o If b # xy, then (zy).(b) © u(c) =06 p(c) =0 < v(a).

e Suppose that b = zy. For any 2 € U(u, u(c)), we have

v(yz) > (yrop)(y2)
> yr(y) © p(2)
=ropu(z)
> 16 pu(c)

and, yz € U(V, ro u(c)). Thus,
yU (p, pu(c)) CU(v,r © p(c)) and, y € U(p, pu(c)) = U(v,r © p(c)).

So, zy € U(p, u(c)) = U(v,r & p(c)) and, zyU (u, p(c)) € U (v, 7 6 p(c)).
Since a = zyc € U(v,r © pu(c)), we have (zy),(b) © u(c) = r © p(c) < v(a).
Thus, ((zy), o p)(a) < v(a). So, (zy),op < vand, r < (p = v)(zy). It
follows that (1 <= v)(y) < (1 — v)(zy).

Consequently, (1 = v)(z)V (p = v)(y) < (p = v)(zy).

Hence, pn — v is an L-fuzzy ideal of A. A similar reasoning shows that y ¢ v
is an L-fuzzy ideal of A. ]

Theorem 3.1.14. Fid(A, L) := (Fid(A,L); A, 4+, ®, <, %5 xo, 1) s a
complete residuated lattice.

Proof. Since Fid(A, L) is a complete lattice and Fid(A, L) is a monoid, it
suffices to show that: for any p,v,0 € Fid(A, L), p@v < §iff p < v — 4§ iff
v<pu% 0. So,let p,v,§ € Fid(A, L).
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Assume that p @ v < 9. Let © € A. Let a € A. For any v € A such that

a = xv, we have

T () ©v(v) = p(z) S v(v) < (Lo v)(a) < 6(a).
Thus, (2. o v)(a) < 8(a). So, Tuw ov <6 and, pu(z) < (v < 6)(x). Hence,
uw<v—=)J.
Conversely, assume that y < v < J. Let z € A. Let aq,bq,...,a,,b, € A such

that z = Z a;b;. Let 1 <i <n. Forany r; € Lsuch that (a;),ov < §, we have

(1(a) Ar) Su(bi) < 1O u(b) = (a)s(ar) ©v(by) < (@), 0v)(aibs) < Slasby).
Since L is meet-distributive, we have
w(a;) ©vb) = (pla;) A (v = 6)(a;) ©v(by) < 6(aiby).
Thus,
1</\< p(a;) ©vb;) < 1</\< d(ab;) < (x).
So, (L@ v)(r) < (). It follows that p® v < 6.

Hence, p®@v < §iff p < v < 4. A similar reasoning shows that: p®@ v < iff
v<pu%s . O

3.1.3 Embeddings
In this subsection, we embed £ and Zd(.A) into Fid(A, L).

Proposition 3.1.15. Let I,J € Id(A) and r,s € L. Then the following hold:

(1) (1)« @ (Jo)o = (1 © J)res),-
(2) I"® J* = (IO J)" + (1), + (J,)..
(3) (L) 4 (Jo)u = [+ TN\NTUT)pps VI )V (IND)s VI NT\{0})rvs] -

Proof. (1) Let z € I ® J \ {0}. For any ay,b;,...,a,,b, € A such that
= Zaﬂ% there is 1 < ¢y < n such that a;, # 0 and b;, # 0; thus,

=1

A (1):(a)S(Jo)(bi) < (I)e(ai)O(Js)x(big) < 1Es. So, ((1)x®(J).) (x) <

1<i<n

r © s. Since there are ay,...,a, € I\ {0} and by,...,b, € J\ {0} such that

n

I Zaibi, we have 1 © s = A (L)u(a;) © (Jo)u(b) < ((1)s @ (J5)o) ()

i1 1<i<n

and, (1) ® (Jo):)(z) =7 O s.

Now, let * ¢ I ® J. For any ay,by,...,a,,b, € A such that x = Zaibi,
i=1
there is 1 < iy < n such that a;; & I or b, & J; i.e., (I;):(a;) = 0 or

(Jo)«(big) = 05 thus, A\ (L)(a:) © (Jo)(bs) < (Ir)s(aig) © (Jo)«(big) = 0 and,

1<i<n
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N (I):(a:) © (J)«(bi) = 0. So, (1), ® (J,). ) (z) = V{0} = 0.

1<i<n

Hence, (1), @ (Jo)« = (I © J)res) -

(2) We first show that I" = I;+(A,).. For any z € I, we have (I1+(A,),)(z) >
Li(z) =1 and, (I, + (A.):)(z) = 1. Now, let # ¢ I. Let a,b € A such that
x=a+b. Ifb=0,thena ¢ I and, [,(a) A (A,)«(b) =0A1=0. If b # 0, then
Li(a) A (A4)u(b) < (A)u(b) = r. Thus, r = (4,).(z) < (L + (A)s)(z) < r
and, (I + (A.))(z) =7. So, I" = I, + (A,).. A similar reasoning shows that
J* = J; + (As)«. Finally, we have

I"® J* = (]1 + (A'r)*) ® (Jl + (As)*)
= (10 J)ie1+ (IO A)ies), + (A T)ror), + (A® A)ros).
=[O J)1 4+ (L) + (Jr)e + (Arss)x

=IO J) + (L) + (J)s

(3) e Let x ¢ I + J. For any a,b € A such that x = a + b, we have a & I
orb¢ J;ie., (I)a) =0 or (Js)«(b) = 0; thus, (I,;).(a) A (Js)«(b) = 0. So,
(1)« + (Js)o) () = V{0} = 0.
e Let x € I+ J\IUJ. For any a,b € A such that x = a + b, we have
rAs it ael andbe J,
0if aglorb¢J.

Thus, rAs = ()« (w) A(J5)«(v) < ((I;)«+(Js)«) (@) < 7 As for some u € I\ {0}
and v € J \ {0} such that z = u + v; so, ((I,): + (Jy)s)(z) =7 As.
e Let x € I\ J. For any a,b € A such that x = a + b, we have

A (J5)«(b) if a€landbe J,
0if aglorb¢gJ.

(£r)«(a) A ()« (b) =

(L)« (@) A (o)« (b) = {

Thus, r = (£,)«(2) A (J5)+(0) < (L) + (Jo)o) (x) < 7 and, (L) + (o)) (z) =
r. A similar reasoning shows that ((1,). + (Ji).)(z) = s for all z € J\ I.

o Let x € (INJ)\ {0}. For any a,b € A such that x = a + b, we have a # 0
or b # 0; thus, (I,).(a) A (J5)«(b) <7 Vs. So, rVs= (L) V(J))(x) <
((I)s + (Jo)i) (@) <7 Vs and, (L)« + (J))(z) =7 Vs.

Hence, (1) +(Js)s = [(I+I\TUT)jpsV(I\T )V (JNT)s VI NT\{O})svs],. O

For any I,J € Id(A) and r € L, one can easily verify that:
o (L) + ()= (I +J),), and I, + (J,)s = (L V(I + J),),.
oelfr?=r then I"'®@ J = (I ®J).

Proposition 3.1.16. Let r,s € L and I, J € Id(A). Then

(I = D). < (). () and (I~ T)yas). < (1) % (o).
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Proof. Since ((I = J)ms), @ (I,)e = [(I — J) © ]>(r—»s)9r]* < (Js)s, we

have (I = J)ros), < (I)x < (Jo)s. Similarly, (I ~ J),; ), < (I)s &

(Js)s- O

As the following example shows, the previous inequalities are not necessar-
ily equalities.

Example 3.1.17. Consider the ring Z¢. Let L = {0, a, b, ¢, d, 1} be a
lattice such that 0 < a,b<c <1 and0<b<d<1; where, a,b and c,d are
incomparable, respectively. Define the binary operations © and — by the two
tables below:

©Ol0lalblc|d]|1l — | 0]la|b|lc|d|1
0/0[010[O]O0O]O O |1 (1|11 (1]1
a|l0la|0|a|0|a a |d|1l|d|1l]d]1l
b {0O]0]0|O|b]|b b lclel|1l]1|1|1]|
c|0lal|0|lal|b]|c c|blc|d|1l]d]|1
d|0|0|b|b|d|d d|lalalc|lc|1l]1
1(0]jalblc|d]|l 1 [0la|blc|d]|1l

Then L = (L; A, V, ©, —; 0, 1) is an MV -algebra (See, [34], Example 1.9.).

For any r € {a, ¢, 1}, we have 1, 0 ((22),), £ ((22),),, since

[1ro ((§2)a). ]2 =7 ((§2)a),(2) =rEa=a £ 0= ((§)),(2)-
For any r € {b, d}, we have for each x € Zg \ {0},

. B . B roa if xe{2, 4},
170 (8)0).] (@) =& (). (o) ‘{ ro0 i weft 3 5.

N

thus, 1,0((Z)a), < ((E)).. S0, [(()a), = ((20).J0) = VA0, b @} =a.
Since ((22 — 2Z)ap) (1) = ((2)a),(1) = 0, we have (2 — 2Z),m), <

6. a
((%>G)* — (2_2)17)*
Theorem 3.1.18. The function ¢ : Id(A) — Fid(A, L), given by ¢(I) = I
for all I € Id(A), is a complete residuated lattice embedding.

Proof. By Proposition 2.1.3 and the fact that
p(Io))=I0J) =T =L J=¢(I)@¢(J) forall I, J € Id(A),

we only have to prove that ¢ preserves the residues. So, let I,J € Id(A).
Let z ¢ I — J. There is a € [ such that xa ¢ J. For any r € L such that
xp.olh < Jj, wehaver =rol=ux.(r)© (a) < (2,0 )(xa) < Ji(xa) =0
and, r = 0. Thus, (I; — Jy)(z) = \V{0} =0. So, I — J; < (I — J); and,
(I - J)y =1 < J;. Hence, o(I - J)=(UI — J)1 =1L — J; = ¢(I) —
¢(J). A similar reasoning shows that ¢(I ~» J) = ¢(I) ¢ ¢(J). Therefore, ¢
is a complete residuated lattice embedding of Zd(A) into Fid(A, L). O
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Theorem 3.1.19. The function 1 : L — Fid(A, L), given by 1(r) = (r). for
allr € L, is a complete residuated lattice embedding.

Proof. By Proposition 2.1.4 and the fact that for any r, s € L, we have
Y(ros) = (Ares), = ((A0A)rss), = (A)®(Ay)s = ()@ (8)x = Y(r)@Y(s),

we only have to prove that ¢ preserves the residues. So, let r,s € L. Let  #£ 0
in A. For any t € L such that z; o (). < (s)., we have

tor=u(r)© (r).(1) < (20 (r).)(2) < (s)u(x) =sand, t <7 > s.

Thus, (1)« = (5).)(z) <7 = 5 = (r=.5).(x). So, (r). = (8)« < (r=.5).
and, (r = s), = (r). < (s).. Hence,

P(r = s) = (r=8) = () = (8)e = 9(r) = P(s).

A similar reasoning shows that ¢ (r — s) = ¥ (r) & ¥(s). Therefore, ¥ is a
complete residuated lattice embedding of £ into Fid(A, L). O

Corollary 3.1.20. 1. Fid(A, L) is commutative iff so are L and Zd(A).
2. Fid(A, L) is a Brouwerian algebra iff so are L and Zd(A).

Proof. 1. Since £ and Zd(.A) can be embedded into Fid(A, L), it is clear that
they are commutative when Fid(.A, L) is commutative.
Conversely, assume that £ and Zd(.A) are commutative. Let u, v € Fid(A, L).

Let x € A. Let ay,b1,...,a,,b, € A such that x = Zaibi. Forany 1 <17 <n,
i=1
we have

aib; € U(p, p(a;) @ U(v,v(by) = U(v,v(b:) © U(p, pulas));
thus, there are vy, ..., U, € U(l/, V(bi)) and U1, ..., Uiy, € U(u, ,u(az-)) such

n

my mg
that a;b;, = E Uik, Wik, - Olnce T = E E Uik, Uik, , We have

(vou)(z) >

So, (v@p)(z) > (p®@v)(z). It follows that p®v < v®@p. A similar reasoning
shows that v ® u < p ® v. Hence, p ® v = v ® p. Therefore, Fid(A, L) is
commutative.

2. Since £ and Zd(.A) can be embedded into Fid(A, L), it is clear that they
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are Brouwerian algebras when Fid(A, L) is a Brouwerian algebra.
Conversely, assume that £ and Zd(A) are Brouwerian algebras. Let = € A.
Since x € U(p, p(x)) = U(p, p(z)) © U(p, p(x)), there are ay, by, ..., an, b, €
U(u, u(:c)) such that x = Z a;b;; thus,

i=1

pAx) > A pla) S pb) > A plz) e p) = (u(x)” = p(x)

1<i<n 1<i<n
and, p?(x) = u(z). So, u? = p. Hence, Fid(A, L) is a Brouwerian algebra. [
Definition 3.1.21. (See, [39]) A ring A is called a Von Neumann Regular
ring (or VN R-ring for short) if for any x € A, there is a € A such that

Tr = Trax.

Proposition 3.1.22. Suppose that A is a VNR-ring. If L is a Brouwerian
algebra, then Fid(A, L) is a Brouwerian algebra.

Proof. Assume that £ is a Brouwerian algebra. Let u,v € Fid(A, L). For any
x € A, there is a € A such that x = zax; thus,

(1 A ) (@) = () A vlz) < plwe) Av(e) < (4 ® v) (zaz) = (4 ® v) (@)
So, uAv < p®vand, p®v = puAv. Hence, Fid(A, L) is a Brouwerian
algebra. O

Theorem 3.1.23. Suppose that A is a commutative ring. Then Fid(A, L) is
a Brouwerian algebra if and only if A is a VN R-ring and L is a Brouwerian
algebra.

Proof. 1f Fid(A, L) is a Brouwerian algebra, then £ and Zd(.A) are Brouwerian
algebras; thus A is a V' N R-ring by Proposition 3.2. in [3| and £ is a Brouwerian
algebra. The other direction follows immediately from Proposition 3.1.22. [

3.2 Prime elements and filters of the set of L-

fuzzy ideals of a ring

3.2.1 Prime elements

Theorem 3.2.1. Prime elements (See, Definition 1.2.18) of Fid(A, L) are
exactly of the form P", where r and P are prime elements of L and Zd(A),
respectively.

Proof. (=) Let u be a prime element of Fid(A, L). For any a,b & U(u, 1), we
have
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Idg(a)® © U(p, 1)) < Fidg[Idg(a)® © U(p, 1)* ‘ﬂ < Fidg(p) = p
1dg(b)° ® U(p, 1)) < Fidg[Idg(b)° © U(u, )] < Fidg(p) = p;
thus,
U(p, )M < ppand U (p, 14O < g5
S0,

pla) = U(p, 1) (b) < p(b) and p(b) = U(p, 1) (a) < p(a);
consequently, p(a) = p(b). Hence, u = U(u, 1)" for some r € L.

Since p # 1, we have r # 1 and U(u, 1) # A.
For any t,s € L such that t © s < r, we have

U, 1) @ U(u,1)* < Fidg[U(u,1)' © U, 1)°]
= Fidg(U(p, 1))
< Fidg(U(p,1)")

=U(p, 1)";

thus, U(p, 1)! < U(p,1)" or U(p,1)* < U(p,1)"; ie., t <ror s <r. Hence, r
is a prime element of L.

For any I, J € Id(A) such that I ® J C U(u, 1), we have
PPRJI=16J)°<Upl) =y

thus, I° < por J° < p;so, [ =U(I°1) CU(p,1) or J=U(J%1) CU(y,1).

Hence, U(p, 1) is a prime element of Zd(A).

(<) Let r and P be prime elements of £ and Zd(A), respectively. We have

P # 1, since P # A and r # 1. Now, let v and  be two L-fuzzy ideals of A

such that v ® § < P" and v £ P". Let y ¢ P. Since there is = ¢ P such that
x) £ r, we have Idg(xz) ¢ P and Idg(y) € P; thus, Idg(z) ® Idg(y) € P;

S0, there is u € Idg(x) ® Idg(y) such that u & P. Since there are ay,...,a, €

Idg(z) and by, ...,b, € Idg(y) such that u = Z a;b;, we have
i=1

v(z) ©0(y) <wv(a;)©d(b;) forall 1 <i<mn;
thus,
v(@)od(y) < A via)©db) < (v®6)(u) < P(u)=r

1<i<n

and, 0(y) <r. So, § < P". Hence, P" is a prime element of Fid(A, L). ]

Lemma 3.2.2. Letr € L and P € Id(A). Then vVP" = VP,
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Proof. If r=1o0r P = A, then\/?zlor\/ﬁ:A; thus, \/ﬁ:l:\/ﬁﬁ.
Now, suppose that r # 1 and P # A.

Let © € v/P. For any Q° € Spec(]—"z’d(A, L)) such that P" < Q°, we have
x € Q, since P =U(P",1) CU(Q*1) =@ and Q € Spec(Id(.A)); thus,
Q*(z) = 1. So, VP () = N{1} = L.

Let z ¢ v/P. There is R € Spec(Zd(A)) such that P C R and = € R.

e For any t € Spec(L) such that r < ¢, we have R' € Spec(}"id(fl, L)) and
P < RY; thus, VP (x) < RY(z) = t. So, VP (x) < \/r.

e For any Q* € Spec(Fid(A, L)) such that P" < Q*, we have /r < s < Q*(z),
since r < s and s € Spec(L). Thus, 7 < VP ().

So, \/ﬁ(a:) = /. Hence, vV P" = \/ﬁﬁ. O

Proposition 3.2.3. Let r € L and P € Id(A) such that VP # 1. Then P’
is a primary element of Fid(A, L) if and only if r and P are primary elements
of L and Td(A), respectively.

Proof. (=) Assume that P" is a primary element of Fid(A, L). Since P" # 1,
we have r # 1 and P # A.

For any s,t € L such that s ©¢ < r, we have P* ® P* < Fidg(P* & P') =
Fidg(P*t) = P*St < P": thus, P* < P" or P! < \/Pr = \/ﬁﬁ; so, s < 1 or
t < /r. Hence, r is a primary element of L.

For any I, J € Id(A) such that I ® J C P, we have I°’® J° = (I ® J)° < PT;
thus, I < P" or J° < /Pr = \/ﬁﬁ; so, [ = U(I°,1) C U(P",1) = P or
J=U(%1) CUWPY 1) = VP.

Hence, P is a primary element of Zd(A).

(<) Assume that r and P are primary elements of £ and Zd(.A), respectively.
Let v,6 € Fid(A, L) such that v ® ¢ < P" and v £ P". Let y ¢ v/P. Since
there is # ¢ P such that v(z) £ r, we have Idg(x) ¢ P and Idg(y) ¢ v/'P; thus,
Idg(z) ® Idg(y) € P; so, there is u € Idg(x) ® Idg(y) such that u ¢ P. Since

there are ay,...,a, € Idg(x) and by,...,b, € Idg(y) such that u = Zaibi,
i=1
we have v(z) ©6(y) < A v(a) ©6(b;) < (v ®6)(u) < P(u) = r; thus,
1<i<n

y) < r = \/ﬁﬁ(y) So, § < \/ﬁﬁ = +Pr. Hence, P" is a primary
element of Fid(A, L). O

Even though the elements of the form P", where r and P are primary
elements of £ and Zd(.A), are primary, they do not necessarily constitute the
complete list of primary elements of Fid(.A, L) as the following example shows.

Example 3.2.4. Let L be the Lukasiewicz structure (See, Example 1.2.10).
Since Spec(L) =0, we have Spec(Fid(A, L)) =0 and, 1 is the only radical of
Fid(A, L). Hence, every proper element of Fid(A, L) is primary.
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3.2.2 Filters

Lemma 3.2.5. Let u,v € Fid(A,L). Then U(u,1) ©U(r,1) CU(p® v,1).

Proof. For any x € U(u,1) ® U(v,1), we have z = Zaibi with a; € U(u, 1)
i=1

and b; € U(r,1) for all 1 < i < n; thus, (p@v)(z) > A pla) ©vy) =
1<i<n
A\ 1el=1and, z € U(up®v,1). Hence, U(p,1)0U(v,1) CU(p®v,1). O

1<i<n

Proposition 3.2.6. Let ) # F C Id(A). Then F is a filter (See, Definition
1.2.27) of Td(A) if and only if F := {p € Fid(A,L): U(u,1) € F} is a filter
of Fid(A,L).

Proof. Assume that F is a filter of Zd(A).

e For any p,v € F, we have U(u,1) © U(v,1) € F and U(u,1) © U(v,1) C
Ulp®v,1); thus, U(p@wv,1) € Fand, p®@v € F.

e For any u,v € Fid(A, L) such that € F and p < v, we have U(y,1) € F
and U(p,1) € U(v,1); thus, U(r,1) € F and, € F. Hence, F is a filter of
Fid(A,L).

Conversely, assume that F is a filter of Fid(A, L). For any I,J € F, we have
Lyy€Fythus, [OJ)=L®J € F;s0,I®J=U((I®J),1) € F. For
any I,J € Id(A) such that I € F and I C J, we have I; € F and I, < Ji;
thus, J, € F; so, J = U(J;,1) € F. Hence, F is a filter of Zd(A). ]

Theorem 3.2.7. The function ¢ : Fil(Zd(A)) — Fil(Fid(A, L)), given by
$(F) = F for all F € Fil(Zd(A)), is a complete lattice embedding.

Proof. For any F,G € Fil(Zd(A)) such that ¢(F) = ¢(G), we have I € F
iff [, e Fiff [, € Giff I € G, for all I € Id(A); thus, F = G. Hence, ¢ is
one-to-one. Now, let {F\}ren € Fil(Zd(A)). Clearly, ¢( () Fx) = ) ¢(Fy).
AeA AEA
We next show that ¢( | | Fy) = || ¢(F)).
AEA AEA
Let u € ¢(|] Fy). Since U(u,1) € || Fh, there are Iy,...,1, € |J F) such

AEA AEA AEA
that 1 © L, ®...® 1, CU(u,1); thus,

([1)1®..0I,)1 = (LOLG...OL)ie.c1 = (LOLO...0L,) <U(w, 1) < pu.
Since U((Ii)l, 1) = [; for all 1 < i < n, we have (I1)1,...,(I,)1 € U o(F));
ACA
thus, € || ¢(Fy). So, ¢( || Fx) € [ #(Fy) and, ¢( || Fr) = || ¢(F)), since
AEA AEA AEA AEA AEA

¢ is order-preserving. Hence, ¢ is a complete lattice embedding of the lattice
of Fil(Zd(A)) into the lattice of Fil (Fid(A, L)). O

Corollary 3.2.8.
1. For any F,G € Fil(Zd(A)), we have ¢(F = G) C ¢(F) = ¢(G).
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2. If L\ {1} has a mazimum, then ¢ is an embedding of Fil(Zd(A)) into
Fil(Fid(A,L)).

Proof. 1. Let F,G € F il(Id(A)). Since ¢ is order-preserving, we have
O(F = G)No(F) = ¢((F = G)NF) C ¢(G);

thus, ¢(F = G) C ¢(F) = ¢(G).

2. Assume that L \ {1} has a maximum p. Let F,G € Fil(Zd(A)). Let
1€ O(F) = ¢(G). Let I € [U(p, 1)) NF. Since U(I?,1) = I € F, we have
I? € ¢(F). We next show that I? € [u).

Since I € [U(u,1)), there is n > 1 such that U(u,1)" C I. Now, let = ¢ I.
For any aq,...,a, € A such that x = a;...a,, there is 1 < iy < n such that
aiy & U(p, 1); thus, p(ar) © ... 0 pla,) < plai,) < p. So, (po...ou)(z) <p.

n times

It follows that po...opu < I?P; i.e., ™ < IP. Consequently, I? € [u).
—_—

n times

Since IP € [u) N @(F), we have I? € ¢(G); thus, U(IP,1) € G;i.e., I € G. So,
[U(p,1))NF CGie,Upl) € F=Gie.,ped(F = G). Hence,

B(F) = 6(G) C (F = G) and, (F = G) = 6(F) = 6(G).
Therefore, ¢ is an embedding of Fil(Zd(A)) into Fil(Fid(A, L)). O

Proposition 3.2.9. Let ) # F C L. Then F is a filter of L if and only if
F':={ue Fid(A,L): Im(n) C F} is a filter of Fid(A, L).

Proof. Assume that F'is a filter of L.

o Let p,v € F'. Let x € A. Since p(x) € Im(u) C F and v(1) € Im(v) C F,
we have p(z) ©v(1) € F; thus, (p®v)(z) € F, since u(z)ov(l) < (p@v)(z).
So, Im(p®@v) C Fand, u@v € F'.

o Let u,v € Fid(A, L) such that y € F" and p < v. For any = € A, we have
w(x) < v(x) and p(zr) € F; thus, v(z) € F. So, Im(v) C F and, v € F.
Hence, F’ is a filter of Fid(A, L).

Conversely, assume that F” is a filter of Fid(A, L). For any r,s € F, we have
(1)x; (8)« € F'; thus, (1©5). = (r). ® (s)« € F'; 50, Im((r©s).) C F and,
r©&s € F. For any r,s € L such that r € F and r < s, we have (1), < ().
and (r), € F'; thus, (s). € F'; so, Im((s).) C F and, s € F. Hence, F is a
filter of L. O

Theorem 3.2.10. Suppose that A or L is finite. Then the function
¢ 1 Fil(L) — Fil(Fid(A, L)), given by ¢(F) = F' for all F € Fil(L), is a

complete lattice embedding.

Proof. For any F,G € Fil(L) such that ¢¥(F) = ¢(G), we have r € F iff
(r), € F''iff (r). € G’ iff r € G, for all » € L; thus, F = G. Hence, 9 is
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one-to-one. Now, let {F)\}xea C Fil(L). Clearly, ¥( () Fa) = (N ¥(F\). We

AEA AEA
next show that (|| F\) = || ¥(F)).
AEA AEA
Let p e (] Fy). Let r1,...,7, € L such that Im(u) = {r1,..., 7}
A€A
Since r1,...,7, € || F), there are r{,... .71, ... ), .. ,1" € |JFy such
AEA AEA

that ri ©...ori" Srl,...,r;@...@rg”grp; thus,

(%) (r})*®...®(£)*:(r%@...@r{“@...@r;@...@r;?")*gu.

1<i<p
Since (17 )xs -5 (17 )ur -+ (T3)5s -5 (1p")s € U W(F2), we have p € | | 9(F)).
- AEA AEA
So, (|| FA) C || v(F\) and, (|| FA) = || ¥(F)), since ¢ is order-preserving.
AEA AEA AEA AEA
Hence, v is a complete lattice embedding of the lattice of Fil(L) into the lattice
of Fil(Fid(A,L)). O

3.3 Rings and MV -algebras

3.3.1 Rings and Boolean algebras

The left and right annihilators in Fid(A, L) of an L-fuzzy ideal u of A will be
denoted by p~ and p™, respectively; i.e., u= = p — xo and u~ = ¥ xo-

Proposition 3.3.1. Let I be a proper ideal of A and r,s € L such thatr < s.

Then ((I3).) = ((I7)%), and ((I5).)" = (I™)L),; where, I~ and I~ denote

S

the left and right annihilator of I in Zd(A), respectively.

Proof. We first show that ((1).) = ((I7)F)..

S

e Let x € I\ {0}. For any t € L such that z; o (I?), < xo, we have

tOr =) © (I7).(1) < (w10 (7)) () < xo(7) = 0;
thus, t < 7. So, ((1%):) (z) < 7. Now, let a # 0 in A. For any v € A such
that a = zv, we have v € I; thus, 7 & (I).(v) =For = 0. So,

(570 (12).) () = {0} = 0.
It follows that
xro (I7)s < xo and, 7 < ((Ij)*)_(m)

Consequently, ((I3).) (z) =T
e Let ¢ I~. For any t € L such that z; o (I?). < xo, we have

165 = m(x) & (12).(0) < (w0 (). () < xp(ar) = 0

for some v € I such that zv # 0; thus, t <'s. So, ((I3).) (z) <5. Now, let
a # 0in A. For any v € A such that a = zv, we have
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_ < sos itvel  _
S@([’")*(U):{ggr i ogl <56s5=0;

(w5 0 (12).) () = {0} = 0.
It follows that
x50 (I5), < xo and, 5 < ((I5).) ().
Consequently, ((I3).) (z) =5.
Hence, ((I3).) = ((I7)%), and, ((I3):)” = ((I™)L), by similar arguments.
O
Lemma 3.3.2. Suppose that L and Zd(A) are Boolean algebras. Then for any
re€ L and I € Id(A), we have (1), + ((I):) =1.

Proof. Let r € L and I € Id(A). For any x € I, we have

[(F) 4 (1)) ] (@) > ((F).) (2) = (I (@) =1

and,

Now, let = & I~.
o If x € I, then

thus, [(T), + (1)) ] (@) = 1.
o lfx ¢ I then x =a+bfor some a € I\ {0} and b€ I~ \ {0}; thus,

and

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



3.3 Rings and MV-algebras 58

S0,

Theorem 3.3.3. Fid(A, L) is a Boolean algebra if and only if so are L and
Zd(A).

Proof. Since £ and Zd(A) can be embedded into Fid(A, L), it is clear that
they are Boolean algebras when Fid(A, L) is a Boolean algebra.

Conversely, assume that £ and Zd(A) are Boolean algebras. Let u € Fid(A, L).
Since Id(A) is finite (See, [21], Proposition 4.7.), there is a finite subset A of
A such that

poAp = [ (Idg(a)uw),] +n

a€A

= [l (Idg(a)uw),] +n

acA

= [ A (ldg(a)u), ] + 1

acA

= A [(Idg(a)u), + 1]

acA

> A [(Idg(a)uwy), + (Idg(a)ua)),]

a€cA

- AL

a€A
=1

and, 4~ + p = 1. Hence, Fid(A, L) is a Boolean algebra. O]

3.3.2 Lukasiewicz rings under an MV -algebra

Definition 3.3.4. A is called a Lukasiewicz ring under L if it satisfies the
following conditions for any p,v € Fid(A, L):

() (pev) @u ) =ptv=(E @veu)) .
(i) (p~@v™)~ =~ v7)".

Theorem 3.3.5. The following are equivalent:

(1) A is a Lukasiewicz ring under L.

(2) M(A,L) = (Fz'd(A, L); &, ® ™, 75 Xo, l), where p@v = (v~ u-)~
for all p,v € Fid(A, L), is an MV -algebra.

Proof. (1) = (2) Assume that A is a Lukasiewicz ring under £. By Propo-
sition 1.2.33, it suffices to show that (Fid(A, L) 4+, ® ~, 75 Xos l) is a
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Fukasiewicz semi-ring. Since Fid(A, L) is a residuated lattice, it is clear that
(F id(A, L); +, ®) is an additively idempotent semi-ring with x, as additive
identity and 1 as multiplicative identity. Furthermore, we have p ®@ v = yq iff
w<v—xo=v iff v <pu % xo=p> (for all u,v € Fid(A,L)). Thus,
conditions (LS1) and (LS2)(i) of Proposition 1.2.31 are satisfied. Conditions
(LS2)(ii) and (LS2)(iii) are immediate consequences of Definition 3.3.4.

(2) = (1) If M(A, L) is an M V-algebra, then (Fid(A, L); +, ®; ~, 75 xo, 1)
is a Lukasiewicz semi-ring by Proposition 1.2.31; thus, A is a Lukasiewicz ring
under £ by (LS2)(ii) and (LS2)(iii). O

Proposition 3.3.6. Suppose that A is a Lukasiewicz ring under L. Then the
associated lattice of M(A, L) is the complete lattice Fid(.A, L).

Proof. Since (Fz’d(A, L); +, ®; ™, 75 Xo, l) is a Lukasiewicz semi-ring, Re-
mark 1.2.32 shows that (Fid(.A, L); 1, +; Xo, l) is a bounded lattice; where,
pNv = (u=+v~)~ forall u, v € Fid(A, L). Since Fid(A, L) is a residuated lat-

tice, for any u, v € Fid(A, L), we have uMv = (u~+v~ )~ = =~ Av—" = puAv.
Thus, M = A. Hence, the associated lattice of M(A, L) is Fid(A, L). ]

Corollary 3.3.7. If A is a Lukasiewicz ring under L, then M(A, L) is a
commutative MV -algebra.

Proof. Straightforward, since M(A, L) is a complete MV -algebra. O]

Theorem 3.3.8. A is a Lukasiewicz ring under L if and only if the following
conditions are satisfied:

(CO) Fid(A, L) is a commutative residuated lattice.

(LR) For any p,v € Fid(A, L), p+v=(p" @ veu)") .

Proof. (=) If A is a Lukasiewicz ring under £, then & is commutative by
Corollary 3.3.7; thus, ® is commutative; so, Fid(.A, L) is commutative. Con-
dition (LR) is an immediate consequence of Definition 3.3.4.

(<) Assume that conditions (CO) and (LR) are satisfied. Since Fid(A, L) is
commutative, the unary operations ~ and ~ are confused. Hence, conditions
(i) and (ii) of Definition 3.3.4 are satisfied. O

If A is a Lukasiewicz ring under £, then £ is an MV-algebra and A is
a usual Lukasiewicz ring (See, [21], Definition 3.2.), but the converse is not
necessarily true as the following example shows.

Example 3.3.9. Consider the MV -algebra £ of Example 3.1.17 and the L-
fuzzy ideals p and v of the fLukasiewicz ring Z4 defined for any x € é by:

1 if =0, 1 i =0,
p(z) = c if =2, and v(z) = ¢ if =2, . We have
a if xe{l, 3}. b if ze{l, 3}.
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=u+v.

Hence, 2, is not a Lukasiewicz ring under L.

Proposition 3.3.10. If A is a field and L is an MV -algebra, then A is a

Lukasiewicz ring under L.
Proof. Let u be an L-fuzzy ideal of A. For any z,y € A\ {0}, we have

pla) = plyy~'x) 2 ply) = plex™"y) = p(x);
thus, u(x) = u(y). Hence, L-fuzzy ideals of A are only of the form (r)., where
re L.
Now, assume that A is a field and £ is an MV -algebra.
(CO) Since Zd(.A) and L are commutative residuated lattices, Fid(A, L) is a
commutative residuated lattice.
(LR) For any r,s € L, we have
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Hence, A is a Lukasiewicz ring under L. [

Lemma 3.3.11. (See, [21], Proposition 4.7.) If A is a Lukasiewicz ring, then
Id(A) is finite.

Proposition 3.3.12. If A is a Lukasiewicz ring under L, then Fid(A, L) is
finite if and only if L s finite.

Proof. Assume that A is a Lukasiewicz ring under £. If Fiid(A, L) is finite,
then L is finite, since £ can be embedded into Fid(.A, L). Conversely, assume
that L is finite. Let p be the map from Fid(A, L) to Id(A)L defined by:

p(u)(r) =U(u,r) for all p € Fid(A,L) and r € L.
Let p,v € Fid(A, L) such that p(u) = p(v). For any z € A, we have
z € Uy, p(x)) = p(p) (1)) = pv) (u(x)) = U(v, p(2));

thus, v(z) > p(x) and, p(z) > v(x) by similar arguments; so, u(z) = v(z). It
follows that u = v. Consequently, p is one-to-one. Hence, Fiid(.A, L) is finite,
since Id(A)* is finite. O

Definition 3.3.13. A is said to be special primary if it has a unique mazximal
ideal M, and every proper ideal of A is a power of M.

Proposition 3.3.14. (See, [21], Proposition 4.1.) Every special primary ring
15 a Lukasiewicz ring.

Theorem 3.3.15. (See, [21], Theorem 4.10.) A ring is a Lukasiewicz ring if

and only if it is isomorphic to a direct sum of special primary rings.

Corollary 3.3.16. A Lukasiewicz ring under L is isomorphic to a direct sum

of special primary rings.
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CHAPTER FOUR

SOME PROPERTIES OF QUOTIENTS
AND IMAGES

In this chapter, unless otherwise specified, £ := (L; A, V, ©, —, —o; 0, 1)
is a complete meet-distributive residuated lattice (See, Definition 1.2.13), and
A is a unital ring with unity 1 (sometimes simply called ring).

In Section 4.1, L-fuzzy ideals of a quotient ring are characterized, and some
of their properties are investigated. In Sections 4.2 and 4.3, some functors from

the category of unital rings to the category of po-monoids are studied.

4.1 L-fuzzy ideals of quotients

Lemma 4.1.1. Let I € Id(A) and pn € Fid(A,L). The L-fuzzy subset & of
4. given by(2) (%) = \/{u(x) : x €%} for alla € A, is an L-fuzzy ideal of 2.

Proof. Since 0 € I, we have (¥)(I) = (4)(%) > p(0) = 1 and, (¥)(I) = 1.

Furthermore, for any a,b € A, we have
(B)E-H = Viaw: ve =)
>V{uwz—y): € fandye 7}
> V{p(@) Aply): v € §andy e 7}

= (@A)

and
()58 =Viw(u): ve P}
> (V{ud) : ve )V (Vintaw) : we b))
> (V{u(): ve o)) v (Vi{pw): web))
= (D V(H.
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Hence, £ is an L-fuzzy ideal of %. O]

For any r € L and J € Id(A) such that I C J, we have 2 — ((£)r) ;
indeed,
e for any ¢ € 2\ {I}, we have a € J \ I and, ((J;))(%) =\V{r}=r;
e for any % ¢ 7, we have a € J and, ((‘]}))(%) = \{0} =0.
In particular, we have 1 = Xy forall J e Id(A) such that I C J.

Lemma 4.1.2. Let I be an ideal of A and v an L-fuzzy ideal of é. Then the
L-fuzzy subset vy of A, given by vi(a) = v(%) for alla € A, is an L-fuzzy ideal
of A.

Proof. We have v;(0) = v(%) = v(I) = 1. For any a,b € A, we have
vila —b) = v(%52) = v(® — &) > u(2) A u(E) = va(a) A (D)
and
vi(ab) = v(2) = v(22) > u(2) V () = vi(a) V mr ().
Hence, vy is an L-fuzzy ideal of A. ]
For any ideal I of A, define Flid(A, L,I) := {u € Fid(A,L): I CU(u,1)}.

Lemma 4.1.3. Leta € A, I € Id(A) and pn € Fid(A, L,I). Then the follow-
g hold:
(a) For any x € §, we have p(v) = pu(a).

(b) (7)(%) = p(a).

Proof. (a) For any = € ¢, we have pu(z) = p(r —a+a) > p(r —a) A pla) =
LA p(a) = pla—z+2) = pla—2) Ap(x) = 1A p(x) = p(z) and, u(z) = p(a).
(b) We have (£)(2) = V{u(z) : = € 2} = Vi{u(a)} = ula). .

Theorem 4.1.4. Let I be an ideal of A. Then L-fuzzy ideals of % are of the

form &, where p € Fid(A, L, T).

Proof. Consider the maps m : Fid(A, L,I) — Fid(4,L) and 7 : Fid($,L) —
Fid(A, L,I) defined by:

m(p) = Y for all p € Fid(A, L, I) and 7(v) = vy for all v € Fid(4,L).
e For any v € Fid(%, L), we have v;(z) = v(%) = v(I) = 1 for all z € I; thus,

T
I CU (v, 1) e, vy € Fid(A, L, I). So, m and 7 are well-defined.

e For any v € Fid(é,L) and a € A, we have
(ror)w)() =V{vi(a): v € $} =V{v(}): v €} =V} =v($.

Thus, moT = Isz’d(%,L)’
e For any pu € Fid(A, L,I) and a € A, we have
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(rom)(u)(a) = r[n(w)](a) = 7(5)(a) = (§),(a) = (§)(}) = nla).
ThUS, TOT = IdFid(A,L,I)'
Hence, the desired result follows. O

Proposition 4.1.5. Let I € Id(A) and {px}ren C Fid(A,L,I). Then

)
(1) Aps € Fid(ALT) and A 25 =257
AEA AeA
LI pa
(2) Ll € Fid(AL,T) and [] 2 = 55
AEA AEA
Proof. (1) Since I C U(uy, 1) for all A € A, we have I C (" U(ux,1); i.e.,
AeA

Ic U( /\ I120% 1)7 i.e., /\ Hx € FZd(Av Lul)

AEA XeA
For any a € A, we have

a a /\/E\AM/\ a
(AR5 = ARG = Awmla) = (Am)a) = (*5-)()
AEA AeA AeA AEA
A b

Hence, A £ =25

AEA
(2) Since I C Ul(uny,1) € U(] pa, 1) for some Ay € A, we have | |p\ €

AEA A€A
Fid(A, L, T).
LI pa
Since py < || for all A € A, we have £ < 22— for all A € A; i.e.,
AEA
LI pa

|| & < 22— Now, let © € A. For any finite subset £ of A and {a)}req C A
AEA

such that © = )" a,, we have

AEQ

a a AEE:QCL/\

Apa(an) = A () < (U2 (29 = (U = (U5 @

AEQ AEQ AEA AeQ AEA AEA

/\I_lAMA AUAH)\

Thus, (*3—)(7) = (U m)(@) < (U %)(F). So, 25— < % Hence,

AEA AEA AEA
L s
U7 =" b

Example 4.1.6. Let L = {0, a, b, ¢, d, 1} be a lattice such that 0 < a <
b,c <d<1and b,c are incomparable. Define the binary operations &, —
and —o by the three tables below:

b

©10a cldl|1l - | 0|la|blc|d]|1l
0/0[0J0]0O]O0|O O |1 (111 |1]1
a|0]0|la|0|al|a a |b|1]1|1]1]1
b{O0O|O0O]|b|O|b]|Db b |0Olc|1l]|c|1]1
clO0jlalalc|lc|c c|b|b|b|1]1]1
d|{0|a|b|c|d|d d|0la|b|lc|1]|1
110jalb|lc|d]|1l 1 (0flalb|lc|d]|l

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



4.1 L-fuzzy ideals of quotients 65

— | 0jal|blc|d]|1l
O |1|1/1j1]1]1
a |cll|1|1]1]1
b |clc|l|c|1l]|1
c [O|b|b|1]1]1
d |0la|blc|1]|1
1 |0ja|b|c|d|1

Then L = (L; N, V, ©, =, —o; 0, 1) is a complete meet-distributive residu-
ated lattice (See, [22], Example 9). Consider the L-fuzzy ideal p of Z¢ defined
1 of =0,
by: wx) =< ¢ if x=3, foralzxe 6%. We have
a elsewhere.

Proposition 4.1.7. Let I € Id(A) and p,v € Fid(A,L,I). Then
by = uor

Proof. Let © € A. Let a € For any wuq,vy,...,u,,v, € A such that
n

~l&

a= g u;v;, we have

i=1

1<i<n 1<i<n

Ths, (4@ v)(a) < (40 5)(3). So, (52)(3) < (0 5)(3).

“~ a; b;
Now, let ai,b1,...,an,b, € A such that 7 = Z%Y For any u; € %, v; €
b%,...,une I,vne%,wehave -
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thus,

So,

Consequently,
Hence, £ ® ¥

I —
~I=
®

TONIR
SN—
— A

Proposition 4.1.8. Let I € Id(A) and pu,v € Fid(A, L,I). Then the follow-
ing hold:

(1) p —v,u% v e Fid(A, L I).

(2) 6 s ¥ = B2 and 0o § = 1522

(3) () = E5L and (§)” = 5

Proof. (1) Since v < u < v, we have I C U(v,1) C U(u — v,1) and,
w— v e Fid(A, L, I). A similar reasoning shows that p & v € Fid(A, L, I).
(2) Since@@%:w < ¥, we have £ < £ — ¥ Now, let a € A.

Let r € L such that (%), o (%) < %. Let x € A. For any v € A such that

r = av, we have

reu) =[5 e (D)

Thus, (a, o p)(z) < v(z). So, a,op <vand, r < (u—v)(a) = (EF%)(%). It
follows that (& < %)(4) < (E22)(9).
Hence, & — % < 2% and, £ = £ — % A similar reasoning shows that

prv g v
T —1%Y 7T

(3) We have (%)* == xn=4%—=>x

BIXT
I

~I=

< XL = BOXI and (#) =

by similar arguments. O

~~
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Theorem 4.1.9. Id(A,I):={J € Id(A): I C J} is a subresiduated lattice-
ordered monoid of Z(A) if and only if Fid(A, L,I) is a subresiduated lattice-
ordered monoid of Fid(A,L).

Proof. 1t suffices to show that Id(A,I) is closed under ® iff Fid(A, L, 1) is
closed under ®.

Assume that Id(A,I) is closed under ®. For any pu,v € Fid(A, L, I), we have
U(u,1),U(v,1) € Id(A,I); thus, U(u,1) ©U(v,1) € Id(A,I); so,

ICUp,1)oUWw1) CUp®v1)and, p@v e Fid(A, L, I).
Conversely, assume that Fid(A, L,I) is closed under ®. For any J, K €

Id(A,I), we have x;,xx € Fid(A, L,I); thus, x; ® xx € Fid(A,L,I); so,
Ig U(XJ®XK71) = U(XJ@Kal) =JOK anda JOK € Id(Aaj) L

Lemma 4.1.10. Letr € L, a € A, I € Id(A) and u € Fid(A, L). Then
(a) ($)r 0% < xqy if and only if a, o p < x.
(b) (%) o (3)r < xqny if and only if poa, < xr.
Proof. (a) Assume that (%), o % < xqp3. Let € I. For any v € A such that
r = av, we have 1 & 5(0) < (§):(3) & (5)(5) < (o (§)(5) < x0(5) =0
and, 7 © u(v) = 0. Thus,
(- 0 ) (z) = V{0} = 0.
Hence, a, o p < x7.
Conversely, assume that a, o u < x;. We have

((Dr o (D)) <1 =xn (D).
Now, let x ¢ I. Let v € A such that 7 = $7.

thus, 7O p(w) = a,(a) © p(w) < (a,0p)(aw) < xr(aw) = 0 and, & p(w) = 0.
So,

For any w € %, we have aw & I;

It follows that

(()r o (D) (F) = V{0} = 0= x(n(D)-

Hence, (%), o (%) < x1.
(b) Similar to (a). O

Lemma 4.1.11. Suppose that L is product-distributive (See, Definition 1.2.15)
and xJ € Id(A) for allz € A and J € Id(A). Letr € L, a € A, I € 1d(A)
and p,v € Fid(A, L). Then the following hold:

(a) (a,).0p and po(a.). are L-fuzzy ideals of A.

(b) (ar)eo (p@v) = ((ar)sop) @v and (n@v)o (a,). = p@ (v o (a,).).
(c) If I¥= =1 (resp., =~ =1), then
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(5)7($) = (w@xi~)"(a) (resp., ($)~() = (xi- @ p)~(a)).

Proof. (a) ((a,).01)(0) > (a).(0)£u(0) = 161 = 1 and, ((a). 0 ) (0) = 1.
Now, let z,y € A.
Let uq, vy, us,v9 € A such that x = ujv; and y = usvy. Set

D(u,0) = ((0)+(0) © (o) A ((ar)e(2) © pi(w2)-
o If uy ¢ {0, a} or uy & {0, a}, then (a,).(u;) =0 or (a,).(uz) = 0; thus,

D(u,0) =0 < ((a,). o 1) (= — 1),
e If u; =0 and uy = 0, then

D(u,0) < 1= ((a,). 0 1) (0) = (@) o p)(x — ).

o If uy = a and uy = 0, then
P(u,v) < (ar)i(a) & p(vr) < ((ar). 0 p)(av) = ((ar)« 0 p) (@ = y).
o If uy = a and uy = a, then
D(u,v) = (rop)) A (ro p(ve))
=1 (p(vr) A p(v))
<76 p(vr — v2)
= (a,).(a) & pu(v1 — v2)
< ((ar)s o p) (a(vr = v2))
= ((ar)s o p)(x — ).

e If u; =0 and uy = a, then
D) < (a,).(a) © ju(—v2) < (). 0 )~ ava) = (@), o 1) (& — y).

It follows that ((a,). o p)(z —y) > ((ar)s o p)(x) A ((ar)s 0 p) (y).
e For any u,v € A such that x = uv, we have

(ar)(u) © p(v) < (ar).(u) © plvy) < ((ar). o p) (w(vy)) = ((a,)« o p) (zy).
Thus,
(a)s 0 1) (@) < (@) 0 1) (a9).
e For any u,v € A such that y = uv, we have
vy = zww € z[ul (p, p(v))] S ul (p, p(v))
and, xy = uc for some ¢ € U(,u, u(v)); thus,

(ar)(u) © p(v) < (ar)s(u) © ple) < ((ar)s o p) (ue) = ((ar) o ) (xy).

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



4.1 L-fuzzy ideals of quotients 69

Thus,

((ar)e o ) (y) < ((ar)s o ) (zy).
So, ((a,)- o 1) (zy) = ((a,)- o 1) () v/ ((@). o ) ().

Hence, (a,). o p is an L-fuzzy ideal of A. A similar reasoning shows that
po (a,) is an L-fuzzy ideal of A.
(b) Let z € A. Let u,v € A such that x = uv. For any by,cq,...,b,,c, € A

such that v = Z b;c;, we have Z(ub = UZ bic; = uv = x and,

@).) 0 A pb)ovie) = A ((@).w)©p(b) O v(e)
< A ((@).op) ) orie)

< [((ar)s o ) @ V] ().
Thus, (@) (1) © (3 9)(0) < [(@). 0 ) @ ) (2). So, [(ar). 0 (v 0)](0) <
[((ar)* ou) ®y] (x). Now, let uy, vy, ..., u,, v, € A such that x = ZumZ Let

i=1
Wi, 21, . . ., Wy, 2n, € A such that u; = w21, ..., U, = Wy2,.

o If there is 1 <4y < n such that w;, € {0, a}, then (a,).(w;,) = 0 and,

A ((ar)s(wi) © p(z)) Sv(v) =0 < [(ar)s o (p@ V)] (2).

1<i<n
o If there are iy,...,4, € {1,...,n} such that w;, =aforall 1 <k < p and
p
w; =0forall je{1,....,n}\ {i1,...,i}, then z = a(Zzikvik) and,
k=1
A ((an)(wi) © p(z)) ©v(v) < A ((ar)i(wi,) © p(z,)) © v(vy,)
1<i<n 1<k<p
= A ((ar)i(a) © pl(zy)) ©v(vi,)
1<k<p
= (a,):(@)© (A nlziy) ©v(vy,))
1<k<p
P
< (ar)*(a) o (:u ® V) ( Z Z’ikvik)
k=1

< (@) o (u® )] (2).
It follows that A ((a,).op)(w)©v(v;) < [(a,). 0 (p®@v)](x). Consequently,

1<i<n

[((ar). 0 ) @ v](2) < [(ar)s 0 (1 ® v)](x) and,
(@) 0 (18] (@) = [((a). 0 p) © ] (x).

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



4.1 L-fuzzy ideals of quotients 70

Hence, (a T) o ( (( s © ) ® v. A similar reasoning shows that

(1@ v)o <) r)e).
(c) Assume that IN— = Smce Xr® (x1)™ = xo and ((x1)~) = x1, we have
(4) (5) =V{reL: (o} <xum}
=V{relL: aou<yxi}
=V{reL: (a).ou<xr}
=V{reL: ((a)copn) ®Kx~ < xo}
=V{relL: (a).o(p®(i)) < xo}
=V{reL: ao(p® (1)) < xo}

= (1® (x1)) (a)

= (L®x1~) (a).

A similar reasoning shows the second implication. O

As the following example shows, the result (a) of the previous Lemma is

not true in general.

Example 4.1.12. Let L be the residuated lattice of Fxample 1.2.17 and i the
( 1 if 2=0,

a if x =06,
L-fuzzy ideal of Z15 defined by: u(zx) = b if ve€{4, 8}, forallx e Zy,.
n if xe {2, 10},

0 if not.

\

(Tm)« © p is not an L-fuzzy ideal of 214, since

(7)< 0 ) (6 (Tw)i o) (2) = V{me u2)} =men
0

n

™

—anb
=(moa)\(mob)

= (V{me u©®)}) A (V{me u#)})
= ((Tu)s 0 1) (6) A (Tun) © 1) (4)-

Proposition 4.1.13. Suppose that L is product-distributive and zJ € Id(A)
for allz € A and J € Id(A). Let I € Id(A) and u € Fid(A,L,I). Then the
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following hold:
(1) (n® xr~)", (X1~ ® )~ € Fid(A, L, I).
(2) If I°= =1 (resp., I=~ = 1), then

(4)" = L2 fresp, (4) = D),

Proof. (1) Since p® xr~ < x1~ = (x1)~, we have x; < (x1)~~ < (L ® x1~)7;
thus, I = U(xs,1) € U((p ® x1~)7,1) and, (p ® x;~)” € Fid(A,L,I). A
similar reasoning shows that (y;- ® p)~ € Fid(A, L, I).

(2) Assume that I~~ = I. For any a € A, we have

(W20 ) (8) = (4@ v )~ (a) = (£)(2).

Hence, ()™ = M. A similar reasoning shows the second implication. [

4.2 L-preimage functor

Let Ring be the subcategory of the category of rings, with unital rings as

objects and homomorphisms of unital rings as arrows.

Lemma 4.2.1. Let A - B in Ring. The arrow Fid(B, L) P {9 Fid(A, L),
given by Fid, ' (f) (1) = po f for all u € Fid(B, L), is well-defined.
Proof. Let u € Fid(B, L). We have

Fidy' (f)(1)(04) = 11(f(04)) = p(05) = 1.

For any a,b € A, we have

Fid (f)(p)(a = b) = p(f(a—1b))

Hence, Fid;'(f)(u) is an L-fuzzy ideal of A. O
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Lemma 4.2.2. (a) For any A in Ring, Fid; (Ida) = Idpiaar)-
(b) For any A L Band B % Cin Ring, Fid;'(gof) = Fid;'(f)oFid;'(g).
Proof. (a) Let A in Ring. For any u € Fid(A, L), we have

Fid; (Ida)(p)(z) = p(Ida(z)) = p(z) for all z € A;

thus, Fid;'(Ida)(p) = p. So, Fid;'(Ids) = Idpiaar).-
(b) Let A Ly Band B-% Cin Ring. For any p € Fid(C, L), we have

[Fidy ' (f) o Fidp'(9)] () = Fid'(g)(u) o f
= (nog)of
=pnol(gof)
= Fid;'(go f)(n).
Hence, Fid; " (go f) = Fid;'(f) o Fid;'(g). O

Definition 4.2.3. [26] A function o : Ly — Lo from a lattice-ordered monoid
to a lattice-ordered monoid is said to be submultiplicative if o(e1) = ey and
olz)eoly) <o(xey) foralz,y e L.

Theorem 4.2.4. Fidzl s a contravariant functor, called L-preimage functor,
from Ring to the category PoMod, whose objects are partially ordered monoids
and arrows are submultiplicative order-preserving functions.

Proof. From the above lemmas, it suffices to show that Fid; ' is well-defined.
So, let A Ly Bin Ring. It is easy to check that Fid;'(f) is order-preserving.
Since Fid,'(f)(1)(z) = 1(f(z)) = 1 for all z € A, we have Fid;'(f)(1) = 1.
Now, let u,v € Fid(B,L). Let z € A. For any ay, b1, ..., a,,b, € A such that

v =) aibi, we have f(z) = f(3_aibi) = 3 flas)f(b;); thus,

i=1 =1

N Fidp' (f)(p)(a:) © Fidy'(f)(v)(b:)

1<i<n 1<i<n

Il
>
=
—
—
£
N’
)
\N
S
—
~~
s
Nt

= Fid; (f)(p @ v) ().

So, [Fid;'(f) (k) ® Fid;'(f)(v)](z) < Fid;'(f) (1 ® v)(z). It follows that
Fid ' (f)(p) @ Fid ' (f)(v) < Fid;'(f)(u®v). Hence, Fid;" is a functor. [
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Proposition 4.2.5. Let A T Bin Ring. Then the following hold:

(1) For any I € Id(B), we have Fid;'(f)(x1) = x;-1(1)-

(2) Fid;*(f)(xo0s) = Xo, if and only if f is one-to-one.

(3) For any p € Fid(B, L), we have Fid; " (f)(1) € [Xf-1({0p}), 1]-

(4) ([ o5}, 1 A, 4, ®, =, B l) is a subresiduated lattice ordered
monoid of Fid(A, L) if and only if ([f_l({OB}), Al; N, 4, ©, =, ~; A) is
a subresiduated lattice ordered monoid of Zd(.A).

(5) ([xs- {OB}), 1; A, 4, ®, =, 5 Xp-1({0p)), 1) is a residuated lattice if
and only if ([f*({08}), A]; N, +, ®, —, ~; [71({08}), A) is a residuated
lattice.

Proof. (1) Let I € Id(B). For any x € f~Y(I), we have Fid;'(f)(xs)()
X1(f(x)) = 1. For any = & f~'(I), we have Fid;'(f)(x1)(z) = x1(f(z)) =
Hence, Fid; "' (f)(x1) = X;-11)-
(2) Straightforward, since Fid;'(f)(xo,) = Xs-1{0s}) Py (1).
(3) Let p € Fid(B,L). For any z € f~*({05}), we have

Fidp' (f) () (2) = p(f(2)) = u(0p) = L.
Thus, X1y < Fidp' (f)(p) < 1; ice., Fid' (f) (1) € [Xp1q0sp)» 1)
(4) Since Zd(A) can be embedded into Fid(A, L), it suffices to show the
second implication. So, assume that ([f‘l({OB}), Al; Ny 4+, ©, =, A)
is a subresiduated lattice ordered monoid of Zd(A). Let p, v € [X;-1(f051), 1.
o Since [~ ({05}) = ' ({05} © /T ({05}) S U (. 1) ©U(v, 1) C U(n@v,1),
we have (p®v)(z) =1 for all z € f'({0p}); thus, X;-1f0pp < p®v < 1
i.e., L@V E [Xf-1({0g)) 1]
e Since f71({05}) C U(r,1) C U(p = v, 1), we have (p = v)(z) =1 for all
z € fTH{0p}); thus, xy—1qopp S u—=v < 1iie, p—=v e [0y, 1. A
similar reasoning shows that 1 % v € [x;-1(1051), 1.
Hence, ([Xffl({oB}), 1 A+, ®, =, b l) is a subresiduated lattice ordered
monoid of Fid(A, L).
(5) Immediate consequence of (4). O

0.

Proposition 4.2.6. Let A Iy Bin Ring. For any {px}xrean € Fid(B, L), we
have A Fid'(f) (i) = Fidil(f)(AAAuA)-
€

AEA

Proof. Let {ux}rea € Fid(B, L). For any v € A, we have Fid;'(f)( /\ A(T) =
(/\/E\A,U/\> (f(2)) :)\/G\Alu)\(f(x)) ZA/E\AFidil(f)(m)( v) = [ A Fidy ( )( V(@)

AEA

Hence, )\/e\AFidzl(f)(p,,\) = Fidzl(f)(/\/e\Au,\). O

Proposition 4.2.7. Let A LS Bin Ring. Then the following are equivalent:
(1) For any {m}rea C Fid(B, L), || Fid;'(f)() = Fidy (f)(L 1)
AEA A€A
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(2) For any {I\}xea € 1d(B), LI f71(I\) = f71 (L 1)

AEA AEA

Proof. Since Zd(B) can be embedded into Fid(B, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. Let {uy}rea € Fid(B, L).
For any = € A such that f(x) = 0p, we have

Fidil(f)(AlglAuA)(x) =1 =Fid;"(f)(p) (@) < [AIEIAFidZI(f)(m)} ()

for some Ao € A. Now, let z € A such that f(z) # 0p. For any finite subset €2
of A such that f(z) = > ay, we have

re f [AEQU(NAv“A(aA))] = Alglnfil (U (2, pa(ar)) |5
thus, v = ,\Zegzw for some uy, € f~! [U(,u,\,u,\(a,\))] (A € Q); so,
A/G\QMA(CLA) < )\/E\QMA(f (wr)) = A/e\QF idp () () (un) < [)\IglAF idp () ()] ().

Hence, Fidzl(f)()\g\u,\)(x) = (/\|E|Ap,\) (f(z)) < [AEAFidzl(f)(u,\)} (x). There-
fore, Fidzl(f)()\g\u,\) < )\|E|AFidzl(f)(y,\ . Since Fiid;'(f) is order-preserving,

we have )\|E|AFidzl(f)(u,\) = Fidzl(f)(/\|E|AuA). O

One can remark that f~! preserves | | if and only if f~! preserves + if and
only if Fid;*(f) preserves | | if and only if Fid;'(f) preserves +. Furthermore,

the L-preimage of any projection (resp., natural) homomorphism preserves | |.

Lemma 4.2.8. Let A 15 B in Ring. Then the following are equivalent:
(a) For any I,J € 1d(B) and r,s € L,

Fid (f)((I).) @ Fid (£)((Js)) = Fid (£ [((T O T)res),]-
(b) For any I,J € Id(B), f~Y(I) o f~YJ)=fYIoJ).

Proof. Since Zd(B) can be embedded into Fid(B, L), it suffices to show that
(b) implies (a). So, assume that (b) is satisfied. Let I, J € Id(B) and r,s € L.
For any x € A such that f(z) € I ® J, we have

Fid ' (f)[((I ® I)yes) ] (@) = (L@ J)es), (f(x))
—0

< [Fad ' (f)((1).) ® Fid ' (f)((Js)«)] ().
For any x € A such that f(z) = 0p, we have
v € [T ({05} ©{05}) = f7'({05}) © ' ({05});
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thus, z = Zaibi for some ay, by, ..., a,,b, € f71({05}); so

Fid (H)[((T® Jres),](2) =1

= A lel

1<i<n

= A (Ir)*(f<ai)) S (JS)*(f(bZ))

1<i<n

= A Fid (f)((I):)(a:) & Fidy ' (£)((J,)s) (b:)

< [Fidg (N((1).) @ Fidg (£)((1).)] ().
For any x € A such that f(z) € (I ® J) \ {0p}, we have
re fIod)= o ()

thus, z = iaibi for some ay,...,a, € f~1(I) and by, ..., b, € f~1(J); so,

r < (1)« (f(a:) = Fid ' (f)((1)+) (a;) and s < Fidy' (f) (o)) (i)
forall 1 <i<nand, ros < Fid'(f) (L)) (a;) © Fid ' (f)((Js)«) (b;) for
all 1 <1 < n; consequently,

< [Fidg\( ( (1,)+) ® Fid (f)((Js)«)] (2).

Hence, Fid ' (f)[((I ® J)res),] < Fid,"(f)((1)s) @ Fid; ' (f)((Js)+) and,
Fidg (1) (1)) ® Fidg (1) ((J0)) = Fidg () [((1 © J)ves). ) 0

Proposition 4.2.9. Let A L Bin Ring such that f~' preserves +. Then
the following are equivalent:

(1) For any p,v € Fid(B, L), Fid;'(f)(p) ® Fid, ' (f)(v) = Fid;'(f)(n®v).
(2) For any I,J € Id(B), f*(I)® f~4(J) = (I e J).

Proof. Since Zd(B) can be embedded into Fid(B, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. For any pu,v € Fid(B, L),
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Fid, (f)(p®v) =Fid ()[(U (Idg(a)ua),) ® (U (Idg(b)u).,)]

aEB beB

= Fid ' (H U U (dg(a)uw), ® (Idg(b)uw)),]

a€EB beB

= U UFid'(f)[(Idg(a)uw), ® (Idg(b)uw)),]

a€B beB

= U U Fid; ' () [(1dg(a)uw)),] © Fid " (H)[(Idg(D)uw)), ]

a€eBbeB

= (U Fid; " (H)[(1dg(a)uwy),])®

a€eB

(U Fid ' (f)[(1dg(b)uw),])

beB

= Fid;"(H[ U (dg(a)uw),] © Fidg (N[ (1dg(b)m),]

= Fid (f) (1) ® Fid;'(f)(v).
0

Proposition 4.2.10. Let A L Bin Ring. If L is a Brouwerian algebra,
then the following are equivalent:

(1) For any p,v € Fid(B, L), Fid;'(f)(u®@v) = Fid*(f)(p) @ Fid;'(f)(v).
(2) For any I,J € Id(B), f7*(I®J)=fYI)o f~1(J).

Proof. Assume that £ is a Brouwerian algebra. Since Zd(B) can be embedded
into Fid(B, L), it suffices to show that (2) implies (1). So, assume that (2) is
satisfied. Let p,v € Fid(B,L). For any = € A such that f(xz) = 0p, we have

n

r € 71 {0s} ®{08}) = f1({0B}) ® f1({0B}); thus, z = Zaibi for some

i=1
alabla s >an>bn € fﬁl({OB})’ 80,

Fid (f)(p@v)() = (n@v)(f(z))
—1

= A 1lel

1<i<n

= A w(fla) ov(fb))

1<i<n

= N\ Fidg (f)(u)(a:) © Fidy ' (f)(v)(b:)

1<i<n

< [Fid; ' (f) () © Fid; ' (f)()] (z).
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Now, let z € A such that f(x) # 0p. Let ay, by,...,a,,b, € B such that
f(z) = Za'b-. Since z € fHU(p, A pla;)) ©@U(v, A v(b:))], we have

— 1<i<n 1<i<n
x € f [ (,u, N pla ))}@f‘l [U(V, A V(bi))];thus, there are uy, ..., U, €
1<i<n 1<i<n
U A wa))] and vy, ..o v, € fTHU(v, A v(b;))] such that o =
1<i<n 1<i<n

m
E U;v4; SO,
j=1

A wa)evb) =( A ma)e( A\ vv)

1<i<n 1<i<n 1<i<n

<[ A w(fw)] el A v(fw)]

1<j<m 1<j<m

= N wlfw))ev(fv))

1<j<m

= A Fidy (f)(1)(u;) © Fid (f)(v)(v;)

1<j<m

[Fid (f)(n) ® Fidp' (f)(v)](2).

It follows that Fid, ' (f)(p®v)(z) < [Fid;'(f)(p) @ Fid ' (f)(v )} (x). Hence,
Fid; ()@ v) < Fid; (£)(1) ® Fid;'(f)(v). Therefore, Fid;}(f)(n %) =
Fid ! (f)(n) @ Fid,' (f)(v). O

One can verify that the L-preimage of any projection homomorphism pre-

IN

serves ®; but, the L-preimage of a natural homomorphism does not necessarily
preserve ®. Indeed, considering the natural homomorphism ¢ : Z — = from
Z to 24, given by ¢(x) = x + 47 for all x € Z, we have

{0 @ ¢ () =4Z 0 2Z =8Z C AZ = ¢~ ({0}) = ¢~ ({0} ® ).

Lemma 4.2.11. Let A -5 B in Ring and p,v € Fid(B,L). Then
Fidi ()i = v) < Fidi(f)(w) = Fid;'(/)(v) and Pidi (f)(n & v) <
Fid (f)(p) & Fidg' (f)(v).

Proof. Since Fid*(f)(p < v) ® Fid;'(f)(p) < Fid'(f)(p = v) @ p) <
Fid; ' (f)(v), we have Fid;*(f)(p < v) < Fid; ' (f) () — Fid;*(f)(v). Sim-
ilarly, we have Fid ' (f)(u % v) < Fid; ' (f)(n) & Fid ' (f)(v). O

Proposition 4.2.12. Let A Ly Bin Ring. Then the following (and their
mirror images) are equivalent:

(1) For any p € Fid(B, L), Fid;'(f)(1) = X105y = Fid;' (f) ().

(2) For any I € 1d(B), f~(I) = f~({0s}) = f~1(I7).
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Proof. Since Zd(B) can be embedded into Fid(B, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. Let u € Fid(B,L). Let
z € A. Let r € L such that z, o Fid;'(f)(1) < Xj-1{0s})- Let y # Op in
B. Let b € B such that y = f(z)b. Since f(z)U(u, u(b)) € {05}, we have

f(@) & U(p, p(b)) and,

o @ fTHU(pn®) ] = F7HU (1 00)] = £ ({08});
thus, zf 1 [U(u, n(0))] € F71({08}); so, f(a) € U(p, (b)) for some a € A
such that f(za) 7é 0p. It follows that

reub) <rou(fla))

= w,(x) © Fidy ' (f)(1)(a)

< (& o Fidy ()(1) (xa)

< Xs1({osp (@)

~0
and, 7 © pu(b) = 0. Consequently, (f(z), o p)(y) = V{0} = 0. Thus,
f(@)rop < xop and, v < p (f(2)) = Fidy ' (f)(n)(2).
So, (Fidy ' (f)(1) <> Xs-1(qosp) (@) < Fidy'(f)(u~)(x). Hence,

Fid ' (£)(1) = Xp-2qopp < Fidy (£)(07)
and, Fid; ' (f)(1) = X105y = Fid (£)(n).

A similar reasoning shows the mirror equivalence. O]

)
(

Lemma 4.2.13. Let A L B in Ring. Then the following (and their mirror
images) are equivalent:
(a) For any I,J € Id(B) and r,s € L,

Pid; (£)((1).) = Fidi (£)((J,).) = Fid; (£)((1). = (1.).).
(b) For any I,J € Id(B), f~'(I) — f~Y(J)= (I = J).
Proof. Since Zd(B) can be embedded into Fid(B, L), it suffices to show that
(b) implies (a). So, assume that (b) is satisfied. Let I, J € Id(B) and r,s € L.

Let z # 04 in A. Let t € L such that x, o Fid; ' (f)((1).) < Fid; " (f)((Js)«)-
Iftor =0, then

(f(z)eo (1)) (b) = {0} = 0 < (J,).(b) for all b # 0p in B;
thus, f(x); 0 (1)« < (Js)« and,
t < ((Ir)e = (Jo)s) (f(2)) = Fidy () ((Ir)x = (Js).) (@).
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Now, suppose that t ©r # 0. For any a € f~1(I), we have

()« (f(za)) = Fidp' (f)((Js):) (za)
> [z, 0 Fidy (f)((1)+)] (za)
> ay(x) © Fidy ' (f)((1r).)(a)
=t (I).(f(a))

it @ =0,
- { tor if f(a)el\{0g).
>tor;
thus, f(za) € J and, za € f~(J). So,
af NI C () and, w € fHI) — f7H(T) = [T = ).

It follows that f(x) € I — J. We now wish to show that f(x); 0 (I,)s« < (Js)«-
So, let y # 0p in B. For any v ¢ I such that y = f(x)v, we have

tS (L).(v) =160 =0<(J)(y).
Now, let v € I such that y = f(z)v. Since f(z)U((I,)s, (I,)«(v)) € {08}, we

have f(z) & U((L)+, (I+)«(v))  and,
vg [TV (( ) ( D) ] = fHU(I)s, (1) ()] = f7H({08});

thus, zf~'[U((Z, )«())] € F71({08}); so, f(b) € U((L,)s, (1,)«(v)) for
some b € A such that f(xb) # 0p. Smce y € f(x)I C J, wehavey € J\{0g};
thus,

te(L).(v) <to (L) (f(b))
= z,(x) © Fid; (f)((I.).) (b)
< [z 0 Fid ' (f)((1:)+)] (xb)
< Fid; ' (£)((Js).) (wb)

= (Jo)« (f(2D))

<s

= (Jo)(y).
So, (f(z)io (1)) (y ) ( s)«(y). It follows that f(x); o (1), < (Js)«. Conse-
quently, ¢ < ((1,). Jo):) (f(z)) = Fid ' () (1)« = (J)«)(x). Hence,

(
[Fid; ' (f)((1,) )% Fid; (£)((J2).)](x) < Fidg () ((1)e = (J2).) ().
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Therefore, Fid,'(f)((1).) = Fid' (f)((Js)) < Fid' (f)((L)e = (Js))
and, Fidy' (f)((I,).) = Fid; (f) (o)) = Fidg () (1) = (Jo))-

A similar reasoning shows the mirror equivalence. O]

Proposition 4.2.14. Let A L B in Ring such that f=' preserves +. If
Fid(B, L) is completely join-implicative (See, Definition 1.2.16), then the fol-
lowing (and their mirror images) are equivalent:
(1) For any p,v € Fid(B, L),

Fidp ! (f)(n) = Fid ' (f)(v) = Fid (f)(u = v).
(2) For any I,J € Id(B), f~1(I) = f~(J)=f'(I = J).
Proof. Assume that Fid(B, L) is completely join-implicative. Since Zd(B) can

be embedded into Fid(B, L), it suffices to show that (2) implies (1). So,
assume that (2) is satisfied. For any p,v € Fid(B, L), we have

Fid;'(f)(p—v) = Fidg"(f)[( U (Idg(a)uw),) = (L (Idg(b)u),)]

a€B beB

= Fid"(H[ A U [(Idg(a)uw), = (Idg(b)uin),]

acEB beB

= A\ U Fid;'(f)[(Idg(a)uw), = (1dg(b)uw)),]

a€EB beB

= A\ U (Fid; () [(1dg(a)uw).] =

a€B beB

Fidp ' (f)[(Idg(b)uw),])

by the above lemma;

= A\ (Fid; (N)[(Idg(a)uw),] =

a€EB

(L Fid () [(1dg(b)uw),]))

beB

= (U Fid (/) [(Tdg(a)uw),]) =

aeB

(U Fidz (f)[(Idg(b)uw),])

beB

= Fid,"(f)[ U (Idg(a)u(w)),] —

a€EB

Fid: (/) [ (Idg(0)ur)).]

beB

= Fidy ' (f)(n) = Fid; ' (f)(v).

A similar reasoning shows the mirror equivalence. O
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4.3 L-image functor

Let Ring be the subcategory of the category of rings, with unital rings as

objects, and onto homomorphisms of unital rings as arrows.

Lemma 4.3.1. Let A -1 B in Ring. The arrow Fid(A, L) FidL () Fid(B, L),

gwen by Fidr(f)(n)(y) = V wla) for all p € Fid(A,L) and y € B, is well-
fla)=y
defined.

Proof. Let p € Fid(A,L). Since f(04) = Op, we have Fid,(f)(u)(0g) >
1(04) = 1 and, Fidr(f)(1)(0g) = 1. Now, let y,z € B. For any b,c € A
such that f(b) = y and f(c) = z, we have f(b—c¢) = f(b) — f(¢) =y — z and
1(B) A ple) < b — s thus, u(B) A p(e) < Fida(f)(1)(y — 2)- So,

Fidy (f)(p)(y) A Fid(f)(p)(2) < Fidy (f)(p)(y = 2)-

(
For any a € A such that y = f(a), we have yz = f(a)f(b) = f(ab) and p(a) <
pu(ab) for some b € A; thus, p(a) < Fidy(f)(p)(yz). So, Fidp(f)(u)(y) <
Fidp(f)(1)(yz) and, Fidr(f)(u)(z) < Fidp(f)(p)(yz) by similar arguments.
It follows that Fidp(f)(n)(y) V Fidp(f)(1n)(z) < Fidp(f)(n)(yz). Hence,
Fidp(f)(p) is an L-fuzzy ideal of B. O

Lemma 4.3.2. (a) For any A in Ring, Fidr(Ida) = Idpiaar)-
(b) For any A LB and B2 C in Ring, Fidy(go f) = Fidy(g) o Fidy(f).

Proof. (a) Let A in Ring. For any p € Fid(A, L), we have
Fidp(Ida)(p)(y) = V  pla) = V{u(y)} = ply) for all y € A;

Ida(a)=y
thus, Fidp(Ida)(p) = p. So, Fidr(Ida) = Idriaar)-
(b) Let A Ly Band B-% Cin Ring. Let p € Fid(A,L) and y € C. For
any a € A such that (g o f)(a) =y, we have g(f(a)) = y; thus,

ua) < Fidy(f)(1)(f(a))
< Fidr(g)[Fid(f)(1)] ()

= [Fidr(g) o Fidr(f)](u)(y).

So, Fidg(go f)(p)(y) < [Fid(g) o Fidy(f)] (1) (y). Now, let z € B such that
y = g(z). For any a € A such that z = f(a), we have y = g(f(a)) = (9o f)(a);
thus, ua) < Fidy (g0 f)(1)(y). So. Fidy(£)(1)(x) < Fidy (g0 f)(1)(y). Hence,
[Fids(9) o Fidy(£)](1)(y) = Fidu() [Fids(F)()]() < Fids(g o £)(n)(v)
and, Fidy(go f)(u)(y) = [Fidr(g) o Fid(f)] (1) (y). Therefore, Fidy(go f) =
Fidp(g) o Fidp(f). O

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



4.3 L-image functor 82

Theorem 4.3.3. Fidy s a covariant functor, called L-image functor, from

Ring to the category PoMod of partially ordered monouds.

Proof. From the above lemmas, it suffices to show that Fidj, is well-defined.
So, let A Ly Bin Ring.

Let p,v € Fid(A, L) such that p
f(a) = y, we have p(a) < v(a)
Fidp(f)(v)(y). So, Fidr(f)(p)
preserving.

For any y € B, we have Fidy(f)(1)(y) > 1(a) = 1 for some a € A such that
f(a) = y; thus, Fid,(f)(1)(y) = 1. So, Fidr(f)(1) = 1. We finally show that
Fidp(f)(p®@v) = Fidy(f)(n) @ Fidp(f)(v) for all u,v € Fid(A, L).

So, let pu,v € Fid(A,L). Let y € B. Let x € A such that y = f(x). For any

. For any y € B and a € A such that

<v
< F’dL(jj(u)(y% thus, Fidy(f)(1)(y) <
< Fidy(f)(v). Hence, Fid(f) is order-

ay, by, ..., a,,b, € Asuch that x = Zaibz-, we have

i=1

N wla)evb) < N\ Fid(f)(u)(f(a:) & Fido(f)(v) (£ (b))

1<i<n 1<i<n

< [Fide(f)(n) ® Fidy (£))] (3 f(a0)f (b))

= [Fidy,(f)(1) @ Fidy(f)(»)] (y).

It follows that (1 ® v)(z) < [Fidy(f)(1) ® Fidi(f)(v)](y). Consequently,
Fidy () ® v)) < [Fidy(£)(1) @ Fidg()0] (). Let w01, v €

B such that y = Zuﬂf@ For any wq,ty,...,w,,t, € A such that u; =
i=1

flwy), vy = f(t1),...,un = f(wy),v, = f(t,), we have y = f(z w;t;); thus,

i=1

N ww)ovt) < (pov) Zwm ) < Fidp(f)(p©v)(y).
So, A Fz'dL(f)(,u)(u,;)@deL(f)(V)(vi) < Fidp(f)(p®v)(y). It follows that

1<i<n

[Fidp,(f)(p) ® Fid,(f)(v)](y) < Fid(f)(r ® v)(y). Consequently,
Fidy(f)(p @ v) = Fidp(f)(n) ® Fidp(f)(v). Hence, Fidy(f) is a monoid

homomorphism. Therefore, Fidy, is a functor. O

Proposition 4.3.4. Let A 4 B in Ring. For any I € Id(A) and r,s € L
such that r < s, we have Fidy(f)((I).) = (f(1)3),. In particular, we have

Fidr(f)(xo4) = Xos-

Proof. Let I € Id(A) and r,s € L such that r < s. Let y # 0p i
For any € A such that y = f(z), we have = # 04; thus, ( ) (x

fI).

n
) < s.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



4.3 L-image functor 83

So, Fidy(f)((I2).)(y) < s. Since Fidp(f)((I3).)(y) > ( I?).(x) = s for some

x # 04 in I such that y = f($), we have FidL ( )

y & f(I). For any x € A such that y = f(z), Wehavexgz'l thus (Is) (x) =r.
):

So, Fidr(f)((13)+)(y) = \V{r} = r. Hence, Fid(f)((I; (D)), O

Proposition 4.3.5. Let A 1 B in Ring. For any {pa}rea C Fid(A, L), we

have | | Fidp(f)(ua) = FidL(f)( L M/\)c
AEA AEA

)«
(y) = s. Now, let

Proof. Let {px}tren C Fid(A,L). Let y € B. Let x € A such that y = f(x).

(
For any finite subset Q of A such that z = > ay, we have y = f(Y ay) =
AEQ AEQ

> flan); thus, A pa(ax) < /\FldL( )(12) (f(ar)) < uglAFidL( )] v)-

(
So, (}\|€|A,u,\)(£b’) [AlglAFZdL( )( )]( ). It follows that FidL(f)(,\lglAu/\) (y) <

[AUAFidL(f)(u,\)} (y). Hence, F@'dL(f)(/\|_|A,uA) < )\UAFidL(f)(M/\)~ Therefore,
L Fidp(f)(pn) = Fidp(f)( L pa), since Fidy(f) is order-preserving. O
AEA AEA

Proposition 4.3.6. Let A 5L Bin Ring. Then the following are equivalent:
(1) For any p,v € Fid(A, L), Fidy(f)(n) A Fidy(f)(v) = Fidp(f)(pu A v).
(2) For any I,J € Id(A), f(I)n f(J)= f(INJ).

Proof. Since Zd(A) can be embedded into Fid(A, L), it suffices to show that

(2) implies (1). So, assume that (2) is satisfied. Let p,v € Fid(A, L). Let
y € B. For any a,b € A such that f(a) =y and f(b) = y, we have

y € U p(@)] N fIU (v, v(0))] € FIU (1, (@) N U (v, v(0))]5
thus, y = f(c) for some ¢ € U, p(a)) NU (v, v(b)); so,

(@) Aw(B) < ule) Awle) = (1 Av)(e) < Fidp(f) (s Av)(y).
Consequently, [Fid(f)(n) A Fidp(f)()](y) < Fidy(f)(1 A v)(y). Hence,

f
Fidy(f)(p) A Fid(f)(v) < Fid(f)(p A v) and, Fidy(f)() A Fido(f)(v) =
Fidp(f)(u A v), since Fidy(f) is order-preserving. O

Lemma 4.3.7. Let A% B in Ring and p,v € Fid(A,L). Then
Fidy(f)(p = v) < Fidy(f)(p) = Fidy(f)(v) and Fid(f)(p % v) <
Fidy(f)(p) % Fidp(f)(v).

Proof. Since Fidy(f)(n = v) @ Fidy(f)(n) = Fid,(f)((n = v) @ p) <
Fidp(f)(v), we have Fidy(f)(n — v) < Fidy(f)(n) < Fidy(f)(v). A similar
reasoning shows that Fidr(f)(n & v) < Fidp(f)(n) ¢+ Fidy(f)(v). O

Proposition 4.3.8. Let A 5 Bin Ring such that Fid(f) preserves \. Then
the following (and their mirror images) are equivalent:

(1) For any pu € Fid(A, L), Fidp(f)(u)™ = Fidp(f)(u™).

(2) For any I € Id(A), f(I)~ = f(I7).
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Proof. Since Zd(.A) can be embedded into Fid(A, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. For any pu € Fid(A, L), we
have

Fidy(f) () = Fidy () [( U (Idg(a)ua)),)”]

a€A

= Fid, ()| A (Idg(a)u(w)),) ]

a€A

= A Fidy(f)[(Idg(a))")]

a€A

— A [f(1dg(a))]"

a€A

— A [f(1dg(a)) "

a€A

= A [(£(1dg(a) ,).]

a€A

=[U (f(]dg(@)ﬂ(a))*]_

acA

= [U Fido(f)((1dg(a)ua)),)]

a€A

= [Fide(f) (L) (Idg(a)uw).)]”

a€A

= Fid(f)(n)™-

A similar reasoning shows the mirror equivalence. O]

Lemma 4.3.9. Let A 5 B in Ring. Then the following (and their mirror
images) are equivalent:

(a) For anyr,s € L and I,J € Id(A),

Fidy (f)((Ir)s) = Fide(f)((Js)s) = Fide(f) (1)« = (o))
(b) For any I,J € Id(A), f(I) = f(J)=f(I = J).

Proof. 1t suffices to show that (b) implies (a). So, assume that (b) is satisfied.
Let r,s € L and I,J € Id(A). Let y # Op in B. Let t € L such that

o Fidy(£)((1).) < Fidu(£)((1.).)
If t ©r =0, then for some x € A such that y = f(z), we have

(ze0(I).)(a) <tor =0< (Jy)(a) for all a # 04 in A;
thus, z; o (I,), < (Jy)« and, ¢t < ((I,). = (Ji).)(2); so,
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t < Fidy(f)((Lr)« = (J5)) ()-
Now, suppose that t © r # 0.

e Ity € f(I)-, theny € F(I) = f(J), since (I~ € £(I) > ().
o If y & f(I)~, then for any a € I such that yf(a) # 0p, we have

(F(D)s) (yf(@) = Fid(£)((.).) (v (a))
> [ye o Fidy(f)((1).)] (yf(a))
> yi(y) © Fid(f) (L)) (f(a))
=y(y) © (f(1)r),(f(a))

=tor

and, yf(a) € f(J); thus, yf(I) C f(J) and, y € f(I) — f(J).
It follows that y = f(z) for some x € I — J. Since

o (L) = (xD)iey V 0 < Jiep VO < Jo V0 < (),
we have ¢ < (1) = (Jo)i) () < Fidp(f) (1) = (J5)+) (y).
Hence,
[Fidy (f)((1r)s) = Fido(£)((Jo))] () < Fide () (1)« = (Jo)) (y)-
It follows that

Fidy(f)((Ir).) = Fidp(f)((Jo)s) < Fidp(£)((1)e = (J)x)

and,

Fidy(f)((I)«) = Fidp(f)((Jo)) = Fido(f) (1)« = (o))

A similar reasoning shows the mirror equivalence.

Proposition 4.3.10. Let A 5L Bin Ring such that Fidy(f) preserves \. If
Fid(A, L) is completely join-implicative, then the following (and their mirror
images) are equivalent:
(1) For any p,v € Fid(A, L), Fidp(f)(n) — Fidp(f)(v) = Fidp(f) (g — v).
(2) For any I,J € Id(A), f(I)— f(J)=f(I—J).

Proof. Assume that Fid(A, L) is completely join-implicative. It suffices to
show that (2) implies (1). So, assume that (2) is satisfied. For any p,v €
Fid(A, L), we have
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Fid(f)(p—v) = Fidi(£)[( (1dg(a)uw),) = (LI (Zdg(b)uw).)]

acA beA

= Fidy (N[ A L ((Idg(a)uw), = (Idg(b)ugy).)]

a€A beA

= A U (Fide(f)[(1dg(a)uw),] =

a€A beA

Fid(f)[(1dg(b)uw).,])
= (U Fide(f)[(1dg(a)uw),]) =

acA

(U Fido(f)[(Idg(b)uw),])

beA
= Fidi(f)[ LI (Td9(a)uw),] = Fidu (N[ LI (Idg(b)y).]
acA beA
= Fid(f)(p) = Fid(f)(v).
A similar reasoning shows the mirror equivalence. O

Proposition 4.3.11. Let I be an ideal of A, and m; : A — ? the natural

homomorphism from A to é. Then the following hold:
(1) For any p € Fid(A, L), Fidr(mr)(p) = %.
(2) The restriction of Fidy(nr) to Fid(A, L, I) preserves \.

(3) The restriction of Fidr(my) to Fid(A, L,I) preserves — and %.

Proof. (1) Let p € Fid(A, L). For any y € A, we have

Fidy(mr)(p)(7) = V{ule) - mi(z) = 7}

—Vin): §=1)
V) v ey
- (H)®.

Hence, Fidp(m;)(pn) = .

(2) For any {px}rea € Fid(A, L, I), we have

ANZY
Fidp(mr)( A ) === N8B = N\ Fidp(mr)(m)-
XeA XeA AEA

(3) For any p,v € Fid(A, L,I), we have
Fidp(mp)(p — v) = 52 = £ = ¥ = Fidy(n;) () — Fid(m)(v)

and, Fidg(mr)(p & v) = Fidp(mr)(p) & Fidg(nr)(v) by similar arguments.
[
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Conclusion

In this thesis, given a residuated lattice £ and a universal algebra A of type F
with a residuated lattice Sub(.A) on the set of its subuniverses, we investigated
possibilities of building a residuated lattice Fs(A, L), on the set of L-fuzzy
subalgebras of A, which extends both £ and Sub(A). It appeared that this
construction is always possible when L is a finite linearly ordered Brouwerian
algebra.

We have generalized the preceding result in the classes of mono-unary alge-
bras and rings. We have also established that the residuated lattice Fs(A, L)
of L-fuzzy subalgebras of a mono-unary algebra A is an MV-algebra (resp.,
a Boolean algebra) if and only if £ is an MV-algebra (resp., a Boolean alge-
bra) and Sub(A) is a Boolean algebra, and the residuated lattice Fid(A, L) of
L-fuzzy ideals of a ring A is commutative (a Brouwerian algebra, a Boolean
algebra) if and only if so are £ and Zd(A). Furthermore, we have introduced
the concept of Lukasiewicz rings under £ and established its connection with

rings whose L-fuzzy ideals form an MV -algebra.

As future work on this research line, we are going to look for other classes
of residuated lattices (or residuated multilattices [8]) and algebras (or hyper-
algebras [1]) for which the previous generalizations remain possible. Since it
appeared that mono-unary algebras (resp., rings) do not necessarily transfer
some specific classes of residuated lattices, it would be interesting to study
the classes of mono-unary algebras (resp., rings) for which some transfers are
satisfied.

This dissertation has shown the importance of two varieties of residuated
lattices, called product-distributive and join-implicative, that would be inter-
esting to study in detail. Since in the literature the arithmetic study of resid-
uated lattices is still superficial, it would be also interesting to deepen it latter.

We mention below a number of open problems that have come up from this
work. We believe that some of them need a serious study.
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1. Is there a mimetic description of primary elements of Fid(A, L)?

2. Is Fid(A, L) primary decomposable if and only if so are £ and Zd(.A)?

3. Is there a nice embedding of il (Zd(A)) (resp., Fil(L)) into Fil (Fid(A, L))?
4. Does the L-preimage of a ring homomorphism preserve L-fuzzy ideals prod-
ucts (resp., residues) if and only if the ring homorphism preserves ideals prod-

ucts (resp., residues)?

5. Does the L-image of a ring epimorphism preserve L-fuzzy ideals residues if

and only if the ring epimorphism preserves ideals residues?

6. Is Fid(A, L) product-distributive (resp., join-implicative) if and only if so
are £ and Zd(A)?
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F, A FA
P(A)

Sg(X)
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Given a complete residuated lattice £ := (L; A, V,8,—,—0;0,1) and a mono-unary algebra
A= (4; f), it is well known that £ and the residuated lattice Fu(A4, L) := (Fu(A, L); A, V, &,
—»,—0;0,1) of L-fuzzy subsets of A satisfy the same residuated lattice identities. In this paper,
we show that £ and the residuated lattice Fs(A, L) := (Fs(A,L);A,V,6,—,%;0,1) of
L-fuzzy subalgebras of A satisfy the same residuated lattice identities if and only if the
Heyting algebra Sub(A) := (Sub(A);N,U,=>;0,A) of subuniverses of A is a Boolean
algebra. We also show that Fs(A, L) is a Boolean algebra (respectively, an MV-algebra) if
and only if £ is a Boolean algebra (respectively, an MV-algebra) and Sub(A) is a Boolean
algebra.

Keywords: Residuated lattice; MV-algebra; Boolean algebra; mono-unary algebra; subuniverse;
L-fuzzy subset; L-fuzzy subalgebra.

1. Introduction

In 1965, Zadeh' defined the notion of fuzzy subset of a set, which led to a revision of
mathematics, to formalize the concept of set membership under uncertainty. In
order to satisfy the needs of fuzzy reasoning, several kinds of algebraic structures
were then considered. In 1967, Goguen® generalized the Zadeh’s concept of fuzzy
subset to L-fuzzy subset, replacing the unit interval [0, 1] of real numbers by the
underlying set L of an appropriate structure of truth values. In 1996, Seselja®
introduced the concept of L-fuzzy subalgebra of a universal algebra, where L is
the underlying set of a partially ordered set £, by considering compatibility on
levels sets.

In 1894, Dedekind? introduced the idea of residuation. Since then, many appli-
cations appeared in various algebraic theories (see, Refs. 5-7). In 1939, Ward and
Dilworth® developed a systematic theory of lattices over which an auxiliary oper-
ation of multiplication or residuation is defined, called residuated lattices. In 1990,

* Corresponding author.
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Novak”!? introduced first-order fuzzy logic and proved that the algebra of this logic
is a residuated lattice. In 2002, Blount and Tsinakis'! established for the first time a
general structural theory of the class of residuated lattices.

In this paper, given a complete residuated lattice £ and a mono-unary algebra A,
we set up a construction of the L-fuzzy subalgebra of A generated by an L-fuzzy
subset of A, characterize atoms and co-atoms of the lattice Fs(A, L) of L-fuzzy
subalgebras of A and show that the latter is algebraic, when L is algebraic. We also
define a residuated lattice Fs(.A, L) on the set of L-fuzzy subalgebras of A which is
both an extension of £ and the Heyting algebra Sub(A) on the set of subuniverses of
A. Furthermore, we show that Fs(A, L) is an MV-algebra (respectively, a Boolean
algebra) if and only if £ is an MV-algebra (respectively, a Boolean algebra) and
Sub(A) is a Boolean algebra.

2. Preliminaries
2.1. Restduated lattices

Definition 2.1. An algebra (L; A, V, 8, —, —;0,1) of type (2,2,2,2,2,0,0) is called
a residuated lattice if it satisfies the following conditions:

(RL1) (L; A, V) is a bounded lattice with a partial order <;
(RL2) (L;©,1) is a monoid,
(RL3) for any z,y,z€ L,z Oy < ziff z < y—»ziff y < x—o02.

An algebra (L; A, V,8,—»,—;0,1) of type (2,2,2,2,2,0,0) is a residuated lattice if
and only if (L;A,V;0,1) is a bounded lattice, (L;©,1) is a monoid, & is order-
preserving in each argument and the inequality x & y < z has a largest solution for z
(namely y—z) and for y (namely x—oz). For any z € L and a nonnegative integer n,
2" is defined inductively by 2° = 1 and z"*! = 2" © z.

Proposition 2.1 (Refs. 11-13). In a residuated lattice, the following hold
(whenever A and V exist) for any z € L, X, Y C L and --» € {—,—o}:
1) (vX)e (W)= VvV zoy,

zeX,yeY
(2) z--»(AX) = A(z--2z) and (VX) --3z2= A (x --»2),
zeX zeX

Furthermore, the following (quasi-)identities and their mirror images (obtained
by replacing x © y by y © = and interchanging x—»y with x—oy) also hold:

3) Ifx <y, thenx © 2 < yoO 2z, y—»z < x>z and z—»x < 2-»Y,
(4) zoy<zAY,

(5) z00=0=006u,

(6) 1>z ==z,

(7) If x <y, then x—y = 1.

Proposition 2.2 (Refs. 11 and 12). The class of residuated lattices is a variety.
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A residuated lattice is called complete (respectively, algebraic, distributive,
modular,. . .) if so is its lattice. In a residuated lattice £, for any z € L,

Z:=2x—0 and & :=z—0 (mirror image of T)
are called left annihilator and right annihilator of x, respectively.

Definition 2.2. A residuated lattice £ is called

e a Heyting algebra if t©y =z Ay for all z,y € L;

e an RL-monoid if (z—y) Sx =z Ay =z © (z—oy) for all x,y € L;

o a MTL-algebra if (x—y) V (y—zx) =1 = (xz—oy) V (y—oz) for all z,y € L;
a BL-algebra if it is both an RL-monoid and a MTL-algebra;

an MV -algebra if it is a BL-algebra satisfying & =« = z for all z € L;

e a Boolean algebra if it is both an MV-algebra and a Heyting algebra.

2.2. L-fuzzy subsets of a set

Definition 2.3. Let A be a nonempty set. A fuzzy subset of A under £, or an
L-fuzzy subset of A, is a map from A to L.

Forany BC A, a € A and r,s € L, the following functions from A to L are L-fuzzy
subsets of A:

if x € B,

Bj(z) := { s 1 v for all z € A,
r if not.

B, := B}, B":= B., ai:={a}}, a, :=a} (L-fuzzy point of A), B; =: xp:= B°

(characteristic function of B), x, := X4} and A, =: r := ()" (constant L-fuzzy subset

of A with value 7). For any L-fuzzy subset p of A and r € L, the sets

Supp(p) = {x € A: p(x) # 0},
Im(p) = {u(z) : x € A},
Up,r) == {a € A: pla) = 7},
are called the support, the image and the r-level set (or r-cut) of u, respectively. The

order relation < on the set Fu(A, L) of L-fuzzy subsets of A is defined as follows: for
any u,v € Fu(A, L),

u < vif and only if u(x) < v(z) for all x € A.

The relation < on Fu(A4, L) is defined as follows: for any p,v € Fu(4, L),
p < v if and only if x4 < v and there is a € A such that p(a) < v(a).

The set Fu(A, L) forms a bounded lattice Fu(A, L) := (Fu(A, L); A,V;0,1) and a
residuated lattice Fu(A, L) := (Fu(A,L);A,V,8,—»,—0;0,1); where the binary
operations A,V, 8, —»,—o are defined componentwise. Since the class of residuated
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lattices is a variety, £ and Fu(A, L) satisfy the same residuated lattice identities.
Furthermore, £ is a complete Brouwerian residuated lattice if and only if so is
Fu(A,L).

2.3. Mono-unary algebras

Definition 2.4 (see, Refs. 14 and 15). A mono-unary algebra or a unary is an
algebra with a single unary operation, that is an algebra of type (1).

Let A := (A; f) be a mono-unary. A subset B of A is a subuniverse of A if and only if
f(x) € Bfor all x € B.

Remark 2.1. The set of subuniverses of A forms a Heyting algebra

Sub(A) := (Sub(A);N,U,=;0, A),
where the binary operation = is defined by: B= C := | J{D € Sub(A) : DN B C C}
for all B,C € Sub(A).

For any nonnegative integer n, f" is defined inductively by: f°(z) =z and

f(x) = f(f™(x)) for all z € A.

Definition 2.5. An element x of A is said to be cyclic if there is some integer p > 1
such that f?(z) = .

Remark 2.2. The subuniverse of A generated by an element = of A is given by
Sg(w) = {f(z) : k € N}.

In the rest of this paper, unless otherwise specified, A = (4; f) is a mono-unary
algebra and £ = (L; A, V, 6, —,—0;0,1) is a complete residuated lattice.

3. Lattice of L-Fuzzy Subalgebras

Definition 3.1. An L-fuzzy subset u of A is an L-fuzzy subalgebra of A if u(f(x)) >
wu(zx) for all x € A.

Note that an L-fuzzy subset of A is an L-fuzzy subalgebra of A if and only if all its
levels sets are subuniverses of A. Furthermore, for any B € Sub(A), the L-fuzzy
subsets B, and B" are L-fuzzy subalgebras of A.

Remark 3.1. The set of L-fuzzy subalgebras of A forms a complete lattice
Fs(A,L) := (Fs(A,L); A, V;0,1).

Now, set C¥:={a € A: f¥(a) =2} forall z € A and k € N.

Theorem 3.1. Let p be an L-fuzzy subset of A. The L-fuzzy subalgebra of A
generated by p is defined by: p1,(z) = Vyen Voeor pla) for allx € A.
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Proof. Since pi,(z) >V ccop(a) = V{u(z)} = p(x) for all z € A, we have p < p,.
We next show that p, is an L-fuzzy subalgebra of A. For any « € A, we have

@) = V.V la) = [ v [ YY)

keN k
acC o)

since, C; C Oyl we have p(f(z)> V. [,EX;;;) pa)z v v p(a) = pe().
Hence, p, is an L-fuzzy subalgebra of A.

Finally, let v be an L-fuzzy subalgebra of A which contains u. Let © € A. For any
k€ Nand a € Ck we have v(zx) = v(f¥(a)) > v(a) > p(a). Thus, v(z) > Voecki(a)
for all k € N; ie. v(x) > Vien Vecr pla); ie. v(z) > p,(z). So, p < v. Hence, p, =
Fsg(p). o

Lemma 3.1. Let x € A. Then Sg(x) is an atom of Sub(A) if and only if x is cyclic.

Proof. Assume that Sg(x) is an atom of Sub(A). Since § C Sg(f(z)) C Sg(z), we
have Sg(f(z)) = Sg(x); thus, there is n € N such that f"(f(x)) = z; so, f**!(z) = x.
Hence, x is cyclic.

Conversely, assume that x is cyclic of order n. Let B be a subuniverse of A such
that ) C B C Sg(x). Since there is m <n such that f™(z)€ B, we have
x = f"(z) = fr"(f™(x)) € B; thus, Sg(z) C B and, Sg(z) = B. Hence, Sg(z) is an
atom of Sub(A). O

Theorem 3.2. Atoms of Fs(A, L) are only the L-fuzzy subalgebras Sg(a),, where
r is an atom of L and a is a cyclic element of A.

Proof. (=) Let u be an atom of Fs(A, L). Since there is @ € A such that u(a) # 0,
we have 0 < Sg(a),q) < p; thus, u = Sg(a),,). We next show that Sg(a) is an atom
of Sub(A). So, for any subuniverse B of A such that () C B C Sg(a), we have
0 < Byq) < p; thus, pp = B, ,; i.e. B=Sg(a). Hence, Sg(a) is an atom of Sub(A).
Finally, for any s € L such that 0 < s < p(a), we have 0 < Sg(a), < u; thus,
Sg(a), = p; i.e. s = p(a). Hence, pu(a) is an atom of L.

(<) Let 7 be an atom of £ and a € A such that Sg(a) is an atom of Sub(.A). It is
clear that Sg(a), # 0. Now, let 1 € Fs(A, L) such that 0 < p < Sg(a),. Since there is
b € Sg(a) such that 0 < u(b) < r, we have pu(b) =0 and ) C Sg(b) C Sg(a); thus,
w(b) =0 and Sg(a) = Sg(b); so, u(a) =0. Hence, u(x) =0 for all = € Sg(a); i.e.
= 0. Therefore, Sg(a), is an atom of Fs(A, L). |

Theorem 3.3. Co-atoms of Fs(A, L) are only the L-fuzzy subalgebras B*, where s
and B are co-atoms of L and Sub(A), respectively.

Proof. (=) Let u be a co-atom of Fs(A, L). For any a,b & U(u,1), we have pu <
pla) Vi <land p < p(d)Vp<1;thus, p(a) Vp=p=pb)Vuand, ula) = pu(bd).

It follows that u= (U(p,1))® for some s € L. Since u#1, we have s #1 and
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Ulp,1) # A,

e For any r € L such that s <r <1, we have p <rVpu <1 and, r V u = 1; thus,
r=rVs=1. Hence, s is a co-atom of L.

e For any D € Sub(A) such that U(p,1) C D C A, we have p < D* <1 and,
D$ =1; thus, D = A. Hence, U(u, 1) is a co-atom of Sub(A).

(<) Let s and B be co-atoms of £ and Sub(A), respectively. We have B® # 1, since
s#1 and B# A. For any u € Fs(A,L) such that B* <y <1, we have B=
U(B* 1) CU(u,1) C A and a & B such that s < p(a) < 1; thus, BCU(p,1) C A
and a € U(u,1)\B;so, BC U(u,1) C Aand, U(u,1) = A;ie. p=1. Hence, BSisa
co-atom of Fs(A, L). O

Lemma 3.2. Let ¢ be a compact element of L and a € A. Then Sg(a),. is a compact
element of Fs(A, L).

Proof. Let {u;}icr CFs(A,L) such that Sg(a), < Viery;. Since ¢ < Vieru,(a),
there is a finite subset I, of I such that ¢ < Ve p;(a). For any z € Sg(a), we
have Sg(a).(z) = ¢ < Viep pi(a) < Ve () = (Vier, i) (); thus, Sg(a). < Vieq, ;-
Hence, Sg(a), is a compact element of Fs(A, L). m|

For any compact element ¢ of £ and a € A, Sg(a), will be called a compact
principal L-fuzzy subalgebra of A.

Theorem 3.4. Suppose that L is algebraic. Then the following hold:

(1) Compact elements of Fs(A,L) are only finite suprema of compact principal
L-fuzzy subalgebras of A.
(2) Fs(A, L) is an algebraic lattice.

Proof. (1) A finite supremum of compact principal L-fuzzy subalgebras of A is a
finite supremum of compact elements of Fs(.A, L) by Lemma 3.2; so, it is a compact
element of Fs(A, L).

Conversely, let 1 be a compact element of Fs(A, L). Since 1 = V,c45g(a) (), there
are ai,...,a, € A such that p=V,<;<,88(a;),(@,)- Since L is algebraic, for any
1 <i<mn, there is a family {c;};c;, of compact elements of L such that
p(a;) =V jerc;. It follows that

2 V Sg(a;) Ve,

1<i<n JEI;

= 1<\_/< l/[ Sg(a’z)(j
= \/ V Sg(ai)cjz'

(J152dn) € H I 1sisn

1<i<n
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Since p is compact, there is a family {K;};<;<,, of finite sets such that K; C I, for all
1<i<mnandpu= v<j1""*<7”)€1<rl[<,LK’ Vi<i<n Sg(ai)c_h_. Hence, by Proposition 3.2, u is a
finite supremum of compact principal L-fuzzy subalgebras of A.

(2) Since Fs(A, L) is complete, it suffices to show that it is compactly generated.
So, let p € Fs(A, L). Since L is algebraic, for any a € A, there is a family {c; ,};c;, of
compact elements of £ such that p(a) = V,er ¢; - Hence, =V eq Ve Fsgla,, ),
and for each a € A and i € I, Fsg(a,,,) is compact by Proposition 3.2. Therefore,
Fs(A, L) is algebraic. O

4. Residuated Lattice of L-Fuzzy Subalgebras

Fs(A, L) is closed under the binary operation © of the residuated lattice Fu(A, L) of
L-fuzzy subsets of A, but the binary operations — and — are not necessarily well
defined on Fs(A, L) as the following example shows.

Example 4.1. Let’s take L = {0,«, 3,7,1}, where 0 < a < 8,7 <1 and j,7 are
incomparable. Consider the binary operations &, —, —o given by the following Cayley
tables:

o|l0|la|Bly|1||l—=>|0]a|B |y 1| —=|0]la|p|~y]|1
ojfojfojojo|o0jfojrjrj1ry1,14p01j11]1|1
al0l0 | 0]lalall]la |y |1 |1 |1 |1|] |1 1]1]1
BlolalBlalB|[ By vl v |[Blolr[1][v]1
YO0 O0 v vy |0 BB L]y |B B |B]1]1
110ja| B8y 1||1T|0]la|B |y | 1| 1|0 alpB|y|1

Then £ = (L; A\, V,©, —,—0;0,1) is a residuated lattice. Consider the Peano algebra
N = (N;o0), given by o(z) = x + 1 for all z € N, and the L-fuzzy subalgebras p and v
of N defined by

0 ifz=0 0 ifx=0
= ’ d = ’ f 11 N
Hz) {ﬂ if not. and  v(z) {'y if not. oralw el

The L-fuzzy subset yu—»v of N is not an L-fuzzy subalgebra of NV, since
(1=v)(0(0)) = (n=>v)(1) = f=>7 =7 <1 =00 = (u=>v)(0).

Theorem 4.1. Let i be an L-fuzzy subset of A. The L-fuzzy subset u* of A, given by
p* () = A penpt(fF()) for allx € A, is the biggest L-fuzzy subalgebra of A contained
m .

Proof. We have p* < p, since for any = € A, p*(z) < p(f°(z)) = p(x). We next
show that p* is an L-fuzzy subalgebra of A.
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For any x € A, we have

p*(f(@) = A p(ff (@) > p(fO@) A A p(FH (@) = p* ().

keN keN

Hence, p* is an L-fuzzy subalgebra of A.

Finally, let v be an L-fuzzy subalgebra of A contained in p. For any x € A,
we have v(z) < v(fF(x)) < u(fF(z)) for all k€ N; thus, v(z) < Arenp(fF()) =
w*(z). Hence, v < p*. Therefore, p1* is the biggest L-fuzzy subalgebra of A contained
in p. O

Theorem 4.2. For any p1,v € Fs(A, L), set p—v = (u—v)* and pd-v = (u—ov)*.
Then Fs(A, L) := (Fs(A,L); A\, V,0,—,%;0,1) is a complete residuated lattice.

Proof. We only have to show that y—v = max{6 € Fs(A,L) :  © u < v} and us
v=max{6 € Fs(A, L) : p© 6 <v} for all pu,v e Fs(A,L). So, let p,v € Fs(A,L).
We have (u—v)opu=(u—»v)*©u < (u—»v)o u<v. Moreover, for any 6 €
Fs(A,L) such that §©u <v, we have § < pu—»v; thus, § < (u—»v)* = p—w.
Hence, p—v = max{6 € Fs(A,L) : 6 & p < v} and, utv =max{d € Fs(A,L) : p &
6 < v} by similar arguments. Therefore, Fs(A, L) is a complete residuated lattice. O

Theorem 4.3. The map ¢ :Sub(A) — Fs(A, L), given by ¢(B) = B; for all
B € Sub(A), is a complete residuated lattice embedding.

Proof. It is clear that ¢ is a complete lattice embedding of Sub(A) into Fs(A, L).
Since we have ¢(BNC)=(BNC), =B, oC, =¢(B)S¢(C) for all B,C €
Sub(A), it suffices to show that ¢(B)—¢(C) = ¢(B = C) = ¢(B)+¢(C). So, let
B,C € Sub(A). For any z ¢ B = C, we have Sg(z) N BZC; thus, f*(z) € B and
fr(z) & C for some ky € N; so,
(¢(B)—¢(C))(z) = (B;—C1)(x)
= [Bi(f"(2))>Ci(f*(2))]
A A B @) @)

keN

(
=100 [ A B )0 )]

=(B=> C(z)
=¢(B= C)(x).
Now, let z € B= C and D € Sub(.A) such that DN B C C and = € D.
e For any n € Q(B) :={keN: ff(z) € B}, we have f*(x) € DN BC C; thus,
f(x) € Band f*(z) € C; so, By(f"(x))>Cy(f"(x)) =1»1=1.
e For any n & Q(B), we have B(f"(z))—»C.(f"(z)) = 0-»C(f*(z)) = 1.
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Thus,
(0(B)—=¢(C))(z) = (B1—C1)(x)

A Bl(f’“(a?))**Cl(f’“(w))]

keQ(B)

/\l A Bl(f’“(:c))**c'l(f’“(x))]
kZQ(B)

() ()
keQ(B) kgQ(B)

=1A1

=1

=(B= O)(2)
=¢(B = C)().

Hence, ¢(B = C) = ¢(B)—¢(C) and, ¢(B = C) = ¢(B)++¢(C) by similar argu-
ments. Therefore, ¢ is a complete residuated lattice embedding of Sub(A) into
Fs(A,L). m|
Theorem 4.4. The map ¢ : L — Fs(A, L), given by ¢(r)=1r for all r € L, is a
complete residuated lattice embedding.
Proof. It is clear that v is a complete lattice embedding of the lattice of £ into
Fs(A, L). Now, let r,s € L. For any = € A, we have
b(ros)(@) =ros

=r(z) © s(x)

=1(r)(z) © ¢(s)(x)

= ((r) & ¢(s))().
Thus, ¢¥(r © s) = (r) ©¢¥(s). For any « € A, we have

b(r—s)(w) = s

= A r(ff(2))=>s(f¥())

keN
= ké\N P(r) (£ (2)=»(s) (f* (@)
= ((r)=¢(s))(z).
Thus, ¥(r—»s) =¥(r)—y(s) and, P(r—s) =(r)+1(s) by similar arguments.
Hence, v is a complete residuated lattice embedding of £ into Fs(A, L). O

5. Residuated Lattice Theoretic Properties of Fs(A,L)

Since A, V and & are defined componentwise on Fs(A, L), £ and Fs(A, L) satisty the
same bounded lattice-ordered monoid identities.
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Lemma 5.1. The following statements are equivalent:

(a) For any p € Fu(A, L), u € Fs(A, L) iff u(f(x)) = p(zx) for all z € A.
(b) Sub(A) is a Boolean lattice.

Proof. Suppose that (a) is satisfied. Let B € Sub(A). For any z € B, we have
By(f(z)) = By(z) = 0 and, f(z) € B. So, B € Sub(A). Hence, Sub(A) is a Boolean
lattice.

Conversely, suppose that (b) is satisfied. Let u € Fs(A,L). For any x € A,

£(@) € Ulpe, (£ (2))] € Subl(A); thus, @ € Ulu, u(f@)]; s0, u(z) > u(f(x)) and,
u(f(x)) = p(z). Whence the result. O

Theorem 5.1. Fs(A,L) is a subresiduated lattice of Fu(A,L) if and only if
Sub(A) is a Boolean lattice.

Proof. Assume that Fs(A, L) is a subresiduated lattice of Fu(A,L). Let B be a
subuniverse of A. For any = € B, we have

By (f(2))—0 =B, (f(2))—0(f(z))
2 (B1=0)(x)
= (B1—~0)(z)
=B (z)—>0(x)
=0—0
=1

thus, B;(f(z))—»0 =1 and, B;(f(x)) = 0; i.e. f(x) € B and, f(z) € B. So, B is a
subuniverse of A. Hence Sub(A) is a Boolean lattice.

Conversely, assume that Sub(.A) is a Boolean lattice. Let p and v be two L-fuzzy
subalgebras of A. For any x € A, we have

(n—v)(@) = A u(fH@)—»v(fi ()

keN

A wla)—>v(z)

keN
= p(z)—v(z) = (p>v)(2);
thus, p—v = p—v. Hence, — is the restriction of — to Fs(.A, L). A similar reasoning

shows that 9 is the restriction of — to Fs(A, L). Therefore, Fs(A, L) is a sub-
residuated lattice of Fu(A, L). |

Let K be a class of residuated lattices such that Mod(Id(K) U{z @ y =z Ay}) is
included in the class of Boolean algebras (for example, the class of MV -algebras).

Theorem 5.2. Fs(A, L) E Id(K) if and only if £ = 1d(K) and Sub(A) is a Boolean

algebra.

Proof. If Fs(A, L) | Id(K), then Sub(A) E Id(K) and £ = Id(K) by Theorems 4.3
and 4.4, respectively; thus, Sub(A) is a Boolean algebra and £ | Id(K).
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Conversely, assume that £ Id(K) and Sub(A) is a Boolean algebra. Then
Fs(A,L) is a subresiduated lattice of Fu(A, L) by Theorem 5.1. Consequently,
Fs(A,L) E1d(K), since £ = Id(K). m|

If Fs(A, L) is an RL-monoid, then £ is an RL-monoid by Theorem 4.4; but the
converse is not necessarily true as the following example shows.

Example 5.1. Let L ={0,a,08,1}, where 0 < o« < < 1, and define the binary
operations & and — on L as follows:

R S P e R
=== =] =

oo | ~|lO

[en) Hen) Nen) Nan) Nan)
— @O |ol—

DR[| L | O

e IR =10

QIR|D|O|R
=@ Oi
QIR || |R

Then L= (L;A,V,8,—,—;0,1) is an RL-monoid. Consider the mono-unary

PANN

algebra A given by the table , and the L-fuzzy subalgebras o and 7 of A

QSO
MR |O

defined for any z € A by
1 if x=0,
ox)=< f if z€{a,b}, and 7(z)= {

a ifx=c.

1 ifz=0,
a if x € {a,b,c}.

Since o0 —=7 =7, we have ((c—=7)680)(c)=(TCo)(c)=a0a=0#a=
(o A 7)(c); thus, (0—=7) © 0 # o A 7. It follows that Fs(A, L) is not an RL-monoid.

If Fs(A, L) is a MTL-algebra, then Sub(A) and £ are MTL-algebra by Theo-
rems 4.3 and 4.4, respectively; but the converse is not necessarily true as the following
example shows.

Example 5.2. Let L ={0,a,0,7v,1}, where 0 < a < 8,7 < 1, and (3,7 are not
comparable; define the binary operations ©, —» and — on L as follows:

el0la|fB v 1||l=>|0]a|B|yvy 1|l o]0 |a|pB|v]|1
01]0]0]0]01]0 0 117111 0 11,1111
al0|0|la|0|la|lla |1 |1]1]|1 a |y 1 ]111]1
BLOJO|BJO0 B B0y 1|y || By ]|v]|]
Y| O0lala vy |yl |[B|B|B|T Ty |0 B]B]1]1
110|la|pB|lv|1 1 10lalpBly |1 1 (0la|pB|y|1
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Then £ = (L;A,V,8,—,—;0,1) is a MTL-algebra. Consider the unar A given in
Example 5.1. The subuniverses of A are B, =0, B,={a}, Bs;={a,b},
B, ={a,b,c}, B;={0}, Bg={0,a}, B; ={0,a,b} and Bg = A. The binary
operation = of Sub(A) is given by

= | 0 | By | B3| By |Bs | Bs | By | A
0 A A A A A A A A
By | Bs | A A A | Bs| A A | A
Bs | Bs | Bg | A A | Bs| A Al A
By | Bs | Bg | By A Bs | Bg | By | A
Bs | By | By | By | By | A| A| AJ|A
Bg| O | By | By | By | Bs | A A A
B | 0 | By | Bs | Ba| Bs | Bo | A ] A
A ) | Bo | B3| By | Bs | Bg | By | A

It is easy to check that Sub(A) is a MTL-algebra. Consider the L-fuzzy subalgebras o
and 7 of A defined for any x € A by

1 ifz=0, 1 ifaz=0,
olz)y=1 B ifze{ab}, and 7(z)=< v ifxe{a,bc},
a ifzr=ec 0 ifz=c

Then o—7 =0, V {a,b}, V ¢, and 70 = 0; V {a, b, c} 5; thus,
((6—=7) V (t—0))(c) = 8 # 1.
So, (0—=7) V (t—0) # 1. Hence, Fs(A, L) is not a MTL-algebra.

6. Conclusion

In this paper, given a complete residuated lattice £ and a mono-unary algebra A, we
have defined a residuated lattice Fs(.A, L) on the set of L-fuzzy subalgebras of .4 and
showed that the latter is an MV-algebra (respectively, a Boolean algebra) if and only
if £ is an MV-algebra (respectively, a Boolean algebra) and Sub(A) is a Boolean
algebra. Since it appeared that this transfer is not necessarily possible in the class of
BL-algebras (MTL-algebras, RL-monoids), it would be interesting to investigate the
class of mono-unary algebras for which the transfer remains possible.
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Abstract

Given a universal algebra A := (A; F Ay of type F, it is well known that the lattice Sub(.A) of subuniverses of A is algebraic
and its compact elements are exactly finitely generated subuniverses of \A. In this paper, under a distributive algebraic lattice
L:=(L; A, V; 0, 1), we characterize the compact elements of the lattice Fs(A, L) of L-fuzzy subalgebras of A, which is

an extension of Sub(A) and show that the latter is algebraic.
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1 Introduction

In 1965, Zadeh (1965) introduced the concept of fuzzy sub-
set, as a function from a nonempty set to the unit interval
[0, 1] of real numbers, to formalize the concept of set
membership under uncertainty. In 1967, Goguen (1967) gen-
eralized it to L-fuzzy subset, replacing the unitinterval [0, 1]
of real numbers by the underlying set of an appropriate struc-
ture of truth values. In 1988, Swamy and Swamy (1988) used
the Goguen’s concept to introduce the concept of L-fuzzy
ideal of a ring, where L is the underlying set of a complete
Brouwerian lattice.

In 1933, the notion of universal algebra (sometimes
called algebra for short) was introduced by G. Birkhoff [see
Birkhoff (1933, 1935, 1944)], to extract as much as possi-
ble the common elements of particular algebraic structures.
In 1982, Manes (1982) mentioned the idea of fuzzification
of universal algebra, and Murali (1991) in 1991 used it to
define a fuzzy subalgebra of a universal algebra A as a func-
tion, from the underlying set A of A to the closed unit interval
[0, 1] of real numbers, which is A-compatible with the funda-
mental operations of 4. Further, he defined closure systems
in fuzzy sets and showed that the set of fuzzy subalgebras
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form an algebraic closure system. In 1996, Seselja (1996)
generalized the Murali’s concept to L-fuzzy subalgebras,
where L is the underlying set of a partially ordered set, by
considering compatibility rather on levels sets. He also char-
acterized classes of algebras for which the partially ordered
set of L-fuzzy subalgebras is a lattice and pointed out the fact
that its definition coincides with that of V. Murali when L is
a bounded lattice.

In this work, we consider the notion of L-fuzzy subalgebra
of a universal algebra, where L is the underlying set of a
distributive algebraic lattice. Given a universal algebra A :=
(A; F4)of type F, we characterize the compact elements of
the lattice Fs(A, L) of L-fuzzy subalgebras of .A and show
that the latter is algebraic. As Example 2.4 shows, this result
can also be applied to L-fuzzy ideals of a ring (or a lattice)
and fuzzy normal subgroups of a group. Its importance lies in
the fact that any algebraic lattice is isomorphic to the lattice
of the subuniverses of an algebra [see Theorem 3.5 in Burris
and Sankappanavar (1981)].

2 Preliminaries

The notion of algebraic lattice was introduced by Birkhoff
(1973) to describe the lattice of subuniverses of an algebra.

Definition 2.1 Let £L = (L; A, V) be a lattice.

1. An element ¢ in £ is compact if: whenever \/ B exists
and ¢ < \/ B for a subset B of L, we have ¢ < \/ By for
some finite subset By of B.
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2. L is algebraic if it is complete and compactly generated
(that is, each of its elements is a supremum of compact
elements of £).

It is well known that any finite lattice is algebraic and
the closed unit interval of real numbers is not algebraic.
Furthermore, a distributive algebraic lattice £ is a complete
Brouwerian lattice; thatis,a A (\/ X) = \/, .y (a Ax) forall
a € L and X C L [see Burris and Sankappanavar (1981)].

Definition 2.2 1. A type (or language) of algebras is a pair
F := (F; o), where F is a set of function symbols and
o amap from F to the set N of nonnegative integers.

2. Analgebra of type F is a pair A := (A; F4); where A is
anonempty set (called universe of A), F4 := {f4: f €
F}and each f4 : A°Y) — A isan o (f)-ary operation
on A, called a fundamental operation of A.

Note that F = | J,, . F, where each F}, is the set of n-ary
function symbols in F.

Definition 2.3 A subset B of A is called a subuniverse of
A if fA(al, ...,ap) € B for all n-ary f in F and every
ai,...,a, € B.

Since a nullary operation can be seen as a constant oper-
ation of arity greater than or equal to 1, the empty set is a
subuniverse of A if and only if A does not contain a nullary
operation.

Example 2.4 a. The ideals of a lattice £ = (L; I, L) are
just subuniverses of the algebra L= (L: U (my)geL),
where m,(x) =anx foralla,x € L.

b. The normal subgroups of a group G = (G; -, ~!, e) are
just subuniverses of the algebra?: (G; - 7, (ma)aca:
e), where my(x) = axa™' foralla, x € G.

c. TheidealsofaringR = (R; +, -; —; 0) are just subuni-
verses of the algebraﬁ =(R; +; —, (I)aer, (Fa)aecr;
0), where [, (x) = ax and r,(x) = xa for all a, x € R.

The subuniverse of A generated by a subset X of
A, denoted by Sg4(X) or simply Sg(X), is the small-
est subuniverse of A containing X. The set Sub(A) of
subuniverses of A forms an algebraic lattice Sub(A) :=
(Sub(A); N, L; Sg(¥), A); where N is the intersection
of sets and LI is given by B U C = Sg(B U C) for all
B, C € Sub(A). Moreover, compact elements of Sub(A)
are only of the form Sg(X); where X is a finite subset of A.

Throughout the work, unless otherwise specified, A :=
(A; F%) is a universal algebra of type F and L :=
(L; A, Vv; 0, 1) is a complete Brouwerian lattice.

Definition 2.5 A fuzzy subset of A under £, or an L-fuzzy
subsetof A,isamapu: A — L.

This notion was introduced by Goguen (1967) in 1967 as a
generalization of the notion of fuzzy subset defined by Zadeh
(1965) in 1965 as a function from a set to [0, 1].

@ Springer

For any a € A and r € L, the L-fuzzy subset a, of A,
rif x =
0 if not.
L-fuzzy point of A. The characteristic function x g of a subset
B of A is an L-fuzzy subset of A. For any L-fuzzy subset
of Aandr € L, U(u,r) :={a € A: u(a) > r}iscalled
the r-level set (or r-cut) of . The order relation < is defined
on the set Fu(A, L) of L-fuzzy subsets of A as follows: for
any u,v € Fu(A,L), © < v (v contains u) if and only
if u(x) < v(x)forallx € A. Fu(A, L) forms a complete
lattice Fu(A, L) := (Fu(A,L); A, V; 0, 1); where the
binary operations A, V are defined componentwise, and 0 =
xg and 1 = x4 are the constant L-fuzzy subsets of A with
values 0 and 1, respectively.

given by a,(x) = { % forall x A, is called an

Definition 2.6 An L-fuzzy subset u of A is called an L-
fuzzy subalgebra of A if w(f4) = 1 for all f € Fy, and
w(fAar, ... an) > Njzjopit(@) for all f € F, and
a,...,a, € A.

Let u be an L-fuzzy subset of A. If y is an L-fuzzy subal-
gebra of A, then all its cuts are empty or subuniverses of .A.
The converse is true when U (i, 1) # (. A nonempty subset
B of A is a subuniverse of A if and only if xp is an L-fuzzy
subalgebra of A. For any L-fuzzy subalgebra u of A and
a € Sg(), we have a = tA(fA, ey fA) for some term
1(x1,....x,) and f € Fo: thus, (@) > N\ o,n(fh) =
u(f* =1and, (@ = 1.

For any L-fuzzy subset p of A, the L-fuzzy subalgebra
of A generated by u, denoted by Fsg(u), is the smallest
L-fuzzy subalgebra of A containing p. Moreover, for any
uw,v e Fu(A, L), we have u < Fsg(w), Fsg(Fsg(M)) =
Fsg(n) and Fsg(u) < Fsg(v) whenever u < v. The set
Fs(A, L) of L-fuzzy subalgebras of A forms a complete
lattice Fs(A, L) := (Fs(A, L); A, U5 XSg@) l); where
the binary operation LI is given by u Llv = Fsg(u Vv v) for
all u,v € Fs(A, L). One can easily verify that the lattice
of subuniverses of .4 can be embedded into the lattice of
L-fuzzy subalgebras of A.

3 Results

In this section, first we will set up a mimetic construction of
the L-fuzzy subalgebra of A generated by an L-fuzzy subset
of A, then characterize the compact elements of Fs(A, L)
and show that the latter is algebraic.

Lemma 3.1 Let u be an L-fuzzy subset of A and iy the L-
fuzzy subset of A defined by:
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Ui(x) = \/{r elL: xe Sg(U(pL,r))}forallx € A.

Then, |4y is the smallest L-fuzzy subalgebra of A containing
wyi.e., Fsg(i) = [y

Proof For any a € A, we have

aeU(u, u@) < Sg(U(n, n(@)) and, u(a) < pa(a).

Thus, u < .. We next show that p, is an L-fuzzy sub-
algebra of A.

e For any f € Fj, we have

we(fH=\/L=1

e let f e Fyanday,...,a, € A.Foranyry,...,r, € L
such that a; € Sg(U (i, ri)) forall 1 <i <n, we have

ay,...,ap, € Sg | U(u, /\ri) and ,

1<i<n

far, .. ayeSg (U@, N\ |

1<i<n

thus, . (fAGar.....an)) = Njzicpric So. wa(f4
(ay, ...,a,,)) > /\lfifnl‘l’*(ai)'

Hence, u, is an L-fuzzy subalgebra of A.

Now, let v be an L-fuzzy subalgebra of A contain-
ing . Let u € A\Sg(¥). For any r € L such that
u e Sg(U(v, r)),thereareatermt(xl, ..y Xp)of type F

anduy,...,u, € U(v,r)suchthatu =tA(u1,...,un);
thus,
r< v(u) < v(tt @, . un)) = v@).
1<i<n
So,

pa(u) < \/{r eL:ueSg(Uw,n)}<vw).

Consequently, u, < v.Hence, u, is the smallest L-fuzzy
subalgebra of A containing . O

Proposition 3.2 Leta € A\Sg(¥) andc € L. Then, Fsg(ac)
is a compact element of Fs (A, L) if and only if ¢ is a compact
element of L.

Proof (=) Assume that Fsg (ac) is a compact element of
Fs(A, L). Let {r;};e; € L suchthatc < \/;,r;. Since

Fsglac) < Fsglay,) = Fsg(\[ax,) = | |Fsg(ar,).

iel iel iel

there are {i1, ..., ip} € I such that

Fsg(ae) < | | Fsg(ar)=Fsgla  ,);

l<j<p 1=isr

thus, ¢ = Fsg(ac) (@) < Fsglay,_,_ )@ =\ i<jri;-
Hence, ¢ is a compact element of L.

(<) Assume that c is acompact element of £. Let {143 }aca €
Fs(A, L) such that Fsg(ac) < |[l,cama. Since ¢ <
(Vxeams), (@) and c is a compact element of £, there are
ri, ..., r, € L such that

ae ﬂ Sg (U(\/,u,\,ri)> and ¢ < \/ Ti.

1<i<n AEA 1<i<n

N

For any 1 < i < n, there are a term #; (x;1, . . ., Xjx;) of type

Fand u;y, ..., uj € A such that

a = tiA(u“, ey uik;) and

ri < \/ pauij) forall 1 < j < kix
reEA

thus,

i<\ (\/Mx(%‘,’)) = \/ I\ (i)
l<j<ki \reA ()»,'],...,)L,‘kA)EAkl‘ 1<j<ki

Hence,c < \/ \V A Mo (uij)si-e.,

L=i=n (yp,.higenki 1=j=ki

c < \/ \/ /\ Mo (Wif).

(()"il """ )\’iki))]<i<ne I_I Aki fstsn 1=y

1<i<n

Since ¢ is a compact element of £, there is a finite subset 2
of A such that

c=< \/ \/ /\ Wi (i)

(()»il ’’’’’ )»ik,))1<-< e 1 @ 1<i<n 1<j<k;
S g<i<n

thus,

o
IA

\/ \/ /\ Mo (Uij)

I<izn (py,..., )»iki)EQk" I<j<ki

\/ /\ (\/M)(ui/‘)

1<i<n 1<j<k; 1eQ

\/ /\ (\/MA)*(uij)

1<i<n 1<j<k; reQ

\/ (\//’%)*(IA(M“, ...

1<i<n 1e

IA

IA

Uik;))

@ Springer
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\/ (\/ 1), (@)

1<i<n 1reQ

(\/ 1), @

reQ

= (|_|m)@.

reQ

e For any u € Sg(a)\Sg(?), we have

Fsglac)w) = c < (|_|ua)@ = (| Jms) @.

reQ rEQ

e Forany u ¢ Sg(a), we have

Fsglao)w) =0 < (| ] @w).

reQ

It follows that Fsg(ac)(u) < (|yeqma)@) forall u € A;
ie., Fsg(a:) < |],cqoua. Hence, Fsg(ac) is a compact
element of Fs(A, L). O

For any a € Sg(¥) and ¢ € L, Fsg(ac) = xsqm) is a
compact element of Fs(A, L). For any compact element ¢
of Land a € A, Fsg(a.) will be called a compact principal
L-fuzzy subalgebra of A.

Theorem 3.3 Suppose that L is a distributive algebraic lat-
tice.

(1) Compact elements of Fs(A, L) are only finite suprema
of compact principal L-fuzzy subalgebras of A.
(2) Fs(A, L) is an algebraic lattice.

Proof (1) A finite supremum of compact principal L-fuzzy
subalgebras of A is a finite supremum of compact elements
of Fs(A, L) by Proposition 3.2; so, it is a compact element
of Fs(A, L).

Conversely, let 1 be a compact element of Fs(A, L). Since
n= UaeAFsg(aﬂ(a)), there are ay, ..., a, € A such that
n = u1§i§nFSg((ai)lL(ﬂ[))' Since L is algebraic, for any
1 <i < n, there is a family {c;} ey, of compact elements of

L such that u(a;) = \/ ;¢ c;. It follows that

|_| Fsg((ai) \V Cj)

l<i<n el

|_| Fsg(\/(a,-)cj)

1<i<n Jjel;

L] LFss(t@.,)

I<i<n jeI;

|_| |_| Fsg((ai)e;,)-

(jlv“'ajll)e n Ii I<i<n

1<i<n

MZ

@ Springer

Since p is compact, there is a family {K; }1<; <, of finite sets
such that K; C [; forall 1 <i < n and

n= L L Fss(@ne,).

(rseedn)€ [] Ki 1<izn

1<i<n

So, by Proposition 3.2, p is a finite supremum of compact
principal L-fuzzy subalgebras of A.

(2) Since Fs(A, L) is complete, it suffices to show that it is
compactly generated. So, let © € Fs(A, L). Since L is alge-
braic, for any a € A, there is a family {c¢; 4}ies, of compact
elements of £ such that p(a) = \/ie,ﬂ ci q- Hence,

|| L] Fse(ac.).

acAi€l,

pw=||Fsglaye,) =

acA iely

and for eacha € A and i € I,, Fsg(ac,,) is compact by
Proposition 3.2. Therefore, Fs (A, L) is algebraic. |

4 Conclusion

In the present paper, we investigated the algebraicity of the
lattice of fuzzy subalgebras of an algebra under a distributive
algebraic lattice. The distributivity of the algebraic lattice
having been used several times in our demonstrations, it
would be interesting to check if this data is essential. This
problem remains open since we have not yet found the solu-
tion.
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Abstract

In 1988, given a complete Brouwerian lattice L := (L; A, V; 0, 1) and aring A := (A; +, -; —; 0) with unity 1, Swamy
and Swamy (J Math Anal Appl 134:94-103, 1988) built a lattice structure, on the set of L-fuzzy ideals of A, and investigated
some of its arithmetic properties. Since the residuation theory is richer than the lattice theory [see, Ciungu (Non-commutative
multiple-valued logic algebras, Springer monographs in mathematics, Springer, Berlin, 2014), Galatos et al. (An algebraic
glimpse at substructural logics, volume 151 of studies in logic and the foundations of mathematics, Elsevier, Amsterdam,
2007), Jipsen and Tsinakis (in: Martinez (ed) Ordered algebraic structures, Kluwer Academic Publisher, Dordrecht, 2002),
Piciu (Algebras of fuzzy logic, Editura Universitaria Craiova, Craiova, 2007)], in this paper, we consider the notion of fuzzy
ideals rather under a complete Brouwerian residuated lattice £ := (L; A, VvV, ©, —», —o; 0, 1). A residuated lattice
Fid(A, L) == (Fid(A,L); A, +, ® <>, %; xo. 1) is built on the set Fid(A, L) of L-fuzzy ideals of A and it is
shown that the latter is both an extension of £ and the residuated lattice Zd (A) := (I d(A); N, +, ©, —, ~; {0}, A)

on the set Id(A) of ideals of A.

Keywords Ring - Ideal - L-fuzzy ideal - Residuated lattice

1 Introduction

Since the introduction of the idea of residuation by Dedekind
(1894), several researchers have approached it in a general
way. Ward and Dilworth (1939) introduced the notion of
residuated lattices, as the lattices on which a multiplication
or residuation operation is defined. During the same year,
Dilworth (1939) introduced the notion of non-commutative
residuated lattices and investigated some of its properties
among which decompositions into primary and semi-primary
elements. Since then, there has been substantial research
regarding some specific classes of residuated lattices as
RL-monoids, MT L-algebras, BL-algebras, MV -algebras,
Boolean algebras,... (see, Ciungu 2014; Galatos et al. 2007;
Jipsen and Tsinakis 2002; Piciu 2007).

Communicated by A. Di Nola.

X S. V. Tchoffo Foka
tchoffofoka88 @yahoo.fr

Marcel Tonga
tongamarcel @yahoo.fr

Department of Mathematics, University of Yaounde 1,
P.O.Box 812, Yaoundé, Cameroon

Zadeh (1965) introduced the concept of fuzzy subset of
a set, as a function from a nonempty set to the closed unit
interval [0, 1] of real numbers, which led to a revision of
mathematics, to formalize the concept of set membership
under uncertainty. Because of the inability of the latter to
interpret certain situations of our daily life, Goguen (1967)
introduced in 1967 the concept of L-fuzzy subset of a set,
replacing the unitinterval [0, 1]ofreal numbers by the under-
lying set L of some structures of truth values among which
complete Brouwerian lattices and residuated lattices.

Swamy and Swamy (1988) used the Goguen’s concept to
introduce the concept of L-fuzzy ideals of a ring, where L
is the underlying set of a complete Brouwerian lattice, and
describe maximal and prime elements of their lattice. Since
then, the lattice of L-fuzzy ideals of aring has been the subject
of several other studies (see, Martinez 1999; Yue 1988).

In this work, in order to enrich the structures of truth val-
ues, we consider the notion of L-fuzzy ideal of a ring, where
L is the underlying set of a complete Brouwerian residuated
lattice £. Given a ring .4 with unity 1, we define a residuated
lattice structure Fid (A, L) on the set of L-fuzzy ideals of A
which extends both £ and Zd (.A). The paper is organized as
follows.

@ Springer
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In Sect. 2, we recall some known facts about residuated
lattices and L-fuzzy ideals of rings. Section 3 outlines the
construction of the residuated lattice Fid(A, L). In Sect. 4,
we embed £ and Zd(A) into Fid(A, L).

2 Preliminaries
2.1 Residuated lattices

We collect here some definitions and results on residuated
lattices, most of them being well known (See, Ciungu 2014;
Galatos et al. 2007; Jipsen and Tsinakis 2002; Piciu 2007).

Definition 2.1 An algebra (L; A, Vv, ©, —», —o; 0, 1)
of type (2,2,2,2,2,0,0) is called a residuated lattice if it
satisfies the following conditions:

(RL1) (L; A, v; 0, 1)isabounded lattice (with a partial
order <);

(RL2) (L; &, 1) is a monoid;

RL3) forany x,y,z € L,x oy <ziffx <y — ziff
y<x-—oz.

Analgebra(L; A, V, ©, —, —o; 0, 1)oftype(2,2,2,
2,2,0,0)isaresiduated lattice ifand only if (L; A, V; 0, 1)
is a bounded lattice, (L; &, 1) is a monoid, & is order-
preserving in each argument and the inequality x © y < z
has a largest solution for x (namely y — z) and for y (namely
x —o z). For any x € L and a non negative integer n, x" is
defined inductively by x° = 1 and x"*! = x” © x.

Example 2.2 (a) The Godel structure is the residuated lattice
L= (L; A, V, A, =, —; 0, 1) givenby L = ][0, 1],
x Ay =min(x, y), x Vy = max(x, y) and

1 ifx <y,

y otherwise. forallx,y € L.

X — y = {
(b) The product (or Gaines) structure is the residuated lattice
L=(L; A, V, O, —, — 0, 1)givenby L = [0, 1],
X Ay = min(x,y), x Vy = max(x, y), x ©y = xy (the
usual multiplication of real numbers) and

1 if x <y,

y/x otherwise. forall x, y € L.

X —» y = {
(c) The Lukasiewicz structure of order p € N* is the resid-
uated lattice £ = (L; A, V, ©, —», —»; 0, 1) given by
L =10, 1], x Ay = min(x, y), x V y = max(x, y),

xXOy= {Vmax(O,xP + y? — 1) and

xa»y:rnin(l, \"/l—xp+yp) forallx,y € L.

If p = 1, we obtain the Lukasiewicz structure.

@ Springer

Example 2.3 (See, Kadji et al. 2016, Example 8) Let L =
{0, a, b, ¢, 1} be alattice suchthat) <a <b <c¢ < 1.
Define the binary operations &, — and —o by the three tables
below:

|0|la|b|c|1| |=>]|0|la|b|c]|l
0O(0[O0O|]O|O]|O Of[1]1]1]1]1
a|0]0|0]|al]a a |[b|1[1]|1]1
b {0[0|O0|b]|Db b |blc|1]|1]1
c|O0|lala]|c]|c c |O0fa|b]|1]1
110|la|b|lc|1] | 1 |0jal|lb|c|l

— | O0|la|b|c]|1

O |1 |1]1]1]1

a |[b|1]1]1]1

b |b|b|1|1]1]

c |0O|b|b|1]|1

1 {0]la|b|c]|1

Then £ = (L; A, VvV, ©, —, —o; 0, 1) is a residuated
lattice.

Proposition 2.4 (Ciungu 2014; Galatos et al. 2007; Jipsen
and Tsinakis 2002; Piciu 2007) In a residuated lattice, the
following hold (whenever )\ and \/ exist) for any z € L,
X,Y C Land --+€ {—, —o}:

MHNVXHel\Y= V xoy.
xeX, yeY
2 z--+(A\X) = /\X(Z > x)and (\/ X) --» z =
A (x --»2).
xeX

Furthermore, the following (quasi-)identities and their mir-
ror images (obtained by replacing x © y by y © x and
interchanging x — y with x —o y) also hold:

B)Ifx <y thenxo©z<yS8z,y—»z=<x—»zand
27X <Z—»).

@xey<xAy.

BG)xe0=0=006=x.

6)1 - x = x.

M Ifx <y thenx - y=1.

Proposition 2.5 (Ciungu 2014; Galatos et al. 2007; Jipsen
and Tsinakis 2002; Piciu 2007) The class of residuated lat-
tices is a variety.

A residuated lattice £ is called complete if so is its lat-
tice. A residuated lattice £ is called Brouwerian or com-
pletely meet distributive if: for any a € L and B C A,

an\/B= b\/B(a A b), whenever both \/ exist.
€
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Example 2.6 Godel, Gaines, Fukasiewicz structures and the
residuated lattice of Example 2.3 are complete Brouwerian
residuated lattices.

Proposition 2.7 (See, Ciungu 2014; Galatos et al. 2007;
Jipsen and Tsinakis 2002; Piciu 2007) In a residuated lat-
tice L, forany x € L,

X :=x — 0 and X := x —o O(mirror image of X)

are called the negations of x. Furthermore, the following
(quasi-)identities and their mirror images hold for any x, y
inL:

®)0=1.
9) x < yimpliesy <X. _
(10)¥0x=0x <xandx = x.

2.2 L-fuzzy ideal of a ring

Throughout the work, £ := (L; A,V,6,—»,—; 0, 1)
is a complete Brouwerian residuated lattice and A :=
(A; 4, -; —; 0) is a ring with unity 1. The binary oper-
ation - is denoted by juxtaposition.

Definition 2.8 A fuzzy subset of A under £, or an L-fuzzy
subset of A, is a map from A to L.

Recall that this notion was introduced by Goguen (1967) in
1967 as a generalization of the notion of fuzzy subset defined
by Zadeh (1965) in 1965 as a function from a set to [0, 1].

Example 2.9 (See, Tchoffo Foka and Tonga 2019) For any
B C A,ae Aandr,s € L, the following functions from A
to L are fuzzy subsets of A:

s ifx € B,

. forall x € A,
r if not.

B)(x) := {

B, :== B}, B" := Brl, a; := {a}}, a, := a; (fuzzy point of

A), B| =: xp = BY (characteristic function of B), Xa ‘=
X{ay and A, =:r := ()" (constant fuzzy subset of A).

Notation 2.10 (See, Tchoffo Foka and Tonga 2019) For any
L-fuzzy subset p of Aandr € L,

Ulp,ry:=={x € A: p(x) =r}

is called the r-level set (or r-cut) of |L.

The order relation < is defined on the set Fu(A, L) of L-
fuzzy subsets of A as follows: for any u,v € Fu(A, L),
u < v (v contains w) if and only if u(x) < v(x) for all
x € A.

Remark 2.11 Fu(A, L) forms a complete Brouwerian resid-
uvated lattice Fu(A, L) := (Fu(A,L);A,V, O, >, —;
0, l), where the binary operations A, V, &, —», —o are
defined componentwise.

Definition 2.12 An L-fuzzy subset u of A is an L-fuzzy
ideal of A if and only if ©(0) = 1 and for any x,y € A,
mx —y) = ux) Ap(y)and p(xy) > w(x) vV u(y).

Remark 2.13 e For any ideal I of A and r, s € L such that
r <, the L-fuzzy subset (1), := I} Vv xo of A, given by

1 ifx=0,
(ID«x)=4{s ifxel\{0}, forallx € A,
r elsewhere.

is an L-fuzzy ideal of A.

o If 11 is an L-fuzzy ideal of A, then all its cuts are ideals
of A; the converse holds for any L-fuzzy subset u of A such
that 1 € Im(u).

Proposition 2.14 (See, Swamy and Swamy 1988) The set
Fid(A, L) of L-fuzzy ideals of A forms a complete
lattice Fid(A, L) := (Fid(.A, L); A, +; xo, l), where
for any u,v c Fid(A,L) and «x c A,
(n+v)(x) = Vi@ Avb): x =a+b}.

3 Residuated lattice of L-fuzzy ideals of A
Remark 3.1 The residuated lattice of ideals of A is given by
Zd(A) := (Id(A); N, +, ©, —, ~; {0}, A);

where, for any I, J € Id(A),
I+J={a+b:aeclandb e J},
n
10J:=1J] = Za,-b;: ai,...,ag €landby,....,b,eJ},
i=1

I —-J={xeA: xI CJ}and
I~~J={xeA: IxCJ}.

Definition 3.2 For any L-fuzzy subsets p and v of A, the
L-fuzzy subset u o v of A is defined by:

(nov)(x) = \/{1(@) ©v(b): x =ab}forall x € A.

Proposition3.3 Let u,v € Fid(A, L). Then the L-fuzzy
subset u Q@ v of A, given by

(,u ® v)(x) = \/ /\ n(ai)evb;)  x= Zaibi forallx € A,

I<i<n i=1

@ Springer
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is the smallest L-fuzzy ideal of A containing o v; i.e.,
Fidg(it ov) = u ® v (L-fuzzy ideal of A generated by
Hov).

Proof 1t is clear that u ® v contains p o v. Next we show that
1 ® v is an L-fuzzy ideal of A.
We have (1 ® v)(0) = 1, since

(rev)O0)>pn0ovd)y=16l1=1.

Now, let x,y € A. Set X = {(ai, bi)1<i<m+n @ X =

> aibjand —y= Z—m—i—] aibiyandY = {(uj, vj)1<j<p:

X —y= ZF] u;jv;}. Then X C Y. Furthermore, for any
(@i, bi)1<i<m+n € X, we have

( A u(ai)ev(bi)>/\< A M(ai)ev(bi)>
1<i<m m+1<i<m-+n
= A wu@)ovb)

1<i<m+n

(L ®v)(x —y).

IA

Thus, (1 ® v)(x) A (1 ®v)(y) < (k ® v)(x — y). For any
ai,bi,...,an, by, € A suchthat x = Y ", a;b;, we have

xy =Y /L a;(biy) and,

N\ m@yevb) <\ ma)ovbiy) < (n@v)exy).

1<i<m 1<i<m

Thus, (,u ® v) x) < (u ® v) (xy). Similarly, we obtain (,u ®
V)(») < (L®V)(xy). So, (L@ V)(xy) = (L®V)(xX)V (L®
v) (y). Hence, u ® v is an L-fuzzy ideal of A.

Finally, let § be an L-fuzzy ideal of A containing p o v.
Forany a1, by, ..., an, by € Asuchthatx =) 7_, a;b;, we
have

N\ m@yevn < N\ (ov)(@b) < )\ sab)

1<i<n 1<i<n

<$ (Zaibi) = 5(x).
i=1

1<i<n

Thus, (,u ® v)(x) < §(x). Hence, u ® v < §. Therefore,
1 ® v is the smallest L-fuzzy ideal of A containing o v.
]

Proposition 3.4 The binary operation ® on Fid(A, L) is
associative.

Proof Let u,v,8 € Fid(A,L).Letx € A. Letay, by, ...,
an, b, € Asuchthat x = )" a;b;. Let 1 < i < n. For
any ¢;,, dil, <5 Cips d,'p € A such that b; = Zf:l Cijdij»
we have foreach 1 <k < p,
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n(ai) © ( N vici) 95(dij)> < (@) © (viciy,) © 8(dyy))

1<j<p

= (u(a) ©v(cy)) ©8(di,)
< (e ®v)(aici,) © 8(dy;)

< ((n ®v) ® 8)((aici)di,)
(1 ® v) ® 8)(ai(ciydiy)):

thus,

u(ai)e( A U(Cij)GS(dij)> <

I=j=p

A ((w®v)®8)(ai(ci,di))

1<j<p

< (n®v)®9) (Za,m,d ))
j=1

= ((n®v) ®8)(aibi).

So, (@) © (v ® 8)(bi) < ((1 ® v) ® 8)(a;b;). It follows
that
N n@)e(vesd)b) < A (k®v)®d)(ab) <

1<i<n 1<i<n
(1 ®v) ®8)(x).
Thus, (1 ® (v ® 8))(x) < (1 ® v) ® §)(x) and, ((n ®
V) ®8)(x) < (1 ® (v ®3))(x) by similar arguments. So,

(h®(W®§))(x) = ((1®v)®3)(x). Hence, @ (v® ) =
(1 ® v) ® 8. Therefore, ® is associative. O

Corollary 3.5 Fid(A,L) =
monoid.

(Fid(A,L); ®, 1) is a

Proof Since ® is associative by Proposition 3.4, it suffices to
show that 1 is the unity of Fid (A, L). So, let u be an L-fuzzy
ideal of A. Let x € A. For any ay, by, ..., a,, b, € A such
that x = Y "_, a;b;, we have

N\ wayelv)y= N warot= )\ wa)

I<i<n I<izn I<i=n
< N waibi) < p().
1<i<n

Thus, (1®1)(x) < u(x).Furthermore, (L®1)(x) > u(x)©
1(1) = p(x) © 1 = pu(x). So, (1 ® 1)(x) = u(x). Hence,
n®1 = pand, 1 ® u = w by similar arguments. Therefore,
1 is the unity of Fid(A, L). O

Definition 3.6 For any L-fuzzy subsets pand v of A, u <> v
and p 3 v denote the L-fuzzy subsets of A defined for any
x € Aby:

\/{reL Xy o < v}
\/{reL nox, <v}

(n=v)x) =

(,qu—> v)(x) =
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Proposition 3.7 Let i and v be two L-fuzzy ideals of A. Then
< vand & v are L-fuzzy ideals of A.

Proof Since 01 ot = xo < v, we have 1 < (u (N v)(O)
and, (,u, — v)(O) = 1.Now, letx,y € A.Letr,s € L such
that x, o <vandysou <v.Leta € A.Leth, c € A such
that a = bc.

e If b # x — y, then

(x = Mras@) © ue) =00 u(c) =0 < v(a).

e If b =x —y, then
(x = )ras) © plc) = (r ns) © ule)
< (reu©) A (s © 1)
= (@ e u@) A (ys(») 6 u©)
< (xr o) (xe) A (s o 1) (ye)
< v(xc) Av(yc)
< v(xc — yc)

=v(a).

Thus, ((x = Y)ras © 1) (@) < v(@). So,
(x=Yrasom <vand, r As < (= v)(x —y).

It follows that (u — V)(x) A (L = V)(¥) < (U —
v)(x —y).
Now, let r € L such that x, o u < v. Leta € A. Let
b, ¢ € A such that a = bc.

e If b # xy, then

(xy)r(b) © u(c) =00 pu(c) =0 < v(a).

e If b = xy, then

(xy)r D) © pu(e) =r e ul)
= x,(x) © pu(c)
< xr(x) © u(yc)
< (xr o ) (x(y0))
<v(x(yo))
=v(a).
Thus, ((xy); o u)(a) < v(a). So, (xy); o < v and,

r < (n <> v)(xy). It follows that (1 < v)(x) <
(= v)(xy).

Now, letr € L such that y, o u < v.Leta € A. Let
b, c € A suchthata = bc.

e If b # xy, then
xy)r(b) © u(c) =06 u(c) =0 < v(a).

e Suppose that b = xy. For any z € U (i, u(c)), we have

v(yz) = (yr o i) (y2)
= yr(y) © u(2)
=r o un@
>rou)

and, yz € U(v, re /,L(C)). Thus,

yU(u, u(c)) € U(v,r © u(c)) and,
y e U(p, n(©) = U(v,r © u(c)).

So,

xy € U(m, u(c)) = U(v,r © u(c)) and,
xyU(p, p(0)) S U(v.r © p(o)).

Since a = xyc € U(v, r © u(c)), we have
(xy)r(b) © u(c) =r © u(c) < v(a).

Thus, ((xy)rou)(@) < v(a).So, (xy),ou < vand,r <
(v = v)(xy). Thus, (1 = v)(¥) < (r = v)@&Y).
Consequently, (i < v)(x) V (1 <= v)(y) < (n <= v)
(xy).

Hence, u < v is an L-fuzzy ideal of A. A similar rea-
soning shows that u & v is an L-fuzzy ideal of A. O

Theorem 3.8 Fid(A, L) := (Fid(A, L); A, +, ®, <,
%5 X0, l) is a complete residuated lattice.

Proof Since Fid (A, L) is a complete lattice and Fid (A, L)
is a monoid, it suffices to show that: for any wu,v,8 €
Fid(A,L), n@v <diff u <v— §iff v < u & 4.
So,let u,v,8 € Fid(A, L).

Assume that u @ v < 6. Let x € A. Leta € A. For any
v € A such that a = xv, we have

X)) ©v(v) = pnx) S v(©) < (k)@ < 8a).

Thus, (x,x) © v)(@) < 8(a). S0, x, (v o v < 8 and, pu(x) <
(v < 8)(x). Hence, u < v < 6.

Conversely, assume that 4 < v — §. Let x € A. Let
ai,bi,...,an, b, € Asuchthatx = > !  aib;. Let1 <
i < n.Forany r; € L such that (a;);, ov < 8, we have
(n(@i) Ari) ©v(bi) < ri ©v(bi) = (ai)y(a;) © v(by) <
((a,-)rl. o v)(aibi) < 8(a;b;). Since L is Brouwerian, we have

wiai) ©v(bi) = (ulai) A (v 8)(@)) © v(bi) < 8(aiby).

@ Springer
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Thus,

/\ m@)evn < )\ saib) < 5x).

1<i<n 1<i<n

So, (L ®v)(x) < §(x). It follows that u Q@ v < 6.
Hence, u ® v < § iff & < v < §. A similar reasoning
shows that: u ® v < §iff v < u 3 6. O

4 Embeddings of £ and Zd(.A) into
Fid(A,L)

Proposition4.1 Let I,J € 1d(A) and r,s € L. Then the
following hold:

(1) ()« ® (Js)s = ((I O] J)res)*.

) I"'@J =TI + U)s + (Jr)s

(3) Up)s+ U)s = [T+ INTUD)pas VNIV (T
DV (I 0T\ {ODvs],

Proof (1)Letx € I®J\{0}.Foranyay, by,...,a,,b, € A
such that x = Zl’-’zl a;b;, there is 1 < iy < n such that
aiy, # 0and by # 05 thus, A\ (I)u(a) © (J)u(by) <

1<i<n
(Ir)(ain) ©(Js)«(biy) < ros.So, ((h)*@(-’s)*)(x) <ros.
Since there are ay, ...,a, € I\{0}and by, ..., b, € J\ {0}
suchthatx = Y7, a;jbj, wehaver 6s = /\ (I)«(a;) ©

1<i<n
(Jp)«(bi) < ((Ir)* 0 (JS)*)()C) and, ((Ir)* ® (-]s)*)(x) =
ros.
Now, let x ¢ I ® J. For any ay, by, ...,a,,b, € A such
that x = > a;b;, there is 1 < iy < n such that a;, ¢ I
or bj, ¢ J;i.e., (I.)x(ai)) = 0 or (Jy)«(b;y) = 05 thus,
/\ Ir)«(a;) © (Jo)«(bi) < (Ir)*(aio) S) (Js)*(bio) =0

1<i<n

and, A (1)«(a)S(Js)«(bi) = 0.50, ((I)+®(Js)x) (x) =

1<i<n
{0} =0.
Hence, (1)« ® (Jy)x = ((I (O] J)res)*~
(2) We first show that I” = I} + (A,),. Forany x € I, we
have (1 +(A,):) (@) = 11(x) = Land, (I1+(A).) (x) = 1.
Now, let x ¢ [. Leta,b € A such that x = a + b. If
b =0,thena ¢ I and, I1(a) A (A)«(b) = 0A1 = 0.
If b # 0, then I1(a) A (A)«(b) < (A;)«(b) = r. Thus,
r=(A)«(x) = (H+(A)) () < rand, (I+(A)) () =
r.So, I" = I1 + (A;)«. A similar reasoning shows that
J® = Ji + (Ay)+. Finally, we have
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I"®J° = (I + (A).) ® (J1 + (Ay).)
=T 0 Nie1+ (IO Aes), + ((AO rer),
+((A O A)res),
= O D1+ U + )i + (Ara)s

=0 J)rex + (Us)s + (Jr)s.

(3)eLetx ¢ I+ J.Foranya, b € Asuchthatx = a+b,we
havea ¢ ITorb ¢ J;i.e.,(I;)«(a) = 0or (J5)«(b) = 0; thus,
(I)«(@) A(Jg)«(b) = 0.S0, ((I)«+(Jy)x) (x) = \/{0} = 0.
eletx e I+J\IUJ.Foranya, b € Asuchthatx = a+Db,
we have

rAs ifaelandb e J,
(U)+(@) A (Jo)(B) = {0 fadlorhds
Thus, r As = (1)« (u) A (Js)«(v) < ((Ir)* + (Js)*)(x) =
rAsforsomeu € I'\{0}and v € J\ {0} suchthatx = u+v;
S0, ((Ir)* + (Jv)*)(x) =TrAS.
eletx € [\ J.Foranya,b € A suchthat x = a + b, we
have

rA(Jg)«(b) ifaelandb e J,

(Ir)«(@) A (Js)«(b) = {0 ifa¢lobgl.

Thus, 7 = (I:)x(x) A (J9)x(0) < (1)« + (Jy)s) (x) <7
and, ((]r)* + (JS)*)(x) = r. A similar reasoning shows that
(U)s + (Us)s)(x) = s forallx € J\ 1.
eletx € (INJ)\{0}. Foranya, b € Asuchthatx = a+Db,
we have a # 0 or b # 0; thus, (I)«(a) A (J5)«(b) <1 Vs.
So,rvs = ((]r)* V(Js)*)(x) = ((Ir)*+ (Js)*)(x) =rvs
and, ((Ir)* + (Jv)*)(x) =rVs.

Hence, (1) + (J5)x = [(I + I\ TUD)ps V(I \ )y v
(J\Ds VI NT\{ODrvs], . O

For any I, J € Id(A) and r € L, one can easily verify that
U)s + (U)s = ((I + J)r)* and I1 + (J;)« = (Il v+
J)r),- For any L-fuzzy ideal 11 of A, ™ := p <> xo and
W = 3 xo denote the left and right annihilator of u in
Fid(A, L), respectively.

Proposition4.2 (1) Letr,s € Land I, J € Id(A). Then

(I = Dres), < U)s > (Jy)« and

((I ~ J)r—os)* < ()s & (Jgx.

(2) Let I be a proper ideal of A and r,s € L such that
r <s.Then ((If)*)_ = ((I_)?)*and ((Irs)*) = ((IN)§)*;
where, I~ := 1 — {0} and [ := I ~~» {0} denote the left
and right annihilator of I in Zd(A), respectively.
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Proof (1) Since (I — J)r—s), @ ()« = [(I - 1) O
I)(rﬁ»s)er]* < (Jy)s we have (I = J)ros), < (Ir)s <
(J5)x- Simﬂaﬂy’ ((I ~ J)rﬂs)* < )s & (J)«.

(2) We first show that ((If)*)_ = ((I‘)?)*.

eLetx € 7\ {0}. For any ¢ € L such that x; o (/%) < xo0,
we have

11 =x(x) O ([)«(1) < (x; 0 ([})s) (x) < xo(x) = 0;

thus, 1 < 7. So, ((I$)x)” (x) < 7. Now, leta # 0 in A. For
any v € A such thata = xv, we have v ¢ I; thus,

re)sw)y=ror=0.

So,

(xr 0 (I))4) (@) = \/{0} = 0.

It follows that

xro (I)s < xoand, 7 < ((£))x)” (x).
Consequently, ((I$),)” (x) =7.

eletx ¢ I7.Foranyt € L such that x; o (1) < xo0, we
have

165 = x(1) © (I4(v) < (3 0 (1))4) (xv) < xoxv) =0
for some v € [ such that xv # O; thus, t < 5. So,

((If)*)_(x) < 5. Now, leta # 0in A. Forany v € A
such that a = xv, we have

50 (1)) = {;
thus, 5 © (I3)4(v) = 0. So,

(x50 (1)) (@) = \/{0} = 0.

It follows that

x50 (1)« < xoand, 5 < (1)) (x).
Consequently, ((I$),) (x) =5.

Hence, ((1}):)” = ((ID)D), and, ((I)s)” = (IM)E), by
similar arguments. O

Theorem 4.3 The function ¢ : Id(A) — Fid(A, L), given
by ¢(I) = I for all I € 1d(A), is a complete residuated
lattice embedding.

Proof Since ¢ is clearly a complete lattice embedding, and
the fact that

dpUON)=UOJ)=UO el
=L ®J =¢()®$(J) forall I, J € Id(A),

we only have to prove that ¢ preserves the residues. So, let
1,J € Id(A). Letx ¢ I — J. There is a € [ such that
xa ¢ J.Forany r € L such that x, o I} < Ji, we have

r=rel=xx)eli(a) < (x,ol)(xa) < Ji(xa) =0

and, r = 0.

Thus, (I} — Ji)(x) = {0} =0.S0, I} = J; < —
Jiand, I — J) = I} — J;. Hence, p(I — J) =
I - =1 = Ji =¢(U) = ¢(J). A similar rea-
soning shows that ¢ (I ~~ J) = ¢(I) & ¢(J). Therefore,
¢ is a complete residuated lattice embedding of Zd (A) into
Fid(A, L). O

Theorem 4.4 The function W : L — Fid(A, L), given by
Y (r) = (r)s forall v € L, is a complete residuated lattice
embedding.

Proof Since v is clearly a complete lattice embedding, and
the fact that for any », s € L, we have

Y(ros) = (Ares)* = ((A © A)res)*
= (A0« @ (As)x = (D B () = Y (r) ® Y (s),

we only have to prove that i preserves the residues. So,
let r,s € L. Let x # 0in A. For any t € L such that
X 0 (P« = (8)x, we have

1or=x0)0 M) < (x 0 (M:)(x) < (9)x(x) =

and, t <r —»s.

Thus, ((r)x <= (9)«)®x) < r = s = (r—5)(x). So,
M)s = (s < (r=95)y and, (r = )y = (s = (8)4.

Hence,

Y@ —=s) =T =)= = O =¥ @) = ¥(s).

A similar reasoning shows that ¥ (r —o s) = ¥ (r) & ¥ (s).
Therefore, v is a complete residuated lattice embedding of
L into Fid(A, L). O

5 Conclusion
In this paper, given a complete Brouwerian residuated lattice

L and a ring with unity 4, we have built a residuated lattice
structure Fid (A, L), onthe set Fid (A, L) of L-fuzzy ideals
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of A, which extends both £ and the residuated lattice Zd (A),
on the set /d (A) of ideals of A. This construction is also valid
for non-normalized fuzzy ideals; i.e., fuzzy ideals p which
do not necessarily satisfy condition ©(0) = 1. But in this
case Fid(A, L) is only an extension of L, since it is rather
bounded by 0 and 1.

By a ©-prime element of a residuated lattice £, we mean
anelement p # 1in L suchthat: foranyx,y € L,x©y < p
implies x < p or y < p. This definition is slightly differ-
ent from that known in lattices, which rather coincides with
the definition of A-prime element. It would be interesting
to establish if there is a better (or nice) link between the
prime elements in Fid(A, L) and those in Fid (A, L). This
will can also be extended to primary elements and primary
decompositions.

Another interesting aspect to study following this paper
is the relationship between £ and Zd(A), and Fid(A, L),
depending on the structure of £ and Zd(A).
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