

 A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Par : JIOMEKONG AZANZI FIDEL

Sous la direction de
Professor Maurice TCHUENTE
University of Yaoundé I, Cameroon
Professor Gaoussou CAMARA
Université Alioune Diop de Bambey, Sénégal

Année Académique : 2020

REPUBLIQUE DU CAMEROUN

Paix – Travail – Patrie

UNIVERSITE DE YAOUNDE I

FACULTE DES SCIENCES

DEPARTEMENT DE INFORMATIQUE

CENTRE DE RECHERCHE ET DE

 FORMATION DOCTORALE

 EN SCIENCES, TECHNOLOGIE

ET GEOSCIENCES

LABORATOIRE D’INFORMATIQUE ET

APPLICATIONS

REPUBLIC OF CAMEROUN

Peace – Work – Fatherland

 UNIVERSITY OF YAOUNDE I

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER

SCIENCE

POSTGRADUATE SCHOOL OF

SCIENCE, TECHNOLOGY &

GEOSCIENCES

LABORATORY OF COMPUTER

SCIENCE AND APPLICATIONS

SEMANTIC-AWARE EPIDEMIOLOGICAL
SURVEILLANCE SYSTEM: APPLICATION TO

TUBERCULOSIS IN CAMEROON

1

Updated protocol list of the faculty of
science

UNIVERSITY OF YAOUNDE I UNIVERSITÉ DE YAOUNDÉ I

FACULTY OF SCIENCE FACULTÉ DES SCIENCES

Department of Academic Direction des Affaires
Affairs and Cooperation Académiques et de la Coopération

LIST OF PERMANENT TEACHING STAFF LISTE DES ENSEIGNANTS PERMANENTS

ACADEMIC YEAR 2019/2020
(By Department and by Grade)

UPDATING DATE: THE 19ST OF FEBRUARY, 2019

ADMINISTRATION

DEAN: TCHOUANKEU Jean Claude, Professor
VICE-DEAN / DPSAA: ATCHADE Alex de Théodore, Professor
VICE-DEAN DSSE: AJEAGAH Gideon AGHAINDUM, Professor
VICE-DEAN DRC: ABOSSOLO Monique, Professor
Head of the Division of Academic Affairs, Scholarity and Research: MBAZE MEVA’A Luc,
Professor
Head of the Administrative and Financial Division: NDOYE FOE Marie C. F., Professor

1- DEPARTMENT OF BIOCHEMISTRY (BC) (40)
N o NAMES AND SURNAMES GRADE OBSERVATIONS

i

1 FEKAM BOYOM Fabrice Professor In service
2 MBACHAM FON Wilfried Professor In service
3 MOUNDIPA FEWOU Paul Professor Head of Department
4 NINTCHOM PENLAP V. Professor In service
5 OBEN Julius ENYONG Professor In service
6 ACHU Merci BIH Associate professor In service
7 ATOGHO Barbara Mma Associate professor In service
8 BELINGA NDOYE FOE M.

C. F.
Associate professor Chef DAF / FS

9 BIGOGA DIAGA Jude Associate professor In service
10 BOUDJEKO Thaddée Associate professor In service
11 EFFA NNOMO Pierre Associate professor In service
12 FOKOU Elie Associate professor In service
13 KANSCI Germain Associate professor In service
14 NANA Louise Associate professor In service
15 NGONDI Judith Laure Associate professor In service
16 NGUEFACK Julienne Associate professor In service
17 NJAYOU Frédéric Nico Associate professor In service
18 AKINDEH MBUH NJI Lecturer En poste
19 AZANTSA KINGUE

GABIN BORIS
Lecturer En poste

20 BEBOY EDZENGUELE
Sara Nathalie

Lecturer In service

21 DAKOLE DABOY Charles Lecturer In service
22 DJOKAM TAMO Rosine Lecturer In service
23 DJUIDJE NGOUNOUE

Marcelline
Lecturer In service

24 DJUIKWO NKONGA Ruth
Viviane

Lecturer In service

25 DONGMO LEKAGNE
Joseph Blaise

Lecturer In service

26 EWANE Cécile Anne Lecturer In service
27 FONKOUA Martin Lecturer In service
28 BEBEE Fadimatou Lecturer In service
29 KOTUE KAPTUE Charles Lecturer In service
30 LUNGA Paul KEILAH Lecturer In service
31 MANANGA Marlyse

Joséphine
Lecturer In service

32 MBONG ANGIE M. Mary
Anne

Lecturer In service

33 MOFOR TEUGWA Clotilde Lecturer Inspector, in Service MINE-
SUP

ii

34 PACHANGOU NSANGOU
Sylvain

Lecturer In service

35 Palmer MASUMBE NE-
TONGO

Lecturer In service

36 TCHANA KOUATCHOUA
Angèle

Lecturer In service

37 MBOUCHE FANMOE
Marceline Joëlle

Assistant lecturer In service

2- DEPARTMENT OF BIOLOGY AND ANIMAL PHYSIOLOGIES
(B.P.A.) (44)

1 BILONG BILONG Charles-
Félix

Professor Head of Department

2 DIMO Théophile Professor In service
3 DJIETO LORDON Cham-

plain
Professor In service

4 ESSOMBA NTSAMA
MBALA

Professor Vice Dean/FMSB/UYI

5 FOMENA Abraham Professor In service
6 KAMGANG René Professor C.S. MINRESI
7 KAMTCHOUING Pierre Professor In service
8 NJAMEN Dieudonné Professor In service
9 NJIOKOU Flobert Professor In service

10 NOLA Moïse Professor In service
11 TAN Paul VERNYUY Professor In service
12 TCHUEM TCHUENTE

Louis Albert
Professor Inspecteur de service Co-

ord.Progr./MINSANTE
13 AJEAGAH Gideon

AGHAINDUM
Associate professor VICE-DOYEN / DSSE

14 DZEUFIET DJOMENI Paul
Désiré

Associate professor In service

15 FOTO MENBOHAN Samuel Associate professor In service
20 JATSA BOUKENG Hermine Associate professor In service
16 KEKEUNOU Sévilor Associate professor In service
17 MEGNEKOU Rosette Associate professor In service
18 MONY Ruth Associate professor In service
19 NGUEGUIM TSOFACK

Florence
Associate professor In service

21 TOMBI Jeannette Associate professor In service
22 ZEBAZE TOGOUET Serge

Hubert
Associate professor In service

23 ALENE Désirée Chantal Lecturer In service
24 ATSAMO Albert Donatien Lecturer In service

iii

25 BELLET EDIMO Oscar
Roger

Lecturer In service

26 BILANDA Danielle Claude Lecturer In service
27 DJIOGUE Séfirin Lecturer In service
28 DONFACK Mireille Lecturer In service
29 GOUNOUE KAMKUMO

Raceline
Lecturer In service

30 KANDEDA KAVAYE An-
toine

Lecturer In service

31 LEKEUFACK FOLEFACK
Guy B.

Lecturer In service

32 MAHOB Raymond Joseph Lecturer In service
33 MBENOUN MASSE Paul

Serge
Lecturer In service

34 MOUNGANG LucianeMarl-
yse

Lecturer In service

35 MVEYO NDANKEU Yves
Patrick

Lecturer In service

36 NGOUATEU KENFACK
Omer Bébé

Lecturer In service

37 NGUEMBOK Lecturer In service
38 NJUA Clarisse Yafi Lecturer Chef Div. UBA
39 NOAH EWOTI Olive Vivien Lecturer In service
40 TADU Zephyrin Lecturer In service
41 YEDE Lecturer In service
43 ETEME ENAMA Serge Assistant lecturer In service
44 KOGA MANG DOBARA Assistant lecturer In service

3- DEPARTMENT OF BIOLOGY AND VEGETAL PHYSIOLOGY
(B.P.V.) (27)

1 AMBANG Zachée Professor Chef Division/UYII
2 BELL Joseph Martin Professor In service
3 MOSSEBO Dominique

Claude
Professor In service

4 YOUMBI Emmanuel Professor Head of Department
5 ZAPFACK Louis Professor In service
6 ANGONI Hyacinthe Associate professor In service
7 BIYE Elvire Hortense Associate professor In service
8 DJOCGOUE Pierre François Associate professor In service
9 KENGNE NOUMSI Ives

Magloire
Associate professor In service

10 MALA Armand William Associate professor In service

iv

11 MBARGA BINDZI Marie
Alain

Associate professor CT/UDs

12 MBOLO Marie Associate professor In service
13 NDONGO BEKOLO Associate professor CE / MINRESI
14 NGONKEU MAGAPTCHE

Eddy L.
Associate professor In service

15 TSOATA Esaïe Associate professor In service
16 GOMANDJE Christelle Lecturer In service
17 MAFFO MAFFO Nicole Lil-

iane
Lecturer In service

18 MAHBOU SOMO
TOUKAM. Gabriel

Lecturer In service

19 NGALLE Hermine BILLE Lecturer In service
20 NGOUO Lucas Vincent Lecturer In service
22 NOUKEU KOUAKAM

Armelle
Lecturer In service

23 ONANA JEAN MICHEL Lecturer In service
24 NSOM ZAMO Annie Claude Lecturer Expert national/UNESCO
25 TONFACK Libert Brice Lecturer In service
26 DJEUANI Astride Carole Assistant lecturer In service
27 NNANGA MEBENGA Ruth

Laure
Assistant lecturer In service

4- DEPARTMENT AND INORGANIC CHEMISTRY (C.I.) (35)
1 AGWARA ONDOH Moïse Professor Head of Department
2 ELIMBI Antoine Professor In service
3 Florence UFI CHINJE

épouse MELO
Professor Recteur Univ.Ngaoundere

4 GHOGOMU Paul MINGO Professor Ministre Chargé deMiss.PR
5 NANSEU Njiki Charles

Péguy
Professor In service

6 NDIFON Peter TEKE Professor CT MINRESI/Chef de De-
partement

7 NDIKONTAR Maurice KOR Professor Vice-Doyen Univ. Bamenda
8 NENWA Justin Professor In service
9 NGAMENI Emmanuel Professor DOYEN FS UDs

10 BABALE DJAM DOUDOU Associate professor Chargée Mission P.R.
11 DJOUFAC WOUMFO Em-

manuel
Associate professor In service

12 KAMGANG YOUBI
Georges

Associate professor In service

13 KEMMEGNE
MBOUGUEM Jean C.

Associate professor In service

v

14 KONG SAKEO Associate professor In service
16 NGOMO Horace MANGA Associate professor Vice Chancelor/UB
17 NJIOMOU C. Associate professor In service
18 NJOYA Dayirou Associate professor In service
19 YOUNANG Elie Associate professor In service
20 ACAYANKA Elie Lecturer In service
21 BELIBI BELIBI Placide

Désiré
Lecturer CS/ ENS Bertoua

22 CHEUMANI YONA Arnaud
M.

Lecturer In service

23 EMADACK Alphonse Lecturer In service
24 KENNE DEDZO GUSTAVE Lecturer In service
24 KOUOTOU DAOUDA Lecturer In service
25 MAKON Thomas Beaure-

gard
Lecturer In service

26 MBEY Jean Aime Lecturer In service
27 NCHIMI NONO KATIA Lecturer In service
28 NDI NSAMI Julius Lecturer In service
29 NEBA nee NDOSIRI Bridget

NDOYE
Lecturer Inspecteur de Service MIN-

FEM
30 NYAMEN Linda Dyorisse Lecturer In service
31 PABOUDAM GBAMBIE A. Lecturer In service
32 TCHAKOUTE KOUAMO

Hervé
Lecturer In service

5- DEPARTMENT OF ORGANIC CHEMISTRY (C.O.) (33)
1 DONGO Etienne Professor Vice-Doyen
2 GHOGOMU TIH Robert

Ralph
Professor Dir. IBAF/UDS

3 NGOUELA Silvère Augustin Professor Head of department UDS
4 NKENGFACK Augustin

Ephreïm
Professor Head of Department

5 NYASSE Barthélemy Professor Directeur/UN
6 PEGNYEMB Dieudonné

Emmanuel
Professor Directeur/ MINESUP

7 WANDJI Jean Professor In service
8 Alex de Théodore

ATCHADE
Associate professor DEPE/ Rectorat/UYI

9 EYONG Kenneth OBEN Associate professor Chef Service DPER
10 FOLEFOC Gabriel

NGOSONG
Associate professor In service

11 KEUMEDJIO Félix Associate professor In service
12 KEUMOGNE Marguerite Associate professor In service

vi

13 KOUAM Jacques Associate professor In service
14 MBAZOA DJAMA Céline Associate professor In service
15 MKOUNGA Pierre Associate professor In service
16 NGO MBING Joséphine Associate professor Sous/Direct. MINERESI
17 NOUNGOUE TCHAMO

Diderot
Associate professor In service

18 TABOPDA KUATE Turibio Associate professor In service
19 TCHOUANKEU Jean-

Claude
Associate professor Doyen /FS/ UYI

20 TIH NGO BILONG E. Anas-
tasie

Associate professor In service

21 YANKEP Emmanuel Associate professor In service
22 AMBASSA Pantaléon Lecturer In service
23 FOTSO WABO Ghislain Lecturer In service
24 KAMTO Eutrophe Le Doux Lecturer In service
25 MVOT AKAK CARINE Lecturer In service
26 NGOMO Orléans Lecturer In service
27 NGONO BIKOBO Do-

minique Serge
Lecturer In service

28 NOTE LOUGBOT Olivier
Placide

Lecturer Chef Service/MINESUP

29 OUAHOUO WACHE Blan-
dine M.

Lecturer In service

30 TAGATSING FOTSING
Maurice

Lecturer In service

31 ZONDENDEGOUMBA
Ernestine

Lecturer In service

32 NGNINTEDO Dominique Assistant lecturer In service
6- DEPARTMENT OF COMPUTER SCIENCE (IN) (28)

1 ATSA ETOUNDI Roger Professor Chef Div.MINESUP
2 FOUDA NDJODO Marcel

Laurent
Professor CD Info ENS/Chef

IGA.MINESUP
3 NDOUNDAM Réné Associate professor In service
4 AMINOU Halidou Lecturer Head of Department
5 DJAM Xaviera YOUHEP

KIMBI
Lecturer In service

6 KOUOKAM KOUOKAM E.
A.

Lecturer In service

7 MELATAGIA YONTA
Paulin

Lecturer In service

8 MOTO MPONG Serge Alain Lecturer In service
9 TAPAMO Hyppolite Lecturer In service

vii

10 ABESSOLO ALO’O Gislain Lecturer In service
11 KAMGUEU Patrick Olivier Lecturer In service
12 MONTHE DJIADEU Valery

M.
Lecturer In service

13 OLLE OLLE Daniel Claude
Delort

Lecturer C/D Enset. Ebolowa

14 TINDO Gilbert Lecturer In service
15 TSOPZE Norbert Lecturer In service
16 WAKU KOUAMOU Jules Lecturer In service
17 BAYEM Jacques Narcisse Assistant lecturer In service
18 DOMGA KOMGUEM Ro-

drigue
Assistant lecturer In service

19 EBELE Serge Assistant lecturer In service
20 HAMZA Adamou Assistant lecturer In service
21 JIOMEKONG AZANZI Fi-

del
Assistant lecturer In service

22 KAMDEM KENGNE Chris-
tiane

Assistant lecturer In service

23 MAKEMBE. S . Oswald Assistant lecturer In service
24 MEYEMDOU Nadège Syl-

vianne
Assistant lecturer In service

25 NKONDOCK. MI. BA-
HANACK.N.

Assistant lecturer In service

7- DEPARTMENT OF MATHEMATICS (MA) (31)
1 BITJONG NDOMBOL Professor In service
2 DOSSA COSSY Marcel Professor In service
3 AYISSI Raoult Domingo Associate professor Head of Department
4 EMVUDU WONO Yves S. Associate professor Chef division MINESUP
5 NKUIMI JUGNIA Célestin Associate professor In service
6 NOUNDJEU Pierre Associate professor In service
7 TCHAPNDA NJABO So-

phonie B.
Associate professor Directeur/AIMS Rwanda

8 AGHOUKENG JIOFACK
Jean Gérard

Lecturer Chef Cellule MINPLAMAT

9 CHENDJOU Gilbert Lecturer In service
10 DJIADEU NGAHA Michel Lecturer In service
11 DOUANLA YONTA Her-

man
Lecturer In service

12 FOMEKONG Christophe Lecturer In service
13 KIANPI Maurice Lecturer In service
14 KIKI Maxime Armand Lecturer In service
15 MBAKOP Guy Merlin Lecturer In service

viii

16 MBANG Joseph Lecturer In service
17 MBEHOU Mohamed Lecturer In service
18 MBELE BIDIMA Martin

Ledoux
Lecturer In service

19 MENGUE MENGUE David
Joe

Lecturer In service

20 NGUEFACK Bernard Lecturer In service
21 NIMPA PEFOUNKEU Ro-

main
Lecturer In service

22 POLA DOUNDOU Em-
manuel

Lecturer In service

23 TAKAM SOH Patrice Lecturer In service
24 TCHANGANG Roger Duc-

los
Lecturer In service

25 TCHOUNDJA Edgar Landry Lecturer In service
26 TETSADJIO TCHILEPECK

M. E.
Lecturer In service

27 TIAYA TSAGUE N. Anne-
Marie

Lecturer In service

28 MBIAKOP Hilaire George Assistant lecturer In service
8- DEPARTMENT OF MICROBIOLOGY (MB) (13)

1 ESSIA NGANG Jean Justin Professor Head of Department
2 ETOA François Xavier Professor Head of Department/FS/UYI,

Recteur Université de Douala
3 BOYOMO ONANA Associate professor In service
4 NWAGA Dieudonné M. Associate professor In service
5 NYEGUE Maximilienne As-

cension
Associate professor In service

6 RIWOM Sara Honorine Associate professor In service
7 SADO KAMDEM Sylvain

Leroy
Associate professor In service

8 ASSAM ASSAM Jean Paul Lecturer In service
9 BODA Maurice Lecturer In service

10 BOUGNOM Blaise Pascal Lecturer In service
11 ESSONO OBOUGOU Ger-

main G.
Lecturer In service

12 NJIKI BIKOï Jacky Lecturer In service
13 TCHIKOUA Roger Lecturer In service

9- DEPARTMENT OF PHYSICS (PH) (41)
1 BEN- BOLIE Germain Hu-

bert
Professor In service

2 ESSIMBI ZOBO Bernard Professor In service

ix

3 KOFANE Timoléon Crépin Professor In service
4 NDJAKA Jean Marie Bien-

venu
Professor Head of Department

5 NJANDJOCK NOUCK
Philippe

Professor Sous Directeur/ MINRESI

6 NJOMO Donatien Professor In service
7 PEMHA Elkana Professor In service
8 TABOD Charles TABOD Professor Doyen Univ/Bda
9 TCHAWOUA Clément Professor In service

10 WOAFO Paul Professor In service
11 BIYA MOTTO Frédéric Associate professor DG/HYDRO Mekin
12 BODOBertrand Associate professor In service
13 DJUIDJE KENMOE épouse

ALOYEM
Associate professor In service

14 EKOBENA FOUDA Henri
Paul

Associate professor Chef Division. UN

15 EYEBE FOUDA Jean sire Associate professor In service
16 FEWO Serge Ibraïd Associate professor In service
17 HONA Jacques Associate professor In service
18 MBANE BIOUELE César Associate professor In service
19 NANA ENGO Serge Guy Associate professor Director/Students/Affairs.

UB
20 NANA NBENDJO Blaise Associate professor In service
21 NOUAYOU Robert Associate professor In service
22 SAIDOU Associate professor Sous Directeur/Minresi
23 SIEWE SIEWE Martin Associate professor In service
24 SIMO Elie Associate professor In service
25 VONDOU Derbetini Appoli-

naire
Associate professor In service

26 WAKATA BEYA Annie Associate professor Sous Directeur/ MINESUP
27 ZEKENG Serge Sylvain Associate professor In service
28 ABDOURAHIMI Lecturer In service
29 EDONGUE HERVAIS Lecturer In service
30 ENYEGUE A NYAM Lecturer In service
31 FOUEDJIO David Lecturer Chef Cell. MINADER
32 MBINACK Clément Lecturer In service
33 MBONO SAMBA Yves

Christian U.
Lecturer In service

34 MELI’I Joelle Larissa Lecturer In service
35 MVOGO ALAIN Lecturer In service
36 NDOP Joseph Lecturer In service

x

37 OBOUNOU Marcel Lecturer DA/Univ Inter Etat/Sangmal-
ima

38 WOULACHE Rosalie Laure Lecturer In service
39 CHAMANI Roméo Assistant lecturer In service

10- DEPARTMENT OF EARTH SCIENCES (S.T.) (44)
1 BITOM Dieudonné Professor Doyen / FASA / UDs
2 FOUATEU Rose Professor In service
3 KAMGANG Pierre Professor In service
4 MEDJO EKO Robert Professor Conseiller Technique/UYII
5 NDJIGUI Paul Désiré Professor Head of Department
6 NKOUMBOU Charles Professor In service
7 NZENTI Jean-Paul Professor In service
8 ABOSSOLO ANGUE

Monique
Associate professor Vice-Doyen / DRC

9 GHOGOMU Richard
TANWI

Associate professor CD/UMa

10 MOUNDI Amidou Associate professor CT/ MINIMDT
11 NDAM NGOUPAYOU Jules-

Remy
Associate professor In service

12 NGOS III Simon Associate professor DAAC/Uma
13 NJILAH Isaac KONFOR Associate professor In service
14 ONANA Vincent Laurent Associate professor In service
15 BISSO Dieudonné Associate professor Directeur/Projet Barrage

Memve’ele
16 EKOMANE Emile Associate professor In service
17 GANNO Sylvestre Associate professor In service
18 NYECK Bruno Associate professor In service
19 TCHOUANKOUE Jean-

Pierre
Associate professor In service

20 TEMDJIM Robert Associate professor In service
21 YENE ATANGANA Joseph

Q.
Associate professor Chef Div. /MINTP

22 ZO’O ZAME Philémon Associate professor DG/ART
23 ANABA ONANA Achille

Basile
Lecturer In service

24 BEKOA Etienne Lecturer In service
25 ELISE SABABA Lecturer In service
26 ESSONO Jean Lecturer In service
27 EYONG JOHN TAKEM Lecturer In service
28 FUH Calistus Gentry Lecturer Sec. D’Etat/MINMIDT
29 LAMILEN BILLA Daniel Lecturer In service
30 MBESSE CECILE OLIVE Lecturer In service

xi

31 MBIDA YEM Lecturer In service
32 METANG Victor Lecturer In service
33 MINYEM Dieudonné-Lucien Lecturer CD/Uma
34 MOUAFO Lucas Lecturer In service
35 NGO BELNOUN Rose Noël Lecturer In service
37 NGO BIDJECK Louise

Marie
Lecturer In service

38 NGUEUTCHOUA Gabriel Lecturer CEA/MINRESI
39 NOMO NEGUE Emmanuel Lecturer In service
36 NTSAMA ATANGANA

Jacqueline
Lecturer In service

40 TCHAKOUNTE J. Lecturer Chef.cell / MINRESI
41 TCHAPTCHET TCHATO

De P.
Lecturer In service

42 TEHNA Nathanaël Lecturer In service
43 TEMGA Jean Pierre Lecturer In service

Numbered repartition of permanent teachers by Department
(The 15th Jully of 2016)

Department Number of teachers
Pr AP L ASS Total

BCH 5 (1) 12 (6) 19 (11) 1 (1) 37 (19)
BPA 12 (1) 10 (5) 20 (7) 2 (0) 44 (13)
BPV 5 (0) 10 (2) 9 (4) 2 (2) 26 (9)
CI 9 (1) 9 (2) 14 (3) 0 (0) 32 (6)
CO 7 (0) 14 (4) 10 (4) 1 (0) 32 (8)
IN 2 (0) 1 (0) 13 (0) 10 (3) 26 (3)

MAT 2 (0) 4 (0) 19 (1) 2 (0) 27 (2)
MIB 2 (0) 5 (2) 5 (1) 0 (0) 12 (3)
PH 10 (0) 17 (2) 11 (3) 1 (0) 39 (5)
ST 7 (1) 15 (1) 21 (5) 1 (0) 43 (7)

Total 61 (4) 97 (25) 141 (39) 19 (6) 318 (75)

A total of: 340 (70) whose
- Professors 61 (4)
- Associate professors 97 (25)
- Lecturers 141 (39)
- Assistant lecturers 18 (5)
- () = Number of women.

The dean of the Faculty of science

xii

Dedication

To Sorel my wife,
For her patience and support.

To my parents Dongmo Fabien and Voufack Claire,
Thanks for all that you have done for us.

xiii

Acknowledgements

I sincerely thank:
My advisers, Pr. Maurice Tchuente of the University of Yaounde I in Cameroon and Pr. Gaous-

sou Camara of Université Alioune Diop de Bambey in Sénégal for their continuous support in the
course of my PhD and research. Their patience, motivation and guidance were a source of strength
to me. Their office doors were always open whenever I knocked for a question about my research,
being it on the methodologies, experimentations, results analysis, articles and thesis writing.

All the members of the jury, especially the president Pr. Fouda Ndjodo Marcel of the University
of Yaounde I and the members Pr. Malo Sadouanouan of Université Nazi Boni de Bobo-Dioulasso,
Pr. Georges Edouard Kouamou of the University of Yaounde I, Pr. René Ndoundam of the Univer-
sity of Yaounde I and Pr. Yves Emvudu of the University of Yaounde I. I am deeply grateful for
agreeing to read the manuscript and to participate in the defense of this thesis.

Pr. Moussa Lo of Université Gaston Berger in Sénégal. I discovered the domain of Semantic
Web through him during his seminar in Cameroon in 2012 and he received me for two-months as
PhD internship in Sénégal in 2013.

Pr. Daniel Hagimont and Dr. Laurent Broto of ENSEEIHT de Toulouse in France. For their
great offer-a two months PhD internship in 2011. This internship developed in me a passion in
software engineering.

Dr. Nolna Désiré and Abena Jean from the National Tuberculosis Control Program in Cameroon,
Dr. Texier Gaetan from Centre Pasteur du Cameroon, Dr. Tapamo Hippolyte, Iloga Sylvain and
Melatagia Paulin from UMMISCO in Cameroon, Mr. Braak Laurent and Mr. Dupouy Julien from
MEDES in France and all those who contributed to the EPICAM and the MABO projects.

The former heads of Computer Science department Dr. Kamgnia Emmanuel, Dr. Louka Basile,
Pr. Atsa Roger, Pr. Emvudu Yves; the current head of Computer Science Department Dr. Halidou
Aminou for all the facilities and advices they gave to me.

All the teachers of the Computer Science Department of the University of Yaoundé I and the
University of Dschang for the training and supervision during my studies.

Folefac Martins, Mbanwei Prodencia and Fah Moise for helping me to fix the shells that were
in my work.

My brothers and sisters for their unconditional support during my studies.
All the persons who contributed from far and near to this thesis.

xiv

CONTENTS

Dedication xii

Acknowledgements xiv

Abstract xix

Résumé xxi

1 Introduction 1
1.1 Epidemiological surveillance systems . 1

1.1.1 Manual approach . 2
1.1.2 Automatic approach . 2

1.2 Semantic Web . 3
1.3 Thesis Positioning . 4

1.3.1 Objectives . 5
1.3.2 Contributions . 5
1.3.3 Thesis structure . 5

2 A review of epidemiological surveillance systems 7
2.1 Epidemiological surveillance process . 7

2.1.1 Data collection . 7
2.1.2 Data analysis . 11
2.1.3 The interpretation and dissemination of information 13

2.2 Epidemiological surveillance systems architectures 14
2.2.1 Form-Route-Server architecture . 15
2.2.2 Mobile-MobileNetwork-Server architecture 16
2.2.3 Computer-Internet-Server architecture . 17
2.2.4 Multi-strategy architecture . 18

2.3 Epidemiological surveillance tools . 18
2.3.1 Data collection tools . 18

xv

2.3.2 Data analysis tools . 19
2.3.3 Tools for information dissemination . 19
2.3.4 Electronic surveillance tools . 20

2.4 Epidemiological surveillance of tuberculosis . 22
2.4.1 Tuberculosis . 22
2.4.2 Tuberculosis surveillance in Cameroon 24

2.5 Conclusion . 26

3 A MDA-based approach for the development of epidemiological surveillance systems 27
3.1 Agile methodologies . 27

3.1.1 Agile overview . 27
3.1.2 Scrum . 29
3.1.3 The use of agile in the medical domain 31

3.2 A review of Model Driven Architecture . 31
3.2.1 The role of models in software development 32
3.2.2 An overview of MDA . 34
3.2.3 MDA in healthcare . 39

3.3 MDA approach for epidemiological surveillance systems 41
3.3.1 The Pre-development step . 42
3.3.2 The Development step . 44
3.3.3 The Post-development step . 47

3.4 The EPICAM platform for tuberculosis surveillance 47
3.4.1 EPICAM platform development . 48
3.4.2 Main results obtained during EPICAM use 57

3.5 Conclusion . 62

4 Ontology engineering 63
4.1 Ontologies . 63

4.1.1 The notion of knowledge . 63
4.1.2 Ontologies . 65
4.1.3 Knowledge modelling . 67

4.2 Ontology engineering . 72
4.2.1 Ontology construction process, methods and methodologies 73
4.2.2 Knowledge representation languages and queries languages 77
4.2.3 Ontology development tools . 81
4.2.4 Ontology evaluation . 83

4.3 Ontology learning . 84
4.3.1 Knowledge sources for ontology learning 84
4.3.2 Ontology learning techniques . 86
4.3.3 Ontology learning evaluation . 87

4.4 Related works on ontology learning from source code 88
4.4.1 Parser-based approach . 88
4.4.2 Machine learning-based approach . 88

4.5 Conclusion . 89

xvi

5 Ontology learning from source code using Hidden Markov Models 91
5.1 Probabilistic models . 91

5.1.1 Computations with Probabilities . 92
5.1.2 Probabilistic models . 94

5.2 Hidden Markov Models . 98
5.2.1 HMMs structures . 99
5.2.2 Parameters estimations . 101
5.2.3 HMMs usage . 101

5.3 Source code . 102
5.3.1 Source code description . 103
5.3.2 Modelling source code using HMMs . 104

5.4 Ontology Learning from Source Code . 105
5.4.1 An approach based on HMMs for ontology learning from source code . . . 105
5.4.2 HMMs definition, training and use . 110
5.4.3 Knowledge extraction from the EPICAM source code 113
5.4.4 Knowledge evaluation . 117

5.5 Conclusion . 118

6 An ontology for Tuberculosis Surveillance System (O4TBSS) 120
6.1 Ontology development methodology . 120

6.1.1 The Pre-development step . 121
6.1.2 The Development and Post-development steps 121

6.2 Ontology building . 123
6.2.1 Pre-development . 123
6.2.2 Development . 126

6.3 Use cases . 131
6.3.1 Use case 1: inferring patient instances . 131
6.3.2 Use case 2: automatic detection of TB-MDR susceptible patients by rea-

soning on ontology . 132
6.3.3 Other useful feature of O4TBSS . 133

6.4 Conclusion . 133

7 Conclusion 135
7.1 Research summary . 135
7.2 Discussion and future works . 136

Bibliography 139

List of tables 151

List of figures 154

Appendix 157
A List of abbreviations . 157
B List of publications . 158

xvii

C Journal paper . 159

xviii

Abstract

Epidemiological surveillance systems implement complex processes for the collection, analysis
and interpretation of health data, for the planning or the evaluation of public health practices and
policies. These systems must be able to provide up-to-date, precise and complete information to
stakeholders whose interests are diverse and evolve with time. There are many difficulties faced
when putting in place such systems. For example, the ability for such systems to collect, trans-
mit and manage structured data, while taking into consideration the security, authentication and
confidentiality of the data is crucial. To this end, a software editor known as "IMOGENE", based
on Model Driven Architecture (MDA) was developed by MEDES in Toulouse. A joint project
led by UMMISCO, MEDES, Centre Pasteur du Cameroun and National Program to Fight against
Tuberculosis, made use of the latter platform to develop and deploy a tuberculosis surveillance
system named EPICAM. This project showed that the absence of semantic links between data
only allowed the exploitation of information explicitly defined in a database. The idea presented
in this thesis to solve this problem is the use of information contained in source code, to infer new
knowledge and integrate them in a domain ontology. To be precise, we propose a solution based on
Hidden Markov Models (HMMs), which as opposed to other existing techniques that are limited
to extraction of terminologies, concepts and properties also enables learning of axioms and rules.
The implementation on the source code of the EPICAM platform has allowed us to describe in a
clear, precise and succinct manner what we consider as principal information obtained, which has
been evaluated and validated by domain experts.

Keywords: Epidemiological surveillance, Model-Driven architecture, Ontology, Machine learn-
ing, Ontology learning, Hidden Markov Models, Source code.

xix

xx

Résumé

Les systèmes de surveillance épidémiologique mettent en œuvre des processus complexes de col-
lecte, d’analyse et d’interprétation de données de santé, en vue de la planification ou de l’évaluation
des pratiques et politiques de santé publique. Ces systèmes doivent être capables de fournir des in-
formations actualisées, précises et complètes aux différents acteurs dont les intérêts sont divers
et évoluent au cours du temps. Les difficultés auxquelles on est confronté dans leur mise en œu-
vre sont nombreuses. Par exemple, la capacité à collecter, transmettre et gérer une information
structurée, prenant en compte les besoins de sécurité, d’authentification et de confidentialité des
données est cruciale, et le MEDES de Toulouse a développé à cet effet un éditeur d’applications
"IMOGENE" basé sur le principe de l’Ingénieurie Dirigée par les Modèles (IDM). L’utilisation
de cette plateforme pour développer et déployer un système de surveillance de la tuberculose au
Cameroun, dans un projet collaboratif impliquant UMMISCO, le MEDES, le Centre Pasteur du
Cameroun et le Programme National de Lutte Contre la Tuberculose a montré que l’absence de
liens sémantiques entre les données ne permet pas d’exploiter que les informations explicitement
stockées dans les bases de données. L’idée présentée dans cette thèse pour répondre à cette insuff-
isance est l’exploitation des informations contenues dans le code source, pour inférer de nouvelles
connaissances et les intégrer dans une ontologie de domaine. Plus précisément, nous proposons une
approche basée sur les Chaînes de Markov Cachées (CMC) et qui, contrairement aux techniques
existantes qui se limitent à l’extraction des terminologies, concepts et propriétés, permettent aussi
l’apprentissage des axiomes et des règles. La mise en œuvre sur le code source de la plateforme
EPICAM a permis de dire de manière claire, précise et brève ce qu’on considère comme principale
information obtenue qui a été évaluée et validée par les experts du domaine.

Mots clés : Surveillance épidémiologique, Ingénierie Dirigée par les Modèles, Ontologie, Appren-
tissage automatique, Apprentissage des ontologies, Chaînes de Markov Cachées, Code source.

xxi

xxii

1
Introduction

Over centuries, infectious diseases have always been one of the main problems for human health
because they spread quickly and result in high mortality rates. Effective management of these dis-
eases necessitates Hospital Information Systems, Laboratory Information and Management sys-
tems, epidemiological surveillance systems which can provide timely, accurate, relevant, com-
prehensive and updated information to stakeholders [17]. To relieve users of the manual tasks of
collecting and exploiting data in order to obtain information, the Semantic Web seeks to model
data sources and gives the possibility to reason automatically on them. In this thesis, we are seek-
ing how to design semantic-aware epidemiological surveillance systems. Then, in the following
sections, we present epidemiological surveillance systems, the problems generally encountered
during the development of these types of systems and the management of epidemiological data
(section 1.1); the domain of semantic Web (section 1.2) and the thesis objectives, contributions
and structure (section 1.3).

1.1 Epidemiological surveillance systems

Epidemiological surveillance systems enable the collection, analysis, and interpretation of data, to-
gether with the dissemination of these data to public health practitioners, clinicians, decision mak-
ers and the general population for preventing and controlling diseases [27, 110]. It should support
timely, efficient, flexible, scalable and interoperable data acquisition, analysis and dissemination.
These information are essential to the planning, implementation and evaluation of public health
practices [27, 50]. Epidemiological surveillance can be done manually or automatically/semi-
automatically.

Semantic-aware epidemiological surveillance system

1.1 Epidemiological surveillance systems 2

1.1.1 Manual approach

Regarding manual management, data is collected using paper-based collection tools (forms, reg-
ister), analysed on the spot or transmitted to data analysis centers. The analysis is done by hand,
counting manually the number of cases, examinations, etc. and building statistical tables. Software
is often used to improve data collection and analysis. For example in many countries, the data is
collected in paper form and typed in input masks built using tools such as Excel, EPIINFO, EPI-
DATA, CSPRO, etc. These tools are then used to analyze these data. These are heavy tasks because
the health workers register data twice: on paper form and in a computer input mask. The statistics
obtained after data analysis are interpreted and transmitted to the decision-making centers by land
transport [12].

Mapatano et al. [84] have identified the main problems caused by manual management of
health data from the Health Information Systems in DR Congo. The main problems are low rates of
promptitude and completeness, the production of basic statistics are generally late, poor statistics
with some rates more than 100%, some rates less than 0% yet cases have been recorded, poor
dissemination of information and the absence of feedback to the data producers. In addition, lost
sight patients are difficult to identify. These problems may cause some damages. For example,
large delay or missing laboratory results of a communicable disease (for example tuberculosis,
measles or cholera) could not only have a clinical impact on the patient, but also keep them in an
infectious state. This can promote transmission of the strain and an epidemic can occur [21]. In
the case of TB, the patient may become multidrug-resistant (MDR) or extensively drug resistant
(XDR).

1.1.2 Automatic approach

With the rapid advancement of Information and Communication Technologies (ICT), the software
approach has proven to be more efficient. For example, Joaquín et al. [21] have proven that a Web-
based system to transmit laboratory reports decreases results delivery times, reduces redundancy
in resource utilization, provides faster and more complete notification for public health purposes,
decreases the number of reporting errors to health centers, and improves monitoring of patients.
In effect, with these systems, clinicians have greater access to their history and laboratory data.
ICT offers remarkable enhancement opportunities for epidemiological surveillance systems. The
software used may be developed from scratch or existing ones (e.g., District Health Information
Software-DHIS1 [37], OpenMRS2 [128]) may be adopted. In developed countries, the IT ecosys-
tem of epidemiological surveillance is a heterogeneous network of applications of different design
and developers [16]. For example, generally, there is a system for laboratory management, another
one for patient management and the third one for disease surveillance (in some cases, one per dis-
ease). The multitude of heterogeneous systems can slow the response to new requirements of the
healthcare landscape [117]. In addition, epidemiological surveillance systems evolve rapidly (new
drugs, new treatment protocols, etc.), leading to software updates which can take time (while wait-
ing for new versions) and be expensive [27]. On the other hand, depending on the data gathered on

1https://www.dhis2.org/
2http://openmrs.org/

Semantic-aware epidemiological surveillance system

1.2 Semantic Web 3

the field, the epidemiologists may need to collect additional data to evaluate a new parameter (for
example, the height of the patients in order to calculate their body mass index). These tasks may
be done by using additional materials such as paper or spreadsheet (which can lead to a problem
of data integration). Another solution is to introduce new requirements and the software updated
(which can lead to the problem of software regression).

The problem of failed software developed for epidemiological surveillance is often the result
of an unsystematic transfer of business requirements to the implementation [117]. This problem
can be avoided if the system is established using a well-defined framework/architecture permitting
the rapid development/update of the surveillance software by experts such as health workers who
do not master software engineering.

Epidemiological surveillance systems are generally implemented according to the Client-Server
architecture in which:

• the server runs one or more server programs which share their resources with one or many
clients;

• the clients are Web browsers which interpret and display information provided by the server.

This architecture assumes an open world in which information can be explicitly defined, shared
or distributed. Moreover, information can also be interchanged and used to make deductions or
queries. At the server side, information is generally stored in a relational database which is based
on a relational data model. To query and maintain the database, the standard Structured Query
Language (SQL) is used. Relational databases have proven in the last few decades their efficiency,
flexibility and performance for representing and managing data. However, the dramatic increase in
the use of knowledge discovery applications in the health domain requires the users/developers to
write complex database queries to retrieve information. Such users are not only expected to grasp
the structural complexity of complex databases but also the semantic relationships between data
stored in these databases. In order to overcome such difficulties, researchers have been working on
semantic annotation of data [60, 85, 89, 122].

1.2 Semantic Web

According to Tim Bernee Lee [129], "The Semantic Web is an extension of the current web in
which information is given well-defined meaning, better enabling computers and people to work in
cooperation". The meaning of information is made explicit with the help of the formal (structured)
and standardized representation of knowledge. Semantic Web permits us to: (1) automatically pro-
cess information before returning it to users; (2) describe and integrate heterogeneous data sources;
(3) automatically deduce implicit data or non-obvious data. To this end, each information source
is extended with a semantically structured representation. The most popular way to include these
semantics in the systems is the use of ontologies which complement the relational databases with
semantic annotations [85].

Semantic-aware epidemiological surveillance system

1.3 Thesis Positioning 4

Studer et al. [125] defined an ontology as "A formal, explicit specification of a shared conceptu-
alization". In the context of domain ontologies, conceptualization refers to the abstract model of the
domain which is machine readable and where all the elements are explicitly defined and accepted
by the members of a group. Several domain ontologies define and organize relevant knowledge
about activities, processes, organizations and strategies, in order to facilitate information exchange
between machines and between a human and a machine [58, 75]. Building domain ontologies
requires the access to domain knowledge owned by domain experts or contained in knowledge
sources [58, 127]. However, domain experts are not always available for interviews, and when they
are available, the knowledge provided is often incomplete and subjective. In addition, as the do-
main evolves, the knowledge provided by the experts is likely to be out of date. Therefore there is
a lot of added value in creating domain ontologies from existing knowledge sources such as struc-
tured and unstructured documents of the domain: texts [4, 5, 30, 55], databases [29, 32, 66, 144],
XML files [59], existing ontologies [79, 104, 124], UML/Meta-model diagrams [24, 42, 54, 141],
and source code [11, 13, 14, 23, 26, 144].

Although source code is often used to extract concepts and relations, its full potential is not
exploited to extract for example, axioms and rules [13, 14]. Actually, source code is any fully
executable description of a software designed for a specific domain such as medical, industrial,
military, communication, aerospace, commercial, scientific, etc. It can be used for the collection,
organization, storage and communication of information. It is designed to facilitate repetitive tasks
or to process information quickly. In a software design process, a set of knowledge related to the
domain is captured and integrated in the source code.

The extraction of knowledge from structured (relational databases, XML) and unstructured
(text, documents, images) sources is also known as ontology learning [7, 121, 132]. It consists
of applying statistical techniques, symbolic techniques or both to (semi-)automatically extract the
ontological knowledge from knowledge sources. Several authors have proposed the use of sym-
bolic techniques [11, 51, 144] and statistical techniques [23, 77] to extract generally concepts and
properties from source code. In this thesis, we propose an approach for extracting ontological
knowledge from Java source code using Hidden Markov Models (HMMs). This approach is used
to extract knowledge from EPICAM source code. After the extraction process, the knowledge ob-
tained is combined with the knowledge extracted from existing biomedical ontologies to construct
the Ontology for Tuberculosis Surveillance System (O4TBSS).

1.3 Thesis Positioning

The main goal of this thesis is to propose models, methods, and tools for stakeholders involved in
disease surveillance. The results are experimented in the epidemiological surveillance of tubercu-
losis (TB) in Cameroon. Indeed, 1.4 million deaths worldwide are caused by TB between 2011 and
2016 globally [56, 57]. The WHO reported 1.4 million people died from TB3 in 2019 (including
208 000 people with HIV). Worldwide, TB is one of the top 10 causes of death and the leading
cause from a single infectious agent (above HIV/AIDS) [138]. In the next paragraphs, we will
present the objectives, the contributions and the thesis structure.

3https://www.who.int/news-room/fact-sheets/detail/tuberculosis

Semantic-aware epidemiological surveillance system

1.3 Thesis Positioning 5

1.3.1 Objectives

Our main objective is to design methods, models and tools used to build semantic-aware epidemi-
ological surveillance systems. The two specifics objectives to achieve this goal are:

• The proposition of solutions for efficient development of data collection and management
systems;

• The proposition of solutions for the development of knowledge management systems.

1.3.2 Contributions

In this thesis, we propose a model for the generation of epidemiological surveillance systems and
another one for knowledge extraction from source code. The knowledge extracted is used to build
a domain ontology for the annotation of tuberculosis data. The overall works gave three main
contributions:

• A Model Driven Architecture (MDA) based approach for the development of epidemiolog-
ical surveillance systems: To solve the failed software development problem caused by an
unsystematic transfer of business requirements to the implementation [71, 112, 117], we
propose an approach based on MDA. This approach is used to develop EPICAM, a platform
for epidemiological surveillance of tuberculosis.

• A Hidden Markov Model (HMM) based approach for knowledge extraction from source
code: The development of the EPICAM platform allowed us to collect epidemiological data.
To facilitate the access to this data, we propose to use an ontology. The second contribution
of this thesis is a method that permits us to extract knowledge (or learn ontology) from Java
source code.

• An Ontology for Tuberculosis Surveillance System (O4TBSS): The third contribution of
this thesis is the Ontology for TB Surveillance System (O4TBSS). This ontology is built
using the knowledge learned from the EPICAM source code, EPICAM database and existing
biomedical ontologies.

1.3.3 Thesis structure

The rest of this document consists of five chapters and a conclusion:

1. Chapter 2 presents a review of epidemiological surveillance. This involves the presenta-
tion of the main components of epidemiological surveillance systems, approaches and tools
generally used to develop these systems, and the limits of these approaches and tools.

Semantic-aware epidemiological surveillance system

1.3 Thesis Positioning 6

2. Chapter 3 makes a review of Model-Driven Architecture and agile methodology. Thereafter,
we present an approach based on MDA to successfully develop epidemiological surveillance
systems. At the end, we show how this approach was used to develop EPICAM, an epidemi-
ological surveillance platform of tuberculosis.

3. Chapter 4 presents a review of ontology engineering. Firstly, we present how ontologies
are modelled, built and validated. Thereafter, we review ontology learning data sources,
techniques and evaluation.

4. Chapter 5 details the approach we propose in this thesis for knowledge extraction from
Java source code. Considering that HMMs are probabilistic models, we start this chapter by
presenting probabilistic models and Hidden Markov Models. Thereafter, the source code is
presented. Finally, we present the HMM-based approach for knowledge extraction from Java
source code and we apply this approach to learn knowledge from EPICAM source code.

5. Chapter 6 presents an ontology constructed using knowledge extracted from EPICAM
source code, databases and some biomedical ontologies. In this chapter, we present the
methodology used to construct this ontology, the ontology constructed and use cases.

6. The conclusion summarizes the entire work and presents the direction of our future research.

Semantic-aware epidemiological surveillance system

2
A review of epidemiological surveillance

systems

Epidemiological surveillance systems examine the factors that determine the occurrence and the
distribution of diseases or other pathological manifestations [50, 134]. They are usually put in
place for diseases of epidemic potential; when one is faced with a new problem and would like to
know its extent (for example, if one discovers a case of Ebola virus disease); when one wants to
eradicate a disease and would like to follow the process (for example epidemiological surveillance
of tuberculosis); or when one is faced with a problem and the Health Information Systems (HIS) do
not provide the expected information [134]. To have a good surveillance system, it is important to
focus on the collection, analysis, interpretation and dissemination of data. Data used in surveillance
systems are in large quantities (census, survey, patient information, services and resource data) and
come from different data sources (figure 1).

The objective of this chapter is to make a review of epidemiological surveillance systems,
which is the domain of application of this thesis. Then, the section 2.1 presents the epidemiological
surveillance process. Sections 2.2 and 2.3 present the architectures and tools generally used and
the section 2.4 presents the epidemiological surveillance of tuberculosis in Cameroon.

2.1 Epidemiological surveillance process

This section presents the main activities of epidemiological surveillance systems. In the next para-
graphs, we will present the data collection (section 2.1.1), data analysis (section 2.1.2), information
interpretation and dissemination to stakeholders (section 2.1.3).

2.1.1 Data collection

Data is at the center of any system because it is used to make rational decisions. Epidemiologi-
cal surveillance systems provide the Health System with the necessary information for decision-

Semantic-aware epidemiological surveillance system

2.1 Epidemiological surveillance process 8

Figure 1: Multiple sources of information [65]

making and action taking. This section presents the epidemiological data collection and the main
functionalities of a data collection system.

Epidemiological surveillance systems permit us to collect data that will be used to answer the
questions Who? Where? When? [27, 133, 134].

• Who? It must provide information on targeted and at-risk populations (stratified by sex, age,
etc.);

• Where? It must provide information about the locations, where the different disease cases
are reported and equally gives the statistics on the spatial distribution of these diseases;

• When? It must specify the periods when the disease cases are usually reported. It should be
possible to identify the periods where there are more or less reported cases.

In epidemiological surveillance systems, data collection is a continuous and regular activity
closely linked to health decisions and the implementation of health programs. Specific objectives
are developed according to the needs of health programs and the priorities of each country [17,
133, 134]. However, data helps Health System to [27]:

1. Detect issues and outbreaks as early as possible: Data collection will help to determine
the health profile of the population and detect any changes, identify new emerging prob-
lems, recognize cases or clusters of cases to trigger interventions to prevent transmission or
reduce morbidity and mortality, detect epidemics, identify risk factors and high risk popula-
tion groups, etc.;

2. Monitor trends of health status of the population and consider priorities on a continu-
ous basis: For example, the monitoring of medical consultation data may help us to assess
the need of the population for health care services, set priorities, guide public health policy
strategies and make informed decisions related to resource allocation;

Semantic-aware epidemiological surveillance system

2.1 Epidemiological surveillance process 9

3. Assessing public health impacts and trends of new emerging health problems: For ex-
ample, the identification of economic and social impact that influence the health of a popu-
lation;

4. Assessing the effectiveness of the interventions and the health services offered: For ex-
ample, the data will be analyzed and used to evaluate the effectiveness of health interven-
tions;

5. Make sure that resources are directed to the needed sectors and groups: From data,
places and people at risk will be determined;

6. Support health research: For example, data will help researchers to formulate hypotheses
that lead to analytic studies about disease causation, propagation, or progression;

To achieve these objectives, the content of the systems are grouped according to three key axes
including standards and indicators, tools and instructions, coordination and supports [133]:

• Indicators are variables, reproducible in time that allow decision makers to estimate objec-
tively the size of a health problem and monitor the processes, the products, or the effects of
an intervention on the population. They enable us to follow the evolution of the achievement
of the objectives. To define them, the question about the categories of information gathered
by the surveillance system is posed.

• A minimum standard is used to determine the minimum acceptable level in the achievement
of each indicator. The standards are adapted to the specific environment in which they are
used and must be based on the validity of each operation. In the absence of country-specific
data, international standards can be used. Thus, the tools to be used for data collection, the
people in charge of this task, the timing of data collection and how data should be collected
should be clearly defined.

• Coordination and support should help to avoid time wastage when the same data is collected
severally by different people.

The health system of the majority of sub-Saharan African countries is organized in a pyramidal
form (figure 2) and data is produced at all levels of the system [98, 99]. Data from lower levels are
sent to upper levels to report on the overall health situation. Data collectors can be health workers
in health centers, community relay agents in the community, any person or organization that can
provide health information. Data is generally collected in different formats: paper, data collection
forms, registers (consultation register, hospitalization), databases, Excel files, Word files, SMS,
etc.

The main functionalities for data collection systems are [27, 62, 65, 97, 133, 134]:

• Data recording: The system must be able to record all data entered by users in a consistent
way;

Semantic-aware epidemiological surveillance system

2.1 Epidemiological surveillance process 10

Related structures
- providers
- Promoting
- Relay support

Central level
Ministry of Public Health

(Cabinet - Secretariat of State - General Secretariat)
Directions - Divisions

Intermediate level
10 regional delegations of health

- Technical support, coordination, control, monitoring and
evaluation of Health Districts
- Regional and similar hospitals
- Polyclinics

Peripheral level
Health District

- Operational level
- Reference hospitals (District Hospitals)
- First line health service
- Community

Strategic

Technical support

Operational

National Health
Council

National Health
Council

Regions

Township

Villages /
Neighborhoods

District Health
Committee

Health Committee of
the Health Area

Figure 2: Organization of the health system [98]

• Data Control: The system must provide a check module when saving data to avoid missing
or erroneous data;

• Data transmission on time: A data transmission system must allow the collected data to be
transmitted in a timely manner to the stakeholders;

• Data Access Security: The system should grant access to data to entitled users;

• Data pre-processing: The system must provide a minimal analysis of the data;

• Feedback of information: The system must inform data collectors on the use of data;

• Data Integration: The system must allow the integration of other data sources;

• Data Backup: The system must have a data backup mechanism to ensure that the recorded
data will be retrieved when it is needed;

• Platform evolution: To facilitate its evolution, the system must evolve in order to meet users
needs.

Semantic-aware epidemiological surveillance system

2.1 Epidemiological surveillance process 11

2.1.2 Data analysis

After the collection of data, its analysis will enable the extraction of useful information, by reduc-
ing the data to a few easy-to-understand indicators, tables and graphs [27]. These are called statis-
tics. The data collected has many values when integrated with other information (figures 3). For
example, combining malaria epidemiological data with climate data can be used to track changes
in incidence of malaria.

The analysis permits us to determine the occurrence of a health concern and the characteristics
and behaviours of people with a health concern as well as changes over time. The analysis of
data should be done in terms of time, place, and person by looking at time trends, geographic
distributions and comparing age, sex, and population groups. More advanced data analysis include
space-time clustering, time-series analysis, geospatial analysis, linear/logistic regression trends and
small area analysis, mathematical models to study the dynamic of infections within communities
of people. Methods for the forecast of epidemics based on data may be done when necessary [27].

The information obtained after the analysis of data is communicated to decision-makers in a
form that changes their understanding of health issues and needs (indicators, tables, graphs, cards).
Thus information becomes evidence to justify decisions made by decision-makers. The real impact
on health of the measures taken is controlled by the information system by measuring the evolu-
tion of health indicators (figures 3) [65]. During data analysis, the description and presentation
of data is made by identifying their interesting aspects and revealing their structures. It will en-
able, for example, a health district to determine priorities for better resource management, provide
knowledge about the disease, risk behaviors, health service coverage, indicator trends, and system
performance. Table 2.1 gives an example of a priority table that the district can use and the table
2.2 an example of using this table after analysis of disease data.

Score
Score Value + ++ +++
Importance of the disease Low Medium Strong
Efficiency of the intervention Fairly efficient Efficient Very efficient
Cost of the intervention High Medium Low

Table 2.1: A model of priority table in the District [134]

The analysis of data goes through the definition of the flow of information within the system
and their circulation. The demand and supply of health information varies at each level of the
health system. Thus the data must be analyzed according to the frequency of control, the different
volumes of information, and especially the different information needed by the users at each level.
Information obtained after the analysis of data may allow at the level of the individuals and com-
munities, to ensure effective clinical management and assess the extent to which a community’s

Semantic-aware epidemiological surveillance system

2.1 Epidemiological surveillance process 12

Disease Relative importance (morbidity, mortality) Efficiency Cost Priority (score)
Measles +++ +++ +++ 9
Diarrhea +++ + +++ 7
Malaria +++ + + 5
Tuberculosis ++ + + 4
Stroke + + + 3
Leukemia + + + 3

Table 2.2: Example of using the priority table [134]

needs and demands are met. At the level of health partners, to make decisions about the actual func-
tioning of health services and resource allocation; at higher levels, such as headquarters, donors,
and Ministries of Health, to help develop strategic policies, recommendations, ensure development
and for resource mobilization.

Figure 3: Integration of different information sources [65]

The analyzed data is made available to decision makers via user dashboards, reports, queries
and alerts (an illustration is given by the figure 3). Such formatting is an essential function of the
system in order to demonstrate the value of the data it contains.

Data analysis may face some problems: Mapatano and Piripiri [84], asserted that data is gen-
erally un-analyzed or poorly analyzed. From the evaluation of some health information systems
in low income countries, we noticed that many systems are rich in data and low in information
[84, 98, 99]. However, for data to be used, raw data must be analysed and disseminated to dedi-

Semantic-aware epidemiological surveillance system

2.1 Epidemiological surveillance process 13

cated users.

2.1.3 The interpretation and dissemination of information

Data analysis must be followed by its interpretation. Interpretation will help for example to know
whether the apparent increases in disease occurrence within a specific population at a particular
time and place, represents the reality. For instance, it can be due to the migration of population.

Effective communication strategies must address the needs of a heterogeneous group of users,
and overcome challenges in relaying timely information to even the most peripheral sites. In fact,
the final stage of the surveillance process is the timely communication of information to users.
These users need to know about the sensitization, program planning and decision-making. They in-
clude public health practitioners, health planners, epidemiologists, researchers, and policy-makers
as well the general public and media houses. In addition, recipients should include those who
provide reports and those who collect the data [27].

The dissemination of information is two-way, following the health system pyramid presented
by the figure 2: lower levels to higher levels and higher levels to lower levels (Regular feedback
to health workers enhances data quality as well as effort and interest in the surveillance). Data is
collected in health centers and sent to the district to report on the health situation in the health area.
Once in the district, the data from the various health centers are compiled to know the situation
in the district and the data is sent to the region. Data from districts of each region are synthe-
sized and forwarded to the central level. At the central level, information will be used to know
the national health situation of the population. From the central level, health information is dis-
seminated to stakeholders: The National and regional health authorities; health district and health
center officials; local community organizations; the general population; non-governmental health
organizations; and health partners. However, the presentation of information depends on the users.
For example, the tables and graphs are used to present the health situation during health district
coordination meetings, reports are sent to higher levels using secure mail, SMS are used to raise
awareness in the population. At each level of the pyramid, information is used:

1. Peripheral level: It is the base of the pyramid and is considered as the operational level.
In Cameroon, it consists of the health districts. Each health district covers a well-defined
geographical health area with several health centers [99]. At this level, information can be
used to know the needs of the population in terms of health care;

2. Intermediate level: It is the center of the pyramid and is the technical support level. In
Cameroon, it is made up of the regional delegations of public health. Each regional delega-
tion of public health covers a well defined health area, and is made up of Health Districts.
At this level, information is used, for example, to transform health strategies into technical
programs to be applied at the health district level;

3. Central Level: It is the top of the pyramid and is the strategic level. It covers the entire
country. It consists of health services and central structures of the Ministry of Public Health.
At the central level, information can be used to design strategic frameworks, develop and
mobilize resources.

Semantic-aware epidemiological surveillance system

2.2 Epidemiological surveillance systems architectures 14

To be useful, each level of the health system must have information for decision-making re-
sulting from data collected by the different structures of the level [98, 99, 134]. These information
will be used to answer the following questions [134]:

• "Here?" Where are we now? The goal is to assess the health situation of the population and
to determine the resources available;

• "There?" Defining a health policy with clear objectives and well-defined targets;

• "From here to there?" How do we get there? It aims at determining the targets (locality,
population) and actions to put in place corresponding to the needs of these targets.

These questions are posed at all the levels of the health system in order to determine the use of the
information:

1. At the central level: The information enables the definition of health objectives and strate-
gies, the development and mobilization of health resources, the improvement of manage-
ment, etc.

2. At the intermediate level: Information enables the selection and adaptation of techniques
for the implementation of health policies in health districts, technical coordination of health
structures, synthesis and administrative management of staff, etc.

3. Peripheral level The peripheral level is the operational level of the health system. The in-
formation is used to know the epidemiological profile of the population of the health area,
thus, making it possible to prepare for an advocacy; to inform the population about health
problems and how to protect themselves against diseases. At this level, the integration of
resources to make effective the actions of the health system in the community is made.

2.2 Epidemiological surveillance systems architectures

Epidemiological surveillance is generally implemented according to the client-server architecture
[12]:

• The client: The client uses a data collection tool that may be a paper form or an electronic
form (in a computer or a mobile phone). In the case of epidemiological surveillance, the
client is generally the doctor who is treating the patients, the laboratory technician who does
the laboratory exams, or the pharmacist who gives the medication to the patient;

• A communication medium: It connects the client terminal to the server. This medium can
be the Internet network, the mobile network (GSM, GPRS etc.), or a USB key in a car in the
case of data transmission using roads, rivers, etc;

Semantic-aware epidemiological surveillance system

2.2 Epidemiological surveillance systems architectures 15

• Multiple Protocols: These can be used to send data collected from the client to the server:
paper, SMS, MMS, HTML, WML, i-HTML. The protocol for conveying the data is generally
dependent on the transmission medium. For example, for the transmission by surface, paper
are used;

• Once at the server level, the data is saved in a database and used for decision making.

Depending on their implementation and data management process, surveillance systems can be
categorized by: Form-Route-Server (section 2.2.1), Mobile-MobileNetwork-Server (section 2.2.2),
Computer-Internet-Server/Computer-MobileNetwork-Server (section 2.2.3) and multi-strategy ap-
proaches (section 2.2.4) [12].

2.2.1 Form-Route-Server architecture

Form containing different data collected

Server with datbase

USB key containing data

Figure 4: Form-Road-Server architecture

Form-Route-Server architecture uses forms (paper or electronic) for data collection and the
road for data transmission (Figure 4). The client is a person who collects data either with a pa-
per form, or an electronic form in a computer (for example, the data entry forms of EpiInfo).
These tools are used to record data and store on removable media [12]. The removable media are
transmitted via the road to decision-makers. This architecture is the most common in developing
countries who do not have an electronic data collection system [98, 99, 88, 105] or in areas where
the network is broken [143].

The Form-Route-Server architecture will ensure the reliability and completeness of data be-
cause the information collected can be typed. It is robust because it can use many communication

Semantic-aware epidemiological surveillance system

2.2 Epidemiological surveillance systems architectures 16

mediums (road, air, sea). On the other hand, the promptitude of data is not always guaranteed be-
cause the distance between the server and the client is often long and the quality of roads is poor.
Data security can be ensured in the context of numeric files (encryption) but it is more difficult
in the context of paper. There is no control to ensure that the forms will be completely filled and
to avoid missing data. This architecture is not versatile because an update of paper forms or the
electronic form on a computer disconnected from the network is a heavy operation [12].

2.2.2 Mobile-MobileNetwork-Server architecture

Mobile-MobileNetwork-Server architecture uses mobile phones for data collection and the mobile
network for data transmission (Figure 5). In this architecture, the mobile phone is the client and
the mobile network is the medium of communication. The data collector enters the data in a SMS
or MMS draft and the transmission is done via the available mobile network (GSM, GPRS etc.) to
the server [12]. Because mobile networks are the most widespread in the world, this architecture
is often implemented in the management of health crises in developing countries [96] or countries
affected by natural disasters [143]. Examples of software implementing Mobile-MobileNetwork-
Server architecture are RapidSMS, ODK, Magpi, DHIS.

GSM network

The server of data

Mobile phone for typing
SMS and MMS

Mobile phone for
typing SMS and
MMS

Mobile phone for
typing SMS and
MMS

Mobile phone for
typing SMS and
MMS

Figure 5: Mobile-MobileNetwork-Server architecture

The Mobile-MobileNetwork-Server architecture ensures the promptitude of the data because
SMS and MMS are transmitted immediately to decision makers. But completeness and consistency
is not always guaranteed because the data is entered in SMS or MMS. It is possible that the data
collectors forget to enter certain data. Security is not guaranteed because the data is difficult to
encrypt. Finally, it is not versatile because the modification of an element can disturb the data
collector and require training it again. On the other hand, it is robust because mobile networks are

Semantic-aware epidemiological surveillance system

2.2 Epidemiological surveillance systems architectures 17

easy to deploy, resilient to natural disasters and is the most widespread in many countries in the
world [12].

2.2.3 Computer-Internet-Server architecture

This architecture (shown in Figure 6) uses a standard Web application for data collection and
management. The client is a computer or a smartphone and the medium of communication is the
Internet. The data exchange protocol is usually HTML or an assimilated language [12]. Exam-
ples of software implementing the Computer-Internet-Server architecture are DHIS, OpenMRS,
RapidSMS, Damoc, webTBS, etc.

Internet network

The server of data

Computer containig HTML form
Computer containig HTML form

Computer
containig
HTML form

Computer
containig
HTML form

Smartphone
containig
HTML form

Smartphone
containig
HTML form

Figure 6: Computer-Internet-Server architecture

Computer-Internet-Server guarantees promptitude because the Internet is fast enough com-
pared to the time required by the health system. Thanks to the data exchange protocols used, the
chances of obtaining reliable data are great. In fact, the information collected can be verified and
the transmission errors avoided thanks to the TCP/IP protocol. The TCP/IP protocol will also pro-
vide a high level of security through data encryption. This system is also versatile, only the server
must be updated if the application changes. Note that the Internet is not always available in some
rural areas. Because it is difficult to deploy (more than mobile network), this system may be diffi-
cult to put in place in some contexts.

Semantic-aware epidemiological surveillance system

2.3 Epidemiological surveillance tools 18

2.2.4 Multi-strategy architecture

Some surveillance systems used a combination of several architectures. For example, for the epi-
demiological surveillance of tuberculosis in Cameroon, the Form − Route − Server and the
Computer− Internet− Server architectures were combined. In order to improve the collection
and management of tuberculosis surveillance data, the National Program to Fight against Tubercu-
losis (NTCP) in Cameroon has put in place a pilot project for electronic surveillance of tuberculo-
sis. The software developed in this project was deployed in 25 health centers and the remaining 115
centers continue to use paper forms for data collection and the road for data transmission. After
the 2010 Sichuan Earthquake in China, the electronic data collection and management system was
damaged by the earthquake. The Chinese government has combined the Phone-NetworkMobile-
Server system with the computer-Internet-Server system for the transmission of the data [143].

2.3 Epidemiological surveillance tools

Epidemiological surveillance can be done manually, automatically or semi-automatically. This sec-
tion presents the tools generally used for epidemiological surveillance.

2.3.1 Data collection tools

Data collection is done using the tools built according to the information needs of the different
stakeholders. When epidemiological surveillance is manual, the tools comprise paper sheets, reg-
isters, medical notebooks, etc. These tools are filled by the health workers to keep records of pa-
tients’ health problems. However, this system may lead to loss of data, unreadable data and poorly
inputted data [84]. In addition, these data are generally transmitted by land transport, air or water,
which can lead to the problems of promptitude and physical data security.

Developed countries [16] have de facto adopted electronic data collection tools. In fact, these
tools provide real-time data to different stakeholders and facilitate the automatic production of
basic statistics and reports. In these countries, the data collection tools are generally integrated
in an epidemiological surveillance platform permitting the collection, but also the analysis and
the automatic generation of basic statistics and reports. Given the problems of the manual data
collection in certain situations (e.g., the outbreak of cholera in Cameroon in 2010), like the low-
resource settings, they generally use mobile phones to improve the data collection system [62].
With this system, data is inputted in a preformatted SMS and sent to the decision centers. This
permits us to obtain data in real time in the decision centers. However, sometimes errors may
occur during the typing of the SMS [12].

With the software approach, depending on the data gathered on the field, the epidemiologists
may need to collect additional data in order to explain a phenomenon (for example, the height of the
patients in order to calculate their body mass index). This task may be done by using supplementary
materials such as paper form or spreadsheets, which can lead to a problem of data integration.

Semantic-aware epidemiological surveillance system

2.3 Epidemiological surveillance tools 19

New requirements can be introduced and the software updated, which can lead to the problem of
software regression.

2.3.2 Data analysis tools

Data analysis is done manually or using dedicated tools. When the analysis is manual, health
professionals proceed by hand counting. Then, the manual analysis is tedious and usually error
prone. In addition, some useful statistics such as Principal component analysis, linear and logistic
regression, etc. are rarely applied and some relevant statistics may be lost.

Software is often used to improve data analysis. For example, in many developing countries,
data is collected using paper form and inputted in an input mask built using tools such as EPIINFO1

or EPIDATA2. Thereafter, these tools are used to analyze these data. This is a heavy task because
the health worker registers the data twice: on paper form and in a computer input mask. The
statistics obtained after data analysis are interpreted and transmitted to the decision-making centers
by land transport, air or water.

In developed countries, epidemiological surveillance tools generally contain data collection
and analysis modules. The data analysis module permits the production of basic statistics. For
example, in the US, CDC (Centers for Disease Control and Prevention) has built a tool to improve
the ability to understand health statistics through visualization; most timely estimates of births,
deaths, and infant deaths can be visualized with this tool [62, 110].

2.3.3 Tools for information dissemination

The statistics obtained after data analysis is interpreted and the information is disseminated to
different stakeholders. These actors can be divided into three broader groups: health workers, epi-
demiologists, decision makers and the population. With the manual management, reports are sent
to the health authorities by email or using postal services. In some cases, a person is designated
to transport these data to the centers where they will be used. However, with this system, physical
data security and access security cannot be guaranteed. In addition, the feedback to the data pro-
ducer (health workers) on the use of the information is rare. The electronic system usually allows
for the production of basic reports in time and which can be used as a starting point for decision
making.

The dissemination of information to the public (health information/advice/warning) is usually
done through the mass media, local community meetings, health communities, or door-to-door
outreach. However, it can be difficult to reach certain villages. In the big cities, people go out to
work during the day and can miss important health information [134]. To overcome these problems,
given the high rate of the use of mobile phones, SMS are increasingly used.

1https://www.cdc.gov/epiinfo/index.html
2https://www.epidata.dk/

Semantic-aware epidemiological surveillance system

2.3 Epidemiological surveillance tools 20

According to the importance of the disease/outbreak, reports are produced daily, weekly, or
monthly and are made available to decision makers, epidemiologists, scientists, the press and the
public. Examples of Polio in 1955 (daily reports), influenza in 1961 (weekly reports) in the US
[62].

In developed countries, the basic reports are automatically generated by the surveillance sys-
tems and made available to the different stakeholders. In some cases, special tools (e.g., mobile
phones) are made available to improve access and visualization for different purposes [62].

2.3.4 Electronic surveillance tools

To overcome the problem of manual management of epidemiological surveillance, many countries
have adopted the use of electronic tools. These tools can be developed using a traditional approach
for software development (Figure 7). It follows the complete development cycle such as specifi-
cations, analysis, design and implementation. This approach generally uses languages like Unified
Modelling Language (UML) and methods like Unified Process (UP) or Merise in the analysis and
design steps. The conceptual model is usually designed at once and is used to develop the software
[20].

UML Models

Development tools
Software

source code

Evolution/complements

Figure 7: Classic approach for software development

In many developed countries, national communicable diseases surveillance systems (NCDSS)
[16] such as CDC in the US are being developed. These systems are composed of the different
features of the epidemiological surveillance system (data collection, analysis, and dissemination)
[17]. Currently, these systems are not accessible to the general public. In some cases (mainly in
resource poor settings or when an outbreak occurs) different tools to achieve different features of
epidemiological surveillance are developed and used. Then, a tool may be used for data collection,
another one for data analysis and another for information dissemination.

A review of tools used for epidemiological surveillance:

Semantic-aware epidemiological surveillance system

2.3 Epidemiological surveillance tools 21

• RapidSMS3: It is an Open Source framework based on the Django framework and devel-
oped in 2009 by UNICEF. It can be used to develop epidemiological surveillance platforms
accessible by mobile phone4. RapidSMS was used to monitor malnutrition Nigeria in 20095,
Ethiopia in 20096 and Senegal in 20107.

• District Health Information Software (DHIS)8: It is an open source software whose first
version was developed at the University of Oslo in Norway. It has been used to put in place
health information systems in more than 30 countries in Africa, Asia and Latin America.
Kenya, Uganda, Rwanda, Ghana, Liberia and Bangladesh have adopted it as their Health
Information System.

• Damoc9: It is a software developed by EpiConcept for centers to fight against tuberculosis
in France. It allows each health center to collect data and produce statistics and reports of
activities on the performance of tuberculosis treatment. Damoc is currently used for epi-
demiological surveillance of tuberculosis at Ile de St. Martin in France.

• BK410: It was developed in France by Epiconcept in collaboration with the Institut de Veille
Sanitaire (InVS). It is used in the ARS (Agence régionale de la santé) in France for the
surveillance of tuberculosis.

• OpenMRS11: It is used to support healthcare delivery in developing countries. It was born
out of the need to intensify the follow-up of patients living with HIV in Africa, but, from the
outset, it was designed for the management of patients’ medical records, thus enabling them
to support a full range of medical care. OpenMRS is used in several continents in a variety
of contexts: patient medical records, epidemiological surveillance and research. It has been
used for the monitoring of multidrug-resistant tuberculosis in Peru.

• WEB-TBS: It is used in Djibouti for tuberculosis surveillance12. With WEB-TBS, users
use online forms and reports which are identical to that of the WHO standard indicator’s
registration and identification systems.

In spite of the advantages of electronic reporting systems and despite the fact that national
communicable diseases surveillance systems have been in place, the results revealed that the elec-
tronic surveillance systems of the studied countries are far from the desirable state at both local
and state levels. The experience and profiles of developed countries indicate that such systems
could not be initiated so long as the proper infrastructures are not implemented for data exchanges
across different centers. Poor communication among the centers and organizations related to the
management of communicable diseases at different levels was one of the drawbacks identified in
the studies carried out in these countries [17].

3http://www.rapidsms.org
4http://www.rapidsms.org
5http://www.rapidsms.org/case-studies/nigeria-monitoring-supplies-in-a-campaign-setting
6http://www.rapidsms.org/case-studies/supply-chain-management-during-food-crises/
7http://www.rapidsms.org/case-studies/senegal-the-jokko-initiative
8https://www.dhis2.org
9http://www.epiconcept.fr/en/produit/damoc

10http://www.invs.sante.fr/applications/bk4
11http://openmrs.org/
12http://www.emro.who.int/fr/dji/djibouti-events/atelier-formation-tuberculose-lutte-surveillance.html

Semantic-aware epidemiological surveillance system

2.4 Epidemiological surveillance of tuberculosis 22

In developed countries, the IT ecosystem of epidemiological surveillance is a heterogeneous
network of applications of different designs and developers. For example, generally there is a sys-
tem for laboratory, patient management, disease surveillance (and in some cases, one per disease).
The multitude of heterogeneous systems can slowly react to new requirements that are brought up
by changes of the care landscape [117]. In addition, epidemiological surveillance systems evolve
faster (new drugs, new treatment protocols, etc.), leading to software updates which can take time
(while waiting for a new version) and are costly [27]. On the other hand, depending on the data
gathered on the field, the epidemiologists may need to collect additional data in order to explain a
phenomenon (for example, the height of the patients in order to calculate their body mass index).
This task may be done by using supplementary materials such as paper or spreadsheets (which
can lead to a problem of data integration) or new requirements can be introduced and the software
updated (which can lead to the problem of software regression).

The problem of failed software used for epidemiological surveillance are often the result of
an unsystematic transfer of business requirements to the implementation [117]. This problem can
be avoided if the system is established using a well-defined framework/architecture permitting the
rapid development/update of the surveillance software by non-informatics experts such as health
workers. Chapter 3 presents the approach we propose for this problem.

2.4 Epidemiological surveillance of tuberculosis

The recognition of Tuberculosis’ (TB) substantial burden has kept TB control at the top of the
international public health agenda since the 1990s. In this section, after the presentation of tuber-
culosis, we will present how the National Tuberculosis Control Program (NTCP) in Cameroon has
been designed to fight against TB in Cameroon.

2.4.1 Tuberculosis

Tuberculosis (TB) is an infectious and contagious disease caused by Mycobacterium tuberculosis
or Koch Bacillus (BK). One third of the world’s population is estimated to be latently infected
with TB bacteria; about 1.4 million deaths caused by TB between 2011 and 2016 [56, 57]; 8.7
million new cases in 2011 [56]; 10.4 million new cases in 2016 [57]; 1.3 million deaths underlying
caused by TB among HIV patients. The WHO reported 1.4 million people died from TB13 in 2019.
Tuberculosis remains a global scourge. It is the top killer amongst infectious diseases globally
[57, 138].

Developing countries are those who are most affected. It is a disease of poverty that thrives
where social and economic determinants of ill health prevail, and it affects mostly young adults in
their most productive years; 95% of TB deaths being in the developing countries. The proportion
of TB cases coinfected with HIV was the highest in countries in the African Region; overall, 39%
of TB cases were estimated to be coinfected with HIV in this region, which accounted for 79% of

13https://www.who.int/news-room/fact-sheets/detail/tuberculosis

Semantic-aware epidemiological surveillance system

2.4 Epidemiological surveillance of tuberculosis 23

TB cases among people living with HIV [56, 57].

Most recently, the global concerns about the emergence of multidrug-resistant and extensively
drug resistant TB (MDR and XDR-TB) caused by the bacterium’s resistance to the usual drugs
complicates the management of TB and represents one of the most important emerging challenges
in the control of TB worldwide. In fact, the MDR and XDR-TB treatment is long, costly and less
effective. Also, resistant strains can propagate to other individuals. For example, among patients
with MDR-TB who started their treatment in 2009, only 48% were successfully treated. Among
a subset of 200 patients with XDR-TB in 14 countries, treatment success was only 33% overall
and 26% died [56, 57]. Then, MDR and XDR-TB are global concerns in the world of today. The
management of drug resistance is based on the prevention of resistant strains and the early detection
and proper treatment of patients.

Conscious of that, ambitious targets for reduction of the epidemiological burden of TB have
been set within the context of the Sustainable Development Goals (SDGs) and the End TB Strat-
egy. Achieving these targets is the focus of national and international efforts. Global targets for
reduction in the epidemiological burden of TB have been set for 2015 and 2050 within the context
of the Millennium Development Goals (MDGs) and by the Stop TB Partnership [56, 57]. The goal
being that the prevalence and death rates should be halved by 2015 compared to their levels in
1990, and that TB should be eliminated as a public health problem by 2050 (defined as less than
one case per million population) [56]. To reach these targets, data must guide decision making. To
prevent susceptible individuals from becoming infected or developing the disease, an epidemiolog-
ical surveillance system of the disease must be put in place and reinforced by other activities that
can help to identify and treat the patients in time. To strengthen the epidemiological surveillance,
additional activities including population sensitization, drug management, recall of patient for drug
taking, etc. are generally integrated [17, 27, 62, 110]. For example, in Cameroon to efficiently fight
against tuberculosis, the Cameroonian National Tuberculosis Control Program (NTCP) in addition
to epidemiological surveillance manages anti-TB drugs, follow-up appointments of patients, sen-
sitization of patients, etc.

Tuberculosis is transmitted by air from a patient with pulmonary tuberculosis. Contamination
occurs through droplets, loaded with tubercle bacilli from the patient’s lungs. These fine droplets
are produced when the patient sneezes, coughs, speaks or laughs. They dry quickly and can remain
suspended in the air for several hours. Other modes of transmission of TB bacilli, such as manual
contact with contaminated objects or the accidental introduction of the bacillus through the skin
are very rare and of no epidemiological significance [105].

The main reservoir of the tubercle bacillus is the pulmonary TB patients with positive mi-
croscopy (TPM+). TB patients with negative microscopy (TPM-) rarely transmit the disease. Pa-
tients with extra-pulmonary TB are non infectious [105]. The screening and treatment of pul-
monary TB is the main goal of the NTCP.

The treatment protocol of every patient is defined according to their bacteriological status
(pulmonary TB or negative pulmonary TB), the location of the disease (pulmonary or extra-
pulmonary), the patient’s therapeutic history (never been treated or already treated for TB). Patients
are classified in: new cases (that have never been treated) and cases to retreat (in case of relapses
or failures). Many reasons may cause the failure of the TB treatment: the non-intake of the medi-

Semantic-aware epidemiological surveillance system

2.4 Epidemiological surveillance of tuberculosis 24

cation regularly, the non completion of the TB medication as prescribed by the health personnel.
Roughly, if the treatment protocol is neglected, it will fail and this may lead to multidrug-resistant
and extensively drug resistant TB [95].

TB control is based on preventing susceptible individuals from becoming infected, infected
individuals from developing the disease and individuals with TB from contaminating others. To do
this, surveillance data will permit us to measure the burden of the disease and thus, serve as the
basis to inform decisions regarding the planning and targeting of health care interventions at the
national and international levels [28].

2.4.2 Tuberculosis surveillance in Cameroon

To fight against TB, the government of Cameroon has put in place the National Tuberculosis Con-
trol Program (NTCP). In 2002, it was recognized as a priority program of the Ministry of Health
(central level). It is now attached to the Ministry of Health following the reorganization of the pro-
gram in 2002 with the creation of the National Committee to Fight Against Tuberculosis, its Cen-
tral Technical Group and its decentralized units. This testifies the determination of the Cameroon
government to effectively fight against this disease.

The goal of the NTCP is to detect, treat patients with TB and prevent the disease in persons
at risk. Persons at risk are children who have been in contact with an adult with TB or persons
living with HIV. To do this, NTCP has 248 Centers for Diagnosis and Treatment of Tuberculosis, a
national reference laboratory (Centre Pasteur du Cameroun - CPC), four reference laboratories and
has put in place a system to monitor the disease. To treat patients and prevent the disease, NTCP
has put in place an epidemiological surveillance system.

To detect and treat patients, NTCP uses passive screening of symptomatic patients by micro-
scopic examination of sputum (bacilloscopy). The health personnel who take care of the patient
must identify the closest hospital to the patient’s home for his/her treatment. At the hospital level,
patient’s data is collected and recorded in the TB Registry and treatment is initiated. The patient’s
treatment data are recorded each time he/she goes for an appointment at the hospital using differ-
ent data collection tools, which are paper based (treatment card, tuberculosis register and patient’s
card). To treat all children below 5 years of age, who have had contact with a TB case, health per-
sonnel must sensitize the patient to bring children who have been exposed for prevention. To this
end, all patients must complete a form for all children exposed to the disease. This form allows,
depending on the child’s history (illness, contact with a TB case) and laboratory tests to deter-
mine whether the child should follow or not a treatment. At the end of the treatment, the patient’s
issue (healing, treatment completed, failure, death, lost sight, transfer) must be recorded in the
tuberculosis register. When screening or treating a patient, he/she may be transferred or referred:

• Transfer: a patient is transferred if he/she initiated his/her treatment in a hospital (hospital
A) and decides to continue in another hospital (hospital B). Hospital A delivers a certificate
allowing him to continue the treatment in hospital B. Thus, the patient no longer needs
to register in hospital B. At the end of the treatment, hospital A must be informed of the
treatment issue.

Semantic-aware epidemiological surveillance system

2.4 Epidemiological surveillance of tuberculosis 25

• Referral: a patient is referred if he/she initiated his treatment in a hospital (hospital A) and
the doctor decides for some reasons that he/she must continue in another hospital (hospital
B). In this case, the patient is not registered in hospital A, but in hospital B. The hospital
A must have feedback to know if the patient has arrived at the referral center and is really
supported.

Once detected, new TB cases are treated with a standardized therapeutic regimen lasting six
months. Relapses, reinstatements and failures benefit from a standard 8 month reprocessing plan.
MDR-TB patients are treated in specialized services with a short-term (12-month) second-line
regimen. The patient’s treatment data are recorded each time during his visit to the hospital on
cards.

Chemoprophylaxis targets children under 5 years of age with TPM + contacts and Persons
Living with HIV (PLHIV). Health staff should sensitize the detected adult patient to bring in target
children who have been exposed for prevention. Health personnel must complete a scorecard for
all children suspected of being exposed to the disease. This card allows, depending on the child’s
history (illness, contact with a TPM +) and laboratory tests to determine whether the child should
follow or not chemoprophylaxis.

Reports are transmitted following the health system pyramid as described by the figure 2. At
the end of each quarter, the hospital reports (sometimes obtained by a manual analysis of data) are
sent to the district level, where all the statistics are compiled and sent to the regional level, and the
regional level compiles the statistics of all districts and sent to the NTCP.

To improve on the TB surveillance network, the NTCP regularly organizes the training sessions
for health workers involved in the management of TB and it ensures that every health personnel
must participate. NTCP has put in place many strategies to make people adopt behaviors that can
reduce TB morbidity. This consists of informing people about the curability of the disease, organiz-
ing information campaigns for early detection, tracing contacts (asking patients to bring children
under the age of five that are exposed for consultation), promote adherence to TB treatment and
integrate cured patients in the community.

Epidemiological surveillance at the NTCP is done manually. It uses paper forms for data col-
lection (registers, notification forms, statistics sheets) and the road for data transmission. At the
level of the districts, collected data from hospitals are compiled and statistics are transmitted to re-
gional levels. At the regional level, district data is aggregated and transmitted to the NTCP. At the
end of each year, the data is archived in a closet. The figure 8 presents the archiving of data at the
Jamot Hospital. Several types of reports are produced: quarterly reports for tuberculosis case de-
tection, reports of the treatment results of pulmonary tuberculosis cases between 9 to 11 months,
reports of the distribution of drugs and consumables. The manual management of data poses a
number of problems. The most important ones reported in a survey that we conducted on the staff
of the NTCP are: a poor rate of completude and promptitude; late production of basic statistics;
insufficient awareness of the population; under use of laboratory data; difficulties to identify the
personnel already trained by the NTCP; difficulties to geolocate hospitals in order to better guide
a patient; difficulties to manage lost sight patients.

Semantic-aware epidemiological surveillance system

2.5 Conclusion 26

Figure 8: Archiving data at the Jamot Hospital in Yaounde

2.5 Conclusion

In this chapter, we presented a review of epidemiological surveillance in 3 main points: epidemi-
ological surveillance process, epidemiological surveillance systems architectures and epidemio-
logical surveillance tools. The epidemiological surveillance process involves the main activities
of epidemiological surveillance which are data collection, data analysis, information interpreta-
tion and dissemination to stakeholders. The data are collected at all levels of the health system
and the data from lower levels are sent to upper levels to report the overall health situation.
The data obtained after the data collection process is analysed in order to extract useful infor-
mation. Information obtained is sent to stakeholders in a form that changes their understand-
ing of health issues and needs. To provide relevant information to stakeholders, epidemiological
surveillance systems are implemented according to Form-Route-Server, Mobile-MobileNetwork-
Server, Computer-Internet-Server/Computer-MobileNetwork-Server, and multi-strategy architec-
tures. The Form-Route-Server architecture uses forms (paper or electronic) for data collection and
the road for data transmission. Even if this architecture may ensure the reliability and completeness
of data, the promptitude of data, data security, and the versatility of the system are not guaranteed.
The Mobile-MobileNetwork-Server architecture uses mobile phones for data collection and the
mobile network for data transmission. This architecture is robust and the promptitude of the data is
ensured. However, the security, the versatility, the completeness and the consistency are not always
guaranteed. The Computer-Internet-Server architecture uses a standard Web application for data
collection and management. Although it allows us to guarantee the promptitude and security of
data, and the versatility of the system, it is difficult to deploy because the Internet is not available
in many areas. To improve the epidemiological systems, Multi-strategy architectures combining
the previous architectures are generally used. The architectures presented in this chapter are im-
plemented in many epidemiological surveillance tools such as DHIS, OpenMRS. At the end of
the chapter, we presented the epidemiological surveillance of TB in Cameroon as the domain of
application of the thesis.

We noted in this chapter that the unsystematic transfer of business requirements of epidemio-
logical surveillance systems to the implementation causes the problem of failed software. In chap-
ter 3, we propose a solution to this problem.

Semantic-aware epidemiological surveillance system

3
A MDA-based approach for the development

of epidemiological surveillance systems

Software developers of today face the problems of increasingly complex softwares as clients de-
mand richer functionalities in shorter timescales. This has given rise to the software development
questions and dilemmas: how to provide the customer with the software and software artefacts
that fulfil their expectations in time and within the budget? To respond to these questions, many
approaches and tools are proposed in the domain of software engineering [102]. In this chapter, we
will present the agile software development methodologies (section 3.1), the Model-Driven Archi-
tecture approach (section 3.2.2), our approach which is the combination of agile methodology and
MDA approach for the development of epidemiological surveillance systems (section 3.3) and the
application of our approach to develop EPICAM, an epidemiological platform of TB in Cameroon
(section 3.4).

3.1 Agile methodologies

The use of the traditional software development methodologies to develop health information sys-
tems may lead to software failure because the needs are not clear and are constantly changing
[3, 100]. This section presents an alternative to traditional software development methodologies
which is the agile methodology. Section 3.1.1 presents an overview of the agile methodology,
section 3.1.2 presents the scrum methodology and section 3.1.3 presents the use of agile method-
ologies to develop health information systems.

3.1.1 Agile overview

Agile software development methodologies started officially when the agile movement presented
the agile manifesto in 2001. The agile manifesto contains the central values which proposes to
place more emphasis on people, interaction, working software, customer collaboration, and change,

Semantic-aware epidemiological surveillance system

3.1 Agile methodologies 28

rather than on processes, tools, contracts and plans during software development [3, 40, 68, 115]. It
defines the twelve principles of agile software development methodologies: customer satisfaction
by early and continuous delivery of valuable software; welcome changing requirements, even in
late development; deliver working software frequently (weeks rather than months); close, daily co-
operation between business people and developers; projects are built around motivated individuals,
who should be trusted; face-to-face conversation is the best form of communication (co-location);
working software is the primary measure of progress; sustainable development, able to maintain a
constant pace; continuous attention to technical excellence and good design; simplicity-the art of
maximizing the amount of work not done is essential; best architectures, requirements, and designs
emerge from self-organizing teams; regularly, the team reflects on how to become more effective,
and adjusts accordingly.

Agile methodologies rely on an iterative, incremental and adaptive development cycle which
considers that the needs cannot be fixed and proposes to adapt the development to the changes. It’s
intended to support early and quick production of working code. In the particular case of health
information, it allows fast deployment and adoption [9]. It consists firstly of setting a short-term
goal and of getting into the project without delay. Once the first objective is attained, we take a
short break and adapt the path according to the situation of the moment, and so on, until we reach
the final destination. This helps us to give more visibility, involving the client from the beginning
to the end of the project and adopting an iterative and incremental process. In a broader sense, an
agile methodology can be seen as a process consisting of an initialization step, iterative steps and
incremental steps [3, 78].

With the agile methodologies, the project is divided into modules (each module contains a
list of deliverables) of shorter spans. A project control list containing all tasks that need to be
performed is also created. The project control list is constantly being revised as a result of the
software development. During the development, the following process is performed:

• Initialization step: During the initialization, the base version (prototype) of the application
is developed. This base version contains a solution to the problem that is simple enough to
understand. This first version is evaluated by a focus group not associated with the software
development team in order to obtain unbiased opinions. The information obtained from the
focus group will be incorporated into the next iteration.

• Incremental step: After the delivery of the first version of the software, the developers
complete the list of deliverables given the users’ feedback and start a new module, which is
a new increment, and an iterative process starts on this increment.

• Iterative step: The development of each module is done by one or many iterations until
its delivery. During the iterations, the analysis (structure, modularity, usability, reliability,
efficiency, and achievement of goals) of users’ feedbacks (focus group) and of the developed
application will be used to redesign (adding/removing functionalities, introduction of new
technologies, etc.) and a new version of the software will be implemented. At the end of each
iteration, the partial but usable product is validated by the client by ensuring that it aligns
with the needs.

Agile is team-based and user-focused means that:

Semantic-aware epidemiological surveillance system

3.1 Agile methodologies 29

• Team-based: with the agile methodology, the development group comprises both software
developers and customers representatives. During the development, everything is made pub-
lic and transparent. The clients and the customers are actively involved in the development
process and have frequent and early possibilities to see the work being delivered, in order
to make decisions and changes if necessary. In a broader sense, the agile software method-
ology relies on teamwork, collaboration, time boxing tasks, and the flexibility to respond to
changes as quickly as possible. Team members share ownership of the project and each of
them play an active role in completing the module within the estimated time.

• User-focused: after each iteration, the delivery version containing the features developed
can be used by the users.

The success of agile software development methodologies has given rise to a large number
of research work. The scientific papers [40, 68, 115] present a few. There are a large number of
agile software methodologies adopted in many software engineering, requirements engineering,
and consulting organizations: Extreme Programming (XP) [18], Dynamic Systems Development
Method (DSDM), Rational Unified Process (RUP) [40], Scrum [119], crystal family of method-
ologies [3], feature driven development (FDD) [114], Open Source Development (OSD) [3]. In
this thesis, Scrum is adopted to develop software and software artefacts.

3.1.2 Scrum

The first reference of the term "Scrum" originates from Japan and refers to an adaptive, quick, and
self-organizing product development. Scrum describes how the team members should be organized
in order to develop a system using agile principles [119]. In this section, the scrum methodology
is presented in two main points: major Scrum concepts and Scrum process.

3.1.2.1 Major concepts

Using the Scrum methodology entails the mastery of some major concepts. The roles that can be
identified in Scrum are: Scrum Master, Product Owner, Scrum Team, Customer, User and Man-
agement. The main meetings identified in Scrum are: Sprint Planning Meetings, Scrum Weekly
Meeting, Scrum Daily Meeting and Scrum Review Meeting. The working tools of the team are
Product Backlog, Backlog Items and Sprint Backlog.

• Product Backlog defines the work to be done in the project. It is created at the beginning of
the project, is constantly updated as the project goes on and contains the prioritized list of
businesses and technical requirements of the system to be built or enhanced. Backlog items
can include, features, functions, bug fixes, defects, requested enhancements and technology
upgrades;

The Product Backlog List, contains all the requirements that are currently known. These
requirements are prioritized and the effort needed for their implementation is estimated. It is
reviewed by the Scrum Team and updated if necessary at the start of each increment.

Semantic-aware epidemiological surveillance system

3.1 Agile methodologies 30

• Sprint is an iterative work cycle during which the development is completed and made
available for review. During a Sprint, the Scrum Team organizes itself to produce a new
executable version of the product. The elements involved in the development from the spec-
ification to the implementation may evolve.

• The Scrum Master is the person in the Scrum team who interacts with all the others during
the project. His/her role is to ensure that the project is carried through according to the
practices, values and rules of Scrum and that it progresses as planned;

• The Product Owner’s role is to control and make visible the Product Backlog List. He/she
is appointed by a mutual agreement with the Scrum Master, the customers and the manager;

• The Scrum Team is composed of the software developers and the customers. They work
together and define the effort estimation, the creation and the update of the Product Backlog
List and suggest impediments to be removed from the project. The Scrum Team decides and
organizes itself in order to achieve the goals of each Sprint;

• The customer, in accordance together with the Sprint Team create and update the Product
Backlog Items for the system being developed;

• Management is responsible for the final decision on the product. They set the goals and
requirements of the project;

• A Sprint Planning Meeting is a two-phase meeting organized by the Scrum Master. The
first phase involves the customers, users, management, Product Owner and Scrum Team and
the second phase involves the Scrum Master and the Scrum Team. During the first phase,
participants decide upon the goals and the functionalities of the next Sprint. The second
phase focuses on how the product increment is implemented during the Sprint;

• Sprint Backlog is the starting point of each Sprint involving the selection of a list of Product
Backlog Items to be implemented. Unlike the Product Backlog, the Sprint Backlog is stable
until the Sprint (one week, two weeks or one month) is completed. When all the items in the
Sprint Backlog are completed, a new iteration of the system is delivered;

• Sprint Review Meeting is the meeting held at the end of the sprint during which the Scrum
Master presents the results of the Sprint to the management, customers, users and Product
Owner. The different parties assess the product obtained after the increment and decide about
the product and the activities that follow (e.g., change the direction of the product under
development).

• Daily Scrum Meetings (approximately 15 minutes) conducted by the Scrum Master, are
organized to keep track of the progress of the Scrum Team continuously and serve as plan-
ning meetings. During the Daily Scrum meeting, the main questions to be answered are:
what has been done since the last meeting and what is to be done before the next one? Any
problems, deficiencies or impediments in the system development process or engineering
practices are looked for, identified and the solution is put in place.

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 31

3.1.2.2 Process

Scrum process includes three phases: pre-development, development and post-development.

• Pre-development: The pre-development phase involves the planning and the design. The
planning is done based on the Product Backlog List, in collaboration with the customer. The
requirements are prioritized, the resources (team, tools, etc.) needed for their implementation
are estimated, risks assessed, identification of training needs and verification management
approvals made. The design phase is done by defining the architecture based on the Product
Backlog List; preliminary plans for the contents of releases are proposed. The design meet-
ing permits us to make decisions about the implementation and preliminary plans for the
contents of releases are prepared.

• The development: During the development phase, the system is built in Sprints during
which the functionalities are developed or enhanced to produce new increments.

• Post-development: This phase is reached when the requirements are completed. The system
is ready for the release and tasks such as system integration and documentation are made.

3.1.3 The use of agile in the medical domain

The use of agile software development methodologies to develop health information systems is
not new. In fact, due to the complexity of the processes in health care, changes in the requirements
may introduce a need for a correction of the implemented system, and can lead to regression [9].
This problem can be avoided by involving end users to the development process and making an
adapted methodology for iterative and gradual development. Many authors [8, 100, 87] presented
the adoption of agile methodology for the design and implementation of health information sys-
tems.

3.2 A review of Model Driven Architecture

The problem of failed software is often the result of an unsystematic transfer of business require-
ments to the implementation level [117]. To solve this problem, the MDA approach permits us
(software engineers and/or non-informatics experts) to model the software to be developed and
automatically generate the executable source code. This section presents in section 3.2.1 the role
of models in software engineering, section 3.2.2 presents an overview of MDA, and section 3.2.3
presents the use of MDA to develop software in the healthcare domain.

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 32

3.2.1 The role of models in software development

A model is a computerized representation of a problem/domain permitting their description in a
way that avoids delving into technological details. It represents a specification of the function,
structure and behavior of a problem within a given context, and from a specific point of view
[102]. To do this, it provides abstractions of a system that allows various stakeholders to reason
about the system from different viewpoints and abstraction levels. One way to build models is to
identify the concepts of the domain, the links (relations) between these concepts, and to make a
diagram representing these concepts which are in relation. The concept’s names are familiar to
people working in the domain of the problem, and not to IT experts [117].

Real world

Model

Metamodel

Metametamodel

- Executable source code
- Knowledge base
- Model ware

- UML models
- Ontologies
- Grammarware

- UML
- OWL
- BNF2, EBNF3

- MOF
- DL logic

M0

M1

M2

M3

Figure 9: The OMG meta-pyramid of models

The traditional framework for modelling is based on an architecture with four layers, presented
by the figure 9 and described as follows [31, 44]:

• The Real world layer: At the base of the pyramid, the real world represents the problem/-
domain that one wants to model. It is comprised of all the elements that we want to describe;

• The model layer: The models (for example, UML class diagram) representing the abstrac-
tion of the real world/the problem make up the first level. It is used to answer the questions
about the modelled system in exactly the same way that the system would have answered
itself. It can replace the system in certain situations;

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 33

• The meta-model layer: The notion of model refers to the notion of well-defined languages.
The language used to expressed the model (for example, the UML language) is called a
meta-model ;

• The meta-meta-model layer: As for models, the meta-model must be defined from a mod-
elling language. To avoid inordinate increase of various and incompatible meta-models the
meta-meta-model layer comprises the language used to define different kinds of meta-models.
In theory, one can continue with a language to define the meta-meta-model, etc. However,
in the MDA domain, to limit the number of levels of abstraction, the Meta-Object Facility
(MOF) is the meta-meta-model that has the property of meta-circularity (that is the ability
to describe itself).

Models can be used in many ways, for example, to predict the qualities (e.g. performance) of
a system, validate designs against requirements, communicate system characteristics to business
analysts, architects and software engineers, and as the blueprint for system implementation [41].
In a broader sense, one can distinguish:

• Usage modelling: Usage models such as use cases, use cases scenarios, use case diagrams,
and user stories permit us to identify how people work with the system, what they do with
the system and how the system supports their usage;

• Process modelling: Process models (e.g., data flow diagrams, flow charts, activity diagrams)
explore how users work with the system by considering the flow of activities being per-
formed;

• User interface (UI) modelling: UI models (e.g., UI prototypes, UI flow modelling) permit
us to show using a visual diagram the different user interface artefacts (buttons, text field,
text area, etc.) which permit the users interact with the system;

• Conceptual domain modelling: Conceptual models such as class diagrams, object diagrams
permit us to identify the entities, their properties and their relationships within the problem
domain;

• Architectural modelling: Architectures (e.g., free-form diagrams, component diagrams,
package diagrams, deployment diagrams, network diagrams) are the high-level design of
a software;

• Dynamic design modelling: Dynamic models such as sequence diagrams, interaction dia-
grams, communication/collaboration diagrams are used to explore the behavioral aspects of
the system for one/many objects involved in the system.

To build models, the concepts and relations between these concepts are represented diagram-
matically (visual modelling), or using text. The main advantage in the use of visual notations in
the development of software systems is the ease of comprehension of graphical notations by non-
technical experts [86]. Then, by using the visual model, non-IT experts are allowed and able to
customize these models to their particular context, needs and feel confident that the customiza-
tion is trustworthy and accurate [86]. In the medical domain for example, many domain experts

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 34

use dedicated tools integrating graphical modelling features (e.g., Protégé software) to build and
maintain ontologies [112].

3.2.2 An overview of MDA

Model Driven Engineering (MDE) is a software development approach based on the use of models
to develop software artefacts. Its goal is to improve the productivity and maintainability of software
by raising the level of abstraction from source code, to high-level domain-specific models such that
developers can concentrate on application logic rather than implementation details. It is identified
by several paradigms such as Model Driven Software Development (MDDS), Language Oriented
Programming (LOP), Domain-Specific Modelling (DSM), Framework Specific Modelling (FSM),
Model-Driven Architecture (MDA), etc. A great challenge of MDE is to make modelling and the
use of models directly benefit the individuals, and not just restricted to a select few. For this to be
possible, individuals are provided with straightforward access to models that encode global infor-
mation relevant to their context [34]. Then, the Object Management Group (OMG)1 has adopted
and promoted the MDA as an architecture and framework for software development based on
models.

3.2.2.1 A broader description of the MDA approach

Models

Generation tools
Software

source code

Evolution / complements

Figure 10: MDA Software development approach

The MDA approach is an approach (Figure 10) to software specification, design, and imple-
mentation which provides guidelines for structuring software specifications that are expressed as
models. It focuses on forward engineering in which the executable source code is (semi)automatically
generated from abstract, human-elaborated modelling diagrams such as a class diagram [8, 9, 106,
117]. A class diagram describes the structure of a domain by identifying the domain classes (e.g.,
patient), their attributes (e.g., age, sex), their operations (e.g., calculate a body mass index) and
the relationships amongst classes (e.g., the relation between a patient and his/her appointments at

1https://www.omg.org/

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 35

the hospital) [86, 112]. Unlike object-oriented design approaches where the basic concept is the
object, the basic concept of MDA is the model. Models are used throughout the development life
cycle of an application, that is, from the application specification to code generation. The MDA
approach allows developers to focus exclusively on the specification of the business logic and to
generate subsequently and automatically the source code corresponding to the specifications made
previously. For the generation task, the MDA approach proposes to provide developers with au-
tomation tools [20, 54]. When adopting the MDA approach, a natural counterpart is the framework
which is the body of code that implements the aspects that are common across an entire domain,
and exposes as extension points those elements of the domain that vary between one application
and another. This framework permits us to link the business level and the information technology
[117, 131].

The main concepts to master when using the MDA approach are:

• System: The context of MDA is the software system, either preexisting or under construc-
tion;

• Model: The main element permitting us to formally specify the function, structure and be-
haviour of the system is the model;

• Model driven: this is the approach to software development whereby models are the main
source for documenting, analyzing, designing, constructing, deploying and maintaining a
system;

• Architecture: This is a specification of the parts, connectors of the system and the rules for
the interactions of these parts using the connectors;

• Platform: a platform is a set of technologies providing a coherent set of functionalities to
solve a problem;

• Platform independency: This is a property that models exhibit when they are built inde-
pendently of the features of a platform;

• Platform model: Describes a set of technical concepts representing its constituent elements,
the services it provides and constraints on the use of these elements and services by another
part of the system;

• Model transformation: This is the process consisting of the conversion of one model to
another one;

• Implementation: These are the specifications providing all the information which are used
to construct and put a system into service.

The three primary goals of MDA are:

• Portability: To permit the portability, the MDA approach separates the models and the trans-
formations such that height level models do not contain low level platform and technical
details. Then, the model can move across different tools and environments. If the underlying

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 36

platforms changes or evolves, the upper level models can be used on a new platform directly
without any remodelling;

• Interoperability: Today, it is rare to develop enterprise applications that do not commu-
nicate with others (internal and external of organisation). This communication is done in
a heterogeneous and distributed manner. With the MDA approach, the horizontal model
mapping and interaction is done to permit heterogeneous systems to interoperate. Then, the
development of integration bridges with legacy and/or external systems is greatly facilitated
and new infrastructure can be more easily integrated and supported by existing ones;

• Reusability: To facilitate the tasks of design and implementation, designers and developers
reuse existing models and tools. Best practices in designing applications are the key elements
for improving productivity and quality. Then, businesses are able to extract greater value out
of their investments in tools.

To develop applications using MDA approach, two approaches are to be consider [86, 117]:

• The development by a domain experts: In this approach, domain experts directly create
and maintain specifications of their information and workflows. It entails that they master
modelling and the use of the modelling tools (training on approach and tools is required).
Given that the domain expert is the person who masters the domain and the context, this
approach permits us to obtain a good model for the domain and given the context [117].

• The development by domain experts and IT experts: This approach involves domain ex-
perts and the IT experts during the development. The domain experts elaborate the specifica-
tions, the IT experts build the model, generate the software and the domain experts validate
the software built. In this approach, domain experts are not necessarily expert modellers
[112].

In recent years, MDA has been adopted successfully and implemented in many small and
large organizations [35] such as automotive, aerospace, telecommunications, business information
systems, health information systems [90, 112], crisis emergency [36], etc. In section 3.4, we will
present the use of MDA to improve the development of tuberculosis surveillance systems.

3.2.2.2 MDA Process

The two key concepts of MDA are models and transformations. All the models are well defined
by a modelling language, itself defined by syntax and semantics in a metamodel. The transfor-
mation from one model (e.g., requirements) to another model (e.g., design) is a systematic pro-
cess explicitly defined by transformation rules. During the development of applications using
the MDA approach, the business models as a result of the discussion between domain experts
and modelling experts are (partially) automatically transformed through the three models layers
(CIM −→ PIM −→ PSM). The process of building applications using the MDA approach can
be summarized as follows [112, 131]:

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 37

• The construction of the Computational Independent Model (CIM): The CIM contains
all the information about the business model of the application to be developed. Built using
the vocabulary that is familiar to the domain experts, the CIM focuses on the context and
requirements of the system without consideration for its structure or processing; describes
the supported business case in a complete and comprehensive manner; presents exactly what
the system is expected to do, but hides all the information technology related specifications
to remain independent of how that system will be (or currently is) implemented. For this
purpose, an adequate graphical representation is needed (e.g., UML sequence diagrams),
which is understandable and intuitive from the perspective of domain experts;

• The development of the Platform Independent Model (PIM): Obtained from the CIM, the
PIM is exactly what its name denotes: a model that is free of specific hardware or computing
platform requirements and constraints. It addresses the modelling expert, who internalized
the business context of the model, the software engineer, who will externalize the technical
context of the model; and exhibits a sufficient degree of independence so as to enable its
mapping to one or more platforms. An example of a PIM is the class diagram modelling the
domain and presenting the entities and the relationships between these entities;

• The construction of the Platform Specific Model (PSM): The PIM constructed can be
transformed into one or more PSM for different target platforms like Java Enterprise Edition
(JEE) or .NET by integrating platform specific details to the PIM. The PSM contains detailed
descriptions and elements specific to the targeted implementation platform. It is obtained by
combining the specifications in the PIM with the details required to stipulate how a system
uses a particular type of platform;

• The generation of executable source code: The PSM containing the technology-related
aspects of the target platform is derived into software solutions which are application source
code, configuration files, component descriptor files, deployment files, build scripts, docu-
mentation, etc. Depending on the maturity of the MDA toolset, code generation varies from
significant to substantial or, in some cases, all the source code is generated.

During the development of applications using the MDA approach, it is the first and the second
steps in the process that involve creativity and manual work; steps three and four are automated by
the use of automated tools [106].

3.2.2.3 MDA tools

Tools are an essential part of MDA. In fact, tools support the overall modelling and transformation
process [112]. Then, designing and developing the MDA tools environment properly is one of the
most crucial steps when one has adopted the MDA approach. It is crucial to establish the right
infrastructure for the development environment, along with a dedicated team to support, manage
and continually ameliorate this environment to meet the development requirements. The IT team
must carefully evaluate and select (or develop if the tool doesn’t exist) the right tools with the
capabilities to meet the organization’s specific requirements.

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 38

In the MDA domain, one can distinguish two types of tools. Some are used to develop the tools
for the modelling and the generation of software artefacts and the others are used for modelling
the domain and generating the executable software. Amongst the tools used to develop the MDA
tools, we distinguish:

• Eclipse software: The Eclipse software is an open source Integrated Development Environ-
ment (IDE) developed in Java and primary used to develop software in several programming
languages such as Java, C++, C, Haskell, JavaScript, PHP, Python, R, Ruby, etc. Eclipse
is based on a small run-time kernel and can be customized by adding additional modules
in the form of plug-ins for dedicated tasks such as programming, testing, modelling, etc.
The Eclipse platform contains plug-ins for graphical and textual model development. These
modelling plug-ins focus on model-based development are separated in several categories:
tools for model development, model transformation, concrete syntax development, abstract
syntax development, etc. They implement various modelling standards used in industry such
as UML, SysML, OCL, etc.

• Eclipse Modelling Framework (EMF): EMF integrates a modelling framework and a code
generation tool for developing software using models. It includes tools for model defini-
tion (Ecore), a tool (EMF-Edit) for building editors for EMF models and a code generation
facility (EMF.Codegen);

• Graphical Modelling Framework (GMF): The GMF provides a set of features for the
development of graphical editors based on EMF;

• Xpand: The goal of Xpand programming language is to generate the source code from EMF
models;

• Xtext: This is an open source framework used to develop programming languages and Do-
main Specific Languages (DSL). The grammar of the language written with Xtext describes
how an Ecore model is derived from a textual notation;

• Modelling Workflow Engine (MWE): MWE is used to support orchestration of different
Eclipse modelling to be executed within Eclipse. It is mainly used to configure the Xtext
code generator;

• Atlas Transformation Language (ATL): This is an open source EMF model-to-model
transformation language;

• Acceleo code generator: Acceleo is used to generate text given an EMF model (model-to-
text transformation). With Acceleo, from an EMF model, the source code in several pro-
gramming languages such as Java, PHP, Python can be generated.

• etc.

The tools used to generate executable source code such as Acceleo2, Imogene3, AndroMDA4,
etc. are composed of three main components [102]:

2https://www.eclipse.org/acceleo/
3https://github.com/medes-imps/imogene/wiki
4https://www.andromda.org/

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 39

• A domain-specific modelling language: Also called modelling languages, these languages
focus on a particular problem and are designed so that they can represent the problem domain
which is being addressed. It is composed of the domain concepts and rules and specifies the
mapping from the model constructed to specific source code [35];

• A model editor: Textual and graphical editors, together with debugger and code generators
are used to build models and generate executable source code with little effort;

• A code generator: The code generator is the module which permits us to generate the exe-
cutable source code from the models.

Note that MDA is not appropriate if it is used to develop only one software. In fact, the time
spent to develop an advanced tool with appropriate modelling formalism, get the model right and
generate the software will be more than developing the same software using general purpose lan-
guage.

3.2.3 MDA in healthcare

The domain of health informatics is complex. In fact, it is an evolutionary IT ecosystem of infor-
mation systems organized in a network of applications of different design and developers. This
IT ecosystem attempts to provide solutions at numerous levels and in multiple disciplines such as
real-time monitoring of intensive care unit patients, clinical decision support, distributed interop-
erable health records, administrative and financial decisions, etc. [112, 117]. To efficiently master
the challenges of the increasing complexity of health information systems and provide solutions
to a wide range of problems of these systems, the literature review shows that the MDA approach
has been widely adopted [8, 9, 112, 117]. In this section, we will present the adoption of the MDA
approach in the health information domain. Thereafter, we will present the tools based on MDE to
enhance epidemiological surveillance and at the end, the combination of MDA and agile method-
ology to enhance the development of health information systems.

3.2.3.1 Adoption of MDA in the health domain

There is a significant number of examples on the adoption of the MDA approach in the health
informatics domain [8, 112]. To cite a few:

• Blobel and Pharow [22] presented a work done in Germany consisting of the establishment
of a health telematics platform combining card enabled communication with network based
interoperability;

• Schlieter et al. [117] attempted to create a specific MDA for the health domain. They show
how an MDA approach can be used in order to build a method, fundamental for a systematic
creation of an application system. Their use-case is an application for IT based workflow
support for an interdisciplinary stroke care project;

Semantic-aware epidemiological surveillance system

3.2 A review of Model Driven Architecture 40

• Curcin et al. [33] presented a work on the use of MDA to build tools which allow non-
IT experts to model their requirements and to generate data collection tools for medical
organizations;

• Jones et al. [70] presented the use of MDA to develop m-health (Mobile-health) application
providing an integrated set of personalized health-related services to the user;

• Rayhupathi and Umar [107] proposed the use of MDA to develop a system capable of track-
ing patient information;

3.2.3.2 MDA tools to enhance epidemiological surveillance systems

In the field of epidemiological surveillance, MDA tools are generally used to develop data collec-
tion tools. Some integrate the generation of the main statistics. In this field, we have identified the
following tools:

• Imogene: It is an open source platform based on MDA, developed by MEDES in France and
used for the generation of data collection software. The Imogene Studio provides graphical
tools for creating templates and generating tools that helps to generate a set of applications
(for different platforms) based on models. The Imogene model editor allows the creation of
a model of the entities involved in the application. These entities are the forms used for data
collection. The modelling task consists of defining the forms to be generated, the fields they
contain and the properties associated with all objects. Once the model is built, it proceeds
to the automatic generation of the code. Taking advantage of the MDA approach, Imogene
makes it easy to update an already deployed information system. This process requires the
update of the model that contains the design form, the rebuild and the redeployment of the
application.

Imogene was used to generate data collection applications during the prevention and follow-
up of diabetes in France in 20095, in Cameroon and Georgia to generate data collection
tools for the epidemiological surveillance of tuberculosis. It is the foundation of the devel-
opment of the EPICAM platform for epidemiological surveillance of tuberculosis presented
in section 4.

• Magpi: This is a platform developed by the NGO DATAGYNE. It offers free versions and
paid versions when collecting large amounts of data. It is used to generate mobile data col-
lection forms. When using Magpi, the forms are designed on the www.magpi.orgwebsite
and downloaded on a mobile phone as a JAVA ME, Android or ios application for data col-
lection. All collected data is saved on a remote server and can be analyzed later. Magpi
has been used in around 170 countries including Kenya, Malawi, India, and Pakistan for
epidemiological surveillance.

• Open Data Kit(ODK): This is an open source platform developed at the University of Wash-
ington. It can generate data collection forms for mobile phones using the Android operating
system. The forms are designed using Excel and a data collection tool is generated. The data

5http://www.medes.fr/home_en/telemedicine/tele_epidemiology/epidefender.html

Semantic-aware epidemiological surveillance system

3.3 MDA approach for epidemiological surveillance systems 41

is retrieved and saved (using the Internet or SMS if the Internet is not available) on a remote
server and can be analyzed [25]. ODK has been deployed in several contexts including pae-
diatric patient management in Tanzania, war crimes in the Central African Republic, school
attendance in India.

Although the previous solutions permit us to generate data collection applications used for
epidemiological surveillance, in chapter 2, we have shown that the epidemiological surveillance
systems are composed of more functionalities than the data collection functionalities.

3.2.3.3 The use of MDA and agile in healthcare domain

In the previous paragraphs, we have presented the use of the MDA approach to model and generate
health information systems. However, healthcare models, like all models, may never be complete.
In fact, the development of a healthcare information system is a continuous process, since health
problems cannot be fixed and be addressed at once. To address them, the tools must be up-to-date.
Then, after initial development, the healthcare models must undergo revision and harmonization
cycles as effort continues to improve and adjust them. To do this, the MDA approach is combined
with the agile approach [112].

A few authors have proposed a combination of the Agile methodology with the MDA to de-
velop health information systems: Atanasovski et al.[8] shows that agile methodology permit-
ted fast deployment and adoption of an integrated health information system composed of EHR
(Electronic Health Record), Electronic Prescriptions, Electronic Referrals, Hospital Stay and Surg-
eries Information System, Laboratory Information System and a Radiology Information System in
which all medical and health related information about patients, health workers, facilities, doc-
uments, and procedures are stored and processed. However, problems can arise in the future if
the current implementation technology becomes outdated or obsolete. Then, they combined the
Agile methodologies and the MDA to assure its extensibility, soundness, interoperability and stan-
dardization; by combining the agile software development and MDA, Blobel and Pharow [22] have
developed a health telematics platform which combines card enabled communication with network
based interoperability.

3.3 MDA approach for epidemiological surveillance systems

Addressing the epidemiological surveillance systems problems and challenges requires a fast, flex-
ible, collaborative methodology to develop the health information. The section 3.1 shows that agile
is more flexible, collaborative, and user focus; the section 3.2.2 shows that the MDA approach used
models to develop solutions that are interoperable, portable, reusable and that evolve easily; and
the section 3.2.3 presents some tools based on MDA and used to enhance the development of health
information systems. In this section, we present a methodology (resume by the figure 11) based
on MDA and Scrum methodology to develop epidemiological surveillance systems. This method-
ology is composed of the Pre-development step, the Development step and the Post-development
step.

Semantic-aware epidemiological surveillance system

3.3 MDA approach for epidemiological surveillance systems 42

Specifications
Sprint

Planning
meting

Analysis
Item 1
Item 2
…
Item n

Product
Backlog

Sprint
Backlog

D
es

ig
n

Implementation

S
p

ecificatio
n

sA
na

ly
si

s

Sprint
Review
meting

Users
Evaluation

&
validation

Satisfy

Final version of
the software

Y
E

S

NO

Updating

New increment

Figure 11: The combination of MDA and Agile for epidemiological surveillance systems develop-
ment

3.3.1 The Pre-development step

During the Pre-development step, IT experts work closely with domain experts in order to make
system specifications and analysis. The specification and analysis are used to define the Product
Backlog and the first Spring Backlog. In addition, they contain sufficient information to develop
the first working version of the software.

3.3.1.1 System specifications

The system specifications or requirements engineering is the identification of the features and be-
haviour of the system to develop. It is based on the combination of problems and opportunities
that provides the motivations for a new system; describes the reasons why the customer is looking
to build the system; and includes a variety of elements that attempts to define the intended func-
tionalities required by the customer to satisfy their users. To identify these functionalities, the IT
experts will use all the sources of information such as books, existing tools used by users; will
work closely with the domain experts which in our case are epidemiologists, doctors, nurses, med-
ical technicians, hospital administrators, etc. System specifications can be grouped in functional
and non-functional specifications:

• Functional requirements: They define the services that the system will provide to the users.
To define system requirements, what the system must accomplish (calculations, control, data
manipulation and processing) must be defined. An example of functional specification in
epidemiological surveillance is: "the system must permit us to save patients data".

• Non-functional requirements: These are constraints imposed by the customer and the as-

Semantic-aware epidemiological surveillance system

3.3 MDA approach for epidemiological surveillance systems 43

sumptions made by the requirements on the system design or implementation. Non-functional
requirements involve performance requirements, security, reliability, availability, service-
ability, scalability, maintainability, interoperability, reusability, portability, adaptability, li-
censing, etc.

At the end of the system specification, a document containing a structured collection of infor-
mation that embodies the requirements of the system developed is produced and validated by all
parties.

3.3.1.2 System analysis

The system analysis is the study of the system, its different modules in order to identify its objec-
tives, its boundaries and make the requirements clear, complete, consistent and unambiguous. It is
critical to the success or failure of the software developed. Its main goal is to ensure that the re-
quirements are complete and consistent and all parties agree on the system to develop. The system
analysis must be defined to a level of detail sufficient for system design, development and testing.
We recommend the use of the UML language to build the system analysis artefacts.

During the analysis of the system, the CIMs are constructed. They include all the elements
such as actors, use cases, use cases description, state-transition diagrams, collaboration diagrams,
etc. that permit to well understand the system and determine the system boundaries.

• Actors (or actors models): The actor specifies a role played by an external entity which can
be a human or a system with the system. The actor interacts with the system and during this
interaction, it executes one or many use cases;

• Use cases (use case models): Use cases capture requirements, describe functionalities pro-
vided by the system. A use case is a unit of useful functionality performed by actors to which
the use case applies in collaboration with other actor(s) and which yields an observable re-
sult.

• Use cases description: Each use case description is composed of a set of scenarios that
convey how the system should interact with actors to achieve a specific business goal. To
make use case description, domain expert language is preferable to technical language. For
instance, the use cases models artefacts used to describe the use cases are: the use case
diagram, which is a graphical representation showing which actors can operate with the use
case; the use case text description, which describes step-by-step interactions and dialogue
between the actors and the system.

The main elements of use case description are: (1) the title which communicates the goal
of the use case; (2) the actors who interact with the system by executing a use case; (3)
preconditions are the constraints necessary to be verify before the use case can start; (4)
the postconditions are the conditions to be verified when the use case execution is finished;
(5) the use case description (or story) is the step-by-step action and interaction between the
actor and the system; (6) the use case ID which is a unique identifier of the use case; (7)

Semantic-aware epidemiological surveillance system

3.3 MDA approach for epidemiological surveillance systems 44

the resume is a brief description of what the use case does; (8) created by which gives the
author(s) of the use case. In some cases, the authors of the use case can be the domain experts
and the IT experts; (9) the priority gives the level of importance of the use case given other
use cases. The priority is particularly important since we are using an approach in which the
main functionalities must be developed and put in service before the development continues.

In a broader sense, the analysis takes as input the system specification and construct the CIMs.
During the analysis, the customer must be available to provide clarifications on the requirements
and validate the identified boundary of the system.

3.3.1.3 Product Backlog definition and the First Sprint Backlog definition

The system specification and analysis permitted us to identify, describe and prioritized the system
use cases. These use cases are organized in a group (Product Backlog List) in order to define
the different modules of the software. The effort estimated to develop every group is estimated and
these groups are prioritized according to the degree of importance of the use cases which constitute
the group.

After the Product Backlog is defined, the Sprint Backlog, containing the group of requirements
with higher priority is defined as the first Sprint Backlog.

3.3.2 The Development step

The first stage of the development is the Sprint Planning Meeting which is held to decide upon the
goal, the requirements, the time expected for each Sprint. Thereafter, the development follows an
iterative and incremental (each increment is called a Sprint) process. An increment takes as input
a Sprint Backlog and conducts it in an iterative manner until the Backlog Items contained in the
Sprint Backlog is finished. During the iterative development, just small changes must be consid-
ered. Important changes must be introduced in the Product Backlog, prioritized and integrated in a
Sprint Backlog for further development. In a broader sense, the development step is composed of
two main phases: the first one is the "first Sprint" and the second one is composed of one or many
Sprint-"the next Sprints".

3.3.2.1 The first Sprint

The first Sprint contains the priority specifications held in the first Sprint Backlog that can be used
to develop the first version of the software. It is executed in several iterations in the following
order: system conception → system implementation → system testing → system specifications
→ system analysis (see the figure 11). During these iterations, the Scrum Meetings (daily and
weekly) will permit us identify the impediments of the project and remove; will permit the team
to progress in the comprehension of the customer needs and the developers to be confident in the

Semantic-aware epidemiological surveillance system

3.3 MDA approach for epidemiological surveillance systems 45

development. At its end, a Sprint Review Meeting is held in order to evaluate, validate this first
version and decide which direction to take.

3.3.2.2 System design

Unlike the requirement specifications and analysis which focus on what the system has to do,
system design focuses on how to accomplish the objective of the system. During the system con-
ception, the specifications and the analysis are used as the basis to identify the various system
components and how they communicate, how external systems will communicate with the system,
to make choices on software architecture, MDA tools, deployment environment, to build differ-
ent models and to transform these models into executable source code. At this stage, the software
specification starts to become a reality. System conception involve the following elements:

• Architecture design: System architecture is the blueprint of the system permitting to convert
software specifications and analysis such as flexibility, scalability, feasibility, reusability, and
security into a structured solution that meets the technical and the business expectations. It
provides a solution that the technical team can create and design for the entire application. It
describes the main components of the system and how they interact with each other and with
external systems in order to furnish services to users. Further, it involves a set of significant
decisions about the technologies that will be used to develop the system. During the software
design, a global architecture can be designed, follow by the description of the architecture
of each components;

• Tools choosing: The system architecture combined with the non-functional specifications
will guide the choice of the design, development and deployment tools. Given that we are
using a MDA approach, a MDA tool must be chosen for source code generation. To do
so, a review of existing tools are made and the tools obtained are compared to select the
most adapted given the CIM. At this stage, three situations may occur: (1) there exists a
tool that can be used to make models and generate the application source code. Then, it is
used; (2) there is a tool that can be used to model and generate a part of the source code.
Whether the tool is used to model and generate the part of the source code and the rest of the
functionalities is developed and integrated in the source code, or the MDA tool is completed
with new functionalities and the tool obtained is used to model and generate the entire source
code; (3) there are no tools that correspond to users’ needs. Then, the MDA tool is designed,
developed and used. Blagoj et al. [8] suggested that to develop/update a MDA tool, one must
be sure that this tool will be used in several projects. If not, the time spent to develop the
MDA tool and the model will be bigger than working only with code and documentation.

• User Interfaces Design: User interfaces design organizes the different front-end elements
that will be used to manipulate and control the software. With the MDA approach, the tem-
plate composed of UI design and components that will be used to generate the user interface
are embedded in the MDA tool. Then, the generated user interfaces for all the software are
inflexible.

• Platform Independent Model design: The CIM obtained during the design phase is com-
bined with system specifications to construct the PIM whose main artefact is the class dia-

Semantic-aware epidemiological surveillance system

3.3 MDA approach for epidemiological surveillance systems 46

gram. Class diagram describes the structure of a domain by identifying the domain classes
(e.g., patient), their attributes (e.g., age, sex), their operations (e.g., calculate a body mass
index) and the relationships amongst classes (e.g., the relation between a patient and his
appointments at the hospital) [9]. To build the class diagram, we advise to make a data dic-
tionary containing in his right size the entities, in his middle size the properties of these
entities and in the left size their descriptions. This data dictionary must be validated by the
customer after its construction.

Unlike the application development using general purpose language, in our approach, the cus-
tomer involves in the conception in order to validate all the CIM, the PIM before the development
of the solution.

3.3.2.3 System implementation and testing

The implementation involves the construction of the PSM using the PIM and the generation of the
executable source code. Depending on the MDA tool, this construction can be automatic. Further,
the MDA tool uses the PSM to generate executable source code.

The first version of the software is tested after its generation to ensure that it provides the
expected features to users. After each iteration, two types of testing are made:

• Developers testing: The generation of the first version of the software is checked by the
developers to ensure that it fulfills the requirements without any bugs;

• User testing: After the developers testing, real users involved in the development will test
the product using a real environment scenario in order to quickly identify any areas of im-
provement and issues. For example, health workers will enter the real data in the system.
The feedback of these users will be used to refine the specifications or enrich the Product
Backlog.

3.3.2.4 Refining system specifications and analysis

After the definition of the first version of requirements and analysis, they will fall under changes. In
the first Sprint, the Backlog Items contained in the Sprint Backlog are developed iteratively. After
each iteration, regular checks are made with stakeholders to ensure that the right functionalities are
being developed. The feedback is used to identify any improvement, any issues and then refine the
specifications and the analysis before continue to iterate.

3.3.2.5 System validation

The results of the first iteration is the baseline version of the software. After its development, a
Sprint Review Meeting takes place. This meeting is essentially the demo of the application devel-

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 47

oped. During the sprint review, the project is assessed against the sprint goal determined during the
sprint planning meeting. Ideally, the team has completed each Product Backlog Item brought into
the Sprint, but it’s more important that they achieve the overall goal of the Sprint.

After the Sprint Review Meeting, the end users in a real environment will involve the validation
of the base version. This base version will be used before the development of the whole application.
Users’ feedback will be used to improve the specifications. These feedback can be integrated in
another Sprint or used to define a new Sprint if it is important.

3.3.2.6 The next Sprints

After the system validation, the Product Backlog List is reviewed by the Scrum Team and up-
dated if necessary. Additional to system functionalities, Backlog Items will also include, bug fixes,
defects, requested enhancements and technology upgrades.

After all the Sprints are completed, the mature version of the software validated by the end
users is produced.

3.3.3 The Post-development step

The post-development step consists on two activities:

• Deploying the system and full users training: The final version of the system is deployed
and the all the users are trained in order to achieve the users needs;

• Training the users in the use of MDA tool: Users involved in the development process
will be trained on the use of the MDA tool to update the model and generate new versions
of their system themselves. This will permit us to reflect changing needs and understanding
of the business. In fact, our goal is not to leave the software development to the domain
expert, but to facilitate his/her task of the updating of the system to make it more close to his
specifications without necessarily needing the help of an IT-expert.

3.4 The EPICAM platform for tuberculosis surveillance

The EPICAM (Epidemiology in Cameroon) project aims to improve Cameroon’s health system
through a pilot project consisting to set up an electronic tuberculosis surveillance network. It con-
tributed to Cameroon’s 2009-2015 strategic plan for strengthening the Health Information System
by providing an epidemiological surveillance platform to enhance epidemiological surveillance.
This section presents how the EPICAM platform was developed and used to improve the tuber-
culosis surveillance in Cameroon. Then in the section 3.4.1, we will present the development of
the platform and in the section 3.4.2, we will present the main results obtained after its use by the
National Tuberculosis Control Program in Cameroon.

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 48

3.4.1 EPICAM platform development

In this section, we present how we have applied the methodology presented in section 3.3 to de-
velop the EPICAM platform for epidemiological surveillance of TB. Then, we will present the
Pre-development, the Development and the Post-development of this platform.

3.4.1.1 The Pre-Development of the EPICAM platform

The Pre-development step was the first step of the development of the EPICAM platform. It in-
volves the system specification, the system analysis and the Product Backlog definition.

System specifications. To efficiently fight against tuberculosis, the National Tuberculosis Con-
trol Program has established a surveillance system through which it collects and shares data with
the health professionals in health centers, health districts, health regions, the ministry of health, the
general population and partners (Global fund, WHO, Center Pasteur of Cameroon, etc.) However,
this system is manually managed causing problems (we presented some in chapter 3). To overcome
these limits, the NTCP expresses the need of an electronic system. To develop this system, existing
systems were studied on several levels of the health system. First of all, the tools generally used
for data collection (paper forms, patients cards, register), and data analysis (excel documents) were
collected at the central, regional and peripheral levels. Thereafter, a survey on the main problems
of existing systems, the specific needs of end users and their knowledge on the use of computers
were made at all levels of the organization. This survey, involving 12 health professionals was done
in three health centers (two in Yaounde and one out of Yaounde), one region and at the NTCP. This
survey permitted to identified additional problems that the health workers have in the field: diffi-
culties of the collection and the transmission of data using paper for the collection and the road for
the transmission; difficulties to share patient information with colleagues after a transfer/referral;
they are generally faced with the problem of stock-outs of drugs; difficulties to guide the patients
to the health center near to his home; difficulties to recall patients who have not come to their
appointments; difficulties to update data collection form which generally change each years; diffi-
culties to make SMS awareness; difficulties in using the computer system; power/Internet outage.
At the end of this survey, the users confirmed that the electronic system will enhance their work
as long as they are trained on the use of computers and the problem of power/Internet outage are
considered.

The study of existing systems permitted to identify functional and non functional specifications.

Functional specifications. In the broader sense, the electronic system must permit to:

• Collect, verify, synthesize data and make reports (weekly, monthly, quarterly, yearly, etc.)
accessible at the district level, the regional level, and the central level;

• Follow patients and make SMS recall for those who did not come to an appointment;

• Manage anti-tuberculosis drugs so as to prevent stock-outs;

• Locate the closest hospitals with respect to the patient’s home;

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 49

• Sensitize the population by SMS.

Non-functional specifications. Given the context, some additional constraints must be consid-
ered when developing the solution:

• The discussion was about the use of mobile phones/computers for data registration. The
health personnel return that the mobile phones may be more difficult to use than the computer
given the volume of data they manage each day;

• Support the annual update of the data collection and reports tools: According to their needs
in data, each year, the NTCP update the tools used for data collection by adding or removing
some fields;

• Remote deployment of updates: After the supports update, all the users must have access to
the new version when they connect to the server;

• Permitting to user to work offline and update their data when they connect to the Internet:
The system must permit to the users to work offline (when there is power/Internet outage)
and send the data to the server when all the conditions are fulfilled;

• The tool must be Open Source: In fact, the system will be used to develop other epidemio-
logical surveillance systems for other diseases, permitting to these systems to interoperate;

• The deployment platform must be robust: The operating system to use must permitted to
avoid viruses;

• The software must be delivered with relevant documentation: The documentation must per-
mitted to the health personnel to be autonomous when using/updating the system;

System analysis. The analysis consisted of determining the actors, the use cases of the system
and to describe most important use cases.

The main actors of the system. All the staff of the NTCP and their partners interact with the
system. They are organised in different roles:

• At the central level, the actors identified were the administrator, responsible for configuring
the system and managing the users; the program manager, responsible for coordinating the
entire system; the person in charge of the follow-up evaluation and epidemiological surveil-
lance who compile the data from the field and build the statistics needed; the person in charge
of the control of data quality; the responsible for drugs management; the person in charge of
training; the laboratory data manager in charge of the production of laboratory statistics; the
communication manager in charge of the organisation of the communication in the system
and population awareness.

• At the regional level, the regional delegate and her/his staff monitors the districts and the
health centers in the region. He/she uses the statistics for decision making.

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 50

• At the district level, the health district and her/his staff monitors the activities in the health
centers. He/she uses the statistics in the district for decision making.

• At the level of health center, the nurse or the doctor uses the system to follow patients treat-
ment:

– The pharmacist manages the stock of drugs and gives drugs to the patients,

– The laboratory staff records data on the laboratory tests and results,

– The physician enters patient data and follows her/his treatment.

Use cases. The main use cases identified were:

1. The collection, verification, synthesization of data from hospitals and laboratories;

2. Making reports accessible to the District unit, Regional unit, NTCP and partners;

3. The management of patients treatments at the treatment centers and laboratories. This in-
volves the registration of patient information, examinations, laboratory tests, transfer/refer-
ral, the automatic notification of patients by SMS on the availability of laboratory tests re-
sults, the displaying of the patients tuberculous who did not come for their laboratory tests
results, the displaying of patients who missed their appointments, etc.

4. The management of the NTCP, the health regions, the heath districts and the health centers;

5. The geolocation of the health centers and the laboratories;

6. The management of NTCP staff (arrival, departure, etc.);

7. The management of health personnel training sessions and making the training supports
(text/videos) available for further reuse;

8. The management of drugs in order to prevent a stock-out;

9. The sensitization of the population using SMS;

10. The searching of all elements recorded;

11. Exporting data for further analysis.

Product Backlog definition. Once the use cases were identified, we have defined the product
backlog in accordance with the NTCP. These were divided into the following items:

• Platform design,

• The development of user management module,

• The development of data management module,

• The development of drug management module,

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 51

• The development of the reporting module,

• The development of the mapping module,

• The development of the awareness module.

The first Sprint Review Meeting permitted us to adopt the platform design. The development
of the user management module and the data collection module was identified as our first Sprint.

3.4.1.2 The Development of the EPICAM platform

The Pre-development permitted us to identify the user’s needs and its analysis, the product backlog
and different Springs Backlogs. The development consisted in five Sprints.

Sprint 1: the development of a prototype. The first Sprint consisted in the design of the
platform and the development and the testing of the first version of the prototype consisting of the
user management module and the data collection module.

System design. Given the system specification and analysis, the architecture, the user inter-
faces, the Platform-Independent model were made.

Figure 12: System architecture

1. Architecture design. The architecture presented by the figure 12 is the architecture of the
system which suits an environment like Cameroon where access to the Internet is not always
available. This architecture is composed of a user component and a server component. The
user component may be a web browser connected to the server via the Internet. In this case,
the client shares data with the server in a synchronized manner. In the case of the offline
use of the software, the user component will be a desktop/mobile application with a local
database. Data is saved in a local database and synchronized with the server database. This

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 52

system permits users to continue their work even if there is no light or Internet and update the
server when all the conditions are fulfilled. The synchronization module works as a mediator,
which permits the server get new data from the desktop application local database and the
desktop application get new updates from the server.

2. Choice of MDA tool: The survey made in section 3.2.2 presents Imogene as a platform
based on MDA for the development of data collection applications. It permits users to use a
graphical editor to model the application and generate the executable source code. With the
application generated, it is possible to save data in a local database and update to the server
periodically. As presented in section 3.2.2, other MDA tools used in the medical domain
such as ODK and Magpi can be used to generate data collection forms, but only for mobiles
phones and not for computers. Then, we adopted Imogene as our MDA tool. A deep analysis
of Imogene shows that it permits to model and generate only two modules of the EPICAM
software: the data collection module and the user management module.

3. User Interfaces Design: During the user interface design, a deep discussion with the person-
nel of the NTCP permitted us to decide how the elements on the user UI will be organized.

4. Platform Independent Model design: To construct the PIM, we have used the specification
and the analysis to build a data dictionary. This data dictionary contains the entities, their at-
tributes, their relationships and a clear definition of each entity given by domain experts. The
definition given by the experts will permit us to present these entities on the user interfaces.
From the data dictionary, a class diagram (PIM) was built (see figure 13). This class diagram
was used to represent the entities, their properties and relations in a graphical manner.

System implementation.

Imogene was used to build a Platform Specific Model (figure 14), which was used to generate
the first prototype. This first prototype consists of:

• An administration application: Used to manage health workers information, their roles,
and their access rights on data;

• A Web application: Used for the collection of patient data, managing anti-TB drugs and
follow-up appointments of patients. This application works in a synchronized manner i.e.
when the health personnel using the application is connected to Internet;

• Desktop application: The desktop application has the same functionalities as the Web ap-
plication, but is used in an asynchronous mode i.e. when Internet connection is not available,
the system uses the local database as storage system and the local database is synchronized
with the server when the Internet becomes available;

• Synchronization application: Used to synchronize the client with the server (updating data
or updating client applications).

The figures 15 and 16 present the entry point of the EPICAM platform and the patient registration
form.

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 53

Figure 13: The Platform Independent Model of EPICAM

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 54

Figure 14: The Platform Specific Model of EPICAM constructed using the PIM

Figure 15: The entry point of the EPICAM platform

Testing and updating the Product Backlog. The Scrum Meetings (some were done with the
health personnel at the NTCP) permitted the evaluation of the user management and the data col-
lection modules. To do this, real data was entered in the system, the missing field and some fields
names errors were noted. It was also noted that some users from the central level can access per-
sonal patient information. The responsible at the NTCP tell us that only the health workers in
charge of the patient must have access to personal information of patients. Users’ remarks permit-
ted us to integrate the specification, analysis and design of user rights to the data in the Product
Backlog.

Second and next iterations. After the development of the data collection module, many iter-
ations were conducted. These iterations permitted us to integrate all the information that the data
collection forms must have and correct some typology errors. It consists of the design, the develop-
ment, and the testing. The design consisted of the PIM update, the development to the PSM update

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 55

Figure 16: The patient registration form

and a new version of the application were generated.

Sprint 2: The development and integration of user management module. Given that med-

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 56

Figure 17: The class diagram of users management in the EPICAM platform

ical data is very sensitive, in the second Sprint, we prioritized the development of the user man-
agement module. It was noted during the specifications and analysis that users have different roles
depending on their service. In some hospitals where there is not enough staff, a user may have mul-
tiple roles. For example, a user may be the person who consults the patient and gives it medication.
During the design, we constructed the class diagram modelling the user management (figure 17).
Given this class diagram, the user management module was developed (with many iterations) us-
ing Java language, Google Web Toolkit, Spring security framework, maven, xtext, xpand, OAW.
After the development, this module was integrated in the source code generator.

With the user management module, when the administrator creates a user, he/her allows him/her
to read/modify the data. When a user login, he/she can access only the data he/she is entitled to.
The figure 17 presents a screenshot of the interface permitting the attribution of rights to users.

The second Sprint permitted us to obtain a first version of the system that the end users in
the field can use in a real environment. This version was deployed in six hospitals in Douala and
Yaounde (which are the largest cities in Cameroon). User feedback allowed us to complete the
specifications (e.g., integrate clinical radiology exams) for the next Sprints.

Sprint 3: Integration of end users feedback. After the deployment in the testing centers,
the users tell us that there are two scenarios to be considered in the hospital during TB patients
treatment. The first scenario is the scenario in which the patient is registered when the medical
exams have confirmed that it is a TB patient. Then, the physician can start the registration of the
TB patient. In the other cases, the patients follow the patient circuit in the hospital. Then, in the
system, we have added other forms permitting the registration of the patients before their medical
exams. The application updates have been validated by the users in the hospitals.

Sprint 4: The development of the reporting and the mapping modules. As the previous
Sprints, the reporting and the mapping modules were developed in many iterations. The reporting
module was developed using Business Intelligence and Reporting Tool (BIRT). The mapping mod-
ule was developed using Open Street Map (OSM). During these iterations, the users have validated
the reports that they are expected to the platform, and have tested the use of the map to geolocate
the hospital near to a given patient. Note that given the time limits to produce the platform, we
have integrated the reporting and the mapping source code in hard in the source code generator.

Sprint 5: the development of the SMS module The SMS module was specified by the users
at the central level and developed using the Spring Rest API. In fact, to send SMS using the

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 57

platform, the system must use a service provided by an SMS provider. The SMS module were
tested, validated and integrated in the source code generator.

3.4.1.3 Summary

During the EPICAM project, we have developed a new MDA-based platform based on Imogene for
the generation of epidemiological surveillance platforms. In addition to the data collection module
generated by Imogene, this tool integrates:

1. The reporting module: It is the module for epidemiological report generation (in pdf for-
mat) using BIRT;

2. The geolocalization module: Using OpenLayer, a library for creating interactive map on
the Web, this module permit us geolocate hospitals near to the patient’ home,

3. SMS module: For the sensitization and patient recall;

4. Managing drugs module: The goal of this module is to manage TB drugs in order to prevent
stockouts;

EPICAM was developed and released under the LGPL license6. Its goal being to provide full
software support for teams desiring to implement epidemiological surveillance systems in their
environment. EPICAM was used to generate the last version of the epidemiological surveillance
of TB in Cameroon.

After the development and the deployment of the TB surveillance platform, the user’s feedback
(e.g. update a field) permits us to complete, generate and deploy new versions of the applications.
For users, everything is transparent because the synchronization module updates the remote appli-
cation automatically.

3.4.2 Main results obtained during EPICAM use

The system was deployed in twenty five pilot hospitals. The figure 18 presents the distribution of
the deployment in the country where the patients are treated for tuberculosis. We supervised the
system in the course of the year 2015. Around 3900 patients which represents 15.6% of the annual
number of TB cases in Cameroon were registered and followed.

The figures 19, presents a resume of TB register in Cameroon and the figures 20, 21 present
the screening and the treatment reports in the first trimester of the year 2015.

6https://github.com/\\ummiscolirima/EPICAM

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 58

Adamawa

Far North

North

East
South

Central

Northwest

Southwest

Littoral

West

Figure 18: Distribution of the deployment of the EPICAM platform

3.4.2.1 Users’ feedback

According to users’ feedback, the system allowed:

• At the central and regional level, a better visibility of the health problems and an early
detection of issues. For example, by using the system, an epidemiologist found that low-
weight patients died the most.

• At the peripheral level, the system permits health workers to improve the patients’ manage-
ment and follow-up. A testimony of a health worker: "one day, a patient came for consul-
tation and during his registration in the system, I found that he had stopped his treatment
before the 6 months recommended and the disease resumed. An interview with him revealed
that he had started drinking alcohol. The examination revealed that the patient was now a
TB-MDR patient."

The searching functionality permits health workers to access easily to patient information.
In addition, losing the patient follow-up card will no longer be a problem because all the
patients’ information is saved in the database. However, during the transfer/referral of a
patient in a hospital where the system is not deployed, it is not easy for the health worker to
continue the follow-up if the patient does not have his follow-up card.

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 59

Figure 19: A summary of TB situation in the pilot centers in 2015

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 60

Figure 20: Screening report in the first trimester of 2015

Given the success of this pilot phase, the NTCP have adopted the softwares as its electronic
epidemiological surveillance softwares and extended it in twenty new health centers during the
years 2016 and 2017.

Semantic-aware epidemiological surveillance system

3.4 The EPICAM platform for tuberculosis surveillance 61

Figure 21: Treatment report in the first trimester of 2015

The surveillance system was deployed at the server side using the PostgresQL database and the
client side using the H2 database. Searching information in these databases consists of making a
SQL query. However, reasoning cannot be made using this kind of data structure to deduce new
information (e.g., automatic detection of TB-MDR patients). In chapter 6, we propose a solution
based on a domain ontology for the annotation of epidemiological data.

Semantic-aware epidemiological surveillance system

3.5 Conclusion 62

3.5 Conclusion

In this chapter, we have seen that the software developers of today face software development
issues such as the demand of richer functionalities in shorter timescales, the rapid evolution of
systems deployed. To solve these problems, software development methods, methodologies and
tools are proposed. To support early and quick production of working code, agile methodologies
propose to adapt the development to the changes. To this end, the software is developed in an
iterative and incremental manner. On the other hand, the Model Driven Architecture approach im-
proves the productivity and maintainability of software by allowing to model the software and
automatically generate the executable source code. To this end, MDA tools are developed to sup-
port the overall modelling and transformation process. For instance, Imogene is a MDA tool used
for the modeling and the generation of data collection software. Addressing the epidemiological
surveillance problems and challenges requires a fast, flexible, collaborative methodology to de-
velop epidemiological surveillance systems. Then, we proposed in this chapter an approach based
on the combination of agile methodology (particularly Scrum) with MDA, and a tool for modeling
and generating epidemiological surveillance systems. The tool, named EPICAM is an extension of
the Imogene platform. The methodology and the tool proposed were used to develop a platform for
epidemiological surveillance of tuberculosis in Cameroon. During the periods of 2014-2015, the
system was deployed in twenty five pilot hospitals. It allows to follow around 3900 patients which
represents 15.6% of the annual number of TB cases in Cameroon. Given the success of this pilot
phase, the NTCP have adopted the software as its electronic epidemiological surveillance software
and extended it in twenty new health centers during the years 2016 and 2017.

Note that the surveillance system developed for NTCP was deployed at the server side using
the PostgresQL database and the client side using the H2 database. Searching information in these
databases consists of making a SQL query. However, reasoning to deduce new information cannot
be made with this kind of data structure. In the next chapters, we propose a solution based on a
domain ontology.

Semantic-aware epidemiological surveillance system

4
Ontology engineering

Ontologies are knowledge representation languages borrowed by computer science from philoso-
phy and commonly used in the Semantic Web. In philosophy, ontologies help to model reality so
as to distinguish what is real and its categories from what is not real [58]. In computer science and
information science, ontologies help to model a domain/problem. The main goal of this chapter is
to present how ontologies are constructed. It is divided in three main sections: section 4.1 presents
ontologies, section 4.2 presents how ontologies are build, section 4.3 presents ontology learning
and section 4.4 presents related works on ontology learning from source code.

4.1 Ontologies

The goal of the first section of this chapter is to define the notion of ontology and how it is mod-
elled. Section 4.1.1 will present the notion of knowledge, section 4.1.2 will present the ontologies
and section 4.1.3 will present how ontologies are modelled.

4.1.1 The notion of knowledge

Knowledge are facts, information and skills acquired through experience or education for under-
standing of a subject area. In this area, it describes concepts and facts, relations among them and
mechanisms to combine them in order to solve problems in a domain [54]. To be useful, knowl-
edge must be acquired from domain experts/resources and represented by a formal model such as
semantic networks, system architecture, Frames, rules, ontologies, and logic.

The theory behind knowledge representation is cognitive science which studies human think-
ing in terms of representational structures in the mind and computational procedures that operate
in those structures. It is assumed that the human mind has mental representations analogous to
computer data structures and that the computational procedures of the mind are similar to compu-
tational algorithms. In this field, the different mental representations of the human mind are cited as

Semantic-aware epidemiological surveillance system

4.1 Ontologies 64

follows: logical propositions, rules, concepts, images, and analogies. These constitute the basis of
the different knowledge representation techniques of the human knowledge such as rules, frames,
and logic. Every representation provides some guidance about how knowledge can be organized
for efficient computation (e.g. frames are suitable for taxonomic reasoning) [54]. The domain of
cognitive science distinguishes the different types of knowledge that humans commonly use [54]:

• Procedural knowledge: Describes how things can be done. Example of such knowledge
includes rules, problem-solving strategies, agendas, and procedure manuals;

• Declarative knowledge: It is about what is known about a topic or a problem. For example,
facts that are either true or false;

• Metaknowledge: Describes the knowledge behind knowledge;

• Heuristic knowledge: Express as a simple heuristic which help to guide the problem solving
process and moving through the solution space;

• Structural knowledge: Describes the relationship between the different pieces of knowl-
edge from other categories;

• Inexact and uncertain knowledge: Described a prior, a posterior, and conditional proba-
bilities of events.

• Commonsense knowledge: Denotes a vast amount of human knowledge about the world
which cannot be put easily in the form of precise theories.

• Ontological knowledge: Describes a category of things; a domain and the terms that people
use to talk about them; the relations between categories, and the axioms and constraints in
the domain. Its main components are concepts, properties of concepts, axioms and rules. In
section 4.1.2, we shall be talking about ontologies.

After the knowledge of a particular domain is gathered, it is organized and stored in a knowl-
edge base. These knowledge can be retrieved when need be. This is called knowledge retrieval.
This is done through reasoning to obtain conclusions, inferences, and explanation. In order to de-
velop practical knowledge bases, knowledge engineers have to execute a process consisting of
[54]:

• Understanding knowledge properly, transforming it making it suitable for the application of
the various knowledge representation formalism;

• Encoding knowledge in a knowledge base using appropriate representation techniques, lan-
guages, and tools;

• Verifying and validating knowledge by running the practical intelligent system that relies on
it;

• Maintaining knowledge in the course of time.

Knowledge helps to add semantics to the Web. However, in the next section, we shall be talking
about a particular type of knowledge that is ontologies.

Semantic-aware epidemiological surveillance system

4.1 Ontologies 65

4.1.2 Ontologies

This section defines the notion of ontology. Then, it presents its main components and typology.

4.1.2.1 Definitions

In literature review, several definitions of ontologies were noted. Gruber defines ontology as an
explicit specification of a conceptualisation. Based on Gruber’s definition, many other definitions
were proposed: Borst defines ontology as a formal specification of a shared conceptualization;
Studer merged Gruber and Borst definitions and defines ontology as an explicit, formal specifica-
tion of a shared conceptualization; Guarino gives a definition using the modelling tool that is logic.
According to him, an ontology is a logical theory of a conceptualization [58]. These definitions
present the key elements of an ontology:

• Conceptualization: Refers to an abstract model of some phenomenon in the world. This
model is made up of relevant domain concepts, relations, and how concepts relate to each
other.

• Explicit: Refers to the fact that the meaning of all concepts and the constraints on their use
must be explicitly defined. All concepts must be correctly interpreted by machines.

• Formal: Refers to the fact that the ontology should be machine-readable (understandable
and interpretable).

• Shared: Here, the ontology must capture a consensual knowledge (accepted by a group of
domain experts) and must be shared to facilitate communication.

4.1.2.2 Basic ontological components

An ontology is composed of these basic components [58]:

• Concept, also calledClass, represents a category of objects. For instance ”Health_facility”
is the concept of all health facilities including health centers and clinics;

• Individual is an instance of a concept and corresponds to a concrete object. For example,
from the concept ”Person”, ”Bob” is an individual;

• Property is used to describe the characteristics of individuals of a concept. They are com-
posed of DataProperties and ObjectProperties. DataProperties are properties whose values
are data types. For instance, ”age” of type ”Integer” can be a property of an instance
of the concept ”Person". ObjectProperties are special attributes whose values are individ-
uals of concepts. For instance, ”examined_in” defines a relationship between the concept
”Person” and the concept ”Health_facility” ("A person is examined in a health facility");

Semantic-aware epidemiological surveillance system

4.1 Ontologies 66

• Class/Property hierarchy is one of the most important relation used to organize concepts
and properties in the ontology. It is used to organize concepts/properties through which in-
heritance mechanisms can be applied. For instance, ”Patient” is subClassOf ”Person” is
a hierarchical relation between these two classes. Class/Property taxonomies are generally
used to construct the so called lightweight ontologies or taxonomies;

• Axiom is used to model statements that are always true. Heavyweight ontologies add ax-
ioms and constraints to lightweight ontologies. Axioms and constraints clarify the intended
meaning of the terms in the ontology. For example, the assertion "the concepts ”Men” and
”Women” are disjoint" is an axiom;

• Rule is a statement in the form P1,...,Pn

P
, this means that if the statement P is true, then, the

statements P1, ..., Pn are true. Rules are used for knowledge inference purposes.

4.1.2.3 Types of ontologies

Several authors have classified ontologies [58]. However, in this thesis, we will be working on
domain ontologies and application ontologies. Thus, in the following paragraphs, we will present
the classification of ontologies according to Guarino [58]. This classification is done according to
the level of dependence of the ontology on a particular task:

• Top-level/Upper-level ontologies: They are also called cross-domain ontologies. They de-
scribe general concepts and provide general notions under which all root terms in existing
ontologies should be linked. They use general concepts like time, space, event and can be
shared and transferred from one context to another. Top-level ontologies are absolutely inde-
pendent from a specific domain or from a specific problem. Examples of top-level ontologies
are two ontologies build by Guarino and al. [58] One is universals (a universal is a concept
like "car") and the other is particular (a particular is an individual like "your car").

• Domain ontologies: They provide vocabularies about concepts within a domain and their
relationships; about the activities taking place in that domain; and about the theories and ele-
mentary principles governing that domain. They are limited to the representation of concepts
in a given domain and in some cases, they are a specialization of an upper-level ontology. For
example, the term "City" in a domain ontology is a specialization of a more generic concept
"Location" which is a specialization of the term "SpatialPoint" that may be defined in an
upper-level ontology.

• Task ontologies: Task ontologies describe the vocabulary related to a generic task or activity
(diagnosing, scheduling) by specializing the terms in the top-level ontologies. They are used
to model tasks or processes and how these tasks are related. They provide a systematic
vocabulary of the terms used to solve problems associated with tasks that may or may not
belong to the same domain. For example, an ontology can be constructed that describes the
task of a health professional in a Hospital.

• Application ontologies: Application ontologies are ontologies that are application-dependent.
They combine domain ontology and task ontology. They contain all the definitions needed

Semantic-aware epidemiological surveillance system

4.1 Ontologies 67

to model the knowledge required for a particular application. These ontologies often extend
and specialize the vocabulary of a domain and task ontologies.

Note however that these ontologies can be heavyweight ontologies or lightweight ontologies
depending on the conceptualization used. They are called lightweight ontologies when they de-
fine only hierarchies of types and/or properties and heavyweight ontologies when they are more
expressive, using restrictions, inferences, and class construction.

4.1.3 Knowledge modelling

Knowledge can be modelled using many modelling techniques such as semantic networks, sys-
tem architecture, Frames, rules, logic [54]. Ontological knowledge particularly can be classified
according to the formalism used for their modelling. They can be modelled using rules or software
engineering techniques (lightweight ontological knowledge); or logical techniques (heavyweight
ontological knowledge) [58, 63]. In this section, we are going to present the modelling of heavy-
weight ontological knowledge and lightweight ontological knowledge.

4.1.3.1 Modelling heavyweight ontological knowledge

Logic can be defined by L = (S, |=) where S is a set of statements and |= is an entailment relation.
It is used to make formal deductions and inferences, study correct and incorrect reasoning and
modelled knowledge [113].

Logical languages. A logical language is defined by a syntax and a semantic [58, 63]:

• The Syntax is composed of a collection of symbols and rules which are combined as for-
mula;

• The Semantic gives meaning (interpretation) to symbols and formulae. With the semantic,
one can use facts to make deductions, to reason by building demonstrations (e.g., to demon-
strate that a patient has tuberculosis by demonstrating that he/she has been tested positive
for Koch’s Bacillus (KB)).

Logical deduction helps to derive formulae (provable formulae or theorems) from starting for-
mulae (axioms) or rules (inference rules) [63, 113]. There are two ways to show that a formula is a
logical consequence of another formulae: The resolution method and the tableau algorithm. With
these methods, it can be demonstrated for example, in the case of epidemiological surveillance
that any patient who takes tuberculosis drugs has positive sputum results [113]. Several logical
formalisms can be used to model knowledge. In the following, we are going to present the propo-
sitional logic, the first order logic and the description logic.

The Propositional Logic (PL). The Propositional logic or the calculation of the propositions
defines the rules of deduction which connect the propositions to each other without examining

Semantic-aware epidemiological surveillance system

4.1 Ontologies 68

the contents. A proposition is a fact, a theorem, an utterance that is either true or false. It can be
demonstrated or refuted. The formulae are the propositions that can be formed by combining the
atomic propositions [113]. For example, the statement "a TB case is a person" can be modelled
using a complex formula consisting of two propositions (t, h) and a binary operator: t −→ h (t,
represents a case of tuberculosis and h a person). To model knowledge with Propositional Logic,
one must specify the syntax and the semantic [113]:

• The syntax defines allowable facts. Atomic facts consist of a single proposition that can
be true or false. Complex statements are constructed from simpler ones using parentheses
and logical connectives. There are five connectives generally used: ¬ called a negation, ∩
called a conjunction, ∪ called a disjunction,⇒ called an implication also known as "if-then"
statements,⇐⇒ called if and only if. All sentences are constructed from atomic sentences
and the five connectives.

• The semantic specifies how to compute the true value of any sentence given a model. It
specifies how to compute the truth of atomic sentences and how to compute the truth of
sentences formed with each of the five connectives. The rules can be expressed with truth
tables that specify the truth values of a complex sentence for each possible assignment of
truth values to its components. It is to map all atomic propositions to {t, f}. If F is a formula
and I an interpretation, then, I(F) is a truth value computed from F and I via a truth table.

A knowledge base built using PL can be validated using Resolution or analytic tableaux method
by demonstrating that it is satisfiable.

Note that with PL, one can only make statements and assertions about single objects. It is
impossible to summarize objects into a set or a class (ontological concepts) and to make statements
about a set of things; to make relationship among propositions (data/object properties); to make
arguments on a set of objects without explicitly naming them [113]. For example, it is not possible
to model the statement "anyone with positive sputum exams is a case of tuberculosis".

First Order Logic (FOL). FOL is define by (V,C, F, P) where V is a set of variables which is
countably infinite, C a set of constant symbols, F a set of function symbols (each function comes
with an arity), P a set of predicate or relation symbols (each P comes with non negative integer as
its arity). It is assumed that the world consists of objects with certain relations among them that do
or don’t hold. Thus, it is used to express facts about some or all the objects in the universe [113].
Contrary to PL, FOL can be used to represent knowledge of complex environments in a concise
way because it is sufficiently expressive to represent a good deal of commonsense knowledge. The
language of FOL is built around its syntax and its semantic:

• To represent the syntax, the model of FOL defines the formal structures that constitute the
possible world under consideration. The basic syntax elements of FOL are the symbols that
stand for objects, relations, and functions.

– Objects are constant symbols. The domain of a model is the set of object or domain
elements it contains. The domain is required to be nonempty. Every possible world
must contain at least one object.

Semantic-aware epidemiological surveillance system

4.1 Ontologies 69

– Relations are predicates symbols consisting of a set of tuples of objects that are related.
Each predicate symbol comes with an arity that fixes the number of arguments;

– The model can contain some relations considered as functions. Every function has an
arity that fixes the number of arguments.

• To define the semantic, a model consists of a set of objects and an interpretation that maps
constant symbols to objects, predicates symbols to relations on those objects, and function
symbols to functions on those objects:

1. A term is a logical expression that refers to an object;

2. Predicate symbols refer to relations among terms;

3. Atomic sentence (or atom) is formed from a predicate symbol optionally followed by
a parenthesized list of terms;

4. Complex sentences can be constructed using logical connectives;

5. Quantifiers (universal quantification - ∀ and existential quantification ∃) are used to
express properties of entire collections of objects, instead of enumerating objects by
name;

6. Nested quantifiers are used to express more complex sentences using multiple quanti-
fiers;

7. ∀ and ∃ are intimately connected with each other through negation (∀x¬P (x,Q) is
equivalent to ¬∃xP (x,Q));

8. Equality symbol (=) is used to signify that two terms refer to the same object. It can be
used to state facts about a given function with negation to state that two terms are not
the same.

In a broader sense, with FOL, one can:

• Make reasoning on a set of object: e.g., ∀ TBCases −→∃Hospital∩treatedHospital.TBCases
to say that "TB cases are treated in Hospital",

• Deduce formulae: e.g., "people do TB tests. If a person is tested as positive to KB then he is
a TB case. A TB case follows treatment for at least 6 months with Rifampicin. Bob has been
on Rifampicin for 6 months. Can we assume that Bob was a TB case?"

FOL is suitable for modelling ontologies but, it is difficult to achieve a consensus in modelling;
cumbersome for modelling; complex if one have to make calculations because it is not decidable;
the same knowledge can have several possible interpretations; it is complex to prove the accuracy
and the completeness of the statements [130]. In the following paragraphs, we are going to present
another knowledge representation formalism consisting of a family of logic called Description
Logics.

Description Logics (DLs). This is the name of a family of knowledge representation formal-
ism where the majority are a decidable fragment of FOL. DLs provide concepts (classes), roles

Semantic-aware epidemiological surveillance system

4.1 Ontologies 70

(properties), operations (and, or, not, some, all, atleast, atmost, any, ...) on the primitive elements
of language, a classification mechanism based on the subsumption relation between concepts or
roles. They help to represent the terminological knowledge and assertional knowledge of a domain
in a formal and structured way and to reason effectively minimizing the response time on this
knowledge [63]. The applications of DLs are numerous: Semantic Web, medicine, bioinformatics,
knowledge engineering, software engineering, etc. Let’s define its syntax and semantic as we have
done with PL and FOL:

• The syntax of DLs defines concepts, roles, individuals, and operators.

– Concepts are unary predicates that represent entities and classes e.g., Location:{x |
Location(x)};

– Roles (also called properties) are binary predicates that represent relations between one
concept and another e.g. treatedAt: {(x, y) | treatedAt(x, y)} connects two individuals
that belongs to different classes.

– Individuals (or concept assertion) are constants that are the instantiation of a class. e.g.
we can have the assertion Person(Bob) to say that Bob is a person.

– Operators (or constructors) are used to construct complex representations of concepts
or roles. To guarantee the decidability and low complexity of DLs, the expressivity
of all the operators are limited. Fundamental operators to define class and properties
are: logical conjunction: (∩), logical disjunction: (∪), negation: (¬), restricted form of
quantification : (∃,∀).

• The semantic of DLs is given by an interpretation consisting of the interpretation domain (D)
and an interpretation function (I). The interpretation function interprets all atomic concepts
and all atomic roles. Atomic concepts will be mapped to subsets of domain of discoursure
and the role will be mapped to a subset of a cartesian product of the domain of discoursure.

TBox

ABox

Terminological knowledge
Knowledge on concepts, properties,

axioms and rules

Assertional knowledge
Instances of elements described by the

TBox

Figure 22: Knowledge Base in DL

DLs divide knowledge into 2 parts as presented by the figure 22:

• TBox (Terminological Box): It contains the terminological knowledge and describes the
general knowledge of the domain. It is composed of Classes (describing the concepts of
the domain), Roles (defining relationships between concepts) and Axioms (additional con-
straints on classes and roles).

Semantic-aware epidemiological surveillance system

4.1 Ontologies 71

• ABox (Assertional Box): It represents a configuration, a situation or a specific data of the
system. It describes individuals by naming them and specifying them in terms of concepts
and roles, assertions that relate to these individuals. Several ABox can be associated with the
same Tbox [63].

There are several families of descriptive logic: AL, ALN, ALC, SH, ALCN, ALCQ, ALCF,
SHOIN, SHIQ, SHIF. The difference between one family and another is mainly expressed in terms
of expressivity.

With DLs, deductions help to derive new formulae from the starting formulae by means of the
rules (inference rules). To make deduction, DLs distinguish Closed World Assumption (CWA) in
which all knowledge is specified without giving the possibility to extend the model. Any assertion
that cannot be proven true is false; and the Open World Assumption (OWA) in which the model
is specified by giving other people the ability to extend it. If a request is made on the KB without
answer, the KB will return "don’t know" (In the real world there is not enough information). As
DLs use OWA, this can lead to a problem of undecidability of the knowledge base (because in
the case where it is false, the algorithm can run indefinitely). To show that a knowledge base is
consistent, one can use either Resolution or analytic tableaux method. In DLs these methods are
extended to stop in a finite time by adding the stopping conditions.

4.1.3.2 Modelling lightweight ontological knowledge

Lightweight ontological knowledge are knowledge with restricted expressivity in which concepts
are connected with other concepts using untyped association. Lightweight ontologies include con-
cepts, concept taxonomies, relationships between concepts, and properties that describe concepts.
Software engineering and rules techniques are used to model this kind of knowledge because they
impose a structure to the domain knowledge and constrain the interpretations of terms [58].

Rules. Rules define constraints and always resolve to either true or false. They are composed
of the dependent clause expressing the condition and the main clause expressing the consequence.
Placed at the top of the Semantic Web stack, they can be seen as an extension of FOL that describe
knowledge that often depends on the context and cannot be easily modelled using DLs [52]. Rules
can be used to assert control or influence the behaviour of a system. One common use is to stan-
dardize access control to applications e.g. "Provide statistics of the hospital in which a decision
maker is located". One can distinguish general Inference rules (Premise→ Conclusion), assump-
tions rules (Cause → Effect), production rules (Condition → Action). Rules are often combined
with DLs to model knowledge. But, combining DLs and rules can give rise to undecidability. The
decidable fragment called DATALOG is generally used [52].

The Use of software engineering techniques. Many software engineering techniques may be
used to model lightweight ontological knowledge.

1. UML technique: UML might be used for knowledge modelling because it has a graphical
language easy to understand by people outside the computer science domain. For instance,

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 72

Expressivity Ontology type Decidability Make calculation
PL Weakly expressive lightweight Decidable Yes
FOL Strongly expressive Heavyweight Non Decidable Yes
DL Strongly expressive Heavyweight Decidable Yes
Rules Weakly expressive lightweight Decidable Yes
UML Weakly expressive lightweight Decidable No
Database Weakly expressive lightweight Decidable No
MDA Weakly expressive lightweight Decidable No

Table 4.1: The summary of knowledge modelling approaches

class diagram notations helps to model concepts using classes, taxonomies using the gener-
alization relation between classes, attributes using class attributes, and formal axioms using
Object Constraint Language (OCL) [54, 113]. The main limit is that OCL cannot be used to
represent all axioms [58, 113].

2. MDA techniques: With the MDA technique, the system is modelled using a meta-model
and the resulting model is used to generate the application source code [20, 54]. Knowl-
edge can be extracted from meta-models [54] by using the correspondence between MDA
models components and knowledge components. The figure 14 presents the meta-model of
EPICAM, very close to the representation of the ontologies using the Protege editor. When
the meta-model is designed with Ecore, then, as for UML, the constraints can be added using
the OCL language.

3. Database techniques: A database is an organized collection of data for a rapid search and
retrieval of information. It can be modelled using the Entity-Relation (ER) model. Onto-
logical knowledge can be modelled using database design techniques by matching the ER
model with knowledge components [58]. The ER notations allows modelling classes through
ER-entities, taxonomies using the generalization relationship between ER-entities; attributes
through ER-attributes; and formal axioms with integrity constraints. As with UML, the main
limit is the difficulty to model and to evaluate all axioms.

In this section, we presented the different ontological knowledge modelling formalisms with
their advantages and disadvantages. The table 4.1 summarizes these knowledge modelling ap-
proaches and their limits. In this thesis, we are particularly interested in ontological knowledge.
As presented by many authors [58, 63] and the table 4.1, DLs are good candidates for ontological
knowledge modelling.

4.2 Ontology engineering

Ontologie engineering consists of a set of activities that concerns ontology development process,
the ontology life cycle, the methodologies, tools and languages for building ontologies. The goal

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 73

of this section is to present the different artefacts used to build ontologies. In section 4.2.1, we
will present the ontology development process, methods and methodologies. In section 4.2.2 we
will present the knowledge representation languages and query languages. In section 4.2.3 we will
present the tools used to build and manage ontologies.

4.2.1 Ontology construction process, methods and methodologies

4.2.1.1 Ontology development process

Figure 23: Ontology development process [58]

The ontology development process (see figure 23) refers to activities that are being performed
when building ontologies without identifying the order in which these activities should be per-
formed. These activities are very important especially in the case where the ontology is being built
by geographically distant cooperative teams. The ontology life cycle describes the different phases
involved in the ontology development. When this life cycle is well defined, error detection is done
much earlier and it is possible to control the quality, the delays and the costs of the development.
The control will help for example to know if the ontology was well built and the validation will help
to know if the ontology responded to the needs of the domain experts. The ontology development
activities can be organized in 3 categories [58]:

1. Ontology management activities: It consists of scheduling activity, control activity and
quality assurance activity.

• The scheduling activity: Consists of identifying the problem to be solved, the tasks to
be performed, their scheduling, the time needed and the resources for their realization.

• The control activity: Here, all the steps must be checked in order to ensure that all
scheduled tasks are completed as intended.

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 74

• The quality assurance activity: The quality assurance activity ensures that all pro-
duced resources (ontology, documentation) during the development process are of good
quality.

2. Ontology development activities: It involves the Pre-development, the Development and
the Post-development activities.

• The pre-development activity: During this activity, a situational analysis (environ-
mental study) and a feasibility study are carried out in order to identify the platforms
where the ontology will be integrated.

• The development activity: The development activity is made up of the specification,
the conceptualization, the formalization and the implementation. The specification per-
mits to respond to the following questions: Why is the ontology being built? What its
intended uses are and who the end-users are? The conceptualisation involves structur-
ing the domain knowledge into a conceptual model. The formalisation is the transfor-
mation of the conceptual model into a formal or semi-computable model. The imple-
mentation is the serialization of the computable model into an ontology representation
language.

• The post-development activity: The post-development activity is made up of the
maintenance activity and the reusing activity. The maintenance activity involves the
updates and the corrections of the ontology if need be. The reusing activity consists of
reuse the ontology constructed by other ontologies or applications.

3. Ontology support activities. These include a series of activities performed at the same time
as the development activities, without which the ontology could not be built. These activities
are:

• Knowledge acquisition activity which consists of gathering knowledge from identified
sources (human, text, databases, meta-models, source code, etc.).

• Evaluation activity consists of the validation of the ontology and associated resources
(documentation, software environment) by verifying if it is really the shared conceptu-
alisation of the modelled domain.

• Integration, merging, and alignment activities consisting of the construction of a new
ontology from already existing ones.

• Documentation activity. This gives every detail on all the completed stages and prod-
ucts that are being produced.

• Configuration management activity consists of managing all versions of the ontology
and documentation so that when there are errors, knowledge engineers can go back to
rectify or make corrections on the previous versions.

4.2.1.2 Ontology construction methods

To build ontologies, knowledge engineers may choose amongst the existing methods. For this
purpose, they must ask themselves some questions. For example, is it necessary to use the top-

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 75

down, bottom-up, or middle-out approach? Is it necessary to build it manually, automatically or
semi-automatically? Or will the ontology be built from existing ones?

Top-down approach: From general to particular. In the top-down approach, one starts from
general concepts and evolves towards major specializations. Firstly, one identifies the most general
concepts and creates categories at the most general level as possible. The main advantage of using
a top-down approach is a better control of the level of details. However, starting at the top can
equally result in choosing and imposing arbitrary and possibly not needed high level categories
[58].

Bottom-up approach: From particular to general. In this approach, the ontology is con-
structed from the most specific concepts, which are then grouped into categories. The main result
here is a very high level of detail of terms obtained. However, this approach increases the over-
all development effort and makes it difficult to spot commonality between related concepts and
equally increases the risk of inconsistencies [58].

Middle-Out approach: Starting in the middle. In this approach, an intermediary layer of
concepts serves as a starting point. The development can go in both directions. It is recommended
to identify firstly the core of basic terms, then, specify and generalize as required. This approach
strikes a balance in terms of the level of details. Details only arise as necessary by specializing the
basic concepts, so that some wasted efforts are avoided [58].

(Semi)automatic construction of ontologies. Ontologies can be built manually, automatically
or semi-automatically. During manual construction, the various resources containing knowledge
are collected, terms are identified and the ontology is constructed. Automatic construction (also
called ontology learning) implements the generation of terms automatically from resources [58].
Ontology learning is detailed in section 4.3.

Building ontologies by reusing existing ontologies. Before the development of a new ontol-
ogy, one can consider the reuse of existing ones. There are several ways to reuse existing ontologies
[58]:

• Ontology re-engineering: This is used when domain experts do not agree on the content
of ontologies or the conceptual model of the ontology is absent. Thus, the re-engineering
process will consist of recovering the model of an ontology and transforming this model into
another ontology more appropriate.

• Ontology enrichment: This is the process of adding new knowledge in an ontology to have
a more complete one. This will help to ensure their growth and to continue to meet the needs
of users [108].

• Ontology Fusion. This consists of creating a new ontology by merging existing ones. There
are several methods of ontology fusion: ONIONS allows the creation of an ontology library
from multiple sources, FCA-Merge merges two ontologies into one set of domain docu-
ments, PROMPT takes as an input two ontologies and creates a list of matches [58].

• Ontology alignment. This consists of creating links between several ontologies without
modifying them, hence preserving the original ontologies. It is often used for complementary

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 76

domains.

• Cooperative Construction of Ontology (Co4). This is a protocol developed at INRIA for
the collaborative construction of KBs. Its goal is to allow the discussion of people and knowl-
edge commitment in the KBs of a system.

4.2.1.3 Ontology construction methodologies

The first methodologies for ontology construction were inspired by the experience of domain
experts and knowledge engineers. However, a series of methodologies have been reported: Cyc
methodology, TOVE methodology, METHONTOLOGY, SENSUS methodology, On-To-Knowledge
methodology, TERMINAE, Ontology Development 101 and NeOn methodology [58]. With time,
other proposed methodologies, based on software engineering (Unified Process Methodology for
ontology design), software architectures (ontology design pattern methodology) and agile method-
ologies appeared [1]. This section details the NeOn methodology used in this thesis.

NeOn Methodology for Building Ontology Networks. An ontology network is composed of
ontologies related together via meta-relationships such as mapping, modularization, version, and
dependency relationships. Suárez-Figueroa et al.[127] proposed a methodology that they named
NeOn methodology to build such ontology. This methodology takes into account the existence of
multiple ontologies in ontology networks, the collaborative ontology development, the dynamic
dimension, and the reuse and re-engineering of knowledge resources. It is composed of a set of
scenarios that the knowledge engineer can combine in different ways, and any combination should
include Scenario 1.

• Scenario 1: From specification to implementation. The first scenario is composed of:
(1) Knowledge acquisition activity, carried out during the whole development. During this
activity, knowledge engineers simultaneously acquire knowledge and make the specification
that the ontology should fulfill. This gave rise to the ontology requirements specification
document (ORSD). Then, a quick search for knowledge resources using the terms in the
ORSD permits us to know which types of resources are available for a possible reuse. (2)
The scheduling activity can start. It uses ORSD and knowledge resources (it exists) to carry
out the rest of the activities (i.e., conceptualization, formalization, and implementation) using
existing methodology such as On-To-Knowledge.

• Scenario 2: Reusing and re-engineering non-ontological resources (NORs). Knowledge
engineers decide which NORs to be used. Then, from these resources the terms are extracted
and the ontology is built.

• Scenario 3: Reusing ontological resources. In this scenario, the knowledge engineers use
existing ontological resources to build the ontology. From each ontology selected, a part or a
whole can be reused. Knowledge engineers can also perform a re-engineering of ontological
resources (following Scenario 4) or the merging of ontologies of the same domain to obtain
a new ontology (following scenarios 5 and 6).

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 77

• Scenario 4: Reusing and re-engineering ontological resources. In this activity, knowledge
engineers re-engineer ontological resources before their integration in the ontology (corre-
sponding activity of Scenario 1).

• Scenario 5: Reusing and merging ontological resources. This scenario consists to merge/align
ontological resources of the same domain. The merging will permit to obtain a new ontology.
The alignment will permit to establish links among the selected resources in order to create
a network.

• Scenario 6: Reusing, merging and re-engineering ontological resources. In this scenario,
knowledge engineers decide not to use the set of merged ontological resources such as it is,
but to re-engineer it. The set of merged ontologies re-engineers is integrated in the corre-
sponding activity of Scenario 1.

• Scenario 7: Reusing ontology design patterns (ODPs). In this scenario, knowledge en-
gineers access ODPs repositories in order to reuse ODPs. ODPs can be used to reduce
modelling difficulties, speed up the modelling process or check the adequacy of modelling
decisions.

• Scenario 8: Restructuring ontological resources. This scenario can performed as fol-
lowed: (1) modularizing the ontology in different ontology modules; (2) pruning the branches
of the taxonomy not considered necessary; (3) extending the ontology including new con-
cepts and relations; and (4) specializing those branches that require more granularity and
including more specialized domain concepts and relations.

• Scenario 9: Localizing ontological resources. This is to adapt an existing ontology to one
or various languages and culture communities to obtain a multilingual ontology. For exam-
ple, the translation of all ontology labels into one or several natural languages.

4.2.2 Knowledge representation languages and queries languages

Once the ontology is modelled, it will be put in a form understandable by the machine and queries
will be made to retrieve information. At this level, a very important decision is to choose the
language(s) to model the knowledge and to make queries. Among the multitude of knowledge rep-
resentation languages, the selection criteria is based on the knowledge base that one wants to build
and the inference mechanisms needed by applications that will use the ontology. In the following
paragraphs, we will present some knowledge representation languages and queries languages.

4.2.2.1 Knowledge representation languages

In early 1990, a set of knowledge representation languages were invented. These languages were
based mostly on FOL (Cycl, KIF, Ontolingua, OCML, and Flogic) and others were based on DLs
and production rules (LOOM). The Internet growth has led to the creation of languages to exploit
the characteristics of the Web (RDF(S), OWL). These languages are called Web-based ontology
languages or Ontology Markup Languages. Knowledge representation Languages can be classified

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 78

according to the goal to which they aim at. One can distinguish languages to improve the process
of ontologies building (OCMl), languages that helps to make inferences (OIL, OWL), languages
that permits the design of ontologies (Ontolingua), languages that permits exchange on the Web
(RDF(S), OWL, SHOE, OIL) [58]. We will be focusing on the languages that permit the exchange
of data on the Web in general, and especially on RDF(S) and OWL languages. We will present
these languages according to the following two main dimensions: Knowledge Representation (de-
scription of how the components in the ontology can be modelled) and Reasoning Mechanisms
(used to create an inference engine with the corresponding deductive mechanisms).

1. RDF(S). The acronym RDF stands for Resource Description Framework where Resource is
everything that can be uniquely identified and referenced simply by using an Uniform Re-
source Identifier (URI). Description means that all the resources are described (e.g., by us-
ing properties and relationships between resources). Framework means that they are based
on a formal template defining all possible relationships between resources. The RDF graph
can be represented by a set of triples (Subject, Predicate, Object). The triple is the smallest
description structure in RDF and each one represents a declaration. All statements follow
the same pattern. The subject is the resource to be described, the predicate (property value)
refers to a property type applicable to that resource and the object represents data (literal) or
other resources. An RDF document is a tagged multigraph in which each triple corresponds
to an oriented arc whose label is the predicate, the source node is the subject and the target
node is the object [52, 58, 63].

RDF(S) is an extension of the RDF language which provides RDF documents with a struc-
ture. Its purpose is to provide an encoding and interpretation mechanism to represent re-
sources for software, and to describe and link all Web resources [52, 58, 63].

• RDF(S) Knowledge representation: RDF(S) provides the most basic primitives for
ontology modelling achieving a balance between expressivity and reasoning. In RDFS,
concepts are known as classes. Classes are referenced either by their name or by a
URL to a Web resource and can include their documentation and their super-classes.
Attributes of classes are defined as properties. The domain of a property is the class to
which the attribute belongs, and the range is the type of the attribute value. No cardi-
nality constraints nor default values can be defined for attributes. Class attributes can
be represented by defining the domain of the property, and including the property value
in the class definition. Concept taxonomies are built in RDF(S) by defining a class as
a subclass of one or more classes. However, neither disjoint nor exhaustive knowledge
in concept taxonomies can be expressed. Binary relations between classes are defined
in RDF(S) as properties. However, relations of higher arity cannot be represented di-
rectly. Assertions made by instances can be represented using reification (transforming
the value of a property into a statement).

• Reasoning mechanisms: Most of the inference systems for RDF(S) are devoted to
querying information about RDF ontologies.

RDFS is used to represent the lightweight ontologies that can be serialized using RDF/XML,
N-Triples, Turtle and the triples serialized can be saved in files, in a database or in a triple-
store.

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 79

2. OWL (Ontology Web Language). The OWL language is an XML language used to repre-
sent ontologies modelled using DLs and for publishing and sharing knowledge on the Web.
It helps to represent a very rich knowledge, to reason on the data and satisfies the following
conditions: expressivity, clarity, readability, unambiguity, extensibility [58, 63]. It is divided
into three layers: OWL Lite, OWL DL, OWL Full.

• OWL-Lite: It corresponds to the SHIF(D) family of DLs and is characterized by its
simplicity, the ease of programming, and its quick reasoning. It has been designed to
express simple constraints for which inference algorithms are decidable.

• OWL-DL: It is the SHOIN(D) family of DLs. It has a higher expressivity than OWL-
Lite. With OWL-DL, real world elements are represented by concepts, roles and indi-
viduals. Concepts and roles have a structured description to which semantics are asso-
ciated and any manipulation of semantics must be consistent with that semantics. It is
composed of :

– OWL EL (Existential Language): A family of description logic that only pro-
vides the existential quantification of variables.

– OWL QL (Query Languages): It permits answer to queries that can be rewritten
in a relational query language.

– OWL RL (Rule Language): It indicates reasoning profiles that can be imple-
mented using a rule-based system.

• OWL-Full: This is a language that has been designed to ensure compatibility with
RDFS without providing decidability of inference algorithms. It is characterized by
maximum expressivity, full compatibility with RDF/RDFS and very complex reason-
ing. However, it is slow and undecidable.

Concerning knowledge representation and inference mechanism in OWL:

• Knowledge representation: Different OWL languages have different knowledge rep-
resentation. In a broader sense, with OWL, concepts are known as classes. A class may
contain its documentation and a list of primitives that defined it. These are the super-
classes, equivalent classes, disjoint classes, conjunction, disjunction, negation of other
classes, the enumeration of all classes instances, collection of individuals of the classes,
property restriction (existential restriction, role filter, number restriction) that contains a
reference to the property to which the restriction is applied and an element for express-
ing the restriction. Class attributes must be defined as properties in the ontology. There
are two types of properties: ObjectProperty (whose range is a class) and DatatypeProp-
erty (whose range is a datatype). To define a property, one may explain its domain
and range. Besides, in OWL, one can define properties hierarchies, properties equiva-
lences, inverse properties, transitive properties, symmetric properties, global cardinal-
ity restrictions on all kinds of properties, functional properties and inverse functional
properties. Higher arity relations must be defined as concepts. Instances are defined
using RDF vocabulary. With instances, one can assert that two instances are equivalent
or different, and a set of individuals are different from each other.

• Reasoning mechanisms: Different ontology languages have different expressivity and
inference mechanisms. In the broader sense, the semantic of OWL is described in two

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 80

different ways: Firstly, as an extension of the RDF(S) model and secondly, as a direct
model-theoretic semantics of OWL. OWL allows the inclusion of additional statements
in its ontologies apart from those explicitly defined in the language. Multiple inheri-
tance is allowed in OWL ontologies. Constraint checking can be performed on the
values of properties and their cardinalities. OWL assumes monotonic reasoning, even
if class definition or property definitions are split up in different Web resources. This
means that facts and entailments declared explicitly or obtained with inference engines
can only be added, never deleted, and that new information cannot negate previous.
RDF(S) query engines, storage systems, and parsers can be employed to manage OWL
ontologies since they can be serialized in RDF(S).

In the above paragraphs, we presented two Semantic Web languages for sharing and exchang-
ing data on the Web. We have seen previously that the RDF language helps to present facts without
necessarily bringing semantics to the types of data. The RDFS language complements the RDF
language by making it possible to create the data types and by creating the class hierarchy, and the
OWL language comes with more semantics, permitting the representation of classes, properties
with restrictions on these classes and these properties. Note that, OWL-DL does not represent the
relationship between the roles. So, all the knowledge cannot be represented using OWL-DL.

4.2.2.2 Rule Languages

Rules can be seen as an alternative or complementary stack to represent semantics and inferences
over the web of data. A rule system is a specific implementation of syntax and semantics, which
can extend to include existential quantification, universal quantification, logical disjunction, logical
conjunction, and so on. The semantics of RDFS and some subset of OWL (OWL2 RL) can be
axiomatized as first-order logic that can be used as a foundation for a rule-based implementation.
Thus, the rules can be seen as part of an ontology supplementing RDF or OWL declarations [52,
58, 64]. In the following paragraphs, we will present three rules languages: RIF, DATALOG and
SWRL.

1. Rule Interchange Format (RIF). This is designed to exchange rules on the Web in general
and the Semantic Web in particular. RIF has become a W3C (World Wide Web Consortium)
recommendation since 2013. It is an extensible set of rule dialects.

RIF rule includes 3 dialects: a basic dialect, a basic logical dialect, and the production rule
dialect [52].

• RIF-CORE: It is the core of all the primitives common to RIF dialects. It corresponds
to the HORN logic without symbol function.

• RIF-BLD (Basic Logic Dialiect): It consists of a set of well-formed formulae from
terms built on one alphabet. It helps to represent logic programs on the positive facts
and corresponds to the HORN logic without the symbol of equality. The reasoning is
based on the deduction of new facts by the instantiation of the universal rules (applica-
tion of the rule of modus ponens and evaluation of conjunctive or disjunctive formulae).

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 81

• RIF-PRD (Production Rule Dialect): This is used to represent the production rules
whose application triggers actions to add, modify, delete facts in a class.

2. DATALOG. DATALOG has been developed at the beginning for deductive databases. The
idea was to couple a database to a set of logical rules, allowing the deduction of information
[52]. DATALOG rules are used to mix classes and relations. A knowledge base (DATALOG
programs) are a set of HORN clauses without function symbols. OWL DL does not allow the
mixing of classes and properties but, DATALOG permits it. By combining OWL-DL with
DATALOG permits to make the ontology more expressive.

3. Semantic Web Rule Language(SWRL). SWRL is the semantic Web rules language pro-
posed as a W3C recommendation in 2004. It is based on the combination of OWL and
RuleML / DATALOG. The idea being to use DATALOG rules on OWL ontologies to model
more knowledge [94]. To do this, the symbols in the rules can be OWL identifiers.

In the above paragraphs, we presented how ontologies are represented in a machine readable
form. We also presented OWL’s limitations and showed that OWL-DL can be combined with the
rules for more expressivity. Note that modelling knowledge is not enough. Some mechanisms must
be put in place to obtain information needed.

4.2.2.3 Query Languages

A query language is a language used to request and to retrieve information in a data source. There
are several types of Semantic Web query languages. Some permit the extraction of information
from the knowledge base and others can, in addition make an inference on the data as seen below.

1. SparQL Protocol and RDF Query Language (SparQL). Its purpose is to provide service-
level interoperability and structured data across the Internet to easy access to all data on
the Web. It permits the extraction of all types of data contained in RDF; The exploration
of the data; the transformation of RDF(S) from one vocabulary to another; The building of
new graphs from RDF query graphs; The updating of RDF graphs; The discovering of hid-
den information using the SparQL service and the federation of data from multiple SparQL
queries.

2. Semantic Query-Enhanced Web Rule Language (SQWRL). It is a query language for
extracting information from OWL ontologies [94]. It offers two types of queries operators.
The Basic Operators use the SWRL rules as a pattern by replacing the elements with the
SQWRL selection operations. Collection Operators provide a set of operators for grouping,
aggregation, disjunction, etc.

4.2.3 Ontology development tools

Building ontologies is complex and time consuming. Ontology development tools provide inter-
faces that help users carry out some of the main activities of the ontology development process

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 82

such as conceptualization, implementation, consistency checking and documentation. Ontology
tools can be classified by categories:

• Ontology development tools: These tools are used to build a new ontology from scratch.
They also give support to ontology documentation, ontology export and import, ontology
graphical edition, etc.

• Ontology merging and alignment tools: These tools are used for merging many ontologies
or for aligning different ontologies.

• Ontology learning tools: These can be used to derive ontologies (semi)automatically from
data sources.

• Ontology querying tools and inference engines: These allow querying ontologies easily
and performing inferences with them.

• Ontology evaluation tools: These tools are used to evaluate the content of ontologies and
their related technologies. It tries to reduce problems when one needs to integrate and use
ontologies in other ontologies or in information systems.

Tools allowing the manipulation of the ontology can be classified in several categories: edition,
integration, visualization, validation, interrogation, extraction, exportation, storage, inference en-
gines, and development tools. A tool can belong to several categories depending on the features it
offers. According to this classification, we can distinguish:

• Protege, Ontolingua Server, WebOnto and OntoSaurus: These are tools used to build
ontologies completely by hand, automatically or by integrating existing ontologies.

• Virtuoso and R2RML: These set of tools allow to build ontologies automatically by ex-
tracting it from the database and storing it in a triple store.

• Protege, VOWL, Ontolingua Server, WebOnto and ODE: These allow the visualization
of the ontology in the form of a graph.

• Facct ++, Hermit, Pellet, Drool and Racer: These make inferences about knowledge bases.
They will also validate if the knowledge base is consistent.

• Virtuoso and R2RQ: These allow access to data from relational databases as an RDF graph.

• Sesame, Jena and Virtuoso: These tools offer storage tools for RDF triples.

• Sesame, Jena and SWRL API: These tools provide APIs for developing Semantic Web
applications.

In this thesis, we will particularly use Protege and SWRL:

Semantic-aware epidemiological surveillance system

4.2 Ontology engineering 83

• Protege is an Open-source software available in desktop and web version and developed by
Stanford University [92]. Its plug-in system makes it expandable. It includes many features:
an ontology editor with which one can define the hierarchy of classes and properties, an-
notate resources and make restrictions on classes and properties; an interface allowing the
integration of ontologies (fusion, mapping, alignment); an interface to define SWRL rules
and SQWRL requests; an inference engine to validate the ontology; a rules engine to validate
rules written in SWRL and execute queries written in SQWRL; a SparQL query interface; an
ontology visualization interface; an interface to export data in different formats (RDF/XML,
RDF/Turltle, OWL/XML, Json). The Web version can allow multiple users or groups of
users to build distributed ontologies.

• SWRL API is a Java API for programming Semantic Web applications by applying inference
rules on ontologies encoded in RDFS or in OWL [94]. It consists of a library collection that
allows developers to work with SWRL rules and SQWRL queries in their applications; to
model, reason and query knowledge bases; to manage OWL reasoners; to use SWRL rules
engines; to execute queries written in SQWRL. Drools is an implementation of SWRL API
rules to execute SWRL and SQWRL rules.

4.2.4 Ontology evaluation

Before reusing existing ontologies, their content should be evaluated. The purpose of ontology
evaluation is to determine what the ontology defines correctly, what it does not, and what it does
incorrectly. It includes ontology verification, ontology validation and ontology assessment [58].

• Ontology verification consists of ensuring that it implements correctly the ontology require-
ments and the competencies questions.

• Ontology validation verifies if the ontology definitions really model the real world for which
the ontology was created.

• Ontology assessment is focused on judging the ontology content from the user’s point of
view. Different types of users and applications require different means of assessing ontol-
ogy. Gómez-Pérez and al. [58] proposed the evaluation of ontologies using some evaluation
criteria:

– Technical evaluation: This is done by the developers. It permits to know if the ontol-
ogy is well built, and if it is consistent.

– User evaluation: This is performed by users. It permits to check if the ontology meets
their needs.

– Consistency evaluation: This is performed to check whether it is possible to obtain
contradictory conclusions from valid input definitions. A given definition is consistent
if and only if the individual definitions are consistent and no contradictory knowledge
can be inferred from other definitions and axioms.

Semantic-aware epidemiological surveillance system

4.3 Ontology learning 84

– Completeness evaluation: It is difficult to prove the incompleteness of an ontology.
But, if a concept or a definition is missing, the ontology can be said to be incomplete.
In a broader sense, an ontology is complete if and only if:

∗ Everything that is supposed to be in the ontology is explicitly stated or can be
deduced;
∗ Any definition is complete. This can be determined by: (a) precise knowledge of

the definition (does it define the world?) (b) all knowledge that is necessary, but not
explicit (it should be noted that definitions can be inferred from other definitions
and axioms).

– Conciseness evaluation: An ontology is concise if (a) it does not store useless defi-
nitions, (b) there are no redundancies between definitions of terms, (c) redundancies
definitions can not be deduced from explicit definitions.

4.3 Ontology learning

Acquiring knowledge for building an ontology from scratch, or for refining an existing ontology is
costly in time and resources. Ontology learning techniques are used to reduce this cost during the
knowledge acquisition process. Ontology learning refers to the extraction of ontological knowl-
edge from unstructured, semi-structured or fully structured knowledge sources in order to build an
ontology from them with little human intervention [7, 75, 121, 146]. In this section, we will present
knowledge sources generally used for ontology learning (section 4.3.1), some ontology learning
techniques (section 4.3.2) and ontology learning evaluation (section 4.3.3).

4.3.1 Knowledge sources for ontology learning

The process of developing an ontology requires knowledge acquisition from any relevant sources.
There are several possible sources of knowledge: domain experts or unstructured, semi-structured,
and structured sources [127].

4.3.1.1 Domain experts

A domain expert is a person knowledgeable of a domain. To get knowledge from domain experts,
a knowledge engineer conducts interviews. This process might lead to knowledge loss or even
worse, introduce errors because misunderstandings arises frequently in human communication.

4.3.1.2 Unstructured knowledge sources

Unstructured knowledge sources contain knowledge that do not have a pre-defined organization.
These are all kinds of textual resources (Web pages, manuals, discussion forum postings, spec-

Semantic-aware epidemiological surveillance system

4.3 Ontology learning 85

ifications, analysis and conception documents, source code comments) and multimedia contents
(videos, photos, audio files) [5, 7, 23, 75, 30, 55, 121]. Unstructured sources are the most recurrent
and can permit us to extract a more complete knowledge. However, the unstructured sources are
easily accessible to human information processing only. For example, extracting formal specifica-
tions from arbitrary texts is still considered a hard problem because sentences might be ambiguous
and, in some cases, no unique correct syntactic analysis is possible [64].

4.3.1.3 Structured knowledge sources

Structured knowledge sources contain knowledge described by a schema. It is advantageous to use
these knowledge sources because they contain directly accessible knowledge [64]. Some structured
knowledge sources include:

• Ontologies: Before constructing an ontology from scratch, one may look at other ontologies
that could be reused [104, 124, 127];

• Knowledge bases: In knowledge bases, one can generate discovered rules as input to develop
a domain ontology [7, 72];

• Database : Terms to be used to build an ontology can be extracted from a database schema
[7, 29, 32, 66, 144].

4.3.1.4 Semi-structured knowledge sources

Semi-structured knowledge sources contain knowledge having a structure that already reflects part
of the semantic interdependencies. This structure facilitates the extraction of a schema [64]. Some
examples of semi-structured knowledge sources are:

• Folksonomies/thesaurus: It is advantageous to extract knowledge from folksonomies or/and
thesaurus to build an ontology because they reflect the vocabulary of their users [53, 136];

• XML (Extensible Markup Language): The aim of XML data conversion to ontologies is the
indexing, integration and enrichment of existing ontologies with knowledge acquired from
XML documents [59];

• UML/meta-model: To learn an ontology from UML or/and meta-model, one approach is to
extract OWL classes and properties from diagrams or to use Ontology UML Profile (OUP)
which, together with Ontology Definition Meta-model (ODM), enable the usage of Model
Driven Architecture (MDA) standards in ontological engineering [54];

• Entity-relation diagram: They can be used to learn ontologies because they are used to de-
scribe the information managed by the databases [45];

• Source code [13, 14, 23, 51, 144]: Generally, in source code, the names of data structures,
variables, functions are close to the terms of the domain.

Semantic-aware epidemiological surveillance system

4.3 Ontology learning 86

A lot of work has been done on the extraction of ontological knowledge from texts, databases,
XML files, vocabularies, and the use of ontologies to build or enrich other ontologies. This has
resulted in a wide range of models, techniques and tools for the generation of knowledge structure
that can be considered as an intermediate process when constructing ontologies. It should be noted
that few works go beyond extracting concepts and properties from source code whereas axioms
and rules are also key elements of ontologies.

4.3.2 Ontology learning techniques

To extract knowledge from knowledge sources, many techniques are used [7, 61, 75, 121]. Shams-
fard and Barforoush [121] proposed a classification of these techniques by considering symbolics,
statistics and multi-strategies.

4.3.2.1 Symbolic techniques

In symbolic techniques, the extraction process consists of examining text fragments that match
some predefined rules, looking for lexico-syntactic patterns corresponding for instance to taxo-
nomic relations or scanning for various types of templates related to ontological knowledge. A
symbolic method can be rule-based, linguistic-based or pattern-based.

1. Rule-based models are represented as a set of rules where each rule consists of a condition
and an action [146].

• Logical rules may be used to discover new knowledge by deduction (deduce new
knowledge from existing ones) or induction (synthesize new knowledge from expe-
rience). For example, inductive logic programming can be used to learn new concepts
from knowledge sources [7, 30, 83, 121];

• Association rules aim at finding correlations between items in a dataset. This technique
is generally used to learn relations between concepts [5, 7, 30, 121] and can be used
to recognize a taxonomy of relations [7] or to discover gaps in conceptual definitions
[30, 121, 139].

2. Linguistic approaches (syntactic analysis, morpho-syntactic analysis, lexico-syntactic pat-
tern parsing, semantic processing and text understanding) are used to derive knowledge
from text corpus [7, 121]. This technique can be used to derive an intentional description
of concepts in the form of natural language description [139].

3. Pattern/Template-driven approach allows searching for predefined keywords, templates or
patterns. Indeed, a large class of entity extraction tasks can be accomplished by the use of
carefully constructed regular expressions [81].

Although very powerful for particular domains, symbolic techniques are inflexible because of
their strong dependency on the structure of the data. Symbolic techniques are precise and robust,
but can be complex to implement, and difficult to generalize [121].

Semantic-aware epidemiological surveillance system

4.3 Ontology learning 87

4.3.2.2 Statistic-based techniques

Statistic analysis for ontology learning is performed from input data to build a statistical model [7,
75, 121, 146]. Several statistical methods for extracting ontological knowledge have been identified
in the literature:

1. Co-occurrence or collocation detection identifies the occurrence of some words in the same
sentence, paragraph or document. Such occurrences hint a potential direct relation between
words [73]. These techniques can be used to discover terms that are siblings to each other
[26].

2. Clustering can be used to create groups of similar words (clusters) which can be regarded as
representing concepts, and further hierarchically organize these as clusters. This technique is
generally used for learning concepts by considering clusters of related terms as concepts and
learning taxonomies by organizing these groups hierarchically [30]. Ontology alignment can
use agglomerative clustering to find candidate groups of similar entities in ontologies [139].

3. Hidden Markov Models (HMMs) define a generative statistical models that are able to gener-
ate data sequences according to rather complex probability distributions and that can be used
for classifying sequential patterns [47, 113, 120]. Zhou and Su [145] have used HMM for
Named Entity Recognition; Maedche and Staab [5] have used the n-gram models based on
HMMs to process documents at the morphological level before supplying them to term ex-
traction tools. Labsky et al. [77] present the use of HMMs to extract information on products
offered by companies from HTML files.

4.3.2.3 Multi-Strategy learning

Multi-Strategy learning techniques leverage the strengths of the above techniques to extract a wide
range of ontological knowledge from different types of knowledge sources [7, 121, 146]. For ex-
ample, Maeche and Staab [5] present the use of clustering for concept learning and association
rules to learn relations between these concepts.

4.3.3 Ontology learning evaluation

After the extraction process, the evaluation phase permits to know whether the knowledge extracted
is accurate and to conclude on the quality of the knowledge source. The evaluation of ontological
knowledge is coined by several authors in the literature [6, 38]. Dellschaft and Staab [38] have
proposed two ways to evaluate ontological knowledge: (1) In manual evaluation by human experts,
the knowledge is presented to one or more domain experts who have to judge to what extent it is
correct; (2) The comparison of the knowledge to existing reference vocabularies/ontologies to
ensure that it covers the studied domain.

Semantic-aware epidemiological surveillance system

4.4 Related works on ontology learning from source code 88

4.4 Related works on ontology learning from source code

Despite the large amount of available source codes and the fact that they may contain relevant
knowledge of the domain [13, 14, 23, 144] addressed by the software, the number of existing
work on knowledge extraction from these sources is quite low. Parser-based approach and machine
learning techniques are commonly used in knowledge extraction from source code.

4.4.1 Parser-based approach

A straightforward solution to extract knowledge from source code is to use a parser. There are
works in this direction for generating knowledge base (RDF triples) or extracting ontological
knowledge (concepts and properties) from source codes using parsers. For instance, CodeOntol-
ogy [10, 11] parser is able to analyze Java source code and serialize it into RDF triples. From these
triples, highly expressive queries using SPARQL (SPARQL Protocol and RDF Query Language)
can be executed for different software engineering purposes including the searching of specific
software component for reuse. Ganapathy and Sagayaraj [51] used QDox1 generator to generate
an ontology that will further enable the developers to reuse source code efficiently. QDox gener-
ator is a parser that can be used for extracting classes, attributes, interfaces and method definition
from Java source code. In the approach proposed by [144], the authors defined the components
parts of the source code and break down the source code into these components. The source code
is browsed and the different components are analyzed in order to take an appropriate action which
is the extraction of knowledge sought. This knowledge can be used in supplementing and assisting
ontology development from database schemas.

Beyond RDF triples, terms, concepts and properties extraction, existing parsers do not provide
services for axioms and rules extraction. To overcome these limits, they need to be improved.
However, building and/or updating parsers for programming languages is a non-trivial, laborious
and time-consuming task [46, 91].

4.4.2 Machine learning-based approach

Machine learning approaches are also proposed to extract knowledge from source code.

Kalina Bontcheva and Marta Sabou [23] have presented an approach for ontology learning from
software artifacts such as software documentation, discussion forums and source code by using the
language processing facilities provided by GATE 2 platform2. GATE 2 is an Open source software
developed in Java for building and deploying Human Language Technology application such as
parsers, morphology, tagging, Information Retrieval tools, Information Extraction components,
etc. To extract concepts from source code, Kalina Bontcheva and Marta Sabou used the GATE
key phrase extractor, which is based on TF.IDF (term frequency/inverted document frequency).

1https://github.com/paul-hammant/qdox
2https://gate.ac.uk/

Semantic-aware epidemiological surveillance system

4.5 Conclusion 89

The TD.IDF approach is an unsupervised machine learning technique which consists of finding
words/phrases that are characteristic of the given text, while ignoring phrases that occur frequently
in the text simply because they are common in the language as a whole. When using TF.IDF on
the source code, high frequency terms specific to the programming language can be eliminated
and only terms specific to the given software project would be selected as relevant to the domain
(ontology concept). This approach is used to extract concept. However, ontological knowledge is
also made up of properties, axioms and rules.

Labsky et al. [77] presented an approach for information extraction on product offered by
companies from their websites. To extract information from HTML documents, they used Hidden
Markov Models to annotate these documents. Tokens modelled by this HMM include words, for-
matting tags and images. The HMM is modelled using four states: the target state (T) which is the
slot to extract, the prefix and the suffix state (P, S) which constitute the slot’s context, and the ir-
relevant tokens modelled by a single background state (B). This approach permitted the extraction
of slots and the relation between nearby slots. For example product image often follows its name.
Unlike the authors approach which consists of terms extraction, our approach uses meta-data ex-
tracted from source code in order to identify to which ontological component every term/group of
terms corresponds to.

4.5 Conclusion

This chapter presented ontologies engineering. In effect, ontologies are knowledge representation
languages used to model a domain/problem. Then, we presented in detail different types of ontolo-
gies and the methodologies, methods and tools involved in their development. Ontologies can be
classified by lightweight ontologies and heavyweight ontologies. Lightweight ontologies are mod-
elled using rules or software engineering techniques. Heavyweight ontologies are modeled using
logical techniques. To develop them, knowledge must be acquired from different sources such
as domain experts, unstructured, semi-structured, and structured sources. Semi-structured knowl-
edge sources contain knowledge facilitating the extraction of a schema. For instance, in the source
code, the names of data structures, variables, functions are close to the terms of the domain and
surrounded by a set of keywords. Several methods are proposed for ontologies development. The
top-down method consists of starting from general concepts and evolves towards major special-
izations. The bottom-up method involves the construction of the ontology from the most specific
concepts, which are then grouped into categories. The middle-Out method consists of an interme-
diary layer of concepts that serves as a starting point. With the manual construction method, the
various resources containing knowledge are collected, terms are identified and the ontology is con-
structed. Automatic or semi-automatic approaches, also called ontology learning implements the
generation of terms automatically from knowledge sources. The methods proposed for this task can
be classified in symbolic techniques, statistical techniques and multi-strategy techniques. Amongst
ontologies development methodologies proposed in the literature, we used the NeOn methodology
in this thesis. It is composed of a set of scenarios that the knowledge engineer can combine in
different ways. Once the knowledge is acquired from knowledge sources, knowledge representa-
tion languages such as RDFS, OWL allow to put them in a form understandable by the machine
and Queries languages are used to retrieve information. Given that building ontologies is a tedious

Semantic-aware epidemiological surveillance system

4.5 Conclusion 90

task, ontologies development tools allow us to carry out some of the main activities of the ontology
development process. Then, tools are used to build ontologies from scratch, by merging/aligning
many ontologies, by semi-automatically extracting knowledge from knowledge sources, etc.

We have seen in this chapter that despite the large amount of source code available and the fact
that they contain relevant domain knowledge, they are rarely used for ontology building. To use
source code to construct an ontology, knowledge must be extracted. In chapter 6, we proposed a
method for ontology learning from source code.

Semantic-aware epidemiological surveillance system

5
Ontology learning from source code using

Hidden Markov Models

Source code contains well-defined words in a language that everyone understands (for example the
elements generally found on the user interface), some statements with a particular lexicon specific
to the programming language and to the programmer. For example, in Java programming language,
the term "class" is used to define a class, the terms "if", "else", "switch", "case" are used to define
the business rules (candidate to become rules). Other terms defined by the programmer such as
"PatientTuberculeux" are used to represent the names of classes (candidate to be concept); the
term "examenATB" is used to define the relation (ObjectProperty) with cardinality (candidate to
become axiom) between the classes "PatientTuberculeux" and "Examen"; and the group of terms
"int agePatient" is used to define a property (DataProperty) of the class "PatientTuberculeux".
This chapter presents how ontological knowledge can be extracted from Java source code to build
an ontology. Given that the approach used to extract the knowledge is based on Hidden Markov
Models, which is a probabilistic model, this section will present the probabilistic models before the
presentation and the use of the approach. Then, the section 5.1 presents the probabilistic models in
general, section 5.2 presents the Hidden Markov Models, section 5.3 presents the source code and
section 5.4 presents the approach.

5.1 Probabilistic models

Probabilities are used to build models in order to represent random phenomena. Temporal proba-
bility models particularly are used to model phenomena that can be represented as a set of events
evolving in time. A probability model for a particular experiment is a probability distribution that
predicts the relative frequency of each outcome if the experiment is performed a large number of
times. For example, in a model of "weather" tomorrow, the outcomes might be sunny, cloudy,
rainy, and snowy. A subset of these outcomes constitutes an event. For example, the event of
precipitation is the subset consisting of {rainy, sunny}. This section presents computations with
probabilities and Probabilistic models.

Semantic-aware epidemiological surveillance system

5.1 Probabilistic models 92

5.1.1 Computations with Probabilities

Probability theory is the mathematical study of random phenomena. As a mathematical foundation
for statistics, probability theory is essential to many human activities that involve quantitative anal-
ysis of data. Methods of probability theory also apply to description of complex systems giving
only partial knowledge of their state [47, 113]. For instance, the insurance industry and markets
use actuarial science to determine pricing and to make trading decisions [47]. In this section, some
important definitions in the field of probability theory and mathematical statistics will be presented
that are relevant for the further presentation of HMMs.

Definition 5.1 (Probability). Probability is quantified as a number between 0 and 1, where 0 indi-
cates impossibility and 1 indicates certainty (formula 5.1). The higher the probability of an event,
the more likely it is that the event will occur [47, 113].

P :





Ω −→ [0, 1]

ω −→ P (ω)

0 ≤ P (ω) ≤ 1

(5.1)

Definition 5.2 (Random experiment). A random experiment describes a procedure which can be
repeated arbitrary often and produces a random result from a well defined set of possible outcomes
[47, 113].

Definition 5.3 (Random event). A random event (also called elementary event) is a single result
or a set of potential results of a random experiment [47, 113].

Definition 5.4 (Sample space). A sample space (also called universe) is the complete set of all
possible results of a random experiment.

Sample space is noted by Ω and ω refers to the elements of the space. The probability of the
entire sample space is 1, and the probability of the null event is 0. The usual set of operations (con-
junction, disjunction and complement) are generally applied to events with respect to the sample
space.

Definition 5.5 (Relative frequency). A relative frequency (f(A)) of an event A that occurred n
times during a N fold repetition of a random experiment is obtained as the quotient of its absolute
frequency c(A) = n and the total number of trials N (formula 5.2).

f(A) =
c(A)

N
=

n

N
(5.2)

A pragmatic derivation of the notion of probability is directly based on the relative frequency of
an event. Then, the occurrence of the event A is defined as its probability, P (A) as its relative
frequency. This probability satisfies three axioms:

• The measure of each event is between 0 and 1, written as 0 ≤ P (A = ai) ≤ 1. Where A is a
random variable representing an event and ai are its possible values.

Semantic-aware epidemiological surveillance system

5.1 Probabilistic models 93

• The measure of the whole set is 1:
∑n

i=1 P (A = ai) = 1.

• The probability of a union of disjoint events is the sum of the probabilities of the individual
event: P (A = a1 ∪ A = a2) = P (A = a1) + P (A = a2), where a1 and a2 are disjoints.

Definition 5.6 (Joint probability). Joint probability (also called intersection) of two event A and
B is the event occurring on a single performance of an experiment and is denoted by P (A ∩B).
Full joint probability distribution is the joint probability for all the random variables.

Definition 5.7 (Independence). The eventsA andB are statistically independent if the observation
of B don’t provide information about the occurrence of A and vice versa.

When events are independent, the joint probability P (A,B) is defined by the formula 5.3.





P (A|B) = P (A),

P (B|A) = P (B),

P (A,B) = P (A)P (B)(B),

P (A ∩B) = ∅.

(5.3)

Independent assertions are usually based on knowledge of the domain and help in reducing the
size of the domain representation and the complexity of the inference problem.

In ideal cases, exploiting conditional independence reduces the complexity of representing the
exponential joint distribution in linear.

Definition 5.8 (Union). Union probability of two event A and B (denoted as P (A ∪ B)) where A
and B occurs on a single performance of an experiment is define by P (A∪B) = P (A) +P (B)−
P (A ∩B)

Definition 5.9 (Unconditional or prior probabilities). Unconditional or prior probabilities (or just
"priors") is the degree of belief in propositions in the absence of any other information.

In fact, most of the time, when calculating probability, some information called evidence has
already been revealed.

Definition 5.10 (Conditional probability or posterior probability). The conditional probability for
the occurrence of an event A under the condition of the occurrence of the event B having oc-
curred before is derived from the probability of A and B occurring jointly and the unconditional
probability of B (formula 5.4).

P (A|B) =
P (A,B)

P (B)
, P (B) 6= 0 (5.4)

A andB are conditionally independent if P (B|A) = P (B) (or equivalently, P (A|B) = P (A)).

Semantic-aware epidemiological surveillance system

5.1 Probabilistic models 94

Definition 5.11 (Marginalization). Marginal probability is the probability on a subset of the ran-
dom variables.

Marginalization and conditioning turn out to be useful rules for all kinds of derivations involv-
ing probability expressions.

Definition 5.12 (Random variables). Random variables can be seen as a function that takes an
elementary event and returns a value. A random variable X on a sample space Ω is a rule that
assigns a numerical value to each outcome of Ω. In other words, a function from the set Ω into the
set R real of numbers (see formula 5.5)

X : Ω −→ R (5.5)

They are characterized by means of their distribution function:

• A discrete random variable (e.g.,X) is a random variable that takes its value on a countable
infinite number of values (e.g., x1, x2, ..., xN).

• A continuous random variable (e.g., X) is a random variable that takes arbitrary values
(e.g., x ∈ R).

Definition 5.13 (Probabilistic inference). Probabilistic inference is the computation of posterior
probabilities for query propositions giving observed evidence.

Theorem 5.1 (Chaining rule). Chaining rule allows the link between a marginal probability and

conditional probability. For n random variable, it is given by P (X1, ..., Xn) =
n∏

1

P (Xi+1|Xi, ..., X1)

Theorem 5.2 (Bayes’ Rule). Bayes rule (or Bayes’ theorem), is derived from chain rule by the
equation 5.6.

{
P (Y |X) = P (X|Y)P (Y)

P (X)
,

P (X) 6= 0
(5.6)

Bayes’ theorem allows to compute the posterior probability P (B|A) of event B from the con-
ditional probability P (A|B) by taking into account model knowledge about the events A and B in
the form of the associated prior probabilities. Bayes’ rule is very useful in practice because there
are many cases where one do not have a good probability estimation for P (X|Y), (PY) and P (X)
and need to compute P (Y |X).

5.1.2 Probabilistic models

This section presents two main groups of probabilities models (Bayes networks, Dynamic Bayes
Networks), how to estimate their parameters, and how they are used.

Semantic-aware epidemiological surveillance system

5.1 Probabilistic models 95

5.1.2.1 Bayes networks (BNs)

A Bayesian network is a directed acyclic oriented graph in which each node is annotated with
quantitative probability information (see figure 24). Its topology is defined by the set of nodes and
links-specifying the conditional independence relationships that hold in the domain, in such a way
that is made precise shortly. The intuitive meaning of an arrow is typically that X has a direct
influence on Y , which suggests that causes should be parents of effects. It is usually easy for a
domain expert to decide what direct influence exists in the domain than specifying the probabilities
themselves.

Host

Parasite virulence
factors

Environmental factors
Predisposing to exposure

Plasmodium
infection

Asymptomatic
Mild Severe

Figure 24: Bayes Network example

Bayes networks are used to represent the probabilistic knowledge of a given application. For
example, a clinician’s clinical knowledge of causal relationships between diseases and symptoms.
They are useful for modelling the knowledge of an expert system or a decision support system,
in a situation where causality plays an important role. Pathfinder application is an example of an
application based on Bayes Network developed by extracting the expertise of different systems and
modelled in a Bayesian network. The predictions were as good as those of the doctors’ expertise
[113].

One way to define what the network means (its semantics) is to define the way in which it
represents a specific joint distribution over all the variables. This is done by defining parameters
associated with each node corresponding to conditional probabilities P (Xi|Parents(Xi)). The
resume of the specification of the Bayesian networks is given by:

• Each node corresponds to a random variable, which may be discrete or continuous;

• A set of directed links or arrows connects pairs of nodes. If there is an arrow from node X
to node Y , X is said to be a parent of Y ;

Semantic-aware epidemiological surveillance system

5.1 Probabilistic models 96

• The graph has no directed cycles. It is a directed acyclic graph;

• Each node Xi has a conditional probability distribution P (Xi|Parents(Xi)) that quantifies
the effect of the parents of the node.

5.1.2.2 Dynamic Bayes Networks(DBNs)

Dynamic Bayes Networks (DBNs) is a Bayes network considering that the situation to be modelled
is dynamic (the world can change with time). In this model, the world can be seen as a series of
snapshots, or time slices where each of which contains a set of random variables, some observable
and others not. The interval between time slices depends on the problem. DBNs are used to model
dynamic situations, e.g., situations in which information is collected as time passes. In this case,
the random variables are indexed by time and [113]:

• Dynamic changes are seen as a sequence of states in which each state represents a situation
at a given time t;

• The random variable is indexed by time where:

– Xt represents the set of unobservable (hidden) variables describing the state of the
modelled environment at time t,

– Et represents all the variables observed (evidence) at time t.

In DBNs, dynamic changes are caused by a so-called Markovian process. In fact, in these networks,
the current state depends only on a finite number of previous states. For example, in a first-order
Markov process, the hidden state at time t − 1 determines the hidden state at time t. The hidden
state at time t is independent of other hidden states.

By resuming, DBNs is a Bayesian network in which the system is considered by considering:

• P (X0) which specifies how everything get started (the prior probability distribution at time
0);

• P (Xt+1|Xt) called the transition model, which specifies the conditional distribution
P (Xt|Xt−1, Xt−1, ...). In other words, a state provides enough information to make the future
conditionally independent of the past, that is P (Xt|X0:t−1 = P (Xt|Xt−1).

• P (Et|Xt) called the sensor model or the observation model, which specifies the evidence
variables Et which could depend on previous variables as well as the current state variables.

There exist specific types of DBNs:

• Markov Chain is a special type of DBN having a finite set of states, and only the current state
influences where it goes next [47]. For example, in the source code, each source file can be
modelled by a sequence of words.

Semantic-aware epidemiological surveillance system

5.1 Probabilistic models 97

• Hidden Markov Models are special types of DBN in which the state of the process is de-
scribed by a single discrete random variable (which is considered to be hidden) and the
possible value of the variable are the possible states of the world (observations). HMM is
detailed in section 5.2.

5.1.2.3 Inferences in temporal models

The basic task for any probabilistic inference system is to compute the posterior probability distri-
bution for a set of query variables, given some observed events. In the context of DBNs, from the
belief state and a transition model, the task is to predict how the world might evolve in the next
time step and to update the belief state. In the next paragraphs, we will present the main inference
task that must be solved in DBNs.

• Filtering (state estimation): The purpose of filtering is to calculate the belief state, that is,
the posterior distribution of the most recent hidden variable (P (Xt|e1 : t)). For example,
what is the probability that the word the programmer will enter now is "public".

• Prediction: The purpose of prediction is to calculate the posterior distribution on a future
state given all evidence to date (P (Xt+k|e1:t)where k > 0). For example, what is the proba-
bility that the tenth word that will be entered by the programmer is "int".

• Smoothing: Smoothing consists of calculating the posterior distribution on a past state given
evidence up to the present, that is P (Xk|e1:t)where0 ≤ k ≤ t. For example, what is the
probability that the word "final" has been entered by the programmer.

• Most likely explanation: The purpose of the most likely explanation is to find the sequence
of states that best explains the observations (argmax1:tP (X1:t ≤ e1:t)). For example, what
is the set of keywords in a program.

5.1.2.4 Learning temporal models

Learning probabilistic models is to estimate the model parameters by taking into account the spec-
ified model structure. In the particular case of temporal models, the task of learning is to determine
the transition and sensor models. This task can be done by using data or by using data and a
specialized algorithm [113].

• Learning on data: Parameters required can be learned from sample data. Statistical parameter
estimation methods provide reliable results with sufficiently many training samples data;

• Using a specialized algorithm such as Baum-Welch algorithm, the Baldi-Chauvin algorithm,
Segmental k-Means Algorithm, Viterbi training algorithm [47, 113].

Semantic-aware epidemiological surveillance system

5.2 Hidden Markov Models 98

5.2 Hidden Markov Models (HMMs)

Hidden Markov Models are particular types of Markov Chain composed of a finite state automaton
with edges between any pair of states that are labeled with transition probabilities. It also describes
a 2-stage statistical process in which the behavior of the process at a given time t is only de-
pendent on the immediate predecessor state. It is characterized by the probability between states
P (qt|q1, q2, ..., qt−1) = P (qt|qt−1) and for every state at time t an output or observation ot is gen-
erated. The associated probability distribution is only dependent on the current state qt and not on
any previous states or observations: P (ot|o1, ..., ot−1, q1, ..., qt) = P (ot|qt) [43, 47, 49, 76, 120].

A first order HMM perfectly describes the source code because it can be seen as a string
sequence typed by a programmer in which the current word (corresponding to an assigned hidden
state) depends on the previous word. In this HMM, the observed symbol depends only on the
current state [47, 113, 120]. Equation 5.7 presents the joint probability of a series of observations
O1:T given a series of hidden statesQ1:T . The HMM of figure 30 shows how the source code can be
modeled using a HMM. In this figure, the observations are the words ("public", "class", "Patient",
etc.) typed by the programmers and each of these words are labeled by the hidden states "PRE",
"TARGET", "POST", and "OTHER".

P (O1:T , Q1:T) = P (q1)P (o1|q1)
∏

t=2

P (qt|qt−1)P (ot|qt) (5.7)

Filtering, smoothing, prediction, and the most likely explanation are four uses of HMMs. The
probability that a string O is emitted by a HMM M is calculated as the sum of all possible paths
by the equation 5.8.

P (O |M) =
∑

q1,...,ql

l+1∏

k=1

P (qk−1 → qk)P (qk ↑ ok) (5.8)

Where q0 and ql+1 are limited to qI and qN respectively and ol+1 is an end of word. The ob-
servable output of the system is the sequence of symbols emitted by the states, but the underlying
state sequence itself is hidden.

In the most likely explanation, the goal is to find the sequence of hidden states V (O | M) that
best explains the sequence of observations (equation 5.9) [47, 113, 120]. To this end, the sequence
of states V (O | M) which has the greatest probability to produce an observation sequence is
searched.

For example, in automatic translation, one may want the most probable string sequence that
corresponds to the string to be translated. In this case, instead of taking the sum of the probabilities,
the maximum must be chosen (equation 5.9).

Semantic-aware epidemiological surveillance system

5.2 Hidden Markov Models 99

P (O |M) = max q1...ql∈Ql

l+1∏

k=1

P (qk−1 → qk)P (qk ↑ ok) (5.9)

Before using the model, its parameters (transition probabilities, emission probabilities and ini-
tial probabilities) must be calculated using statistical learning or specialized algorithms [47].

5.2.1 HMMs structures

In the main application areas of HMM-based modeling, the input data to be processed have a
chronological or sequential structure. One assumes that the models are run through in causal
chronological sequence and, therefore, the model states can be arranged sequentially. Transition
probabilities to states that describe data segments lying backwards in time are constantly set to
zero. In graphical representations of HMMs (see figures 25, 26, 27, 28), such edges which are
excluded from possible state sequences are omitted for the purpose of simplification. The diagram
of figure 25 shows the general architecture of an instantiated HMM. Each oval shape represents a
random variable that can adopt any of a number of values. The random variable x(t) is the hidden
state at time t (with the model from the above diagram, x(t) ∈ {x1, x2, x3}). The random variable
y(t) is the observation at time t (with y(t) ∈ {y1, y2, y3, y4}). The arrows in the diagram denote
conditional dependencies. For HMMs to be applied for the analysis of data that is already avail-
able, one must first assume that the data to be analysed was generated by a natural process which
obeys similar statistical regularities. Then one tries to reproduce this process with the capabilities
of HMMs as closely as possible. If this attempt is successful, inferences about the real process can
be drawn on the basis of the artificial model.

….. …..x(t - 1) x(t + 1)x(t)

y(t - 1) x(t) x(t + 1)

Figure 25: General architecture of HMMs

There are many types of HMMs [47]:

• Linear HMMs (figure 26) are the most simple models in which only transitions to the
respective next state and to the current state itself are possible with some positive probability.

Semantic-aware epidemiological surveillance system

5.2 Hidden Markov Models 100

This model is used to capture variations in the temporal extension of the patterns described
with the help of the self-transitions.

Figure 26: Linear HMM

• Bakis models (figure 27) are models in which the modeling of duration is achieved if the
skipping of individual states within a sequence is possible. This model is widely used in the
field of automatic speech and handwriting recognition.

Figure 27: Bakis HMM

• Left-to-right models (figure 28) are used to model larger variations in the temporal structure
of the data.

Figure 28: Left-to-right HMM

• Ergodic model (figure 29) are models having a completely connected structure.

Several inference problems are associated with hidden Markov models: filtering, prediction,
smoothing, and the most likely explanation [47, 113].

Semantic-aware epidemiological surveillance system

5.2 Hidden Markov Models 101

Figure 29: Ergodic HMM

5.2.2 Parameters estimations

Parameter estimations consist of finding, given an output sequence (or a set of such sequences),
the best set of state transition and emission probabilities. The task is usually to derive the max-
imum likelihood estimation of the parameters of the HMMs given the set of output sequences.
This task can be done by training the model on a dataset using statistical learning or using special-
ized algorithms such as Baum-Welch algorithm, the Baldi-Chauvin algorithm, Segmental k-Means
Algorithm, EM algorithm, Viterbi training algorithm [47, 113].

Statistical parameter estimation methods provide reliable results with sufficiently many train-
ing samples data. Powerful HMMs can thus be created only if sample sets of considerable size are
available for the parameter training. Moreover, only the parameters of the models and not their con-
figuration (e.g., the structure and the number of free parameters) can be determined automatically
by the training algorithms. Considered intuitively, the parameter estimation methods for HMMs
are based on the idea to "observe" the actions of the model during the generation of an observation
sequence. The original state transition and output probabilities are then simply replaced by the
relative frequencies of the respective events.

5.2.3 HMMs usage

Hidden Markov Models are applied in many fields where the task is the modelling and analyzing
of chronological organized data as, for example, genetic sequences, handwriting texts, automatic
speech recognition. In the following paragraphs, we are going to present some successful applica-
tions for music genre classification, speech and handwriting recognition.

5.2.3.1 Music genre classification

Musical genres are labels used to distinguish between different types or categories of musical style.
The growing amount of music available creates a need for automated classification. This task can
be done by assigning a genre according to the listening impression. Music can be considered as a

Semantic-aware epidemiological surveillance system

5.3 Source code 102

high-dimensional digital time-variant signal, and music databases can be very large. As music is a
time-varying signal, several segments can be employed to extract features in order to produce a set
of feature vectors that characterizes a decomposition of the original signal according to the time
dimension. Then, HMMs can be used for music genre classification [67]. Iloga and al. proposed an
approach based on HMMs that represent each genre with a state, the model statistically captures
the transitions between genres. This approach is used to classify music genres by modelling each
genre with one HMM [67].

5.2.3.2 Speech recognition

In automatic speech recognition, the output of the models corresponds to a parametric feature
representation extracted from the acoustic signal. In contrast, the model states define elementary
acoustic events (speech sounds of a certain language). Sequences of states then correspond to
words and complete spoken utterances. If one is able to reconstruct the expected internal state
sequence for a given speech signal, then hopefully the correct sequence of words spoken can be
associated with it and the segmentation and classification problem can be solved in an integrated
manner. The possibility to treat segmentation and classification within an integrated formalism
constitutes the predominant strength of HMMs. When decomposing models for spoken or writ-
ten words into a sequence of sub-word units, we implicitly assumed that more complex models
can be created from existing partial HMMs by concatenation. Such construction principles are ei-
ther explicitly or implicitly applied in order to define compound models for different recognition
tasks. There are many speech recognition systems based on HMMs [47]. For instance the speech
recognition system of RWTH Aachen University [47]; ESMERALDA development environment
for pattern recognition [47].

5.2.3.3 Handwriting recognition

In the field of handwriting recognition, the signal data considered can be represented as a linear se-
quence of words written. The temporal progress of the writing process itself defines a chronological
order of the position measurements which are provided by the respective sensors. The time-line of
the signal thus virtually runs along the trajectory of the pen. The classical application of automatic
processing of writing is called Optical Character Recognition (OCR). The goal is to automatically
transcribe the image of the writing into a computer internal symbolic representation of the text.
Many systems based on HMMs are developed to address the problem of hand writing recogni-
tion [47]: Ratheon BBN Technologies [47]; RWTH Aachen handwriting recognition system [47];
ESMERALDA Offline HWR Recognition System [47].

5.3 Source code

During software development, it is recommended to write the source code according to good pro-
gramming practices, including naming conventions [19]. These practices inform programmers on

Semantic-aware epidemiological surveillance system

5.3 Source code 103

how to name variables, organize and present the source code. This organization can be used to
model source code using HMMs. For example, from Java source code, we can say that at a time
t, the programmer enters a word (e.g. "public" at the beginning of a Java source file). Thus, the
keyword "public" at time t conditions the next word at time t+ 1 which in this case can be "class",
"int", etc. We can say that PRE and TARGET are the hidden states and "public" and "class" are
respectively their observations.

5.3.1 Source code description

Source code contains several types of files: files describing data, files processing data, user interface
files and configuration files.

5.3.1.1 Files describing data

These files describe the data to be manipulated and equally, some constraints on this data (e.g., data
types). In Java EE for example, there are entities whose names are close to the terms of the domain
that will be transformed into tables in the database. These files often contain certain rules to verify
the reliability of the data. Thus, from these files, we can retrieve concepts, properties, axioms and
rules.

5.3.1.2 Files containing data processing

Located between user interface files and data description files is the data processing files of the
source code consisting of:

• Control: For example, restricting certain data from certain users (e.g., only the attending
physician has the right to access the data), checking the validity of a field (checking whether
the data entered in an "age" field is of type integer);

• Calculation: For example, converting a date of birth into an age, determining the date of the
next appointment of a patient, calculating the body mass index of a patient based on his/her
weight and height.

These are the algorithms implementing the business rules to be applied to the data. They are thus
good candidates for axioms and rules extraction.

5.3.1.3 User interfaces files

The User interfaces are composed of files which describe the information that will be presented to
users for data viewing or recording. Unlike the first two file types, these files contain the words of
a human-readable vocabulary that can be found in a dictionary. User interfaces usually provide:

Semantic-aware epidemiological surveillance system

5.3 Source code 104

• Translations allowing navigation from one language to another, control for users to enter the
correct data;

• An aid allowing users to know for example, the role of a data entry field.

User Interfaces are therefore good candidates for concepts and their definitions, properties, axioms
and rules extraction.

5.3.1.4 Configuration files

These files allow developers to specify certain information such as the type and path of a data
source, different languages used by users, etc. For instance, from these files, the languages labels
(e.g. English, French, Spanish) for terms can be extracted.

The files we just presented generally contain comments that can be useful for knowledge ex-
traction or ontology documentation. Knowledge extraction from user interfaces/web interfaces
has already been addressed in [26, 144], knowledge extraction from text has been presented in
[4, 5, 23, 30]. In this chapter, we will focus on knowledge extraction from files describing data and
their processing.

5.3.2 Modelling source code using HMMs

Figure 30: An example of HMM modeling the Java source code

A first order HMM perfectly describes the source code because it can be seen as a sequence
typed by a programmer in which the current word (corresponding to an assigned hidden state)
depends on the previous word. In this HMM, the observed symbol depends only on the current
state [47, 113, 120]. Formula 5.7 presents the joint probability of a series of observations O1:T

given a series of hidden states Q1:T . The HMM of figure 30 shows how the source code can be
modelled using a HMM. In this figure, the observation states are the words ("public", "class",
"Patient", etc.) typed by the programmers and each of these words are labeled by the hidden states
"PRE", "TARGET", "POST", and "OTHER".

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 105

The probability that a word X is emitted by a HMM M is calculated as the sum of all possible
paths by the formula 5.8.

Where q0 and ql+1 are limited to qI and qN respectively and xl+1 is an end of word. The
observable output of the system is the sequence of words in the source code files and emitted by
the states, but the underlying state sequence itself is hidden.

In the most likely explanation, the goal is to find the sequence of hidden states (or source code
labels) V (X | M) that best explains the sequence of observations (words in the source code-
formula 5.9) [47, 113, 120]. To do this, the sequence of states V (X | M) which has the greatest
probability to produce a sequence of source code is searched [47, 113, 120].

5.4 Ontology Learning from Source Code

The previous sections present how the source code can be modelled using HMMs. This section
presents how the HMMs can be modelled, trained and used to extract knowledge from Java source
code. The experimentation is made on EPICAMTB, the epidemiological surveillance platform
presented in chapter 3 and all the source code used are available on github1 Then, sections 5.4.1,
5.4.2, 5.4.3, 5.4.4 will present the approach we proposed for knowledge extraction from source
code, the definition and training of HMMs for knowledge extraction from Java source code, the
extraction of knowledge from EPICAMTB source code and the evaluation of knowledge extracted
respectively.

5.4.1 An approach based on HMMs for ontology learning from source code

To extract knowledge from Java source code, we designed a method divided into five main steps:
data collection, data preprocessing, entity labeling, formal language translation, and knowledge
validation.

5.4.1.1 Data collection and preprocessing

This section presents the first and the second step of the approach which are data collection and
data preprocessing.

Data collection. The data collection step consists of the extraction of a dataset necessary for the
next steps. In Java files, statements for importing third-party libraries and comments are deleted.
We proposed the definition of a regular expression that allows them to be identified.

Data preprocessing. The purpose of data preprocessing is to put data in a form compatible
with the tools to be used in the next steps. During this phase, potentially relevant knowledge will be

1https://github.com/jiofidelus/source2onto/

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 106

identified and retrieved, and some entities will be re-coded. The problem of extracting knowledge
from the source code has been reduced to the problem of syntactic labeling. This is to determine
the syntactic label of the words of a text [113]. In our case, it will be a matter of assigning a label
to all the words of the source code and extracting the words marked as target words. This problem
can be solved using HMMs [113, 120]. In the following paragraphs, we will first present the HMM
structure for source code modelling. Then, we will show how this HMM is trained and finally, how
it is used to extract the knowledge from Java source code.

HMMs structure definition. To define the structure of the HMMs, we manually studied the
organization of the source code of Java language. Generally, data structures, attributes, and condi-
tions are surrounded by one or more specific words. Some of these words are predefined in advance
in the programming language. To label the source code, we have defined four labels, corresponding
to four hidden states of the HMM:

• PRE: Corresponding to the preamble of the knowledge. This preamble is usually defined in
advance;

• TARGET: The target, (i.e. the knowledge sought) may be preceded by one or more words
belonging to the PRE set. The knowledge we are looking for are the names of classes, at-
tributes, methods, and the relationships between classes. They are usually preceded by a
meta-knowledge which describes them. For example, the meta-knowledge "class" allows for
concept identification;

• POST: Any information that follows the knowledge sought. In some cases, POST is a punc-
tuation character or braces;

• OTHER: Any other word in the source code that neither precedes nor follows the knowledge
sought.

An example of HMM annotated with labels is given by Fig. 30. Concepts, properties, axioms, and
rules are usually arranged differently in the source code. We propose the definition of two HMMs
which permit them to be identified: one to identify concepts, properties, axioms and the other one
to identify rules.

Learning Model Parameters. There are several techniques to determine the parameters of a
HMM: Statistical learning on data, specialized algorithms such as Baum-Welch or Viterbi training
[47, 113]. In this paper, we have chosen statistical learning on data to train the HMMs modelled
in the previous paragraphs. Thus, we assumed that we have access to T source code files labeled
ft knowing that ft is not just a sequence of words, but a sequence of words pairs with the word
and its label (see figure 30) modelled by the equation 5.10. To train the model, we assume that we
can define the order in which the different words are entered by the programmer. We assume that
before entering the first word, the programmer reflects on the label of that word and as a function
of it, defines the label of the next word and so on. For example, before entering the word public, the
programmer knows that its label is PRE and that the label of the next word is TARGET . Thus,
the current word depends only on the current label, the following label depends on the previous
label, and so on. The process continues until the end of the file.

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 107

ft = [(wt
1, e

t
1), ..., (w

t
d, e

t
d)],

words(ft) = [wt
t, ..., w

t
d],

labels(ft) = [et1, ..., e
t
d].

(5.10)

In the equation 5.10, wi and ei are words and labels of fi files respectively. In practice, wi are
words contained in the source code (observations) and ei are the labels of wi used as hidden states.

From the training data, we can extract statistics on:

• The first label P (q1) (equation 5.11). A priori probability that the first label is equal to the
word ′a′ is the number of times the first label in each file of the source code is the word ′a′

divided by the number of source code files.

P (Q1 = a) =

∑
t freq(e

t
1 = a, ft)

T
(5.11)

• The relation between a word and its label P (Ok | qk) (equation 5.12). The conditional
probability that the kth word is ′w′, knowing that the label is ′b′ corresponds to the number
of times the word ′w′ associated with the label ′b′ in the source code file ft normalized with
the fact that the label ′b′ is associated with any other word in ft source code. For example,
"Patient" can be a concept, an attribute, but cannot be a rule.

P (Ok = w | qk = b) =
α +

∑
t freq((w, b), ft)

β +
∑

t freq((
′∗, b), ft)

(5.12)

To avoid zero probabilities for observations that do not occur in the training data, we added
smoothing terms (α and β).

• The relation between the adjacent syntactic labels is P (qk | qk+1) (equation 5.13). The prob-
ability that qk+1 is equal to label ′a′ knowing that qk is equal to label ′b′ (previous hidden
state) is the number of times ′a′ follows ′b′ in the source code of the training data divided by
the number of times that ′b′ is followed by any other label.

P (qk+1 = a | qk = b) =

α +
∑

t freq(b, a), label(ft)

β +
∑

t freq(b, ∗′), label(ft)
(5.13)

To avoid zero probabilities for transitions that do not occur in the training data, we added
smoothing terms (α and β).

Let us consider the HMM in Fig. 30. Then, training data to identify concepts and attributes
would be: [("public", PRE), ("class", TARGET), ("Patient", TARGET), ("extends", TARGET),

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 108

Table 5.1: The initial vector - probability to have a state as the first label

f(PRE) f(TARGET) f(POST) f(OTHER)

Table 5.2: An example of a transition table

States PRE TARGET POST OTHER
PRE f(PRE,PRE) f(PRE,TARGET) f(PRE,POST) f(PRE,OTHER)
TARGET f(TARGET,PRE) f(TARGET,TARGET) f(TARGET,POST) f(TARGET,OTHER)
POST f(POST,PRE) f(POST,TARGET) f(POST,POST) f(POST,OTHER)
OTHER f(OTHER,PRE) f(OTHER,TARGET) f(OTHER,POST) f(OTHER,OTHER)

("ImogEntityImpl", TARGET), ("{", OTHER), (...), ("int", TARGET), ("age", TARGET), ...]. Tab.
5.1 presents the initial vector, which is the probability that the first label is PRE, TARGET, POST,
or OTHER; Tab. 5.2 presents the transition vector containing the frequencies that a state follows
another state; and Tab. 5.3 presents the emission vector containing the frequencies that a state emits
an observation.

Knowledge extraction. The model previously defined and trained can be applied to any Java
source code in order to identify TARGET elements. It will be necessary to find from the files
f1, ..., fn, a sequence of states q1, ..., qn that is plausible. For this, equation 5.9 will be used to
determine the most plausible string sequence. From this string, the hidden states will be identified
and the targets (words that are labeled TARGET) will be extracted. In our approach, we used the
Viterbi algorithm which provides an efficient way of finding the most plausible string sequence of
hidden states [48, 135]. The algorithm 1 gives an overview of the Viterbi Algorithm. More details
can be found in [47].

Any source code can then be submitted to the HMM trained and a table similar to Tab. 5.10
containing the probability for the hidden states to emit a word from the source code is built.

Re-coding variables. Programmers usually use expressions made up of words from a specific
lexicon, sometimes encoded with "ad hoc" expressions, requiring specific processing to assign a
new name or a label understandable by humans before using. These words are generally divided
into words or groups of words according to the naming conventions of the programming language.

Table 5.3: An example of an observation table

package pac ; public
PRE f(PRE,package) f(PRE, pac) f(PRE,;) f(PRE,public)
TARGET f(TARGET,package) f(TARGET, pac) f(TARGET,;)
POST f(POST,package) f(POST, pac) f(POST,;) f(POST,public)
OTHER f(OTHER,package) f(OTHER, pac) f(OTHER,;) f(OTHER,public)

class patient ...
PRE f(PRE,class) f(PRE,patient) ...
TARGET f(TARGET,class) f(TARGET,patient) ...
POST f(POST,class) f(POST,patient) ...
OTHER f(OTHER,class) f(OTHER,patient) ...

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 109

Algorithm 1: The Viterbi algorithm [47, 135]
1 Let M = (π,A, B) our HMM
2 With π the vector of start probabilities, A the matrix of state-transition probabilities, and B

the matrix of observation probabilities
3 Let δt(i) = maxq1,...,qt−1P (O1, ..., Ot, q1, ...qt−1, qt = i|M)
4 1. Initialization
5 δ1(i) := πibi(O1) ψ1(i) := 0
6 2. Recursion
7 For all times t, t1, ..., T − 1:
8 δt+1(j) := maxi{δt(i)aij}bj(Ot+1)
9 ψt+1(j) := argmaxi{δt(i)aij}

10 3. Termination
11 P ∗(O|M) = P (O, q∗|M) = maxiδT (i)
12 q∗T := argmaxjδT (j)
13 4. Back-Tracking of the Optimal Path
14 for all times t, t = T − 1, ..., 1 :
15 q∗t = ψt+1(q

∗
t+1)

16

For example, we can have "PatientTuberculeux" → "Patient tuberculeux", "agePatient" → "Age
Patient", "listeExamens"→ "liste Examens", etc. Therefore, during the re-coding, these names are
separated in order to find their real meaning in human understandable language.

5.4.1.2 Entities labeling and translation into a formal language

After the extraction of knowledge, the two last steps consist of giving labels to all the terms ex-
tracted and given these labels, translating the knowledge extracted into a formal language.

Entities labeling. The extraction of relevant terms has yielded knowledge and meta-knowledge.
This knowledge and meta-knowledge will permit us to identify to which ontological components
they may belong to. For example, the code: "class Patient extends Person int age", submitted to a
trained HMM to identify concepts and relations will identify three meta-knowledge ("class", "ex-
tends" and "int") that will be used to identify two concepts (Patient and Person), one attribute of
type integer and a hierarchical relation between "Patient" and "Person". From the extracted knowl-
edge, two candidates to be concepts are related if one is declared in the structure of the other. One
may identify three types of relations:

• ObjectProperty: If two classes ’A’ and ’B’ are candidates to be concepts and ’b’ of type B
is declared as attribute of class ’A’, then classes ’A’ and ’B’ are related. The attribute ’b’ is
an ObjectProperty having ’A’ as domain and ’B’ as range.

• DatatypeProperty: If a class ’A’ is a candidate to be a concept and contains the attributes
’a’ and ’b’ of basic data types (integers, string, boolean, etc.), then, ’a’ and ’b’ are Datatype-
Property having the class ’A’ as domain;

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 110

• Taxonomy (subClassOf): If two classes ’A’ and ’B’ are candidates to be concepts and the
class ’B’ extends the class ’A’ (in Java, the keyword "extends" is used), then, one can define
a taxonomic relation between the classes ’B’ and ’A’.

Translation in a formal language. Once all relevant knowledge are identified in the previous
phase, they are automatically translated to a machine readable language. We use OWL for concepts,
properties and axioms, and SWRL for rules.

5.4.1.3 Knowledge evaluation

After the extraction process, the evaluation phase permits us to know if this knowledge is relevant
to the related domain and to conclude on the relevance in using source code as a knowledge source.
Given that the knowledge extracted is ontological knowledge, two evaluation techniques will be
used: (1) Manual evaluation by human experts in which the knowledge extracted is presented to
one or more domain experts who have to judge to what extent these knowledge are correct; (2)
The comparison of the knowledge extracted (alignment) to gold standards which will be existing
ontologies.

5.4.2 HMMs definition, training and use

To extract knowledge from Java source code, two HMMs have to be defined and trained: a HMM
for concepts, properties, and axioms identification, and a HMM for rules identification. All the
algorithms for HMMs training and usage have been coded in Java2.

5.4.2.1 HMM structure for concepts, properties and axioms

The HMM used to identify concepts, properties and axioms is defined by:

1. PRE = {public, private, protected, static, final}, the set of words that precedes TAR-
GET;

2. TARGET = {package, class, interface, extends, implements, abstract, enum,wi}, ∀i,
wi−1 ∈ PRE || wi−2 ∈ PRE ∧ wi−1 ∈ PRE, the set of all words that we are seeking;

3. POST = {{, ; , }}, the set of words that follow TARGET;

4. OTHER = {wi}, wi /∈ PRE,∧wi /∈ TARGET,∧wi /∈ POST , the set of all other words.

Each HMM state emitted a term corresponding to a word from the source code. We have seen
that the observation emitted by the PRE set can be enumerated. However, the observation of

2https://github.com/jiofidelus/source2onto

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 111

Table 5.4: The initial vector of the HMM for concepts, properties and axioms extraction

PRE TARGET POST OTHER
0.0 1.0 0.0 0.0

TARGET and OTHER sets cannot be enumerated because they depend on the programmer.
Then, we considered data to be all the observations emitted by TARGET and other to be all the
observations emitted by OTHER. We obtained the HMM presented by an initial vector (e.g., Tab.
5.4) a transition vector (e.g., Tab. 5.5), and an observation vector (e.g., Tab. 5.6).

5.4.2.2 HMM structure for rules

Rules can be contained in conditions. Then, we will exploit the structure of source code to ex-
tract the rules. For example, the portion of code (if (agePatient> 21) {Patient = Adult}) is a rule
determining whether a patient is an adult or not. It must therefore be extracted.

The HMM to identify the rules is composed of:

1. PRE = {”}”, ”; ”, ”{”}, the set of words that precede one or more TARGET;

2. TARGET = {if, else, switch, wi} | ∃k, r ∈ N | wi−k ∈ PRE ∧wi+ r ∈ POST : the set
of all words that follow PRE and precede POST ;

3. POST = {”}”}, the end of the condition;

4. OTHER = {wi} | wi /∈ PRE, TARGET, POST : the set of all other words.

We can identify the beginning and the end of a condition represented here by the sets PRE
and POST respectively. Note that all the observations emitted by TARGET and OTHER sets
cannot be fully enumerated. Therefore, we have considered data to be all the observations emitted
by TARGET , and other to be all the observations emitted by OTHER.

5.4.2.3 Statistical learning of the HMMs

Learn Java source code (composed of 59 files and 2663 statements) was downloaded from github3

and from this source code, we used statistical learning on data to calculate the values of the HMMs
parameters4. Tabs 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 present the initialization, transition and observation
vectors respectively obtained after the training step.

3https://github.com/mafudge/LearnJava
4https://github.com/jiofidelus/source2onto/blob/master/code2onto-model/src/main/java/cm/uy1/training/

HMMTrainingData.java

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 112

Table 5.5: Transition vector of the HMM for concepts, properties and axioms extraction

PRE TARGET POST OTHER
PRE 0.1686 0.8260 0.0027 0.0027
TARGET 0.0008 0.7523 0.2461 0.0008
POST 0.0603 0.0033 0.0234 0.9130
OTHER 0.7364 0.1133 0.0025 0.1478

Table 5.6: Observation vector of the HMM for concepts, properties and axioms extraction

public private protected static final data {
PRE 0.6417 0.1684 0.0053 0.1124 0.0722 0.0 0.0
TARGET 0.0 0.0 0.0 0.0 0.0 1.0 0.0
POST 0.0 0.0 0.0 0.0 0.0 0.0 0.6678
OTHER 0.0 0.0 0.0 0.0 0.0 0.0 0.0

; } other
PRE 0.0 0.0 0.0
TARGET 0.0 0.0
POST 0.3256 0.0066 0.0
OTHER 0.0 0.0 1.0

Table 5.7: The initial vector of the HMM for rules extraction

PRE TARGET POST OTHER
0.0 0.0 0.0 1.0

Table 5.8: Transition vector of the HMM for rules extraction

PRE TARGET POST OTHER
PRE 0.0667 0.7999 0.0667 0.0667
TARGET 0.0010 0.9321 0.0659 0.0010
POST 0.0172 0.0172 0.0172 0.9484
OTHER 0.0072 0.0001 0.0001 0.9926

Table 5.9: Observation vector of the HMM for rules extraction

{ } ; if else
PRE 0.8462 0.0769 0.0769 0.0 0.0
TARGET 0.0 0.0 0.0 0.0185 0.0031
POST 0.0 1.0 0.0 0.0 0.0
OTHER 0.0 0.0 0.0 0.0 0.0

switch data other
PRE 0.0 0.0 0.0
TARGET 0.0010 0.9774 0.0
POST 0.0 0.0 0.0
OTHER 0.0 0.0 1.0

5.4.2.4 Knowledge extraction

Once the HMMs are built, we can apply them to the source code of any Java applications in order to
extract the knowledge. To do this, the most likely state sequence (equation 5.9) that produced this
source code is calculated. To calculate the most likely state sequence, we have implemented the

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 113

Figure 31: An overview of the Java source code of the EPICAM project

Viterbi algorithm [47, 48, 135] in Java5. In fact, we have exploited the structure of the HMM in the
context of dynamic programming. It consists of breaking down the calculations into intermediate
calculations which are structured in a table. An example of the Viterbi table is given by the Tab.
5.10. Every element of the table is being calculated using the previous ones. From this table, the
Viterbi path is retrieved by getting the frame with the highest probability in the last column and
given this frame, to search all the frames that were used to build it. All the elements whose labels
are TARGET are extracted as candidates.

5.4.3 Knowledge extraction from the EPICAM source code

This section presents the experimentation of the approach described in section 5.4.1. This experi-
mentation consists in extracting ontological knowledge from EPICAM source code composed of
1254 Java files and 271782 instructions. Fig. 31 presents a screenshot of some concepts from the
EPICAM source code.

5.4.3.1 Knowledge extraction from EPICAM

To extract ontological knowledge from EPICAM source code, we proceeded step by step using the
method presented in section 5.4.1.

Data collection The source files of EPICAM platform are composed of statements, imported
libraries and comments. Data collection involves removing the imported libraries and comments.

5https://github.com/jiofidelus/source2onto/blob/master/code2onto-model/src/main/java/cm/uy1/modelUse
/KnowledgeExtractionHMM.java

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 114

To this end, we defined the regular expression
import[��u0000�−��uffff]∗?; |��(.)∗�n|(���∗ [��u0000�−��uffff]∗?��∗
�) to identify them. Once identified, we wrote a Java program to delete them.

Data preprocessing Data preprocessing consists in extracting the elements likely to be relevant
from the source code and re-coding them if necessary. We have used the HMMs defined and trained
in section 5.4.2. These HMMs were applied to the source code of EPICAM by calculating the
values of the Viterbi table (see Tab. 5.10). Once the table is built, we searched the Viterbi path by
getting the frames with the highest probability in the last column and using this frame, we search
all the frames that were used to build it. Once the Viterbi path is identified, all the elements labeled
TARGET are extracted.

package org.epicam ; public ...
PRE 0 α(PRE, 2) α(PRE, 3) α(PRE, 4) ...
TARGET 1 α(TARGET, 2) α(TARGET, 3) α(TARGET, 4) ...
OTHER 0 α(OTHER, 2) α(OTHER, 3) α(OTHER, 4) ...

}
PRE 0
TARGET 1
OTHER 0

Table 5.10: The Viterbi table (α table) built using EPICAM source code

Fig. 32 presents the set of candidates for concepts, properties, and axioms identified and Fig.
33 presents the set of candidates for rules identified.

Re-coding terms and rules To re-code the candidates extracted, we used Java naming con-
ventions. All the candidates were browsed and for the candidates containing the keywords of the
programming language, these keywords were removed. For example, consider the term CasTuber-
culoseEditorWorkflow that was extracted from the source code; the terms Editor and Workflow are
keywords of Google Web Toolkit, the technology used to build the EPICAM platform. Then, the
terms Editor and Workflow are removed and the term CasTuberculose is retained as a candidate.

After the re-coding, we moved to the next step which is the translation into formal language.

Entities identification and translation into OWL Data preprocessing phase produced a file
containing only the meta-knowledge (e.g "package", "class", "extends", "if", "switch") and the
knowledge (e.g "patientManagement.Patient", "Patient" or "serology"). We wrote a Java program
to browse these files in order to identify relevant knowledge. Meta-knowledge allows the identi-
fication of the candidates as concepts, properties and axioms. For example, if the string "pack-
age minHealth.Region.District.hospitals.patientRecord ... class Patient extends Person ... int age ...
List<Exam> listExam" is extracted, then, the following ontological knowledge is identified:

• "package minHealth.Region.District.hospitals. patientRecord:" This is used to identify
the class hierarchy;

• "class Patient extends Person": This expression means that "Patient" and "Person" are

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 115

Figure 32: An excerpt of candidates extracted for concepts, properties and axioms

Figure 33: An excerpt of candidates extracted for rules identification

candidates that will become concepts and there is a hierarchical relation between concepts
"Patient" and "Person";

• "int age; List <Exam> listExam": This expression means that "age" and "listExam" are

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 116

properties of the concept "Patient"; the following axiom is also defined: a patient has only a
single age (i.e. age is a functional property).

After the identification of entities, we proposed a second Java program6 to automatically translate
them into an OWL ontology7.

In the same way, rules were also extracted and translated into Semantic Web Rule Language8.
An example of a rule specifying the rights of a doctor on patient data is given by:
doctorsRule = "Personnel (?pers) ∧ personnel_login (?pers, login) ∧ personnel_passwd (?pers,
passwd) ∧ Patient (?p) ∧ RendezVous (?rdv) ∧ hasRDV (?rdv, ?p) ∧ patient_nom (?p, ?nom) ∧
patient_age (?p, ?age) ∧ patient_sexe (?p, ?sexe) ∧ patient_telephoneUn (?p, ?telephone) ∧ ren-
dezVous_dat eRendezVous (?rdv, ?datardv) ∧ rendezVous_honore (?rdv, ?honore) ∧
rendezVous_honore (?rdv, Non) → sqwrl:select (?nom, ?age, ?sexe, ?telephone, ?datardv, ?hon-
ore)";

5.4.3.2 Analysis of the elements extracted

The extraction process produced a set of candidates (Figs 32 and 33), but also false positives
(Tab. 5.11 presents the statistics). The false positives consist of the set of candidates that belong
to the PRE, POST or OTHER sets that normally should not be extracted as observations of
TARGET . We wrote a Java program to identify and delete them.

Tab. 5.11 presents the statistics of candidates/group of candidates that were extracted. After the
extraction process, we obtained different types of candidates/group of candidates:

• Irrelevant candidates/group of candidates: These are utility classes and temporary vari-
ables. Utility classes are classes that the programmer defines to perform certain operations.
These classes usually contain constants and methods. The names of these classes are usually
not related to the domain. Temporary variables (e.g., the variables used in a loop) are used
temporarily in the source code and are not related to the domain.

• Relevant candidates/group of candidates: These are knowledge found. These candidates
are composed of synonyms (candidates of identical meaning) and redundancies (candidates
that come up several times). We wrote a Java program to identify and remove redundancies
candidates automatically.

We also extracted candidates’ conditions to be rules. As we did with the candidates to be con-
cepts, properties and axioms, false positives were identified and deleted. From the rules extracted,
we found:

6https://github.com/jiofidelus/source2onto/blob/master/code2onto-model/src/main/java/cm/uy1
/helper/OWLHelper.java

7https://github.com/jiofidelus/ontologies/blob/master/epicam/epicam.owl
8https://github.com/jiofidelus/ontologies/blob/master/epicam/epicamrules.owl

Semantic-aware epidemiological surveillance system

5.4 Ontology Learning from Source Code 117

Candidates Relevant Irrelevant
Concepts 1840 (72.87%) 685 (27.13%)
Properties 38355 (81.42%) 8755 (18.58%)
Axioms 3397 (83.22%) 685 (16.78%)
Rules 1484 (07.89%) 17332 (92.11%)

Table 5.11: Statistics on candidates extracted

• Irrelevant conditions: These are conditions that are not really important. For example, test-
ing whether a temporary variable is positive or is equal to a certain value. These conditions
were the most numerous;

• Relevant conditions: Conditions corresponding to a business rule (e.g., testing if a user has
access right to certain data).

5.4.4 Knowledge evaluation

The concepts, properties and axioms extracted were translated into an OWL ontology. The ex-
tracted rules are represented in SWRL. We used the Protege editor to provide a graphical visual-
ization of the ontology and rules to human experts for their evaluation. Fig. 34 presents an overview
of the ontology obtained.

Three experts from the tuberculosis surveillance domain involved in the EPICAM project
were invited to evaluate the knowledge extracted. They are from three different organizations in
Cameroon (Centre Pasteur of Cameroon, National Tuberculosis Control Program and a hospital
in Yaounde). The domain experts were asked to check first if the terms extracted are relevant to
the tuberculosis clinical or epidemiological perspectives. Second, they analyzed the axioms and
rules. First of all, they found that the terminology was relevant to the tuberculosis. However, they
suggested correcting some typos caused by the names of the classes and attributes given by pro-
grammers. Axioms and rules were generally correct. Some rules were suggested to be updated
as the business rules have evolved (e.g. user access to patient data has been improved taking into
account their post such as epidemiologist, physician, nurse or administrative staff).

In line with the experts validation, we evaluated the coverage of the ontology terms by taking
reference on other ontologies in the biomedical domain. We used BioPortal [137] as a biomedical
ontology repository. BioPortal contains more than 300 ontologies including a large number of med-
ical terminologies such as SNOMED (Systematized Nomenclature of Medicine) [123]. BioPortal
has an Ontology Recommender module that is used to find the best ontologies for a biomedical text
or a set of keywords [111]. This task is done according to four criteria: (1) the extent to which the
ontology covers the input data; (2) the acceptance of the ontology in the biomedical community;
(3) the level of detail of the ontology classes that cover the input data; (4) and the specialization
of the ontology to the domain of the input data. We gave as input keywords to the Recommender
the set of terms (concepts and properties) of the ontology extracted by our HMM. Fig. 35 shows
that the ontology terms are covered by many biomedical ontologies. In the first line of the rec-
ommended ontologies, we could see that NCIT, SNOWMEDCT, ONTOPARON (accepted by the

Semantic-aware epidemiological surveillance system

5.5 Conclusion 118

Figure 34: An overview of the generated OWL ontology

community with a score of 75.6%) cover the terms from our ontology with a score of 82.9%, have
a level of details of 64% and the level of specialization of 40%. We came to the conclusion that
terms extracted by our HMM are relevant to the biomedical domain.

5.5 Conclusion

We proposed in this chapter an approach for knowledge extraction from Java source code using
Hidden Markov Models (HMMs). This approach consists of the definition of a Hidden Markov
Model, its training and use for knowledge extraction from source code. The HMMs are defined
by labeling the source code with the labels PRE, POST , TARGET and OTHER. There-
after, they are trained using existing source code and used to extract knowledge. We experimented
this approach by extracting ontological knowledge from EPICAM, a tuberculosis epidemiological
surveillance platform developed in Java. Evaluation by domain experts (clinicians and epidemiol-
ogists) permitted us to show the relevance of the knowledge extracted. In line with the experts’
validation, we evaluated the coverage of terms extracted by reference ontologies in the biomedical
domain. We used Ontology Recommender from BioPortal repository. The results of the evaluation

Semantic-aware epidemiological surveillance system

5.5 Conclusion 119

Figure 35: The Ontology Recommender output from the extracted ontology terms

shows that the terms are well covered by many biomedical ontologies (e.g., NCIT, SNOWMEDCT,
ONTOPARON). In the chapter 6, we will show how the knowledge extracted in this chapter was
used to build an ontology for tuberculosis surveillance.

Semantic-aware epidemiological surveillance system

6
An ontology for Tuberculosis Surveillance

System (O4TBSS)

Effective management of tuberculosis requires to put in place a system which provides all needed
information to stakeholders. In chapter 3, we have presented the EPICAM platform used for epi-
demiological surveillance of tuberculosis in Cameroon. This platform permitted the National Tu-
berculosis Control Program to collect data and obtain the statistics they generally use. The EPI-
CAM platform uses PostgesQL to store data and the SQL language to get information and build
statistics tables and graphics. However, a lack of logical and machine-readable relations among
PostgresQL tables prevent computer-assisted automated reasoning. The ability to reason, that is to
draw inferences from the existing knowledge to derive new knowledge is an important element for
modern medical applications [60] such as epidemiological surveillance systems. To support auto-
mated reasoning, ontological terms are often expressed in formal logic [60, 82]. In this chapter, we
report the development of an Ontology for Tuberculosis Surveillance System (O4TBSS) that will
permit users of TB surveillance, by using reasoning mechanisms to derive new knowledge using
existing ones. The rest of the chapter is organized as follow: section 6.1 presents the methodology
used to construct the ontology, section 6.2 presents the development of the ontology and section
6.3 presents the use cases.

6.1 Ontology development methodology

During the development of the Ontology for Tuberculosis Surveillance System (O4TBSS), we
have followed a methodology made up of a set of principles, design activities and phases based on
an agile software development methodology [3, 40] presented in chapter 3 and NeOn methodology
[126] presented in chapter 4. Our methodology is composed of the Pre-development step presented
in section 6.1.1, the Development and the Post-development step presented in section 6.1.2.

Semantic-aware epidemiological surveillance system

6.1 Ontology development methodology 121

6.1.1 The Pre-development step

The Pre-development step involves the specification, the analysis and the design of the application
in which the ontology will be integrated. To make the system specifications, the Scrum Team, con-
ducted by the Scrum Master makes an Application Specification Document (ASD). This document
contains the users’ needs and all the features of the software to develop. The analysis activity uses
the ASD to understand the system in order to delineate and identify its features. To do this, we
recommend the use of Unified Modelling Language (UML) in order to identify the actors of the
system and the use cases that will be executed by these actors. Recall that an actor is any user
outside the system who can be a person or another system. He/she uses the system and runs use
cases. A use case determines a system functionality and meets a need.

Based on software specifications and analysis, software design specifies how to represent and
build the solution. During the design of the software architecture, the different modules and the
relations among these modules are defined. If the ontology is necessary, it will be specified in the
software architecture and its role will be clearly defined. This step corresponds to scenario 1 of the
NeOn methodology in which knowledge engineers make the Ontology Requirements Specification
Document (ORSD).

At the end of the Pre-development step, the first version of the application specification, anal-
ysis and design is produced. The Product Backlog of the ontology to be built is also produced and
a Scrum Meeting will permit us to define the list of tasks to be executed to build the ontology.

6.1.2 The Development and Post-development steps

The goal of the development step is to develop the ontology through repeated cycles (iteratively)
and in modules (incrementally), allowing the Scrum Team to take advantage of what was learned
during development of earlier versions. The tasks contained in the Product Backlog are organized
in many Sprint Backlogs and executed. At each Scrum Meeting, a Scrum Review is made to evalu-
ate the evolution of the development. This step is composed of two main phases: the development
of the first version of the ontology and the development of the next versions.

First version The first phase consists of the development of the first version of the ontology
given the specifications, the analysis and the design provided by the Pre-development step. It is
composed of three activities and proceeds as follows:

1. Identification of knowledge sources: During this activity, an inventory of existing knowl-
edge sources (human experts, domain resources, existing ontologies) is made. Firstly, exist-
ing ontologies are listed and analyzed. If one of them matches the needs, it is adopted. If not,
the resources identified previously must be used to build the ontology. For each resource,
determine the method to be used for knowledge acquisition. The method chosen will guide
the choice of tool. For example, if existing ontologies are identified as relevant resources,
Protege software [93] can be used to build the ontology by importing/merging them.

Semantic-aware epidemiological surveillance system

6.1 Ontology development methodology 122

2. Knowledge acquisition: The second activity in the development step is the most critical.
Four aspects are to be considered:

(a) Acquiring knowledge from domain experts: Ideally, knowledge must be obtained
from domain experts. However, domain experts are not always available for interviews;

(b) Acquiring knowledge from existing ontologies: for each ontology selected during
the identification of knowledge sources, a part or the whole ontology can be used. For
this task, existing ontologies can be re-engineered or relevant terms can be manually
or (semi)automatically extracted. The knowledge obtained can be used to build the
ontology by merging/aligning the knowledge extracted;

(c) Using domain resources: When using domain knowledge sources for ontology build-
ing, knowledge is manually/automatically extracted from these resources. This is called
ontology learning [7, 121];

(d) The mixed approach: The mixed approach consists of the use of existing ontologies,
domain resources to acquire the relevant knowledge and build the ontology.

3. Knowledge representation: During the knowledge representation activity, the knowledge
extracted previously is serialized in a machine readable form. This activity can be composed
of: the construction of the ontology which consists of converting the concepts, properties,
axioms and rules in a knowledge representation language; the adaptation of the ontology to
one or more various languages and cultural communities; and the population of the ontology
obtained with instances. After the knowledge representation activity, one obtains a knowl-
edge base which can use the automated reasoning to reason about the knowledge, make
inference and infer new knowledge.

After the development of the first version of the ontology, the evaluation is performed. The
feedback of the evaluation, presented during the Scrum Meetings will permit us to define the next
steps of the ontology development.

The next versions. The second phase is an iterative and incremental phase in which each
increment consists of exploiting the evaluation feedback in order to complete specifications, anal-
ysis, design and to develop the new versions of the ontology. Each increment involves the Sprint
planning meeting which will result in a the set of features that the ontology must meet; knowl-
edge identification consisting of identifying relevant knowledge to be used to complete the on-
tology constructed during the previous Sprints; knowledge acquisition, which is based on the re-
sources identified and involve the identification of methods and tools for knowledge acquisition;
and knowledge representation. At the end of each Sprint, a Sprint Review Meeting permits us to
evaluate the ontology given the specifications, analysis and design. Note that at each review, a
reasoner is used to check the ontology consistency.

Post-development step. The Post-development step involves the integration of the developed
ontology in the related software. For example, a query interface can be developed to allow users to
access knowledge.

Semantic-aware epidemiological surveillance system

6.2 Ontology building 123

6.2 Ontology building

The dramatic increase in the use of knowledge discovery applications requires end users to write
complex database queries to retrieve information. Such users are not only expected to grasp the
structural complexity of complex databases but also the semantic relationships between data stored
in these databases. In order to overcome such difficulties, researchers have been focusing on knowl-
edge representation and interactive query generation through ontologies [60, 89, 122]. In clinical
practice particularly, Hauer et al. [60] have proved the relevance of the use of ontologies for knowl-
edge discovery. In this thesis, we propose the use of an ontology named Ontology for Tuberculosis
Surveillance System (O4TBSS) for knowledge discovery during epidemiological surveillance of
tuberculosis. Then, in this section, we will show how the methodology presented in section 6.1
has been followed to develop O4TBSS. Section 6.2.1 will present the Pre-development step and
section 6.2.2 will present the development step.

6.2.1 Pre-development

During the Pre-development, the specifications, analysis and design of the application which will
integrate the ontology will permit us to determine the need and role of an ontology.

6.2.1.1 Software specifications

To fight against TB, the government of Cameroon has recognized the National Tuberculosis Con-
trol Program (NTCP) as a priority program of the Ministry of Health in 2012. The goal of the
NTCP is to detect and treat patients with TB and prevent it. To this end, all the stakeholders at
the NTCP must have all needed information for decision making. Firstly, we have developed a
platform named EPICAM used for the epidemiological surveillance of TB [69].

Figure 36: Searching for patients using criteria defined by the NTCP

The EPICAM platform permits the NTCP to obtain data for tuberculosis management. This
platform integrates interfaces which allow users to request information. The figure 36 presents

Semantic-aware epidemiological surveillance system

6.2 Ontology building 124

an example of patient search using multiple searching criteria. The EPICAM platform uses Post-
greSQL to store data and get information given the search criteria provided by users. However,
a lack of logical and machine-readable relations among PostgreSQL tables prevents computer-
assisted automated reasoning and useful information may be lost. Then, a new module of the
EPICAM platform which enables users access all needed information is required. The main func-
tionalities of this module are:

• Provide all needed information to stakeholders;

• Facilitate the integration of other data sources such as climate and demographic data, in order
to establish risk factors;

• Discovering new knowledge from existing. For example, to get the correct answers to the
queries like "does patient x be at risk to become TB-MDR," the system must have access
to patients’ knowledge (e.g, patient characteristics and treatment behaviour) and be able to
reason based on this knowledge.

6.2.1.2 Analysis

The new module of the EPICAM software must permit doctors, epidemiologists and decision
makers to get access to all the relevant knowledge. The use case these actors will execute is given
by the figure 37.

Figure 37: The general use case executed by all users

6.2.1.3 System design

To permit users to have access to all knowledge, the data must be stored using a data structure
supporting inferences. As many researchers have proved that ontologies are the best choice for
knowledge modelling [85, 122], we have chosen to use an ontology.

The architecture of figure 38 shows how the ontology can be integrated in the existing system.
This architecture is composed of two main modules: the EPICAM module [69], which permits
stakeholders to obtain tuberculosis data and the OEPICAM module which helps users access in-
formation. Note that the EPICAM module is in use. The OEPICAM module is composed of an

Semantic-aware epidemiological surveillance system

6.2 Ontology building 125

EPICAM database
EPICAM knowledge base

Population
FrameworkLive date feed

Instances for

the enrichment

Data collection and
management module

Doctor, nurses, etc.

knowledge management
module

Epidemiologist, decision maker

D
at

a
la

y
er

P
la

tf
o

rm
 la

ye
r

S
em

an
ti

c
re

q
u

es
t

R
el

ev
an

t
in

fo
rm

at
io

n

D
at

a
re

g
is

tr
at

io
n

D
at

a
vi

su
al

iz
at

io
n

patient

Doctor

Hospital

Treat

Figure 38: The general architecture presenting the integration of an ontology in the EPICAM
platform.

ontology populated with the data extracted from the EPICAM database, an inference system which
will be used to infer new knowledge and a user interface which will be used by the users to access
information.

6.2.1.4 Product Backlog definition

The product backlog comprises the list of tasks to be executed in order to develop the ontology.
They are:

• Identification and evaluation of existing ontologies. This task consists of finding existing
ontologies that can be used in the system;

• Identification of domain resources. During the identification of domain resources, existing
knowledge sources will be identified;

• Knowledge acquisition from ontological knowledge sources. This task consists of using ex-
isting methodologies to acquire knowledge from existing ontologies and domain sources;

• Knowledge representation. After the knowledge is obtained, it is serialized in a machine
readable form;

• Ontology population. The ontology obtained after its serialization is populated with in-
stances.

The identification of ontological resources, knowledge acquisition, knowledge representation
is based on the NeOn methodology and is done iteratively (in many Sprints) and incrementally
(until the ontology fulfills the needs). After the Pre-development step and each Sprint, the Scrum
Master organized Scrum Meetings with the Scrum Team composed of the knowledge engineer
and the epidemiologist. During these meetings the ontology is evaluated and the Sprint Backlog

Semantic-aware epidemiological surveillance system

6.2 Ontology building 126

containing what to do in the next Sprint is defined. Each evaluation permitted us to determine the
ontology consistency using the Pellet reasoner, and to what extent the ontology developed fulfills
the requirements.

6.2.2 Development

The O4TBSS was developed in five Sprints.

6.2.2.1 First Sprint: Searching for existing ontologies that fulfilled the need

According to the NTCP, during epidemiological surveillance of TB, the following information are
recorded:

• Patients and their follow-up: Captures information about patients and the follow-up of
their treatment;

• Symptoms of the disease: Contains information that can be used to suspect, infirm or con-
firm that a patient is suffering from tuberculosis;

• Laboratory testing: Models the laboratory examinations that confirm or infirm that a patient
is suffering from tuberculosis;

• Epidemiology: Contains a set of indicators used to provide information for a better moni-
toring of the disease;

• Drugs: Contains information on the medication used for TB treatment;

• Sensitization: Captures information on patients and population sensitization;

• Users: Captures information on all the persons involve in the surveillance;

• Training and training materials: Models the management of the training of health workers
and their training materials.

The ontology modelling epidemiological surveillance used by the NTCP must contain all
this information. We have conducted a review of existing ontologies using Bioportal [137] and
Google’s Search Engine. Keywords such as "tuberculosis", "tuberculosis surveillance", "ontology
for tuberculosis surveillance" and "tuberculosis ontology" were used to carry out searches. In sum-
mary, we proceeded as follows:

• Firstly, we searched for ontologies modelling the TB surveillance on the Bioportal repository
using the keywords "tuberculosis" and "tuberculosis surveillance." A total of 38 ontologies
were found using the keyword "tuberculosis" and 48 ontologies were found using the key-
word "tuberculosis surveillance." These ontologies were examined and all excluded because
they did not focus on epidemiological surveillance of tuberculosis.

Semantic-aware epidemiological surveillance system

6.2 Ontology building 127

• Secondly, we used the keywords "ontology for tuberculosis surveillance" and "tuberculosis
ontology" to search for existing ontologies using Google’s Search Engine. Scientific papers
obtained were analyzed. A total of 12 scientific papers were initially identified, 9 of these
papers were excluded because they did not focus on tuberculosis ontology and four papers
were retained. The first one entitled "A Tuberculosis Ontology for Host Systems Biology"
[80] focuses on clinical terminology. The ontology presented has been made available in
a csv format; "RepTB: a gene ontology based drug repurposing approach for tuberculosis"
[101] focuses on drug repurposing; "An ontology for factors affecting tuberculosis treatment
adherence behavior in sub-Saharan Africa" [95] focuses on the factors that influence TB
treatment behaviour in sub-Saharan Africa; and "An Ontology based Decision support for
Tuberculosis Management and Control in India" [2] which presents the use of an ontology
for TB management in India. Although these papers are about ontologies of TB, only one
ontology is available for download in a csv format and this ontology covers just the clinical
aspects of epidemiological surveillance.

At the end of the first Sprint, we have noted that no existing ontology covers the domain that we
want to represent. This justifies the development of a new ontology.

6.2.2.2 Second Sprint: knowledge extraction from EPICAM source code

To develop the new ontology, the first domain resource we used is the EPICAM source code. In
fact, source code is any fully executable description of a software designed for a specific domain
such as medical, industrial, military, communication, aerospace, commercial, scientific, etc. In the
software design process, a set of knowledge related to the domain is captured and integrated in the
source code [13, 14, 15].

In a previous work, we extracted knowledge from the source code of the EPICAM platform
and used this knowledge to construct an ontology (named ontoEPICAM), modelling epidemiolog-
ical surveillance of tuberculosis in Cameroon [15]. This ontology is composed of 329 terms with
97 classes, 117 DataProperties and 115 ObjectProperties. Given that this ontology models the epi-
demiological surveillance system of tuberculosis in Cameroon, it is yet to be evaluated to see if it
is complete. That is why, we evaluated this ontology given two criteria: (1) the completeness of the
modelled domains, which measures if all the domains covered by epidemiological surveillance are
well covered by the ontology; (2) the completeness of the ontology for each domain involved in the
epidemiological surveillance, which measures if each domain of interest is appropriately covered
in this ontology.

The keywords were identified from ontoEPICAM terms and used to carry out searches of
existing ontologies on Bioportal repository and Google’s Search Engine. The ontologies found
were examined using the browsing tool integrated in Bioportal. The figure 39 is an example of
browsing the "Human Disease Ontology". We found 275 ontologies. For each term, we noted the
list of ontologies obtained. For the ontologies found in the BioPortal repository, the BioPortal
ontology visualization tool was used to visualize the terms that are presented in the ontology. If an
ontology contains the relevant terms, it is selected. In many cases, two ontologies have the same
terms when searching using certain keywords e.g., "patient", "doctor", "nurse", "tuberculosis", etc.

Semantic-aware epidemiological surveillance system

6.2 Ontology building 128

Figure 39: Example of browsing Human Disease Ontology (DOID) using Bioportal visualization
tool

Then, the most complete were selected. The ontologies not present in the BioPortal repository were
examined using Protege. The ontology in csv file was examined using LibreOffice Calc. The table
6.1 presents the ontologies selected for our purpose. In this table, the keyword column presents
the keywords that were used to find the ontology. The ontology column presents the ontology
selected given the keyword. The covered domain column presents the domain of epidemiological
surveillance covered by the ontology and the description column presents a brief description of the
ontology

In the table 6.2, presenting the comparison of selected ontologies with the EPICAM ontol-
ogy: patients information, characteristics and Follow-up is represented by "Patient"; symptoms of
the disease is represented by "Symp"; training and training materials is represented by Training.
Comparing the ontologies selected using ontoEPICAM terms (see table 6.2), we found that only
ontoEPICAM takes into account all the aspects of epidemiological surveillance. However, by con-
sidering the completeness of each domain covered by epidemiological surveillance, we remarked
that the ontologies selected are more complete. For example, information about patient follow-up
is more complete in Mental Health Management Ontology (MHMO) than in ontoEPICAM. In the

Semantic-aware epidemiological surveillance system

6.2 Ontology building 129

Keywords Ontology Covered domains Ontology description
Epidemiological surveillance Epidemiology Ontology

(EPO)
Epidemiology This is an ontology describing the epidemiological, demographics and infec-

tion transmission process [103].
Tuberculosis symptoms Symptom Ontology (Symp) Tuberculosis sign and symp-

toms
Symp aims to understand the relationship between signs and symptoms and
capture the terms relative to the signs and symptoms of a disease 1 .

Tuberculosis Human Disease Ontology
(DOID)

Patients and their follow-up,
Epidemiology

Human Disease Ontology is an ontology that represents a comprehensive hier-
archically controlled vocabulary for human disease representation [118].

Tuberculosis ontology A Tuberculosis Ontology for
Host Systems Biology

Patients, symptoms, labora-
tory testing

Tuberculosis Ontology for Host Systems Biology focuses on clinical termi-
nology of tuberculosis diagnosis and treatment. It is available in a csv format
[80].

Patient Adherence and Integrated
Care2

Patient and their follow-up This ontology is an ontology that defines the medication adherence of patient.

Patient Presence Ontology (PREO)3 Patient and their follow-up This ontology defines relationships that model the encounters taking place ev-
ery day among providers, patients, and family members or friends in environ-
ments such as hospitals and clinics.

Patient Mental Health Management
Ontology (MHMO)

Patient and their follow-up The Mental Health Management Ontology is an ontology for mental health-
care management [142]

Table 6.1: The list of ontologies selected for our purpose.

next Sprint, we will show how knowledge has been extracted from the ontologies presented in table
6.1 and combined with ontoEPICAM to build the Ontology for Tuberculosis Surveillance.

Ontologies Patients Symp Lab testing Epidemiology Drugs users Sensitization Training
ontoEPICAM Yes Yes Yes Yes Yes Yes Yes Yes
Epidemiology Ontology No No No Yes No No No No
Symptom Ontology No Yes No No No No No No
Adherence and Integrated
Care

Yes No No No No Yes No No

Presence Ontology Yes No No No No Yes No No
Human Disease Ontology Yes No No No No No No No
Mental Health Management
Ontology

Yes Yes No No No Yes No No

A Tuberculosis Ontology For
Host Systems Biology

Yes Yes Yes No Yes No No No

Table 6.2: Comparison of selected ontologies with the EPICAM ontology.

6.2.2.3 Third Sprint: Ontology construction

The ontologies selected in the second Sprint were used to construct the O4TBSS. To do so, on-
tological knowledge was extracted using either ontofox [140] or Protege. By using ontofox, we
specified the source ontology, the classes, the keyword "includeAllChildren" to extract terms of
the ontology hierarchy branch and the keyword "includeAllAxioms" to extract all annotations. For
the ontologies not presented in ontofox such as "Adherence and Integrated Care ontology", Pro-
tege software was used for their examination, identification of irrelevant terms and the deletion
of the latter. Knowledge obtained were imported in Protege and examined term by term with the
help of an epidemiologist to evaluate each term and identify redundancies. Redundant terms iden-
tified were removed. Additional terms were extracted from ontoEPICAM to enrich the ontology
obtained. The Pellet reasoner in Protege permitted us to verify the consistency of the ontology
obtained. The table 6.3 and the figure 40 respectively present the metric and a part of the ontology
obtained.

Semantic-aware epidemiological surveillance system

6.2 Ontology building 130

Ontologies Classes DataProperties ObjectProperties Total
O4TBSS 865 123 13 1001

1 Epidemiology Ontology 95 0 0 95
2 Symptom Ontology 12 0 0 12
3 Adherence and Integrated Care 246 12 2 260
4 Presence Ontology 205 25 5 235
5 Human Disease Ontology 22 14 0 36
6 Mental Health Management Ontology 143 64 0 217
7 A Tuberculosis Ontology For Host Systems Biology 125 0 0 125
8 ontoEPICAM 17 8 6 31

Table 6.3: O4TBSS terms and terms imported from 7 other ontologies sources and enriched with
EPICAM terms

Figure 40: A screenshot of O4TBSS obtained after the third Sprint

6.2.2.4 Fourth Sprint: Ontology enrichment

After building the ontology, we decided to populate it with data gathered from EPICAM database.
But we remarked that some data contained in the database can be considered as concepts/property.
For example, the occupation of patients was already represented in the ontology as a class with a
list of occupations as subclasses. Some occupations (specific to Cameroon like taxi drivers) were
not represented in the ontology. Then, with a SQL query, we extracted these knowledge composed
of 70 classes and enriched our ontology. The actual version of the ontology is composed of 1068
terms, with 935 classes, 123 ObjectProperties and 13 DataProperties. The complete ontology and
the source code write for its population is available on github4.

6.2.2.5 Fifth Sprint: Ontology population

The purpose of ontology population is to complete the ontology built with instances. It consists of
extracting and systematically listing all the instances contained in the database that can reflect a
concept or a relationship of the domain to be modelled. As a matter of fact, we developed an inte-

4https://github.com/jiofidelus/ontologies/tree/master/O4TBSS

Semantic-aware epidemiological surveillance system

6.3 Use cases 131

grator (see the architecture presented by the figure 38) which permits us to import and manage all
the data from the database to the ontology in Java. The source code of this integrator is available on
github5. A flat view of the database was created by making a simple SQL query. This query permits
us to gain access to information and the information obtained was populated in the ontology. To
keep the relation between the tables in the database, the tuples identification in the database were
used as the identification of these instances in the ontology. For example, the TB case with ID "TB-
CASE_14f7ee" is linked to its appointment with ID "RDV_14f5e7a" in the database. Then, in the
ontology, their identifications will also be "TBCASE_14f7ee" and "RDV_14f5e7a". The complete
ontology and the source code write for its population is available on github6.

6.3 Use cases

In section 6.2, we presented O4TBSS, an ontology that we built for epidemiological surveillance
of tuberculosis. This ontology was developed using OWL and populated with data of epidemiolog-
ical surveillance of TB in Cameroon. Given that O4TBSS supports OWL-ontological reasoning,
this section presents two use cases in which the reasoning mechanism permits us to derive new
knowledge from existing knowledge. To proceed these use cases, we populated the ontology with
100 patients among which 88 tuberculosis patients. Then, we used the DL query implemented the
DL query tab in Protege software to query the ontology and the Pellet reasoner engine.

6.3.1 Use case 1: inferring patient instances

The first use case on the use of the O4TBSS is the inference about patients who come to hospital
with health problems. In fact, the epidemiologist with which we work believes that an extensive set
of patient data would reveal subtle patterns if these patterns can be identified. The epidemiologist
revealed that all the patients who come for consultation are important in their job because he/she
wants to know the characteristics of the patients suffering from TB and the one who does not suffer
from TB to see what are the differences between these patients. However, the EPICAM platform
does not provide the information on the patients who come for consultation because the main
goal of the platform was to follow the TB patients. Given that in the ontology the "TB Patient"
is subclass of "Patient", the first use case consists of showing the result that is obtained using an
inference system and without an inference system. The figure 41 presents on the left the list of
all patients when the inference system is not used and on the right, the list of all patients when
the inference is used. The reasoner uses the set of assertions and knowledge accumulated in the
ontology to answer semantic queries, in particular inferred patients.

This use case shows that using O4TBSS permits the epidemiologists to identify from a set of
patients data the TB patients and non TB patients. The characteristics of these patients can then be
used to identify risk factors.

5https://github.com/jiofidelus/ontologies/tree/master/O4TBSS
6https://github.com/jiofidelus/ontologies/tree/master/O4TBSS/populatingO4TSS

Semantic-aware epidemiological surveillance system

6.3 Use cases 132

Figure 41: Request of the list of patients without the inference system (on the left) and using the
inference system (on the right)

6.3.2 Use case 2: automatic detection of TB-MDR susceptible patients by
reasoning on ontology

The TB-MDR is generally caused by an inadequate treatment of tuberculosis, which can give rise
to an epidemic of TB difficult to cure. In fact, poor adherence or non adherence of patients to TB
treatment is a major cause of treatment failure in Africa. Poor adherence is the failure of patients to
take medication or follow a diet and lifestyle in accordance with the prescription of the clinician.
Patients with poor adherence to TB treatment over a period of time have a high risk to become
resistant to prescribed drugs [95]. According to the NTCP, the patients who did not come to their
rendez-vous to get the medications are those who will later develop resistance to drugs and come
back with TB-MDR. A health worker revealed that often, some patients will follow the first 4
months of treatment, feeling better, they will not come back in the last two months and will come
later with TB-MDR. According to the epidemiologist, these patients and their characteristics must
be identified at time and an action must be taken.

The actual version of the EPICAM platform does not consider the TB-MDR patients. However,
the information on the following appointments of the patients are stored in the database. To get
access to this information, a SQL request must be made. However, given that the database is flat,
to get access to other information with the link to the patients, a joined request with 6 tables must
be done and a source code written to filter patient information (e.g., patient health center, district
and/or region). The current use case shows how a simple DL query with the inference system
permitted to get all the patients at risk to become TB-MDR (figure 42). A simple click permits
access to the patients’ characteristics.

This second use case shows that the ontology can be used to classify patients according to their
behavior. It can also be used to detect by inferring the other types of patients. For example, the

Semantic-aware epidemiological surveillance system

6.4 Conclusion 133

Figure 42: Inferring the patients at risk of TB-MDR

positive microscopy, negative microscopy and what is the difference between them, identify risk
factors according to many parameters such as time, location, etc.

6.3.3 Other useful feature of O4TBSS

One of the major benefits of using an ontology is the possibility of using reasoner to automatically
compute class hierarchy. The ontology we have developed in this thesis also facilitates the checking
for class subsumption. The reasoner is used to automatically compute a classification hierarchy
given the class definition. The example of figure 43 shows some class hierarchies obtained from
asserted classes by reasoning.

6.4 Conclusion

In this chapter, we reported the development of an ontology for tuberculosis surveillance. This
ontology can be used for the annotation of clinical and epidemiological data of tuberculosis. Our
motivation was to provide a model for epidemiological data which permits stakeholders involved
in epidemiological surveillance of TB to have access to all needed information. The goal being
to infer new knowledge from asserted ones using the reasoning mechanism. During the develop-
ment of O4TBSS, we found many biomedical ontologies that we classified in three main groups.
The first group was made of large ontologies such as "Human Disease ontology", modeling one
aspect of O4TBSS. These ontologies were not completely reused because they were too large and
the parts involved in the epidemiological surveillance of TB were too small. The second group

Semantic-aware epidemiological surveillance system

6.4 Conclusion 134

Figure 43: The Inferred Hierarchy alongside the Asserted Hierarchy after classification has taken
place. Note the inferred subclasses of the classes Patient and TBPatient

was made of ontologies such as "Mental Health Management Ontology" not focusing on the tu-
berculosis, but containing relevant knowledge that can be reused. From the first and the second
groups, TB knowledge was extracted to build O4TBSS. The third group was made of ontologies
such as "Tuberculosis Ontology for Host Systems Biology" specialized in tuberculosis. Some of
these ontologies have not been used because they were not available for download and on the other
hand, what they described was different from what we were modeling. Knowledge extracted from
EPICAM source code presented in chapter 5 was used to enrich the ontology obtained.

Even if our main goal was to infer new knowledge, it should be noted that the ontology de-
veloped can also be used for data exchange and integration. It can easily be integrated with other
ontologies. This ontology may serve as an example to model epidemiological surveillance of other
infectious diseases.

Semantic-aware epidemiological surveillance system

7
Conclusion

At the end of this thesis, we present the summary of the research and the future directions.

7.1 Research summary

In this thesis, we highlighted the problems encountered during the development/use of epidemi-
ological surveillance systems. Then, we focused on two of them: the problem of failed software
due to an unsystematic transfer of business requirements to the implementation and the problem of
furnishing needed information to stakeholders. Therefore, we proposed a semantic-aware epidemi-
ological surveillance system. Our main objective being to design a semantic-aware tuberculosis
surveillance system. This system was built in two phases with two complementary modules:

• The data collection and management module: Based on Model Driven Architecture, this
module permitted us to model tuberculosis surveillance systems in Cameroon and gener-
ate the EPICAM platform. During the pilot phase in 2014 and 2015, the EPICAM platform
was deployed in twenty five pilot hospitals distributed in the ten regions of Cameroon. This
system allows the National Tuberculosis Control Program (NTCP) in Cameroon to regis-
ter and follow-up around 3900 patients, representing 15.6% annual number of TB cases in
Cameroon. According to user’ feedback: at the central level, the EPICAM platform allow
a better visibility of the health problems and an early detection of issues; at the peripheral
level, the system allows the improvement of patients management and follow-up by health
workers.

Given the success of the pilot phase, the NTCP have adopted the EPICAM platform and
extended it in twenty new health centers during the years 2016 and 2017.

• The knowledge management module: The goal of this module is to support tuberculosis
surveillance by allowing stakeholders to retrieve all needed information. To this end, during
this thesis, we have developed an Ontology for Tuberculosis Surveillance System (O4TBSS).
Enriched with the data acquired during epidemiological surveillance of TB, O4TBSS per-
mitted derive new information given asserted ones.

Semantic-aware epidemiological surveillance system

7.2 Discussion and future works 136

Globally, in this thesis, we proposed:

• A Model Driven Architecture-based approach for the development of epidemiological surveil-
lance systems. Thereafter, we have developed an open source tool permitting the modeling
and the generation of epidemiological surveillance systems. This tool were used to model
and generate a platform for epidemiological surveillance of tuberculosis in Cameroon;

• Hidden Markov Models (HMM) based approach for ontology learning from Java source
code. Two models were also proposed: one for the modeling of concepts properties and
axioms and the other for the modeling of rules. This approach and these models were used for
ontology learning from the source code of EPICAM. The knowledge learned was validated
by Ontology Recommender tool and domain experts;

• An Ontology for Tuberculosis Surveillance System developed by combining the knowledge
learned from EPICAM source code, EPICAM database and existing biomedical ontologies.
This ontology was populated with the data contained in the EPICAM database and use cases
permitted to show how new information can be obtained by the mean of inference system;

• An architecture for a semantic-aware epidemiological surveillance system. This architecture
describes how an ontology can be integrated in an epidemiological surveillance system in
order to provide information that is not explicitly registered in the system to stakeholders.

7.2 Discussion and future works

Future works follow five different directions: the development of the semantic search engine on
top of O4TBSS; the filtering of epidemiological information according to user profile; the building
an ontology network for epidemiological surveillance of TB; re-estimating the parameters of the
HMMs presented in this thesis using specialized algorithms; and the development of a source code
knowledge graph.

The development of the semantic search engine on top of O4TBSS. In this thesis, we have
made the specification and the design of the module permitting to stakeholders to obtain all needed
information. Thereafter, the ontology which populated with data obtained during epidemiological
surveillance of TB was developed. However, the experimentation was done using the Protege soft-
ware which is not the appropriate tool for querying and displaying results. In many cases, decision
makers prefer results in the form of statistical tables, graphics and maps. Then, we are planning
to develop a search engine, integrating O4TBSS and permitting stakeholders to use keywords to
access relevant information in an appropriate form.

Filtering information according to user profile. The computerization of epidemiological
surveillance systems allow the collection and storage of large volume of data [62, 110]. If the
information to furnish to the users is not filtered, this may lead to the problem of information
overload. Information overload (infobesity or infoxication) is defined as the difficulty that a person
may have to understand an issue and make decisions caused by the presence of too much infor-
mation. According to the literature, this problem stresses and affects the performance of health

Semantic-aware epidemiological surveillance system

7.2 Discussion and future works 137

professionals and undermines effectiveness [74]. Given that the users of epidemiological surveil-
lance systems are from different domains, have different profiles and preferences on information,
we will design an architecture for filtering epidemiological information according to user profile.

Building an ontology network for epidemiological surveillance of tuberculosis. Epidemi-
ological surveillance systems may need additional data (e.g., pluviometric data, population data)
stored in external data sources to explain some phenomenon (e.g., TB outbreak). In the future work,
we will build an ontology network permitting access to all the relevant data sources necessary to
give relevant information to stakeholders.

Re-estimating the HMMs parameters. The performance of HMMs in knowledge extraction
depends on its training. In this thesis, we have particularly focused on knowledge extraction from
Java source code using the Viterbi algorithm. Future work will be devoted to the training of the
models using specialized algorithms such as Baum-welch or Viterbi training in order to determine
the best values of the HMMs parameters.

Building a source code knowledge graph to solve software development problems. The
popularity of computer applications and the huge growth of new software development tech-
nologies has brought about the development of many applications and services [23] such as e-
epidemiology and e-health platforms. Large softwares consist of many modules (small programs),
possibly written by different programmers [23, 39]. In developing and using large software, some
problems could be encountered:

• Software requirements could be articulated on the web through historical email messages,
discussion forums, etc. Once asserted, there are generally no "software requirements specifi-
cation documents" [116]. In GitHub for example, adding comments and some code updates
are not always done in parallel with the updating of the other software artifacts.

• In some Open Source software with large communities, many developers contribute to source
code with their own vocabularies [116].

• Sometimes, developers focus on coding features rather than ensuring that they have a solid
and complete documentation that facilitates the integration of newcomers [116].

• Changing the needs during the development process is still not managed by software process
models. As a consequence, software projects do not always meet their expectations in terms
of functionality, cost and delivery schedule [116].

• Integrating the evolution of platforms directly into source code can make new programmers
take too much time to grab the source code [109, 116].

• Bugs and security vulnerabilities such as non-bounds-checking functions, input validation,
buffer overflow, etc. are difficult to identify and solve.

To solve the above problems, we will develop a source code knowledge graph and a tool for
knowledge extraction from source code. The tool will use the HMMs presented and experimented
in this thesis to extract knowledge from existing tested and known to work source code in order
to build and/or to update the source code knowledge graph. The source code knowledge graph

Semantic-aware epidemiological surveillance system

7.2 Discussion and future works 138

will describe source code structure, vocabulary, bugs and vulnerabilities. Integrated in Integrated
Environment Development such as Eclipse, this knowledge graph will permit to: make the source
code readable and understandable to new developers; make the software artifacts coherent; make
an early discovering of bugs, security breaches or violations of programming conventions; high-
light possible coding errors, the precise source file, line numbers and even subsection of lines that
are affected. An immediate feedback will be provided to the developers in issues they might be
introducing into source code.

Semantic-aware epidemiological surveillance system

Bibliography

Semantic-aware epidemiological surveillance system

Bibliography

[1] Abdelghany Abdelghany, Nagy Ramadan, and Hesham Hefni. An agile methodology for on-
tology development. International Journal of Intelligent Engineering and Systems, 12:170–
181, 04 2019.

[2] Kumar Abhishek and Singh M.P. An ontology based decision support for tuberculosis
management and control in india. International Journal of Engineering and Technology,
8:2860–2877, 12 2016.

[3] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile software devel-
opment methods: Review and analysis. CoRR, abs/1709.08439, 2002.

[4] Maedche Alexander and Volz Raphael. The ontology extraction & maintenance framework
text-to-onto. In International Conference on Data Mining (ICDM), San Jose, USA, Novem-
ber 29 - December 2, 2001. IEEE, Los Alamitos (CA), 2001.

[5] Maedche Alexander and Staab Steffen. Semi-automatic engineering of ontologies from
text. Proceedings of the 12th Internal Conference on Software and Knowledge Engineering.
Chicago, USA, 2000.

[6] Muhammad Amith, Zhe He, Jiang Bian, Juan Antonio Lossio-Ventura, and Cui Tao. As-
sessing the practice of biomedical ontology evaluation: Gaps and opportunities. Journal of
Biomedical Informatics, 80:1–13, 2018.

[7] Muhammad Nabeel Asim, Muhammad Wasim, Muhammad Usman Ghani Khan, Waqar
Mahmood, and Hafiza Mahnoor Abbasi. A survey of ontology learning techniques and
applications. Database, 2018:bay101, 2018.

[8] Blagoj Atanasovski, Milos Bogdanovic, Goran Velinov, Leonid Stoimenov, Aleksandar S.
Dimovski, Bojana Koteska, Dragan Jankovic, Irena Skrceska, Margita Kon-Popovska, and
Boro Jakimovski. On defining a model driven architecture for an enterprise e-health system.
Enterprise Information Systems, 12(8-9):915–941, 2018.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 141

[9] Blagoj Atansovski, MiloÅ¡ BogdanoviÄ, Goran Velinov, Leonid Stoimenov, Dragan Sah-
paski, Irena Skrceska, Margita Kon-Popovska, Dragan JankoviÄ, and Boro Jakimovski.
Transforming an enterprise e-health system from process oriented to model driven archi-
tecture. In 7th International Conference on Information Society and Technology ICIST,
pages 159–162, 05 2017.

[10] Mattia Atzeni and Maurizio Atzori. Codeontology: Querying source code in a semantic
framework. In Proceedings of the ISWC 2017 Posters & Demonstrations and Industry
Tracks co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna,
Austria, October 23rd - to - 25th, 2017., 2017.

[11] Mattia Atzeni and Maurizio Atzori. Codeontology: Rdf-ization of source code. In The
Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part II, pages 20–28, 2017.

[12] Fidèl Jiomekong Azanzi, Laurent Broto, Daniel Hagimont, Suzy Temate, and Maurice
Tchuente. Data collection in a degraded network: case of developing countries or countries
in crisis. In 6th International Conference on Theory and Practice of Electronic Governance,
ICEGOV ’12, Albany, NY, USA, October 22-25, 2012, pages 406–409, 2012.

[13] Fidèl Jiomekong Azanzi and Gaoussou Camara. Knowledge extraction from source code
based on hidden markov model: Application to EPICAM. In 14th IEEE/ACS International
Conference on Computer Systems and Applications, AICCSA 2017, Hammamet, Tunisia,
October 30 - Nov. 3, 2017, pages 1478–1485, 2017.

[14] Fidèl Jiomekong Azanzi and Gaoussou Camara. An approach for knowledge extraction
from source code (KNESC) of typed programming languages. In Trends and Advances
in Information Systems and Technologies - Volume 1 [WorldCIST’18, Naples, Italy, March
27-29, 2018]., pages 122–131, 2018.

[15] Fidèl Jiomekong Azanzi, Gaoussou Camara, and Maurice Tchuente. Extracting ontological
knowledge from java source code using hidden markov models. Open Computer Science,
9(1):181–199, 2019.

[16] Hossein Bagherian, Mohammad Farahbakhsh, Reza Rabiei, Hamid Moghaddasi, and
Farkhondeh Asadi. National communicable disease surveillance system: A review on infor-
mation and organizational structures in developed countries. Acta informatica medica, 12
2017.

[17] Hossein Bagherian, Mohammad Farahbaksh, Reza Rabiei, Hamid Moghaddasi, and
Farkhondeh Asadi. National communicable disease surveillance system: A review on infor-
mation and organizational structures in developed countries. 25:271â276, 12 2017.

[18] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[19] David W. Binkley, Marcia Davis, Dawn J. Lawrie, and Christopher Morrell. To camelcase
or under_score. In Proceedings of the 27th International Conference on Program Compre-
hension, ICPC ’19, pages 177–177, Piscataway, NJ, USA, 2019. IEEE Press.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 142

[20] Xavier Blanc. MDA en action, Ingénierie logicielle guidée par les mod‘eles. EYROLLES,
2005.

[21] Joaquín A Blaya, Sonya Shin, Carmen Contreras, Gloria Yale, Carmen Suarez, Luis Asen-
cios, Jihoon Kim, Pablo Rodriguez, Peter Cegielski, and Hamish S F Fraser. Full impact
of laboratory information system requires direct use by clinical staff: cluster randomized
controlled trial. Journal of the American Medical Informatics Association, 18(1):11–16, 11
2010.

[22] Bernd Blobel and Peter Pharow. A model driven approach for the german health telem-
atics architectural framework and security infrastructure. International journal of medical
informatics, 76(2-3):169â175, 2007.

[23] Kalina Bontcheva. Learning ontologies from software artifacts: Exploring and combining
multiple choices. In Jeff Z. Pan and Yuting Zhao, editors, Semantic Web Enabled Software
Engineering, volume 17 of Studies on the Semantic Web, pages 235–250. IOS Press, 2014.

[24] Bouchra Bouihi and Mohamed Bahaj. An uml to owl based approach for extracting
moodleâs ontology for social network analysis. Procedia Computer Science, 148:313 –
322, 2019. The Second International Conference on Intelligent Computing in Data Sci-
ences, ICDS2018.

[25] Waylon Brunette, Mitchell Sundt, Nicola Dell, Rohit Chaudhri, Nathan Breit, and Gaetano
Borriello. Open data kit 2.0: Expanding and refining information services for developing
regions. In HotMobile : The International Workshop on Mobile Computing Systems and
Applications, 2013.

[26] Marko Brunzel. The xtreem methods for ontology learning from web documents. In Paul
Buitelaar and Philipp Cimiano, editors, Ontology Learning and Population: Bridging the
Gap between Text and Knowledge, volume 167 of Frontiers in Artificial Intelligence and
Applications, pages 3–26. IOS Press, 2008.

[27] Bernard C K Choi. The past, present, and future of public health surveillance. Scientifica,
2012:875253, 08 2012.

[28] Kenneth G. Castro. Tuberculosis Surveillance: Data for Decision-Making. Clinical Infec-
tious Diseases, 44(10):1268–1270, 2007.

[29] Farid Cerbah and Nadira Lammari. Ontology Learning from Databases: Some Efficient
Methods to Discover Semantic Patterns in Data. In AKA / IOS Press. Serie, editor, Perspec-
tives in Ontology Learning, page 30. October 2014.

[30] Philipp Cimiano. Ontology learning and population from text - algorithms, evaluation and
applications. Springer US, 2006.

[31] Benoît Combemale. Ingénierie Dirigée par les Modèles (IDM) – État de l’art. working
paper or preprint, 2008.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 143

[32] Nadine Cullot, Raji Ghawi, and Kokou Yétongnon. DB2OWL : A tool for automatic
database-to-ontology mapping. In Proceedings of the Fifteenth Italian Symposium on Ad-
vanced Database Systems, SEBD 2007, 17-20 June 2007, Torre Canne, Fasano, BR, Italy,
pages 491–494, 2007.

[33] Vasa Curcin, Thomas Woodcock, Alan J. Poots, Azeem Majeed, and Derek Bell. Model-
driven approach to data collection and reporting for quality improvement. Journal of
Biomedical Informatics, 52:151 – 162, 2014. Special Section: Methods in Clinical Research
Informatics.

[34] Alberto Rodrigues da Silva. Model-driven engineering: A survey supported by the unified
conceptual model. Computer Languages, Systems Structures, 43:139 – 155, 2015.

[35] Frankel David and Parodi John. The Mda Journal: Model Driven Architecture Straight From
The Masters. Meghan Kiffer, 2004.

[36] Antonio De Nicola, Alberto Tofani, Giordano Vicoli, and Maria Luisa Villani. An mda-
based approach to crisis and emergency management modeling. International Journal on
Advances in Intelligent Systems, 5:89–100, 01 2012.

[37] Reza Dehnavieh, AliAkbar Haghdoost, Ardeshir Khosravi, Fahime Hoseinabadi, Hamed
Rahimi, Atousa Poursheikhali, Nahid Khajehpour, Zahra Khajeh, Nadia Mirshekari,
Marziyeh Hasani, Samera Radmerikhi, Hajar Haghighi, Mohammad Hossain Mehrolhas-
sani, Elaheh Kazemi, and Saeide Aghamohamadi. The district health information sys-
tem (dhis2): A literature review and meta-synthesis of its strengths and operational chal-
lenges based on the experiences of 11 countries. Health Information Management Journal,
48(2):62–75, 2019. PMID: 29898604.

[38] Klaas Dellschaft and Steffen Staab. Strategies for the evaluation of ontology learning.
In Proceedings of the 2008 Conference on Ontology Learning and Population: Bridging
the Gap Between Text and Knowledge, pages 253–272, Amsterdam, The Netherlands, The
Netherlands, 2008. IOS Press.

[39] F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-the-small.
IEEE Transactions on Software Engineering, SE-2(2):80–86, June 1976.

[40] Torgeir Dingsøyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe. A decade of
agile methodologies. J. Syst. Softw., 85(6):1213–1221, June 2012.

[41] Disciplined-agile. Requirements envisioning: An agile core practice, 2019. http:
//agilemodeling.com/essays/initialRequirementsModeling.htm.

[42] Dragan Djuric, Dragan Gasevic, and Vladan Devedzic. Ontology modeling and MDA. Jour-
nal of Object Technology, 4(1):109–128, 2005.

[43] Sean R. Eddy. What is a hidden Markov model? Nature Biotechnology, 22(10):1315, Octo-
ber 2004.

[44] Allae Erraissi and A Belangour. Data sources and ingestion big data layers: Meta-modeling
of key concepts and features. International Journal of Engineering and Technology(UAE),
7:3607–3612, 01 2018.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 144

[45] Muhammad Fahad. ER2OWL: generating OWL ontology from ER diagram. In Intelligent
Information Processing IV, 5th IFIP International Conference on Intelligent Information
Processing, October 19-22, 2008, Beijing, China, pages 28–37, 2008.

[46] Matt Fenwick, Gerard Weatherby, Heidi J. C. Ellis, and Michael R. Gryk. Parser combi-
nators: A practical application for generating parsers for NMR data. In Tenth International
Conference on Information Technology: New Generations, ITNG 2013, 15-17 April, 2013,
Las Vegas, Nevada, USA, pages 241–246, 2013.

[47] Gernot A. Fink. Markov Models for Pattern Recognition: From Theory to Applications.
Advances in Computer Vision and Pattern Recognition. Springer-Verlag, London, 2 edition,
2014.

[48] G. David Forney. The viterbi algorithm: A personal history. CoRR, abs/cs/0504020, 2005.

[49] Monica Franzese and Antonella Iuliano. Hidden markov models. In Shoba Ranganathan,
Michael Gribskov, Kenta Nakai, and Christian SchAnbach, editors, Encyclopedia of Bioin-
formatics and Computational Biology, pages 753 – 762. Academic Press, Oxford, 2019.

[50] Ralph R. Frerichs. Epidemiologic surveillance in developing countries. Annual Review
Public Health, 12:257, 1991.

[51] Gopinath Ganapathy and S. Sagayaraj. To generate the ontology from java source code.
International Journal of Advanced Computer Science and Applications, 2(2), 2011.

[52] Fabien Gandon, Catherine Faron Zucker, and Olivier Corby. Le web sémantique. Dunod,
2012.

[53] Andrés García-Silva, Leyla Jael García-Castro, Alexander García Castro, and Óscar Corcho.
Building domain ontologies out of folksonomies and linked data. International Journal on
Artificial Intelligence Tools, 24(2), 2015.

[54] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven Engineering and
Ontology Development. Springer Publishing Company, Incorporated, 2nd edition, 2009.

[55] Mirna El Ghosh, Hala Naja, Habib Abdulrab, and Mohamad Khalil. Ontology learning pro-
cess as a bottom-up strategy for building domain-specific ontology from legal texts. In Pro-
ceedings of the 9th International Conference on Agents and Artificial Intelligence, ICAART
2017, Volume 2, Porto, Portugal, February 24-26, 2017., pages 473–480, 2017.

[56] Philippe Glaziou, Katherine Floyd, and Mario Raviglione. Global epidemiology of tuber-
culosis. Cold Spring Harbor Laboratory Press, 5, 2015.

[57] Philippe Glaziou, Katherine Floyd, and Mario Raviglione. Global epidemiology of tuber-
culosis. Seminars in Respiratory and Critical Care Medicine, 39:271–285, 2018.

[58] Asunción Gómez-Pérez, Mariano Fernández-López, and Óscar Corcho. Ontological Engi-
neering: With Examples from the Areas of Knowledge Management, e-Commerce and the
Semantic Web. Advanced Information and Knowledge Processing. Springer, 2004.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 145

[59] Mokhtaria Hacherouf, Safia Nait Bahloul, and Christophe Cruz. Transforming XML docu-
ments to OWL ontologies: A survey. J. Inf. Sci., 41(2):242–259, 2015.

[60] Tamás Hauer, Dmitry Rogulin, Sonja Zillner, Andrew Branson, Jetendr Shamdasani, Alexey
Tsymbal, Martin Huber, Tony Solomonides, and Richard McClatchey. An architecture for
semantic navigation and reasoning with patient data - experiences of the health-e-child
project. In Amit Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard,
Timothy Finin, and Krishnaprasad Thirunarayan, editors, The Semantic Web - ISWC 2008,
pages 737–750, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[61] Maryam Hazman, Samhaa R. El-Beltagy, and Ahmed Rafea. A survey of ontology learning
approaches. International Journal of Computer Applications, 22(8):36–43, May 2011.

[62] D. A. Henderson. The Development of Surveillance Systems. American Journal of Epi-
demiology, 183(5):381–386, 02 2016.

[63] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, 2009.

[64] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web
Technologies. Chapman and Hall/CRC Press, 2010.

[65] HMN. Framework and standards for country health information systems. Technical report,
2008.

[66] Bouchra El Idrissi, Salah Baïna, and Karim Baïna. Ontology learning from relational
database: How to label the relationships between concepts? In Beyond Databases, Archi-
tectures and Structures - 11th International Conference, BDAS 2015, Ustroń, Poland, May
26-29, 2015, Proceedings, pages 235–244, 2015.

[67] S. Iloga, O. Romain, L. Bendaouia, and M. Tchuente. Musical genres classification using
markov models. In 2014 International Conference on Audio, Language and Image Process-
ing, pages 701–705, July 2014.

[68] Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin
Shamshirband. A systematic literature review on agile requirements engineering practices
and challenges. Comput. Hum. Behav., 51(PB):915–929, October 2015.

[69] Azanzi Jiomekong and Gaoussou Camara. Model-driven architecture based software devel-
opment for epidemiological surveillance systems. Studies in health technology and infor-
matics, 264:531â535, August 2019.

[70] Val Jones, Arend Rensink, and Ed Brinksma. Modelling mobile health systems: an appli-
cation of augmented MDA for the extended healthcare enterprise. In Ninth IEEE Interna-
tional Enterprise Distributed Object Computing Conference (EDOC 2005), 19-23 Septem-
ber 2005, Enschede, The Netherlands, pages 58–69, 2005.

[71] Rupinder Kaur and Jyotsna Sengupta. Software process models and analysis on failure of
software development projects. CoRR, abs/1306.1068, 2013.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 146

[72] Faten Kharbat and Haya El-Ghalayini. Building Ontology from Knowledge Base Systems.
Data Mining in Medical and Biological Research, November 2008.

[73] Olga Kolesnikova. Survey of word co-occurrence measures for collocation detection. Com-
putación y Sistemas, 20(3):327–344, 2016.

[74] Hanumantha Rao Kolusu. Information overload and its effect on healthcare. Master of
biomedical informatics, Oregon Health & Science University, 2015.

[75] Agnieszka Konys. Knowledge systematization for ontology learning methods. In
Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the
22nd International Conference KES-2018, Belgrade, Serbia, 3-5 September 2018., pages
2194–2207, 2018.

[76] Guy Leonard Kouemou. History and Theoretical Basics of Hidden Markov Models. Hidden
Markov Models, Theory and Applications, April 2011.

[77] Martin Labský, Vojtech Svátek, Ondrej Sváb, Pavel Praks, Michal Krátký, and Václav
Snásel. Information extraction from HTML product catalogues: From source code and
images to RDF. In 2005 IEEE / WIC / ACM International Conference on Web Intelligence
(WI 2005), 19-22 September 2005, Compiegne, France, pages 401–404, 2005.

[78] Craig Larman and Victor R. Basili. Iterative and incremental development: A brief history.
Computer, 36(6):47–56, June 2003.

[79] Nelson K. Y. Leung, Sim Kim Lau, and Nicole Tsang. Reuse existing ontologies in an on-
tology development process - an integration-oriented ontology development methodology.
IJWS, 2(3):159–180, 2014.

[80] David M. Levine, Noton Dutta, Josh Eckels, Charles Scanga, Catherine Stein, Smriti Mehra,
Deepak Kaushal, Petros Karakousis, and Hugh Salamon. A tuberculosis ontology for host
systems biology. Tuberculosis, 95(5):570–574, 9 2015.

[81] Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, and
H. V. Jagadish. Regular expression learning for information extraction. In 2008 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2008, Proceedings of the
Conference, 25-27 October 2008, Honolulu, Hawaii, USA, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 21–30, 2008.

[82] Yu Lin, Zuoshuang Xiang, and Yongqun He. Brucellosis ontology (IDOBRU) as an exten-
sion of the infectious disease ontology. J. Biomedical Semantics, 2:9, 2011.

[83] Francesca A. Lisi. Learning onto-relational rules with inductive logic programming. CoRR,
abs/1210.2984, 2012.

[84] Mapatano and Piripiri. Quelques erreurs courantes d’analyse d’un syst‘eme d’information
sanitaire(rd congo). In Santé Publique 2005, volume 17, 2005.

[85] Carmen Martinez-Cruz, Ignacio J. Blanco, and M. Amparo Vila. Ontologies versus re-
lational databases: are they so different? a comparison. Artificial Intelligence Review,
38(4):271–290, Dec 2012.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 147

[86] John Mathenge Kanyaru, Melanie Coles, Sheridan Jeary, and Keith Phalp. Using visualisa-
tion to elicit domain information as part of the model driven architecture approach. CEUR
Workshop Proceedings, 376, 01 2008.

[87] Martin McHugh, Fergal McCaffery, and Valentine Casey. Barriers to adopting agile prac-
tices when developing medical device software. In Antonia Mas, Antoni Mesquida, Terry
Rout, Rory V. O’Connor, and Alec Dorling, editors, Software Process Improvement and
Capability Determination, pages 141–147, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

[88] Cameroun MINSANTE. Syst‘eme national d’information sanitaire, formulaire de recueil
de données pour le rapport mensuel d’activités dans les hôpitaux centraux. Technical report,
2015.

[89] Kamran Munir and M. Sheraz Anjum. The use of ontologies for effective knowledge mod-
elling and information retrieval. Applied Computing and Informatics, 14(2):116 – 126,
2018.

[90] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty H. C. Cheng,
Philippe Collet, Benoit Combemale, Robert B. France, Rogardt Heldal, James Hill, Jörg
Kienzle, Matthias Schöttle, Friedrich Steimann, Dave Stikkolorum, and Jon Whittle. The
relevance of model-driven engineering thirty years from now. In Juergen Dingel, Wolfram
Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfran, editors, Model-Driven Engi-
neering Languages and Systems, pages 183–200, Cham, 2014. Springer International Pub-
lishing.

[91] Oscar Nierstrasz and Jan Kurs. Parsing for agile modeling. Sci. Comput. Program., 97:150–
156, 2015.

[92] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101: A guide to creat-
ing your first ontology. Technical report, March 2001.

[93] Natalya Fridman Noy, Ray W. Fergerson, and Mark A. Musen. The knowledge model of
protégé-2000: Combining interoperability and flexibility. In Rose Dieng and Olivier Corby,
editors, Knowledge Engineering and Knowledge Management Methods, Models, and Tools,
pages 17–32, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[94] Martin O’Connor and Amar Das. Sqwrl: A query language for owl. In Proceedings of the 6th
International Conference on OWL: Experiences and Directions - Volume 529, OWLED’09,
pages 208–215, Aachen, Germany, Germany, 2009. CEUR-WS.org.

[95] Olukunle A. Ogundele, Deshendran Moodley, Christopher J. Seebregts, and Anban W. Pil-
lay. An ontology for tuberculosis treatment adherence behaviour. In Proceedings of the
2015 Annual Research Conference on South African Institute of Computer Scientists and
Information Technologists, SAICSIT ’15, pages 30:1–30:10, New York, NY, USA, 2015.
ACM.

[96] Okoro, Sholagberu, and Kolo. Mobile phone ownership among nigerians with diabetes. In
African Health Sciences, volume 10, 2010.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 148

[97] OMS. Organisation mondiale de la santé (oms). s̈yst‘emes d’informations pour la gestion
des programmes sanitaires nationaux. rôle des programmes ayant l’an 1990 pour horizon-
programme élargie de vaccination, approvisionnement en eau et salubrité, lutte contre la
malnutrition pour atteindre la santé pour tous en l’an 2000. mobilisation des collectivités en
vue du développement sanitaire : approches et contraintes.̈ Technical report, 1984.

[98] OMS. Réseau de métrologie sanitaire au cameroun. analyse situationnelle du syst‘eme
d’information sanitaire au cameroun. Technical report, 2007.

[99] OMS. Rapport d’évaluation du syst‘eme national d’information sanitaire ivoirien par l’outil
du réseau de métrologie sanitaire rms/hmn en 2008. Technical report, 2008.

[100] Tünay Özcan, Semra Kocak, and Philipp Brune. Agile software development with open
source software in a hospital environment – case study of an ecrf-system for orthopaedical
studies. In Florian Daniel, Peter Dolog, and Qing Li, editors, Web Engineering, pages 439–
451, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[101] Anurag Passi, Neeraj Rajput, David Wild, and Anshu Bhardwaj. Reptb: a gene ontology
based drug repurposing approach for tuberculosis. Journal of Cheminformatics, 10, 12
2018.

[102] Branko Perisic. Model driven software development â state of the art and perspectives. In
INFOTEH-JAHORINA, volume 13, pages 1237–1248, 03 2014.

[103] Catia Pesquita, João Ferreira, Francisco Couto, and Mario J Silva. The epidemiology on-
tology: an ontology for the semantic annotation of epidemiological resources. Journal of
biomedical semantics, 5:4, 2014.

[104] H.S. Pinto, A. Gómez-Pérez, and J.P. Martins. Some issues on ontology integration. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 99)
Workshop: KRR5: Ontologies and Problem-Solving Methods: Lesson Learned and Future
Trends, volume 18, 1999.

[105] PNLT and OMS. Minist‘ere de la santé, programme national de lutte contre la tuberculose
cameroun. guide technique pour les personnels de sante. Technical report, 2015.

[106] Wullianallur Raghupathi and Amjad Umar. Exploring a model-driven architecture (mda)
approach to health care information systems development. International Journal of Medical
Informatics, 77(5):305 – 314, 2008.

[107] Wullianallur Raghupathi and Amjad Umar. Integrated digital health systems design. Inter-
national Journal of Information Technologies and Systems Approach, 2:15–33, 06 2009.

[108] Abdul Mateen Rajput and Harsha Gurulingappa. Semi-automatic approach for ontology
enrichment using umls. Procedia Computer Science, 23(Supplement C):78 – 83, 2013.
4th International Conference on Computational Systems-Biology and Bioinformatics, CS-
Bio2013.

[109] C. V. Ramamoorthy, V. Garg, and A. Prakash. Programming in the large. IEEE Transactions
on Software Engineering, SE-12(7):769–783, 1986.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 149

[110] Chesley L. Richards, Michael F. Iademarco, Delton Atkinson, Robert W. Pinner, Paula
Yoon, William R. Mac Kenzie, Brian Lee, Judith R. Qualters, and Thomas R. Frieden. Ad-
vances in public health surveillance and information dissemination at the centers for disease
control and prevention. Public Health Reports, 132(4):403–410, 2017.

[111] Marcos Martínez Romero, Clément Jonquet, Martin J. O’Connor, John Graybeal, Alejandro
Pazos, and Mark A. Musen. NCBO ontology recommender 2.0: an enhanced approach for
biomedical ontology recommendation. J. Biomedical Semantics, 8(1):21:1–21:22, 2017.

[112] Kenneth S. Rubin, Thomas Beale, and Bernd Blobel. Modeling for Health Care, pages
125–146. Springer New York, New York, NY, 2005.

[113] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach, Third
International Edition. Pearson Education, 2010.

[114] Marek Rychlý and Pavlína Tichá. A tool for supporting feature-driven development. In
Bertrand Meyer, Jerzy R. Nawrocki, and Bartosz Walter, editors, Balancing Agility and
Formalism in Software Engineering, pages 196–207, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[115] Dina Salah, Richard F. Paige, and Paul Cairns. A systematic literature review for agile
development processes and user centred design integration. In Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering, EASE
’14, pages 5:1–5:10, New York, NY, USA, 2014. ACM.

[116] Walt Scacchi. Understanding the requirements for developing open source software sys-
tems. IEE Proceedings - Software, 149(1):24–39, Feb 2002.

[117] Hannes Schlieter, Martin Burwitz, O. Schonherr, and Martin Benedict. Towards model
driven architecture in healthcare information system development. In Wirtschaftsinformatik,
pages 497–511, 03 2015.

[118] Lynn M Schriml, Elvira Mitraka, James Munro, Becky Tauber, Mike Schor, Lance Nickle,
Victor Felix, Linda Jeng, Cynthia Bearer, Richard Lichenstein, Katharine Bisordi, Nicole
Campion, Brooke Hyman, David Kurland, Connor Patrick Oates, Siobhan Kibbey, Poorna
Sreekumar, Chris Le, Michelle Giglio, and Carol Greene. Human Disease Ontology
2018 update: classification, content and workflow expansion. Nucleic Acids Research,
47(D1):D955–D962, 11 2018.

[119] Ken Schwaber. Agile Project Management With Scrum. Microsoft Press, Redmond, WA,
USA, 2004.

[120] Kristie Seymore, Andrew Mccallum, and Ronald Rosenfeld. Learning hidden markov model
structure for information extraction. In AAAI 99 Workshop on Machine Learning for Infor-
mation Extraction, pages 37–42, 1999.

[121] Mehrnoush Shamsfard and Ahmad Abdollahzadeh Barforoush. The state of the art in on-
tology learning: A framework for comparison. Knowl. Eng. Rev., 18(4):293–316, dec 2003.

[122] Feichen Shen and Yugyung Lee. Knowledge discovery from biomedical ontologies in cross
domains. PLOS ONE, 11(8):1–34, 08 2016.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 150

[123] Thuppahi Sisira De Silva, Don MacDonald, Grace I. Paterson, Khokan C. Sikdar, and Bon-
nie Cochrane. Systematized nomenclature of medicine clinical terms (SNOMED CT) to rep-
resent computed tomography procedures. Computer Methods and Programs in Biomedicine,
101(3):324–329, 2011.

[124] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner
Ceusters, and al. The OBO Foundry: coordinated evolution of ontologies to support biomed-
ical data integration. Nature biotechnology, 25(11):1251–1255, November 2007.

[125] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering: Principles
and methods. Data Knowl. Eng., 25(1-2):161–197, 1998.

[126] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano Fernández-López.
The NeOn Methodology for Ontology Engineering, pages 9–34. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

[127] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano Fernández-López.
The neon methodology framework: A scenario-based methodology for ontology develop-
ment. Applied Ontology, 10(2):107–145, 2015.

[128] William M. Tierney, Marion Achieng, Elaine Baker, April Bell, Paul Biondich, Paula Brait-
stein, Daniel Kayiwa, Sylvester Kimaiyo, Burke Mamlin, Brian McKown, Nicholas Musin-
guzi, Winstone Nyandiko, Joseph Rotich, John Sidle, Abraham Siika, Martin Were, Ben
Wolfe, Kara Wools-Kaloustian, Ada Yeung, and Constantin Yiannoutsos. Experience im-
plementing electronic health records in three east african countries. In Studies in Health
Technology and Informatics, volume 160, pages 371–375, 2010.

[129] JAMES HENDLER TIM BERNERS-LEE and ORA LASSILA. The semantic web. Scien-
tific American:, 05 2001.

[130] Gerald Töpper, Magnus Knuth, and Harald Sack. Dbpedia ontology enrichment for incon-
sistency detection. In Proceedings of the 8th International Conference on Semantic Systems,
I-SEMANTICS ’12, pages 33–40, New York, NY, USA, 2012. ACM.

[131] Frank Truyen. The fast guide to model driven architecture the basics of model driven archi-
tecture. 01 2006.

[132] Jörg Unbehauen, Sebastian Hellmann, Sören Auer, and Claus Stadler. Knowledge Extrac-
tion from Structured Sources. In Stefano Ceri and Marco Brambilla, editors, Search Com-
puting: Broadening Web Search, volume 7538 of Lecture Notes in Computer Science, pages
34–52. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[133] UNHCR. Syst‘eme d’information sanitaire (sis). Technical report, 01 2010.

[134] Vaughan and Morrow. Manuel épidémiologique pour la gestion de la santé au niveau du
district. OMS, Gen‘eve, Suisse, 1991.

[135] Andrew J. Viterbi. Viterbi algorithm. Scholarpedia, 4(1):6246, 2009.

[136] Shufeng Wang, Wen Wang, Yanbin Zhuang, and Xianju Fei. An ontology evolution method
based on folksonomy. Journal of Applied Research and Technology, 13(2):177 – 187, 2015.

Semantic-aware epidemiological surveillance system

BIBLIOGRAPHY 151

[137] Patricia L. Whetzel, Natalya Fridman Noy, Nigam H. Shah, Paul R. Alexander, Csongor
Nyulas, Tania Tudorache, and Mark A. Musen. Bioportal: enhanced functionality via new
web services from the national center for biomedical ontology to access and use ontologies
in software applications. Nucleic Acids Research, 39(Web-Server-Issue):541–545, 2011.

[138] WHO. Tuberculosis, October 2020. https://www.who.int/news-room/
fact-sheets/detail/tuberculosis.

[139] Anna Wróblewska, Teresa Podsiadly-Marczykowska, Robert Bembenik, Grzegorz Protaz-
iuk, and Henryk Rybinski. Methods and Tools for Ontology Building, Learning and Inte-
gration ÃÂÂ Application in the SYNAT Project. In Robert Bembenik, Lukasz Skonieczny,
Henryk Rybinski, and Marek Niezgodka, editors, Intelligent Tools for Building a Scientific
Information Platform, volume 390 of Studies in Computational Intelligence, pages 121–151.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[140] Zuoshuang Xiang, Mélanie Courtot, Ryan R. Brinkman, Alan Ruttenberg, and Yongqun He.
Ontofox: web-based support for ontology reuse. BMC Research Notes, 3(1):175, Jun 2010.

[141] Zhuoming Xu, Yuyan Ni, Wenjie He, Lili Lin, and Qin Yan. Automatic extraction of OWL
ontologies from UML class diagrams: a semantics-preserving approach. World Wide Web,
15(5-6):517–545, 2012.

[142] Diego Bettiol Yamada, Vinicius Tohoru Yoshiura, Newton Shydeo Brandao Miyoshi, In-
ácia Bezerra de Lima, Gustavo Yukiu Usumoto Shinoda, Rui Pedro Charters Lopes Rijo,
Joao Mazzoncini de Azevedo Marques, Maria Manuela Cruz-Cunha, and Domingos Alves.
Proposal of an ontology for mental health management in brazil. Procedia Computer Sci-
ence, 138:137 – 142, 2018.

[143] Yang, C. Jun, and Y. Xiangshu L. Use of mobile phones in an emergency reporting system
for infectious disease surveillance after the sichuan earthquake in china. In Bull World
Health Organ, volume 7, 2010.

[144] Shuxin Zhao, Elizabeth Chang, and Tharam S. Dillon. Knowledge extraction from web-
based application source code: An approach to database reverse engineering for ontology
development. In Proceedings of the IEEE International Conference on Information Reuse
and Integration, IRI 2008, 13-15 July 2008, Las Vegas, Nevada, USA, pages 153–159, 2008.

[145] Guodong Zhou and Jian Su. Named entity recognition using an hmm-based chunk tagger. In
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
July 6-12, 2002, Philadelphia, PA, USA., pages 473–480, 2002.

[146] Lina Zhou. Ontology learning: state of the art and open issues. Information Technology and
Management, 8(3):241–252, 2007.

Semantic-aware epidemiological surveillance system

List of Tables

2.1 A model of priority table in the District [134] . 11

2.2 Example of using the priority table [134] . 12

4.1 The summary of knowledge modelling approaches 72

5.1 The initial vector - probability to have a state as the first label 108

5.2 An example of a transition table . 108

5.3 An example of an observation table . 108

5.4 The initial vector of the HMM for concepts, properties and axioms extraction . . . 111

5.5 Transition vector of the HMM for concepts, properties and axioms extraction . . . 112

5.6 Observation vector of the HMM for concepts, properties and axioms extraction . . 112

5.7 The initial vector of the HMM for rules extraction 112

5.8 Transition vector of the HMM for rules extraction 112

5.9 Observation vector of the HMM for rules extraction 112

5.10 The Viterbi table (α table) built using EPICAM source code 114

5.11 Statistics on candidates extracted . 117

6.1 The list of ontologies selected for our purpose. 129

Semantic-aware epidemiological surveillance system

LIST OF TABLES 153

6.2 Comparison of selected ontologies with the EPICAM ontology. 129

6.3 O4TBSS terms and terms imported from 7 other ontologies sources and enriched
with EPICAM terms . 130

Semantic-aware epidemiological surveillance system

LIST OF FIGURES

1 Multiple sources of information [65] . 8

2 Organization of the health system [98] . 10

3 Integration of different information sources [65] 12

4 Form-Road-Server architecture . 15

5 Mobile-MobileNetwork-Server architecture . 16

6 Computer-Internet-Server architecture . 17

7 Classic approach for software development . 20

8 Archiving data at the Jamot Hospital in Yaounde 26

9 The OMG meta-pyramid of models . 32

10 MDA Software development approach . 34

11 The combination of MDA and Agile for epidemiological surveillance systems de-
velopment . 42

12 System architecture . 51

13 The Platform Independent Model of EPICAM . 53

14 The Platform Specific Model of EPICAM constructed using the PIM 54

15 The entry point of the EPICAM platform . 54

Semantic-aware epidemiological surveillance system

LIST OF FIGURES 155

16 The patient registration form . 55

17 The class diagram of users management in the EPICAM platform 56

18 Distribution of the deployment of the EPICAM platform 58

19 A summary of TB situation in the pilot centers in 2015 59

20 Screening report in the first trimester of 2015 . 60

21 Treatment report in the first trimester of 2015 . 61

22 Knowledge Base in DL . 70

23 Ontology development process [58] . 73

24 Bayes Network example . 95

25 General architecture of HMMs . 99

26 Linear HMM . 100

27 Bakis HMM . 100

28 Left-to-right HMM . 100

29 Ergodic HMM . 101

30 An example of HMM modeling the Java source code 104

31 An overview of the Java source code of the EPICAM project 113

32 An excerpt of candidates extracted for concepts, properties and axioms 115

33 An excerpt of candidates extracted for rules identification 115

34 An overview of the generated OWL ontology . 118

35 The Ontology Recommender output from the extracted ontology terms 119

36 Searching for patients using criteria defined by the NTCP 123

37 The general use case executed by all users . 124

38 The general architecture presenting the integration of an ontology in the EPICAM
platform. 125

Semantic-aware epidemiological surveillance system

LIST OF FIGURES 156

39 Example of browsing Human Disease Ontology (DOID) using Bioportal visual-
ization tool . 128

40 A screenshot of O4TBSS obtained after the third Sprint 130

41 Request of the list of patients without the inference system (on the left) and using
the inference system (on the right) . 132

42 Inferring the patients at risk of TB-MDR . 133

43 The Inferred Hierarchy alongside the Asserted Hierarchy after classification has
taken place. Note the inferred subclasses of the classes Patient and TBPatient . . . 134

Semantic-aware epidemiological surveillance system

Appendix

A List of abbreviations

BIRT Business Intelligence and Reporting Tool
BN Bayes Network
CDC Centers for Disease Control and Prevention
CIM Computational Independent Model
CPC Centre Pasteur du Cameroun
DBN Dynamic Bayes Networks
DHIS District Health Information Software
DSDM Dynamic Systems Development Method
DSL Domain Specific Languages
DSM Domain-Specific Modelling
EHR Electronic Health Record
EPICAM Epidemiology in Cameroon
ER Entity-Relation
FDD Feature-Driven Development
FSM Framework Specific Modelling
GSM Global System for Mobile Communications
HIS Health Information Systems
HMMs Hidden Markov Models
ICT Information and Communication Technologies
JEE Java Enterprise Edition
KB Knowledge Base
KR Knowledge Representation
LOP Language Oriented Programming
MDA Model-Driven Architecture
MDSD Model-Driven Software Development
MDGs Millennium Development Goals
MDR MultiDrug-Resistant

Semantic-aware epidemiological surveillance system

B List of publications 158

MOF Meta-Object Facility
NTCP National Tuberculosis Control Program
O4TBSS ontology for TB surveillance
OCL Object Constraint Language
OCR Optical Character Recognition
ODK Open Data Kit
OL Ontology Learning
OMG the Object Management Group
OSD Open Source Development
OSM Open Street Map
OWL Ontology Web Language
PIM Platform Independent Model
PLHIV Persons Living with HIV
PSM Platform Specific Model
RDF Resource Description Framework
RIF Rule Interchange Format
RuleML Rule Markup Language
RUP Rational Unified Process
SDGs Sustainable Development Goals
SMS Short Message Service
SPARQL SparQL Protocol and RDF Query Language
SQL Structured Query Language
SQWRL Semantic Query-Enhanced Web Rule Language
SWRL Semantic Web Rule Language
TB Tuberculosis
TPM- Tuberculosis patient with negative Pulmonary Microscopy
TPM+ Tuberculosis patient with positive Pulmonary Microscopy
UI User interface
UML Unified Modelling Language
UNICEF United Nations International Children’s Emergency Fund
UP Unified Process
URI Uniform Resource Identifier
US United States
W3C World Wide Web Consortium
WHO World Health Organization
XDR eXtensively Drug Resistant
XP Extreme Programming

B List of publications

Journal

A. Jiomekong, G Camara, M Tchuente. Extracting ontological knowledge from Java source code
using Hidden Markov Models. 2019 Open Computer Science 9 (1), 181-199.

Semantic-aware epidemiological surveillance system

C Journal paper 159

National conference

Jiomekong Azanzi, Gaoussou Camara. Extraction des connaissances ontologiques du code source
Java en utilisant les Chaînes de Markov Cachées. Quatrième Conférence de Recherche en Infor-
matique (CRI 2019).

International conferences

1. Jiomekong Azanzi, Gaoussou Camara. Knowledge Extraction from Source Code Based on
Hidden Markov Model: Application to EPICAM. 2017 IEEE/ACS 14th International Con-
ference on Computer Systems and Applications (AICCSA), 1478-1485.

2. A. Jiomekong, G Camara. An Approach for Knowledge Extraction from Source Code (KNESC)
of Typed Programming Languages. 2018 World Conference on Information Systems and
Technologies, 122-131.

3. A. Jiomekong, G Camara. Model-Driven Architecture Based Software Development for Epi-
demiological Surveillance Systems. 2019 Studies in health technology and informatics 264,
531-35.

C Journal paper

Semantic-aware epidemiological surveillance system

Open Access. © 2019 Azanzi Jiomekong et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution alone 4.0 License.

Open Computer Science 2019; 9:181–199

Research Article Open Access

Azanzi Jiomekong*, Gaoussou Camara, and Maurice Tchuente

Extracting ontological knowledge from Java
source code using Hidden Markov Models
https://doi.org/10.1515/comp-2019-0013
Received April 29, 2019; accepted July 25, 2019

Abstract: Ontologies have become a key element since
many decades in information systems such as in epidemi-
ological surveillance domain. Building domain ontologies
requires the access to domain knowledge owned by do-
main experts or contained inknowledge sources.However,
domain experts are not always available for interviews.
Therefore, there is a lot of value in using ontology learn-
ing which consists in automatic or semi-automatic extrac-
tion of ontological knowledge from structured or unstruc-
tured knowledge sources such as texts, databases, etc.
Many techniques have been used but they all are limited
in concepts, properties and terminology extraction leav-
ing behind axioms and rules. Source code which naturally
embed domain knowledge is rarely used. In this paper,
we propose an approach based on Hidden Markov Models
(HMMs) for concepts, properties, axioms and rules learn-
ing from Java source code. This approach is experimented
with the source code of EPICAM, an epidemiological plat-
form developed in Java and used in Cameroon for tuber-
culosis surveillance. Domain experts involved in the eval-
uation estimated that knowledge extracted was relevant
to the domain. In addition, we performed an automatic
evaluation of the relevance of the terms extracted to the
medical domain by aligning them with ontologies hosted
onBioportal platform through theOntologyRecommender
tool. The results were interesting since the terms extracted
were covered at 82.9% by many biomedical ontologies
such as NCIT, SNOWMEDCT and ONTOPARON.

Keywords: Knowledge Extraction, Ontology Learning,
Hidden Markov Models, Java Source Code, Viterbi

*Corresponding Author: Azanzi Jiomekong: University of
Yaounde I, Faculty of Science, Yaounde, Cameroon; IRD, Sorbonne
Université, UMMISCO, F-93143, Bondy, France;
E-mail: jiofidelus@gmail.com
Gaoussou Camara: LIMA, Université Alioune Diop de Bambey,
Sénégal; IRD, Sorbonne Université, UMMISCO, F-93143, Bondy,
France; E-mail: gaoussou.camara@uadb.edu.sn

1 Introduction
Studer et al. [1] defined an ontology as "A formal, explicit
specification of a shared conceptualization". In the con-
text of domain ontologies, conceptualization refers to the
abstract model of the domain which is machine readable,
and where all the elements are explicitly defined and ac-
cepted by themembers of a group. Several domain ontolo-
gies define and organize relevant knowledge about activi-
ties, processes, organizations and strategies, in order to fa-
cilitate information exchange between machines and, be-
tween a human and a machine [2, 3]. Building domain on-
tologies requires the access to domain knowledge owned
by domain experts or contained in knowledge sources
[2, 4]. However, domain experts are not always available
for interviews. And in case they are available, the knowl-
edge provided is often incomplete and subjective. In ad-
dition, as the domain evolves, the knowledge provided by
the experts is likely to be out of date. Therefore, there is a
lot of added value in creating domain ontologies from ex-
isting knowledge sources such as structured and unstruc-
tured documents of the domain: texts [5–8], databases [9–
12], XML files [13], existing ontologies [14–16], UML/Meta-
model diagrams [17–19], and source code [12, 20–24]. Al-
though source code is often used to extract concepts and
relations, its full potential is not exploited to extract, for
example, axioms and rules [21, 22]. Indeed, source code
is any fully executable description of a software designed
for a specific domain such as medical, industrial, military,
communication, aerospace, commercial, scientific, etc. It
can be used for the collection, organization, storage and
communication of information. It is designed to facilitate
repetitive tasks or to process information quickly. In soft-
ware design process, a set of knowledge related to the do-
main are captured and integrated in the source code.

The extraction of knowledge from structured (rela-
tional databases, XML) and unstructured (text, docu-

Maurice Tchuente: University of Yaounde I, Faculty of Science,
Yaounde, Cameroon; IRD, Sorbonne Université, UMMISCO, F-93143,
Bondy, France; E-mail: Maurice.Tchuente@gmail.com

Unauthenticated
Download Date | 1/22/20 2:43 PM

182 | Azanzi Jiomekong, Gaoussou Camara, and Maurice Tchuente

ments, images) sources is also known as ontology learn-
ing [25–27] that consists in applying statistical techniques,
symbolic techniques or both to (semi-)automatically ex-
tract the ontological knowledge from knowledge sources.
Several authors have proposed the use of symbolic tech-
niques [12, 20, 28] and statistical techniques [23, 29] to ex-
tract generally concepts and properties from source code.

In this paper, we propose an approach for extract-
ing ontological knowledge from Java source code using
Hidden Markov Models (HMMs). Our approach is experi-
mented on the EPICAM source code. The EPICAM project1

aims at building an integrated platform for epidemiologi-
cal surveillance of tuberculosis in Cameroon. The project
started in 2012 and involves partners from the different
area: academy (University of Yaounde 1 in Cameroon),
clinic (fifty hospitals in Cameroon), epidemiology (Epi-
demiology and Public Health department of the Centre
Pasteur of Cameroon, and the National Tuberculosis Con-
trol Program), and industry (MEDES in France).

The rest of this paper is organized as follows. In sec-
tion 2, we present an overview of ontology learning. Our
approach is detailed in section 3. In section 4, we provide
the results of the experimentation. The section 5 presents
the evaluation of the knowledge extracted. Related works
are discussed in section 6.We conclude and present future
works in section 7.

2 Ontology Learning
Acquiring knowledge for building an ontology from
scratch, or for refining an existing ontology is costly in
time and resources. Ontology learning techniques are used
to reduce this cost during the knowledge acquisition pro-
cess. Ontology learning refers to the extraction of onto-
logical knowledge from unstructured, semi-structured or
fully structured knowledge sources in order to build an
ontology from them with little human intervention [3, 25,
26, 30]. In this section, we present the basic ontological
knowledge, knowledge sources generally used for ontol-
ogy learning, some ontology learning techniques and on-
tology learning evaluation.

2.1 Basic ontological knowledge

An ontology is composed of these basic components [2]:
– Concept, also called Class, represents a category of

objects. For instance ”Health_facility” is the concept

of all health facilities including health centers and
clinics;

– Individual is an instance of a concept and corre-
sponds to a concrete object. For example, from the
concept ”Person”, ”Bob” is an individual;

– Property is used to describe the characteristics of in-
dividuals of a concept. They are composed of Dat-
aProperties and ObjectProperties. DataProperties are
properties whose values are data types. For instance,
”age” of type ”Integer” can be a property of an in-
stance of the concept ”Person". ObjectProperties are
special attributes whose values are individuals of con-
cepts. For instance, ”examined_in” defines a rela-
tionship between the concept ”Person” and the con-
cept ”Health_facility” ("A person is examined in a
health facility");

– Class/Property hierarchy is one of the most impor-
tant relation used to organize concepts and prop-
erties in the ontology. It is used to organize con-
cepts/properties through which inheritance mecha-
nisms can be applied. For instance, ”Patient” is sub-
ClassOf ”Person” is a hierarchical relation between
these two classes. Class/Property taxonomies are gen-
erally used to construct the so called lightweight on-
tologies or taxonomies;

– Axiom is used to model statements that are always
true. Heavyweight ontologies add axioms and con-
straints to lightweight ontologies. Axioms and con-
straints clarify the intended meaning of the terms in
the ontology. For example, the assertion "the concepts
”Men” and ”Women” are disjoint" is an axiom;

– Rule is a statement in the form P1 ,...,Pn
P , this means

that if the statement P is true, then, the statements
P1, ..., Pn are true. Rules are used for knowledge in-
ference purposes.

2.2 Knowledge sources for ontology
learning

The process of developing an ontology requires knowledge
acquisition from any relevant sources. There are several
possible sources of knowledge: domain experts or unstruc-
tured, semi-structured, and structured sources [4].

2.2.1 Domain experts

A domain expert is a person knowledgeable of a domain.
To get knowledge from domain experts, a knowledge en-
gineer conducts interviews. This process might lead to

Unauthenticated
Download Date | 1/22/20 2:43 PM

Knowledge extraction from source code | 183

knowledge loss or even worse, introduce errors because
misunderstandings that arises frequently in human com-
munication.

2.2.2 Unstructured knowledge sources

Unstructured knowledge sources contain knowledge that
do not have a pre-defined organization. These are all kinds
of textual resources (Web pages, manuals, discussion fo-
rumpostings, specifications, analysis and conception doc-
uments, source code comments) and multimedia contents
(videos, photos, audio files) [3, 5, 6, 8, 23, 25, 26]. Unstruc-
tured sources are the most recurrent and can permit us to
extract amore complete knowledge.However, the unstruc-
tured sources are easily accessible to human information
processing only. For example, extracting formal specifica-
tions from arbitrary texts is still considered a hard prob-
lem because sentences might be ambiguous and, in some
cases, no unique correct syntactic analysis is possible [31].

2.2.3 Structured knowledge sources

Structured knowledge sources contain knowledge de-
scribed by a schema. It is advantageous to use these
knowledge sources because they contain directly accessi-
ble knowledge [31]. Some structured knowledge sources
include:
– Ontologies: Before constructing an ontology from

scratch, one may look at other ontologies that could
be reused [4, 15, 16];

– Knowledge bases: In knowledge bases, one can gen-
erate discovered rules as input to develop a domain
ontology [25, 32];

– Database : Terms to be used to build an ontology can
be extracted from a database schema [9–12, 25].

2.2.4 Semi-structured knowledge sources

Semi-structured knowledge sources contain knowledge
having a structure that already reflects part of the seman-
tic interdependencies. This structure facilitates the extrac-
tion of a schema [31]. Some examples of semi-structured
knowledge sources are:
– Folksonomies/thesaurus: It is advantageous to extract

knowledge from folksonomies or/and thesaurus to
build an ontology because they reflect the vocabulary
of their users [33, 34];

– XML (Extensible Markup Language): The aim of XML
data conversion to ontologies is the indexing, inte-
gration and enrichment of existing ontologies with
knowledge acquired from XML documents [13];

– UML/meta-model: To learn an ontology from UML
or/and meta-model, one approach is to extract OWL
classes and properties from diagrams or to use On-
tology UML Profile (OUP) which, together with Ontol-
ogy DefinitionMeta-model (ODM), enable the usage of
Model Driven Architecture (MDA) standards in onto-
logical engineering [18];

– Entity-relation diagram: They can be used to learn on-
tologies because they are used to describe the infor-
mation managed by the databases [35];

– Source code [12, 21–23, 28]: Generally, in source code,
the names of data structures, variables, functions are
close to the terms of the domain.

A lot of work has been done on the extraction of ontologi-
cal knowledge from texts, databases, XMLfiles, vocabular-
ies, and the use of ontologies to build or enrich other on-
tologies. This has resulted in a wide range of models, tech-
niques and tools for the generation of knowledge structure
that can be considered as an intermediate process when
constructing ontologies. It should be noted that fewworks
go beyond extracting concepts and properties from source
code whereas axioms and rules are also key elements of
ontologies.

2.3 Ontology learning techniques

To extract knowledge fromknowledge sources,many tech-
niques are used [3, 25, 26, 36]. Shamsfard and Barforoush
[26] proposed a classification of these techniques by con-
sidering symbolics, statistics and multi-strategies.

2.3.1 Symbolic techniques

In symbolic techniques, the extraction process consists
of examining text fragments that match some predefined
rules, looking for lexico-syntactic patterns corresponding
for instance to taxonomic relations or scanning for vari-
ous types of templates related to ontological knowledge.
A symbolic method can be rule-based, linguistic-based or
pattern-based.
1. Rule-based models are represented as a set of rules

where each rule consists of a condition and an action
[30].

Unauthenticated
Download Date | 1/22/20 2:43 PM

184 | Azanzi Jiomekong, Gaoussou Camara, and Maurice Tchuente

– Logical rules may be used to discover new
knowledge by deduction (deduce new knowledge
from existing ones) or induction (synthesize new
knowledge from experience). For example, induc-
tive logic programming can be used to learn new
concepts from knowledge sources [5, 25, 26, 37];

– Association rules aim at finding correlations be-
tween items in a dataset. This technique is gen-
erally used to learn relations between concepts
[5, 8, 25, 26] and can be used to recognize a tax-
onomy of relations [25] or to discover gaps in con-
ceptual definitions [5, 26, 38].

2. Linguistic approaches (syntactic analysis, morpho-
syntactic analysis, lexico-syntactic pattern parsing,
semantic processing and text understanding) are used
to derive knowledge from text corpus [25, 26]. This
technique can be used to derive an intentional de-
scription of concepts in the form of natural language
description [38].

3. Pattern/Template-driven approach allows to search for
predefined keywords, templates or patterns. Indeed,
a large class of entity extraction tasks can be accom-
plished by the use of carefully constructed regular ex-
pressions [39].

Although very powerful for particular domains, symbolic
techniques are inflexible because of their strong depen-
dency on the structure of the data. Symbolic techniques
are precise and robust, but can be complex to implement,
and difficult to generalize [26].

2.3.2 Statistic-based techniques

Statistic analysis for ontology learning is performed from
input data to build a statistical model [3, 25, 26, 30]. Sev-
eral statistical methods for extracting ontological knowl-
edge have been identified in the literature:
1. Co-occurrence or collocation detection identifies the

occurrence of some words in the same sentence, para-
graph or document. Such occurrences hint a potential
direct relation between words [40]. These techniques
can be used to discover terms that are siblings to each
other [24].

2. Clustering can be used to create groups of similar
words (clusters) which can be regarded as repre-
senting concepts, and further hierarchically organize
these as clusters. This technique is generally used for
learning concepts by considering clusters of related
terms as concepts and learning taxonomies by orga-
nizing these groups hierarchically [5]. Ontology align-

ment can use agglomerative clustering to find candi-
date groups of similar entities in ontologies [38].

3. Hidden Markov Models (HMMs) define a generative
statistical models that are able to generate data se-
quences according to rather complex probability dis-
tributions and that can be used for classifying sequen-
tial patterns [41–43]. Zhou and Su [44] have usedHMM
for Named Entity Recognition; Maedche and Staab [8]
have used the n-gram models based on HMMs to pro-
cess documents at themorphological level before sup-
plying them to term extraction tools. Labsky et al. [29]
present the use of HMMs to extract information on
product offered by companies from HTML files.

2.3.3 Multi-Strategy learning

Multi-Strategy learning techniques leverage the strengths
of the above techniques to extract a wide range of ontolog-
ical knowledge from different types of knowledge sources
[25, 26, 30]. for example, Maeche and Staab [8] present the
useof clustering for concept learningandassociation rules
to learn relations between these concepts.

2.4 Ontology learning evaluation

After the extraction process, the evaluation phase permits
to know whether the knowledge extracted is accurate and
to conclude on the quality of the knowledge source. The
evaluation of ontological knowledge is coined by several
authors in the literature [45, 46]. Dellschaft and Staab [46]
have proposed two ways to evaluate ontological knowl-
edge: (1) In manual evaluation by human experts, the
knowledge is presented to one or more domain experts
who have to judge to what extent it is correct; (2) The com-
parison of the knowledge to existing reference vocabular-
ies/ontologies to ensure that it covers the studied domain.

3 Ontology learning from Java
source code using Hidden Markov
Models

Source code contains well-defined words in a language
that everyone understands (for example the elements gen-
erally found on the user interface), some statements with
a particular lexicon specific to the programming language
and to the programmer. For example, in Java programming

Unauthenticated
Download Date | 1/22/20 2:43 PM

Knowledge extraction from source code | 185

language, the term "class" is used to define a class, the
terms "if", "else", "switch", "case" are used to define the
business rules (candidate to become rules). Other terms
defined by the programmer such as "PatientTuberculeux"
are used to represent the names of classes (candidate to be
concept); the term "examenATB" is used to define the re-
lation (ObjectProperty) with cardinality (candidate to be-
come axiom) between the classes "PatientTuberculeux"
and "Examen"; and the group of terms "int agePatient" is
used to define a property (DataProperty) of the class "Pa-
tientTuberculeux". This section shows how to define, train
and use HiddenMarkovModels (HMMs) for knowledge ex-
traction from Java source code.

3.1 Hidden Markov Models

A Markov Chain is a random process having a finite set of
states, and only the current state influences where it goes
next [41]. Hidden Markov Models are particular types of
Markov Chain composed of a finite state automaton with
edges between any pair of states that are labeledwith tran-
sition probabilities. It also describes a 2-stage statistical
process in which the behavior of the process at a given
time t is only dependent on the immediate predecessor
state. It is characterized by the probability between states
P(qt|q1, q2, ..., qt−1) = P(qt|qt−1) and for every state at
time t an output or observation ot is generated. The as-
sociated probability distribution is only dependent on the
current state qt and not on any previous states or observa-
tions: P(ot|o1, ..., ot−1, q1, ..., qt) = P(ot|qt) [41, 43, 47–
49]. HMMs are generally used for pattern recognition, au-
tomatic voice processing, automatic natural language pro-
cessing, character recognition [41].

A first order HMM perfectly describes the source code
because it can be seen as a string sequence typed by a pro-
grammer in which the current word (corresponding to an
assign hidden state) depends on the previousword. In this
HMM, the observed symbol depends only on the current
state [41–43]. Equation 1 presents the joint probability of a
series of observations O1:T given a series of hidden states
Q1:T . The HMM of Fig. 1 shows how the source code can be
modeled using a HMM. In this figure, the observations are
the words ("public", "class", "Patient", etc.) typed by the
programmers and each of these words are labeled by the
hidden states "PRE", "TARGET", "POST", and "OTHER".

P(O1:T , Q1:T) =

P(q1)P(o1|q1)
∏︁

t=2
P(qt|qt−1)P(ot|qt) (1)

Filtering, smoothing, prediction, and the most likely
explanation are four uses of HMMs. The probability that a
string O is emitted by a HMMM is calculated as the sum of
all possible paths by the equation 2.

P(O | M) =

∑︁

q1 ,...,ql

l+1∏︁

k=1
P(qk−1 → qk)P(qk ↑ ok) (2)

Where q0 and ql+1 are limited to qI and qN respectively and
ol+1 is an end ofword. The observable output of the system
is the sequence of symbols emitted by the states, but the
underlying state sequence itself is hidden.

In the most likely explanation, the goal is to find the
sequence of hidden states V(O | M) that best explains
the sequence of observations (equation 3) [41–43]. To this
end, the sequence of states V(O | M) which has the
greatest probability to produce an observation sequence
is searched.

For example, in automatic translation, one may want
the most probable string sequence that corresponds to the
string to be translated. In this case, instead of taking the
sum of the probabilities, the maximum must be chosen
(equation 3).

P(O | M) =

max q1 ...ql∈Ql
l+1∏︁

k=1
P(qk−1 → qk)P(qk ↑ ok) (3)

Before using the model, its parameters (transition
probabilities, emission probabilities and initial probabil-
ities) must be calculated using statistical learning, Baum-
Welch algorithm or Viterbi training [41].

3.2 Source code versus HMM

During software development, it is recommended to write
the source code according to good programming practices,
including naming conventions [50]. These practices in-
form programmers on how to name variables, organize
andpresent the source code. This organization canbeused
to model source code using HMMs (see Fig. 1). For exam-
ple, from Java source code, we can say that at a time t, the
programmer enters a word (e.g. "public" at the beginning
of a Java source file). Thus, the keyword "public" at time t
conditions the nextword at time t+1which in this case can
be "class", "int", etc.We can say that PRE and TARGET are
the hidden states and "public" and "class" are respectively
their observations.

Unauthenticated
Download Date | 1/22/20 2:43 PM

186 | Azanzi Jiomekong, Gaoussou Camara, and Maurice Tchuente

Figure 1: An example of HMMmodeling the Java source code

Source code contains several types of files: files de-
scribing data, files processing data, user interface files and
configuration files.

3.2.1 Files describing data

These files describe the data to be manipulated and
equally, some constraints on this data (e.g., data types).
In Java EE for example, there are entities whose names are
close to the terms of the domain that will be transformed
into tables in the database. These files often contain cer-
tain rules to verify the reliability of the data. Thus, from
these files, we can retrieve concepts, properties, axioms
and rules.

3.2.2 Files containing data processing

Located between user interface files and data description
files is the data processing files of the source code consist-
ing of:
– Control: For example, restricting certain data from

certain users (e.g., only the attending physician has
the right to access the data), checking the validity of
a field (checking whether the data entered in an "age"
field is of type integer);

– Calculation: For example, converting a date of birth
into an age, determining the date of the next appoint-
ment of a patient, calculating the body mass index of
a patient based on his/her weight and height.

These are the algorithms implementing the business rules
to be applied to the data. They are thus good candidates
for axioms and rules extraction.

3.2.3 User interfaces files

The User interfaces are composed of files which describe
the information that will be presented to users for data
viewing or recording. Unlike the first two files types, these
files contain the words of a human-readable vocabulary
that can be found in a dictionary. User interfaces usually
provide:
– Translations allowing navigation from one language

to another, control for users to enter the correct data;
– An aid allowing users to know for example, the role of

a data entry field.

User Interfaces are therefore good candidates for concepts
and their definitions, properties, axioms and rules extrac-
tion.

3.2.4 Configuration files

These files allow developers to specify certain information
such as the type and path of a data source, different lan-
guages used by users, etc. For instance, from these files,
the languages labels (e.g. English, French, Spanish) for
terms can be extracted.

The files we just presented generally contain com-
ments that can be useful for knowledge extraction or on-
tology documentation. Knowledge extraction fromuser in-
terfaces/web interfaces has already been addressed in [12,
24], knowledge extraction from text has been presented in
[5, 7, 8, 23]. In this article, we will focus on knowledge ex-
traction from files describing data and their processing.

3.3 Knowledge extraction process

To extract knowledge from Java source code,wedesigneda
method divided into five main steps: data collection, data

Unauthenticated
Download Date | 1/22/20 2:43 PM

Knowledge extraction from source code | 187

preprocessing, entity labeling, formal language transla-
tion, and knowledge validation.

3.3.1 Data collection

The data collection step consist of the extraction of a
dataset necessary for the next steps. In Java files, state-
ments for importing third-party libraries and comments
are deleted.Weproposed the definition of a regular expres-
sion that allow them to be identified.

3.3.2 Data preprocessing

The purpose of data preprocessing is to put data in a form
compatible with the tools to be used in the next steps.
During this phase, potentially relevant knowledge will be
identified and retrieved, and some entitieswill be recoded.
The problemof extracting knowledge from the source code
has been reduced to the problemof syntactic labeling. This
is to determine the syntactic label of the words of a text
[42]. In our case, it will be a matter of assigning a label to
all the words of the source code and extracting the words
marked as target words. This problem can be solved us-
ing HMMs [42, 43]. In the following paragraphs, we will
first present the HMM structure for source code modeling.
Then, we will show how this HMM is trained and finally,
how it is used to extract the knowledge from Java source
code.

HMMs structure definition. To define the structure
of the HMMs, we manually studied the organization of the
source code of Java language. Generally, data structures,
attributes, and conditions are surrounded by one or more
specific words. Some of these words are predefined in ad-
vance in the programming language. To label the source
code, we have defined four labels, corresponding to four
hidden states of the HMM:
– PRE: Corresponding to the preamble of the knowl-

edge. This preamble is usually defined in advance;
– TARGET: The target, (i.e. the knowledge sought) may

be preceded by one or more words belonging to the
PRE set. The knowledge we are looking for are the
names of classes, attributes, methods, and the rela-
tionships between classes. They are usually preceded
by a meta-knowledge which describes them. For ex-
ample, themeta-knowledge "class" allows for concept
identification;

– POST: Any information that follows the knowledge
sought. In some cases, POST is a punctuation charac-
ter or braces;

– OTHER: Any other word in the source code that nei-
ther precedes nor follows the knowledge sought.

An example of HMM annotated with labels is given by Fig.
1. Concepts, properties, axioms, and rules are usually ar-
ranged differently in the source code. We propose the def-
inition of two HMMs which permit them to be identified:
one to identify concepts, properties, axioms and the other
one to identify rules.

Learning Model Parameters. There are several tech-
niques to determine the parameters of a HMM: Statistical
learning on data, specialized algorithms such as Baum-
Welch or Viterbi training [41, 42]. In this paper, we have
chosen statistical learning on data to train theHMMsmod-
eled in the previous paragraphs. Thus, we assumed that
we have access to T source code files labeled ft knowing
that ft is not just a sequence of words, but a sequence of
words pairs with the word and its label (see Fig. 1) mod-
eled by the equation 4. To train themodel, we assume that
we candefine the order inwhich thedifferentwords are en-
tered by the programmer. We assume that before entering
the first word, the programmer reflects on the label of that
word and as a function of it, defines the label of the next
word and so on. For example, before entering the word
public, the programmer knows that its label is PRE and
that the label of the next word is TARGET. Thus, the cur-
rent word depends only on the current label, the following
label depends on the previous label, and so on. The pro-
cess continues until the end of the file.

ft = [(wt1, et1), ..., (wtd , e
t
d)],

words(ft) = [wtt , ..., wtd],
labels(ft) = [et1, ..., etd].

(4)

In the equation 4, wi and ei are words and labels of
fi files respectively. In practice, wi are words contained in
the source code (observations) and ei are the labels of wi
used as hidden states.

From the training data, we can extract statistics on:
– The first label P(q1) (equation 5). A priori probability

that the first label is equal to the word ′a′ is the num-
ber of times thefirst label in eachfile of the source code
is the word ′a′ divided by the number of source code
files.

P(Q1 = a) =
∑︀

t freq(e
t
1 = a, ft)
T (5)

– The relation between a word and its label P(Ok | qk)
(equation 6). The conditional probability that the kth

word is ′w′, knowing that the label is ′b′ corresponds
to the number of times the word ′w′ associated with

Unauthenticated
Download Date | 1/22/20 2:43 PM

188 | Azanzi Jiomekong, Gaoussou Camara, and Maurice Tchuente

the label ′b′ in the source code file ft normalized with
the fact that the label ′b′ is associated with any other
word in ft source code. For example, "Patient" can be
a concept, an attribute, but cannot be a rule.

P(Ok = w | qk = b) =
α +

∑︀
t freq((w, b), ft)

β +
∑︀

t freq((′*, b), ft)
(6)

To avoid zero probabilities for observations that donot
occur in the training data, we added smoothing terms
(α and β).

– The relation between the adjacent syntactic label is
P(qk | qk+1) (equation 7). The probability that qk+1
is equal to label ′a′ knowing that qk is equal to label
′b′ (previous hidden state) is the number of times ′a′

follows ′b′ in the source code of the training data di-
vided by the number of times that ′b′ is followed by
any other label.

P(qk+1 = a | qk = b) =
α +

∑︀
t freq(b, a), label(ft)

β +
∑︀

t freq(b, *′), label(ft)
(7)

To avoid zero probabilities for transitions that do not occur
in the training data, we added smoothing terms (α and β).

Let us consider the HMM in Fig. 1. Then, training data
to identify concepts and attributes would be: [("public",
PRE), ("class", TARGET), ("Patient", TARGET), ("extends",
TARGET), ("ImogEntityImpl", TARGET), ("{", OTHER), (...),
("int", TARGET), ("age", TARGET), ...]. Tab. 1 presents the
initial vector, which is the probability that the first label is
PRE, TARGET, POST, or OTHER; Tab. 2 presents the transi-
tion vector containing the frequencies that a state follows
another state; and Tab. 3 presents the emission vector con-
taining the frequencies that a state emits an observation.

Knowledge extraction. The model previously de-
fined and trained can be applied to any Java source code
in order to identify TARGET elements. It will be necessary
to find from the files f1, ..., fn, a sequence of states q1, ...,
qn that is plausible. For this, equation 3 will be used to
determine the most plausible string sequence. From this
string, the hidden states will be identified and the targets
(words that are labeled TARGET) will be extracted. In our
approach, we used Viterbi algorithmwhich provides an ef-
ficientway of finding themost plausible string sequence of
hidden states [51, 52]. The algorithm 1 gives an overview of
the Viterbi Algorithm. More details can be found in [41].

Any source code can then be submitted to the HMM
trained and a table similar to Tab. 10 containing the prob-
ability for the hidden states to emit a word from the source
code is built.

Let M = (π, A, B) our HMM
With π the vector of start probabilities, A the
matrix of state-transition probabilities, and B the
matrix of observation probabilities
Let δt(i) =
maxq1 ,...,qt−1P(O1, ..., Ot , q1, ...qt−1, qt = i|M)

1. Initialization
δ1(i) := πibi(O1) ψ1(i) := 0
2. Recursion
For all times t, t1, ..., T − 1:
δt+1(j) := maxi{δt(i)aij}bj(Ot+1)
ψt+1(j) := argmaxi{δt(i)aij}
3. Termination
P*(O|M) = P(O, q*|M) = maxiδT(i)
q*T := argmaxjδT(j)
4. Back-Tracking of the Optimal Path
for all times t, t = T − 1, ..., 1 :
q*t = ψt+1(q*t+1)

Algorithm 1: The Viterbi algorithm [41, 52]

Recoding variables. Programmers usually use ex-
pressions made up of words from a specific lexicon, some-
times encoded with "ad hoc" expressions, requiring spe-
cific processing to assign a new name or a label under-
standable by humans before using. These words are gen-
erally divided into words or groups of words according to
thenaming conventions of theprogramming language. For
example, we can have "PatientTuberculeux" → "Patient
tuberculeux", "agePatient" → "Age Patient", "listeExam-
ens" → "liste Examens", etc. Therefore, during the recod-
ing, these names are separated in order to find their real
sense in human understandable language.

3.3.3 Entities labeling

The extraction of relevant terms has yielded knowl-
edge and meta-knowledge. This knowledge and meta-
knowledge will permit us identify to which ontological
components they may belong to. For example, the code:
"class Patient extends Person int age", submitted to a
trained HMM to identify concepts and relations will iden-
tify three meta-knowledge ("class", "extends" and "int")
that will be used to identify two concepts (Patient and Per-
son), one attribute of type integer and a hierarchical rela-
tion between "Patient" and "Person". From the extracted
knowledge, two candidates to be concepts are related if
one is declared in the structure of the other. Onemay iden-
tify three types of relations:

Unauthenticated
Download Date | 1/22/20 2:43 PM

Knowledge extraction from source code | 189

Table 1: The initial vector - probability to have a state as the first label

f(PRE) f(TARGET) f(POST) f(OTHER)

Table 2: An example of a transition table

States PRE TARGET POST OTHER
PRE f(PRE,PRE) f(PRE,TARGET) f(PRE,POST) f(PRE,OTHER)
TARGET f(TARGET,PRE) f(TARGET,TARGET) f(TARGET,POST) f(TARGET,OTHER)
POST f(POST,PRE) f(POST,TARGET) f(POST,POST) f(POST,OTHER)
OTHER f(OTHER,PRE) f(OTHER,TARGET) f(OTHER,POST) f(OTHER,OTHER)

– ObjectProperty: If two classes ’A’ and ’B’ are candi-
dates to be concepts and ’b’ of type B is declared as
attribute of class ’A’, then classes ’A’ and ’B’ are re-
lated. The attribute ’b’ is an ObjectProperty having ’A’
as domain and ’B’ as range.

– DatatypeProperty: If a class ’A’ is a candidate to be a
concept and contains the attributes ’a’ and ’b’ of ba-
sic data types (integers, string, boolean, etc.), then, ’a’
and ’b’ are DatatypeProperty having the class ’A’ as
domain;

– Taxonomy (subClassOf): If two classes ’A’ and ’B’ are
candidates to be concepts and the class ’B’ extends
the class ’A’ (in Java, the keyword "extends" is used),
then, one can define a taxonomic relation between the
classes ’B’ and ’A’.

3.3.4 Translation in a formal language

Once all relevant knowledge are identified in the previ-
ous phase, they are automatically translated to a machine
readable language. We use OWL for concepts, properties
and axioms, and SWRL for rules.

3.3.5 Knowledge evaluation

After the extraction process, the evaluation phase permits
us to know if this knowledge is relevant to the related do-
main and to conclude on the relevance in using source
code as a knowledge source. Given that the knowledge
extracted is ontological knowledge, two evaluation tech-
niques will be used: (1) Manual evaluation by human ex-
perts inwhich the knowledge extracted is presented to one
or more domain experts who have to judge to what extent
these knowledge are correct; (2) The comparison of the
knowledge extracted (alignment) to gold standards which
will be existing ontologies.

3.4 HMMs definition, training and use

To extract knowledge from Java source code, two HMMs
have to be defined and trained: a HMM for concepts, prop-
erties, and axioms identification, and a HMM for rules
identification. All the algorithms for HMMs training and
usage have been coded in Java2.

3.4.1 HMM structure for concepts, properties and
axioms

TheHMMused to identify concepts, properties and axioms
is defined by:
1. PRE = {public, private, protected, static, �nal},

the set of words that precedes TARGET;
2. TARGET = {package, class, interface, extends,

implements, abstract, enum, wi}, ∀i, wi−1 ∈ PRE ||
wi−2 ∈ PRE ∧ wi−1 ∈ PRE, the set of all words that we
are seeking;

3. POST = {{, ; , }}, the set of words that follow TARGET;
4. OTHER = {wi}, wi ∈ ̸ PRE,∧wi ∈ ̸ TARGET,∧wi ∉

POST, the set of all other words.

Each HMM state emitted a term corresponding to a word
from the source code. We have seen that the observation
emitted by the PRE set can be enumerated. However, the
observation of TARGET and OTHER sets cannot be enu-
merated because they depend on the programmer. Then,
we considered data to be all the observations emitted by
TARGET and other to be all the observations emitted by
OTHER.We obtained theHMMpresented by an initial vec-
tor (e.g., Tab. 4) a transition vector (e.g., Tab. 5), and an
observation vector (e.g., Tab. 6).

Unauthenticated
Download Date | 1/22/20 2:43 PM

190 | Azanzi Jiomekong, Gaoussou Camara, and Maurice Tchuente

Table 3: An example of an observation table

package pac ; public class patient ...
PRE f(PRE,package) f(PRE, pac) f(PRE,;) f(PRE,public) f(PRE,class) f(PRE,patient) ...
TARGET f(TARGET,package) f(TARGET, pac) f(TARGET,;) f(TARGET,class) f(TARGET,patient) ...
POST f(POST,package) f(POST, pac) f(POST,;) f(POST,public) f(POST,class) f(POST,patient) ...
OTHER f(OTHER,package) f(OTHER, pac) f(OTHER,;) f(OTHER,public) f(OTHER,class) f(OTHER,patient) ...

3.4.2 HMM structure for rules

Rules canbe contained in conditions. Then,wewill exploit
the structure of source code to extract the rules. For ex-
ample, the portion of code (if (agePatient> 21) {Patient =
Adult}) is a rule determining whether a patient is an adult
or not. It must therefore be extracted.

The HMM to identify the rules is composed of:
1. PRE = {”}”, ”; ”, ”{”}, the set of words that precede

one or more TARGET;
2. TARGET = {if , else, switch, wi} | ∃k, r ∈ N | wi−k ∈

PRE ∧ wi + r ∈ POST: the set of all words that follow
PRE and precede POST;

3. POST = {”}”}, the end of the condition;
4. OTHER = {wi} | wi ∈ ̸ PRE, TARGET, POST: the set

of all other words.

We can identify the beginning and the end of a condition
represented here by the sets PRE and POST respectively.
Note that all the observations emitted by TARGET and
OTHER sets cannot be fully enumerated. Therefore, we
have considered data to be all the observations emitted by
TARGET, and other to be all the observations emitted by
OTHER.

3.4.3 Statistical learning of the HMMs

LearnJava source code (composed of 59 files and 2663
statements) was downloaded from github3 and from this
source code,weused statistical learningondatapresented
in section 3.3.2 to calculate the values of the HMMs param-
eters4. Tabs 4, 5, 6, 7, 8, 9 present the initialization, tran-
sition and observation vectors respectively obtained after
the training step.

3.4.4 Knowledge extraction

Once the HMMs are built, we can apply them to the source
code of any Java applications in order to extract the knowl-
edge. To do this, the most likely state sequence (equation

3) that produced this source code is calculated. To calcu-
late the most likely state sequence, we have implemented
the Viterbi algorithm [41, 51, 52] in Java5. In fact, we have
exploited the structure of the HMM in the context of dy-
namic programming. It consists of breaking down the cal-
culations into intermediate calculations which are struc-
tured in a table. An example of Viterbi table is given by the
Tab. 10. Every element of the table is being calculated us-
ing the previous ones. From this table, the Viterbi path is
retrieved by getting the frame with the highest probability
in the last column and given this frame, to search all the
frames that were used to build it. All the elements whose
labels are TARGET are extracted as candidates.

4 Experimentation
This section presents the experimentation of the approach
described in section 3. This experimentation consists in ex-
tracting ontological knowledge from EPICAM source code
composed of 1254 Java files and 271782 instructions. Fig. 2
presents a screenshoot of some concepts from the EPICAM
source code.

4.1 Knowledge extraction from EPICAM

To extract ontological knowledge from EPICAM source
code, we proceeded step by step using the method pre-
sented in section 3.

4.1.1 Data collection

The source files of EPICAMplatformare composed of state-
ments, imported libraries and comments. Data collection
involves removing the imported libraries and comments.
To this end, we defined the regular expression
import[��u0000� − ��u��]*?; |��(.) * �n|(���*
[��u0000�−��u��]*?��*�) to identify them. Once
identified, we wrote a Java program to delete them.

Unauthenticated
Download Date | 1/22/20 2:43 PM

Knowledge extraction from source code | 191

Table 4: The initial vector of the HMM for concepts, properties and axioms extraction

PRE TARGET POST OTHER
0.0 1.0 0.0 0.0

Table 5: Transition vector of the HMM for concepts, properties and axioms extraction

PRE TARGET POST OTHER
PRE 0.1686 0.8260 0.0027 0.0027
TARGET 0.0008 0.7523 0.2461 0.0008
POST 0.0603 0.0033 0.0234 0.9130
OTHER 0.7364 0.1133 0.0025 0.1478

Table 6: Observation vector of the HMM for concepts, properties and axioms extraction

public private protected static final data { ; } other
PRE 0.6417 0.1684 0.0053 0.1124 0.0722 0.0 0.0 0.0 0.0 0.0
TARGET 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
POST 0.0 0.0 0.0 0.0 0.0 0.0 0.6678 0.3256 0.0066 0.0
OTHER 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 7: The initial vector of the HMM for rules extraction

PRE TARGET POST OTHER
0.0 0.0 0.0 1.0

Table 8: Transition vector of the HMM for rules extraction

PRE TARGET POST OTHER
PRE 0.0667 0.7999 0.0667 0.0667
TARGET 0.0010 0.9321 0.0659 0.0010
POST 0.0172 0.0172 0.0172 0.9484
OTHER 0.0072 0.0001 0.0001 0.9926

Table 9: Observation vector of the HMM for rules extraction

{ } ; if else
PRE 0.8462 0.0769 0.0769 0.0 0.0
TARGET 0.0 0.0 0.0 0.0185 0.0031
POST 0.0 1.0 0.0 0.0 0.0
OTHER 0.0 0.0 0.0 0.0 0.0

switch data other
PRE 0.0 0.0 0.0
TARGET 0.0010 0.9774 0.0
POST 0.0 0.0 0.0
OTHER 0.0 0.0 1.0

4.1.2 Data preprocessing

Data preprocessing consists in extracting the elements
likely to be relevant from the source code and recod-
ing them if necessary. We have used the HMMs defined
and trained in section 3.4. These HMMs were applied to
the source code of EPICAM by calculating the values of
the Viterbi table (see Tab. 10). Once the table is built,

we searched the Viterbi path by getting the frames with
the highest probability in the last column and using this
frame, we search all the frames that were used to build it.
Once the Viterbi path is identified, all the elements labeled
TARGET are extracted.

Fig. 3 presents the set of candidates for concepts, prop-
erties, and axioms identified and Fig. 4 presents the set of
candidates for rules identified.

Unauthenticated
Download Date | 1/22/20 2:43 PM

192 | Azanzi Jiomekong, Gaoussou Camara, and Maurice Tchuente

Figure 2: An overview of the Java source code of the EPICAM project

Table 10: The Viterbi table (α table) built using EPICAM source code

package org.epicam ; public ... }
PRE 0 α(PRE, 2) α(PRE, 3) α(PRE, 4) ... α(PRE, t)
TARGET 1 α(TARGET, 2) α(TARGET, 3) α(TARGET, 4) ... α(TARGET, t)
OTHER 0 α(OTHER, 2) α(OTHER, 3) α(OTHER, 4) ... α(OTHER, t)

4.1.3 Recoding terms and rules

To recode the candidates extracted, we used Java nam-
ing conventions. All the candidates were browsed and for
the candidates containing the keywords of the program-
ming language, these keywords were removed. For exam-
ple, consider the term CasTuberculoseEditorWorkflow that
was extracted from the source code; the terms Editor and
Workflow are keywords of GoogleWeb Toolkit, the technol-
ogy used to build the EPICAM platform. Then, the terms
Editor and Workflow are removed and the term CasTuber-
culose is retained as candidate.

After the recoding, wemoved to the next step which is
the translation into formal language.

4.1.4 Entities identification and translation into OWL

Data preprocessing phase produced a file containing only
the meta-knowledge (e.g "package", "class", "extends",
"if", "switch") and the knowledge (e.g "patientManage-
ment.Patient", "Patient" or "serology"). We wrote a Java

program to browse these files in order to identify the
knowledge that may be useful. Meta-knowledge allow
the identification of the candidates as concepts, prop-
erties and axioms. For example, if the string "pack-
age minHealth.Region.District.hospitals.patientRecord ...
class Patient extends Person ... int age ... List<Exam>
listExam" is extracted, then, the following ontological
knowledge is identified:
– "package minHealth.Region.District.hospitals.

patientRecord:" This is used to identify the class
hierarchy;

– "class Patient extends Person": This expression
means that "Patient" and "Person" are candidates that
will become concepts and there is a hierarchical rela-
tion between concepts "Patient" and "Person";

– "int age; List <Exam> listExam": This expression
means that "age" and "listExam" are properties of the
concept "Patient"; the following axiom is also defined:
a patient has only a single age (i.e. age is a functional
property).

Unauthenticated
Download Date | 1/22/20 2:43 PM

Knowledge extraction from source code | 193

Figure 3: An excerpt of candidates extracted for concepts, properties and axioms

Figure 4: An excerpt of candidates extracted for rules identification

After the identification of entities, we proposed a sec-
ond Java program6 to automatically translate them into an
OWL ontology7.

In the same way, rules were also extracted and trans-
lated into Semantic Web Rule Language8. An example of
a rule specifying the rights of a doctor on patient data is
given by:

Unauthenticated
Download Date | 1/22/20 2:43 PM

194 | Azanzi Jiomekong, Gaoussou Camara, and Maurice Tchuente

doctorsRule = "Personnel (?pers) ∧ personnel_login
(?pers, login) ∧ personnel_passwd (?pers, passwd) ∧
Patient (?p) ∧ RendezVous (?rdv) ∧ hasRDV (?rdv, ?p)
∧ patient_nom (?p, ?nom) ∧ patient_age (?p, ?age) ∧
patient_sexe (?p, ?sexe) ∧ patient_telephoneUn (?p,
?telephone) ∧ rendezVous_dat eRendezVous (?rdv,
?datardv) ∧ rendezVous_honore (?rdv, ?honore) ∧ ren-
dezVous_honore (?rdv, Non) → sqwrl:select (?nom, ?age,
?sexe, ?telephone, ?datardv, ?honore)";

4.2 Analysis of the elements extracted

The extraction process produced a set of candidates (Figs 3
and 4), but also false positives (Tab. 11 presents the statis-
tics). The false positives consist of the set of candidates
that belong to the PRE, POST orOTHER sets that normally
should not be extracted as observations of TARGET. We
wrote a Java program to identify and delete them.

Tab. 11 presents the statistics of candidates/group of
candidates that were extracted. After the extraction pro-
cess, we obtained different types of candidates/group of
candidates:
– Irrelevant candidates/group of candidates: These

are utility classes and temporary variables. Utility
classes are classes that the programmer defines to per-
form certain operations. These classes usually contain
constants and methods. The names of these classes
are usually not related to the domain. Temporary vari-
ables (e.g., the variables used in a loop) are used tem-
porarily in the source code and are not related to the
domain.

– Relevant candidates/group of candidates: These
are knowledge found. These candidates are composed
of synonyms (candidates of identicalmeaning) and re-
dundancies (candidates that come up several times).
We wrote a Java program to identify and remove re-
dundancies candidates automatically.

We also extracted candidates conditions to be rules. As we
did with the candidates to be concepts, properties and ax-
ioms, false positives were identified and deleted. From the
rules extracted, we found:
– Irrelevant conditions: These are conditions that are

not really important. For example, testing whether a
temporary variable is positive or is equal to a certain
value. These conditions were the most numerous;

– Relevant conditions: Conditions corresponding to a
business rule (e.g., testing if a user has access right to
certain data).

Table 11: Statistics on candidates extracted

Candidates Relevant Irrelevant
Concepts 1840 (72.87%) 685 (27.13%)
Properties 38355 (81.42%) 8755 (18.58%)
Axioms 3397 (83.22%) 685 (16.78%)
Rules 1484 (07.89%) 17332 (92.11%)

5 Evaluation
The concepts, properties and axioms extractedwere trans-
lated into an OWL ontology. The extracted rules are repre-
sented in SWRL. We used the Protege editor to provide a
graphical visualization of the ontology and rules to human
experts for their evaluation. Fig. 5 presents an overview of
the ontology obtained.

Three experts from the tuberculosis surveillance do-
main involved in the EPICAMproject were invited to evalu-
ate the knowledge extracted. They are from three different
organizations in Cameroon (Centre Pasteur of Cameroon,
National Tuberculosis Control Program and a hospital in
Yaounde). The domain experts were asked to check first if
the terms extracted are relevant to the tuberculosis clinical
or epidemiological perspectives. Second, they analyzed
the axioms and rules. First of all, they found that the ter-
minology was relevant to the tuberculosis. However, they
suggested to correct some typos causedby thenamesof the
classes and attributes given by programmers. Axioms and
rules were generally correct. Some rules were suggested to
be updated as the business rules have evolved (e.g. user
access to patient data has been improved taking into ac-
count their post such as epidemiologist, physician, nurse
or administrative staff).

In line with the experts validation, we evaluated the
coverage of the ontology terms by taking reference on
other ontologies in the biomedical domain. We used Bio-
Portal [53] as a biomedical ontology repository. BioPortal
contains more than 300 ontologies including a large num-
ber of medical terminologies such as SNOMED (System-
atized Nomenclature of Medicine) [54]. BioPortal has an
Ontology Recommender module that is used to find the
best ontologies for a biomedical text or a set of keywords
[55]. This task is done according to four criteria: (1) the ex-
tent to which the ontology covers the input data; (2) the
acceptance of the ontology in the biomedical community;
(3) the level of detail of the ontology classes that cover the
input data; (4) and the specialization of the ontology to the
domain of the input data.Wegave as input keywords to the
Recommender the set of terms (concepts and properties)

Unauthenticated
Download Date | 1/22/20 2:43 PM

Knowledge extraction from source code | 195

Figure 5: An overview of the generated OWL ontology

of the ontology extracted by our HMM. Fig. 6 shows that
the ontology terms are covered by many biomedical on-
tologies. In the first line of the recommended ontologies,
we could see that NCIT, SNOWMEDCT, ONTOPARON (ac-
cepted by the community with a score of 75.6%) cover the
terms from our ontologywith a score of 82.9%, have a level
of details of 64%and the level of specialization of 40%.We
came to the conclusion that terms extracted by our HMM
are relevant to the biomedical domain.

At the end of the evaluation,we conclude that EPICAM
source code contains ontological knowledge that can be
used as a relevant basis to build and/or enrich an ontology
for the tuberculosis surveillance domain.

6 Related work
Despite the large amount of available source codes and
the fact that they may contain relevant knowledge of the

domain [12, 21–23] addressed by the software, the num-
ber of existing work on knowledge extraction from these
knowledge sources is quite low. Parser-based approach
and machine learning techniques are the commonly used
in knowledge extraction from source code.

6.1 Parser-based approach

A straightforward solution to extract knowledge from
source code is to use a parser. There are works in this di-
rection for generating knowledge base (RDF triples) or ex-
tracting ontological knowledge (concepts and properties)
from source codes using parsers. For instance, CodeOntol-
ogy [20, 56] parser is able to analyze Java source code and
serialize it into RDF triples. From these triples, highly ex-
pressive queries using SPARQL (SPARQL Protocol and RDF
Query Language) can be executed for different software
engineering purposes including the searching of specific
software component for reuse. Ganapathy and Sagayaraj

Unauthenticated
Download Date | 1/22/20 2:43 PM

196 | Azanzi Jiomekong, Gaoussou Camara, and Maurice Tchuente

Figure 6: The Ontology Recommender output from the extracted ontology terms

[28] used QDox9 generator to generate an ontology that
will further enable the developers to reuse source code ef-
ficiently. QDox generator is a parser that can be used for
extracting classes, attributes, interfaces and method def-
inition from Java source code. In the approach proposed
by [12], the authors defined the components parts of the
source code and break down the source code into these
components. The source code is browsed and the differ-
ent components are analyzed in order to take an appro-
priate action which is the extraction of knowledge sought.
This knowledge can be used in supplementing and assist-
ing ontology development from database schemas.

Beyond RDF triples, terms, concepts and properties
extraction, existing parsers do not provide services for ax-

ioms and rules extraction. To overcome these limits, they
need to be improved. However, building and/or updating
parsers for programming languages is a non-trivial, labo-
rious and time-consuming task [57, 58].

6.2 Machine learning-based approach

Machine learning approaches are also proposed to extract
knowledge from source code.

Kalina Bontcheva and Marta Sabou [23] have pre-
sented an approach for ontology learning from software
artifacts such as software documentation, discussion fo-
rums and source code by using the language processing

Unauthenticated
Download Date | 1/22/20 2:43 PM

NOTES | 197

facilities provided byGATE 2 platform10. GATE 2 is anOpen
source software developed in Java for building and de-
ploying Human Language Technology application such
as parsers, morphology, tagging, Information Retrieval
tools, Information Extraction components, etc. To extract
concepts from source code, Kalina Bontcheva and Marta
Sabou used the GATE key phrase extractor, which is based
on TF.IDF (term frequency/inverted document frequency).
The TD.IDF approach is an unsupervised machine learn-
ing technique which consists of finding words/phrases
that are characteristic of the given text, while ignoring
phrases that occur frequently in the text simply because
they are common in the language as a whole. When using
TF.IDF on the source code, high frequency terms specific
to the programming language can be eliminated and only
terms specific to the given software project would be se-
lected as relevant to the domain (ontology concept). This
approach is used to extract concept. However, ontologi-
cal knowledge is also made up of properties, axioms and
rules.

Labsky et al. [29] presented an approach for informa-
tion extraction on product offered by companies from their
websites. To extract information from HTML documents,
they used Hidden Markov Models to annotate these docu-
ments. Tokens modelled by this HMM include words, for-
matting tags and images. The HMM is modelled using four
states: the target state (T) which is the slot to extract, the
prefix and the suffix state (P, S) which constitute the slot’s
context, and the irrelevant tokens modelled by a single
background state (B). This approach permitted the extrac-
tion of slots and the relation between nearby slots. For ex-
ample product image often follows its name. Unlike the
authors approach which consists of terms extraction, our
approach uses meta-data extracted from source code in
order to identify to which ontological component every
term/group of terms corresponds to.

7 Conclusion and future work
In this paper, we proposed an approach for knowledge ex-
traction from Java source code using Hidden Markov Mod-
els (HMMs). We experimented this approach by extract-
ing ontological knowledge from EPICAM, a tuberculosis
epidemiological surveillance platform developed in Java.
Evaluation by domain experts (clinicians and epidemiolo-
gists) permitted us to show the relevance of the knowledge
extracted. In linewith the experts validation,we evaluated
the coverage of terms extracted by reference ontologies
in biomedical domain. We used Ontology Recommender

from BioPortal repository. The results of the evaluation
shows that the terms are well covered by many biomedi-
cal ontologies (e.g., NCIT, SNOWMEDCT, ONTOPARON).

Our goal in this paper was twofold: (1) to show that
source code contains ontological knowledge that could
be used in domain ontology engineering and (2) to show
how to define, train and use HMMs to extract these knowl-
edge. Since we have used the statistical learning on data
approach to calculate the parameters of the HMMs, our
future work consists of experimenting the Baum-welch
andViterbi training approaches. The performance of these
three approaches will be evaluated and compared to the
parser approach.

Notes
1http://www.medes.fr/fr/nos-metiers/la-e-sante-et-l-

epidemiologie/la-tele-epidemiologie/projet-epicam.html
2https://github.com/jiofidelus/source2onto
3https://github.com/mafudge/LearnJava
4https://github.com/jiofidelus/source2onto/blob/

master/code2onto-model/src/main/java/cm/uy1/training/
HMMTrainingData.java

5https://github.com/jiofidelus/source2onto/blob/
master/code2onto-model/src/main/java/cm/uy1/modelUse/
KnowledgeExtractionHMM.java

6https://github.com/jiofidelus/source2onto/blob/master/
code2onto-model/src/main/java/cm/uy1/helper/OWLHelper.java

7https://github.com/jiofidelus/ontologies/blob/master/epicam/
epicam.owl

8https://github.com/jiofidelus/ontologies/blob/master/epicam/
epicamrules.owl

9https://github.com/paul-hammant/qdox
10https://gate.ac.uk/

References
[1] Studer R., Benjamins V.R., Fensel D., Knowledge Engineering:

Principles and Methods, Data Knowl. Eng., 1998, 25(1-2), 161–
197, 10.1016/S0169-023X(97)00056-6

[2] Gómez-Pérez A., Fernández-López M., Corcho Ó., Ontologi-
cal Engineering: With Examples from the Areas of Knowl-
edge Management, e-Commerce and the Semantic Web, Ad-
vanced Information andKnowledgeProcessing, Springer, 2004,
10.1007/b97353

[3] Konys A., Knowledge systematization for ontology learning
methods, in Knowledge-Based and Intelligent Information &
Engineering Systems, Proceedings of the 22nd International
Conference KES-2018, Belgrade, Serbia, 3-5 September 2018.,
2018, 2194–2207, 10.1016/j.procs.2018.07.229

[4] Suárez-Figueroa M.C., Gómez-Pérez A., Fernández-López M.,
The NeOn Methodology framework: A scenario-based method-
ology for ontology development, Applied Ontology, 2015, 10(2),

Unauthenticated
Download Date | 1/22/20 2:43 PM

198 | NOTES

107–145, 10.3233/AO-150145
[5] Cimiano P., Ontology learning and population from text - al-

gorithms, evaluation and applications, Springer US, 2006,
10.1007/978-0-387-39252-3

[6] Ghosh M.E., Naja H., Abdulrab H., Khalil M., Ontology Learning
Process as a Bottom-up Strategy for Building Domain-specific
Ontology from Legal Texts, In Proceedings of the 9th Interna-
tional Conference on Agents and Artificial Intelligence, ICAART
2017, Volume 2, Porto, Portugal, February 24-26, 2017., 2017,
473–480, 10.5220/0006188004730480

[7] Alexander M., Raphael V., The Ontology Extraction & Mainte-
nance Framework Text-To-Onto, In International Conference on
Data Mining (ICDM), San Jose, USA, November 29 - December 2,
2001, IEEE, Los Alamitos (CA), 2001

[8] AlexanderM., Steffen S., Semi-automatic engineering of ontolo-
gies from text, Proceedings of the 12th Internal Conference on
Software and Knowledge Engineering. Chicago, USA, 2000

[9] Cerbah F., Lammari N., Ontology Learning from Databases:
Some Eflcient Methods to Discover Semantic Patterns in Data,
in A..I.P. Serie, ed., Perspectives in Ontology Learning, 2014, 30

[10] Cullot N., Ghawi R., YétongnonK., DB2OWL : A Tool for Automatic
Database-to-Ontology Mapping, In Proceedings of the Fifteenth
Italian Symposium on Advanced Database Systems, SEBD 2007,
17-20 June 2007, Torre Canne, Fasano, BR, Italy, 2007, 491–494

[11] Idrissi B.E., Baïna S., Baïna K., Ontology Learning from Rela-
tional Database: How to Label the Relationships Between Con-
cepts?, In Beyond Databases, Architectures and Structures -
11th International Conference, BDAS 2015, Ustroń, Poland, May
26-29, 2015, Proceedings, 2015, 235–244, 10.1007/978-3-319-
18422-7_21

[12] Zhao S., Chang E., Dillon T.S., Knowledge extraction from web-
based application source code: An approach to database re-
verse engineering for ontology development, In Proceedings of
the IEEE International Conference on Information Reuse and In-
tegration, IRI 2008, 13-15 July 2008, Las Vegas, Nevada, USA,
2008, 153–159, 10.1109/IRI.2008.4583022

[13] Hacherouf M., Bahloul S.N., Cruz C., Transforming XML docu-
ments to OWL ontologies: A survey, Journal of Information Sci-
ence, 2015, 41(2), 242–259, 10.1177/0165551514565972

[14] Leung N.K.Y., Lau S.K., Tsang N., Reuse existing ontologies in
an ontology development process - an integration-oriented on-
tology development methodology, International Journal of Web
Science, 2014, 2(3), 159–180, 10.1504/IJWS.2014.066435

[15] Pinto H., Gómez-Pérez A., Martins J., Some Issues on Ontology
Integration, In Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence (IJCAI 99) Workshop: KRR5: On-
tologies and Problem-SolvingMethods: Lesson Learned and Fu-
ture Trends, volume 18, 1999

[16] Smith B., Ashburner M., Rosse C., Bard J., Bug W., Ceusters
W., al., The OBO Foundry: coordinated evolution of ontologies
to support biomedical data integration, Nature biotechnology,
2007, 25(11), 1251–1255, 10.1038/nbt1346

[17] Bouihi B., Bahaj M., An UML to OWL based approach for
extracting Moodle’s Ontology for Social Network Analy-
sis, Procedia Computer Science, 2019, 148, 313 – 322,
https://doi.org/10.1016/j.procs.2019.01.039, the Second
International Conference on Intelligent Computing in Data
Sciences, ICDS2018

[18] Djuric D., Gasevic D., Devedzic V., Ontology Modeling and
MDA, Journal of Object Technology, 2005, 4(1), 109–128,

10.5381/jot.2005.4.1.a3
[19] Xu Z., Ni Y., He W., Lin L., Yan Q., Automatic extraction

of OWL ontologies from UML class diagrams: a semantics-
preserving approach, World Wide Web, 2012, 15(5-6), 517–545,
10.1007/s11280-011-0147-z

[20] AtzeniM., AtzoriM., CodeOntology: RDF-ization of Source Code,
In The Semantic Web - ISWC 2017 - 16th International Semantic
Web Conference, Vienna, Austria, October 21-25, 2017, Proceed-
ings, Part II, 2017, 20–28, 10.1007/978-3-319-68204-4_2

[21] Azanzi F.J., Camara G., Knowledge Extraction from Source Code
Based on Hidden Markov Model: Application to EPICAM, In 14th
IEEE/ACS International Conference on Computer Systems and
Applications, AICCSA 2017, Hammamet, Tunisia, October 30 -
Nov. 3, 2017, 2017, 1478–1485, 10.1109/AICCSA.2017.99

[22] Azanzi F.J., Camara G., An Approach for Knowledge Extraction
fromSource Code (KNESC) of Typed Programming Languages, In
Trends and Advances in Information Systems and Technologies
- Volume 1 [WorldCIST’18, Naples, Italy, March 27-29, 2018].,
2018, 122–131, 10.1007/978-3-319-77703-0_12

[23] Bontcheva K., Learning Ontologies from Software Artifacts: Ex-
ploring and Combining Multiple Choices., In J.Z. Pan, Y. Zhao,
eds., Semantic Web Enabled Software Engineering, volume 17
of Studies on the Semantic Web, IOS Press, 2014, 235–250

[24] Brunzel M., The XTREEM Methods for Ontology Learning from
Web Documents., In P. Buitelaar, P. Cimiano, eds., Ontology
Learning and Population: Bridging the Gap between Text and
Knowledge, volume 167 of Frontiers in Artificial Intelligence and
Applications, IOS Press, 2008, 3–26

[25] Asim M.N., Wasim M., Khan M.U.G., Mahmood W., Abbasi H.M.,
A survey of ontology learning techniques and applications,
Database, 2018, 2018, bay101, 10.1093/database/bay101

[26] Shamsfard M., Barforoush A.A., The state of the art
in ontology learning: a framework for comparison, The
Knowledge Engineering Review, 2003, 18(4), 293–316,
10.1017/S0269888903000687

[27] Unbehauen J., Hellmann S., Auer S., Stadler C., Knowledge Ex-
traction from Structured Sources, in S. Ceri, M. Brambilla, eds.,
Search Computing: Broadening Web Search, volume 7538 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, 34–52, 10.1007/978-3-642-34213-4_3

[28] Ganapathy G., Sagayaraj S., To Generate the Ontol-
ogy from Java Source Code, International Journal of Ad-
vanced Computer Science and Applications, 2011, 2(2),
10.14569/IJACSA.2011.020218

[29] Labský M., Svátek V., Sváb O., Praks P., Krátký M., Snásel V.,
Information Extraction from HTML Product Catalogues: From
Source Code and Images to RDF, in 2005 IEEE / WIC /
ACM International Conference on Web Intelligence (WI 2005),
19-22 September 2005, Compiegne, France, 2005, 401–404,
10.1109/WI.2005.78

[30] Zhou L., Ontology learning: state of the art and open issues, In-
formation Technology and Management, 2007, 8(3), 241–252,
10.1007/s10799-007-0019-5

[31] Hitzler P., Krötzsch M., Rudolph S., Foundations of Semantic
Web Technologies, Chapman and Hall/CRC Press, 2010

[32] Kharbat F., El-Ghalayini H., Building Ontology from Knowledge
Base Systems, Data Mining in Medical and Biological Research,
2008, 10.5772/6407

[33] García-Silva A., García-Castro L.J., Castro A.G., CorchoÓ., Build-
ing Domain Ontologies Out of Folksonomies and Linked Data,

Unauthenticated
Download Date | 1/22/20 2:43 PM

NOTES | 199

International Journal on Artificial Intelligence Tools, 2015, 24(2),
10.1142/S021821301540014X

[34] Wang S., Wang W., Zhuang Y., Fei X., An ontology evolution
method based on folksonomy, Journal of Applied Research and
Technology, 2015, 13(2), 177 – 187

[35] Fahad M., ER2OWL: Generating OWL Ontology from ER Dia-
gram, In Intelligent Information Processing IV, 5th IFIP Interna-
tional Conference on Intelligent Information Processing, Octo-
ber 19-22, 2008, Beijing, China, 2008, 28–37, 10.1007/978-0-
387-87685-6_6

[36] Hazman M., El-Beltagy S.R., Rafea A., A Survey of Ontology
Learning Approaches, International Journal of Computer Appli-
cations, 2011, 22(8), 36–43

[37] Lisi F.A., Learning Onto-Relational Rules with Inductive Logic
Programming, CoRR, 2012, abs/1210.2984

[38] Wróblewska A., Podsiadly-Marczykowska T., Bembenik R., Pro-
taziuk G., Rybinski H., Methods and Tools for Ontology Build-
ing, Learning and Integration Application in the SYNAT Project,
in R. Bembenik, L. Skonieczny, H. Rybinski, M. Niezgodka,
eds., Intelligent Tools for Building a Scientific Information Plat-
form, volume 390 of Studies in Computational Intelligence,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, 121–151,
10.1007/978-3-642-24809-2_9

[39] Li Y., Krishnamurthy R., Raghavan S., Vaithyanathan S., Ja-
gadish H.V., Regular Expression Learning for Information Extrac-
tion, in 2008 Conference on Empirical Methods in Natural Lan-
guageProcessing, EMNLP2008, Proceedingsof theConference,
25-27 October 2008, Honolulu, Hawaii, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, 2008, 21–30

[40] Kolesnikova O., Survey of Word Co-occurrence Measures for
Collocation Detection, Computación y Sistemas, 2016, 20(3),
327–344

[41] Fink G.A., Markov Models for Pattern Recognition: From The-
ory to Applications, Advances In Computer Vision and Pattern
Recognition, Springer-Verlag, London, 2 edition, 2014

[42] Russell S.J., Norvig P., Artificial Intelligence - A Modern Ap-
proach, Third International Edition, Pearson Education, 2010

[43] SeymoreK.,MccallumA., Rosenfeld R., LearningHiddenMarkov
ModelStructure for InformationExtraction, InAAAI 99Workshop
on Machine Learning for Information Extraction, 1999, 37–42

[44] Zhou G., Su J., Named Entity Recognition using an HMM-based
Chunk Tagger, In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, July 6-12, 2002,
Philadelphia, PA, USA., 2002, 473–480

[45] Amith M., He Z., Bian J., Lossio-Ventura J.A., Tao C., Assessing
the practice of biomedical ontology evaluation: Gaps and op-
portunities, Journal of Biomedical Informatics, 2018, 80, 1–13,
10.1016/j.jbi.2018.02.010

[46] Dellschaft K., Staab S., Strategies for the Evaluation of Ontol-
ogy Learning, In Proceedings of the 2008 Conference on Ontol-
ogy Learning and Population: Bridging the Gap Between Text
and Knowledge, IOS Press, Amsterdam, The Netherlands, The
Netherlands, 2008, 253–272

[47] Eddy S.R., What is a hidden Markov model?, Nature Biotechnol-
ogy, 2004, 22(10), 1315, 10.1038/nbt1004-1315

[48] Franzese M., Iuliano A., Hidden Markov Models, in S. Ran-
ganathan, M. Gribskov, K. Nakai, C. SchAnbach, eds., Encyclo-
pedia of Bioinformatics and Computational Biology, Academic
Press, Oxford, 2019, 753 – 762, https://doi.org/10.1016/B978-
0-12-809633-8.20488-3

[49] KouemouG.L., History and Theoretical Basics of HiddenMarkov
Models, HiddenMarkovModels, Theory and Applications, 2011,
10.5772/15205

[50] Binkley D., Davis M., Lawrie D., Morrell C., To camel-
case or under_score, in 2009 IEEE 17th International
Conference on Program Comprehension, 2009, 158–167,
10.1109/ICPC.2009.5090039

[51] Forney G.D., The Viterbi Algorithm: A Personal History, CoRR,
2005, abs/cs/0504020

[52] Viterbi A.J., Viterbi algorithm, Scholarpedia, 2009, 4(1), 6246,
10.4249/scholarpedia.6246

[53] Whetzel P.L., Noy N.F., Shah N.H., Alexander P.R., Nyulas C., Tu-
dorache T., Musen M.A., BioPortal: enhanced functionality via
new Web services from the National Center for Biomedical On-
tology to access and use ontologies in software applications,
Nucleic Acids Research, 2011, 39(Web-Server-Issue), 541–545,
10.1093/nar/gkr469

[54] Silva T.S.D., MacDonald D., Paterson G.I., Sikdar K.C., Cochrane
B., Systematized nomenclature of medicine clinical terms
(SNOMED CT) to represent computed tomography procedures,
Computer Methods and Programs in Biomedicine, 2011, 101(3),
324–329, 10.1016/j.cmpb.2011.01.002

[55] Romero M.M., Jonquet C., O’Connor M.J., Graybeal J., Pazos A.,
Musen M.A., NCBO Ontology Recommender 2.0: an enhanced
approach for biomedical ontology recommendation, Journal of
Biomedical Semantic, 2017, 8(1), 21:1–21:22, 10.1186/s13326-
017-0128-y

[56] Atzeni M., Atzori M., CodeOntology: Querying Source Code in a
Semantic Framework, In Proceedings of the ISWC 2017 Posters
& Demonstrations and Industry Tracks co-located with 16th In-
ternational SemanticWebConference (ISWC2017), Vienna, Aus-
tria, October 23rd - to - 25th, 2017., 2017

[57] Fenwick M., Weatherby G., Ellis H.J.C., Gryk M.R., Parser Com-
binators: A Practical Application for Generating Parsers for NMR
Data, In Tenth International Conference on Information Technol-
ogy: New Generations, ITNG 2013, 15-17 April, 2013, Las Vegas,
Nevada, USA, 2013, 241–246, 10.1109/ITNG.2013.39

[58] Nierstrasz O., Kurs J., Parsing for agile modeling, Sci-
ence of Computer Programming, 2015, 97, 150–156,
10.1016/j.scico.2013.11.011

Unauthenticated
Download Date | 1/22/20 2:43 PM

C Journal paper 179

Semantic-aware epidemiological surveillance system

