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Abstract

This thesis work deals with the analysis of a control strategy of a net-

work of mechanical structures indirectly coupled through a dynamical envi-

ronment. Mechanical structures are modelled assuming the Euler-Bernoulli

formalism and the dynamic environment is an electrical circuit consisting

of piezoelectric patches in parallel conformation with a load resistance.

By means of appropriate mathematical concepts (modal approximation,

harmonic balance method, D-subdivision method) and numerical simula-

tion methods (time series, phase portrait, amplitude response curves, bifur-

cation diagram, Fourier spectrum analysis, root mean square function and

standard deviation function) , the dynamical behavior and the synchroni-

zation of the network of indirectly coupled mechanical structures are inves-

tigated.

The main results of this study show that the increase of the electrome-

chanical coupling parameter leads to a strong reduction of vibration ampli-

tude on a network constituted with only two indirectly coupled structures.

An extension of the number of coupled structures allows to explore the oc-

currence of strong amplitude reduction (SAR) phenomenon and synchroni-

zation in the network. SAR phenomenon appears in this system when glo-

bal synchronization of all beams takes place. The occurrence of global syn-

chronization, which was preceded by dynamical clustering, is dependent on

the size of the network as well as on the load resistance of the electrical cir-

cuit which indirectly interacts with all the beams. The results further show

that the SAR state can be observed for relatively very weak coupling strength

and large system-size. Finally, the effect of delay on a network is analyzed.

Disturbance-induced by time-delay on the synchronization state and SAR

state is also presented. It is conventionally known that delay induces insta-
vii



bility in coupled systems, but we find here that this delay can also contribute

to stabilize these systems by synchronizing them.

This work contributes to develop a control strategy which can be ap-

plied to the elements of structures of a skyscraper, lamellar structures of

an aircraft, several foundations, several nearby bridges, several plates of a

airplane or ship, metallic parallel floors, when those structures are subjec-

ted to an environmental excitation such as wind, moving loads, tsunami, or

earthquake.

Keywords : Strong amplitude reduction, Synchronization, Clustering, Time

delay effect, Euler-Bernoulli beam theory, Indirect coupling, Piezoelectric

patches.
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Résumé

Ce travail de thèse porte sur l’analyse d’une stratégie de contrôle

d’un réseau de structures mécaniques couplées indirectement via un en-

vironnement dynamique. Les structures mécaniques sont modélisées selon

le formalisme d’Euler-Bernoulli et l’environnement dynamique est un cir-

cuit électrique constitué de patchs piézoélectriques mis en parallèle avec

une résistance de charge.

Au moyen des concepts mathématiques appropriés (approximation mo-

dale, méthode de la balance des harmoniques, méthode de D-subdivision)

et des méthodes de simulation numérique (évolution temporelle, portrait

de phase, courbes d’amplitude, diagramme de bifurcation, analyse du spectre

de Fourier, fonction de la moyenne quadratique et fonction de l’écart type),

le comportement dynamique et la synchronisation du réseau de structures

mécaniques couplées indirectement sont étudiés.

Les principaux résultats de cette étude montrent que l’augmentation du

paramètre de couplage électromécanique conduit à une forte réduction de

l’amplitude de vibration sur un réseau constitué de seulement deux struc-

tures couplées indirectement. Une extension du nombre de structures cou-

plées permet d’explorer l’apparition d’un phénomène de forte réduction

d’amplitude et de synchronisation dans le réseau. Ce phénomène de forte

réduction d’amplitude apparaît dans ce système lors de la synchronisation

globale de toutes les poutres. L’apparition d’une synchronisation globale

qui est précédée par un groupement dynamique en clusters, dépend de la

taille du réseau ainsi que de la résistance de charge du circuit électrique

qui interagit indirectement avec toutes les poutres. Les résultats montrent

en outre que l’état de forte réduction d’amplitude peut être observé pour

ix



une intensité de couplage relativement très faible et une taille de réseau

de structures couplées importante. Enfin, l’effet du retard sur un réseau

est analysé. Les perturbations induites par le retard sur l’état de synchro-

nisation et l’état de forte réduction d’amplitude sont également présentées.

On sait classiquement que le retard induit une instabilité dans les systèmes

couplés, mais on constate ici que ce retard peut également contribuer à sta-

biliser ces systèmes en les synchronisant.

Ce travail contribue à développer une stratégie de contrôle qui peut être

appliquée aux éléments de structures d’un gratte-ciel, aux structures lamel-

laires de la coque d’un aéronef, aux différents piliers d’un pont, à plusieurs

ponts proches, à plusieurs plaques d’un avion ou d’un navire, à des plaques

parallèles métalliques, lorsque ces structures sont soumises à une excitation

environnementale telle que le vent, des charges mobiles, un tsunami ou un

tremblement de terre.

Mots Clés : Forte réduction d’amplitude, Synchronisation, Groupement,
Effet du retard, Théorie des poutres d’Euler-Bernoulli, Couplage indirect,
Patchs piézoélectriques.
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General Introduction

The evolution of techniques and means of construction leads humans being to

embark on adventures of building structures, mega-structures as well as man-made de-

vices much impressive than others. The current technological challenges call for the construc-

tion of lightweight and environmentally friendly structures, among others. These structures

are subjected to various environmental stresses such as winds, moving loads, explosions,

earthquakes, tsunamis, etc., which generate vibrations on them. Though less impressive,

man-made devices also experienced vibrations expressing generally a malfunctioning. The

problem posed by these vibrations remains very current in the scientific community and

also in the industrial world. Indeed, vibrations can be a source of discomfort, noise, or dis-

rupt the functioning of certain systems. Therefore vibrations induced by diverse sources

are a particular type of pollution which can be heard as a noise if the frequencies that cha-

racterize the phenomenon lie within the audible range, or perceived directly as vibration.

On the other hand, the presence of unwanted vibrations within both mechanical and civil

structures is a handicap for them as they can lead to fatigue and, in the worst case, to the

short- or long-term destruction of those structures. Indeed, many structural failures can

be raised such as the famous Tacoma narrow bridge collapse on 1940 in United States due

to dynamical interactions with the wind, or the Rana Plaza collapse which was a structu-

ral failure due to the weight and vibration of heavy machinery, and occurred on 24th April

2013 in Bangladesh, where an eight-story commercial and factory building named Rana

Plaza collapsed. Such a catastrophic scenarios can lead to numerous losses in human life,

as well as substantial material and economic damage. Researchers and engineers are the-

refore working hard to propose solutions to minimize or even eliminate the impact that

these vibrations can have on structures. It should be noted that this problem of vibrations
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on structures arises on a large scale ; among others we can list the field of civil engineering,

mechanical engineering, aeronautics, automotive, on platforms on shore and offshore and

many others.

In order to cope and to attain higher performance levels demanded in almost all dyna-

mic systems under vibration control, many control techniques have been developed stret-

ching from the basic solutions to more sophisticated ones depending of the technological

stake and the base period. The most trivial technique is to transfer structure from a region

where it is exposed to vibrations for another much healthier, but this technique is not ea-

sily feasible in tremendous cases. In a general manner, there are two main ways to solve

the problem of vibrations : passive and active control methods. Passive control which is

a traditional approach for reducing dynamic stressing by changing (usually increasing) of

the mass, the stiffness or the damping of the structure with respect to the initial scheme in

order to increase the damping effect. The modification may take the form of basic structu-

ral changes or the addition of ‘passive’ elements such as masses (which can be chunks of

concrete), springs (such as vibration isolators), fluid dampers or damped rubbers. Passive

control devices do not require any external energy supply. Whereas active control devices

make used of an external source of power, aimed at supplying the control energy and mo-

dulated by the control system using the information supplied by the sensors. The energy

source is used to drive active elements under control through the electromechanical, hy-

droelectric and electro-pneumatic actuators installed across the structure [1, 2, 3, 4].

Vibration analysis and control of dynamical systems is a fascinating topic for scien-

tists and for engineers since vibrations occur in almost all real systems around us and they

are commonly harmful. Thus, many works have been done in our research group dealing

with the problems of vibrations ; numerous techniques and devices to reduce those vibra-

tions on structures were presented. The present thesis is an extension of the previous ones

to the case a network of mechanical structures coupled through a dynamical environment.

Thus throughout this thesis, we intend to achieve the following objectives :
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– Modelling a network of Euler’s beams indirectly coupled via piezoelectric patches in

parallel conformation, in order to induce an environmental coupling.

– Study the strong amplitude reduction phenomenon in the case of two and a network

of indirectly coupled Euler’s beams and the effect of the parameters of the system on

the occurrence of this phenomenon.

– Analyze the effect of the time delay on the stability of the network of indirectly cou-

pled Euler’s beams and the occurrence of SAR phenomenon.

– The synchronization phenomenon both in the cases without and with time delay on

the network of indirectly coupled Euler’s beams is also highlighted.

The present work is therefore organized into three chapters. In chapter one, we present

a literature review on Euler’s beams theory, vibration control techniques, complex network

dynamics and the problem of the thesis is also stated a this level. Chapter two deals with the

methodology, we describe the mathematical formalisms, numerical methods used to cha-

racterize the dynamical and synchronization states of the physical systems studied. Chap-

ter three is devoted to the presentation and discussion of the results of mathematical analy-

sis and numerical simulations. We end with a general conclusion where we summarize the

main results obtained, and perspectives related to our future investigations are suggested.
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CHAPITRE 1

LITERATURE REVIEW

1.1 Introduction

This chapter presents a non-exhaustive bibliographic review with regard to the sub-

ject of Euler-Bernoulli beam theory, vibrations as well as control techniques used to miti-

gate these vibrations. Flexible civil and mechanical systems experience undesirable vibra-

tions in response to environmental and operational forces. The presence of those vibra-

tions can limit the accuracy of sensitive instruments or cause significant errors in applica-

tions where high-precision positioning is essential. Then, the concept of complex networks

will be introduced which includes the network topologies, application domains of net-

works, diverse dynamics exhibited by those networks and especially the amplitude death

phenomenon.

1.2 Generalities on the Euler-Bernoulli beam theory

The Euler-Bernoulli beam model is one of the first mathematical descriptions of the

motion of a vibrating beam.

During the mid-1700s, mechanical engineering was not considered a science, and it was

not considered that the work of a mathematics academy could have practical applications,

and the construction of bridges and buildings continued empirically. During this time, the

Euler-Bernoulli model (also know as classical beam theory) was developed. Jacob Bernoulli

first discovered that the curvature of an elastic beam at any point is proportional to the

bending moment at that point. Daniel Bernoulli, nephew of Jacob, was the first one who

formulated the differential equation governing the motion of a vibrating beam. Later, Jacob

Bernoulli’s theory was accepted by Leonhard Euler in his study of the shape of elastic beams
4



under various loading conditions [5].

Though, the Euler-Bernoulli model tends to slightly overestimate the natural frequen-

cies, this theory is still commonly used because it is simple and provides reasonable engi-

neering approximations for many problems.

Depending on boundary conditions, different types of equations modelling the dyna-

mics of Euler’s beams. Throughout this thesis, we are interested in the case of a beam arti-

culated at both ends.

1.2.1 Boundary conditions

An element of structure is connected to the outside world by a certain number of links.

Depending on the use of a structure, the beams and other elements of the structures consti-

tuting this one are connected at their ends in different configurations, which lead to rich

dynamics.

The way the beam is supported translates into conditions on the function w (L, t ) and

its derivatives. These conditions are collectively referred to as boundary conditions. It is a

general mathematical principle that the number of boundary conditions necessary to de-

termine a solution to a differential equation matches the order of the differential equation.

Those conditions are necessary in order to reduce the partial differential equations to ordi-

nary differential ones. There are thus several boundary conditions among which,

– Hinged at both ends : with the transversal displacement and the bending moment

which are nulls at each end.

 w (0, t ) = w (L, t ) = 0

∂2w(0,t )
∂x2 = ∂2w(L,t )

∂x2 = 0
(1)

– Free at both ends : with the bending moment and the shear force which are constrai-

ned to zero at both ends.


∂2w(0,t )
∂x2 = ∂2w(L,t )

∂x2 = 0

∂3w(0,t )
∂x3 = ∂3w(L,t )

∂x3 = 0
(2)

5



– Clamped at both ends : with the transversal displacement and the slope which are

nulls at each end.

 w (0, t ) = ∂w(0,t )
∂x = 0

w (L, t ) = ∂w(L,t )
∂x = 0

(3)

– Cantilever beam : defined by one end which is clamped and the other one is free, and

the boundary conditions are as follows :

 w (0, t ) = ∂w(0,t )
∂x = 0

∂2w(L,t )
∂x2 = ∂3w(L,t )

∂x3 = 0
(4)

1.2.2 Beams with supported ends

We first consider the nonlinear transverse vibrations of uniform beams supported in

such a way as to restrict the movement at the ends and hence produce mid-plane stret-

ching.

Let us consider an infinitesimal length of beam shows in figure 1, with ends label by

M and N in the undeformed position and M ′ and N ′ in the deformed position. We limit

our analysis in case the movement of the beam is in the plane ; this approximation is valid

when the stresses inducing the lateral deformations have a privileged direction.

In order to establish the equations governing the dynamics of the beam, the dynamics

of the beam is constrained in a two-dimensional reference frame having as base vector i⃗

and j⃗ . Consider u and w as the longitudinal and transverse displacement respectively.

The displacement of M is given by

−−→
∆M =−−−→

M M ′ = u (x, t ) i⃗ +w (x, t ) j⃗ (5)

and the displacement of N is defined as

−−→
∆N =−−−→

N N ′ =
(
u + ∂u

∂x
d x

)
i⃗ +

(
w + ∂w

∂x
d x

)
j⃗ (6)
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FIGURE 1 – Element of beam in the deflected and undeflected positions

It appears from figure 1 that,

−−→
∆M +−−−→

M ′N ′ =−−→
∆N +d xi⃗ (7)

where
−−−→
M ′N ′ is the vector giving the position N ′ relative to M ′. The length of the defor-

med segment is defined as

∣∣∣−−−→M ′N ′
∣∣∣= d s =

[(
1+ ∂u

∂x

)2

+
(
∂w

∂x

)2]1/2

d x (8)

and the unit vector parallel to the deformed segment is defined as

δ⃗=
−−−→
M ′N ′∣∣∣−−−→M ′N ′

∣∣∣ =
[(

1+ ∂u

∂x

)
i⃗ +

(
∂w

∂x

)
j⃗

]
d x

d s
(9)

When the beam is in motion, its length changes and simultaneously the tension in the
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beam also change. The instantaneous value of the tension is defined as

N = E A (d s −d x)

d x
(10)

where E and A are respectively the Young’s modulus and the cross-sectional area in the

rest.

The dynamical equation of motion resulting from the vibration of the element of beam

is thus given as [6]

 m ∂2u
∂t 2 = ∂

∂x

(
N δ⃗

)
i⃗

m ∂2w
∂t 2 + ∂V

∂x +γ∂w
∂t = ∂

∂x

(
N δ⃗

)
j⃗ + f (t )

(11)

where m = ρA is the mass per unit of length, ρ is the mass density, f (t ) is the transversal

load per unit of length applied to the beam and V is the shear force.

For a bending beam, the following relations exist between the shear force and the ben-

ding moment V − ∂M
∂x = 0 and also between the bending moment and the deflection of the

beam M = E I ∂
2w
∂x2 ; where I is the moment of inertia. Thus, the set of equations (11) be-

comes,

 m ∂2u
∂t 2 = ∂

∂x

(
N δ⃗

)
i⃗

m ∂2w
∂t 2 +E I ∂

4w
∂x4 +γ∂w

∂t = ∂
∂x

(
N δ⃗

)
j⃗ + f (t )

(12)

In modeling, we will limit ourselves to the first-order limited development of d x
/

d s,

and we get

d x

d s
= 1− 1

2

(
2
∂u

∂x
+

(
∂u

∂x

)2

+
(
∂w

∂x

)2)
(13)

Inserting equations (9), (10) and (13) in equation (12), we obtain


m ∂2u

∂t 2 −E A ∂2u
∂x2 = 1

2 E A ∂
∂x

((
∂w
∂x

)2 −2∂u
∂x

(
∂w
∂x

)2
)

m ∂2w
∂t 2 +E I ∂

4w
∂x4 +γ∂w

∂t = E A ∂
∂x

(
e ∂w
∂x

)
+ f (t )

(14)
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with

e = ∂u

∂x
−

(
∂u

∂x

)2

+ 1

2

(
∂w

∂x

)2

(15)

In the set of equations (14) and (15), it appears the first, the second, the third and the

fourth order of u resulting from the longitudinal motion of the beam. Here, only the first

order approximation of u is considered. Due to the fact that the transversal displacement

is more important than the longitudinal displacement. From this approximation, equation

(15) becomes

e = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

. (16)

Taking into account the fact that the radius of gyration r of the beam , the longitudinal

inertial term is neglected in equation (14). Therefore u =O
(
w 2

)
, and after some simplifica-

tions, it becomes the following equation

e = 1

2l

∫ l

0

(
∂w

∂x

)2

d x (17)

Inserting this expression in equation (14), the general equation governing the behaviour

of the beam with articulated ends is given by

m
∂2w

∂t 2
+γ∂w

∂t
+E I

∂4w

∂x4
−E A

[
1

2l

∫ l

0

(
∂w

∂x

)2

d x

]
∂2w

∂x2
= f (t ) (18)

1.3 An overview on vibration and control techniques

1.3.1 Effect of vibrations on human body

The interest granted by the community to the concept of vibration starts with the

discovery of the first musical instruments (probably whistles and drums). From that mo-

ment, many works were carried out in order to better understand the physical phenomena

and also establish mathematical properties proceeding from this concept [4].
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Almost all human activities involve in vibrations in one form or others. Even our own

bodies experience vibrations through the quasi-periodic motion of some organs and mem-

bers which belong to them. For example, our vital functions are maintained by the beat at

low frequencies of the heart or lungs when we are breathing, and we see because light waves

undergo vibration. We hear because of vibrations at high frequencies of eardrums and we

speak due to the oscillatory motion of larynges (tongue). We can also mention the fact that

walking involves the oscillatory motion of hands and legs [7]. It should be noted that an

exposure of the human body to certain intensities and frequency of vibrations can lead to

irreversible damages of some organs. The effects that are felt also depend both on the expo-

sure time and the part of the body exposed to vibrations. Thus, the standards and laws for

the amount of vibration generates by any machineries or devices on service are increasin-

gly stringent. The maximum root mean square (r.m.s.) values or peak values of acceleration

that cause reduced proficiency when applied for a stated time in a vertical direction to a sit-

ting subject are plotted as a function of frequency in figure 2. The figure, taken from the ISO

2631−1978 standard, deals with a field from 1 to 80 Hz and with daily exposure times from

1 min to 24 h. The exposure limits can be obtained by multiplying the values reported in

figure 2 by 2, while the reduced comfort boundary is obtained by dividing the same values

by 3.15 (i.e., by decreasing the r.m.s. value by 10 dB) [2].

An attempt to classify the different vibration frequencies on certain parts of the body

has been done by R.E.D. Bishop [7] and the result of this classification is presented in figure

3. Note that there is a range of resonance frequencies for which each organ vibrates with

a large amplitude. Thus, depending on individuals the resonance frequency of the thorax

(abdomen) varies between 3-6 Hz.

1.3.2 Effect of vibrations on mechanical and civil structures

Progress involves the challenge of building structures, machines and other devices that

are increasing lighter and more faster for machines. But the fact of lightening the elements

which constitute these structures and machines that are mainly the beams, the plates, the

shells among others, makes these more sensitive to the various stresses of their environ-
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FIGURE 2 – Vertical vibration exposure criteria curves defining the ’fatigue-decreased profi-
ciency boundary’ (ISO 2631−1978 standard).

FIGURE 3 – Effects of vibration and noise (intended as airborne vibration) on the human
body as functions of frequency (R.E.D. Bishop, Vibration, Cambridge Univ. Press, Cambridge,
1979).

ment (due to their high flexibility) and leads to give rise to nonlinear behaviors. As result,

the presence of those vibrations will generate undesirable effects such as mechanical or
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structural failure, frequent expensive maintenance of machines and discomfort for users.

The causes that can induce vibrations on a mechanical or civil structure are numerous.

We can list among other things :

– Construction activities such as blasting,compaction of soil, and operation of heavy

engines on the construction site induce ground and structure vibrations. Ground vi-

brations may affect adjacent or remote structures. Their effects range from nuisance

to local population and disturbance of working conditions for sensitive devices, to

diminution of structure serviceability and durability, which may induce damages on

them [8].

– Basically, no civil engineering structures is safe from wind loading effects. Thus, wind-

induced vibrations may affect structures as building, towers, pylons, suspension and

cable-stayed bridges among others. Wind manifests itself in many forms such as gusts

actions, buffeting, vortex shedding, galloping and so on. Wind-induced vibrations

may strongly affect either the serviceability or the fatigue behaviour and safety of

structures or both, depending on the type of structure [9].

– Machinery equipment permanently fixed at a place (which means all machinery,

components or installations working continuously) can also induced structural vi-

brations. Machinery can affect many different parts of civil engineering structures

such as foundations, pedestals or structural members (slabs and beams), and even

whole buildings in several ways with quite different types of dynamic forces. Waves

induced by machines may be transmitted into neighbouring buildings or adjacent

rooms in the form of vibrations and special attention has to be paid to these pro-

blems [10].

– Vibrations induced by people may strongly affect the serviceability and, in rare cases,

the fatigue behaviour and safety of structures. Most important vibrations are induced

by rhythmical body motions such as walking, dancing, running, jumping, handclap-

ping with body bouncing while standing among others. Structures affected by pe-

destrians are predominantly footbridges and floors in buildings, but there are similar

problems associated with stairways and ship gangways [10].
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1.3.3 Vibration control techniques

The quenching of vibrations has for long been a problem of primary importance in

many engineering fields. In the past, the classic methods used to attain an acceptable le-

vel of vibration are pursued by increasing the stiffness and the mass of the structure with

respect to the initial scheme in order to increase the damping effect.

Detection and control of unwanted vibrations are increasingly crucial in a range of

engineering applications. The control devices are particularly used on structures such as

aircraft, satellites, bridges, sports stadia and other tall/slender structures ( earthquake-

and wind-excited buildings), passive ship stabilizers, helicopters, power transmission lines,

hand-held electric hair-clippers, etc. There are also applications in the areas of robotics,

mechatronics, micro-electromechanical systems (MEMS) and non-destructive testing (NDT)

and related disciplines such as structural health monitoring (SHM) [11, 3, 12]. Therefore

there is a need to add control forces through specific devices to a vibrating system, that will

oppose or resist external solicitations.

From these observations, numerous control techniques have been setted up both in

the scientific community and in the industrial domain, in order to reduce the degree of

nuisance of these vibrations.

a. Passive vibration control

Passive vibration controllers use either hydraulic or mechanic devices to mitigate

the vibration of a structure. As hydraulic passive devices, Tuned Liquid Column Damper

(TLCD) and Tuned Liquid Damper (TLD) can be listed.

A hydraulic form of the vibration control device was first proposed in 1883 [13] as a

passive ship stabilizer to reduce the rolling motion of ships at sea, and was actually used

in 1902. Tuned Liquid Column Damper (TLCD) was first proposed by Sakai et al. [14] ; it

uses water-sloshing motion to mitigate the vibration [15, 16, 17]. In other words, the TLCD

mitigates vibration energy by combined actions of involving the movement of the liquid

mass in device container and a damping force generated by an orifice (Fig. 4 (a)). Tuned
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Liquid Damper (TLD) uses a similar strategy to suppress dynamic responses (Fig. 4 (b)).

Both dampers can work as a vibration absorber during a severe wind or an earthquake

event, and furthermore, they can be used as a daily water supplier facility at the top of

structure [16].

On other hand, mechanic passive devices work either by isolation or absorption. A vi-

bration isolator consisted of a spring and viscous damper is placed between the mass and

the excitation and try to minimise the transmission of a support excitation f (t ) to the struc-

ture (Fig. 4 (c)). Whereas a vibration absorber or Tuned Mass Damper (TMD) first proposed

by Frahm in 1909 was consisted of a simple mass-spring-damper device attached to the

main vibrating system [18], but the theoretical study was first presented by Ormondroyd

and Den Hartog in 1928 [19]. It is based on simple idea of transferring the kinetic energy

of the vibrating structure to a properly tuned and specially designed single d.o.f. oscillator,

where it is dissipated (Fig. 4 (d)).

FIGURE 4 – Schematic diagram of passive vibration control devices : (a) TLCD, (b) TLD, (c)
vibration isolator and (d) vibration absorber.

Depending on the application, it can also be called Dynamic Vibration Absorber (DVA).

TMD systems have been installed on tall buildings and towers in the world, and their per-

formances were considerably successful. Examples include the Citicorp Center in New York

City, the John Hancock Building in Boston, Sydney tower in Sydney, Crystal Tower Building

in Osaka and Taipei 101 building in Taiwan (Figure 5).

Passive devices act in many cases as dampers. For example, if a piezoelectric material
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FIGURE 5 – Dynamic Vibration Absorber (DVA) of the Taipei 101 building. The DVA consists
of a pendulum with a mass of 730 tons suspended with 4 cables extending over 4 floors.

is simply shunted by a resistor, a sort of electric damper is obtained. And the same effect

can be obtained with any other transducers. Thus, Nanha Djanan et al. [20] dealt with the

enhancement of a passive electromechanical control of vibration on a thin plate submit-

ted to non-ideal excitation. They used Routh-Hurwitz criteria to obtain the stability condi-

tion of the controlled system and some dynamics exploration leading to the condition for

which the amplitude of vibration is reduced in the mechanical structure. Kitio Kwuimy et

al. [21] investigated the dynamic and the electromechanical control of an Euler’s beam.

They found using the mode expansion formalism adequate electrical parameters to reduce

the vibration amplitude, to control the snap through instability and horseshoe chaos. An

extension of this work to the case of a plate has been done by Nwagoum et al. [22].

b. Active vibration control

Active control puts together sensors, actuators, controllers and power amplifiers (Fig.

6). Actuators are used to generate motion in a way that the vibration generated by external

disturbances is cancelled (and so can put energy into the system), while sensors mounted
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on the structure give information about the vibratory state of this one.

FIGURE 6 – Block diagram of a smart structure.

It is increasingly common for structures to integrate a set of actuators and sensors cou-

pled by a controller, in order to cope with unwanted vibrations. These types of structures

have become known as smart structures (sometimes called adaptive or intelligent struc-

tures). They often use new composite materials known as smart materials or multifunctio-

nal materials, because they can perform several tasks. For example, the same material can

be used both as sensor or actuator according to the desired use. Piezoelectric, magnetos-

trictive, Magneto-Rheological (MR), Electro-Rheological (ER) materials and Shape Memory

Alloys (SMA) are some examples of smart materials.

Nevertheless, not all active control devices use intelligent materials, so electromecha-

nical transducers are also available. Thus, Nana Nbendjo [23] dealt with the control of a

single non-linear Euler’s beam using piezoelectric actuator, different voltage sources were

considered. It has been shown that for some appropriate amplitude of alternative external

voltage source, vibrations of the system can be damped. Nanha Djanan et al. [24] used a

system with electric transducer to control the vibration of a beam supporting a DC mo-

tor (non-ideal system), through numerical and mathematical approach they showed that

the system is found to present saturation phenomenon, leading to the effective control of

vibration amplitudes of the mechanical structure.
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c. Semi-active vibration control

The interest in semi-active control devices lies in the fact that these devices unlike ac-

tive devices use much lower amounts of energy to supply the actuators. Indeed, semi-active

controller can be broadly defined as a passive controller in which some parameters (stiff-

ness, damper, etc.) can be varied with low cost energy. Another important difference bet-

ween these two types of control is that the semi-active control can not add energy to the

system, but only resists to vibrations (contrary to the active device), thus the system cannot

be destabilised by a semi-active control. This type of control is therefore less vulnerable to

power failure.

An example of a semi-active vibration control acting on single-degree-of-freedom (SDOF)

oscillator constituted of a mass-spring-damper oscillator is shown in figure 7. To decide

how to select the variable damping coefficient cs , information is needed about the relative

displacement of the mass and the input, this can be achieved by using sensors.

FIGURE 7 – Semi-active vibration control acting on a SDOF oscillator.

One of the best way to implement a semi-active element is to switch between a high and

a low damping value. Usually, the high damping is selected when the damper force is resis-

ting the direction of motion of the mass, and the low damping force is used when this is not

the case. Practically, this can be achieved in various ways, for example one of the most com-
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mon is by switching between high and low viscosity in a magneto-rheological (MR) damper

[11]. Ndemanou et al. dealt with the control of dynamics of a cantilever Timoshenko beam

subjected to earthquake loads using a MR damper. They also derived condition of stability

of the controlled system using the Routh–Hurwitz criterion [25].

Nevertheless, vibration can exhibit useful features profitably in several industrial

and domestic applications. For instance, vibration is put to work in oscillatory conveyors,

hoppers, sieves, washing machines, compactors, shakers and mixers. Vibration has been

found to improve the efficiency of certain machining, forging and welding process. Vibra-

ting machines also find applications in medicine, curing human diseases. Another useful

applications of vibration can be found in measuring tool like accelerometers, in vibratory

testing materials and also in the field of energy harvesting [26, 27, 28, 29, 30].

1.3.4 Concept of piezoelectricity

As piezoelectric materials are mainly concerned in this thesis, a brief description of

those materials is given in this subsection. A piezoelectric material is defined depending

on the way we use it :

An electrical voltage is generated on a piezoelectric material when an external mecha-

nical force is applied on it, this material experience the direct piezoelectric effect (Figure 8

(a)). In this case, the piezoelectric materials are usually used as sensors.

On other hand, when an electrical field parallel to the direction of polarization is ap-

plied to a piezoelectric material, it is deformed. This is called inverse piezoelectric effect

(Figure 8 (b)). In this other case, the piezoelectric materials are used as actuators.

Piezoelectricity was discovered in 1880 by French physicists Jacques and Pierre Curie.

However, The inverse effect was mathematically deduced from fundamental thermody-

namic principles by Gabriel Lippmann in 1881. The first applications were for laboratory

measuring devices (precision balance and charge generator using the direct and indirect

piezoelectric effect, respectively) [31]. Nowadays, piezoelectricity is exploited in a number

of useful applications, such as the production and detection of sound, piezoelectric ink-jet

printing, piezoelectric motors, generation of high voltages, electronic frequency genera-
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FIGURE 8 – Block diagram of a piezoelectric principle : (a) direct piezoelectric effect, (b) in-
verse piezoelectric effect.

tion, microbalances, to drive an ultrasonic nozzle, and ultrafine focusing of optical assem-

blies, energy harvesting [28, 32, 33, 34].

As far as the control of structures is concerned, piezoelectric materials have been en-

ormously used since the last decades. It has been shown throughout the literature that pie-

zoelectric materials can be used as passive, semi-active, active or hybrid electromechani-

cal vibration absorbers when shunted by electrical networks. Note that piezoelectric active

control was introduced in 1985 by Bailey et al. in order to actively damp the vibrations

of distributed-parameter systems. They defined a piezoelectric actuator as distributed-

parameter actuator [35]. Morgan et al. presented an efficient active-passive hybrid piezoe-

lectric absorber concept. The control strategy developed by them was able to achieve high

performance and were more robust than passive and semi-active absorbers [36, 37]. In ano-

ther way, an analysis of divers shunt circuits employed in piezoelectric passive vibration
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damping of an elastic structure has been done by Caruso. This study presented the optimal

value of the electric components belonging to each shunt circuit and the performance of

these shunts circuits has also be compared [38].

1.4 Complex network dynamics

The network science was introduced by the mathematician Leonhard Euler in 1741

through the Königsberg problem. He faced and solved the problem to know if it was pos-

sible to find a path that crosses each of the seven bridges of Königsberg once and only once.

By describing the islands as nodes and the bridges as links connecting the nodes he found

an abstract representation of the problem and laid the foundation of graph theory, the ma-

thematical theory describing the structure of networks [39].

Since the introductive work of Euler, the network science has known an important growth

in very different scientific domains with a large number of theories established to unders-

tand implied problems. Nowadays, the complex dynamics of interacting or coupled nonli-

near systems have attracted great attention of researchers from various fields such as phy-

sics, chemistry, biology, economics, and social sciences [40]. The dynamics of many com-

plex systems can be understood as the collective behavior of a large number of dynamical

units coupled via their mutual interactions. The dynamical behavior of such connected

systems has been an interesting topic of study especially due to its relevance in unders-

tanding a large variety of natural systems. The interaction between the subsystems may

exhibit rich forms of emergent phenomena such as synchronization, hysteresis, phase lo-

cking, riddling, amplitude death, and oscillation death [41, 42, 43, 44]. As synchronization

and oscillation quenching mainly are concerned in this thesis, a brief description of these

phenomena is given in the subsections below.

In order to model and understand the phenomena resulting from the dynamical be-

haviors of a network of N coupled nonlinear oscillators, the dynamics on a network can
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generally be described by a set of differential equations,

Ẋi = Fi [Xi (t ) , t ]+ϵGi (X) i = 1, . . . , N . (19)

where

Gi (X) =
N∑

j=1
Ai j H

(
Xi ,X j ,τ

)
i = 1, . . . , N . (20)

Here Xi represents mi -dimensional vector of dynamical variables for the i th oscilla-

tor, and Fi the local dynamics which describes the uncoupled oscillator. ε is the coupling

strength between the oscillators. The oscillators may be identical or distinct, and are cou-

pled to the others, as specified via the coupling function Gi . A is a matrix (m ×m) with ele-

ments 0 and 1 and defines the components of the oscillators i and j that are coupled each

other or not. The actual coupling is specified by the term H
(
Xi ,X j ,τ

)
which is a function of

Xi (t ) and X j (t −τ). The time-delay τ can be constant, discrete or distributed.

Based on the nature of interacting subsystems, they can be coupled mainly in two ways :

direct or indirect coupling.

• Direct coupling

It is known that when two systems are coupled directly, they can synchronize under

suitable conditions. Different types of direct coupling configuration can be found in

literature such as as diffusive, replacement, and synaptic couplings, etc.

An example of a direct coupling is the linear and diffuse one, defined as

Ẋi = Fi [Xi (t ) , t ]+ϵ
N∑

j=1
Ai j H

(
Xi −X j

)
i = 1, . . . , N . (21)

• Indirect coupling via an environment

Often and throughout this thesis, it is assumed that the oscillators are coupled via a

dynamical environment that possesses its own dynamics and which in turn is modu-

lated by the interaction with the oscillators. In this case, the state of each element in

the system influences the environment, and the state of the environment in turn af-

fects the elements. Since the elements are not directly interacting with each other but

through a common medium, this configuration has also been called environmental
21



coupling [45] or relay coupling [46] or bath coupling [47]. Indirectly coupled systems

through an environment may exhibit a large variety of dynamical behaviors such as

antisynchronization [49], non-trivial collective behavior, dynamical clustering [50]

and amplitude death [51].

Consider a network of N nonlinear oscillators coupled indirectly through a dynamic

environment. The dynamics of such systems coupled through an environment y is

given as,

Ẋi = Fi [Xi (t ) , t ]+ϵγy (22a)

ẏ =−κy− ϵ

N

N∑
j=1

γT X j (22b)

where the subscript i = 1, . . . , N in Xi and Fi represents i th oscillator. Here, ϵ is the

coupling strength. The intrinsic dynamics of the environment decays with damping

parameter κ in the absence of feedback from the nonlinear oscillators. The environ-

ment is kept active by feedback from coupled subsystems as given by the last term in

Eq. (22b). Each subsystem also gets feedback from y [the last term in Eq. (22a)]. γ is

a column matrix (m ×1), with elements 0 or 1, and it decides the components of Xi

that get feedback from the environment. γT is the transpose of γ and it decides the

components of Xi that give feedback to the environment.

1.4.1 Synchronization phenomenon in networks

In 1665, the mathematician and physicist, Christiaan Huygens discovered an antiphase

synchronization of two pendulum clocks suspended side by side of each other on the same

beam. This was the beginning of nonlinear science and one of the first observations of the

phenomenon of coupled harmonic oscillators, which has been since used to model various

systems in nearly all branches of science. Synchronization has become a basic concept of
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the interdisciplinary field of nonlinear and complex systems science [52, 53].

According to Pikovsky et al., synchronization can be simply understood as an adjust-

ment of rhythms of oscillating objects due to their weak interaction[41]. Synchronization

processes are ubiquitous in nature and play a very important role in technology. Many

types of synchronization have been identified. Among them, it is worth mentioning com-

plete synchronization, phase synchronization, antiphase synchronization, lag synchroni-

zation, anticipating synchronization, and generalized synchronization.

In biology and in neuroscience, networks are present at almost all scales and the syn-

chronization is encountered at different levels. Indeed, synchronization is a crucial phe-

nomenon in these domains and is an useful tool to understand the molecular interactions

up to population dynamics, passing through biological systems. In neuroscience, appli-

cations are offered mainly at two different levels, one for the synchronization of indivi-

dual spiking neurons and the other for the coupling between the cortical areas in the brain

[52, 54, 55, 56].

In communication, synchronization is used to extract a message (between a transmitter

and a receiver) from the mask. This demand in secure communication, especially in mili-

tary applications, was one of the primary motivations for studying the synchronization of

chaotic systems. The preliminary work of Pecora and Caroll simulated many researchers in

developing new increasingly sophisticated methods to improve communication security

[57, 58].

In electrical engineering, synchronization in power grids for example is necessary for a

stable and robust operation, and failure may result in cascading power breakdown [59, 60,

61]. Another instance is the use of self-sustained oscillators to model a parallel operating

system of microwave oscillators [30, 62].

In electromechanical engineering, a wide variety of electromechanical systems have

been developed in order to optimize and increase the productivity of these systems. Thus

several types of coupling (electrical, magnetic, piezoelectric and others) and electrical os-

cillators (both self-sustained and non-autonomous) have been experimented and this ac-

cording to the objective [26, 63, 64, 65].
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1.4.2 Oscillation quenching phenomena

In strong coupling regime of a network of dynamical systems, one of the major self-

organized behaviors, oscillation quenching refers to a suppression of oscillation under va-

rious types of interaction or intentional control. This phenomenon was first observed by

Rayleigh during the dynamical study of two organ pipes standing side by side. Rayleigh ob-

served not only mutual synchronization between the two pipes when they began to sound

in unison, but also the effect of quenching (oscillation death) when the coupling results in

suppression of oscillations of interacting systems. Later, Bar-Eli [66] described this aspect

in coupled chemical oscillators, and since then, this notable collective behavior has been

extensively studied in theories and experiments.

Two kinds of oscillation quenching including amplitude death (AD) and oscillation death

(OD) have been extensively studied in many real-world applications, such as vibration sup-

pression in mechanical engineering [67, 68, 69, 70, 71], synthetic genetic networks [72, 73],

and laser systems [74, 75]. Amplitude death corresponds to the case where the coupled os-

cillators arrive at a common stable steady state in autonomous networks. It has been shown

that the occurrence of amplitude death in coupled nonlinear systems is highly dependent

on both the characteristics of individual oscillators and the nature of coupling between os-

cillators. Early researches [76, 77, 78] deemed that amplitude death only occurred in mis-

matched oscillators under strong coupling. Further, Reddy et al. [79] reported that a trans-

mission delay in the mutual connections could also induce amplitude death even if the

subsystems are identical. Karnatak et al. [80] investigated the dynamics of oscillators that

are mutually coupled by dissimilar (or conjugate) variables, where the systems are not cou-

pled via same variables, and also found that AD could occur in identical oscillators even if

there was no delay in the interaction. Another type of coupling-inducing amplitude death

in the identical oscillators even in the absence of time delay is the dynamical coupling,

which was first proposed by Konishi [81]. Resmi et al. in their work presented the appea-

rance of amplitude death on a system of coupled oscillators through competing between

the indirect or environmental coupling and diverse types of direct coupling as diffusive, re-
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placement, and synaptic couplings [49]. Apart from the above linear coupling, Prasad et al.

[82] found that a nonlinear coupling could arouse an amplitude death through the creation

of new fixed point and the stabilization of the coupled systems, that in the absence of pa-

rameter mismatch or time delay. In addition to above-discussed scenarios which give rise

to AD in nonlinear systems, there exist other strategies such as asymmetric coupling [83],

through a linear augmentation of oscillatory dynamical system [84], attractive and repul-

sive coupling [85], and so on.

For non-autonomous coupled systems with external excitations, there is no equilibrium

solution so that the concept of amplitude death state is modified [86]. So recently, Resmi

et al. have introduced AD in non-autonomous coupled systems especially in two driven

van der Pol systems with direct diffusive coupling and indirect coupling through an en-

vironment. In this case, amplitude death phenomenon is interpreted as the suppression

of amplitude of oscillations of coupled systems at a very low value around their fixed point

[49]. Further, a similar phenomenon is observed in Duffing systems with the same coupling

form. Pisarchik investigated the occurrence of oscillation death phenomenon in coupled

non-autonomous systems excited by a parametric excitation. The study was made theoreti-

cally with two Duffing oscilators, and a relation of the death effect with the Hopf bifurcation

of the whole system and crisis of coexisting attractors are demonstrated[87]. Sekikawa et al.

also reported the oscillation death in the Bonhoeffer–van der Pol oscillator under weak per-

iodic perturbations [88]. Yamapi analyzed the dynamics of an electromechanical damping

device, which consist of an electrical system coupled magnetically to a mechanical struc-

ture, and found quenching of vibration of mechanical part with appropriate coupling pa-

rameter [89]. Recently, Zhang et al. investigated the onset of the phenomenon of amplitude

death for non-autonomous network model constituted of a number of floating modules se-

rially coupled by flexible connectors. Playing on the strength of connectors, they obtained

the state of amplitude death [67]. Further, Xu et al. investigated the analytical criterion for

the boundary of the amplitude death by using the average method, with the same model

configuration [86]. Though, non-autonomous systems extensively exist in physical, bio-

logical, and engineering systems in real life, studies for amplitude death in such systems
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seem scarce and insufficient in comparison with the abundant results from autonomous

systems.

Although most research reports on quenching phenomenon in coupled systems have

been mainly focused on the suppression of the dynamics of two interacting oscillators

using different coupling processes [49, 90] ; quenching of oscillations has been investigated

in a large number of coupled robust-chaos oscillators [91], in which globally coupled sys-

tems exhibit amplitude death beyond a threshold of the coupling parameter. Moreover, the

introduction of heterogeneity in the local parameters of coupled oscillators could drive the

system to oscillation death state, with coexisting clusters of oscillators in different steady

states. In addition, quenching phenomenon in a variety of network topologies such as glo-

bal connection topology [92, 78] ; networks with complex topologies for instance small-

world networks [93] ; the ring topology [94] ; scale-free networks [95] had been investigated

and reported.

1.4.3 Delayed-network systems

In recent years, a great deal of interest has been devoted on exploring the complex

behaviors generated from time delayed nonlinear oscillators. This great attention is due

to the fact that delay is ubiquitous in a large number of dynamical systems and in different

fields of application. It is well-known that in the presence of time delay can induce complex

phenomena on certain simple systems which do not occur in its absence. This delay can

influence either negatively or positively the stability and dynamics of a system. Therefore,

time delay can alter the stability of an equilibrium point, gives birth to a limit cycle, leads

to bifurcation, chaos [96, 97, 98, 99].

In the collective behaviour of real life systems, time delay is usually associated with fi-

nite propagation velocities of information signals, finite reaction times of chemicals, trans-

portation of matter or information of electrical signals on transmission lines and so on.

Time-delayed coupled dynamical oscillators can induce a large variety of dynamical phe-

nomena such as synchronization, clustered chimera states, oscillation quenching and so

on [41, 100].
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In structural control engineering, it is particularly important to take into account the

effect of the delay in the active control of structures because its origin and influence have

been shown both theoretically and experimentally. Indeed, the delay can be generated ei-

ther by the time interval between the detection of the vibration by the control device and

the application of the force necessary to attenuate it, or the time taken to calculate the force

necessary to quench the vibration [101, 102]. It seems therefore natural to include time de-

lay in the modelling of mechanical and civil structures under control.

1.4.4 Networks on mechanical and civil structures

Putting together several elementary structures for the construction of a civil or mecha-

nical structure can push during the modelling and the study of the stability of the final

structure to consider this one as a network of elementary structures which can be coupled

or not. This consideration can be justified through various structures as :

– A multi-module floating airport : The floating airport consists of a number of floa-

ting modules serially coupled by flexible connectors. The idea of building floating

airport was born in the 1930s. It was abandoned at first and in the 1970s and 1980s

that researchers and engineers launched the challenge to design technologies related

to very large floating structures (VLFS). For the floating airport, each floating module

can be viewed as an oscillator in waves, and by combining all the modules in a certain

topological form with flexible connectors, the integrated system becomes a huge dy-

namic network. Due to mutual interaction among coupled oscillating modules, the

collective behavior of coupled VLFS is of a great interest to scientists and engineers

in developing a floating airport [67].

FIGURE 9 – Model sketch for N serially connected floating modules [67].
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– Multi-floor buildings : The skeleton of a building made of concrete or with different

types of aggregates consists essentially of beams and the different floors are separated

by slabs that can be likened to plates. Indeed, Luongo and Zulli analysed the parame-

tric, external and self-excited tower under turbulent wind flow. The tower was consi-

dered as a square section building, constituted by a multi story shear-type frame,

subjected to unsteady wind flow, uniformly distributed all along its height. The cross-

wind transversal displacement of the i -th story of the tower is materialized by vi (x)

as show in the figure bellow

FIGURE 10 – Frontal view of the tower subjected to the wind flow [103].

These mechanical and civil structures are very often subjected to different types of ex-

ternal stresses such as the loads to bear, the weight of the structure, the weight of the snow,

traffic, support reactions, etc. ; while their pieces are subject to internal forces from neigh-

boring pieces. It is therefore essential to conceive, on the one hand, structures with the
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capacity to support the loads applied to them without destroying or deforming them ap-

preciably, and on the other hand to design vibration control devices that take into account

the presence of different structural elements in some cases.

1.5 Problem of the thesis

Essential works on vibration control of various mechanical structures have been car-

ried out in our research group and some of those works have been listed above. It should

be noted that the theoretical control techniques used on those works deal with the problem

of vibration reduction on idealized or isolated structures (beams, plates, etc). But it is ne-

cessary to note that the external action characterized by the different types of known forces

can act on a structure or directly on the various structural elements. Thus, the approxima-

tion made when a structure is assumed ideal, can be harmful during the effective control of

the structure as we do not know how the considered control strategy impacts the dynamic

each structural element of the structure.

On other hand, in engineering applications, undesirable vibrations constitute a major

concern in controlled structures. Persistent irregular vibrations can induce damage after a

long time, which could lead to the reduction of the performance of the structures.

Taking inspiration from the phenomenon of amplitude death highlighted in the auto-

nomous systems and more recently in the non-autonomous systems, we intent to solve

the problem of quenching the vibrations on a network of mechanical structures indirectly

coupled via a dynamical environment.

1.6 Conclusion

This chapter has given an overview on the generalities concerning the vibrations and

the effects induced by those vibrations on civil and mechanical structures. Different control

strategies used to mitigate those vibrations have been also presented. Then, an introduc-

tion to the complex network dynamics has been presented. Different network topologies
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have been highlighted and the rich dynamic phenomena exhibited by those network have

been discussed, especially the synchronization state and quenching of vibrations. The fol-

lowing chapter will be devoted to the description of mathematical tools used to model a

network of coupled beams indirectly coupled via an dynamic environment. Analytical and

numerical formalisms used to solve the problem of the thesis are presented.
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CHAPITRE 2

METHODOLOGY : MATHEMATICAL

FORMALISMS AND NUMERICAL METHODS

2.1 Introduction

This chapter presents the analytical and numerical methods used to solve the pro-

blem statement of the thesis. Section 2.2 deals with the mathematical formalisms and nu-

merical simulation processes used to investigate the dynamical states resulting from ordi-

nary differential equations as well as the hardware and software used. In section 2.3, the

analysis tools used to characterize the dynamical states such as strong amplitude reduc-

tion and synchronization are presented. In section 2.4, whole mathematical models used

to get different results of the thesis are presented. The conclusion of the chapter appears in

section 2.5.

2.2 Mathematical formalisms and numerical methods

In order to propose solutions to the equations resulting from the modelling of the

differential systems of this thesis, it is interesting to propose a set of mathematical and

numerical methods allowing first to simplify the PDEs and to solve them afterwards.

2.2.1 Mathematical formalisms

In this subsection, different theories and mathematical methods used to propose so-

lutions to the systems of differential equations of this thesis are stated.
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a. Galerkin approximation for partial differential equations

Vibrations of continuous systems (strings, rods, beams, plates and shells) are gover-

ned by PDEs. Galerkin decomposition method is used to simplify the problems of vibrating

structures through the reduction of the PDEs into ODEs [21, 104, 105].

Lets w (x, t ) describes the displacement of a structure at the time t and spatial location

x. Any sufficiently smooth deflection field w (x, t ) satisfying any fixed boundary conditions

can then be represented as a weighted sum of mode shapes :

w (x, t ) =
N∑

n=1
qn (t )φn (x) (23)

where N represents the number of modes used in the approximation, qn (t ) represents

the amplitude of vibrations of the structure associated with the nth mode andφn (x) repre-

sents the modal function solution of the n−th mode of the beam linear natural equation

with the associated boundary conditions.

b. Harmonic balance method

Harmonic balance method is usually used to determine exact or approximate periodic

solutions of ODEs (linear or nonlinear) subjected to sinusoidal periodic excitations [6, 106].

Consider the following differential equation :

ẍ +x = f (x, ẋ, t ) (24)

where the dot over the x refers to the differentiation with respect to time t and the func-

tion f satisfies the following condition f (x, ẋ, t ) = f (x, ẋ, t +T ).

The basic idea is to find the periodic solution of equation 24 in the form :

x = A cos
(
ωt +ϕ)

(25)

where A is the amplitude of oscillations,ω the pulsation of the sinusoidal excitation and

ϕ the phase at the origin. Inserting equation 25 into equation 24 and equating separately
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the coefficient of sine and cosine terms which have the same harmonics, one obtains after

neglecting harmonics order greater than first harmonic, a system of algebraic equations

which are the amplitude equations.

c. Linear stability of delay differential equations

The question of stability for delayed nonlinear equations near their steady-state solu-

tions or fixed points is particularly important when the dynamical states of any system are

investigated, as it is the case in this thesis. Indeed, the study of the stability makes possible

to realize what happens if a system is disturbed slightly near an equilibrium condition.

– Linearization near an equilibrium solution

Let consider a set of autonomous DDEs of first order defined as [106]

dX (t )

d t
= H [X (t ) ,X (t −τ) ,α] (26)

where X (t ) = (x1 (t ) , x2 (t ) , . . . , xn (t )) is the vector of n-dynamical variables of the sys-

tem, X (t −τ) = (x1 (t −τ) , x2 (t −τ) , . . . , xn (t −τ)) is the delayed vector of n-dynamical

variables, H = (h1 (t ) ,h2 (t ) , . . . ,hn (t )) is a n-dimensional vectorial function and α =(
α1,α2, . . . ,αp

)
is a set of control parameters of the system.

Let us denote an equilibrium point X0 and consider small variations δX of the system

around this equilibrium point, defined by

X (t ) = X0 +δX (t ) (27)

Substituting Eq. 27 into 26 and expanding this equation in a Taylor series about X0,

and discarding terms of order higher than the first in the δX’s leads to the variational

equation

dδX (t )

d t
= J0 (α)δX (t )+ J1 (α)δX (t −τ) (28)

where J0 and J1 are matrix (n ×n) of partial derivatives at the equilibrium point X0

and are called Jacobian matrix.
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– D-subdivision algorithm

The eigenvalues of the linear set of the equations 28 can be found from the characte-

ristic equation of the system. In that case, the characteristic equation becomes

G (s;α) = det
(
sI− J0 (α)− J1 (α)e−sτ) (29)

where I is the unit matrix and s are the eigenvalues of the system 29 and roots of the

characteristic equation.

The algorithm of the D-subdivision method can be summarized as follows [107] :

1. First, solve the equation

G
(

jω;α
)= 0 (30)

for s as a function of jω (including the origin of the complex plane) in order to

find (stability crossing) surfaces in the parameter space Rnp such that for each s

on such a surface, there exists at least one characteristic root on the imaginary

axis.

2. Second, these surfaces divide the parameter space into several regions and so-

metimes it is possible to conclude, by using appropriate additional arguments,

for which region the stability is guaranteed. As additional arguments, we can

find, for example, a particular point (on some of the axis of the parameter space)

for which the stability analysis becomes easier to perform (finite-dimensional

systems, eventually). Each region derived in this way is characterized by the

same number of strictly unstable characteristic roots for all the points of the

corresponding domain.

2.2.2 Numerical methods

Numerical analysis deals with many problems of physical, biological, technological

sciences or problems resulting from economic and social models. It is involved in the deve-
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lopment of computer codes (meteorology, particle physics, etc.), but also in the problems of

simulations (aeronautics, nuclear industry, etc.) or mathematical experiments. It has close

links with computer sciences. His methods are based both on the search for exact solutions

as in the case of matrix analysis or algebraic calculus, on approximate solutions that most

often result from discretization processes as in the treatment of differential equations [108].

The following subsections give a non-exhaustive description of numerical methods and

tools used to solve some problems throughout this thesis.

a. Fourth-order Runge-Kutta method for ordinary differential equations

In numerical analysis, Runge-Kutta methods are an important family of implicit and

explicit iterative methods for approximating solutions of Ordinary Differential Equations

(ODEs). These techniques were developed in the 1901s by German mathematicians Carle

Runge and Martin W. Kutta, and modernized in 1960 by John Butcher.

Let us consider a vectorial variable X(t ) = (x1(t ), x2(t ), ..., xn(t )) with n−dimensional

vectorial flow F = (F1,F2, ...,Fn), the ODE can be written as

dX(t )

d t
= F(t ,X(t )) with X(t0) = X0 . (31)

The fourth order Runge-Kutta (RK4) iterative scheme for the case of Eq. (31) can be

given by [109, 110]

xi+1, j = xi , j +h
(
L1, j +2L2, j +2L3, j +L4, j

)
/6

t = t +h , (32)
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where

L1, j = F(ti , xi , j )

L2, j = F(ti +h/2, xi , j +hL1, j /2)

L3, j = F(ti +h/2, xi , j +hL2, j /2)

L4, j = F(ti +h, xi , j +hL3, j ) , (33)

where i represents the time incrementation and j labels the variables related to x j . L1, j ,

L2, j , L3, j , L4, j are intermediate variables and h represents the time step.

b. Fourth-order Runge-Kutta method for delay differential equations

In the case of delay differential equations (DDEs), the dynamical state of a system at

each time t depends both on the value of the vector of n-dynamical variables X at time t ,

and also on the value of X at a prior time t −τ, with τ> 0 [111, 112]. Taking into account the

delayed variable X(t − τ) = (x1(t −τ), x2(t −τ), ..., xn(t −τ)) with n−dimensional vectorial

flow F = (F1,F2, ...,Fn), a DDE can be written as

dX(t )

d t
= F(t ,X(t ),X(t −τ))

with X(t ) = f(t ) for t ∈ [−τ,0] , (34)

where f is a n−dimensional vector which depends of the time t , X(t ) = [x1(t ), x2(t ), ..., xn(t )]

and X(t −τ) = (x1(t −τ), x2(t −τ), ..., xn(t −τ)) are unknown vectorial variables. At the diffe-

rence of ODEs where the initial conditions were given by a discrete and finite set of value,

initial conditions in DDEs should be indicated (through the use of a function) for all the va-

lues contained into the continuous interval [−τ,0], so an infinity of values should be known

to characterize the system. The RK4 iterative scheme for the case DDEs defined by Eq. (34)

can be given by
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xi+1, j = xi , j +h
(
L1, j +2L2, j +2L3, j +L4, j

)
/6

t = t +h , (35)

where

L1, j = F(ti , xτ,i , j , xi , j )

L2, j = F(ti +h/2, xτ,i , j , xi , j +hL1, j /2)

L3, j = F(ti +h/2, xτ,i , j , xi , j +hL2, j /2)

L4, j = F(ti +h, xτ,i , j , xi , j +hL3, j ) , (36)

where i represents the time incrementation and j labels the variables related to x j . L1, j ,

L2, j , L3, j , L4, j are intermediate variables and h represents the time step.

c. Hardware and software

Throughout this thesis, we used a Laptop having Window 7 as operating system. For

mathematical expansions and numerical simulations, the following software were used :

Matlab, Fortran and Maple. These software are enormously used in scientific research and

engineering.

2.3 Numerical techniques for the characterization of the dy-

namical and synchronization states of nonlinear systems

There are many differential equations, especially nonlinear ones, that are not suscep-

tible to be solved analytically in any reasonably convenient manner. Numerical methods

provide one means of dealing with these equations. In this section, some numerical tech-

niques allow to a qualitative understanding of the solutions rather than to detailed quanti-

tative informations.
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2.3.1 Tools for the characterization of the dynamical states

a. Phase portrait

A phase portrait is a geometric representation of the trajectories of a dynamic system

in the phase space : at each set of initial conditions corresponds a curve or a point. Phase

portraits are a valuable tool for the study of dynamical systems, they consist of a set of

standard trajectories in the state space. This makes it possible to characterize the presence

of an attractor, a repellor or a limit cycle for the chosen parameter values. However the

drawback of this computational tool is that it can be sometimes hard to distinguish the

quasi-periodicity and chaos phenomena by using the phase portrait diagram.

b. Fourier spectrum analysis of nonlinear equations

This method is a traditional tool for decomposing both periodic and non-periodic mo-

tions into an infinite number of harmonic functions. It has the distinguishing characteristic

of generating a periodic approximations.

If y(t ) represents the response of some system as a function of time, Y (ω) is a spectral

function that measures the amount of frequency ω making up this response. By sampling

a nonperiodic function at N times (for functions that are known only for a finite number

of times tk ), we can determine N values of the Fourier transform of this function (N inde-

pendent y(t ) values can produce N independent Y (ω) values).

Assuming that the function y(t ) we wish to transform is measured or sampled at a dis-

crete number N +1 of times (N time intervals)

yk = y(tk ) for tk = kh with k = 0,1,2, . . . , N . (37)

The discrete Fourier transform is evaluated from the Fourier transform and is obtained
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after applying a trapezoid rule. It is defined as

Y (ωn) = 1p
2π

∞∫
−∞

e−iωn t y (t )d t = hp
2π

N∑
k=1

e−i 2πkn
N yk (38)

The Fourier spectrum analysis gives the relative strengths of various frequency compo-

nents of a time series.

c. Bifurcation diagram

Bifurcations are important scientifically, they provide models of transitions and insta-

bilities as some control parameter is varied [110].The dynamical behavior of a system can

change qualitatively as the control parameters are varied. In particular, fixed points can be

created or destroyed, or their stability can change. If the phase portrait changes its topolo-

gical structure as a parameter is varied, we say that a bifurcation has occurred. The bifurca-

tion diagram is plotted by computing time series of a dynamical variable for different value

of the control parameter and by saving the consecutive maxima of the variable. Thus, bifur-

cation diagram is helpful to understand how the long term behavior of a model changes as

parameter values change. Bifurcation diagram is very important for the study of the route

to chaos. This diagram is also a helpful tool to identify different dynamical transitions such

as the steady states, periodic and/or quasi-periodic orbits, or chaotic attractors.

2.3.2 Tools for the characterization of the synchronization state

a. Root mean square function

The root mean square value of a set of values (or a continuous-time waveform) is the

square root of the arithmetic mean of the squares of the values, or the square of the function

that defines the continuous waveform.

For a discrete set of values (x1 (t ), x2 (t ), . . . , xN (t )) defining the dynamical states of dif-
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ferent variables, the RMS at a time t is described as follows

η (t ) =
[

1

N

N∑
i=1

xi (t )2

]1/2

(39)

The synchronization state is numerically characterized by the asymptotic time-average〈
η
〉

of the instantaneous root-mean-square function η (t ) of the distribution of state va-

riables xi (t ) with i = 0,1, . . . , N .

Global synchronization for a system of coupled dynamical variables xi (t ) which des-

cribes the collective dynamics is attained when
〈
η
〉= 0.

b. Standard deviation function

The standard deviation is a quantity whose invention goes back to the nineteenth cen-

tury period when statistics were developed in the United Kingdom. Abraham de Moivre is

credited with discovering the concept of measure of dispersion that appears in his book

”The Doctrine of Chances” in 1718. But the term standard deviation has been used to the

first time by Karl Pearson in 1893 in front of the Royal Society.

For a discrete set of values (x1 (t ), x2 (t ), . . . , xN (t )) defining the dynamical states of dif-

ferent variables, the standard deviation at a time t is given the following expression

σ (t ) =
[

1

N

N∑
i=1

(xi (t )− x̄ (t ))2

]1/2

(40)

with the mean value x̄ (t ) defined as

x̄ (t ) = 1

N

N∑
i=1

xi (t ) (41)

The occurrence of stable synchronization in a network of coupled systems can be nu-

merically characterized by the asymptotic time-average 〈σ〉 of the instantaneous standard

deviations of the distribution of state variables xi (t ) with i = 0,1, . . . , N .

Global synchronization for a system of coupled dynamical variables xi (t ) which des-

cribes a collective dynamic of the system, corresponds to the value 〈σ〉 = 0.
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A relationship exists between the RMS and a standard deviation and can be defined as

η(t )2 = x̄(t )2 +σ(t )2 (42)

2.4 Nonlinear modelling of the network of indirectly cou-

pled mechanical structures

2.4.1 Model description of a system of two indirectly coupled structures

a. Description of the system

Figure 11 presents a system of two hinged-hinged Euler’s beams coupled indirectly

through piezoelectric patches. The piezoelectric patches are laminated on both sides of

each beam ; and they are all mounted together in parallel with a load resistance and a cur-

rent source.

FIGURE 11 – Schematic of two hinged-hinged beams indirectly coupled through a dynamic
environment constituted of piezoelectric patches (Dark grey colour) in parallel conformation
with a load resistance and a current source.

In this coupling configuration, the electrical part is kept active by feedback from the
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vibrations of each beam and simultaneously, the state of electrical part influences or regu-

lates the dynamics of each beam. This kind of coupling configuration is particularly impor-

tant in modern research of coupled oscillators, and it is known in the literature as indirect

coupling [51] or environmental coupling [45] or relay coupling [46] or bath coupling [47].

In a such configuration, the mechanical energy is converted to an electrical one through

the piezoelectric transduction principle and this electrical energy is dissipated through the

load resistance.

The mechanical part of the system is constituted of two isotropic, uniform and flexible

Euler’s beams of length l with a cross section area A, and those beams are excited by a com-

mon external load f (t ) with an amplitude f0 and an external frequency ω. Applying both

the mechanical and the Kirchhoff’s laws, the equations of motion of the mechanical and

electrical parts are modelled as follows :

m1
∂2w1

∂t 2
+δ∂w1

∂t
+E I

∂4w1

∂x4
−E A

[
1

2l

∫ l

0

(
∂w1

∂x

)2

d x

]
∂2w1

∂x2

+α̃v (t ) = f0 cosωt

(43a)

m2
∂2w2

∂t 2
+δ∂w2

∂t
+E I

∂4w2

∂x4
−E A

[
1

2l

∫ l

0

(
∂w2

∂x

)2

d x

]
∂2w2

∂x2

+α̃v (t ) = f0 cosωt

(43b)

Cp
d v

d t
+ v

R
=−α̃

∫ l

0

(
∂3w1

∂x2∂t
+ ∂3w2

∂x2∂t

)
d x + i (t ) (43c)

where wi (x, t ) represents the transversal displacement, mi = ρi Ai is the mass per unit of

volume, E the Young’s modulus, I the quadratic moment, and δ is a common damping co-

efficient to each beam, with i = 1,2. The fifth term of Eqs.(43a) and (43b) traduces the cou-

pling between beams and piezoelectric patches, α̃ is the electromechanical coupling para-

meter and v (t ) is the voltage across the load resistance. Cp = 2εS
33bl/tp is the net clamped

(i.e. constant strain) capacitance of the piezoelectric layers, εS
33 is the permittivity, tp is the
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thickness of piezoelectric layers, b is the base of the beam, R the value of the passive load

resistance, the subscript 3 indicates the direction corresponding to y [48]. i (t ) = i0 cosωe t

is an external current source which supplies the piezoelectric patches. The presence of the

current source is to study the effects of an external source on the dynamics of the system.

The associated hinged-hinged boundary conditions are given by

wi |x=0,l = 0 and
∂2wi

∂x2

∣∣∣∣
x=0,l

= 0 (44)

b. Modal equations of the system

To deal with the analysis of this system, it is convenient to transform the partial diffe-

rential equations into ordinary differential equations by using the Galerkin decomposition

method [6]. The following set of dimensionless variables is introduced :

W1 = w1

r
;W2 = w2

r
;τ= t

T
; X = x

l
;V = v

V0
(45)

where T is a reference time and its value will be defined later ; V0 is a reference voltage.

According to boundary conditions, the transversal displacement of beams is decompo-

sed as follow :

W1 (X ,τ) =
∑
n

Zn1 (τ)Φ (X ) (46a)

W2 (X ,τ) =
∑
n

Zn2 (τ)Φ (X ) (46b)

where Zi (τ) is the time-dependent function of each mode andΦ (X ) is the shape function

obtained from the mechanical part. Taking into account the boundary conditions of both

beams in the system, Φ (X ) is expressed as Φ (X ) = sin(nπX ). Substituting Eqs. (46) in Eq.

(43) and projecting back on the nth mode (assuming single-mode dynamics), yields the
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TABLE 1 – Values of physical parameters of the system

Element Notation value
beams
length l 10 m

Young’s modulus E 200×109 N /m2

mass density ρ 7985 kg /m3

width of beams b 0.2 m
thickness of beams h 0.1 m

Piezoelectric patches properties
Permittivity e33 15.91 nF m−1

load resistance R 29.3 kΩ

following dimensionless modal equations :

d 2Zn1

dτ2
+λd Zn1

dτ
+Zn1 + 1

4
Z 3

n1 +χV = F0 cosΩτ (47a)

µ
d 2Zn2

dτ2
+λd Zn2

dτ
+Zn2 + 1

4
Z 3

n2 +χV = F0 cosΩτ (47b)

dV

dτ
+βV = aχ

(
d Zn1

dτ
+ d Zn2

dτ

)
+ I0 cosΩeτ (47c)

with

λ=
(

l
nπ

)2
δp

EIm1
;χ= 2α̃V0l 4

E I r (nπ)5 (1− (−1)n) ;r =
√

I
A ;

F0 = 2 f0l 4

E I r (nπ)5 (1− (−1)n) ;µ= m2
m1

;T =
(

l
nπ

)2√m1
E I ;

Ω=ωT ;Ωe =ωe T ;β= T
RCp

; I0 = i0T
CpV0

; a = E I r 2(nπ)6

2CpV 2
0 l 5

(48)

The parameters of the beams and those of the piezoelectric patches used in numerical

simulation are given in table 1. A precision will be done in text if one of these values is

modified.

2.4.2 Model description of a network of indirectly coupled Euler’s beams

a. Model description

Figure 12 shows a system of N number of hinged-hinged Euler’s beams and the electri-

cal circuit which is consisting of piezoelectric patches. In this subsection, we assume that

in the network, the beams are identical Euler’s beams with length l and that they are exci-
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ted by a common force of amplitude f0 and frequency ω. The same assumptions done in

subsection 2.4.1 are taken into account in this subsection, and the model equation for a

network indirectly coupled Euler’s beams is then given by :

m
∂2wi

∂t 2
+δ∂wi

∂t
+E I

∂4wi

∂x4
−E A

[
1

2l

∫ l

0

(
∂wi

∂x

)2

d x

]
∂2wi

∂x2
+ α̃v (t ) = f0 cosωt (49a)

Cp
d v

d t
+ v

Rp
=−α̃

N∑
i=1

∫ l

0

∂3wi

∂x2∂t
(49b)

where in Eq. (49a), wi (t ) represents transversal displacement of the beam i (i = 1,2, ..., N )

at time t ; v (t ) is the voltage across the resistance load ; α̃ is the electromechanical coupling

parameter, measuring the strength of the global coupling between piezoelectric patches

and beams. m, E , I , δ are the mass per unit length, Young’s modulus, quadratic moment

and transversal damping coefficient of each beam respectively. The equation of the electri-

cal part can be obtained applying Kirchhoff’s laws to all the coupled piezoelectric patches,

and it is given by Eq.(49b), with Cp =
N∑

i=1
cpi and Rp which are the resultant capacitance of

the piezoelectric patches and load resistance, respectively. The term on the right hand side

of the electrical equation (Eq.(49b)) represents the influence of the motion of each beam

on the electrical part, and mutually the resultant voltage v (t ) from this electrical part in-

fluences the dynamics of each beam.

b. Modal equations of the system

In order to proceed with numerical analysis of the system of Eqs. (49a) and (49b), we

first introduce the following dimensionless variables :

Wi = wi

r
; X = x

l
;τ= t

T
;V = v

V0
(50)

where r is the radius of gyration of the cross section A, T is a dimensionless time va-

riable and V0 is a reference voltage. The value of T will be given later. It is convenient to
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FIGURE 12 – Schematic of a network of N hinged-hinged beams indirectly coupled via pie-
zoelectric patches.

transform the dimensionless partial differential equations into ordinary differential equa-

tions by using the Galerkin decomposition method [23].

According to the boundary conditions of a hinged-hinged beam defined by Eq. (51) :

Wi |X=0,1 = 0 and
∂2Wi

∂X 2

∣∣∣∣
X=0,1

= 0, (51)

The transversal displacement of the i th beam is defined as follows :

Wi (X ,τ) =
∑
n

Zni (τ)Φn (X ) (52)

where Zni (τ) is the time dependent function of the mode n for each beam i andΦn (X ) =
sin(nπX ) is the shape function. After some mathematical manipulations, we obtain the fol-
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lowing modal equations :

d 2Zni

dτ2
+λd Zni

dτ
+Zni + 1

4
Z 3

ni +χV = F0 cos(Ωτ) (53a)

dV

dτ
+βV = aχ

N∑
i=1

d Zni

dτ
(53b)

with

λ=
(

l
nπ

)2
δp

EIm
;χ= 2α̃V0l 4

E I r (nπ)5 (1− (−1)n) ;F0 = 2 f0l 4

E I r (nπ)5 (1− (−1)n)

T =
(

l
nπ

)2√
m
E I ;Ω=ωT ;β= T

RpCp
; a = E I r 2(nπ)6

2CpV 2
0 l 5

(54)

2.4.3 Description and nonlinear model of the delayed network of indi-

rectly coupled beams

a. System description

The system consists with a network of N simple supported beams as shown in figure

13. Each beam is assumed isotropic, uniform and flexible. We assume that all beams are

identical Euler’s beams and that they are excited by a common force of amplitude f0 and

frequency ω. The network of beams are interconnected indirectly through an electrical cir-

cuit as described in the previous subsection. The electrical part integrates a load resistance

and the capacitance of the piezoelectric patches. The piezoelectric layers are laminated

along each side of both beam.

Prior experimental and analytical studies in the area of structural control have inves-

tigated the effects of time delays on the system under control. A time delay occurs on a

controlled system during the computation time or the actuation of the control force [102].

In our model, the value of the load resistance used to dissipate the electrical energy is

adjusted through the computation unit, after the evaluation of the total voltage delivered

by the piezoelectric patches. This process generates the birth of a time delay.
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b. Modal equations of the system

Applying both continuous mechanical principles to the mechanical part and the Kirch-

hoff’s laws to the electrical part as done in the previous subsection, the system of delayed

indirectly coupled beams can be defined by the following set of equations

d 2Zi

d t 2
+λd Zi

d t
+Zi +αZ 3

i +χV = f0 cos(ωt ) (55a)

dV

d t
+βV = aχ

N∑
i=1

d

d t
(Zi (t −τ)) (55b)

where the variables Zi and V represent the dimensionless variable of the displacement

for the i th beam and the voltage across the load resistance, respectively with i = 1,2, ..., N .

χ which represents the strength of the electromechanical coupling parameter, τ which is

the time delay between the detection of vibrations and the actuation feedback action of

the controller, and other parameters in Eq.(55) are assumed positive throughout this work.

In this part of the work, the simulations will be carried out for λ = 0.39, α = 0.25, β =
1.24, a = 318.26, ω = 0.3, f0 = 5.0, N = 20, otherwise if the values are changed, the new

values will be specified.

Equation (55) is obtained assuming the Euler-Bernoulli formalism with the require-

ments that the beam is thin and relatively long and that the torsional and axial vibrations

are negligible compared to the flexural vibration. The equations modelling such a system

have been established for a network of beams indirectly interconnected to an electrical cir-

cuit, without time delay consideration [113].
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FIGURE 13 – Schematic diagram of a feedback time delay indirectly coupled network of
beams.

2.5 Conclusion

In this chapter, we have described the mathematical formalisms and numerical me-

thods used to solve the problem of this thesis. We started by the presentation of the Ga-

lerkin decomposition method used to reduce the problem of the PDEs into ODEs. We also

presented the harmonic balance method to solve the nonlinear ODEs obtained from the

model of this thesis and the stability criteria for DDEs is also investigated. Then we have

provided to the readers the tools that will be used for characterization of the dynamical

and synchronization states of dynamical systems under consideration in the thesis. At last,

nonlinear modelling of electromechanical systems constituted of a network of beams indi-

rectly connected to piezoelectric patches, with different consideration have been presen-

ted. The next chapter will be focused on the dynamical analysis and the investigation of the

occurrence of strong amplitude reduction (SAR) on a network of Euler’s beams indirectly

connected to a dynamical environment. Synchronization state and the effect of time delay

will also be investigated.
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CHAPITRE 3

RESULTS AND DISCUSSIONS

3.1 Introduction

This chapter is devoted to the presentation and discussions of the results from

mathematical analysis and numerical simulations. Therefore, the chapter is organized as

follows. The first section deals with the analysis of a strong amplitude reduction phenome-

non taking into account two indirectly coupled Euler’s beams through a dynamic environ-

ment. In the second section, an extension of this study is done for a case of a network of

indirectly coupled beams, and the synchronization state of the network is also highlighted.

The third section presents the effect of the time delay on the occurrence of SAR phenome-

non and synchronization state for a network of indirectly coupled beams. The last section

is devoted to the conclusion of the chapter.

3.2 Strong amplitude reduction of vibration on two beams

indirectly interconnected using a piezoelectric damper

3.2.1 Influence of different current sources on the control strategy

a. Effect of an AC source

The vibration amplitude of the first beam Z1 (for the first mode) is plotted as function

of the external frequencyΩ for different values of current amplitude I0 (Fig. 14). This figure

shows that the vibration amplitude of the beam increases as current amplitude increases.

So we conclude that the use of an AC source is harmful for the system of coupled beams

under control, it alters the efficiency of the control strategy as it increases the vibration
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amplitude of the beams with the increase of its amplitude I0. The observations done for

the first beam are the same for the second one.

FIGURE 14 – Effect of an AC source on vibration amplitude of the first beam Z1 as function of
the external load frequencyΩ, for current amplitudes I0 = 0.0 , I0 = 100, I0 = 200. The others
parameters are : F0 = 0.1, µ= 1.0, χ= 0.1,Ωa = 5.03

b. Effect of a DC source

By using a DC source, the vibration amplitude of the displacement Z1 is plotted as

function of the amplitude of the intensity of the direct current I0 (Fig. 15). As the intensity

I0 increases the vibration amplitude of the displacement Z1 decreases slightly. Thus, one

realizes that DC source contributes to decrease vibration the amplitude of the beams, and

it is clear that its use will be benefit for the control, nevertheless this reduction is very weak.

So in the rest of this section, the effect of current supply source will be neglect in the follo-

wing analysis.
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FIGURE 15 – Effect of a DC source on vibration amplitude of the first beam Z1 as function of
the intensity of the direct current I0, for χ= 0.03, µ= 1.0, F0 = 1.0.

3.2.2 General analysis of oscillations quenching mechanism on the sys-

tem

The steady-state response of the set of equations (47) are determined by applying the

harmonic balance method [106, 6] by setting :

Z (τ) = A1 cos(Ωτ)+ A2 sin(Ωτ) (56a)

V (τ) = B1 cos(Ωτ)+B2 sin(Ωτ) (56b)

Inserting Equations (56) into Equations (47) and equating the coefficients in sin(Ωτ)

and cos(Ωτ) (assuming that the terms due to higher frequencies can be neglected), the
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following set of equations is obtained :

(
1−Ω2 + 3

16 A2
)

A1 +λΩA2 +χB1 = F0

−λΩA1 +
(
1−Ω2 + 3

16 A2
)

A2 +χB2 = 0

βB1 +ΩB2 = 2aχΩA2

−ΩB1 +βB2 =−2aχΩA1

(57)

After some mathematical algebraic manipulations, we obtain the amplitude of the both

beams that satisfies the following non-linear algebraic equation :

[(
1−Ω2 + 2aχ2Ω2

∆
+ 3

16
A2

)2

+
(
λΩ+ 2aχ2βΩ

∆

)2]
A2 = F 2

0 (58)

With ∆ = β2 +Ω2 and A2 = A2
1 + A2

2. We notice that this result is obtained for the shift

mass parameter µ= 1.0, meaning the masses of the beams are equals.

a. Effect of the electromechanical coupling parameter on the dynamical behavior of the

beams

The frequency response curve is plotted in term of the amplitude of displacement

of the beams Z1 and Z2 as function of the external frequency of excitation Ω for different

strengths of the electromechanical coupling parameter (Fig. 16). This figure shows that the

vibration amplitudes of both beams decrease as the strength of the electromechanical cou-

pling parameter increases, meaning a vibration reduction of both beams with the increase

of the coupling parameter. Moreover the increase of the coupling parameter leads to a di-

sappearance of the sub-harmonic resonance, and a suppression of the amplitude jump is

also observed. A similar result has been highlighted by Nwagoum et al., when they were

analysing the vibration control of a thin plate with an RL electromechanical controller [22].

In order to complement this analysis, the bifurcation diagram is plotted for different

values of the electromechanical coupling parameter. Figure 17 presents the effects of the

coupling parameter on the bifurcation diagrams of the beams. It is observed a progressive

deterioration and disappearance of complex motions of the beams as the strength of the

coupling parameter increases, even for the large value of the external load. This observation
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FIGURE 16 – Amplitude response curve of Zi as function of frequency external excitation Ω,
i = 1,2. Showing the effects of the electromechanical coupling parameter on vibration am-
plitude of both beams, for F0 = 1.0, E0 = 0.0, µ= 1.0. Analytical curves (· · · ), numerical curves
(×××).

was also made on an electromechanical damping device with magnetic coupling used to

quench chaotic vibrations on a mechanical structure [89].

b. Strong amplitude reduction via indirect coupling

Nana Nbendjo [23] dealt with the control of a single non-linear Euler’s beam using

piezoelectric actuator, different voltage sources were considered. For the case of a passive

piezoelectric control, it has been shown that the vibrations can not be completely damped

but only reduced. Figure 18 (a) displays the amplitude variation in oscillatory responses

of both beams Zi as function of the electromechanical coupling parameter χ where the

mass ratio is set at µ = 1.0. Firstly, there is a small decrease of the vibration amplitude of

both beams in the interval [0.0;0.06], followed by an almost negligible decrease thereof in

the range [0.06;0.16]. Around the value of the coupling parameter χ = 0.16, the vibration

amplitude drop abruptly and tends to low amplitude values which characterizes the state
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FIGURE 17 – Bifurcation diagram of dimensionless displacement Z1 of one beam as func-
tion of the amplitude of the external excitation F0 : (a) χ = 0.0, (b) χ = 0.01, (c) χ = 0.015,
(d) χ = 0.02. Showing the disappearance of the complex motions as the coupling parameter
increases. The others parameters areΩ= 0.3, E0 = 0.0, µ= 1.0.

of strong amplitude reduction (SAR). Although the different transitions described above are

not observed on the analytic curve, there is nevertheless a very good coincidence between

these two results. An extension is made through the analyze of the bifurcation diagram, the

displacement of both beams Zi undergoes the n-periodic motions sequence to one-cycle

then move to SAR state as shows in Fig.18 (b), therefore the complex movements of the

beams are quenched as the coupling parameter increases, followed by periodic motions

then SAR state appears [89, 67, 113].

c. Effect of the parameters of the system on the vibratory states of the beams

From the previous analysis, it has been found that the amplitude of complex motions

(multi-periodic and chaotic motions) is always greater than those of the period-1 motions.

In order to analyze the parameters that contribute to the reduction of the amplitude of the

vibrations on mechanical and civil engineering structures, we investigate in this subsec-

55



FIGURE 18 – (a) Amplitude and (b) bifurcation diagram of dimensionless displacement Zi of
the beams as function of the electromechanical coupling parameter χ, for F0 = 50.0, i = 1,2.
Others parameters are defined in Fig. 17. Analytical curves (ooo), numerical curves (· · · ) (On
fig. 13 (a).

tion, the effect of the mass shift between both beams and also the effect of the variation of

a load resistance on the occurrence of SAR state.

Figure 19 displays the frequency response curves of the displacement of both beams for

different values of shift mass µ and the same value of the coupling parameter χ= 0.03. The

beams exhibit exactly the same dynamical motions for µ= 1.0 as the external frequency of

the load increases, meaning that they are in a synchronization state. But for all other values

of the shift mass, each beam presents its own dynamics and the amplitude of vibrations is

more large in these cases.

Figure 20 shows the amplitude of displacement of both beams Zi with i = 1,2, as func-

tion of the coupling parameter χ for µ= 1.0 and different values of the load resistance R. It

is shown that the vibration amplitude of the beams stays important for small values of the

load resistance (Rp = 29.3×102 Ω), in spite of the values of the coupling parameter taking

in a certain domain. Meanwhile, the strong amplitude reduction state is attained as the

load resistance value is increased, and the value of the coupling parameter for which the

phenomenon occurs is progressively reduced. We conclude that the load resistance value

is crucial for the vibration reduction process.
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FIGURE 19 – Amplitude response curves of Z1 (brown dot) and Z2 (black star) as function of
frequency external excitation Ω, with (a) µ= 0.5, (b) µ= 1.0, (c) µ= 2.0. Showing the effects
of the shift mass parameter on vibration amplitude of both beams, for F0 = 5.0, E0 = 0.0,
χ= 0.003.

3.3 Dynamical clustering, synchronization and strong am-

plitude reduction state investigation in a network of Eu-

ler’s beams coupled via a dynamic environment

In this section, by varying the number of beams as well as the coupling strength, we

explore the system dynamics. In particular, we analyse the synchronization state and the

appearance of strong amplitude reduction phenomenon in a network of beams indirectly

coupled through a dynamic environment (electrical part). In our previous study, the oc-

currence of strong amplitude reduction phenomenon was found in a system of two indi-

rectly coupled Euler’s beams via an electromechanical system consisting of piezoelectric

patches. An extension of this study is presented here in order to investigate the effects of

the network-size as well as the electromechanical coupling parameter. A high-dimensional
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FIGURE 20 – Vibration amplitude Zi of both beams as function of the electromechanical cou-
pling parameter χ,with parameters of Fig. 19 and (a) Rp = 29.3×102 Ω, (b) Rp = 29.3×103

Ω, (c) Rp = 29.3×104 Ω, (d) Rp = 29.3×105 Ω.

nonlinear system of Eqs. (53a) and (53b) is numerically integrated, using the fourth-order

Runge-Kutta scheme. In our numerical simulations, the parameters of the beam were as

follows : length l = 10 m, the width b = 0.05 m, the height h = 0.03 m, the density of ma-

terial ρ = 7850 kg .m−3, the Young’s modulus E = 2×1011 N .m−2, the damping coefficient

δ = 0.1 N .s/m and the reference voltage V0 = 2 V . In addition, the initial conditions for

the displacement of each beam were randomly distributed with uniform probability on the

interval [−5,5].

3.3.1 Synchronization state

Our goal here, is to examine the synchronization state of the system of Eqs. (53a) and

(53b) and to determine the range of parameters for which all the beams exhibit collective

dynamics. The synchronization state is numerically characterized by the asymptotic time-

average 〈η(t )〉 of the instantaneous root mean square function η(t ) of the distribution of
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displacements and velocities of the beams [114], given by :

η (t ) =
[

1

N

N∑
i=1

(
Z 2

i + Ż 2
i

)]1/2

(i = 1,2, · · · , N ). (59)

Global synchronization of the whole system which describes the collective dynamics is at-

tained when 〈η(t )〉 = 0. Fig. 21 shows the time-average root mean square 〈η(t )〉 as function

of the coupling strength χ for all the beams interacting indirectly with an environment for

different network-sizes. It is found that with the increase of the coupling strength and for

N = 2, 〈η(t )〉 decreases slowly and the beams do not completely synchronize. For N = 10,

〈η(t )〉 decreases more rapidly but the beams do not globally synchronize. However, when

N ≥ 50, the curve presents an abrupt slope, with global network synchronization taking

place for strong coupling strength.

FIGURE 21 – Time-average of root mean square 〈η(t )〉 of a distribution of a network of beams
as function of the coupling parameter χ, for network-sizes N = 2, 10, 50, 100. Other parame-
ters are : F0 = 5.0,Ω= 0.3 and Rp = 29.3 kΩ.

Furthermore, for a given coupling parameterχ, 〈η(t )〉 is plotted as function of the network-

size, N . This is illustrated in Fig. 22. In this case, the whole system does not synchronize
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when χ≤ 0.01 ; whereas when the strength of the coupling parameter χ increases (χ≥ 0.1),

the system approaches global synchronization for large network-sizes.

FIGURE 22 – Time-average of root mean square 〈η(t )〉 of a distribution of a network of beams
as function of the number of interacting beams N , for coupling parameters χ = 0.001, 0.01,
0.1, 0.5. Other parameters are defined in Fig. 21.

A global view of the synchronization state can be obtained by scanning different values

of the network-sizes, N and coupling parameter, χ (Fig. 23). We calculate the time-average

rms 〈η(t )〉 in the parameter space N −χ, and we do this for different values of the load

resistance Rp , which is an intrinsic damping of the environment. Note that 〈η(t )〉 is asso-

ciated with the colorbar in the four panels showing different synchronization states. Figure

23 provides the variation of time-average rms 〈η(t )〉 from minimum (blue) to maximum

(red) showing the effect of the environment on the global state of synchronization in the

network. Blue colours indicate the regions where the whole system exhibit global synchro-

nization, while red colours denote the regions where the whole system is assumed to be de-

synchronized. Elsewhere in the colorbars and halfway between the blue and red ones, the

whole system is assumed to be either weakly synchronized or completely de-synchronized.

As the load resistance increases, the de-synchronized and weak synchronized regions di-
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minish while the synchronized ones increase from right to the left.

FIGURE 23 – 2−D parameter plot of time-average root mean square 〈η(t )〉 as function of
the number of interacting beams N and coupling parameter χ for load resistance values (a)
Rp = 2.93 kΩ, (b) Rp = 10.0 kΩ, (c) Rp = 29.3 kΩ and (d) Rp = 293 kΩ. Other parameters are
defined in Fig. 21.

The synchronization feature of the network can be better understood by numerically

computing the probability distribution function [115], defined in a subset by generating M

realizations of Xi , and counting the number of observable outcomes in the interval and

divide by M . This approach was recently employed by Palazzi and Cosenza [91]. Fig. 24

shows the probability distribution of displacement Zi for different coupling parameter with

a network-size N = 200, at an asymptotic dimensionless time ; illustrating the synchroniza-

tion state for different values of coupling strength. At weak coupling (χ≤ 0.01), two clusters

are formed as shown in Fig. 24(a-b). This phenomenon described as dynamical clustering

or cluster synchronization usually occurs when an ensemble of coupled oscillators splits

into groups of synchronized elements [41, 44]. In this system, the dynamical clustering has

almost vanished for the coupling parameter (χ= 0.01), and in Figs. 24(c-d) where the cou-

pling parameter χ ≥ 0.1, we observe the complete disappearance of the dynamical cluste-
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ring and the emergence of global synchronization.

FIGURE 24 – Probability distribution of the displacement showing the transition to synchro-
nization via dynamical clustering in the system for different coupling parameters at the di-
mensionless time τ= 8000 : (a) χ= 0.001, (b) χ= 0.01, (c) χ= 0.1, (d) χ= 0.5. The parameters
used are defined in Fig. 21 and N = 200

Zooming on the weak coupling parameter regime (χ ≤ 0.01) where the formation of

clusters is observed, we illustrate in Fig. 25 the probability distribution for a very weak

coupling parameter (χ = 0.001) ; wherein the clusters remain in existence for all values of

network-size. For N = 2, the clusters are separated in two orbits and the probability dis-

tribution are the same. However, by increasing the network-size, the two groups do not

have the same size, showing that the beams vibrate in different states. In Fig. 26, we plot

the probability distribution of displacement Zi for different network-sizes and with fixed

value of the coupling parameter (χ = 0.1), and at an asymptotic dimensionless time. For

any network-size, we observe a global synchronization in the system. The results of Figs. 24

and 25 agree with different synchronization regions obtained with time-average root mean

square function in the parameter space N −χ in Fig. 23(c).
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FIGURE 25 – Probability distribution of the displacement showing dynamical clustering in
the system for different network-sizes at the dimensionless time τ = 8000 : (a) N = 2, (b)
N = 50, (c) N = 100, (d) N = 200. The parameters used are defined in Fig. 21 and χ= 0.001

3.3.2 Effect of the network-size on the amplitude response curves

Furthermore, we observe that the increase of the network-size and the coupling para-

meter leads to the reduction of vibration amplitude in the system of global synchronized

beams (Fig. 26). Here, we further investigate the influence of network-size on the vibration

amplitude of any beam in the system. By varying the frequency of the external excitation,

we provide in Fig. 27 the frequency-response curves of the first beam for different network-

sizes. The curves show the resonance peaks, the sub-harmonic resonance, amplitude jump

phenomenon for certain values of number of coupled beams N . They show that the ampli-

tude of vibration of the first beam decreases as the number of coupled beams increases. We

also observe the disappearance of the sub-harmonic peak and the leakage of the amplitude

jump with the increase of the number of coupled beams N in the network.

In Fig. 28, we plot the amplitude of vibration of the first beam as function of the am-
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FIGURE 26 – Probability distribution of the displacement in the system for different network-
sizes at the dimensionless time τ = 5950 : (a) N = 1, (b) N = 5, (c) N = 10, (d) N = 200. The
parameters used are defined in Fig. 21 and χ= 0.1

plitude of the external excitation for different values of number of coupled beams. For the

case of two indirectly coupled beams, the amplitude-response curve presents a jump phe-

nomenon, which disappears with the increase of the number of coupled beams. Figs. 27

and 28 permit to conclude that the jump phenomenon disappears and the amplitude of

vibrations of the beams decreases considerably with an increase of the number of coupled

beams.

3.3.3 Strong reduction of amplitude : effects of Euler’s beams network-

size

Fig. 29 shows the bifurcation diagrams of the first beam as function of the electrome-

chanical coupling parameter for different values of network-size. For a small network-size

(Fig. 29(a)), the increase of the coupling parameter leads to the suppression of period−nT
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FIGURE 27 – Effects of the numbers of coupled beams on the amplitude-response curves for
the first beam as function the frequency of the external excitation Ω. The parameters used
are : χ= 0.02, F0 = 1.0 and Rp = 29.3 kΩ.

(n being an integer) oscillations, but we observe a very low decrease of vibration amplitude.

By increasing the network-size (Figs. 29(b-d)), the areas of period−nT oscillations are more

and more reduced, and we observe that vibration amplitude decreases gradually reaching

to very small amplitude for large network-sizes (Figs. 29(c-d)). It is also found that the para-

meters space N −χ for which the strong reduction of amplitude phenomenon is achieved,

correspond to the parameters in the global synchronized domain (Fig. 23(c)). This result

shows that for a network of beams indirectly coupled through an electrical circuit with a

relative weak coupling parameter, strong reduction of amplitude can be obtained by in-

creasing the number of coupled beams in the system.

To complete the picture, we present a further confirmation of SAR by plotting the time

series of displacement of the first beam Z1 in Fig. 30 as the network-size N increases. It is

observed in Fig. 30(a) that, as the network-size increases, the amplitude of oscillations of

the first beam decreases. For large network-size, the vibration amplitude of the first beam

approaches very small values. In Fig. 30(a), a phase shift is also observed as the network-
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FIGURE 28 – Effects of the numbers of coupled beams on the amplitude-response curves for
the first beam as function the amplitude of the external excitation F0. The parameters used
are : χ= 0.02,Ω= 1.4 and Rp = 29.3 kΩ.

size of Euler’s beams increase. Fig. 30(b) shows the time series for a fixed network-size of

Euler’s beams as the coupling parameter χ increases, in a suppression of period −nT oscil-

lations and the state of strong amplitude reduction is attained by increasing the coupling

parameter.

3.4 Delay-induced synchronization on a network of Euler’s

beams indirectly interconnected via piezoelectric patches

3.4.1 Linear stability analysis

To study the local stability of the equilibrium point (0,0,0), the amplitude of the external

excitation is set to be f0 = 0.0. The overall network of coupled beams are assumed to be in
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FIGURE 29 – Bifurcation diagram of the displacement of the first beam of the system as
function of the coupling parameter χ, forΩ= 0.3, F0 = 5.0 and Rp = 29.3 kΩ : (a) N = 2, (b)
N = 30, (c) N = 60, (d) N = 200.

FIGURE 30 – Times series of the first beam for (a) different values of Euler’s beams network-
sizes, χ= 0.1 ; (b) different values of the coupling parameter, N = 200. Other parameters are
defined in Fig. 29.
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a synchronized state. Thus, equation (55) can be recast in the following linearized form :

d zi
d t = yi

d yi
d t =−λyi − zi −χV

d v
d t =−βv +aχN yi (t −τ)

(60)

We set the Lyapunov concept by applying the fundamental solution e st [101, 116]. The

characteristic equation related to the fixed point (0,0,0) is given in the following form :

s3 + (
β+λ)

s2 + (
1+λβ+aNχ2e−sτ) s +β= 0 (61)

To obtain the stability boundary in the control parameter space
(
χ,β

)
, we use the D-

subdivision method [102, 117]. According to this method, the stability boundary in the

space of control parameters
(
χ,β

)
is determined by the points that lead either to a root

s = 0, or a pair of pure imaginary roots of Eq. (61).

Substituting s = 0 into Eq. (61) yields :

β= 0 (62)

Setting s = i b (where b is a real parameter) into the characteristic equation (61), one

finds the following system of equations :


aNχ2 (b sin(bτ))+ (

1−b2
)
β=λb2

aNχ2 cos(bτ)+λβ= b2 −1

(63)
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Equation (63) leads to

β= (sin(bτ)b2−cos(bτ)bλ−sin(bτ))b
sin(bτ)bλ+cos(bτ)b2−cos(bτ)

χ2 = b4+b2λ2−2b2+1
N a(sin(bτ)bλ+cos(bτ)b2−cos(bτ))

(64)

The bifurcation curve in plane
(
χ,β

)
delimiting the stability boundary can be found

from the parametric equations (64) where b is varying, while assuming that the conditions

χ≥ 0 and β≥ 0 are verified. Figure 31 shows the stability boundary in the parameter space

χ−β for different values of the time delay. The white colour indicates the region where the

whole system is stable, whereas the black colour represents the region where the system

is unstable. As the time delay increases, the stable region is reduced. Thus, we lead to the

conclusion that the control parameters along with the time delay have an important effect

on the stability and the efficiency of the control process.

FIGURE 31 – Stability boundary in the parameter space χ−β : showing the reduction of the
stable region in the system for different values of the time delay : (a) τ= 0.1, (b) τ= 0.2, (c)
τ= 0.3, (d) τ= 0.5.
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3.4.2 Effect of time delay on the general behavior of the network of indi-

rectly coupled beams

a. On the stability of the network

Bifurcation diagrams are plotted in order to complement the results obtained from the

stability analysis. We observe the effect of the delay on the generalized behavior of the net-

work of coupled systems as the coupling parameter increases. Figure 32 shows the bifur-

cation diagrams of the displacement of the first beam Z1 as function of the electromecha-

nical coupling parameter χ for different values of the time delay τ. According to the time

delay, the trajectory of the beams increases and diverges from the equilibrium point of the

network of coupled beams
(
ye , ze

)= (0,0) as the electromechanical coupling parameter in-

creases. Moreover complex motions are observed in the network with a certain range of the

coupling parameter. Nevertheless, as the coupling parameter reaches a certain value, the

trajectories of all beams in the network diverge towards infinity and whole system exhibits

unstable motion.

Some representative time series of the displacement Zi , phase portrait and amplitude

of Fourier spectra of responses of any beam in the system are shown in figure 33 for τ= 0.1

and different values of the electromechanical coupling parameter χ. As the coupling pa-

rameter χ increases, the amplitude of vibrations also increases and the periodic oscilla-

tions observed for χ = 0.1 involve to a period doubling motion for χ = 0.45 and finally a

quasiperiodic motion is observed for χ = 0.55. Correspondingly, the Fourier spectra have

been drawn corresponding to the time series in figures 33 (a3)-(b3)-(c3). The increase of

χ generates several harmonics and enlarges the range of frequencies in the network. The

consideration of the time delay on the feedback control of the network of beams leads to

the disappearance of the strong amplitude reduction observed in the case without delay

shown in the previous section and brings out disturbance and instability around the sys-

tem.

Nevertheless, the appearance of harmful effects due to the delay in the network can be
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FIGURE 32 – Bifurcation diagrams of the network of coupled beams (Eqs. (55)) depicting
the local maxima of the first beam as χ increases : showing the effect of the delay τ on the
occurrence of unstable motion on the system with different values of τ : (a) τ = 0.1, (b)
τ= 0.2, (c) τ= 0.3, (d) τ= 0.5.

FIGURE 33 – Time series, phase portrait and Fourier spectra of any beam in the network
with τ= 0.1 and (a) χ= 0.1, (b) χ= 0.45, (c) χ= 0.55.
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pushed towards larger values of the coupling parameter by increasing the value of the dis-

sipative parameter β of the electrical part. Thus, we observe in figure 34 that the increase

of the dissipative parameter with the coupling parameter bounded in a certain area, leads

to the suppression of the complex dynamics for the case τ= 0.1 in favor of periodic dyna-

mics. This numerical result is in agreement with the analytical study of the stability of the

system made in Fig. 31, which shows that the increase of the dissipative coefficient β of the

electrical part leads to enlarge the stable domain of the system.

FIGURE 34 – Bifurcation diagrams of the network of coupled beams (Eqs. (55)) depicting the
local maxima of the displacement of the beam Zi as function of the coupling parameter χ
for : (a) β= 1.24 and (b) β= 124.15.

Now considering both the coupling coefficient χ and the time delay τ, we have nume-

rically developed a stability chart which provides different domains of control parameters

where the trajectories of indirectly coupled beams converge. In figure 35, we increase the

coupling parameters with a step of 10−2 for the coupling parameter and 10−3 for the time

delay in a fixed time interval, those that lead to unstable trajectories are saved and plot-

ted. The parametric domain spanned both by the coupling coefficient and the time delay

is partitioned by the unstable motion area depicted with the black colour and the stable

motion area depicted with the white colour. We notice the appearance of a small island of
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instability for very low values of the delay. On the other island of instability which is more

broader, we observe that the increase of the delay enlarges the unstable area.

FIGURE 35 – Chart of stability in the
(
τ−χ)

parameter space. In the black region, the motion
is unstable while in the white region there is stable dynamical motion.

b. On the synchronization and strong amplitude state

In order to characterize the collective behavior of the network of coupled beams and

show the effect of the time delay on the strong amplitude reduction (SAR) state, we intro-

duce the following approaches.

On one hand, the occurrence of the global synchronization in the overall system of cou-

pled beams can be numerically investigated through the asymptotic time-average 〈σ〉 of

the instantaneous standard deviations of the distributions of state variables related to the

beams [50, 91], defined as

〈σ〉 = 1

T −τ
T∑

t=τ
σ (t ), (65)
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σ (t ) =
[

1

N

N∑
i=1

(
Zi −Z

)2 +
(

Żi − Ż
)2

]1/2

, (66)

where τ is the transient time, and the mean values are defined as

Z (t ) = 1

N

N∑
i=1

Zi (t ), (67)

Ż (t ) = 1

N

N∑
i=1

Żi (t ), (68)

Global synchronization which describes a collective dynamic of the system of coupled

beams, corresponds to the value 〈σ〉 = 0. Numerically, we consider that synchronization

state is obtained as 〈σ〉 < 10−7.

On the other hand, the strong amplitude reduction phenomenon is characterized with

the time-average amplitude 〈A〉 of the displacement variables. 〈A〉 is calculated by the ave-

rage difference between the global maximum and global minimum values of the time series

of each beam of the system over a sufficient long time [118]. The average amplitude 〈A〉 is

then written as,

〈A〉 = 1

N

N∑
i=1

[〈
Zi ,max

〉−〈
Zi ,min

〉]
(69)

The case where 〈A〉 ∼ 0 is considered as strong amplitude reduction state. Thus, the

average amplitude parameter can be useful to identify the coupling parameter regions for

which the vibration control strategy is highly efficient.

Figure 36 shows the time-average standard deviation 〈σ〉 of a network of indirectly cou-

pled beams as function of the coupling strength χ for different network-sizes and with a

time-delay τ = 0.001. It is found that the network of coupled beams remain in a synchro-

nization state over the coupling parameter range for small values of network-size (N ≤ 15).

As the number of coupled beams is more increased (N ≥ 25), the synchronization state is

lost for large values of the coupling strength.

Furthermore, in figure 37, the variation of the average amplitude 〈A〉 of the network of
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FIGURE 36 – Time-average standard deviation 〈σ〉 of a network of indirectly coupled beams,
under the variation of the coupling strength χ, for network-sizes N = 5,10,15,25,30. With
τ= 0.001 and other parameters defined above.

coupled beams, with the coupling strength χ, for different network-sizes is investigated.

For small values of the network-size (N ≤ 15), first we observe that the vibration state of the

global network of coupled structures increases for small values of the coupling strength.

After a threshold value of the coupling parameter, a continuous vibration reduction is ob-

served which leads to a strong amplitude reduction state for large values of the coupling

strength. Amplitude reduction is more important when the number of coupled systems in-

creases. When the number of coupled systems grows more (N ≥ 25), we observe at first

the same behavior as in the case of small network-sizes. But for large coupling values, the

average amplitude of the system increases abruptly, which means that the system becomes

unstable for these values of the coupling parameter. This finding coincides with that made

in figure 36, reflecting the fact that the strong amplitude reduction state is only reached

when the network of coupled beams is in a synchronization state.

A global representation of the synchronization state and the average amplitude can be

obtained by scanning different values of the network-sizes, N and coupling strength, χ.

The time-average standard deviation 〈σ〉 and the average amplitude 〈A〉 are evaluated for
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FIGURE 37 – Time-average amplitude 〈A〉 of a network of indirectly coupled beams, under
the variation of the coupling strength χ, for network-sizes N = 5,10,15,25,30. With τ =
0.001 and other parameters defined above.

different values of the time-delay. We note that these quantities are associated in each panel

to the colour bars which represent the synchronization state and the global vibration state

of the network of coupled beams, respectively. Figure 38 shows that the region of the global

synchronization state of the network of coupled beams decreases with the increase of the

delay and the number of coupled beams.

Figure 39 shows the variation of the average amplitude of the network with the increase

of the delay. The dynamical states observed in figure 39 (a) and (b) coincide nearly with the

synchronization state of the network of coupled beams showed in 38 (a) and (b). The strong

amplitude reduction state is represented as a part of the region in blue colours and this

state is followed by an abrupt increase of vibratory state in the overall network. For value of

the time-delay τ= 0.1, the strong amplitude reduction state is almost missed as showed in

figure 39 (c). In this case, the large region of synchronization state observes in figure 38 (c)

can be explained by the fact the beams are driven by the same external excitation.

Taking into account that in a real environment, the excitation force can fluctuate from

one structure to another. Thus, it seems interesting to investigate the effects of time delay
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FIGURE 38 – The schematic phase diagram of the time-average standard deviation 〈σ〉 in
parameter space

(
χ, N

)
for different values of the delay. (a) τ= 0.001, (b) τ= 0.01, (c) τ= 0.1

and the other parameters are defined above.

FIGURE 39 – The schematic phase diagram of the average amplitude of the network of cou-
pled beams 〈A〉 in parameter space

(
χ, N

)
for different values of the delay. (a) τ= 0.001, (b)

τ= 0.01, (c) τ= 0.1 and the other parameters are defined above.
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on a network of coupled beams excited by heterogeneous loads. The case where the beams

are excited by external loads with the same amplitude and randomly distributed frequen-

cies such as ωi ∈ [0,0.5) is investigated.

Figure 40 shows the effects of time delay both on the synchronization and the SAR state

of a network of indirectly coupled beams, with randomly distributed external frequencies

for different network-sizes and coupling strength. Both the case without delay and the with

delay are considered. Thus, the network of coupled beams does not synchronized in the

case without delay whereas a synchronization state appears on a certain range of coupling

strength in the case with delay as shown in figure 40 (a) and (b), respectively. The strong

amplitude reduction state is also lost on both cases as shown in figure 40 (c) and (d).

FIGURE 40 – The schematic phase diagram of the time-average standard deviation 〈σ〉 for
(a) τ= 0.0, (b) τ= 0.1, and the average amplitude of the network of coupled beams 〈A〉 for
(c) τ = 0.0, (d) τ = 0.1 in parameter space

(
χ, N

)
. With f0 = 10.0 and the other parameters

defined above.

In order to confirm previous observations, some representative time series of the dis-

placement Zi of a network of N = 10 indirectly coupled beams are shown in figure 41 for

the case without delay ( τ= 0.0) and the case with delay ( τ= 0.1). So, the network is in de-

synchronization state of the case without delay (figure 41 (a)) while a synchronization state
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is observed for the case delay (figure 41 (b)). In the last case it can be seen that the presence

of the delay in the system contributes to the suppression of the complex dynamics of the

network and to a strong increase of the vibrations amplitude of the beams.

FIGURE 41 – Time series of a network of N coupled beams for (a) τ = 0.0 and (b) τ = 0.1.
With N = 10, χ= 0.2, f0 = 10.0 and the other parameters defined above.

3.5 Conclusion

In this chapter, we have done a presentation and a discussion of the results from mathe-

matical analysis and numerical simulations. We started by a mathematical modelling and

the analysis of a strong amplitude reduction phenomenon taking into account two indi-

rectly coupled Euler’s beams through a dynamic environment. An extension of the number

of coupled structures allowed to explore the occurrence of strong amplitude reduction phe-

nomenon and synchronization on the network of indirectly coupled Euler’s beams through

a dynamic environment. At end, we have investigated the effect of the delay on a network

of indirectly coupled Euler’s beams through an electrical environment.
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General conclusion

Through this thesis work, the issue was to analyze the dynamic behavior of a network

of beams coupled indirectly through piezoelectric patches, in order to reduce the level of

vibrations absorbed by these beams and thus reach the state of strong amplitude reduc-

tion. The essential results of this research may thus be useful at different levels of vibra-

tion control of mechanical and civil structures such as civil engineering, mechanical en-

gineering, aeronautics, robotics, industry and others where the superstructure is generally

constituted by an assembly of several structural elements (beams, plates, and so on).

Thus, in the first chapter of this thesis, we have presented a literature review of the key

concepts explored throughout our work. An overview on the generalities concerning the

vibrations and the effects induced by those vibrations mainly on human body and also on

civil and mechanical structures. The different approaches used to control these vibrations

were also presented as well as some limitations observed in each of them. Then, an in-

troduction to the complex network dynamics has been done. Different network topologies

have been highlighted and the rich dynamic phenomena exhibited by those network have

been discussed, especially the synchronization state and amplitude death. The generalities

on the time delay effect on a network of coupled systems have been also described. At end,

the problem of this thesis has been stated.

In the second chapter, the mathematical formalisms and numerical methods used to

solve the problem of this thesis have been described. A presentation of the Galerkin de-

composition method used to transform a problem of the partial differential equations into

a set of ordinary differential equations. As analytical method used to solve the nonlinear or-

dinary differential equations obtained, the harmonic balance method has been employed

in order to investigate the amplitude of the harmonic oscillatory states. Taking into account
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the effect of the time delay, stability for delayed nonlinear equations near their steady-state

solutions or fixed points have been investigated through linear stability of delay differential

equations and D-subdivision approach. The numerical procedure used was the fourth or-

der Runge-Kutta method to approximate the solution of the system of ordinary differential

equations and also for delay differential equations. Then, we have provided to the readers

the tools that will be used for characterization of the dynamical and synchronization states

of dynamical systems under consideration in this thesis. Whole mathematical models used

to get different results of the thesis have been also presented.

The third chapter was devoted to the presentation and discussion about the results ob-

tained from mathematical analysis and numerical simulations.

– Therefore at first, the analysis of a strong amplitude reduction phenomenon taking

into account two indirectly coupled Euler’s beams through a dynamic environment

(constituted of piezoelectric patches shunted through a simple load resistance) was

considered. Through the dimensionless equations of indirectly coupled beams, we

have studied numerically the effect of the electromechanical coupling parameter on

the amplitude response of both beams, it has been founded that as its strength in-

creases the vibration amplitudes of both beams are considerably reduced. Taking into

account this remark, we studied the global effect of the coupling parameter through

the amplitude response curves and bifurcation diagrams, it has been found that the

vibration amplitude of both beams are strongly reduced for a certain range of the

coupling parameter. Using this approach to reduce vibrations on mechanical and ci-

vil structures allows to obtain a very low level of vibration amplitude around the fixed

point of each structure reflecting a strong reduction amplitude state. The effect of

others parameters of the system on the occurrence of strong amplitude reduction

were also discussed. It has been shown that the load resistance also plays an impor-

tant role in the strong dissipation of mechanical energy. As it allows a more or less

rapid reduction of vibrations on the structures.

– An extension of the number of coupled structures allowed to explore the occurrence

of strong amplitude reduction phenomenon and synchronization in the network. De-
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pending on the network-size and the coupling strength, it has been found that the

coupled beams exhibit different kinds of synchronization. Specifically, for small va-

lues of the load resistance, the state of global synchronization was found when the

network-size was large ; whereas with increase in the load resistance, global synchro-

nization takes place with smaller network-size. The occurrence of global synchroni-

zation, which was preceded by dynamical clustering. Furthermore, it has been found

that the occurrence of strong amplitude reduction phenomenon in this system coin-

cides with the global synchronization state of all beams ; meaning that all the beams

attain very small amplitude in a synchronized way. The results further showed that

the strong amplitude reduction state can be observed for relatively very weak cou-

pling strength and large system-size.

– Finally, we have investigated the effect of the delay on a network of indirectly cou-

pled Euler’s beams through an electrical environment. The generation of the delay in

a vibration control strategy can give birth to diverse rich dynamical states. An analy-

tical analysis of stability of the overall system has been done and it has been shown

that the increase of the time delay reduces the area of stable motion of the system.

The vibratory state and the collective dynamics of the network coupled beams have

been characterized using the average amplitude function and the time-average stan-

dard deviation. It has been shown that the variation of the time-delay affects both the

synchronization state and the strong amplitude reduction of the network of coupled

beams as the coupling strength and the number of coupled structures increase. It has

been observed that the large values of the delay leads the suppression of the SAR state

with the increase of the coupling parameter. Although, we have also shown that the

delay could be beneficial to the synchronization state of coupled systems.

This thesis work has also opened interesting perspectives for future researches and the

main ones are stated as follows :

– It will certainly be interesting at first to identify and study other configurations of

control strategies of mechanical systems able to reach to the strong amplitude state,

in which other types of coupling can be exploited as magnetic coupling, electrostatic
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coupling or magnetoresistive coupling for example. This is to extend the field of ap-

plication of the strong amplitude reduction control to the micro-electromechanical

and nano-electromechanical systems.

– In a real world, the mechanical and civil structures are not submitted in general to

deterministic excitations but rather stochastic ones. It will therefore be interesting to

take into account the effect of noise on the appearance of the phenomenon of strong

amplitude reduction on a network of coupled structures.

– Over the last decades, tremendous investigations have been done to provide a better

understanding of the concept of fractional-order derivative and integral in various

branches of science. So, we shall intend to show the effect of fractional-order deri-

vative on the occurrence of the strong amplitude reduction and the synchronization

phenomenon of a network of indirectly coupled beams.
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Abstract In this paper, strong amplitude reduction
(SAR) phenomenon is reported in a network of Euler’s
beams indirectly coupled via an electrical circuit con-
sisting of piezoelectric patches. SAR phenomenon
appears in this system when global synchronization of
all beams takes place. The occurrence of global syn-
chronization, which was preceded by dynamical clus-
tering, is dependent on the size of the network as well
as on the load resistance of the electrical circuit which
indirectly interacts with all the beams. The results fur-
ther show that the SAR state can be observed for rel-
atively very weak coupling strength and large system-
size.
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1 Introduction

Most systems in the nature exhibit very complex
dynamics, owing to the fact they could be regarded
as many subsystems interacting with each other. The
collective dynamical behaviours of such interacting or
coupled nonlinear systems have attracted great atten-
tion of researchers from various scientific fields such
as: physics; chemistry; biology and social sciences. The
interaction between the subsystems may exhibit rich
forms of emergent phenomena such as: synchroniza-
tion; hysteresis; phase locking; riddling; and oscilla-
tion quenching [1–3]. Recently, quenching of dynam-
ics has been widely studied in many theoretical and
experimental models due to its relevance in many real-
world applications such as: chemical reactions; biolog-
ical oscillators; coupled laser systems; relativistic mag-
netron; and synthetic genetic networks [4]. Quenching
phenomenon refers to the suppression of oscillation
under various types of interaction or intentional con-
trol. There are two distinct types which are amplitude
death (AD) and oscillation death (OD) [6]. In AD, cou-
pled oscillators arrive at a common stable steady state.
Although most research reports on quenching phe-
nomenon in coupled systems have beenmainly focused
on the suppression of the dynamics of two interact-
ing oscillators using different coupling processes [4,6],
quenching of oscillations has been investigated in a
large number of coupled robust-chaos oscillators [7],
in which globally coupled systems exhibit amplitude

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-3252-9&domain=pdf


S. C. Mba Feulefack et al.

death beyond a threshold of the coupling parameter.
Moreover, the introduction of heterogeneity in the local
parameters of coupled oscillators could drive the sys-
tem to oscillation death state, with coexisting clus-
ters of oscillators in different steady states. In addi-
tion, quenching phenomenon in a variety of network
topologies, such as global connection topology [8,9];
networks with complex topologies for instance small-
world networks [10]; the ring topology [11]; and scale-
free networks [12], had been investigated and reported.
However, all these works have investigated quench-
ing phenomena in self-oscillatory (autonomous) case,
but recently researchers have introduced AD in non-
autonomous coupled systems [3–5].

In this paper, we investigate the occurrence of strong
amplitude reduction phenomenon and synchroniza-
tion in a network of Euler’s beams indirectly cou-
pled through an external electrical circuit consisting of
piezoelectric patches. Here, indirect coupling implies
that the beams are not interacting with each other but
with the piezoelectric patches, while the piezoelectric
patches in turn influence the dynamics of each beam.
This kind of scenario was considered in Refs. [13–16]
from different perspectives. The control strategy pre-
sented by indirect coupling can be applied to the ele-
ments of beams of a skyscraper, when the whole struc-
ture is subjected to an environmental excitation such as
the wind or an earthquake.

The rest of the paper is organized as follows: In
Sect. 2, we describe the network of beams indirectly
coupled via the piezoelectric patches and proceed with
the modelling. In Sect. 3, we numerically analyse the
modal equations and investigate the dynamics vis-a-vis
the synchronization state, using the root-mean-square
(rms) function and probability distribution of the vibra-
tory state of beams in the network and also point out
the condition for the appearance of strong amplitude
reduction phenomenon. The work is then summarized
in Sect. 4.

2 Model description of a network of coupled
Euler’s beams

2.1 Model description

Figure 1 shows a systemof N number of hinged-hinged
Euler’s beamsand the electrical circuitwhich is consist-
ing of piezoelectric patches. The piezoelectric patches

Fig. 1 Schematic of a network of N hinged-hinged beams indi-
rectly coupled via piezoelectric patches

are laminated on both sides of each beam; they are all
mounted together in parallel with a resistance load. In
this coupling configuration, the electrical part is kept
active by feedback from the vibrations of each beam
and mutually, the state of electrical part influences or
regulates the dynamics of each beam. This kind of cou-
pling configuration is known in the literature as indi-
rect coupling [13] or environmental coupling [14] or
relay coupling [15] or bath coupling [16]. In this paper,
we assume that in the network, the beams are identi-
cal Euler’s beams with length l and excited by a com-
mon force of amplitude f0 and frequencyω. Themodel
equation of the network is then given by:

m
∂2wi

∂t2
+ δ

∂wi

∂t
+ E I

∂4wi

∂x4

− E A

[
1

2l

∫ l

0

(
∂wi

∂x

)2

dx

]
∂2wi

∂x2

+ α̃v (t) = f0 cosωt (1a)

Cp
dv

dt
+ v

Rp
= −α̃

N∑
i=1

∫ l

0

∂3wi

∂x2∂t
(1b)

where in Eq. (1a), wi (t) represents transversal dis-
placement of the beam i (i = 1, 2, . . . , N ) at time
t ; v (t) is the voltage across the resistance load; α̃ is
the electromechanical coupling parameter, measuring
the strength of the global coupling between piezoelec-
tric patches and beams. m, E , I , and δ are the mass
per unit length, Young’s modulus, quadratic moment,
and transversal damping coefficient of each beam,
respectively. The equation of the electrical part can
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be obtained applying Kirchhoff’s laws to all the cou-
pled piezoelectric patches; it is given by Eq. (1b), with
Cp = ∑N

i=1 cpi and Rp which are the resultant capac-
itance of the piezoelectric patches and load resistance,
respectively. The capacitance of a unit pair of piezo-
electric layers is defined by cpi = 2εS33bl/tp, where
εS33 is the permittivity, tp is the thickness of piezoelec-
tric [17]. The term on the right-hand side of the electri-
cal equation represents the influence of the motion of
each beamon the electrical part, andmutually the resul-
tant voltage v (t) from this electrical part influences the
dynamics of each beam.

2.2 Modal equations of the system

In order to proceed with numerical analysis of the sys-
tem of Eqs. (1a) and (1b), we first introduce the follow-
ing dimensionless variables:

Wi = wi

r
; X = x

l
; τ = t

T
; V = v

V0
(2)

where r = √
I/A is the radius of gyration of the cross

section A, T is a dimensionless time variable, and V0
is a reference voltage. The value of T will be given
later. It is convenient to transform the dimensionless
partial differential equations into ordinary differential
equations by using theGalerkin decompositionmethod
[18].According to the boundary conditions of a hinged-
hinged beam defined by Eq. (3):

Wi |X=0,1 = 0 and
∂2Wi

∂X2

∣∣∣∣
X=0,1

= 0, (3)

the transversal displacement of the i th beam is defined
as follows:

Wi (X, τ ) =
∑
n

Zni (τ )Φn (X) (4)

where Zni (τ ) is the time-dependent function of the
mode n for each beam i , and Φn (X) = sin (nπX) is
the shape function. After some mathematical manipu-
lations, we obtain the following modal equations:

d2Zni

dτ 2
+ λ

dZni

dτ
+ Zni + 1

4
Z3
ni + χV = F0 cos (Ωτ)

(5a)
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Fig. 2 Time-averageof root-mean-square 〈η(t)〉of a distribution
of a network of beams as function of the coupling parameter χ ,
for network-sizes N = 2, 10, 50, 100. Other parameters are:
F0 = 5.0,Ω = 0.3 and Rp = 29.3k�
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Fig. 3 Time-averageof root-mean-square 〈η(t)〉of a distribution
of a network of beams as function of the number of interacting
beams N , for coupling parameters χ = 0.001, 0.01, 0.1, 0.5.
Other parameters are defined in Fig. 2

dV

dτ
+ βV = aχ

N∑
i=1

dZni

dτ
(5b)

with

λ =
(

l

nπ

)2
δ√
EIm

;χ = 2α̃V0l4

E Ir(nπ)5

(
1 − (−1)n

) ;

F0 = 2 f0l4

E Ir(nπ)5

(
1 − (−1)n

)

T =
(

l

nπ

)2√ m

E I
;Ω = ωT ;β = T

RpCp
;

a = E Ir2(nπ)6

2CpV 2
0 l

5
(6)
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Fig. 4 2-D parameter plot
of time-average
root-mean-square 〈η(t)〉 as
function of the number of
interacting beams N and
coupling parameter χ for
load resistance values.
a Rp = 2.93k�,
b Rp = 10.0k�,
c Rp = 29.3k� and
d Rp = 293 k�. Other
parameters are defined in
Fig. 2
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3 Dynamical analysis

In this section, by varying the number of beams as well
as the coupling strength, we explore the system dynam-
ics. In particular, we analyse the synchronization state
and the appearance of strong amplitude reduction phe-
nomenon in a network of beams indirectly coupled
through a dynamic environment (electrical part). In
our previous study, the occurrence of strong amplitude
reduction phenomenon was found in a system of two
indirectly coupledEuler’s beams via an electromechan-
ical systemconsistingof piezoelectric patches.Wehave
numerically integrated the high-dimensional nonlinear
system of Eqs. (5a) and (5b), using the fourth-order
Runge–Kutta scheme. In our numerical simulations,
the parameters of the beam were as follows: length
l = 10m, thewidth b = 0.05m, the height h = 0.03m,
the density of material ρ = 7850 kgm−3, the Young’s
modulus E = 2×1011 Nm−2, the damping coefficient
δ = 0.1N sm−1, and the reference voltage V0 = 2V.
In addition, the initial conditions for the displacement
of each beam were randomly distributed with uniform
probability on the interval [−5, 5].

3.1 Synchronization state

Our aim here is to examine the synchronization state of
the system of Eqs. (5a) and (5b) and to determine the
range of parameters forwhich all the beams exhibit col-
lective dynamics. The synchronization state is numer-
ically characterized by the asymptotic time-average
〈η(t)〉 of the instantaneous root-mean-square function
η(t) of the distribution of displacements and velocities
of the beams [19], given by:

η (t) =
[
1

N

N∑
i=1

(
Z2
i + Ż2

i

)]1/2

(i = 1, 2, . . . , N ).

(7)

Global synchronization of the whole system which
describes the collective dynamics is attained when
〈η(t)〉 = 0. Figure 2 shows the time-average root-
mean-square 〈η(t)〉 as function of the coupling strength
χ for all the beams interacting indirectly with an envi-
ronment for different network-sizes. It is found that
with the increase in the coupling strength and for
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Fig. 5 Probability
distribution of the
displacement showing the
transition to synchronization
via dynamical clustering in
the system for different
coupling parameters at the
dimensionless time
τ = 8000: a χ = 0.001,
b χ = 0.01, c χ = 0.1,
d χ = 0.5. The parameters
used are defined in Fig. 2
and N = 200
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N = 2, 〈η(t)〉 decreases slowly and the beams do not
completely synchronize. For N = 10, 〈η(t)〉 decreases
more rapidly but the beams do not globally synchro-
nize. However, when N ≥ 50, the curve presents an
abrupt slope, with global network synchronization tak-
ing place for strong coupling strength.

Furthermore, for a given coupling parameter χ ,
〈η(t)〉 is plotted as functionof the network-size, N . This
is illustrated in Fig. 3. In this case, the whole system
does not synchronize when χ ≤ 0.01, whereas when
the strength of the coupling parameter χ increases
(χ ≥ 0.1), the system approaches global synchroniza-
tion for large network-sizes.

A global view of the synchronization state can be
obtained by scanning different values of the network-
sizes, N and coupling parameter, χ . We calculate the
time-average rms 〈η(t)〉 in the parameter space N −χ ,
and we do this for different values of the load resis-
tance Rp, which is an intrinsic damping of the envi-
ronment. Note that 〈η(t)〉 is associated with the colour
bar in the four panels showing different synchroniza-
tion states. Figure 4 provides the variation of time-

average rms 〈η(t)〉 from minimum (blue) to maxi-
mum (red) showing the effect of the environment on
the global state of synchronization in the network.
Blue colours indicate the regions where the whole sys-
tem exhibits global synchronization, while red colours
denote the regions where the whole system is assumed
to be de-synchronized. Elsewhere in the colour bars
and halfway between the blue and red ones, the whole
system is assumed to be either weakly synchronized
or completely de-synchronized. As the load resistance
increases, the de-synchronized and weak synchronized
regions diminish while the synchronized ones increase
from right to the left.

The synchronization feature of the network can be
better understood by numerically computing the prob-
ability distribution function [20], defined in a subset
by generating M realizations of Xi , and counting the
number of observable outcomes in the interval and
divide by M . This approach was recently employed by
Palazzi andCosenza [7]. Figure 5 shows the probability
distribution of displacement Zi for different coupling
parameter with a network-size N = 200, at an asymp-
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Fig. 6 Probability
distribution of the
displacement showing
dynamical clustering in the
system for different
network-sizes at the
dimensionless time
τ = 8000: a N = 2, b
N = 50, c N = 100, d
N = 200. The parameters
used are defined in Fig. 2
and χ = 0.001
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totic dimensionless time, illustrating the synchroniza-
tion state for different values of coupling strength. At
weak coupling (χ ≤ 0.01), two clusters are formed
as shown in Fig. 5a, b. This phenomenon described as
dynamical clustering or cluster synchronization usually
occurs when an ensemble of coupled oscillators splits
into groups of synchronized elements [1,21]. In this
system, the dynamical clustering has almost vanished
for the coupling parameter (χ = 0.01), and in Fig. 5c,
d where the coupling parameter χ ≥ 0.1, we observe
the complete disappearance of the dynamical clustering
and the emergence of global synchronization.

Zooming on the weak coupling parameter regime
(χ ≤ 0.01)where the formation of clusters is observed,
we illustrate in Fig. 6 the probability distribution
for a very weak coupling parameter (χ = 0.001);
wherein the clusters remain in existence for all val-
ues of network-size. For N = 2, the clusters are sepa-
rated in two orbits, and the probability distribution are
the same. However, by increasing the network-size, the
two groups do not have the same size, showing that the
beams vibrate in different states. In Fig. 7, we plot the
probability distribution of displacement Zi for differ-

ent network-sizes and with fixed value of the coupling
parameter (χ = 0.1), and at an asymptotic dimension-
less time. For any network-size, we observe a global
synchronization in the system. The results of Figs. 5
and 6 agree with different synchronization regions
obtained with time-average root-mean-square function
in the parameter space N − χ in Fig. 4c.

3.2 Effect of the network-size on the
amplitude–response curves

Furthermore, we observe that the increase in the
network-size and the coupling parameter leads to the
reduction in vibration amplitude in the system of global
synchronized beams. Here, we further investigate the
influence of network-size on the vibration amplitude of
any beam in the system.By varying the frequency of the
external excitation, we provide the frequency–response
curves of the first beam for different network-sizes in
Fig. 8. The curves show the resonance peaks, the sub-
harmonic resonance, amplitude jump phenomenon for
certain values of number of coupled beams N . They
show that the amplitude of vibration of the first beam
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Fig. 7 Probability
distribution of the
displacement in the system
for different network-sizes
at the dimensionless time
τ = 5950: a N = 1,
b N = 5, c N = 10,
d N = 200. The parameters
used are defined in Fig. 2
and χ = 0.1
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Fig. 8 Effects of the numbers of coupled beams on the
amplitude–response curves for the first beam as function the fre-
quency of the external excitation Ω . The parameters used are:
χ = 0.02, F0 = 1.0 and Rp = 29.3 k�

decreases as the number of coupled beams increases.
We also observe the disappearance of the sub-harmonic
peak and the leakage of the amplitude jump with the
increase in the number of coupled beams N in the net-
work.
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Fig. 9 Effects of the numbers of coupled beams on the
amplitude–response curves for the first beam as function the
amplitude of the external excitation F0. The parameters used
are: χ = 0.02, Ω = 1.4 and Rp = 29.3 k�

In Fig. 9, we plot the amplitude of vibration of the
first beam as function of the amplitude of the external
excitation for different values of number of coupled
beams. For the case of two indirectly coupled beams,
the amplitude–response curve presents a jump phe-
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Fig. 10 Bifurcation
diagram of the displacement
of the first beam of the
system as function of the
coupling parameter χ , for
Ω = 0.3, F0 = 5.0 and
Rp = 29.3 k�: a N = 2,
b N = 30, c N = 60, d
N = 200 0 0.05 0.1
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Fig. 11 Times series of the
first beam for a different
values of Euler’s beams
network-sizes, χ = 0.1;
b different values of the
coupling parameter,
N = 200. Other parameters
are defined in Fig. 10
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nomenon, which disappears with the increase in the
number of coupled beams. Figures 8 and 9 permit to
conclude that the jump phenomenon disappears and the
amplitude of vibrations of the beams decreases con-
siderably with an increase in the number of coupled
beams.

3.3 Strong reduction in amplitude: effects of Euler’s
beams network-size

Figure 10 shows the bifurcation diagrams of the first
beam as function of the electromechanical coupling

parameter for different values of network-size. For a
small network-size (Fig. 10a), the increase in the cou-
pling parameter leads to the suppression of period—
nT (n being an integer) oscillations, but we observe a
very lowdecrease in vibration amplitude.By increasing
the network-size (Fig. 10b–d), the areas of period−nT
oscillations aremore andmore reduced, andweobserve
that vibration amplitude decreases gradually reach-
ing to very small amplitude for large network-sizes
(Fig. 10c, d). It is also found that the parameters space
N − χ for which the strong reduction in amplitude
phenomenon is achieved, corresponding to the param-
eters in the global synchronized domain (Fig. 4c). This
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result shows that for a network of beams indirectly
coupled through an electrical circuit with a weak cou-
pling parameter, strong reduction in amplitude can be
obtained by increasing the number of coupled systems.

To complete the picture, we present a further confir-
mation of SAR by plotting the time series of displace-
ment of the first beam Z1 in Fig. 11 as the network-
size N increases. It is observed in Fig. 11a that, as the
network-size increases, the amplitude of oscillations
of the first beam decreases. For large network-size, the
vibration amplitude of the first beam approaches very
small values. In Fig. 11a, a phase shift is also observed
as the network-size of Euler’s beams increase. Fig-
ure 11b shows the time series for a fixed network-size
of Euler’s beams as the coupling parameterχ increases,
in a suppression of period—nT oscillations—and the
state of strong amplitude reduction is attained by
increasing the coupling parameter.

4 Conclusion

We have examined the dynamics of a system of cou-
pled hinged-hinged Euler’s beams, indirectly interact-
ing with an electrical circuit consisting of piezoelectric
patches. Depending on the network-size and the cou-
pling strength, it has been found that the coupled beams
exhibit different kinds of synchronization. Specifically,
for small values of the load resistance, the state of
global synchronization was found when the network-
size was large, whereas with increase in the load resis-
tance, global synchronization takes place with smaller
network-size. Furthermore, we found that the increase
in the network-size leads to the decrease in vibration
amplitude of the beam as well as the disappearance of
the jump phenomenon and sub-harmonic resonance on
the amplitude–response curve. Using the bifurcation
diagram based on the vibration amplitude of displace-
ment of the first beam, we have found that the increase
in the number of coupled beams leads to the reduc-
tion in the regimes of period—nT oscillations and to
the appearance of a strong amplitude reduction state.
Indeed, this amplitude reduction state could be reached
with relatively small values of the coupling strength,
and this was observed as the network-size increases.
The parameter space N − χ which corresponds to
strong amplitude reduction state was found to coincide
with those of the global synchronization state, mean-

ing that all the beams attain very small amplitude in a
synchronized way.
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