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ABSTRACT

This thesis deals with the study of global bifurcations, and transition routes to chaos in
the dynamical behaviour of a one-dimensional Bose-Einstein condensate with two-and
three-body elastic and inelastic collisions between the atoms loaded into a moving op-
tical Fourier synthesized lattice. The analytical tool for the prediction of chaos is the
Melnikov method, whereas the fourth-order Runge-Kutta and Euler-Cromer schemes
are used in Fortran 90 and Matlab codes to determine the bifurcation points and the
transition routes to chaos in the dynamics of the condensate.
In the first part of this thesis, we consider a condensate with repulsive two-body and
attractive three-body elastic collisions between atoms. Under such conditions, only ho-
moclinic bifurcations can occur, and the condition for the occurrence of chaos deduced
from Melnikov’s method reveals that the depth and the parameter shape of the optical
lattice enhance a chaotic behaviour of the condensate, while the velocity of the optical
lattice and parameters related to dissipations and three-body elastic collisions annihilate
the instability and chaos in the dynamics of the condensate. These results are in accor-
dance with numerical simulations which reveal in addition that the transition routes
to homoclinic chaos is the period-doubling scenario with the bifurcation points which
sometime obey the Feigenbaum formula, thus proving the universality of chaos in this
physical system.
In the second part of this thesis, a condensate with attractive two-body and repulsive
three-body elastic collisions between atoms is considered. Under certain conditions,
homoclinic and heteroclinic bifurcations can occur. In this context, the conditions for
the occurrence of chaos obtained with Melnikov’s method reveal that the depth and
the velocity of the optical lattice enhance the homoclinic and heteroclinic chaos, while
the other parameters reduce the chaotic behaviour of the condensate. From this an-
alytical study, it also emerges that homoclinic chaos is obtained when the parameter
related to atomic feeding is about one order of magnitude larger than the parameter re-
lated to three-body inelastic collisions. These results are confirmed by numerical simu-
lations which in addition reveal that the transition route to chaos is the quasi-periodicity
through the Hopf bifurcations.

Keywords: Bose-Einstein condensation, bifurcations theory, homoclinic orbit, het-
eroclinic orbit, Melnikov theory, bifurcation diagram, Poincaré section, phase portrait,
basin of attraction, Lyapunov exponent, elastic collisions, inelastic collisions.
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RESUME

Cette thèse porte sur l’étude des bifurcations globales, et la transition vers le chaos dans
le comportement dynamique d’un condensat de Bose-Einstein unidimensionnel avec
des collisions élastiques et inélastiques à deux et à trois corps entre les atomes piégés
par un réseau optique mobile. La méthode analytique utilisée est celle de Melnikov
qui prédit le seuil d’apparition du chaos, tandis que les schémas d’Euler-Cromer et de
Runge-Kutta d’ordre 4 utilisés dans les programmes Fortran 90 et Matlab permettent de
déterminer les points de bifurcation et les routes de transition vers le chaos.
La première partie de cette thèse est consacrée au cas des collisions élastiques à deux
corps répulsives, et à trois corps attractives. Dans ces conditions, seules les bifurca-
tions homoclines peuvent apparaı̂tre, et le seuil d’apparition du chaos révèle que la
profondeur et le paramètre de forme(module de la fonction élliptique de Jacobi) du
réseau optique amplifient le chaos, tandis que la vitesse du réseau optique, le coefficient
de dissipation, et le paramètre relatif aux collisions élastique à trois corps annihilent le
comportement chaotic du condensat. Ces résultats sont en accord avec les simulations
numériques qui révèlent en outre que la transition vers le chaos s’effectue via le scénario
de bifurcations par dédoublement de période, avec des points de bifurcation qui par-
fois obeı̈ssent à la formule de Feigenbaum(Les nombres de Feigenbaum), provant ainsi
l’universalité du chaos dans ce systeme physique.
Dans la deuxième partie de cette thèse, un condensat avec des collisions élastiques à
deux corps attractives, et à trois corps répulsives est considéré. Sous certaines condi-
tions, des bifurcations homoclines et hétéroclines peuvent être obtenues. Dans cette
optique, les conditions d’apparition du chaos révèlent que la profondeur et la vitesse
du réseau optique amplifient le chaos homocline et hétérocline, tandis que les autres
paramètres réduisent le comportement chaotique du condensat. De cette étude analy-
tique, il ressort également que le chaos homocline est obtenue lorsque le paramètre lié
au pompage optique est environ dix fois le paramètre lié aux collisions inélastiques à
trois corps. Ces résultats sont confirmés par les simulations numériques qui révèlent en
plus que la route de transition vers le chaos est la quasi-périodicité, via les bifurcations
de Hopf.

Mots clés: Condensation de Bose-Einstein, théorie des bifurcations, orbite homo-
cline, orbite heterocline, théorie de Melnikov, diagramme de bifurcation, sections de
Poincaré, bassin d’attraction, exposant de Lyapunov, collisions élastiques et inélastiques.
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GENERAL INTRODUCTION

In 1924, Einstein received a draft article written by a young Indian physicist Satyendra Nath

Bose who demonstrated Planck’s law for black body radiation, by treating light as a gas of iden-

tical particles(photons). Strongly interested, Einstein translated the manuscript from English to

German, and made sure of its publication [1]. Latter on, Einstein extended and generalized this

Bose’s idea to a gas of material particles, and predicted in articles [2, 3, 4] published in 1924

and 1925 that for a monoatomic ideal gas, at sufficiently low but finite temperatures, a large

fraction of the atoms would go into the lowest energy quantum state of the system, becoming

indistinguishable, and consequently the system would behave like a giant matter wave in which

particles can have the same energy state and share a single quantum state. This new state of

matter is today known as Bose-Einstein condensation. At that time, the required conditions for

its realization being too difficult, this phenomenon will remain a theoretical fact until 1938 with

the discovery of the superfluidity of liquid helium(4He) by Kapitsa[5], and independently by

Allen and Misener[6]. By comparing the transition temperature(2,17K) to the superfluid state

of helium 4 with the transition temperature(3,1K) of helium 4 atoms at the Bose-Einstein con-

densate state, London[7, 8], suggested a certain connection between these two phenomena, giv-

ing rise to a renewed interest in the Bose-Einstein condensation phenomenon. To capture the

dynamics of particles involved in this phenomenon, particles with a spin which is an integer

multiple of reduced Planck’s constant ~, called bosons, numerous theoretical studies were made

throughout the world, culminating in 1961 to the Gross-Pitaevskii-equation(GPE). This famous

nonlinear Schrödinger equation(NLSE) derived by Pitaevskii [9] and independently by Gross

[10], describes well the low temperature properties of the trapped Bose gases such as its size,

shape and energy.

The GPE was derived for a weakly-interacting dilute Bose gas(WIDBG) at temperatures close to

absolute zero, in the framework of lowest-order mean-field theory. The requirement for a gas to

be dilute is that the average distance between atoms is much larger than the range of potential.

Consequently, third and higher order interaction terms can be neglected, and only the elastic

1



GENERAL INTRODUCTION 2

two-body interaction between atoms is taken into account. Although the condensate state is

surrounded by non-condensed atoms(thermal cloud) responsible for thermal and quantum fluc-

tuations, in the GPE, the condensate is assumed to be isolated.

This multi-context equation which describes well the dynamics of condensates, is also used in

nonlinear optics and fluid mechanics. In the context of Bose-Einstein condensation, this Gross-

Pitaevskii equation is given by

ı~
∂ψ(r, t)

∂t
= − ~2

2m
∆ψ(r, t) + V (r, t)ψ(r, t) +

4π~2as(r, t)

m
|ψ(r, t)|2ψ(r, t). (1)

ψ(~r, t) is the macroscopic wave function, ∆ the 3D Laplacian, V(r,t) the trapping potential, g =

4π~2as(r, t)

m
the so-called coupling constant characterizing the elastic atom-atom collisions, m

the atomic mass, and as(r, t) the s-scattering length.

If the external potential is time-independent and the gas is in thermal equilibrium, then the GPE

becomes

ı~
∂ψ(r, t)

∂t
=

(
− ~2

2m
∆ + V (r) + g|ψ(r, t)|2

)
ψ(r, t), (2)

with g a real constant, which can be negative in the case of attractive interactions or positive in

the case of repulsive interactions. Today, one has the possibility through the Feshbach resonance

techniques to control the scattering length, varying it from positive to negative values as recently

shown in the Bose-Einstein condensation of 85Rb.

After this theoretical achievement obtained in 1961, the efforts in the realization of a Bose-

Einstein condensate(BEC) started in 1976 at the Massachusetts Institute of Technology (MIT)

with the Bose-Einstein condensation of spin-polarized hydrogen. The quest for temperatures

close to absolute zero became a new challenge in physics. During about twenty five years, the

appropriate experimental techniques needed to reach the necessary ultra-low temperatures will

be progressively improved, culminating in 1995 at the first observation of a Bose-Einstein con-

densate of 87Rb, produced around 170nK by Carl E. Wieman and Eric A. Cornell at the NIST-

JILA laboratory at the university of Colorado at Boulder. Three months latter at MIT, a group

led by Wolfgang Ketterle independently produced a BEC of sodium (23Na), with about 200.000

atoms. For these remarkable achievements, these three physicists were awarded the 2001 Nobel

prize in Physics.

Shortly after the experimental realization of Bose-Einstein condensation of 87Rb and 23Na prov-
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ing that Einstein’s prediction was true, interest in this phenomenon was revived in the scientific

community. In the first days following the first realization of a BEC, the researches was fo-

cused on its properties, like the interference between two coupled Bose-Einstein condensates as

reported in references [11, 12], Josephson effects, π oscillations, atomic population oscillations,

and macroscopic quantum self-trapping as reported in [13, 14].

During these theoretical and experimental explorations to understand this newly observed state

of matter, it was observed that the Bose-Einstein condensation of certain species was realized

at high temperatures with very strong interactions between atoms, and with high densities of

condensed atoms. It was the case of helium 4 (4He) in which strong interactions restrict the

condensed atoms only at about ten per cent of initial atoms even at temperatures very close to

absolute zero. The high density in helium condensates implies that multi-body interactions and

non-condensed fractions cannot be ignored or treated as perturbations, making helium conden-

sates very difficult to describe theoretically. The dynamics of such condensates which takes into

account the thermal cloud and higher order interactions is described within the framework of

Hartree-Fock-Bogoliubov equations, which are essentially more cumbersome than the relatively

simple GPE.

In the framework of condensates subjected to multi-body interactions, the presence of inelastic

collisions was demonstrated with the Feshbach resonance techniques in references [15, 16, 17]

and proven experimentally by Jean Dalibard in reference [18]. It comes from these references

that the relevant inelastic two-body loss mechanism is the dipolar spin relaxation, and the rel-

evant three-body loss mechanism is the three-body recombination. Considering these losses

phenomena, in references [19, 20, 21, 22, 23, 24, 25, 26] a group of Brazilian researchers has stud-

ied successfully through this extended Gross-Pitaevskii formalism known as Gross-Pitaevskii-

Ginzburg equation(GPGE), the stability of condensates magnetically trapped in a harmonic po-

tential, with elastic three-body collisions between atoms taken into account. These studies reveal

chaotic dynamics as well as solitonic solutions, due to the presence of nonlinearities in the equa-

tion modeling the dynamics of the condensate. The importance of studying stability and chaos

in the dynamics of condensed atoms resides in its probable use in technological devices.

However, During the long quest for the realization of the first condensate, around the 1970s,

the introduction of new methods of trapping and cooling with laser beams was introduced. To-

day, it is well known that Laser beams have played a key role in the final realization of early
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condensates, and the advent of optical lattices in Physics as trapping potential has contributed

enormously to the realization of the condensation of many species. In the framework of conden-

sates in the mean-field approach with an optical lattice as trapping potential, numerous studies

have been done, chaotic behaviours and solitonic solutions have been observed in the dynamics

of such condensates governed by the simple Gross-Pitaevskii equation, as reported in references

[27, 28].

Motivated by results of the Brazilian team mentioned above, and especially due to the fact that in

the scientific literature there is no substantial research works on the Bose-Einstein condensation

beyond the mean-field approach concerning the study of stability and chaos in the dynamical

behaviour of condensed atoms governed by a complex Gross-Pitaevski-Ginzburg equation and

trapped into optical lattices, particularly a moving optical Fourier-synthesized lattice, our re-

search team invested himself in this arduous task, crowned in 2014 and 2017 by the following

publications[29, 30]. The aim of this thesis is to present in detail, the relevant results obtained

during these investigations, mainly the role played by parameters of the optical lattice and pa-

rameters related to inelastic collisions between atoms in the transition route to chaos.

The outline of this thesis is as follows:

The chapter I is devoted to the literature review on the Bose-Einstein condensation and chaos

theory.

The chapter II deals with the model and the different methods used in this thesis to capture the

dynamical behaviour of condensed atoms in the framework of the complex Gross-Pitaevskii-

Ginzburg equation. In the first section, a brief introduction is given. In the second section, are

presented different methods used in the analytical and numerical studies. In the third section,

the model is presented, and the general equation governing the dynamics of condensed atoms is

derived. Subsequently, the analytical method is applied to the amplitude equation to determine

the conditions for the occurrence of chaotic oscillations of condensed atoms.

The chapter III is devoted to results and discussion. In the first section, a brief introduction

is given. The second section deals with a comparative study between analytical and numeri-

cal investigations in the case of a condensate with repulsive two-body interactions and attractive

three-body interactions. In the third section, a comparative study between analytical and numer-

ical investigations in the case of a condensate with attractive two-body interactions and repulsive

three-body interactions is presented.
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CHAPTER I

LITERATURE REVIEW ON THE

BOSE-EINSTEIN CONDENSATION

AND CHAOS THEORY

I.1 History of Bose-Einstein condensation

I.1.1 Einstein’s prediction and response from liquid helium

The starting point of the Bose-Einstein condensation phenomenon was the draft article written

by the Indian physicist Satyendra Nath Bose in 1924, paper in which he used a statistical argu-

ment to derive the Planck law for black-body radiation, by treating the light as a gas of identical

particles. Unable to publish his work, he sent it to Einstein who found the manuscript interest-

ing enough, so that he decided to translate it from English to German, and got it published in

Zeitschrift für Physik [1]. Inspired by Bose’s ideas, Einstein saw that Bose’s mathematics later

known as Bose-Einstein statistics could be applied to atoms as well as light, and he published in

years 1924 and 1925 his own articles [2, 3, 4] describing the Bose statistical model and its impli-

cations, culminating into the concept of Bose gas. He generalized Bose’s theory to an ideal gas of

identical atoms or molecules for which the number of particles is conserved, and predicted that

at sufficiently low but finite temperatures, a large fraction of the atoms would cluster together

in the lowest quantum state of the system, becoming indistinguishable, and the system would

behave like a giant matter wave in which particles can have the same energy state and share a

single quantum state. This phenomenon is now known as Bose-Einstein condensation. Roughly

speaking, the Bose-Einstein condensation would be what happens to a dilute gas when it is made

very cold near absolute zero. The condition for Bose-Einstein condensation to happen is that the

phase space density must be greater than approximately unity, in natural units. Another way to

express this condition is that the De Broglie wavelength of each atoms given by

5
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λdB =
h√

2πmkBT
, (3)

must be large enough to overlap with its neighbours. In this expression, T represents the tem-

perature, m the mass of the particle, kB the Boltzmann constant, and h the Planck constant.

More precisely, the phase-space density nλ3
dB which represents the number of particles con-

Figure 1: Criterion for Bose-Einstein condensation. At high temperatures, a weakly interacting
gas can be treated as a system of ”billiard balls”. In a simplified quantum description, the atoms
can be regarded as wave packets with an extension of their De Broglie wavelength. At the BEC
transition temperature, λdB becomes comparable to the distance between atoms, and a Bose
condensate forms. As the temperature approaches zero, the thermal cloud disappears, leaving a
pure Bose condensate.

Pictures from Nobel lecture for 2001 physics Nobel prize published in reference [79]

tained in a volume equal to the cube of the thermal De Broglie wavelength must be greater

than ζ(3/2) ' 2.61. That is to say

nλ3
dB ≥ 2.61. (4)

n denotes the density of atoms, ζ(α) =
∑+∞

k=1
1
kα represents the Riemann zeta function, and

ζ(3/2) represents this Riemann zeta function calculated at the value 3/2. In fact, atoms at tem-

perature T and with mass m can be regarded as quantum-mechanical wave packets that have a
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spatial extent on the order of a thermal De Broglie wavelength. The value of λdB is the position

uncertainty associated with the thermal momentum distribution and increases with decreasing

temperature. When atoms are cooled to the point where De Broglie wavelength is comparable

to the interatomic separation, the atomic wave packets overlap and the gas starts to become a

quantum system of indistinguishable particles. Bosonic atoms undergo a quantum-mechanical

phase transition and form a Bose-Einstein condensate, a cloud of atoms all occupying the same

quantum-mechanical state at a precise temperature. That is well summarized in Fig.1.

From these aforementioned Einstein’s papers, it also turns out that this phenomenon would hap-

pens only for particles with gregarious behaviour named bosons to pay homage to Bose. These

types of particles, with a total spin that is an integer multiple of reduced Planck’s constant ~,

obey Bose-Einstein statistics. As opposed to bosons, the fermions are particles with half-integer

spin (in units of reduced Plank’s constant ~) which obey Fermi-Dirac statistics and the Pauli ex-

clusion principle which forbids two Fermionic particles to be in the same quantum state. Atoms

consist of protons, neutrons and electrons which are all fermions. Atoms will be bosons if the

total number of electrons, protons and neutrons add up to be an even number, and fermions if

the total number of electrons, protons and neutrons add up to be an odd number. For instance,

4He is a bosonic particle( 2 electrons, 2 protons and 2 neutrons), while 3He is a fermionic parti-

cle(2 electrons, 2 protons and 1 neutrons). At high temperatures, the effects of quantum statistics

can be neglected, and the distinction between fermions and bosons is not relevant. The mean

occupation number in each quantum energy level is in fact much less than one, and the parti-

cles behave according to the classical Boltzmann distribution. However, when the temperature is

lowered to a critical value (which depends on the thermodynamic parameters of the system), the

wavelengths become comparable to the interatomic distance, and begin to overlap. When this

occurs, the particles become indistinguishable, roughly speaking they lose their identity, and ex-

hibit a wave-like behaviour. In a bosonic gas this leads to the onset of a macroscopic occupation

of a single quantum state.

After Einstein’s prediction, the Bose-Einstein condensation was considered to be unrealistic by

the assumption of ideal gas, and had not attracted much interest until the discovery in 1938 of

the superfluidity of liquid helium(4He) below the transition temperature Tλ = 2.17K by Kapitsa

[5] and independently by Allen and Misener [6]. They found that the fluid flowed without any

apparent viscosity below the transition temperature Tλ. Soon after the discovery of the super-
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fluid nature of 4He, and noting that the phase transition temperature TBEC = 3.1K deriving

from Einstein’s formula given by

Tc(n) =
h2

2πmkB

(
n

ζ(3/2)

)2/3

(5)

is very close to the transition temperature (Tλ = 2.17K) of the superfluid state, London in ref-

erences [7, 8] suggested that this new phase of matter might have some connection with the

phenomenon of Bose-Einstein condensation. From this London conjecture, it seemed clear that

the Bose-Einstein condensation is related to two remarkable low-temperature phenomena: su-

perfluidity, in which the helium isotope 4He forms a liquid that flows with zero friction, and

superconductivity in which electrons move through a material with zero electrical resistance.

I.1.2 Theoretical investigations leading to the famous Gross-Pitaevskii equation

Extending London’s work, Tisza in [31, 32] phenomenologically introduced the two-fluid model

which describes the character of liquid helium by two interpenetrating fluids, a normal fluid

and superfluid, and interpreted the superfluid component as Bose condensed helium atoms.

Landau in reference [33] presented a theory of superfluidity based on the idea of quasi particles.

He developed a theory of quantum hydrodynamics without any assumption on the statistics of

atoms consisting the liquid, and strongly opposed London and Tisza idea. After the long con-

troversy on the connection between Bose-Einstein condensation and superfluidity, the idea of

London and Tisza was supported by most physicists. However, the relevance of Bose-Einstein

condensation and superfluidity was still unclear due to the lack of a microscopic theory of liquid

helium(4He), because the perturbation theory was not applicable to strongly interacting helium

atoms. On the other hand, theories for a weakly interacting dilute Bose gas (WIDBG) were de-

veloped without any real experimental system. In 1947, Bogoliubov in reference [34] reported

the first microscopic theory of WIDBG based on the treatment of the condensate annihilation

operators as complex numbers. This amounts to the assumption that the condensate can be de-

scribed by a coherent state and corresponds to a description of Bose-Einstein condensation in

terms of spontaneous symmetry breaking. He calculated the excitation spectrum and showed

that it has a phonon spectrum for small momentum, which ensures the stability of superfluidity.

Beliaev in reference [35] developed and generalized the methods of quantum field theory for

WIDBG, with an approach based on Green’s functions of quantum field theory at zero temper-
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ature. Beliaev’s approach at zero temperature will be pursued by Hugenholtz and Pines [36],

who calculated higher order contributions to the ground state energy, and derived the result

now known as the Hugenholtz-Pines theorem. This theorem states that the energy spectrum of a

Bose gas is gapless. That is to say that the energy of an excitation tends to zero as its momentum

becomes zero. Pitaevskii in reference [9] developed Bogoliubov’s theory to an inhomogeneous

case to study vortex lines in a Bose condensate. He introduced a concept of macroscopic wave

function φ(~r, t) and derived the famous Gross-Pitaevskii equation(GPE)

i~
∂φ(r, t)

∂t
= − ~2

2m
∆φ(r, t) + V (r, t)φ(r, t) +

4π~2as(r, t)

m
|φ(r, t)|2φ(r, t), (6)

where ∆ stands for the 3D Laplacian, V (r, t) is the trapping potential, g =
4π~2as(r, t)

m
is the so-

called coupling constant characterizing the elastic atom-atom collisions, m is the atomic mass,

and as(r, t) the s-scattering length. The negative values of as corresponds to attractive interac-

tions as in the cases of 7Li, 85Rb and the positive values of as corresponds to repulsive inter-

actions between atoms of the condensate as in the 87Rb, 23Na and 1H species. The sign and

magnitude of the scattering length can be tuned by external fields with Feshbach resonance

techniques, making the scattering length a tunable parameter for systems of condensates. This

equation which describes well the low temperature properties of the trapped Bose gases such

as its size, shape and energy was also derived independently by Gross in [10]. If the external

potential is time-independent and the gas is in thermal equilibrium, then the GPE becomes

i~
∂φ(r, t)

∂t
=

(
− ~2

2m
∆ + V (r) + g|φ(r, t)|2

)
φ(r, t), (7)

with g a real constant. That is to say as is a real constant.

The importance of this equation in the field of quantum mechanics requires a particular attention

to its derivation. The effective interaction between atoms in a BEC is due to s-wave scattering

process. The effective two-body interaction may be written as a short range interaction potential

U(r − r′) = gδ(r − r′). g is the interaction strength mentioned above and δ is the Dirac function.

The starting point for the treatment of a real gas of interacting particles is the respective many-

body Hamiltonian in second quantization, given by

Ĥ =

∫
d3rΦ̂†(r)

(
− ~2

2m
∆ + V (r)

)
Φ̂(r) +

1

2

∫
d3r

∫
d3r′Φ̂†(r)Φ̂†(r′)U(r − r′)Φ̂(r)Φ̂(r′). (8)
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Φ̂†(r) and Φ̂(r) represent the creation and annihilation of a boson at position r, and V(r) repre-

sents the external trapping potential. According to the bosonic character of the system, the field

operators must fulfilled the following bosonic commutation relations: [Φ̂(r), Φ̂†(r′)] = δ(r − r′)

and [Φ̂(r), Φ̂(r′)] = [Φ̂†(r), Φ̂†(r′)] = 0. These commutation relations characterize the algebraic

counterpart of the symmetry properties of bosonic wave functions. Using the Heisenberg equa-

tion given by

ı~
∂Φ̂(r, t)

∂t
= [Φ̂(r, t), Ĥ] (9)

and the two commutation relations mentioned above, the equation of motion is then given by

i~
∂Φ̂(r, t)

∂t
=

(
− ~2

2m
∆ + V (r) +

∫
d3r′Φ̂†(r′, t)U(r − r′)Φ̂(r′, t)

)
Φ̂(r, t). (10)

When the temperature T is close to the critical temperature Tc, the number of atoms in the ground

state is macroscopic, and the field operator can be separated into two parts. One for the conden-

sate part and the other for the excited state part. The excited state part of the field operator is

small compared to the condensate part and can be treated as a perturbation term. Thus, the

Bose field operator is decomposed as Φ̂(r, t) = φ(r, t) + Ψ̂(r, t). The first term φ(r, t) = 〈Φ̂(r, t)〉

represents the expectation value of Φ̂(r, t) and the second term Ψ̂(r, t) represents thermal fluctua-

tions about this value. Assuming the limit of zero temperature, such that the thermal component

of the system is non-existent, and considering the weakly-interacting nature (as � λdB) of the

condensate, quantum depletion at zero temperature is expected to be minimal. It is then rea-

sonable to neglect the non-condensed atoms(Ψ̂(r, t) → 0) and consider only the classical field

Φ̂(r, t) → φ(r, t). It is also to note that the assumption of zero temperature is generally satisfied

in reality for temperatures much less than the transition temperature for condensation given by

the Einstein formula eq.(5), or for temperatures T leading to the phase density larger than 2.61 as

defined in eq.(4). Inserting U(r − r′) expressed above into eq.(10) allows to derive an important

equation for the condensate wave function φ(r, t), called Gross-Pitaevskii equation, as defined in

eq.(7).

The time-independent GPE is obtained by searching the solutions of eq.(7) which are only time-

dependent through a global phase. Writing such solutions as φ(r, t) = φ(r) exp

(−iµt
~

)
one

obtains [
− ~2

2m
∆ + V (r) + g|φ(r)|2

]
φ(r) = µφ(r), (11)
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which is a time-independent GPE. µ denotes the chemical energy which represents the energy

required to add an-other particle to the condensate.

When the kinetic energy term
(
− ~2

2m
∆

)
in the GPE is negligible in front of potential energy

V(r) due to the trapping potential, one obtains the Thomas-Fermi approximation(TFA) given in

the case of relatively strong repulsive interactions (g > 0) by

n(r) =





µ− V (r)

g
, µ ≥ V (r)

0 otherwise.

(12)

n(r) = |φ(r)|2 represents the condensate density.

After the theoretical investigations about the Bose-Einstein condensation, the main problem to

test Einstein’s prediction was to know how to cool a sample of atoms at very low temperature?

From then on, the quest for temperatures very close to absolute zero has become a new challenge

in modern physics.

I.1.3 The quest for low temperatures close to absolute zero and the first observation

of a Bose-Einstein Condensate (BEC)

To test Einstein’s prediction, the quest for temperatures very close to absolute zero (−273◦C)

became a new challenge in ultracold Physics. In 1959, Hecht [37] suggested that spin-polarised

hydrogen could be the ideal candidate for the first experimental realisation of BEC, since the

characteristic interactions were estimated to be weak, even at very low temperatures. This idea

was later confirmed by Stwalley and Nosanow in their paper [38] published in 1976. They ar-

gued that spin-polarized hydrogen had no bound states and hence would remain a gas down

to zero temperature, and so it would be a good candidate for a Bose-Einstein condensate. This

result motivated a number of experimental groups [39, 40] in the late 1970s and early 1980s

to begin pursuing this idea using traditional cryogenics to cool a sample of polarized hydro-

gen. Spin-polarized hydrogen was first stabilized by Silvera and Walraven [39] in Amsterdam in

1980. However, it became increasingly clear that the walls of the cell cause severe limitations to

the lifetime of the gas. In fact, as the temperature is lowered, the density of atoms absorbed on

the surface increases to the point where the three-body rate on the surface becomes exorbitant.

To circumvent this surface problem, Hess from the MIT hydrogen group realized that magnetic

trapping of atoms [41] would be an improvement over a cell. In fact, atoms in a magnetic trap
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have no contact with a physical surface, and thus, the surface-recombination problem could be

avoided. By using low-field seeking states of hydrogen atoms, it was possible to trap atoms at

a local minimum of the magnetic field. Moreover, thermally isolated atoms in a magnetic trap

were the perfect candidate for evaporative cooling. Most energetic atoms simply leave the trap

from the edge, effectively cooling what remains in the trap. The only disadvantage, was the heat-

ing due to the dipolar relaxation of low-field seeking states, which limits the maximum density

at the trap center to a modest value, not sufficient to observe the transition to the Bose-Einstein

condensed phase. In 1988, the MIT and Amsterdam groups had implemented these ideas and

the power of evaporative cooling demonstrated. In 1991, according to reference [42], they ob-

tained at a temperature of 100µK, a density only factor of five, too low for BEC.

At roughly the same time, but independent of the hydrogen work, an entirely different type

of cold-atom physics and technology was developed: Laser cooling and trapping. The idea

that Laser light could be used to cool atoms was suggested in early papers from Wineland and

Dehmelt [43], from Hänsch and Schawlow [44], and from Letokhov’s group [45]. The starting

point of the Laser cooling and trapping of atoms was Ashkin’s work in late 1970s. His dream

was to slow down an atomic beam using the radiation pressure of a Laser beam, and then to trap

them using a dipole force from focused Laser beam(s), and he has proposed several schemes

and done some proof-of principle experiments with atomic beams [46, 47]. Thenceforth, at the

Heidelberg university [48] and at the National Bureau of Standards in Boulder (Colorado) now

known as NIST, the trapped ions were laser-cooled [49]. Atomic beams were deflected and

slowed in the early 1980s [50, 51, 52]. The mid 1980s saw the heyday of laser-cooling and trap-

ping. In 1985, at the Bell labs, the atoms were cooled to very low temperatures by six perpen-

dicular intersecting laser beams leading to optical molasses [53]. Measured temperatures in the

early molasses experiments were consistent with the so-called Doppler limit, which amounts to

a few hundred microkelvin in most alkalis. One year later, Chu and Ashkin [54] used the light to

trap atoms using the dipole force exerted by a strongly focused Laser beam. The years 1987 and

1988 saw a major breakthrough in the quest for very low temperatures necessary for the creation

of condensates. Firstly, a practical spontaneous-force trap, the Magneto-Optical Trap (MOT) was

demonstrated [55], and secondly it was observed that under certain conditions, the temperatures

in optical molasses are in fact much colder than the Doppler limit [56, 57, 58]. Ashkin’s dreams

were realized one after another. Scattering force from Laser beams were used to cool both atomic
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beams and vapor, and atom traps were realized using a dipole force or magnetic field potential.

Roughly speaking, the most important advance in this period was the invention of the magneto-

optical trap (MOT), which became the workhorse of the ultracold atom community.

The realization of MOT was financially too expensive. During the mid 1980s Carl E. Wieman

began investigating how useful the technology of Laser trapping and cooling could become

for general use in atomic Physics. He replaced in the original MOT the expensive Lasers with

vastly cheaper semiconductor Lasers, and then searched for ways to allow atom trapping with

these low cost but also low power lasers[59, 60]. He used the demonstration of the MOT and

sub-Doppler molasses to study what Physics was limiting the coldness and denseness of these

trapped atoms, with the hope of extending the limits further. Carl and his colleagues discovered

that several atomic processes were responsible for these limits. Light assisted collisions were

found to be the major loss process from the MOT as the density increased [61]. However, even

before that became a serious problem, the light pressure from reradiated photons limited the

density [62, 63]. At about the same time, the sub-Doppler temperatures of molasses found by

American Physicists William D. Phillips, Steven Chu, and the French Physicist Claude Cohen-

Tannoudji were shown to be due to a combination of light-shifts and optical pumping that be-

came known as Sisyphus cooling [64]. They were rewarded by the 1997 Physics Nobel prize,

for development of methods to cool and trap atoms with Laser light [65, 66, 67]. The efforts in

technology development of Carl’s group culminated in the creation of a useful MOT in a simple

glass vapor cell [68]. In spite of the improvement of Laser cooling and trapping of atoms, the

phase-space density remains always small, around 10−5. Investigating about this problem, Carl

E. Wieman and his student Chris Monroe had the idea to load the cold MOT atoms into a mag-

netic trap. In other words, they decided to combine the two types of trapping and cooling. This

successful approach known today as the hybrid approach, was to use Laser cooling only as pre-

cooling for magnetic trapping and evaporative cooling. There were several important advances

towards achieving efficient evaporation. The Dark-SPOT trap was invented at MIT to enhance

the density of atoms in MOT [69], and rf-induced evaporation was proposed and successfully

implemented in magnetic traps. Physicist’s long quest to observe the Bose-Einstein condensate

in its pure form ended in 1995. The world first BEC was achieved at 10:54 AM on June 5, 1995

in a laboratory at JILA, a joint institute of the university of Colorado Boulder and NIST. The

BEC was formed inside a carrot sized glass cell, and made visible by a video camera. It mea-
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sured only about 20 microns in diameter, or about one fifth the thickness of a sheet of paper.

This remarkable accomplishment realized by a group of Physicists led by Carl E. Wieman and

Eric A. Cornell produced around 170nK the first BEC in a gas of 2000 rubidium atoms (87Rb) at

the NIST-JILA laboratory at the university of Colorado at Boulder(see Fig.2(a)). Just about one

month later, at the Rice university in Houston, Texas, the BEC of a dilute gas of 7Li was obtained

by R. Hulet et al. By September 1995 at MIT, a group led by Wolfgang Ketterle independently

produced a BEC with about 200.000 sodium atoms (23Na)(see Fig.2(b)). For their accomplish-

ments, Eric A. Cornell, Carl E. Wieman and Wolfgang Ketterle received the 2001 Nobel prize in

Physics [76, 77, 78, 79].

After the first realization of the Bose-Einstein condensate, the next major goal was to prove its

(a) (b)

Figure 2: Pictures provided by the cameras after the production of first Bose-Einstein conden-
sates, proving that Einstein’s prediction is true. a) Condensate of rubidium atoms (87Rb) pro-
duced at the NIST-JILA laboratory at the university of Colorado at Boulder. b) Condensate of
sodium atoms(23Na) produced at MIT.

Pictures from Nobel lecture for 2001 physics Nobel prize published in references [78, 79]

wave nature. In this respect, Wolfgang Ketterle and his team observed striking interference(see

Fig.3(a)) patterns between two Bose-Einstein condensates [11, 70] in November 1996, and in 1997

they developed an atom Laser based on Bose-Einstein condensates that was able to drip single

atoms downward from a micro spout, and the coherence(see Fig.3(b)) of the condensate was re-

markably observed. In February 1999, the Danish physicist Lene Hau of Harvard university and

her colleagues slowed light traveling through a BEC from its speed in vacuum of 3.108 meters

per second to a mere 17 meters per second. Two years later the team announced that it had
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(a) (b)

Figure 3: a) Interference between two jets of atoms falling from an atomic cloud. On the left, the
cloud is not cold enough to be condensed and there is no interference between the two atomic
jets. On the right, with a Bose-Einstein condensate one observes destructive interferences in
some points and constructive interferences in others. b) Interference pattern of two expanding
condensates demonstrating the coherence of Bose-Einstein condensates. This absorption image
was observed after 40 ms time of flight. The interference fringes have a spacing of 15µm, a huge
length for matter waves.

Pictures from Nobel lecture for 2001 physics Nobel prize published in reference [79]

briefly brought light to a complete stop. On June 18, 1999, JILA researchers used this technique

to achieve the first Fermi degenerate gas of atoms. A group of German researchers demon-

strated in 2001 that condensates can be created and manipulated using so-called atom chips, an

achievement that could form the basis of integrated atom circuit based on the motion of atoms

rather than electrons. The challenging aim of creating a BEC in the gas of spin-polarized hydro-

gen atoms has been finally achieved in June 1998 at MIT by D. Kleppner et al, concluding two

decades of efforts to observe the Bose-Einstein condensation in that system. The Bose-Einstein

condensates of 85Rb atoms were produced in 2000 [71] based on a new tool established by con-

densate Physics, the Feshbach resonance techniques [15]. Feshbach’s resonances have originally

been a phenomenon in the field of nuclear reactions and have been described theoretically by

Herman Feshbach [72, 73]. Such resonances have been predicted in collisions of alkali atoms for

the first time by Tiesinga et al. [74, 75] and are now studied and applied in many experiments. In

February 2001, Alain Aspect, Chris Westbrook, and colleagues at the Institut d’Optique in Orsay

(France) reported the observation of BEC in a gas of metastable helium (He?). Eight days later,

a team led by Claude Cohen-Tannoudji and Michèle Leduc at Ecole Normale Supérieure (ENS)
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in Paris also announced condensation of helium 4.

In December 2002, physicists at Innsbruck in Austria created the first BEC of cesium atoms,

which is the basis of atomic clocks and also plays a key role in certain metrological applications,

including measurements of the electric dipole moment of the electron. In 2003, Deborah Jin and

her colleagues at JILA used paired fermions to create the first atomic fermionic condensate. The

first molecular condensates were created in November 2003 by the team of Rudolf Grimm at

the University of Innsbruck in Austria. In November, 2010, the first photon Bose-Einstein Con-

densate was observed. The techniques for creating Bose-Einstein condensates are progressively

improved, as indicates the reference [80] in which the rubidium 87 atoms are Bose-Einstein Con-

densed with a simple evaporative cooling method.

The realization of Bose-Einstein condensation in dilute atomic gases in 1995 triggered the explo-

ration of quantum phenomena in a macroscopic scale. This technological prowess has provided

new systems for studying Bose-Einstein condensates as well as, superfluidity, superconductivity,

and many other phenomena concerning basic concepts of quantum Physics. It has opened a new

area of physics called cold atoms, which is still growing rapidly and attracting interest from all

areas of Physics. In this thesis our attention is focused mainly on the case of a BEC loaded into a

moving optical lattice.

I.2 Bose-Einstein condensates in optical lattices

In the BEC history, Laser beams have played a key role in its final realization in 1995. An optical

lattice is an artificial crystal of light, consisting of hundreds of thousands of optical micro-traps,

obtained by interfering optical Laser beams. Its spatially periodic potential, works on the princi-

ple of the ac Stark shift. When an atom is placed in a light field, the oscillating electric field of the

latter induces an electric dipole moment in the atom, and the interaction between this induced

dipole and the electric field leads to an energy shift ∆E of an atomic energy level. These opti-

cal lattices are powerful model systems of quantum many-body systems in periodic potentials

for probing nonlinear wave dynamics and strongly correlated quantum phases. Optical lattices

for atomic condensates raised enormous interest, as they mirror features known from solid state

physics to the field of atom optics. By interfering more Laser beams, one can obtain one(1D),

two(2D), and three-dimensional(3D) periodic potentials. One advantage not negligible in the

use of an optical lattice in condensed matter physics is the possibility to control the geometry
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and the depth of the optical potential by the experimentalist. The geometry can be changed for

example in the creation of a one dimensional optical lattice by interfering two Laser beams at

an angle less than 180◦, and the depth can be changed by simply increasing or decreasing the

intensity of the Laser light. Interfering Laser beams under a different angle can lead to complex

lattice configurations such as Kagomé and Toda lattices. One major difference between atoms

in optical lattices and most systems in condensed matter physics is their excellent isolation from

their environment, which leads to coherent dynamics on long timescales. The ultracold bosonic

and fermionic quantum gases combined to optical lattices have enhanced research activities in

the field of condensed-matter physics, as well as finding applications in quantum optics and

quantum information processing, and understanding atomic and molecular physics.

In this thesis, we consider a particular case of optical lattices, the Fourier-synthesized optical

lattice. According to reference [81], this kind of optical lattice is obtained as follows. A conven-

tional lattice with sinusoidal shape and spatial periodicity λ/2 is generated by overlapping two

counterpropagating off-resonant Laser beams with frequency ω forming a standing wave. Due

to a spatial varying ac-Stark shift, atoms experience a dipole force depending on the sign of the

polarizability, which attracts the atoms to the nodes (for ω > ω0 ) or the anti-nodes(for ω < ω0)

of the Laser intensity, where ω0 is an atomic resonance frequency. The effective potential for an

atom exposed to a standing optical wave may also be described in a quantum picture by the ex-

change of photons changing the atoms momentum. The atoms here undergo virtual two-photon

processes of absorption of one photon from one Laser beam and stimulated emission of an-other

photon into a counterpropagating beam. An atom undergoing such a two photon process ex-

changes a momentum amount of 2~k with the lattice.

The multi-photon Raman technique is used to generate a lattice potential of periodicity λ/4, as

the first harmonic for a Fourier-synthesis of lattice potentials. The scheme uses three-level atoms

with two stable ground states and one electronically excited state. The atoms are irradiated by

two optical beams of frequencies ω+ ∆ω and ω−∆ω from the left and by a beam of frequency ω

from the right. Momentum is transferred to the atoms in units of 4~k during an induced virtual

four-photon processes, being a factor two above the corresponding process in a standing wave.

This suggests a spatial periodicity of λ/4 for the adiabatic light shift potential. This scheme

can be extended to generate lattice potentials with higher periodicities λ/2n by a 2n-th photon

process. The high resolution of Raman spectroscopy between two stable ground states over an
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excited state allows to clearly separate in frequency space the desired 2n-th order process from

lower order contributions.

By combining lattice potentials of different spatial periodicities, variable periodic potentials can

be synthesized, and are called Fourier-synthesized optical lattices. As example, by superim-

posing two one-dimensional lattice potentials of spatial periodicities λ/2 and λ/4 one obtains a

Fourier-synthesized atom potential given by

V (z) =
V1

2
cos(2kz) +

V2

2
cos(4kz + ϕ). (13)

where V1 and V2 denote the potential depths of the two lattice harmonics respectively, ϕ the rel-

ative phase, and k the wave vector.

In the following lines, we emphasize with only relevant results related to condensate trapped or

loaded into optical lattices. It has been argued in references [82, 83, 84] that ultracold quantum

gases loaded into an optical lattice can be use as a quantum simulator, as Richard Feynman orig-

inally conceived for a quantum computer. This new physical system can be used to simulate the

dynamical behaviour of another complex quantum system. The first experiment of Bose con-

densates in an optical lattice was reported in 1998 by Anderson and Kasevich [85], and they ob-

served interference of atomic wave tunneling from a condensate confined in a vertically oriented

one dimensional optical lattice, in analogy with a pulsed mode-locked photon Laser. From this

experiment, Bloch oscillations, number squeezing, and Landau-Zener tunneling between differ-

ent energy bands in an optical lattice were observed. Moreover, coupled condensates acting as

Josephson junction was realized and the Josephson effect was observed. Latter on, the Joseph-

son oscillations will be observed and reported in reference [86]. The theoretical analysis of the

superfluid-Mott insulator transition in the strongly interacting atomic regime was discussed in

[87], and later accomplished by Greiner et al, and reported in reference [88]. Biao Wu and Qian

Niu in reference [89] investigated the superfluidity of Bose-Einstein condensates in optical lat-

tices, and as result, they have shown that apart from the usual Landau instability, which occurs

when a BEC flows faster than the speed of sound, the BEC can also suffer a dynamical instabil-

ity, resulting in period-doubling and other sorts of symmetry breaking of the system. This result

will be also obtained by Smerzi et al in reference [90]. This phenomenon takes place when the

spectrum of the excitations of the system exhibits complex frequencies. Later on, this dynam-

ical instability will be observed and reported in reference [91]. From then on, the dynamics of
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Bose-Einstein condensates in optical lattices aroused lots of interest. As relevant results, the shift

of the oscillation frequency in the presence of the optical lattice was observed and reported in

reference [92]. The experimental results have shown a good agreement with the prediction of the

renormalized mass theory of Krömer et al [93]. It is experimentally proven in reference [94] that

the thermal cloud stays locked at the center of the trap due to its incoherent nature in the pres-

ence of the optical lattice, while the condensate moves and oscillates with frictions through the

lattice. In reference [95], the Bragg spectroscopy for a condensate in an optical lattice was sug-

gested to investigate the excitation spectrum, and used in experiments to study the behaviour

of a condensate prepared in a three-dimensional optical lattice by Störfle et al in reference [96].

In references [97, 98, 99], the properties of the condensate band structure called swallow tail

were reported. The stability of superfluid currents in a system of ultracold bosons is studied

using a moving optical lattice in [100], and the authors have proven that superfluid currents

in a very weak lattice become unstable when their momentum exceeds half the recoil momen-

tum. The authors of reference [101] have studied the magnetic solitons in spinor Bose-Einstein

condensates confined in a one-dimensional optical lattice by the Holstein-Primakoff transforma-

tion method. They arrived to the conclusion that, due to the long-range light-induced and static

magnetic dipole-dipole interactions, there exists different types of magnetic solitary excitations

in different parameter regions.

I.3 Brief overview of chaos

I.3.1 What is chaos?

The history of chaos began at the end of the twentieth century with Henri-Poincaré working on

the famous 3-body problem reported in reference [102]. Historically, the first specific three-body

problem to receive extended study was the one involving the moon, the earth and the sun. In

his research on this problem, Poincaré became the first person to discover a chaotic deterministic

system which will be later considered as the foundation of modern chaos theory. Approximately

at the beginning of 1960, the meteorologist Edward Lorenz of MIT was experimenting with

early computer models of weather, and wished to rerun a simulation he had completed earlier

in the day. He reentered the numbers as his machine had printed them, not realizing that the

computer internal memory carried three more significant figures than did the printout. While
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the new simulation closely followed the old for a brief time, it quickly diverged wildly until it

was unrecognizable. What Lorenz did, after much investigation, was finally to codify the effect

he had observed into the modern conception of sensitive dependence on initial conditions [103]. It

will be latter shown that many nonlinear physical systems exhibit the same exponential growth

of the distance between two trajectories for tiny difference in the two initial conditions as the

meteorological system. Although no universally accepted mathematical definition of chaos ex-

ists, according to the chaos theory, a nonlinear dynamical system is said to be chaotic if it has a

sensitivity to initial conditions. This sensitivity to initial conditions for nonlinear systems is pop-

ularly known as the ”butterfly effect”, so-called because of the title of a paper given by Edward

Lorenz in 1972 to the American association for the advancement of science in Washington D.C,

entitled predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? The

flapping wing represents a small change in the initial condition of the system, which causes a

chain of events leading to large-scale phenomena. The orbits of such dynamical systems are con-

fined to a bounded region, but behave unpredictably. This happens even though these systems

are deterministic, meaning that their future behaviour is fully determined by their initial condi-

tions, with no random elements involved. Roughly speaking, the unpredictability must be seen

as a hallmark of a chaotic dynamics, due to the presence of nonlinear terms in the differential

equation or the map governing the system. The study of the dynamics of such systems is called

nonlinear dynamics. Although in general the differential equations or maps of such systems are

very difficult to solve analytically (sometimes that is possible), scientists have developed some

tools to determine the properties of unknown solutions.

I.3.2 Qualitative tools used in this thesis for the study of dynamical systems

I.3.2.1. Bifurcation diagram and Poincaré section

Poincaré introduced the bifurcation theory and the Poincaré section in the study of nonlinear

dynamics. The French word ”bifurcation” is used to indicate a qualitative change in the features

of a system, such as the number and type of solutions, under the variation of one or more param-

eters on which the considered system depends. By the terminology local bifurcation, we mean

a qualitative change occurring in the neighborhood of a fixed point or a periodic solution of the

system. One considers any other qualitative change to be a global bifurcation. In bifurcation

theory, one usually considers the state-control space to plot the state variable versus control pa-
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rameter(s). The figure obtained, called bifurcation diagram is very useful in the understanding

of the behaviour of the nonlinear system. In this space, positions at which bifurcations occur are

called bifurcation points. A codimension-m bifurcation is a bifurcation which requires at least m

control parameters to occur.

The second tool introduced by Poincaré was the poincaré section, a powerful method for exam-

ining the motion of dynamical systems. Let S be an n-1 dimensional surface transverse to the

trajectories of a n-dimensional dynamical system. Consider a point X0 on S at time t=0. As the

trajectory starting at X0 evolves it will eventually return to S at X1 after a certain period. If we

consider all initial points on S we can define a mapping P from S to itself such that X1 = P (X0),

and after k+1 iterationsXk+1 = P (Xk). The mapping P is called the return map or Poincaré map

of the dynamical system. S is called Poincaré section. After the transient regime of the dynamical

system has disappeared, the Poincaré section exhibiting a point attractor characterizes periodic

oscillations, and period-n oscillations when the Poincaré section exhibits n points attractors. The

Poincaré section of quasi-periodic oscillations exhibits closed curve(s). The chaotic regime of a

dynamical system exhibits a set of points bounded in a finite region, called strange attractor.

I.3.2.2. The Lyapunov exponent

The Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system introduced

by the Soviet physicist Aleksandr Lyapunov is a quantity that characterizes the rate of separation

of infinitesimally close trajectories. Let’s consider in phase space two trajectories with a tiny

initial separation ∆X0. As the time evolves, the separation ∆Xt of the above two trajectories can

be expressed as |∆Xt| = eλt|∆X0|. The corresponding value of λ is called Lyapunov exponent.

The positive Lyapunov exponent characterizes the sensitive dependence to initial conditions

in the dynamical system, in other words the existence of chaotic dynamics. Conversely, the

negative Lyapunov exponent implies a stable dynamical system.

I.3.2.3. Basin of attraction

To understand the notion of basin of attraction, let us begin by defining the concept of ”attrac-

tor” of a dynamical system. Roughly speaking, an attractor of a dynamical system is a subset of

the state space to which orbits originating from typical initial conditions tend as time increases.

An attractor can be a point, a finite set of points, a curve, a manifold, or even a complicated set
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with a fractal structure known as a strange attractor, hallmark of a chaotic motion. It is very

common for dynamical systems to have more than one attractor. For each such attractor, its

basin of attraction is the set of initial conditions leading to long-time behavior that approaches

that attractor. Thus the qualitative behaviour of the long-time motion of a given system can

be fundamentally different depending on which basin of attraction the initial condition lies in.

Regarding a basin of attraction as a region in the state space, it has been found that the basic

topological structure of such regions can vary greatly from system to system. If one plots the

basin of attraction in phase space, the chaotic dynamics will be recognizable by its fractality. It

is to note that there can be basin boundaries of qualitatively different types. As in the case of

attractors, bifurcations can occur in which basin boundaries undergo qualitative changes as a

system parameter passes through a critical bifurcation value. Such basin boundary bifurcations

are called metamorphoses.

Due to the presence of nonlinearities into equations modeling the dynamics of Bose-Einstein

condensates, the study of chaos therein has attracted many researchers. In reference [104], the

authors have performed a careful analysis on a BEC governed by a generalized version of the

Gross-Pitaevskii equation. The system is investigated considering several sets of values for the

three body dissipation and linear feeding parameters.They observed that, for a certain range

of the space of parameters, the equation presents unstable solutions that can lead to a chaotic

behaviour, since the equation presents an exponential increase of the trajectory separation, in

similar way found earlier for the complex Ginzburg-Landau equation. In reference [105], the au-

thors present a theoretical study of a hybrid optomechanical system consisting of a Bose-Einstein

condensate trapped inside a single-mode optical cavity with a moving end mirror. They investi-

gate the dynamics in a regime where the intracavity optical field, the mirror, and the side-mode

excitation all display bistable behaviour. In this regime they find that the dynamics of the system

exhibits Hamiltonian chaos for appropriate initial conditions.

For a Bose-Einstein condensate confined in a double lattice consisting of two weak laser standing

waves, authors in reference [106] have found the Melnikov chaotic solutions and chaotic regions

of parameter space by using the direct perturbation method. Moreover, they have obtained in

the chaotic region, spatial evolutions of chaotic solutions and the corresponding distribution of

particle number density which is bounded, but unpredictable between their superior and infe-

rior limits.
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I.3.3 The control of chaos

The idea of chaos control was enunciated at the beginning of 1990s at the university of Mary-

land according to reference [107]. In this article, the ideas for controlling chaos were outlined

and a method for stabilizing an unstable periodic orbit was suggested, as a proof of principle.

The main idea consisted in waiting for a natural passage of the chaotic orbit close to the desired

periodic behaviour, and then applying a small judiciously chosen perturbation, in order to sta-

bilize such periodic dynamics. From then on, the control of chaos in dynamical systems became

an important topic in scientific research today. Broadly speaking, there are two kinds of chaos

control, the OGY method and the adaptive method.

The OGY method was introduced in 1990 by Ott et al. [107, 108], and the basic idea is that besides

the occurrence of chaos in a large variety of natural processes, chaos may also occur because one

may wish to design a physical, biological or chemical experiment, or to project an industrial

plant to behave in a chaotic manner. The idea of Ott, Grebogi, and Yorke (OGY) is that chaos

may indeed be desirable since it can be controlled by using small perturbation to some accessible

parameter [109], or to some dynamical variable of the system [110]. The major key ingredient for

the control of chaos is the observation that a chaotic set, on which the trajectory of the chaotic

process lives, has embedded within it a large number of unstable low-period periodic orbits. In

addition, because of ergodicity, the trajectory visits or accesses the neighborhood of each one of

these periodic orbits. Some of these periodic orbits may correspond to a desired system’s per-

formance according to some criterion. The second ingredient is the realization that chaos, while

signifying sensitive dependence on small changes to the current state and henceforth rendering

unpredictable the system state in the long time, also implies that the system’s behaviour can be

altered by using small perturbations. Then, the accessibility of the chaotic systems to many dif-

ferent periodic orbits combined with its sensitivity to small perturbations allows for the control

and the manipulation of the chaotic process. Specifically, the OGY approach is then as follows.

One first determines some of the unstable low-period periodic orbits that are embedded in the

chaotic set. One then examines the location and the stability of these orbits and chooses one

which yields the desired system performance. Finally, one applies small control to stabilize this

desired periodic orbit. However, all this can be done from data by using nonlinear time series

analysis for the observation, understanding and control of the system. This is particularly impor-

tant since chaotic systems are rather complicated and the detailed knowledge of the equations
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of the process is often unknown.

The basic idea of the adaptive method for control of chaos in dynamical systems is that many

alternative approaches to the OGY method have been proposed for the stabilization of the un-

stable periodic orbits of a chaotic dynamics. In general the strategies for the control of chaos can

be classified into two main classes, namely: closed loop or feedback methods and open loop or

non feedback methods.

The first class includes those methods which select the perturbation based upon a knowledge of

the state of the system, and oriented to control a prescribed dynamics. Among them, we here

recall (besides OGY) the so called occasional proportional feedback, simultaneously introduced

by Hunt [111] and Showalter [112], the method of Huebler [113], and the method introduced by

Pyragas [114], which apply a delayed feedback on one of the system variables. All these meth-

ods are model independent, in the sense that the knowledge on the system necessary to select

the perturbation can be done by simply observing the system for a suitable learning time.

The second class includes those strategies which consider the effect of external perturbations

(independent on the knowledge of the actual dynamical state) on the evolution of the system.

Periodic [115] or stochastic [116] perturbations have been seen to produce drastic changes in the

dynamics of chaotic systems, leading eventually to the stabilization of some periodic behaviour.

These approaches, however, are in general limited by the fact that their action is not goal ori-

ented, i.e; the final periodic state cannot be decided by the operator.

Both kinds of chaos control are still in development. As a matter of fact, chaos control may have

a dual function: to generate chaos or to suppress it.

I.4 Applications of Bose-Einstein condensates

The primary application of atomic BEC systems is in basic research areas at the moment, and

will probably remain so for the foreseeable future.

After the proof of the wave nature of condensates and the Laser effect with atoms realized at

MIT in 1997 by Ketterle’s team, the realization of atoms Laser, that is to say instruments able

to deliver a beam of atoms all in the same quantum state, like the photons of a Laser beam,

remains the major application of condensates. This would be of great interest to atomic optics, to

interferometry and to chemistry (study of chemical reactions between two atomic beams under

very well defined and controlled conditions, condensations of molecules, and so on). In fact, the
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atoms Laser is based on the Laser effect with atoms, which consists to form a condensate and

extract by a suitable means a portion of the condensed atoms. But there is still a long way to go

before arriving at atomic fluxes of appreciable intensity and duration.

One sometimes hears people talk about condensates as a tool for lithography, but that is not

likely to be a real commercial application any time soon, because the throughput is just too

low. Nobody has a method for generating Bose-Einstein condensates at the sort of rate one

would need to make interesting devices in a reasonable amount of time. As a result, most BEC

applications will be confined to the laboratory.

One of the hottest areas in BEC at the moment is the use of Bose condensates (and the related

phenomenon of degenerate Fermi gases) to simulate condensed matter systems. It is easy to

make an optical lattice from an interference pattern of multiple Laser beams that looks to the

atoms rather like a crystal lattice in a solid looks to electrons: a regular array of sites where

the particles could be trapped, with all the sites interconnected by tunneling. The big advantage

BEC/optical lattice systems have over real condensed matter systems is that they are more easily

tunable. It is easy to vary the lattice spacing, the strength of the interaction between atoms,

and the number density of atoms in the lattice, which allows the experimentalist to explore a

range of different parameters with essentially the same sample, which is very difficult to do with

condensed matter systems where one needs to grow all new samples for every new set of values

you want to explore. As a result, there is a great deal of work in using BEC systems to explore

condensed matter physics, essentially making cold atoms look like electrons.

There is also a good deal of interest in Bose-Einstein condensate for possible applications in

precision measurement. At the moment, some of the most sensitive detectors ever made for

things like rotation, acceleration, and gravity gradients come from atom interferometry, using the

wavelike properties of atoms to do interference experiments that measure small shifts induced

by these effects. BEC systems may provide an improvement beyond what one can do with

thermal beams of atoms in these sorts of systems. There are a number of issues to be worked out

in this relating to interatomic interactions, but it’s a promising area.

The other really hot area of BEC research is in looking for ways to use BEC systems for quantum

information processing. If you want to build a quantum computer, you need a way to start with

a bunch of qubits that are all in the same state, and a BEC could be a good way to get there,

because it consists of a macroscopic number of atoms occupying the same quantum state. There
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are a bunch of groups working on ways to start with a BEC, and separate the atoms in some way,

then manipulate them to do simple quantum computing operations.

There is a lot of overlap between these sub-sub fields. One of the best ways to separate the

qubits for quantum information processing is to use an optical lattice for example. But those are

probably the biggest current applications of BEC research. None of these are likely to provide a

commercial product in the immediate future, but they are all providing useful information about

the behaviour of matter on very small scales, which helps feed into other, more applied lines of

research.
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CHAPTER II

METHODOLOGY: MODELING

AND MATHEMATICAL METHODS

II.1 Introduction

The equation generally considered to describe the dynamics of a Bose-Einstein condensate as-

sumed to be a weakly-interacting dilute Bose gas is the well known Gross-Pitaevskii equation,

obtained within the framework of lowest-order mean-field approximation. This equation rig-

orously valid at zero temperature(T=0K), is generally used in literature for temperatures much

less than the transition temperature for condensation Tc, given by the Einstein formula defined

in eq.(5). The assumption of a Bose gas to be dilute compels to neglect the higher order inter-

action terms, and to consider only the two-body elastic atom-atom collisions, characterized by

the s-wave scattering length as. Furthermore, the impact of the uncondensed fraction of a Bose

gas responsible of thermal and quantum fluctuations is not taken into account in the dynami-

cal behaviour of such a condensate. Due to the fact that some atomic species have been Bose-

condensed at very high transition temperatures with strong interatomic interactions and high

density of atoms as in the cases of helium 4(4He) and rubidium 85(85Rb), it was clear that the

GPE obtained in the mean-field approach can not describe accurately the dynamical behaviour

of such condensates. All these observations compel to consider higher order interatomic inter-

actions and thermal fluctuations in the dynamics of such condensates. Moreover, remembering

that in the BEC history the two-and three-body recombination responsible for the formation of

molecules(dimer) and losses of atoms from trapping potential were a major problem in its final

achievement, these inelastic collisions proven experimentally with the Feshbach resonance tech-

niques, were recently introduced into the GPE in references [19, 20, 21, 22, 23, 24, 25, 26] as a

complex terms to describe the dynamics of certain condensates. It is also well known that all

improvements in the cooling techniques in the achievement of Bose-Einstein condensation were
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mainly to circumvent this phenomenon of losses of atoms and increase the density of atoms of

the condensate. Therefore, one can understand the complex Gross-Pitaevskii-Ginzburg equation

(GPGE) sometime used to describe the dynamical behaviour of atoms of certain condensates.

In this thesis we consider the dynamics of a condensate in the framework of this GPGE, with an

external potential which is a moving optical Fourier-synthesized lattice. This choice of potential

give the possibility to the experimentalist to control externally its geometry. The next sections

of this chapter will be to present the different methods used, and the model considered in this

thesis.

II.2 Methods used in this thesis

II.2.1 Analytical method

The analytical tool used in this thesis to predict the onset of chaos in the dynamical behaviour

of the condensate is the Melnikov method (MM). The generalized Melnikov method, first in-

troduced by Melnikov [147] and developed by Wiggins[148, 149], consists of studying a system

in which the unperturbed problem is an integrable Hamiltonian system having a normally hy-

perbolic invariant set whose stable and unstable manifold intersect non-transversally. When a

system is perturbed by external excitations and dissipative forces, the homoclinic motions can

break into homoclinic tangles, providing the conditions for chaotic motions. Roughly speaking,

the Melnikov theory defines the condition for the appearance of the so-called transverse inter-

section points between the perturbed and the unperturbed separatrices, or the appearance of the

fractality on the basin of attraction. Although Melnikov’s method is merely approximative, it is

one of a few methods allowing analytical prediction of the occurrence of chaos. Moreover, it can

be applied to a relatively large class of dynamical systems. The Smale-Birkhoff theorem states

that a necessary condition for the occurrence of chaos is that the Melnikov function induced by

the perturbation should have simple zeros. That is to say M(t0)=0 and
dM(t0)

dt0
6= 0 at t = t0,

where t0 represents the cross-section time of the Poincaré map.

This method was successfully used in reference [150] to study the Melnikov chaos in a period-

ically driven Rayleigh-Duffing oscillator and in references [151, 152] to study the active control

delay and the horseshoes chaos in a single and double well Duffing oscillators. In reference [153],

this method was used to predict the onsets for apparition of homoclinic or heteroclinic bifurca-
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tions in a parametrically excited mechanical system.

Before expressing the Melnikov function, let’s define these few useful concepts.

A separatrix is a boundary separating two modes of behaviour in a differential equation. If the

orbit of a point P in phase space of a mapping or a flow approaches an invariant set I as t ap-

proaches ±∞ then the orbit of P is said to be homoclinic to I. On the other hand, if the orbit of

a point P in phase space of a mapping or a flow approaches an invariant set I as t approaches

+∞ and approaches another invariant set J as t approaches −∞, then the orbit of P is said to be

heteroclinic to I and J.

Let’s consider the time periodic dynamical system

Ẋ = f(X) + εg(X, t), (14)

where X =



u

v


 represents the state vector, f(X) is a planar Hamiltonian vector field, εg(X, t)

is a small perturbation which need not to be Hamiltonian itself. g(X, t) is a periodic function

in time, that is to say there exists a real T such that g(X, t + T ) = g(X). Let’s consider the

unperturbed system corresponding at ε = 0. This integrable Hamiltonian system can be written

as a function of the Hamiltonian H as specified below





u̇ =
∂H

∂v

v̇ = −∂H
∂u

.
(15)

From this system, the Hamiltonian is determined. On a separatrix, this Hamiltonian is constant.

With this assumption, in phase space the velocity can be expressed as a function of the posi-

tion. The family of curves subsequently obtained is called integral curves. With the remark that

the saddle point(s) of the system belong(s) to the separatrix, the constant of the integral curves

is then determined. Integrating this particular integral curve leads to a vector essential to the

determination of the Melnikov function. Let X0(t) =



u0(t)

v0(t)


 be the solution of this partic-

ular integral curve, generating the separatrix. Thus, the Melnikov function which measure the

distance between stable and unstable manifolds is given by

M (t0) =

∫ +∞

−∞
f [X0(t)] ∧ g [X0(t), t+ t0] dt. (16)
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This formula giving the Melnikov function will be used in this thesis to predict analytically the

onset of horseshoes chaos, which in fact represents the beginning or the end of the instability in

the dynamics of the condensate.

II.2.2 Numerical methods

In this thesis, we use two numerical schemes: The fourth-order Runge-Kutta method and the

Euler-Cromer method.

II.2.2.1. The fourth-order Runge-Kutta method

Developed around 1900 by the German mathematicians Carl Runge and Martin Kutta, the Runge-

Kutta methods which include the Euler scheme, are a family of implicit and explicit iterative

methods used in temporal discretization for the approximate solutions of ordinary differential

equations. In this thesis, we use the fourth-order Runge-Kutta method, the most widely known

member of the Runge-Kutta family. Let an initial value problem be specified as follows





ẏ = f(t, y)

y(t0) = y0

(17)

y is an unknown function (scalar or vector) of time t, which we would like to approximate. At

the initial time t0 the corresponding y value is y0. The function f, t0, and y0 are given. Now

picking a step-size the positive number h, the fourth-order Runge-Kutta scheme is given by





yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h,
(18)

with n=0,1,2,3,..., and k1, k2, k3, k4 given by





k1 = hf(tn, yn)

k2 = hf(tn + h
2 , yn + k1

2 )

k3 = hf(tn + h
2 , yn + k2

2 )

k4 = hf(tn + h, yn + k3).

(19)
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yn+1 is the fourth-order Runge-Kutta approximation of y(tn+1), and is determined by the present

value of yn. The fourth-order in the denomination of the Runge-Kutta method means that the

local truncation error is on the order of O(h5), while the total accumulated error is on the order

of O(h4).

In this thesis, this fourth-order Runge-Kutta method is directly used to plot the Lyapunov ex-

ponents, the basins of attraction and some bifurcation diagrams in Fortran 90 codes. It is also

indirectly used in ode45 Matlab solver to plot some phase portraits, some Poincaré sections and

spatiotemporal evolutions of the condensate.

II.2.2.2. The Euler-Cromer method

Let’s consider a second-order differential equation which can be written as a first-order system

as follows. 



dx

dt
= y

dy

dt
= f(t, x, y).

(20)

This method was introduced to solve the amplitude growth problem of a damped oscillator with

the Euler method. The Euler-Cromer algorithm, a modified Euler scheme is given by





yn+1 = yn + f(tn, xn, yn)∆t

xn+1 = xn + yn+1∆t

tn+1 = tn + ∆t.

(21)

n=1,2,3,..., and f, t0, x0 and ∆t are given. This method was used to plot some bifurcations dia-

grams and Poincaré sections.

II.3 The Model

II.3.1 From Gross-Pitaevskii equation to Gross-Pitaevskii-Ginzburg equation

At low enough temperatures, the mean-field approximation usually considered to describe the

dynamics of a Bose-Einstein condensate(BEC) of dilute bosonic gases is a nonlinear Shrödinger

equation(NLSE), the so-called Gross-Piteavskii equation(GPE). In this formalism, the atom-atom

interactions are restricted only to elastic two-body collisions, and the thermal cloud responsi-

ble of thermal and quantum fluctuations neglected. According to nonlinear science, it is well
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known that the key element for the possible existence of a chaotic behaviour in a dynamical sys-

tem is the nonlinearity. Taking into account the two-body interactions (nonlinear term) between

atoms in the Schrödinger equation to describe the dynamics of Bose-Einstein condensates can

be considered as the required condition for the possible appearance of temporal[117, 118], spa-

tial [119, 120], and spatiotemporal [27, 28, 121] chaos in the dynamical behaviour of condensates.

This Gross-Pitaevskii equation based on the lowest-order mean-field theory, describes accurately

the static and dynamical properties of the condensate of a dilute Bose gas. The first realization

of a condensate in 1995 triggered enormous research works on its properties. Owing to the pres-

ence of a nonlinear term in the GPE modeled by the s-wave scattering length, and especially

because of a probable use of condensates in technology as the atom Laser project initiated at

MIT in 1997 and so on, there has been an avalanche of studies on the chaos therein as illustrated

by the following examples.

As part of GPE with bosonic atoms trapped by a magnetic field, authors in reference [122] have

shown that Bose-Einstein condensates with attractive interatomic interactions undergo collective

collapse beyond a critical number. Moreover, they have shown theoretically that if the low-lying

collective modes of the condensate are excited, the radial breathing mode further destabilizes

the condensate. In reference [123] the authors investigated the possibility of quantum chaos for

the Bogoliubov excitations of a Bose-Einstein condensate in billiards. As results, they found that

because of the mean-field interaction in the condensate, the Bogoliubov excitations are very dif-

ferent from the single particle excitations in a noninteracting system. The spatial chaos in the

dynamics of thin cigar-shape condensates is studied in reference [124]. As theoretical tool, the

Melnikov approach is used to predict the onset of chaos, and the numerical simulations show

the existence of chaotic dynamics in accordance with analytical results.

To combine cooled atoms and optical lattices has given opportunities to investigate a new regime

of strongly correlated quantum systems in which interactions between particles dominate the

properties of the system. Due to the periodic nature of these trapping potentials, such systems

are closely related to those in condensed matter physics, but offer new possibilities to vary inter-

nal parameters of the system which cannot be influenced in a real solid state system. Within the

framework of the study of stability and chaos in the dynamics of condensates trapped in optical

lattices, authors of reference [89] have investigated the superfluidity of Bose-Einstein conden-

sates, and as results, they observed that apart from the usual Landau instability, which occurs
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when a condensate flows faster than the speed of sound, the condensate can also suffer a dynam-

ical instability, resulting in period doubling and other sorts of symmetry breaking of the system.

In reference [27] the authors have studied the chaotic properties of steady-state traveling-wave

solutions of the particle number density of a Bose-Einstein condensate with an attractive in-

teratomic interaction loaded into a moving optical Fourier-synthesized lattice. As results, they

demonstrated theoretically and numerically that chaotic traveling steady states can be reliably

suppressed by small changes of the traveling optical lattice shape while keeping the remaining

parameters constant. In addition, they found that the regularization route as the optical lat-

tice shape is continuously varied is fairly rich, including crisis phenomena and period-doubling

bifurcations. In reference [125], the synchronization between two coupled Bose-Einstein con-

densates in their chaotic states based on a technique derived from nonlinear control theory is

investigated. The nonlinear control is obtained using the active control and the controller is cho-

sen such that a single control input is sufficient to guarantee global stability of the synchronized

state. Furthermore, the effectiveness and feasibility of this technique is theoretically and numer-

ically demonstrated

Beyond the mean-field approximation, quantum fluctuations and interactions of the condensate

with the thermal component of the gas are described within the framework of the Hartree-Fock-

Bogoliubov equations, which are essentially more cumbersome than the relatively simple GPE.

In reference [21], the elastic three-body collisions between atoms in the dynamics of a conden-

sate have been established theoretically. Although the experimental proof of this phenomenon

remains an open question, it was introduced in the Gross-Pitaevskii formalism in references

[19, 20, 126, 127, 128, 129] to stabilize the dynamics of condensed atoms with a negative s-wave

atom-atom scattering length which is unstable for a large number of atoms according to refer-

ence [130]. However, it is to note that in these articles, the condensate is governed by the real

time-dependant Gross-Pitaevskii-Ginzburg equation(GPGE). In reference [19], the stability of a

trapped condensate, with two-body and three-body collisions is studied, and the validity of the

stability criterion suggested by Vakhitov and Kolokolov is discussed. From this study, the maxi-

mum initial chirp that can lead a stable condensate to collapse even before the number of atoms

reaches its critical limit is obtained for several specific cases. Moreover, considering two-body

and three-body nonlinear terms, with negative cubic and positive quintic terms, the conditions

for the existence of two phases in the condensate are established. Authors of reference [20] have
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shown that, the addition of a positive three-body interaction allows stable solutions beyond the

critical number, and a dynamical analysis of conditions for the collapse is introduced. The sta-

bility of a Bose-Einstein condensed state of trapped ultra-cold atoms is investigated in reference

[21] under the assumption of an attractive two-body and a repulsive three-body interaction. The

lowest collective mode excitations are determined and their dependence on the number of atoms

and on the strength of the three-body force are studied. As another result, the addition of three-

body dynamics can allow the number of condensed atoms to increase considerably, even when

the strength of the three-body force is very small compared with the strength of the two-body

force.

It is well known in the BEC history that these two-body and three-body losses related to inelastic

collisions between atoms were a crucial problem for its achievement. The improvement in the

technology of cooling samples was to circumvent these inelastic processes. Furthermore, it was

proved with the Feshbach resonance techniques [15, 16, 17] the existence of these losses phenom-

ena in the dynamics of certain condensates. These dissipation phenomena were clearly observed

in the Bose-Einstein condensation of 85Rb. Moreover, the studies reveal that the two kinds of in-

elastic processes which can contribute significantly to the decay of a Bose-Einstein condensate

are the two-body dipolar spin relaxation and the three-body recombination. These inelastic col-

lisions eject the atoms from the confining trap, and to keep constant the number of atoms in the

trap, an atomic pumping process is required, taking atoms from uncondensed state and inject-

ing them into the condensate. This process called atomic feeding or atomic pumping leads to

a permanent non-reversible dynamics, induced by the coupling between condensed atoms and

their environment. In this context, the dynamics of the condensate is governed by the complex

Gross-Pitaevski-Ginzburg equation given by

i~
∂ψ

∂t
= − ~2

2m
∆ψ + (V (r) + iγ0)ψ +

(
4π~2as(r, t)

m
− iγ1

)
|ψ|2ψ + (g1 − iγ2)|ψ|4ψ. (22)

ψ(~r, t) represents the macroscopic wave function, m is the atomic mass, V(r) is the trapping po-

tential, as is the s-wave scattering length, g1 is the parameter related to the elastic three-body

collisions, and γ0, γ1, γ2 the parameters related respectively to feeding process, dipolar relation,

and three-body recombination.

Considering this extended Gross-Pitaevskii mean-field approximation with a magnetic trapping

potential, the stability of atomic condensed systems when the two-body interaction is attrac-
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tive is studied in reference [22, 23]. The interesting dynamics leading to chaotic behaviour of

the condensate, or to stable solitonic-like solutions resulting from the balance between feeding

and dissipation were obtained. This chaotic behaviour is observed mainly when the feeding pa-

rameter is about one or two orders of magnitude larger than the dissipation parameters. Also

observed were weak and strong instabilities causing collapses and growth-collapse cycles. Au-

thors of [24] have analyzed the experimental results of 85Rb Bose-Einstein condensation within

the mean-field approximation with time-dependent two-body interaction and dissipation due to

the three-body recombination. They found that the magnitude of the dissipation is consistent

with the three-body theory for longer rise times. However, for shorter rise times, there is an

enhancement of this parameter, consistent with a coherent dimer formation. In reference [25],

the dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with

attractive two-body interaction is numerically investigated, considering wide variations of non-

conservative parameters, related to atomic feeding and dissipation. Some stability zones are

plotted in parameter space, and the results of references [22, 23] are confirmed. In reference [26]

are discussed the conditions of existence of autosolitons in trapped Bose-Einstein condensates

with attractive atomic interactions. Theoretically, the variational approach is employed to esti-

mate the stationary solutions for the three-dimensional Gross-Pitaevskii equation. Linear atomic

feeding from the thermal cloud, and two-and three-body inelastic collisions are considered. Us-

ing exact numerical calculations, they shown that the variational approach gives reliable analyt-

ical results, and also discussed, the possible observation of autosolitons in experiments with 7Li.

Always beyond the mean-field theory, in reference [131] the dynamics of Bose-Einstein conden-

sates in a double-well trap is discussed, the two-mode model is used to describe the symmetry

breaking and self-trapping bifurcations in the reversible and quasi-reversible cases. As results,

they shown that the condensate can experience a transition to a chaotic behaviour described by

the Lorenz equations. Furthermore, they used the one-dimensional NLSE to describe the self-

trapping, and with numerical experiments as well as the reduction to amplitude equations they

shown that Lorenz-like chaotic behaviour can be observed. In reference [132], the modulational

instability of a Bose-Einstein condensate with both two-and three-body interatomic interactions

and trapped in an external parabolic potential is investigated analytically and numerically. An-

alytical investigations performed lead them to establish an explicit time-dependent criterion for

the modulational instability of the condensate, and subsequently, the effects of the potential as
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well as of the quintic nonlinear interaction are studied. In reference [133], the author construct,

through a further extension of the tanh-function method, the matter-wave solutions of Bose-

Einstein condensates with a three-body interaction. The condensates are trapped in a potential

comprising the linear magnetic and the time-dependent laser fields. As result, they realize that

exact solutions obtained include soliton solutions, such as kink and antikink as well as bright,

dark, multisolitonic modulated waves. In addition they realize that the motion and the shape

of the solitary wave can be manipulated by controlling the strengths of the fields. Bose-Einstein

condensates with time varying two-body and three-body interatomic interactions confined in

a linear potential and exchanging atoms with the thermal cloud are investigated in [134]. Us-

ing the extended tanh-function method with an auxiliary equation(the Lenard equation), many

exact solutions describing the dynamics of matter-wave condensates are derived. In addition,

adjusting the strength of the linear potential, the rate of exchange of atoms, and many other free

parameters allow to control many features of the condensate such as its height, width, position,

velocity, acceleration, and its direction. Full numerical solutions corroborate the analytical pre-

dictions. In reference [135], a modified version of the GPE is used to describe the dynamics of

condensates. The analytical study shows that the three-body interactions destabilize more the

condensate system while the external potential alleviates the instability. This result obtained

theoretically is confirmed by numerical simulations. Moreover, further numerical investigations

of the behaviour of solitons reveal that the three-body interactions enhance the appearance of

solitons, increase the number of solitons generated, and deeply change the lifetime of these soli-

tons. In reference [136], the modulational instability of BoseEinstein condensates based on a

modified Gross-Pitaevskii equation which takes into account quantum fluctuations and a shape-

dependent term, trapped in an external time-dependent complex potential is investigated. The

theoretical analysis uses a modified lens-type transformation which converts the modified GPE

into a modified form without an explicit spatial dependence. Their numerical results reveal that

the gravitational field has three effects on the modulational instability. (i) the deviation back-

ward or forward of solitons trains, (ii) the enhancement of the appearance of the modulational

instability, and (iii) the reduction of the lifetime of pulses. Moreover, their numerical simulations

prove that it is possible to control the propagation of the generated solitons trains by a proper

choice of parameters characterizing both the loss or feeding of atoms and the gravitational field,

respectively.
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These studies about the stability of condensates beyond the mean-field approach were made

within the framework of bosonic atoms trapped by a magnetic field. Finding that in the literature

there is no substantial research works about the stability and chaos for condensates governed by

the GPGE with a trapping potential of type optical lattice, that motivated our research team to

look in that direction. Interested in finding out what would be the dynamics of a damped con-

densate with repulsive two-body and attractive three-body elastic collisions and governed by

the real time-dependent GPGE, with an external trapping potential which is a moving optical

Fourier-synthesized lattice, we obtain as results in reference [29] that the depth and the variable

shape of the optical lattice may help to enhance chaos while the strength of the effective three-

body interactions, the velocity of the optical lattice, and the damping coefficients annihilate or

reduce the chaotic behaviour of the condensate. Moreover, the numerical simulations reveal that

for all control parameters, the route leading to chaotic oscillations or to regular oscillations is the

period-doubling scenario. In reference [30], we study the dynamics of a condensate with attrac-

tive two-body and repulsive three-body elastic collisions and governed by the complex GPGE.

As theoretical results, we discover that coupling the optical depth and parameters related to

atomic feeding and atomic losses (dissipation) can help to reduce or annihilate the chaotic be-

haviour of the condensate, and within the framework of homoclinic bifurcations, the chaotic

behaviour of the condensate occurs when the feeding parameter is about one order of magni-

tude larger than the three-body recombination parameter. This results was already obtained in

the case of condensates trapped by a magnetic field [22, 23]. Furthermore, the numerical simu-

lations reveal that the transition route to chaos is the quasi-periodicity.

The following lines of this thesis will be devoted to the details of these two articles aforemen-

tioned. We consider a thin cigar-shaped condensate resulting from a cylindrical 3D BEC with

a strong radial confinement, so that the transversal dynamics can be neglected. It was shown

in references [137, 138, 139, 140] that, condensates as observed experimentally are weakly dis-

sipative and decay over time. That can be interpreted as the result of nonzero temperature in

the Bose-Einstein condensation, because the quantum fluid obtained will be weakly viscous,

implying small frictions between the bosonic atoms. Henceforth, we consider this friction phe-

nomenon between the atoms in the dynamics of the condensate. Moreover, we admit elastic

and inelastic two-body and three-body collisions between atoms as it was proved in reference

[15, 16, 17]. To maintain constant the number of atom into the condensate, a pumping process
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is considered, taking atoms from thermal cloud for the condensed atoms. As trapping potential,

we choose a moving optical Fourier-synthesized lattice, well described in the previous chap-

ter. This trapping potential gives the possibility to control its depth and its velocity, roughly

speaking, the possibility to change with external parameters its geometry. Thus, this thin cigar-

shaped condensate is governed by the following quasi-one-dimensional (1D) time-dependent

Gross-Pitaevskii-Ginzburg equation(GPGE)

(i+γ)~
∂ψ

∂t
= − ~2

2ma

∂2ψ

∂x2
+
(
Ṽ0sn

2(ηξ;m) + g̃0|ψ|2 + g̃1|ψ|4
)
ψ+ i

(
γ̃0 − γ̃1|ψ|2 − γ̃2|ψ|4

)
ψ, (23)

where ψ(x, t) is the wave function of the condensate, ξ = x + υLt is the space-time variable,

υL =
∆f

2k
the velocity of the traveling lattice, with ∆f the frequency difference between the

two Fourier-synthesized counter-propagating laser beams. k =
2π

λ
is the laser wave vector,

ma is the atomic mass. The real number g̃0 =
4π~2as
ma

is the interatomic two-body interaction

strength, with as the s-wave scattering length. The real number g̃1 is the strength of the effective

three-body interactions. η=
2K(m)k

π
, with K(m) the complete elliptic integral of the first kind.

Ṽtrap = Ṽ0sn
2(ηξ;m) is the periodic moving optical lattice, where sn(.;m) is the Jacobian sine

elliptic function of parameter m(0 ≤ m ≤ 1). The choice of this form of trap potential compared

with the classical form generally used, is that it will be very helpful in experiments, due to the

possibility to change(with the variable shape m) the geometry of the optical lattice.

γ̃0 represents the rate of the pumping process, γ̃1 and γ̃2 are parameters related to atomic losses.

In fact, γ̃1 and γ̃2 are respectively related to the dipolar relaxation and to the three-body recombi-

nation. The sign(-) preceding the positive parameters γ̃1 and γ̃2 displayed in eq.(23) is to indicate

that these two terms are related to dissipations. The parameter γ is related to the damping,

due to the fact that the condensate is not really in the superfluidity form, implying a very small

viscosity in the quantum fluid.

II.3.2 System transformation

The optical trapping potentials being generally periodic functions, we consider the traveling-

wave solutions of eq.(23) in the form of Bloch-like waves [141, 142, 143]

ψ(x, t) = ϕ(ξ)ei(α̃x+β̃t), (24)
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where ϕ(ξ) is a complex function, modeling the amplitude of the traveling wave. The parameters

α̃ and β̃ are two real constants to be determined with boundary conditions on the wave function.

With this form of wave function, according to reference [144] it is probable to have solitonic

solutions. We note that this choice of ψ(x, t) implies that the traveling wave ϕ(ξ) and the elliptic

optical lattice move with the same velocity. Inserting the partial derivatives of the wave function

ψ(x, t) given by the following expressions





∂ψ

∂t
=

(
υL
dϕ

dξ
+ iβ̃ϕ

)
ei(α̃x+β̃t)

∂ψ

∂x
=

(
dϕ

dξ
+ iα̃ϕ

)
ei(α̃x+β̃t)

∂2ψ

∂x2
=

(
d2ϕ

dξ2
+ 2iα̃

dϕ

dξ
− α̃2ϕ

)
ei(α̃x+β̃t),

(25)

into eq.(23), and rescaling the complex amplitude ϕ by k
3
2 and the spatiotemporal variable ξ by

2K(m)

π
=
η

k
, we obtain

(i+ γ)~

(
υLk

3
2

2K(m)
π

dϕ

dξ
+ iβ̃k

3
2ϕ

)
= − ~2

2ma


 k

3
2

(
2K(m)
π

)2

d2ϕ

dξ2
+

2iα̃k
3
2

2K(m)
π

dϕ

dξ
− α̃2k

3
2ϕ




+

(
Ṽ0sn

2

(
2K(m)

π
ηξ,m

)
+ g̃0k

3|ϕ|2 + g̃1k
6|ϕ|4

)
k

3
2ϕ

+i
(
γ̃0 − γ̃1k

3|ϕ|2 − γ̃2k
6|ϕ|4

)
k

3
2ϕ. (26)

Simplifying this equation by k
3
2 , and considering as new spatiotemporal variable the quantity

τ = ηξ, we obtain the following complex differential equation

~2k2

2ma

d2ϕ

dτ2
+ ~kγυL

dϕ

dτ
−
(
~2α̃2

2ma
+ ~β̃

)
ϕ− Ṽ0sn

2

(
2K(m)

π
τ ;m

)
ϕ−

(
g̃0k

3|ϕ|2 + g̃1k
6|ϕ|4

)
ϕ =

i

[
−
(
~kυL +

~2kα̃

ma

)
dϕ

dτ
+
(
γ̃0 − γ̃1k

3|ϕ|2 − γ̃2k
6|ϕ|4

)
ϕ− ~β̃γϕ

]
. (27)

Dividing this equation by the recoil energy Er =
~2k2

2ma
, one obtains

d2ϕ

dτ2
+ γυ

dϕ

dτ
−
(
α2 + β + V0sn

2

(
2K(m)τ

π
;m

))
ϕ− g0 |ϕ|2 ϕ− g1 |ϕ|4 ϕ =

i

[
− (υ + 2α)

dϕ

dτ
+
(
γ0 − γβ − γ1|ϕ|2 − γ2|ϕ|4

)
ϕ

]
. (28)
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This nonlinear differential equation governs the complex amplitude of the condensate, where

the dimensionless parameters appearing inside are given by:

α =
α̃

k
, β =

~β̃
Er

, g0 =
g̃0k

3

Er
, g1 =

g̃1k
6

Er
, γ0 =

γ̃0

Er
, γ1 =

γ̃1k
3

Er
, γ2 =

γ̃2k
6

Er
, V0 =

Ṽ0

Er
, and υ =

2maυL
~k

.

The traveling wave amplitude ϕ(τ) being a complex function, can be expressed in Euler form as,

ϕ(τ) = R(τ)eiθ(τ). (29)

R(τ) and θ(τ) represent the real amplitude and the phase of the condensate respectively. From

this equation, we obtain the following derivatives of the traveling amplitude ϕ(τ).





dϕ

dτ
=

(
dR

dτ
+ iR

dθ

dτ

)
eiθ

d2ϕ

dτ2
=

(
d2R

dτ2
−R

(
dθ

dτ

)2

+ i

(
R
d2θ

dτ2
+ 2

dR

dτ

dθ

dτ

))
eiθ.

(30)

Inserting eq.(30) into eq.(28), the real amplitude and the phase of the condensate are governed
by the following nonlinear differential system





d2R

dτ2
+ γυ

dR

dτ
−R

(
dθ

dτ

)2

− (υ + 2α)R
dθ

dτ
−
[
α2 + β + V0sn

2

(
2K(m)τ

π
;m

)]
R− g0R3 − g1R5 = 0

R
d2θ

dτ2
+ 2

dR

dτ

dθ

dτ
+ γυR

dθ

dτ
+ (υ + 2α)

dR

dτ
− (γ0 − βγ)R+ γ1R

3 + γ2R
5 = 0.

(31)

To keep the analysis close to a possible experimental realization, we expand the trapping po-
tential in Fourier series. Thus, according to the table of integrals and series [145] we obtain the
following expression of the Jacobi sine function

sn2(τ) =
+∞∑

j=1

bj−1 sin2

(
jπτ

2K(m)

)
. (32)

Henceforth, the trapping optical potential has the following trigonometric form

Vtrap(τ) = V0sn
2

(
2K(m)τ

π
;m

)
= V0

+∞∑

j=1

bj−1 sin2(jτ), (33)

more easy to use in analytical calculations. Always in reference [145], the Fourier coefficients
bj−1 can be deduced from the Jacobi sine function series given by

sn2

(
2K(m)

π
τ ;m

)
=

4π2

mK2(m)

+∞∑

n=0

+∞∑

l=0

an(m)al(m) sin((2n+ 1)τ) sin((2l + 1)τ), (34)
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with an(m) =
qn+ 1

2

1− q2n+1
, q = q(m) = exp

(
−πK(1−m)

K(m)

)
, and 0 ≤ m ≤ 1.

Expanding the right-hand side of eq.(34) leads to

sn2

(
2K(m)

π
τ,m

)
=

4π2

mK2(m)
(−2 a0a1 + a0

2 − 2 a1a2)sin2(τ)

+
4π2

mK2(m)
(−2 a0a2 + 2 a0a1)sin2(2τ) +

4π2

mK2(m)
(2 a0a2 + a1

2)sin2(3τ) + ..., (35)

with a0(m) =

√
q

1− q , a1(m) =
q3/2

1− q3
and a2(m) =

q5/2

1− q5
.

From eq.(35), one can deduce the expressions of three first Fourier coefficients b0(m), b1(m), and
b2(m) of the trapping potential, given by





b0(m) =
4π2q

(
1− q + q2 − q3 + q4

)

m (K (m))2 (1− q − q5 + q6)

b1(m) =
8π2q2

(
1 + q4

)

m (K (m))2 (1− q3 − q5 + q8)

b2(m) =
4π2q3

m(K(m))2(1− q3)2

[
1 +

2(1− q3)2

(1− q)(1− q5)

]
.

(36)

The advantage of using this kind of optical trapping potential instead of the classical form usu-
ally considered is the large opportunity of the experimentalist to change its geometry, by acting
on the shape parameter m. It is important to mention that this technique has been successfully
used to control the quantum transport in a condensate, as reported in reference [146].
Finally, the real amplitude and the phase of the condensate are governed by the following para-
metrically driven nonlinear differential system





d2R

dτ2
−
[
α2 + β +

V0

2
(b0(m) + b1(m) + b2(m)− b0(m) cos(2τ)− b1(m) cos(4τ)− b2(m) cos(6τ))

]
R

+γυ
dR

dτ
−R

(
dθ

dτ

)2

− (υ + 2α)R
dθ

dτ
− g0R

3 − g1R
5 = 0

R
d2θ

dτ2
+ 2

dR

dτ

dθ

dτ
+ γυR

dθ

dτ
+ (υ + 2α)

dR

dτ
− (γ0 − βγ)R+ γ1R

3 + γ2R
5 = 0.

(37)
Wishing to have a global overview on the dynamics of such condensates, we consider the two
possible cases of the sign of scattering length(positive and negative), corresponding to repulsive
and attractive two-body interactions respectively. In this context, From eq.(37), the following
questions emerge from our mind:

1. How the parameters of the optical lattice(depth, variable shape, velocity ) affect the dy-
namical behaviour of such a condensate?

2. In the case of instabilities leading to chaotic behaviour of the condensate, which route to
chaos uses each control parameter?

3. Is there solitonic-like solutions in the case of a stable regime of the condensate? If yes,
which is the nature of the corresponding solitary wave?
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4. How parameters related to two-body and three-body elastic and inelastic collisions affect
the dynamical behaviour of such a condensate?

5. By coupling analytical and numerical studies, can we control the chaos in the dynamical
behaviour of such a condensate?

II.4 Analytical study of a BEC with repulsive two-body and attrac-
tive three-body interactions loaded into a moving optical Fourier-
synthesized lattice

In this section, we assume the elastic two-body atom-atom interaction repulsive and the elastic
three-body atom-atom interaction attractive. Thus, g0 is a positive number and g1 is a negative
number.

II.4.1 Case of a damped condensate not subjected to inelastic collisions

In this subsection, in order to study the impact of physical parameters of the optical lattice(depth,
velocity, shape) on the dynamics of the condensate, we neglect the inelastic collisions. Thus, we
assume γ0 = γ1 = γ2 = 0. Under such conditions, the nonlinear system modeling the dynamical
behaviour of the condensate is restricted at




d2R

dτ2
−
[
α2 + β +

V0

2
(b0(m) + b1(m) + b2(m)− b0(m) cos(2τ)− b1(m) cos(4τ)− b2(m) cos(6τ))

]
R

+γυ
dR

dτ
−R

(
dθ

dτ

)2

− (υ + 2α)R
dθ

dτ
− g0R

3 − g1R
5 = 0

R
d2θ

dτ2
+ 2

dR

dτ

dθ

dτ
+ γυR

dθ

dτ
+ (υ + 2α)

dR

dτ
+ βγR = 0.

(38)
If one multiplies the second equation of eq.(38) by the real amplitude R, then one obtains after
some algebraic manipulations the following equation

d

dτ

[
R2

(
dθ

dτ
+
(υ

2
+ α

))]
+ γR2

(
υ
dθ

dτ
+ β

)
= 0. (39)

It is obvious to observe that
dθ

dτ
= −(

υ

2
+ α) = −β

υ
(40)

is a solution of eq.(39). This solution implies that the phase of the condensate varies linearly
with the spatiotemporal variable τ . In this subsection, we focalize our attention on this obvious
case. Inserting eq.(40) into the remaining equation of eq.(38), the nonlinear differential equation
governing the dynamics of the real amplitude of the condensate is given by

d2R

dτ2
+ γυ

dR

dτ
−
[
υ2

4
+
V0
2

(b0(m) + b1(m) + b2(m)− b0(m) cos(2τ)− b1(m) cos(4τ)− b2(m) cos(6τ))

]
R

−g0R3 − g1R5 = 0. (41)

Ph.D Thesis of Sylvin Tchatchueng Laboratory of mechanics, Materials and structures



43

It is to note that R(τ) being the real amplitude of the wave function of the condensate, will be
null for the spatiotemporal variable τ approaching −∞ and +∞. As initial conditions for τ = 0,
we consider the condensate at a stable fixed point.
Next, to approach the realistic case, we assume that the dissipation parameter γ and the optical
lattice depth V0 are of small amplitudes. Thus, we introduce the following scale transformations:
γ → εγ, V0 → εV0. Hence, the differential equation eq.(41) can be rewritten as a first order para-
metrically driven system in the form





Ṙ = X

Ẋ =
υ2

4
R+ g0R

3 + g1R
5 + ε[−γυX +

V0

2
(b0 + b1 + b2 − b0 cos(2τ)− b1 cos(4τ)− b2 cos(6τ))R].

(42)
ε is a small parameter(ε� 1) which characterizes the smallness of the dissipation and the depth
of the optical lattice.
The unperturbed system obtained when ε = 0 is a Hamiltonian system, and can be expressed as





Ṙ = X

Ẋ = −dU
dR

=
υ2

4
R+ g0R

3 + g1R
5,

(43)

where U(R) represents the potential energy of the system. One can straightforwardly deduce
from eq.(43) that

U(R) = −υ
2

8
R2 − g0

4
R4 − g1

6
R6. (44)

(a) (b)

Figure 4: (a) A configuration of the φ6 potential with two wells (b) local bifurcation near the
fixed points of the corresponding potential. The other parameters used are : υ = 2, g0 = 0.75,
g1 = −0.9
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In general, depending on the set of parameters, three physically interesting situations can be
considered where the potential is : (i) single-well, (ii) double-well or (iii) triple-well. The un-
perturbed system has a homoclinic or heteroclinic orbits or both of them, depending on the type
of potential well. In this section, working with the hypotheses g0 > 0 and g1 < 0, one obtains a
bounded double well potential, and the system eq.(43) exhibits only homoclinic orbits.

II.4.1.1. Fixed points of the unperturbed system and their stabilities

The fixed points of eq.(43) are solutions of Ṙ = 0 and Ẋ = 0. These equilibrium points are
solution of the algebraic equation

υ2

4
R+ g0R

3 + g1R
5 = 0. (45)

This equation leads to R = 0 or g1R
4 + g0R

2 +
υ2

4
= 0. The discriminant of the above equation,

∆ = g2
0 − υ2g1 is a positive number according to signs of g0 and g1 mentioned above. Hence, the

unperturbed system has three fixed points given by S1(0, 0), S2(−R1, 0) and S3(+R1, 0), with

R1 =

√√√√− g0

2g1

(
1 +

√
1− g1υ

2

g2
0

)
. (46)

Now, let’s study the stability of each fixed point. The Jacobian matrix of the unperturbed system
is given by

J =




0 1

υ2

4
+ 3 g0R

2 + 5 g1R
4 0


 . (47)

For the fixed point S1(0, 0), the eigenvalues of the corresponding Jacobian matrix are two real
numbers, one positive and the other negative, given by λ1 = −υ

2
and λ2 = +

υ

2
. This unstable

hyperbolic fixed point is a saddle point.
The fixed points S2(−R1, 0) and S3(+R1, 0) are associated with the same eigenvalues. The cor-
responding Jacobian matrix has as eigenvalues two imaginary complex conjugate numbers

λ1 = −i

√√√√−g0
2

g1

√
1− g1υ

2

g0
2

(
1 +

√
1− g1υ

2

g0
2

)
and λ2 = +i

√√√√−g0
2

g1

√
1− g1υ

2

g0
2

(
1 +

√
1− g1υ

2

g0
2

)
.

It is clear that these two stable nonhyperbolic fixed points are centers.

II.4.1.2. Derivation of state vectors generating the two homoclinic separatrices

As function of Hamiltonian H, the unperturbed system eq.(43) can be rewritten as





∂H

∂X
= X

∂H

∂R
= −

(
υ2

4
R+ g0R

3 + g1R
5

) (48)
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The integration of the first equation of eq.(48) yields H(R,X) =
X2

2
+ C(R). Inserting this

expression of the Hamiltonian H into the second equation of eq.(48) leads to
dC

dR
= −

(
υ2

4
R+ g0R

3 + g1R
5

)
. That is to say C(R) = −υ

2

8
R2 − g0

4
R4 − g1

6
R6 +H0

Finally the Hamiltonian of the unperturbed system eq.(43) is given by

H(R,X) =
X2

2
− υ2

8
R2 − g0

4
R4 − g1

6
R6 +H0. (49)

Where H0 is a real constant. On a separatrix, the Hamiltonian of the unperturbed system is

constant. That implies
X2

2
− υ2

8
R2 − g0

4
R4 − g1

6
R6 +H0 = cste.

From this expression, one derives the integral curves given by

X2 =
υ2

4
R2 +

g0

2
R4 +

g1

3
R6 + C0, (50)

where C0 is a real constant. The saddle point S1(0, 0) belonging to both homoclinic separatrices,
the integral curve characterizing these homoclinic separatrices is then given by the following
equation

X2
0 =

υ2

4
R2

0 +
g0

2
R4

0 +
g1

3
R6

0. (51)

From eq.(51), one obtains
dR0

dτ
= ± |R0|

√
υ2

4
+
g0

2
R2

0 +
g1

3
R4

0. This integrable nonlinear differ-

ential equation can be carried out as
∫

dR0

R0

√
υ2

4
+
g0

2
R2

0 +
g1

3
R4

0

= ±τ .

Let’s continue the integration by the change of variable R2
0 = u. That is to say 2R0dR0 = du.

Inserting this new variable into the above integral, one obtains

∫
du

u

√
υ2

4
+
g0

2
u+

g1

3
u2

= ±2τ (52)

The integration of the left-hand side of eq.(52) can be made through the formula

∫
dx

x
√
a+ bx+ cx2

=
1√
a
arc cosh

(
2a+ bx

x
√
−∆

)
, with

[
a > 0,∆ < 0,∆ = 4ac− b2

]
,

published in page 97 of reference [145].

The outcome of this formula applied to eq.(52) is
1√
υ2

4

arc cosh




υ2

2
+
g0

2
u

u

√
3g2

0 − 4υ2g1

12


 = ±2τ ,

which can be rewritten as arc cosh




υ2 + g0u

g0u

√
1− 4υ2g1

3g2
0




= ±υτ.
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Let’s solve this equation with u(τ) as unknown variable. Thus, we obtain 1+
υ2

g0u
=

√
1− 4υ2g1

3g2
0

cosh(υτ).

Finally, the unknown variable u is given by u(τ) =
υ2

g0

(
−1 +

√
1− 4υ2g1

3g2
0

cosh(υτ)

) .

Remembering that R2
0 = u, one obtains finally

R0 = ± υ√√√√g0

(
−1 +

√
1− 4g1υ

2

3g2
0

cosh(υτ)

) .

The second component of the state vector defined as X0 =
dR0

dτ
is given by

X0 = ±
υ2g0

√
1− 4υ2g1

3g2
0

sinh(υτ)

2



√√√√g0

(
−1 +

√
1− 4g1υ

2

3g2
0

cosh(υτ)

)


3 .

Hence, the expressions of the state vectors generating the two homoclinic separatrices are given
by the following system





R±0 (τ) = ± υ√
g0

(
− 1 + σ cosh(υτ)

)

X±0 (τ) = ± υ2σ sinh(υτ)

2
√
g0

(
− 1 + σ cosh(υτ)

)3/2
,

(53)

with σ =

√
1− 4g1υ

2

3g2
0

. g1 being a negative number implies that σ > 1. The plus (minus) sign

corresponds to the right (left) homoclinic orbit of this unperturbed system. It is important to
note that R+

0 corresponds to X−0 , and R−0 corresponds to X+
0 .

The maximum value R2
0max of the particle number density of the condensate deduced from the

unperturbed system eq.(43) is obtained for τ = 0. R2
0max is then given by the expression

R2
0max =

υ2

g0(−1 + σ)
. (54)

The width of the condensate at the mid-height ∆τ for the unperturbed system is obtained by

solving the equation R2
0(τ) =

R2
0max

2
. This value of ∆τ characterizing the spatiotemporal exten-

sion of the condensate is given by the expression

∆τ =
2

υ
arc cosh(2− 1

σ
). (55)
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It comes from eq.(55) that, by regulating increasingly the scattering length as while the parame-
ter g1 related to three-body elastic collisions is kept constant, tends to increase the density, and
decrease the spatiotemporal extension of the condensate. The same behaviour is observed when
the parameter g1 related to three-body elastic collisions is increasingly varied while the scatter-
ing length as is kept constant. These homoclinic separatrices obtained with eq.(53) is in perfect

(a) (b) (c)

Figure 5: (a) Spatiotemporal evolution of the particle number density of condensate (bright soli-
tons). (b) Spatiotemporal evolution of the first excited state of condensate (black solitons) (c) The
homoclinic separatrices deduced from eq(53). The other parameters used are: υ = 2, g0 = 0.75,
g1 = −0.9

accord with the one obtained directly via a numerical integration, and displayed in Fig.4(b). In
addition, one recognizes for this undamped condensate without trapping potential, solitonic so-
lutions as bright solitons for R0(τ) and black solitons for X0(τ). These solitary waves can be
interpreted as a balance between the both parts of the nonlinearity.

II.4.1.3. The Melnikov approach

Now, we consider the perturbed system eq.(42) which can be rewritten in term of state vector as

d

dτ



R

X


 =




X

υ2

4
R+ g0R

3 + g1R
5




+ε




0
(
V0
2

(
b0 + b1 + b2 − b0 cos(2τ)− b1 cos(4τ)− b2 cos(6τ)

)
R− γυX

)


 (56)

In the vector form, this equation can be merely rewritten as

Ṡ = F (S (τ)) + εG (S (τ) , τ + τ0) , (57)
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where S =



R

X


 is a state vector. F =




X

υ2

4
R+ g0R

3 + g1R
5


 and G (S (τ) , τ + τ0) =




0

G(τ)


 are two vector fields useful for the determination of the Melnikov function, with

G(τ) =

[
V0

2

(
b0 + b1 + b2 − b0 cos (2τ + 2τ0)− b1 cos (4τ + 4τ0)− b2 cos (6τ + 6τ0)

)
R− γυX

]
.

According to eq.(16), the Melnikov function of this unperturbed system is given by

−→
M (τ0) =

∫ +∞

−∞
F [S0 (τ)] ∧G [S0 (τ) , τ + τ0] dτ, (58)

where S0(τ) =



R0(τ)

X0(τ)


 is a state vector taken on a homoclinic separatrix. Finally, the algebraic

expression of the Melnikov function of the system eq.(42) is given by

M (τ0) =

∫ +∞

−∞
X0 (τ)G0 (τ) dτ. (59)

G0(τ) =

[
V0

2

(
b0 + b1 + b2 − b0 cos (2τ + 2τ0)− b1 cos (4τ + 4τ0)− b2 cos (6τ + 6τ0)

)
R0 − γυX0

]

Inserting this expression of G0(τ) in eq.(59), one obtains

M (τ0) =
V0

2
[b0(m) + b1(m) + b2(m)] I1 −

V0

2
I2 − γυI3, (60)

with integrals I1, I2 and I3 defined as follows

I1 =

∫ +∞

−∞
R0(τ)X0(τ)dτ, (61)

I2 =

∫ +∞

−∞
[b0(m) cos(2τ + 2τ0) + b1(m) cos (4τ + 4τ0) + b2(m) cos (6τ + 6τ0)]R0 (τ)X0 (τ) dτ,

(62)

I3 =

∫ +∞

−∞
X2

0 (τ) dτ. (63)

To evaluate these integrals, let’s start by the calculation of R0(τ)X0(τ) expressed below.

R0(τ)X0(τ) = − υ3σ sinh (υ τ)

2g0 (−1 + σ cosh (υ τ))2 .

The sign (-) of the result is due to the fact thatR+
0 corresponds toX−0 andR−0 corresponds toX+

0 .
This product being an odd function, one can therefore conclude that I1 = 0.
To evaluate I2, we expand the term preceding the product R0(τ)X0(τ) and we retain only the
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odd part of the expansion. Thus, this integral can be rewritten as

I2 =
b0υ

3σ sin(2τ0)

g0

∫ +∞

0

sinh(υτ) sin(2τ)dτ

(−1 + σ cosh(υτ))2 +
b1υ

3σ sin(4τ0)

g0

∫ +∞

0

sinh(υτ) sin(4τ)dτ

(−1 + σ cosh(υτ))2

+
b2υ

3σ sin(6τ0)

g0

∫ +∞

0

sinh(υτ) sin(6τ)dτ

(−1 + σ cosh(υτ))2 (64)

Each integral of eq.(64) can be simplified by the integration by part method. Thus, we have

∫ +∞

0

sinh(υτ) sin(2τ)dτ

(−1 + σ cosh(υτ))2 =

[
− sin (2 τ)

σ υ (−1 + σ cosh (υ τ))

]+∞

0

+ 2

∫ +∞

0

cos (2 τ) dτ

σ υ (−1 + σ cosh (υ τ))

=

(
0 + 2

∫ +∞

0

cos (2 τ) dτ

σ υ (−1 + σ cosh (υ τ))

)
=

2

υσ

∫ +∞

0

cos (2 τ) dτ

(−1 + σ cosh (υ τ))

Continuing this reasoning on the other integrals, one obtains

∫ +∞

0

sinh(υτ) sin(4τ)dτ

(−1 + σ cosh(υτ))2 =
4

υσ

∫ +∞

0

cos (4 τ) dτ

(−1 + σ cosh (υ τ))
,

and ∫ +∞

0

sinh(υτ) sin(6τ)dτ

(−1 + σ cosh(υτ))2 =
6

υσ

∫ +∞

0

cos (6 τ) dτ

(−1 + σ cosh (υ τ))
.

From the reference [145] in page 511, the integrals of the right-hand side mentioned above can
be evaluated through the formula

∫ +∞

0

cos(ax)dx

(c+ b cosh (βx))
=

π sinh

(
a

β
arc cos

(c
b

))

β
√
b2 − c2 sinh

(
aπ

β

) , [b > |c| > 0] .

The necessary conditions being fulfilled, because σ > 1 > 0, one obtains finally

I2 =
2πυ

g0

√
σ2 − 1

[b0 sin(2τ0) sinh

(
2

υ
arc cos

(
− 1

σ

))

sinh

(
2π

υ

) +

2b1 sin(4τ0) sinh

(
4

υ
arc cos

(
− 1

σ

))

sinh

(
4π

υ

)

+

3b2 sin(6τ0) sinh

(
6

υ
arc cos

(
− 1

σ

))

sinh

(
6π

υ

)
]
. (65)

Let’s evaluate I3.

I3 =
υ4σ2

4g0

∫ +∞

−∞

sinh2(υτ)dτ

(−1 + σ cosh(υτ))3
=
υ4σ2

2g0

∫ +∞

0

sinh2(υτ)dτ

(−1 + σ cosh(υτ))3
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With the integration by part method, one obtains

I3 =
υ4σ2

2g0

([
− sinh (υ τ)

2σ υ (−1 + σ cosh (υ τ))2

]+∞

0

+
1

2σ

∫ +∞

0

cosh (υ τ) dτ

(−1 + σ cosh (υ τ))2

)

=
υ4σ2

2g0

(
0 +

1

2σ

∫ +∞

0

cosh (υ τ) dτ

(−1 + σ cosh (υ τ))2

)
=
υ4σ

4g0

∫ +∞

0

cosh (υ τ) dτ

(−1 + σ cosh (υ τ))2

The last integral necessary for the calculation of I3 can be obtained directly from Maple software.
Thus, after some algebraic manipulations of the result given by Maple software, one obtains:

I3 =
υ4σ

4g0

([
2σ

υ (σ2 − 1)
3
2

arctan

(√
σ + 1

σ − 1
tanh

(υτ
2

))]+∞

0

+

[
sinh(υτ)

υ (σ2 − 1) (−1 + σ cosh(υτ))

]+∞

0

)

=
υ4σ

4g0

(
2σ

υ (σ2 − 1)
3
2

arctan

(√
σ + 1

σ − 1

)
+

1

υσ (σ2 − 1)

)
,

and finally

I3 =
υ3

4g0 (σ2 − 1)

(
1 +

2σ2

√
σ2 − 1

arctan

(√
σ + 1

σ − 1

))
(66)

Inserting eq.(65) and eq.(66) into eq.(60) leads to the following Melnikov’s function

M±(τ0) = − γυ4

4g0 (σ2 − 1)

(
1 +

2σ2

√
σ2 − 1

arctan

(√
σ + 1

σ − 1

))
− πυV0

g0
√
σ2 − 1

× (67)

[
b0 sinh

(
2
υarc cos

(−1
σ

))
sin(2τ0)

sinh
(
2π
υ

) +
2b1 sinh

(
4
υarc cos

(−1
σ

))
sin(4τ0)

sinh
(
4π
υ

) +
3b2 sinh

(
6
υarc cos

(−1
σ

))
sin(6τ0)

sinh
(
6π
υ

)
]
.

The Smale-Birkhoff theorem for the determination of the onset of homoclinic chaos states that
the required condition for the occurrence of chaos is that the Melnikov function should have
simple zero. To find analytically the condition for Melnikov’s function to have simples zero is
generally very cumbersome, so that some approximations are usually necessary to accomplish
the task. At these approximations which create a gap between the exact solution and the approxi-
mative one, we should not also forget that the MM itself is an approximative method. Therefore,
one should not expect a perfect concordance between the results deriving from the MM and
those provided by numerical simulations.
The comparison of Fourier coefficients bj(m), j=0,1,2 shows through Fig.(6) that, one can neglect
b1 and b2(m) in front of b0(m). Hence, the approximate Melnikov function admits simple zero if

M(τ0)=0 and
dM(τ0)

dτ0
6= 0 at τ = τ0. That is to say

sin(2τ0) = −
γυ3 sinh

(
2π

υ

)

4πV0

√
σ2 − 1b0(m) sinh

(
2

υ
arc cos

(
− 1

σ

))
(

1 +
2σ2

√
σ2 − 1

arctan

(√
σ + 1

σ − 1

))

Ph.D Thesis of Sylvin Tchatchueng Laboratory of mechanics, Materials and structures



51

Thus, the occurrence condition of the homoclinic chaos is obtained by solving | sin(2τ0)| ≤ 1.

That leads to

`(V0,m, υ, g1, γ) =
V0

γ
−
υ3 sinh

(
2π

υ

)(
1 +

2σ2

√
σ2 − 1

arctan

(√
σ + 1

σ − 1

))

4π
√
σ2 − 1b0(m) sinh

(
2

υ
arc cos

(
− 1

σ

)) ≥ 0. (68)

This inequality shows how the parameters must be linked to produce a chaotic behaviour of
the condensate, and will be very helpful in the next to verify the reliability of the theoretical
investigations, compared to numerical simulations.

Figure 6: Plot of Fourier coefficients bi, (i=0,1,2) versus the shape parameter m

II.4.2 Case of an undamped condensate subjected to inelastic collisions

In this subsection, we take into account the irreversible effects in the dynamical behaviour of
the condensate, always in the case of repulsive two-body and attractive three-body elastic atom-
atom collisions. We neglect the damping parameter γ(γ = 0) not only for a possible analyti-
cal treatment, but especially because the two-and three-body inelastic atom-atom collisions are
viewed as dissipation phenomena. Thus, according to eq.(37) of the previous section, the dy-
namics of such a condensate is governed by the following system





d2R

dτ2
−
[
α2 + β +

V0

2
(b0(m) + b1(m) + b2(m)− b0(m) cos(2τ)− b1(m) cos(4τ)− b2(m) cos(6τ))

]
R

−R
(
dθ

dτ

)2

− (υ + 2α)R
dθ

dτ
− g0R

3 − g1R
5 = 0

R
d2θ

dτ2
+ 2

dR

dτ

dθ

dτ
+ (υ + 2α)

dR

dτ
− γ0R+ γ1R

3 + γ2R
5 = 0.

(69)
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II.4.2.1. Amplitude equation governing the dynamics of the condensate

Before applying the Melnikov method, it is necessary to separate the two variables of eq.(69).
Hence, we multiply the second equation of this system by R(τ). As result, one obtains

d

dτ

[
R2

(
dθ

dτ
+

(
υ + 2α

2

))]
= γ0R

2 − γ1R
4 − γ2R

6.

The integration of this equation between −∞ and τ with the assumption that the real amplitude
of the condensate must be null when the spatiotemporal variable τ approaches infinity, permits
to separate the two variables of eq.(69) as follows

dθ

dτ
=

1

R2

∫ τ

−∞

(
γ0R

2(τ)− γ1R
4(τ)− γ2R

6(τ)
)
dτ −

(
υ + 2α

2

)
. (70)

The boundary conditions on the wave function due to the fact that the wave amplitude must be
null at τ = ±∞ leads to

∫ +∞

−∞

(
γ0R

2(τ)− γ1R
4(τ)− γ2R

6(τ)
)
dτ = 0. (71)

eq.(71) represents one constraint relation between parameters modeling inelastic processes. In-
serting eq.(70) in the first equation of system eq.(69), we obtain the following nonlinear integro-
differential equation governing the real amplitude of the traveling wave.

d2R

dτ2
−
[
a2

4
+
V0

2
(b0(m) + b1(m) + b2(m)− b0(m) cos(2τ)− b1(m) cos(4τ)− b2(m) cos(6τ))

]
R

−g0R
3 − g1R

5 =
1

R3(τ)

[∫ τ

−∞

(
γ0R

2(τ)− γ1R
4(τ)− γ2R

6(τ)
)
dτ

]2

,

(72)
with the expression of the constant a given by a2 = 4β − υ2 − 4αυ.
As in the previous subsection, we assume the depth of optical lattice V0, and parameters related
to atomic feeding and inelastic atom-atom collisions γi, i=0,1,2 of small amplitudes. Further-
more, we admit γi more smaller than V0. To bring closer the two terms of perturbation (V0 and
γi), we assume the following scale transformation. V0 → εV0, γ0 →

√
εγ0, γ1 →

√
εγ1 and

γ2 →
√
εγ2. It is obvious that when ε � 1,

√
ε is bigger than ε. Thus, to multiply the small val-

ues of parameters modeling the atomic feeding and inelastic collisions with
√
ε will bring closer

the two terms of perturbation, avoiding the inelastic processes to be negligible. This integro-
differential equation eq.(72) can be rewritten in the form of a first order system as





Ṙ = X

Ẋ =
a2

4
R+ g0R

3 + g1R
5 + ε

[V0
2

(b0 + b1 + b2 − b0 cos(2τ)− b1 cos(4τ)− b2 cos(6τ))R

+
1

R3(τ)

(∫ τ

−∞

(
γ0R

2(τ)− γ1R4(τ)− γ2R6(τ)
)
dτ

)2 ]
.

(73)
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II.4.2.2. Determination of state vectors generating the two homoclinic separatrices.

The unperturbed system deriving from eq.(73) has the same form as the one of the previous sub-
section, with the difference that the velocity of the optical lattice υ is replaced by the parameter a
aforementioned. We conclude that this unperturbed system has three fixed points. One unstable
fixed point at (0, 0) which is a saddle point, and two stables fixed points at (−R′1, 0) and (+R′1, 0)

which are centers, with

R′1 =

√√√√− g0

2g1

(
1 +

√
1− g1a

2

g2
0

)
.

The components of the state vector generating the homoclinic separatrices deduced from the
previous section can be written as





R±0 (τ) = ± a√
g0

(
− 1 + σ′ cosh(aτ)

)

X±0 (τ) = ± a2σ′ sinh(aτ)

2
√
g0

(
− 1 + σ′ cosh(aτ)

)3/2

(74)

with σ′ =

√
1− 4g1a

2

3g2
0

.

II.4.2.2. The Melnikov approach

According to eq.(16), the Melnikov function deduced from the perturbed system eq.(73) is given
by

−→
M (τ0) =

∫ +∞

−∞
f [S0 (τ)] ∧ g [S0 (τ) , τ + τ0] dτ, (75)

with S0 =



R0

X0


, f =




X

a2

4
R+ g0R

3 + g1R
5


, g (S (τ) , τ + τ0) =




0

g(τ)


, and

g(τ) =
V0

2

(
b0 + b1 + b2 − b0 cos (2τ + 2τ0)− b1 cos (4τ + 4τ0)− b2 cos (6τ + 6τ0)

)
R

+
1

R3(τ)

(∫ τ

−∞

(
γ0R

2(τ)− γ1R
4(τ)− γ2R

6(τ)
)
dτ

)2

.

Finally, the algebraic expression of the Melnikov function is given by

M (τ0) =

∫ +∞

−∞
X0 (τ) g0 (τ) dτ, (76)

with g0(τ) =
V0

2

(
b0 + b1 + b2 − b0 cos (2τ + 2τ0) − b1 cos (4τ + 4τ0) − b2 cos (6τ + 6τ0)

)
R0 +

1

R3
0(τ)

(∫ τ

−∞

(
γ0R

2
0(τ)− γ1R

4
0(τ)− γ2R

6
0(τ)

)
dτ

)2

Ph.D Thesis of Sylvin Tchatchueng Laboratory of mechanics, Materials and structures



54

As in the previous subsection, this Melnikov’s function can be rewritten in the form

M (τ0) =
V0

2
[b0(m) + b1(m) + b2(m)] I ′1 −

V0

2
I ′2 + T, (77)

with I ′1, I ′2 and T given by the following integrals

I ′1 =

∫ +∞

−∞
R0(τ)X0(τ)dτ, (78)

I ′2 =

∫ +∞

−∞
[b0(m) cos(2τ + 2τ0) + b1(m) cos (4τ + 4τ0) + b2(m) cos (6τ + 6τ0)]R0 (τ)X0 (τ) dτ,

(79)

T =

∫ +∞

−∞

X0(τ)

R3
0(τ)

(∫ τ

−∞

(
γ0R

2
0(τ)− γ1R

4
0(τ)− γ2R

6
0(τ)

)
dτ

)2

dτ. (80)

According to the previous subsection, I ′1 = 0 and I ′2 is obtained by replacing in the expression of
I2 the speed of the optical lattice υ by a, and σ by σ′.
The plots of R0(τ) and X0(τ) versus the spatiotemporal variable τ reveal that these functions
are null for τ belonging to the interval ] − ∞;−τc[∪]τc; +∞[, where τc represents the value of
τ corresponding to R0(τ) and X0(τ) very close to zero. It is to point out that this value of τc
depends on other parameters. As an example, in Fig.(5), R2

0(τ) = 0.0001 leads to τ = 5.22.
Henceforth, we consider τ in the interval [−τc; +τc]. Hence T can be rewritten as

T =

∫ +τc

−τc

X0(τ)

R3
0(τ)

(∫ τ

−τc

(
γ0R

2
0(τ)− γ1R

4
0(τ)− γ2R

6
0(τ)

)
dτ

)2

dτ. (81)

The Melnikov function necessary to predict the onset of chaos in the dynamics of the condensate
is then given by

M±(τ0) = − πaV0

g0
√
σ′2 − 1

[b0 sin(2τ0) sinh

(
2

a
arc cos

(
− 1

σ′

))

sinh

(
2π

a

) +

2b1 sin(4τ0) sinh

(
4

a
arc cos

(
− 1

σ′

))

sinh

(
4π

a

)

+

3b2 sin(6τ0) sinh

(
6

a
arc cos

(
− 1

σ′

))

sinh

(
6π

a

)
]

+ T. (82)

The expression of T is very cumbersome to obtain. From multiple integrations via Maple soft-
ware and integrals table and series [145], T is derived in section Appendix A.
As in the previous subsection, neglecting b1(m) and b2(m) in front of b0(m), the approximate
condition for the occurrence of the homoclinic chaos deduced from eq.(82) is given by

δ ≥

∣∣∣∣∣∣∣∣

g0

√
σ′2 − 1T sinh

(
2π

a

)

aπ sinh

(
2

a
arc cos

(
− 1

σ′

))

∣∣∣∣∣∣∣∣
, (83)
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where δ = V0b0(m) in fact represents the amplitude of our trapping potential, and || denoting the
absolute value. The advantage to gather together V0 and b0(m) in δ is the possibility to change
gradually the geometry of the trapping potential, by acting on the shape parameter m. That will
be very helpful in experiments.

(a) (b) (c)

Figure 7: Unstable and stable zones in parameter space (γi, δ), (i=0,1,2), deduced from eq.(83).
Modulated lattice potential depth δ versus (a) the feeding parameter γ0 (b) the dipolar relaxation
parameter γ1 (c) the three-body recombination factor γ2. The other parameters used are: a = 2,
g0 = 0.75, g1 = −0.9, γ0 = 10−2, γ1 = 10−4, γ2 = 10−3, τc = 5.

(a) (b) (c)

Figure 8: Unstable and stable zones in parameter space (γi, γj), (i,j=0,1,2), deduced from eq.(83).
(a) The feeding parameter γ0 versus the dipolar relaxation parameter γ1 (b) The feeding param-
eter γ0 versus the three-body recombination factor γ2 (c) The three-body recombination factor γ2

versus the dipolar relaxation parameter γ1. The other parameters used are: a = 2, g0 = 0.75,
g1 = −0.9, γ0 = 10−2, γ1 = 10−4, γ2 = 10−3, V0 = 2, m = 0.8, τc = 5.
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II.5 Analytical study of a BEC with attractive two-body and repul-
sive three-body interactions loaded into a moving optical Fourier-
synthesized lattice

In this section we consider a condensate with attractive two-body and repulsive three-body
atom-atom elastic collisions. Thus, the parameter g0 is a negative number while the parameter
g1 is a positive number. It is well known today through the Feshbach resonance techniques that,
the s-wave scattering length can vary from positive to negative values, as shown in the Bose-
Einstein condensation of 85Rb [154, 155]. From the previous case, one can obtain the current case
through this technique, or directly by considering a condensate with an attractive species.

II.5.1 Case of a damped condensate not subjected to inelastic collisions

In this subsection, the condensate initially on the ground state of the optical lattice, evolves
according to the nonlinear system eq.(37). Under the condition eq.(40), the two equations of sys-
tem eq.(37) can be summarized by the nonlinear differential equation eq.(41). As in the previous
section, we assume the depth V0 of the optical lattice and the parameters γi related to inelastic
processes as of small amplitudes. Accordingly, the differential equation eq.(41) can be rewritten
as a first order system as shown in eq.(42). Now, let us consider the unperturbed system given
by eq.(43).

(a) (b)

Figure 9: (a)A configuration of the unbounded φ6 potential with two wells (b) local bifurcation
near the fixed points of the corresponding potential. The other parameters used are: υ = 2,
g0 = −0.75, g1 = 0.1

II.5.1.1. Fixed points of the unperturbed system and their stabilities

Working on the hypotheses g0 < 0 and g1 > 0, the potential energy U(R) defined in eq.(44) is an
unbounded φ6 potential, and can be a (i) zero-well, (ii) single-well or (iii) double-well potential.
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In the interesting case where the potential energy has two wells, explicitly under the condition

g2
0 − g1υ

2 > 0, (84)

the integrable system eq.(43) has five equilibrium points.
In the previous section, we have studied the case of homoclinic orbits only. Now, we focalize
our attention on the case of the coexistence of homoclinic and heteroclinic orbits, to determine
how heteroclinic orbits act on the dynamical behaviour of the condensate. The unperturbed
system aforementioned under the condition eq.(84) will exhibit simultaneously homoclinic and
heteroclinic separatrices if the potential energy U(R) intersects the R-axis three or five times. This
condition is fulfilled if the parameters related to two-and three-body elastic collisions are linked
as

3g2
0 − 4g1υ

2 ≥ 0. (85)

It is obvious that if eq.(85) is satisfied, then eq.(84) will also be satisfied. Hence, these two condi-
tions can be reduced to eq.(85).
Under the condition eq.(85), the unperturbed system possesses three unstable hyperbolic fixed
points at (0, 0), (−R2, 0) and (+R2, 0) and two stable nonhyperbolic fixed points at (−R1, 0) and
(+R1, 0). Proceeding as in the previous section, the three hyperbolic fixed points are saddle
points whereas the two nonhyperbolic fixed points are centers. The five fixed points can also be
seen on the potential energy displayed in Fig.9(a), as maxima and minima of this curve. R1 and

R2 mentioned above, solution of
dU(R)

dR
= 0 are given by the following expressions





R1 =

√√√√− g0

2g1

(
1−

√
1− g1υ

2

g2
0

)

R2 =

√√√√− g0

2g1

(
1 +

√
1− g1υ

2

g2
0

)
.

(86)

II.5.1.2. Determination of state vectors generating the two homoclinic separatrices

The unperturbed system as function of the Hamiltonian is given by eq.(48). The Hamiltonian
of this system is expressed in eq.(49), and finally the equation of integral curves is presented
in eq.(50). As clearly visible in the Fig.9(b), the unstable fixed point S1(0, 0) belongs to homo-
clinic separatrices. Thus, as in the previous section, the integral curve generating the homoclinic
separatrices is expressed in eq.(51). From this equation, one has

dR0

R0

√
R4

0 +
3g0

2g1
R2

0 +
3υ2

4g1

= ±
√
g1

3
dτ.
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With the change of variable R2
0 = u, one obtains

∫
du

u

√
u2 +

3g0

2g1
u+

3υ2

4g1

= ±2

√
g1

3
τ. (87)

As in the previous section, the integration of the left-hand side of eq.(87) gives

1√
3υ2

4g1

arc cosh




3υ2

2g1
+

3g0u

2g1

u

√
9g2

0 − 12g1υ
2

4g2
1




= ±2

√
g1

3
τ.

This equation can be rewritten as arc cosh




3g0 +
3υ2

u√
9g2

0 − 12g1υ2


 = ±υτ.

The unknown variable being u(τ), can then be determined from the above equation. One obtains

u(τ) =
3υ2

−3g0 +
√

9g2
0 − 12g1υ2 cosh(υτ)

.

From R2
0 = u, one obtains finally

R0 = ± υ√
−g0(1 + σ cosh(υτ))

, (88)

with σ =

√
1− 4g1υ

2

3g2
0

.

According to our work hypothesis defined in eq.(85), it is obvious to observe that 0 < σ < 1.
Thus, the components of the state vector generating the homoclinic separatrices are given as
follows 




R±hom(τ) = ± υ√
−g0

(
1 + σ cosh(υτ)

)

X±hom(τ) = ± υ2σ sinh(υτ)

2
√−g0

(
1 + σ cosh(υτ)

)3/2
.

(89)

X+
hom corresponds to R−hom and X−hom corresponds to R+

hom, hom denoting an abbreviation of ho-
moclinic. The separatrices obtained through theoretical investigations and displayed in Fig.10(c)
is exactly the one obtained directly via a numerical integration and shown in Fig.9(c).
It comes from Fig.10 that this undamped condensate without trapping potential exhibits soli-
tonic solutions as bright soliton for R2

hom(τ) and black soliton for X2
hom(τ). Once again, these

solitary waves can be interpreted as a balance between the both parts of the nonlinearity. Now,
let’s find out how the two-and three-body elastic atom-atom collisions impact on the width at
mid-height ∆τ of the condensate, for the unperturbed system. The maximum value of R2

hom(τ)
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(a) (b) (c)

Figure 10: (a) Spatiotemporal evolution of the particle number density of condensate (bright
soliton). (b) Spatiotemporal evolution of the first excited state of condensate (black soliton or
kink). (c) The homoclinic separatrices deduced from eq.(89). The other parameters used are:
υ = 2, g0 = −0.75, g1 = 0.1

is obtained for τ = 0. That leads to R2
max =

υ2

−g0(1 + σ)
. Solving R2

hom(τ) =
R2
max

2
, one ob-

tains τ = ±1

υ
arc cosh

(
2 +

1

σ

)
. Thus, the spatiotemporal extension of the condensate is the gap

between these two values of τ , as specified below

∆τ =
2

υ
arc cosh(2 +

1

σ
). (90)

This equation reveals that when the scattering length is increasingly varied while the parameter
of the three-body elastic atom-atom collisions is kept constant, the density and the spatiotempo-
ral extension of the condensate increase.
The same behaviour is observed when the parameter related to three-body elastic atom-atom
collisions is increasingly varied while the scattering length is kept constant.

II.5.1.3. Determination of the state vector generating the heteroclinic separatrix

The starting point is the equation of integral curves given by eq.(50). These heteroclinic separa-
trix in phase space (R,X) intersect the R-axis at ±R2. To determine the value of the constant C0

appearing in the integral curves, it is obvious to observe that (−R2, 0) and (+R2, 0) belong to the
heteroclinic separatrix. That leads to

C0 = −υ
2

4
R2

2 −
g0

2
R4

2 −
g1

3
R6

2.

Inserting this expression of the constant C0 in eq.(50) leads to the integral curve characterizing
the heteroclinic separatrix, given by
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X2
0 =

υ2

4

(
R2

0 −R2
2

)
+
g0

2

(
R4

0 −R4
2

)
+
g1

3

(
R6

0 −R6
2

)
. (91)

Let’s integrate it.

X2
0 =

υ2

4

(
R2

0 −R2
2

)
+
g0

2

(
R2

0 −R2
2

) (
R2

0 −R2
2 + 2R2

2

)
+
g1

3

[(
R2

0 −R2
2

)3
+ 3R2

0R
2
2

(
R2

0 −R2
2

)]

=
(
R2

0 −R2
2

) [υ2

4
+
g0

2

(
R2

0 −R2
2 + 2R2

2

)
+
g1

3

((
R2

0 −R2
2

)2
+ 3(R2

0 −R2
2 +R2

2)R2
2

)]
(92)

=
(
R2

0 −R2
2

) [υ2

4
+ g0R

2
2 + g1R

4
2 +

g0

2

(
R2

0 −R2
2

)
+
g1

3

((
R2

0 −R2
2

)2
+ 3

(
R2

0 −R2
2

)
R2

2

)]

(+R2, 0) being a fixed point of the unperturbed system,
υ2

4
+ g0R

2
2 + g1R

4
2 = 0. Hence, the

differential equation modeling the heteroclinic separatrix becomes

X0 = ±
(
R2

0 −R2
2

)√g0

2
+ g1R2

2 +
g1

3

(
R2

0 −R2
2

)
. (93)

The heteroclinic separatrix belonging to the interval [−R2,+R2], we change the variable as fol-
lows: u = R2

2 − R2
0. It is clear that u is a positive number, and du = −2R0dR0. Replacing X0 by

dR0

dτ
in eq.(93), we obtain

dR0

dτ
= ±u

√
g0

2
+ g1R2

2 −
g1

3
u.

Next, we insert the new expression of R0(τ) in the equation above and obtain

du

dτ
2
√
R2

2 − u
= ±u

√
g0

2
+ g1R2

2 −
g1

3
u.

Subsequently, we expand the contents of the two square root, and the outcome of that is given
by

du

u

√
u2 −

(
4R2

2 +
3g0

2g1

)
u+

(
3g0

2g1
+ 3R2

2

)
R2

2

= ±2

√
g1

3
dτ.

Let’s integrate the both sides of the above equation. We obtain

∫
du

u

√
u2 −

(
4R2

2 +
3g0

2g1

)
u+

(
3g0

2g1
+ 3R2

2

)
R2

2

= ±2

√
g1

3
τ. (94)

This indefinite integral was already encountered in the previous section, and the required con-
ditions for the use of the aforementioned formula are satisfied.

∆ = 4

(
3g0R

2
2

2g1
+ 3R4

2

)
−
(

4R2
2 +

3g0

2g1

)2

= −
(

2R2
2 +

3g0

2g1

)2

< 0,
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and it is easy to prove that
(

3g0

2g1
+ 3R2

2

)
R2

2 > 0. Hence, eq.(94) can be rewritten as

1√
R2

2

(
3R2

2 +
3g0

2g1

)arc cosh




2R2
2

(
3R2

2 +
3g0

2g1

)
−
(

4R2
2 +

3g0

2g1

)
u

(
2R2

2 +
3g0

2g1

)
u


 = ±2

√
g1

3
τ,

which can be more simplified as follow

arc cosh




2R2
2

(
3R2

2 +
3g0

2g1

)
−
(

4R2
2 +

3g0

2g1

)
u

(
2R2

2 +
3g0

2g1

)
u


 = ±2R2

√(
3R2

2 +
3g0

2g1

)√
g1

3
τ.

Remembering that the unknown variable is u(τ), we obtain

2R2
2

(
3R2

2 +
3g0

2g1

)

(
2R2

2 +
3g0

2g1

)
u

−

(
4R2

2 +
3g0

2g1

)

(
2R2

2 +
3g0

2g1

) = cosh

(
2

√(
3R2

2 +
3g0

2g1

)√
g1R

2
2

3
τ

)
.

By continuing to simplify this equation, it can be rewritten as follows

2R2
2

(
3R2

2 +
3g0

2g1

)

u
=

(
4R2

2 +
3g0

2g1

)
+

(
2R2

2 +
3g0

2g1

)
cosh

(
2

√(
3R2

2 +
3g0

2g1

)
g1R

2
2

3
τ

)
.

Finally the value of the unknown variable is given by

u(τ) =

2R2
2

(
3R2

2 +
3g0

2g1

)

(
4R2

2 +
3g0

2g1

)
+

(
2R2

2 +
3g0

2g1

)
cosh

(
2

√(
3R2

2 +
3g0

2g1

)
g1R

2
2

3
τ

) .

Thereafter, we replace u(τ) by its expression function of R0(τ), and we obtain

R2
2 −R2

0 =

2R2
2

(
3R2

2 +
3g0

2g1

)

(
4R2

2 +
3g0

2g1

)
+

(
2R2

2 +
3g0

2g1

)
cosh

(
2

√(
3R2

2 +
3g0

2g1

)
g1R

2
2

3
τ

) ,

R0(τ) = ±R2

√√√√√√√√
1−

2

(
3R2

2 +
3g0

2g1

)

(
4R2

2 +
3g0

2g1

)
+

(
2R2

2 +
3g0

2g1

)
cosh

(
2

√(
3R2

2 +
3g0

2g1

)
g1R

2
2

3
τ

) .
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This expression can be more simplified as follows

R0(τ) = ±R2

√√√√√√√√√√√√

1− cosh

(
2

√(
3R2

2 +
3g0

2g1

)
g1R

2
2

3
τ

)

−
4R2

2 +
3g0

2g1

2R2
2 +

3g0

2g1

− cosh

(
2

√(
3R2

2 +
3g0

2g1

)
g1R

2
2

3
τ

) .

Let’s evaluate the quantities inside the square root, by replacing R2 by its value given in eq.(86).
One obtains:

3R2
2 +

3g0

2g1
=

3
√
g2

0 − g1υ2

2g1
= −3g0

2g1

√
1− g1υ

2

g2
0

g1R
2
2

3
=
−g0 +

√
g2

0 − g1υ2

6
= −g0

6

(
1 +

√
1− g1υ

2

g2
0

)

4R2
2 +

3g0

2g1
=
−g0 + 4

√
g2

0 − g1υ2

2g1
= − g0

2g1

(
1 + 4

√
1− g1υ

2

g2
0

)

2R2
2 +

3g0

2g1
=
g0 + 2

√
g2

0 − g1υ2

2g1
= − g0

2g1

(
−1 + 2

√
1− g1υ

2

g2
0

)

Only for sake of simplicity, let’s pose µ =

√
1− g1υ

2

g2
0

, Γ = −
4R2 +

3g0

2g1

2R2 +
3g0

2g1

and ω =

(
2

√(
3R2

2 +
3g0

2g1

)
g1R

2
2

3

)
.

Thus, Γ and ω can be rewritten as follows Γ =
1 + 4µ

1− 2µ
and ω = −g0

√
µ(1 + µ)

g1
.

Finally, the abscissa of the state vector is given by

R0(τ) = ±R2

√
1− cosh(ωτ)

Γ− cosh(ωτ)
. (95)

According to our work hypothesis given in eq.(85), µ and Γ must fulfill the following inequalities:
1

2
< µ < 1 and Γ < −5.

In summary, the components of the state vector generating the heteroclinic separatrix are given
by 




R±het(τ) = ±R2

√
1− cosh(ωτ)

Γ− cosh(ωτ)

X±het(τ) = ±

R2ω(1− Γ) sinh(ωτ)

(Γ− cosh(ωτ))2

2

√
1− cosh(ωτ)

Γ− cosh(ωτ)

.
(96)

The signs ± must be understood as follows: X+
het corresponds to R+

het and X−het corresponds to
R−het, het denoting the abbreviation of heteroclinic. Once more, it is to note that the heteroclinic
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separatrix presented in Fig.11(c) obtained through this analytical treatment is exactly the one
obtained directly in Fig.9(b) through the numerical integration. It comes from Fig.11 that an un-

(a) (b) (c)

Figure 11: (a) Spatiotemporal evolution of the particle number density of condensate (black soli-
tons). (b) Spatiotemporal evolution of the first excited state of condensate (gray solitons). (c) The
heteroclinic separatrix deduced from eq.(96). The other parameters used are: υ = 2, g0 = −0.75,
g1 = 0.1

damped condensate without trapping potential exhibits solitonic solutions as black solitons for
heteroclinic depression R2

het(τ) and gray solitons for the first excited state X2
het(τ). Once again,

these solitary waves can be interpreted as a balance between the both parts of the nonlinearity.

II.5.1.4. The Melnikov analysis

a) Global bifurcations of homoclinic orbits

As in the previous section, the Melnikov function for homoclinic bifurcations can be expressed
as

M (τ0) =
V0

2
[b0(m) + b1(m) + b2(m)] J1 −

V0

2
J2 − γυJ3. (97)

The quantities J1, J2 and J3 are given by

J1 =

∫ +∞

−∞
Rhom(τ)Xhom(τ)dτ, (98)

J2 =

∫ +∞

−∞
[b0 cos(2τ + 2τ0) + b1 cos (4τ + 4τ0) + b2 cos (6τ + 6τ0)]Rhom (τ)Xhom (τ) dτ, (99)

J3 =

∫ +∞

−∞
X2
hom (τ) dτ. (100)

Let’s begin the evaluation of these integrals by calculating the product Rhom(τ)Xhom(τ), given

by Rhom(τ)Xhom(τ) =
υ3σ sinh(υτ)

2g0(1 + σ cosh(υτ))2
.

It is clear that this product is an odd function, and consequently, J1 = 0.
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J2 can be rewritten as

J2 = −b0υ
3σ sin(2τ0)

g0

∫ +∞

0

sinh(υτ) sin(2τ)dτ

(1 + σ cosh(υτ))2 −
b1υ

3σ sin(4τ0)

g0

∫ +∞

0

sinh(υτ) sin(4τ)dτ

(1 + σ cosh(υτ))2

−b2υ
3σ sin(6τ0)

g0

∫ +∞

0

sinh(υτ) sin(6τ)dτ

(1 + σ cosh(υτ))2 (101)

Each integral of eq.(101) can be calculated by the integration by parts method, as shown below.

∫ +∞

0

sinh(υτ) sin(2τ)dτ

(1 + σ cosh(υτ))2 =

[
− sin (2 τ)

σ υ (1 + σ cosh (υ τ))

]+∞

0

+ 2

∫ +∞

0

cos (2 τ) dτ

σ υ (1 + σ cosh (υ τ))

=

(
0 + 2

∫ +∞

0

cos (2 τ) dτ

σ υ (1 + σ cosh (υ τ))

)
=

2

υσ

∫ +∞

0

cos (2 τ) dτ

(1 + σ cosh (υ τ))

From this result, one can deduce the two remaining integrals.

∫ +∞

0

sinh(υτ) sin(4τ)dτ

(1 + σ cosh(υτ))2 =
4

υσ

∫ +∞

0

cos (4 τ) dτ

(1 + σ cosh (υ τ))
,

and ∫ +∞

0

sinh(υτ) sin(6τ)dτ

(1 + σ cosh(υτ))2 =
6

υσ

∫ +∞

0

cos (6 τ) dτ

(1 + σ cosh (υ τ))
.

The integrals of the right-hand side expressed above can be evaluated through the following
formula given in page 511 of the reference [145].

∫ +∞

0

cos(ax)dx

(c+ b cosh (βx))
=

π

β
√
c2 − b2

sin

(
a

β
arc cosh

(c
b

))

sinh

(
aπ

β

) , [c > b > 0]

The required conditions being fulfilled, because 1 > σ > 0, one finally obtains

J2 = − 2πυ

g0

√
1− σ2

[b0 sin(2τ0) sin

(
2

υ
arc cosh

(
1

σ

))

sinh

(
2π

υ

) +

2b1 sin(4τ0) sin

(
4

υ
arc cosh

(
1

σ

))

sinh

(
4π

υ

)

+

3b2 sin(6τ0) sin

(
6

υ
arc cosh

(
1

σ

))

sinh

(
6π

υ

)
]
. (102)

Now, let’s evaluate the integral J3.

J3 = −υ
4σ2

4g0

∫ +∞

−∞

sinh2(υτ)dτ

(1 + σ cosh(υτ))3
= −υ

4σ2

2g0

∫ +∞

0

sinh2(υτ)dτ

(1 + σ cosh(υτ))3
.

With the integration by parts method, one obtains
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J3 = −υ
4σ2

2g0

([
− sinh (υ τ)

2σ υ (1 + σ cosh (υ τ))2

]+∞

0

+
1

2σ

∫ +∞

0

cosh (υ τ) dτ

(1 + σ cosh (υ τ))2

)

= −υ
4σ2

2g0

(
0 +

1

2σ

∫ +∞

0

cosh (υ τ) dτ

(1 + σ cosh (υ τ))2

)
= −υ

4σ

4g0

∫ +∞

0

cosh (υ τ) dτ

(1 + σ cosh (υ τ))2

This last integral can be carried out directly from Maple software. Thus, after some algebraic
manipulations of the result given by Maple, and verified with the reference [145] in page 126,
one obtains

J3 = −υ
4σ

4g0

[
−2σ

υ (1− σ2)3/2
arc tanh

(√
1− σ
1 + σ

tanh
(υτ

2

))]+∞

0

−υ
4σ

4g0

[
sinh(υτ)

υ (1− σ2) (1 + σ cosh(υτ))

]+∞

0

= −υ
4σ

4g0

(
−2σ

υ (1− σ2)3/2
arc tanh

(√
1− σ
1 + σ

)
+

1

υσ (1− σ2)

)
,

and finally

J3 = − υ3

4g0 (1− σ2)

(
1− 2σ2

√
1− σ2

arc tanh

(√
1− σ
1 + σ

))
. (103)

The Melnikov function for homoclinic bifurcations is then given by

M±(τ0) =
γυ4

4g0 (1− σ2)

(
1− 2σ2

√
1− σ2

arc tanh

(√
1− σ
1 + σ

))
+

πυV0

g0
√

1− σ2
× (104)



b0 sin(2τ0) sin

(
2

υ
arc cosh

(
1

σ

))

sinh

(
2π

υ

) +

2b1 sin(4τ0) sin

(
4

υ
arc cosh

(
1

σ

))

sinh

(
4π

υ

) +

3b2 sin(6τ0) sin

(
6

υ
arc cosh

(
1

σ

))

sinh

(
6π

υ

)


 .

To seek the simple zeros of M(τ0) corresponding to homoclinic bifurcations is analytically very
difficult. But, as in the previous section, the study of the Fourier coefficients b0(m), b1(m) and
b2(m) versus the lattice shape parameter m reveals that we can neglect b1(m) and b2(m) in front
of b0(m). Thus, according to the Smale-Birkhoff theorem, the approximate condition for the
occurrence of the homoclinic chaos is given by

ρ(V0,m, υ, γ, g1) =
V0

γ
−
υ3

[
1− 2σ2

√
1− σ2

arc tanh

(√
1− σ
1 + σ

)]
sinh

(
2π

υ

)

4π
√

1− σ2b0(m)

∣∣∣∣sin
(

2

υ
arc cosh(σ−1)

)∣∣∣∣
≥ 0 (105)

where the symbol || denotes the absolute value.
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b) Global bifurcations of heteroclinic orbits

The Melnikov function characterizing the heteroclinic bifurcations is given by the following ex-
pression

M (τ0) =
V0

2
[b0(m) + b1(m) + b2(m)]Y1 −

V0

2
Y2 − γυY3, (106)

where the quantities Y1, Y2 and Y3 denote the following integrals

Y1 =

∫ +∞

−∞
Rhet(τ)Xhet(τ)dτ, (107)

Y2 =

∫ +∞

−∞
[b0 cos(2τ + 2τ0) + b1 cos (4τ + 4τ0) + b2 cos (6τ + 6τ0)]Rhet (τ)Xhet (τ) dτ, (108)

and

Y3 =

∫ +∞

−∞
X2
het (τ) dτ. (109)

Let’s start the evaluation of these integrals by calculating the product of function RhetXhet.

Rhet(τ)Xhet(τ) =
R2

2ω (1− Γ) sinh (ω τ)

2 (Γ− cosh (ω τ))2 .

This product being an odd function, Y1 = 0.

To evaluate Y2, we expand the term preceding the productRhet(τ)Xhet(τ) and we retain only the
odd part of the expansion. Thus, this integral can be rewritten as

Y2 = −R2
2ω (1− Γ)

[
b0(m) sin(2τ0)

∫ +∞

0

sinh(ωτ) sin(2τ)dτ

(Γ− cosh (ω τ))
2 + b1(m) sin(4τ0)

∫ +∞

0

sinh(ωτ) sin(4τ)dτ

(Γ− cosh (ω τ))
2

]

−R2
2ω (1− Γ) b2(m) sin(6τ0)

∫ +∞

0

sinh(ωτ) sin(6τ)dτ

(Γ− cosh (ω τ))
2 (110)

Let’s evaluate each integral of eq.(110).

∫ +∞

0

sinh(ωτ) sin(2τ)dτ

(Γ− cosh (ω τ))2 =

[
sin (2τ)

ω (Γ− cosh (ω τ))

]+∞

0

− 2

ω

∫ +∞

0

cos (2τ) dτ

Γ− cosh (ω τ)

= 0− 2

ω

∫ +∞

0

cos (2τ) dτ

Γ− cosh (ω τ)
= − 2

ω

∫ +∞

0

cos (2τ) dτ

Γ− cosh (ω τ)

It is already known in page 511 of the reference [145] that there is a formula for the evaluation of
this integral. The use of this formula leads to

∫ +∞

0

sinh(ωτ) sin(2τ)dτ

(Γ− cosh (ω τ))2 =
2

ω

∫ +∞

0

cos (2τ) dτ

−Γ + cosh (ω τ)
=

2π sin

(
2

ω
arc cosh(−Γ)

)

ω2
√

Γ2 − 1 sinh

(
2π

ω

) ,
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∫ +∞

0

sinh(ωτ) sin(4τ)dτ

(Γ− cosh (ω τ))2 =
4

ω

∫ +∞

0

cos (4τ) dτ

−Γ + cosh (ω τ)
=

4π sin

(
4

ω
arc cosh(−Γ)

)

ω2
√

Γ2 − 1 sinh

(
4π

ω

) ,

∫ +∞

0

sinh(ωτ) sin(6τ)dτ

(Γ− cosh (ω τ))2 =
6

ω

∫ +∞

0

cos (6τ) dτ

−Γ + cosh (ω τ)
=

6π sin

(
6

ω
arc cosh(−Γ)

)

ω2
√

Γ2 − 1 sinh

(
6π

ω

) .

The integral Y2 is then given by

Y2 = −2πR2
2 (1− Γ)

ω
√

Γ2 − 1

[b0(m) sin(2τ0) sin

(
2

ω
arc cosh(−Γ)

)

sinh

(
2π

ω

) +

2b1(m) sin(4τ0) sin

(
4

ω
arc cosh(−Γ)

)

sinh

(
4π

ω

)

+

3b2(m) sin(6τ0) sin

(
6

ω
arc cosh(−Γ)

)

sinh

(
6π

ω

)
]
. (111)

Now, let’s evaluate Y3.

X2
het =

R2
2(1− Γ)2ω2(1 + cosh(ωτ))

4(−Γ + cosh(ωτ))3
.

With the change of variable ωτ = x, one has

Y3 = 2

∫ +∞

0
X2
het(τ)dτ =

R2
2(1− Γ)2ω

2

∫ +∞

0

(1 + cosh(x))dx

(−Γ + cosh(x))3
.

Via the Maple software, Y3 is finally given by

Y3 =
R2

2ω

4(1 + Γ)

[
2 + Γ− 2(1 + 2Γ)√

Γ2 − 1
arc tanh

(√
Γ + 1

Γ− 1

)]
. (112)

Inserting Y1, Y2 and Y3 into the Melnikov function defined in eq.(106) one obtains

M±(τ0) = − R2
2γωυ

4(1 + Γ)

[
2 + Γ− 2(1 + 2Γ)√

Γ2 − 1
arc tanh

(√
Γ + 1

Γ− 1

)]
+
πV0R

2
2(1− Γ)

ω
√

Γ2 − 1
× (113)



b0 sin(2τ0) sin

(
2

ω
arc cosh(−Γ)

)

sinh

(
2π

ω

) +

2b1 sin(4τ0) sin

(
4

ω
arc cosh(−Γ)

)

sinh

(
4π

ω

) +

3b2 sin(6τ0) sin

(
6

ω
arc cosh(−Γ)

)

sinh

(
6π

ω

)


 .

Applying the Smale-Birkhoff theorem under the fulfilled conditions b1(m) << b0(m) and b2(m) <<

b0(m), the approximate condition of apparition of the heteroclinic chaos is given by
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$(V0,m, g1, γ, υ) =
V0

γ
+

υω2sinh

(
2π

ω

)(
2 + Γ− 2(1 + 2Γ)√

Γ2 − 1
arc tanh

(√
Γ + 1

Γ− 1

))

4π
√

Γ2 − 1b0(m)

∣∣∣∣sin
(

2

ω
arc cosh(−Γ)

)∣∣∣∣
≥ 0, (114)

with the symbol || denoting the absolute value.

II.5.2 Case of an undamped condensate subjected to inelastic collisions

As in the previous section, in this subsection we take into account the inelastic processes in the
dynamics of the condensate,always in the framework of attractive two-body and repulsive three-
body elastic atom-atom collisions. We neglect the damping parameter γ, not only for a possible
analytical treatment, but especially because the two-body and three-body inelastic atom-atom
collisions are viewed as dissipation phenomena. The dynamics of such a condensate is gov-
erned by the nonlinear system eq.(69), and the amplitude equation deriving from this system is
given by eq.(72). This amplitude equation is written as a first order system in eq.(73). The un-
perturbed system deriving from eq.(73) possesses three unstable hyperbolic fixed points at (0, 0),
(−R′

2, 0) and (+R
′
2, 0) and two stable nonhyperbolic fixed points at (−R′

1, 0) and (+R
′
1, 0). The

expressions of R
′
1 and R

′
2 aforementioned are given by





R′1 =

√√√√− g0

2g1

(
1−

√
1− g1a

2

g2
0

)

R′2 =

√√√√− g0

2g1

(
1 +

√
1− g1a

2

g2
0

)
.

(115)

II.5.2.1. The Melnikov analysis for homoclinic orbits

The state vector generating the homoclinic separatrices in this case is obtained by replacing in
eq.(89) the velocity of the optical lattice υ by a =

√
4β − υ2 − 4αυ. That implies also to replace

σ by its new expression σ′ =

√
1− 4g1a

2

3g2
0

, with 0 < σ′ < 1. Thus, one obtains the following

components 



R±hom(τ) = ± a√
−g0

[
1 + σ′ cosh(aτ)

]

X±hom(τ) = ± a2σ′ sinh(aτ)

2

√
−g0

[
1 + σ′ cosh(aτ)

]3
,

(116)

with σ′ =

√
1− 4g1a

2

3g2
0

. The corresponding Melnikov function can be expressed as

M (τ0) =
V0

2
[b0(m) + b1(m) + b2(m)] J ′1 −

V0

2
J ′2 + Σ, (117)
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where the quantities J ′1, J ′2 and Σ are given by

J ′1 =

∫ +∞

−∞
Rhom(τ)Xhom(τ)dτ, (118)

J ′2 =

∫ +∞

−∞
[b0 cos(2τ + 2τ0) + b1 cos (4τ + 4τ0) + b2 cos (6τ + 6τ0)]Rhom (τ)Xhom (τ) dτ, (119)

and

Σ =

∫ +∞

−∞

Xhom(τ)

R3
hom(τ)

(∫ τ

−∞

(
γ0R

2
hom(τ)− γ1R

4
hom(τ)− γ2R

6
hom(τ)

)
dτ

)2

dτ. (120)

According to the previous subsection, J ′1 = 0, and J ′2 is obtained by replacing in the expression
of J2 defined in eq.(102) the velocity of optical lattice υ by a and σ by σ′. Thus, one obtains

J ′2 = − 2πa

g0

√
1− σ′2

[b0 sin(2τ0) sin

(
2

a
arc cosh

(
1

σ′

))

sinh

(
2π

a

) +

2b1 sin(4τ0) sin

(
4

a
arc cosh

(
1

σ′

))

sinh

(
4π

a

)

+

3b2 sin(6τ0) sin

(
6

a
arc cosh

(
1

σ′

))

sinh

(
6π

a

)
]
. (121)

The expression of Σ is obtained with the help of the Maple software, with the remark that
Rhom(τ) and Xhom(τ) are practically null for ]−∞, τc[∪ ]τc,+∞[ (see Fig.(10)), where the symbol
∪ stands for the union operator. Therefore, Σ is evaluated with the spatiotemporal variable τ
taken between −τc and τc . In fact, τc represents the value of τ for which R2

hom(τ), R4
hom(τ) and

R6
hom(τ) can be assumed close to zero, and it value depends on the set of parameters used. For

example, taking the set of parameters as those used to plot the particle number density of the
condensate for the unperturbed system deriving from eq.(73), when we solve R2

hom(τ) = 0.0001

we have as solution τ = 6.52. R4
hom(τ) = 0.0001 leads to τ = 4.22 and R6

hom(τ) = 0.0001 gives as
solution τ = 3.45. Henceforth, we give to τc the value 4 to numerical simulations. Consequently,
Σ can be expressed as

Σ =

∫ +τc

−τc

Xhom(τ)

R3
hom(τ)

(∫ τ

−τc

(
γ0R

2
hom(τ)− γ1R

4
hom(τ)− γ2R

6
hom(τ)

)
dτ

)2

dτ. (122)

Thus, the Melnikov function for homoclinic orbits is then given by

M±(τ0) =
πaV0

g0
√

1− σ′2
[b0 sin(2τ0) sin

(
2

a
arc cosh

(
1

σ′

))

sinh

(
2π

a

) +

2b1 sin(4τ0) sin

(
4

a
arc cosh

(
1

σ′

))

sinh

(
4π

a

)

+

3b2 sin(6τ0) sin

(
6

a
arc cosh

(
1

σ′

))

sinh

(
6π

a

)
]

+ Σ. (123)
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The expression of Σ, resulting from cumbersome integrals is given in section Appendix B.
By applying the Melnikov criterion on the Melnikov function corresponding to homoclinic bi-
furcations, the occurrence condition of the homoclinic chaos is then given by the following in-
equality

δ ≥

∣∣∣∣∣∣∣∣

g0

√
1− σ′2Σ sinh

(
2π

a

)

aπ sin

(
2

a
arc cosh

(
1

σ′

))

∣∣∣∣∣∣∣∣
. (124)

δ = V0b0(m) represents the amplitude of the optical lattice potential in the case of approximations
b1(m) << b0(m) and b2(m) << b0(m).

II.5.2.2. The Melnikov analysis for heteroclinic orbits

The state vector generating the heteroclinic separatrix in this case is obtained by replacing in

eq.(96) R2 by R′2 defined in eq.(115), µ by µ′ =

√
1− g1a

2

g2
0

, Γ by Γ′ = −
4R′22 +

3g0

2g1

2R′22 +
3g0

2g1

=
1 + 4µ′

1− 2µ′

and ω by ω′ = −g0

√
µ′(1 + µ′)

g1
.

These changes are due to the fact that, to take into account the inelastic processes implies the
replacement of the velocity of the optical lattice υ by a =

√
4β − υ2 − 4αυ, as it is well visible in

eq.(72). One will not forget that these constants must fulfill the following inequalities:
1

2
< µ′ < 1

and Γ′ < −5.
Hence, the components of the state vector generating the heteroclinic separatrix is given by





R±het(τ) = ±R′2

√
1− cosh(ω′τ)

Γ′ − cosh(ω′τ)

X±het(τ) =

R′2ω
′(1− Γ′) sinh(ω′τ)

(Γ′ − cosh(ω′τ))2

2

√
1− cosh(ω′τ)

Γ′ − cosh(ω′τ)

.
(125)

The Melnikov function corresponding to heteroclinic bifurcations can be written as

M (τ0) =
V0

2
[b0(m) + b1(m) + b2(m)]Y ′1 −

V0

2
Y ′2 + F, (126)

with the quantities Y ′1 , Y ′2 and F given by

Y ′1 =

∫ +∞

−∞
Rhet(τ)Xhet(τ)dτ, (127)

Y ′2 =

∫ +∞

−∞
[b0 cos(2τ + 2τ0) + b1 cos (4τ + 4τ0) + b2 cos (6τ + 6τ0)]Rhet (τ)Xhet (τ) dτ, (128)

and
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F =

∫ +∞

−∞

Xhet(τ)

R3
het(τ)

[∫ τ

−∞

(
γ0R

2
het(τ)− γ1R

4
het(τ)− γ2R

6
het(τ)

)
dτ

]2

dτ. (129)

As in the previous subsection, the productRhet (τ)Xhet (τ) is an odd function. Therefore, Y ′1 = 0.
Y ′2 is obtained by replacing into the expression of Y2, R2 by R′2, Γ by Γ′ and ω by ω′. Hence we
obtain

Y ′2 = −2πR′22 (1− Γ′)

ω′
√

Γ′2 − 1

[b0(m) sin(2τ0) sin

(
2

ω′
arc cosh(−Γ′)

)

sinh

(
2π

ω′

) +

2b1(m) sin(4τ0) sin

(
4

ω′
arc cosh(−Γ′)

)

sinh

(
4π

ω′

)

+

3b2(m) sin(6τ0) sin

(
6

ω′
arc cosh(−Γ′)

)

sinh

(
6π

ω′

)
]

(130)

Now, let’s focalize our mind on the calculation of F. It comes from Fig.(11) that Xhet(τ) is prac-
tically null for ]−∞; τc[ ∪ ]τc; +∞[, where the value of τc depends of the set of parameters used.
Another remark is that F cannot be evaluated for τ = 0. But in terms of area, we approximate
the value of F by avoiding the vicinity of τ = 0. With this remark, F can be rewritten as

F =

∫ +τc

−τc

Xhet(τ)

R3
het(τ)

(∫ τ

−τc

(
γ0R

2
het(τ)− γ1R

4
het(τ)− γ2R

6
het(τ)

)
dτ

)2

dτ. (131)

Finally, the Melnikov function of heteroclinic orbits deriving from the perturbed system eq.(73)
is given by

M±(τ0) =
πR′22 V0 (1− Γ′)

ω′
√

Γ′2 − 1

[b0(m) sin(2τ0) sin

(
2

ω′
arc cosh(−Γ′)

)

sinh

(
2π

ω′

) (132)

+

2b1(m) sin(4τ0) sin

(
4

ω′
arc cosh(−Γ′)

)

sinh

(
4π

ω′

) +

3b2(m) sin(6τ0) sin

(
6

ω′
arc cosh(−Γ′)

)

sinh

(
6π

ω′

)
]

+ F.

The derivation of F is given in Appendix C.
Recalling that one can neglect b1(m) and b2(m) in front of b0(m) the approximate condition for the
occurrence of the heteroclinic chaos deduced from eq.(132) is given by the following expression.

δ ≥

∣∣∣∣∣∣∣∣∣

ω′
√

Γ′ + 1

Γ′ − 1
F sinh

(
2π

ω′

)

πR′22 sin

(
2

ω′
arc cosh(−Γ′)

)

∣∣∣∣∣∣∣∣∣
. (133)

with δ = V0b0(m) the amplitude of the optical lattice potential in the case of approximations
b1(m) << b0(m) and b2(m) << b0(m).
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(a) (b) (c)

Figure 12: Stable and unstable zones in parameter space (γi, δ), (i=0,1,2) for homoclinic bifurca-
tions. Modulated lattice potential depth δ versus (a) The feeding parameter γ0 (b) The dipolar
relaxation parameter γ1 (c) The three-body recombination factor γ2. The other parameters used
are: a=2, g0 = −0.75, g1 = 0.1, γ0 = 10−2, γ1 = 10−5, γ2 = 10−3, τc = 4.

(a) (b) (c)

Figure 13: Stable and unstable zones in parameter space (γi, γj), (i=0,1,2) for homoclinic bifurca-
tions (a) Feeding parameter versus the dipolar relaxation parameter for γ2 = 10−3 (b) Feeding
parameter versus the three-body inelastic recombination factor for γ1 = 10−5 (c) Discrete unsta-
ble regions in parameter space (γ1, γ0) for γ2 = 10−5, V0 = 0.02, τc = 5. The other parameters
used are: a=2, g0 = −0.75, g1 = 0.1, m = 0.5, V0 = 2, τc = 4
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(a) (b) (c)

Figure 14: Unstable and stable zones in parameter space (γi, δ), (i=0,1,2) for heteroclinic bifur-
cations. Modulated lattice potential depth δ versus (a) Feeding parameter γ0 (b) The dipolar
relation parameter γ1 (c) The three-body inelastic recombination factor γ2. The other parameters
used are: a = 2, g0 = −0.75, g1 = 0.1, γ0 = 10−2, γ1 = 10−5, γ2 = 10−3, τc = 4, τi = 0.005, V0 = 2.

(a) (b)

Figure 15: Unstable and stable zones in parameter space (γi, γj), i=0,1,2 for heteroclinic bifur-
cations (a) Feeding parameter versus the dipolar relation parameter for γ2 = 10−3 (b) Feeding
parameter versus the three-body inelastic recombination factor for γ1 = 10−5. The other param-
eters used are: a = 2, g0 = −0.75, g1 = 0.1, m = 0.5, τc = 4, τi = 0.005, V0 = 2.
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II.6 Conclusion

In this chapter, the different methods used in this thesis are presented. Subsequently, the model
considered (a damped condensate governed by the Gross-Pitaevskii-Ginzburg equation) is de-
scribed, and an analytical treatment through the Melnikov method is made to predict the onsets
of chaos in the dynamical behaviour of the condensate. Some zones of instability are plotted
in different parameter spaces, and the study reveals that for a fixed number of atoms in the
condensate, repulsive two-body and attractive three-body elastic collisions tend to increase the
density and decrease the spatiotemporal extension of the condensate, while attractive two-body
and repulsive three-body elastic collisions tend to increase the density and the spatiotemporal
extension of the condensate.
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CHAPTER III

RESULTS AND DISCUSSION

III.1 Introduction

The previous chapter has introduced five problems, and the aim of this chapter is to answer at
these questions. The next sections are devoted to a comparative study between analytical and
numerical investigations. Although we do not expect a perfect concordance between these two
types of study, a comparison is nevertheless made, and the role of different parameters in the
enhancement or annihilation of the chaotic behaviour of the condensate is established. In the
first part of each section, we begin by the study of the condensate without inelastic collisions
between atoms, inelastic collisions which will be subsequently considered in the second part.
In the first part of each section, excepted the control parameter, we give to parameters the values
usually considered in experiments[156, 157]. The conditions of chaos occurrence obtained in the
previous chapter are then used to determine if the control parameter enhances or annihilates the
chaotic behaviour of the condensate. Subsequently, the critical value of the control parameter
which in Melnikov’s sense represents the beginning or the end of the instability in the dynam-
ical behaviour of the condensate is determined. With the same set of parameters used in the
analytical treatment, the numerical simulations start with the plot of the bifurcation diagram,
with initial conditions taken at stable fixed points. Each bifurcation diagram combined with the
corresponding curve of the largest Lyapunov exponent provide the critical value of the control
parameter on the onset or at the end of the instability. A comparison of these two critical values
of control parameter is made to verify the reliability of the analytical study, although we do not
expect a perfect equality between them. In fact, the MM is a perturbative method, generally re-
lated to transient chaos, while bifurcation diagram provide information solely concerning steady
chaos. In addition, some Poincaré sections, phase portraits, and basins of attraction are plotted
to determine the transition route to chaos taken by each control parameter.
In the second part of these sections, the inelastic collisions between atoms are taken into account
in the dynamical behaviour of the condensate. Once more, coupling analytical and numerical
studies, the impacts of parameters related to inelastic collisions between atoms on the chaotic
behaviour of the condensate are determined, and the results are compared with the findings of
other authors, but with bosonic atoms trapped by a magnetic field and studied analytically by a
variational approach.
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III.2 Transitions to chaos in the dynamical behaviour of a BEC with repulsive

two-body and attractive three-body interactions loaded into a moving opti-

cal Fourier-synthesized lattice

According to previous chapter, we will not forget that the system eq.(37) modeling the dynamics
of the condensate exhibits only homoclinic orbits. To verify the reliability of the analytical study,
we have performed computer simulations on the perturbed system eq.(37), using the fourth-
order Runge-Kutta and Euler-Cromer methods defined in the previous chapter.

(a) (b)

(c) (d)

Figure 16: Plot of the threshold function of homoclinic chaos versus (a) The optical intensity V0

(b) The velocity of the optical lattice υ, with V0 = 80 (c) The damping parameter γ, with V0 = 120
(d) The elastic three-body recombination factor g1, with V0 = 120. The other parameters used
are: υ = 2, g0 = 0.75, g1 = −0.9, m = 0.8, γ = 5.

III.2.1 Case of a BEC of atoms not subjected to inelastic collisions

a) Bifurcation responses with the optical lattice depth V0 as control parameter

We give to parameters the values usually considered in experiments. Thus, we consider the fol-
lowing set of data: g0 = 0.75, g1 = −0.9, υ = 2, γ = 5, m = 0.8, ε = 0.05. It is clear on the
Fig.16(a) deriving from the analytical prediction of the homoclinic chaos defined in eq.(68) that
the critical value of the optical depth is V0c = 28.54. According to this curve, the dynamics of the
condensate will be regular for V0 taken between 0 and 28.54, and chaotic for V0 beyond 28.54.

Ph.D Thesis of Sylvin Tchatchueng Laboratory of mechanics, Materials and structures



77

0 50 100 150 200 250
0

2

4

6

8

V
0
 

R
2

(a)
0 2 4 6 8

0

1

2

3

4

5

6

υ 

R
2

(b)

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

0.6

V
0

Ly
am

ax

(c)
0 2 4 6 8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Ly
am

ax

υ (d)

0 10 20 30 40
0

1

2

3

4

5

6

γ 

R
2

(e)
−1 −0.8 −0.6 −0.4 −0.2
0

5

10

15

20

25

g1 

R
2

(f)

0 10 20 30 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Ly
am

ax

γ (g)
−1 −0.8 −0.6 −0.4 −0.2 0

−1

−0.5

0

0.5

1

g
1

Ly
am

ax

(h)

Figure 17: Bifurcation diagrams and corresponding Lyapunov exponents deduced from eq.(42)
(a)-(c) The optical intensity V0 as control parameter (b)-(d) The optical velocity υ as control pa-
rameter (e)-(g) The damping parameter γ as control parameter (f)-(h) The elastic three-body re-
combination factor as control parameter. The other parameters used are: υ = 2, g0 = 0.75,
g1 = −0.9, ε = 0.05, m = 0.8, γ = 5, the initial conditions taken at the stable fixed point
(R = R1 = 1.24503913, dR/dτ = 0).
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Let’s note that in Melnikov’s sense, this critical value indicates the beginning of the instability
and not the chaos. Visibly, this control parameter enhances the homoclinic chaos in the dynam-
ical behaviour of the condensate. Subsequently, to verify the reliability of the analytical study,
we plot with the same set of data the bifurcation diagram shown in Fig.17(a). It comes from
this curve that the optical depth enhances really the chaos in the dynamics of the condensate as
predicted by the MM.
Now, let’s determine the transition route to chaos when the control parameter evolves. As the
depth of the optical lattice is gradually increased, the fixed point (R1, 0) loses stability, giving
birth to periodic oscillations of the condensate, as one can observe on the Poincaré section dis-
played in Fig.18(a) for V0 = 20, which exhibits a point attractor. This result is confirmed with the
corresponding phase portrait depicted in Fig.19(a) which exhibits a period-1 limit cycle. As the
control parameter V0 continues to evolve, around 34.2, a second bifurcation occurs, culminating
in period-2 oscillations of the condensate, clearly visible on the bifurcation diagram, with the
birth of another branch. It is the beginning of the instability in the dynamics of the condensate.
The Poincaré section depicted in Fig.18(b) and the phase portrait shown in Fig.19(b) for V0 = 50

exhibit two points attractors and a period-2 attractor respectively, confirming the result of the
bifurcation diagram. By continuing to vary increasingly the control parameter, in the vicinity
of V0 = 84.0, each branch of the bifurcation diagram is separated into two branches, and the
dynamics of the condensate undergoes another period doubling bifurcation, leading to period-4
oscillations, as clearly exhibited on the Poincaré section depicted in Fig.18(c) for V0 = 90, which
shows four point attractors, and on the phase portrait depicted in Fig.19(c) for V0 = 90, which
shows a period-4 attractor. From V0 = 84.0, as the control parameter evolves, one observes
on the bifurcation diagram that around V0 = 94.6, the dynamics of the condensate undergoes
another period doubling bifurcation leading to period-6 oscillations, as shown on the Poincaré
section in Fig.18(d) which exhibits six point attractors, and on the phase portrait in Fig.19(d)
which shows a period-6 attractor for V0 = 95. From this bifurcation point(V0 = 94.6), as the
control parameter evolves, in the vicinity of V0 = 96.9, the bifurcation diagram becomes very
messy, and the largest Lyapunov exponent plotted in Fig.17(c) crosses the V0 axis and becomes a
positive number. The dynamics of the condensate enters into an aperiodic regime, characterized
by a symmetric strange attractor as Poincaré sections, as depicted in Fig.18(e) for V0 = 120. In
the corresponding phase portrait depicted in Fig.19(e), the phase orbits evolve in a finite region
and exhibit confusion, which is the chaotic feature. In this range of control parameter, the dy-
namical behaviour of the condensate becomes unpredictable and the butterfly effect is present.
This bifurcation diagram and the corresponding Lyapunov exponent present in the chaotic zone
an open window of regular oscillations for V0 between 155.40 and 205.60. From this study, we
deduce that the transition route to homoclinic chaos is the period-doubling scenario. Now, let’s
examine the bifurcation points. The Feigenbaum numbers corresponding to these bifurcation

points are δ1 =
84.0− 34.2

94.6− 84.0
= 4.698113208 and δ2 =

94.6− 84.0

96.9− 94.6
= 4.608695652. It is clear that

the universality of chaos is recognized in this physical system.
According to numerical simulations, the instability of the condensate begins at V0 = 34.2, the

critical value of the control parameter. The gap of 16.54% as relative uncertainty between these
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Figure 18: Poincaré sections deduced from eq.(42) with the optical depth V0 as control parameter.
(a) V0 = 20 (b) V0 = 50 (c) V0 = 90 (d) V0 = 95 (e) V0 = 120. The other parameters used are:
υ = 2, g0 = 0.75, g1 = −0.9, ε = 0.05, m = 0.8, γ = 5, the initial conditions taken at the stable
fixed point (R = R1 = 1.24503913, dR/dτ = 0).
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Figure 19: Phase portraits deduced from eq.(42) with the optical depth V0 as control parameter.
(a) V0 = 20 (b) V0 = 50 (c) V0 = 90 (d) V0 = 95 (e) V0 = 120. The other parameters used are:
υ = 2, g0 = 0.75, g1 = −0.9, ε = 0.05, m = 0.8, γ = 5, the initial conditions taken at the stable
fixed point (R = R1 = 1.24503913, dR/dτ = 0).
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values proves the reliability of our analytical analysis. Remembering that the MM is an approx-
imate method, and moreover that some terms were neglected in the Melnikov function to solve
analytically the problem, one can understand the gap between these two critical values.
To make sure that when the optical depth evolves the stability of the condensate is progressively
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Figure 20: Basin of attraction deduced from eq.(42) with the optical depth V0 as control parame-
ter. (a) V0 = 20 (b) V0 = 50 (c) V0 = 90 (d) V0 = 95 (e) V0 = 120. The other parameters used are:
υ = 2, g0 = 0.75, g1 = −0.9, ε = 0.05, m = 0.8, γ = 5, the initial conditions taken at the stable
fixed point (R = R1 = 1.24503913, dR/dτ = 0).

destroyed and leads to chaos, we study the effect of the optical depth on the basin of attraction.
In fact, the basin of attraction is defined as a set of points taken as initial conditions, which are
attracted to a fixed point or attracted to an invariant set. By using the same set of data consid-
ered to plot the bifurcation diagram, we perform a scan of the initial conditions in the phase
space (R,X = dR/dτ) for various values of the optical depth V0. One observes that when V0 is
less than the critical value obtained numerically, the basin of attraction is regular as shown in
Fig.20(a) for V0 = 20. When the optical depth V0 is greater than the critical value, the regular
shape of the basin of attraction is progressively destroyed and the fractal behaviour becomes
more and more visible, as one can see on figures Fig.20(b) for V0 = 50, Fig.20(c) for V0 = 90

and on the Fig.20(d) for V0 = 95. In Fig.20(e) corresponding to V0 = 120, the chaotic state of the
condensate is very visible, with the total destruction of the basin of attraction. It is worth noting
that Fig.20 represents the basins of attraction of motion around the two fixed points (−R1, 0) and
(+R1, 0) of potential well.
The spatiotemporal evolution of the condensate presented in Fig.(21) confirms the period-doubling
scenario as transition route to homoclinic chaos when the optical depth V0 evolves.
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Figure 21: Spatiotemporal evolution of the condensate deduced from eq.(42) with the optical
depth V0 as control parameter. (a) periodic oscillations for V0 = 20 (b) period-2 oscillations for
V0 = 50 (c) period-4 oscillations for V0 = 90 (d) period-6 oscillations for V0 = 95 (e) chaotic
oscillations for V0 = 120. The other parameters used are: υ = 2, g0 = 0.75, g1 = −0.9, ε = 0.05,
m = 0.8, γ = 5, the initial conditions taken at the stable fixed point (R = R1 = 1.24503913,
dR/dτ = 0).
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Figure 22: Poincaré sections deduced from eq.(42) with the velocity of the optical lattice υ as
control parameter. (a) υ = 1 (b) υ = 1.70 (c) υ = 2 (d) υ = 7. The other parameters used are:
V0 = 80, g0 = 0.75, g1 = −0.9, ε = 0.05, m = 0.8, γ = 5, the initial conditions taken at the stable
fixed point (R = R1 = 1.24503913, dR/dτ = 0).
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Figure 23: Phase portraits deduced from eq.(42) with the velocity of the optical lattice υ as control
parameter. (a) υ = 1 (b) υ = 1.70 (c) υ = 2 (d) υ = 7. The other parameters used are: V0 = 80,
g0 = 0.75, g1 = −0.9, ε = 0.05, m = 0.8, γ = 5, the initial conditions taken at the stable fixed
point (R = R1 = 1.24503913, dR/dτ = 0.

b) Bifurcation responses with the velocity of the optical lattice υ as control parameter

In this paragraph, the velocity of the optical lattice υ is considered as control parameter. For the
remaining parameters, we give the values: m = 0.8, g0 = 0.75, g1 = −0.9, γ = 5, ε = 0.05,
and V0 = 80. The analytical prediction of homoclinic chaos defined in eq.(68) and plotted in
Fig.16(b) indicates that the dynamics of the condensate will be chaotic for υ between 0 and 3.33,
corresponding to positive values of the threshold function `. This analytical study reveals that
the velocity of the optical lattice annihilates the chaotic behaviour of the condensate when its
values increase, and the critical value of the velocity is υc = 3.33. Numerically, the bifurcation
diagram and the largest Lyapunov exponent depicted in figures 17(b) and 17(d) respectively,
reveal that the velocity of the optical lattice reduces the chaotic behaviour of the condensate
when its values evolve.
Through the Poincaré sections and phase portraits, let’s determine the transition route leading
to regular oscillations. As the control parameter υ evolves, in the vicinity of 1.53 the chaotic
dynamics (see Poincaré section and phase portrait plotted respectively in figures 22(a) and 23(a)
for υ = 1 which exhibit a symmetric strange attractor and erratic phase orbits respectively) of
the condensate disappears, as indicates the largest Lyapunov exponent depicted in Fig.17(d)
which becomes a negative number. The outcome of that is the birth of period-4 oscillations, as
one can see through the Poincaré section and phase portrait plotted in figures 22(b) and 23(b)
respectively, for υ = 1.70. By continuing to increase the control parameter, close to 1.85, the
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Figure 24: Poincaré sections deduced from eq.(42) with the dissipation parameter γ as control
parameter. (a) γ = 4 (b) γ = 8 (c) γ = 10 (d) γ = 35. The other parameters used are: V0 = 120,
g0 = 0.75, g1 = −0.9, ε = 0.05, m = 0.8, the initial conditions taken at the stable fixed point
(R = R1 = 1.24503913, dR/dτ = 0).

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

R

dR
/d

τ

(a)
0.5 1 1.5 2 2.5

−3

−2

−1

0

1

2

3

R

dR
/d

τ

(b)

0.5 1 1.5 2 2.5

−2

−1

0

1

2

3

R

dR
/d

τ

(c)
1.4 1.6 1.8 2

−0.5

0

0.5

1

R

dR
/d

τ

(d)

Figure 25: Phase portaits deduced from eq.(42) with the dissipation parameter γ as control pa-
rameter. (a) γ = 4 (b) γ = 8 (c) γ = 10 (d) γ = 35. The other parameters used are: V0 = 120,
g0 = 0.75, g1 = −0.9, ε = 0.05, m=0.8, the initial conditions taken at the stable fixed point
(R = R1 = 1.24503913, dR/dτ = 0).
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Figure 26: Poincaré sections deduced from eq.(42) with the strength of three-body elastic atom-
atom interaction g1 as control parameter. (a) g1 = −0.5 (b) g1 = −0.2 (c) g1 = −0.03 (d) g1 =
−0.01. The other parameters used are: V0 = 120, g0 = 0.75, ε = 0.05, m = 0.8, γ = 5, the initial
conditions taken at the stable fixed point (R = R1 = 1.24503913, dR/dτ = 0).

dynamics of the condensate undergoes another period-doubling bifurcation, leading to period-2
oscillations, as one can see on the Poincré section and phase portrait depicted in figures 22(c)
and 23(c) respectively, for υ = 2. These period-2 oscillations of the condensate persist until the
control parameter reaches the value 6.0, where another bifurcation leads the condensed atoms
in a periodic regime as well visible on the Poincaré section and phase portrait shown in figures
22(d) and 23(d) respectively, for υ = 7). This numerical study reveals that the critical value of
the velocity of the optical lattice is 6.0. The gap of 44.5% between these two critical values can
be explained as above. The study reveals that this gap decreases when the value of the optical
depth increases. Once more, from chaotic oscillations, the transition route leading to regular
oscillations is the period-doubling scenario.

c) Bifurcation responses with the dissipation parameter γ as control parameter

Here, we use as control parameter the dissipation coefficient γ, and for remaining parameters
we give the values: m = 0.8, g0 = 0.75, g1 = −0.9, υ = 2, ε = 0.05, and V0 = 120. The ana-
lytical prediction of homoclinic chaos defined in eq.(68) and plotted in Fig.16(c) reveals that the
dynamics of condensed atoms will be chaotic for γ taken between 0 and 21.0, corresponding to
positive values of the threshold function `. The control parameter here annihilates or reduces
the chaotic behaviour of the condensate, and the periodic oscillations are predicted around the
critical value γc = 21.0. Subsequently, with the same set of data, we plot the bifurcation diagram
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Figure 27: Phase portraits deduced from eq.(42) with the strength of three-body elastic atom-
atom interaction g1 as control parameter. (a) g1 = −0.5 (b) g1 = −0.2 (c) g1 = −0.03 (d) g1 =
−0.01. The other parameters used are: V0 = 120, g0 = 0.75, ε = 0.05, m = 0.8, γ = 5, the initial
conditions taken at the stable fixed point (R = R1 = 1.24503913, dR/dτ = 0).

and the largest Lyapunov exponent, shown in figures 17(e) and 17(g) respectively. These curves
confirm really that this control parameter reduces the chaotic behaviour of the condensate. For
this set of data, as the control parameter γ evolves, the chaotic oscillations initially present(see
the Poincaré section and the phase portrait plotted respectively in figures 24(a) and 25(a) for
γ = 4 ) disappear around γ = 7.50, giving rise to period-4 oscillations as one can see on the
Poincaré section in Fig.24(b) which exhibits four point attractors and on the phase portrait in
Fig.25(b) which exhibits a period-4 attractor, for γ = 8. Beyond the first bifurcation point, in
the vicinity of 8.30, the dynamics of condensed atoms undergoes another period-doubling bifur-
cation, culminating in period-2 oscillations. That can be observed on the Poincaré section and
phase portrait plotted in figures 24(c) and 25(c) respectively, for γ = 10. The period-2 oscillations
persist until the control parameter reaches the value 30.0, where the dynamics of the condensate
bifurcates into a periodic regime, as clearly visible on the Poincaré section(a point attractor) and
on the phase portrait(limit-1 cycle) depicted in figures 24(d) and 25(d) for γ = 35. Once again, the
period-doubling scenario is the route leading to regular oscillations when the dissipation param-
eter evolves. The relative uncertainty between these critical values is 30%, and can be explained
as above.
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d) Bifurcation responses with the strength of three-body elastic atom-atom interaction as
control parameter

We consider as control parameter the strength of three-body elastic atom-atom collisions as-
sumed to be a negative number. In addition, we use the following set of data for remaining
parameters: m = 0.8, g0 = 0.75, γ = 5, υ = 2, ε = 0.05, and V0 = 120. It comes from Fig.16(d)
deriving from the analytical prediction of Melnikov’s chaos given by eq.(68) that the dynamics
of the condensate will be chaotic for g1 under -0.0145. Therefore this control parameter reduces
the chaotic behaviour of the condensate, and its critical value at the onset of regular oscillation is
g1c = −0.0145. The bifurcation diagram and the largest Lyapunov exponent depicted in figures
17(f) and 17(h) respectively, prove that the control parameter reduces really the chaotic behaviour
of condensed atoms. These curves reveal that by increasing gradually the control parameter, the
erratic oscillations are progressively annihilated, and the outcome of that are regular oscillations
in the vicinity of -0.02.
Let’s determine the regularization route leading to periodic oscillations. For g1 between 0 and
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Figure 28: (a) Plot of the homoclinic threshold function of chaos occurrence versus the optical
shape parameter m (b) Bifurcation diagram deduced from eq.(42) with the optical shape parame-
ter m as control parameter. The other parameters used are: υ = 2, g0 = 0.75, g1 = −0.9, ε = 0.03,
V0 = 150, γ = 5, the initial conditions taken at the stable fixed point(R = R1 = 1.24503913,
dR/dτ = 0).

-0.38, the dynamics of the condensate is chaotic, as illustrated by the figures 26(a) and 27(a) for
g1 = −0.5, where the Poincaré section exhibits a strange attractor hallmark of chaotic oscilla-
tions, and the phase portrait exhibits erratic phase orbits located in a finite region. As the control
parameter evolves, in the vicinity of g1 = −0.38 , the dynamics of the condensate undergoes a
period-doubling bifurcation and culminates in a period-2 oscillations regime as one can observe
in figures 26(b) and 27(b) for g1 = −0.2, with two points attractor as Poincaré section. By con-
tinuing to increase the control parameter, this period-2 attractor undergoes another bifurcation
when its value reaches -0.13, leading to a period-3 attractor as illustrated in figures 26(c)(three
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Figure 29: Poincaré sections deduced from eq.(42) with the shape parameter m as control pa-
rameter. (a) m = 0.1 (b) m = 0.5 (c) m = 0.65 (d) m = 0.9. The other parameters used are:
V0 = 150, g0 = 0.75, ε = 0.03, g1 = −0.9, γ = 5, the initial conditions taken at the stable fixed
point (R = R1 = 1.24503913, dR/dτ = 0).

points attractor) and 27(c) for g1 = −0.03. By continuing to vary gradually the control parameter,
the regular or periodic regime appear around -0.02, as one can observe on the following Poincaré
section and phase portrait shown in figures 26(d) and 27(d) respectively, for g1 = −0.01. Once
more, the period-doubling scenario is the route governing the transition to homoclinic chaos.
The relative uncertainty between the two critical values is 27.50%.

e) Bifurcation responses with the optical lattice shape m as control parameter

Here, as above, the data used are: g0 = 0.75, g1 = −0.9, υ = 2, γ = 5. To ε and V0 we give the
values 0.03 and 150 respectively. The figure 28(a) deriving from the analytical prediction of ho-
moclinic chaos defined in eq.(68) shows that for this set of parameters, the threshold function `
is always positive for all values of the shape parameter m. According to the MM which predicts
the beginning or the end of the instability, the dynamics of the condensate is always chaotic. In
Melnikov’s sense, it means that there is no periodic oscillations in the dynamical behaviour of
the condensate. On the bifurcation diagram plot in Fig.28(b), this information is not well visible,
because the two branches of this diagram are very close for small values of the shape parameter
m. On contrary, on the Poincaré section and phase portrait depicted in figures 29(a) and 30(a)
for m=0.1, it is clear that the dynamics of condensed atoms exhibits period-2 oscillations. The
depth analysis of Poincaré sections and phase portraits reveals that for very weak values of the
shape parameter m, the dynamics of the condensate always exhibits period-2 oscillations with
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Figure 30: Phase portraits deduced from eq.(42) with the shape parameter m as control parame-
ter. (a) m = 0.1 (b) m = 0.5 (c) m = 0.65 (d) m = 0.9. The other parameters used are: V0 = 150,
g0 = 0.75, ε = 0.03, g1 = −0.9, γ = 5, the initial conditions taken at the stable fixed point
(R = R1 = 1.24503913, dR/dτ = 0).

two points attractor very close. This result is in perfect accord with the analytical prediction
which reveals no periodic oscillations. Let’s determine the transition route to homoclinic chaos.
As the control parameter evolves, the period-2 oscillations persist until the control parameter
m reaches the value 0.465 where the dynamics of the condensate bifurcates in period-4 oscilla-
tions, as one can see on the Poincaré section and phase portrait depicted in figures 29(b) and
30(b) respectively, for m=0.5. Once again, the four points attractor are two by two paired. As the
control parameter m continues to evolve, in the vicinity of 0.638 the dynamics of the condensate
culminates in period-8 oscillations, as quite visible on the Poincaré section and phase portrait
depicted in figures 29(c)and 30(c) respectively, for m=0.65. This Poincaré section seems to ex-
hibit four points attractor instead of eight points attractor. In fact, after the transient regime has
disappeared, the phase orbits are two by two very close. That justifies why these points attractor
are two by two paired. By continuing to vary increasingly the control parameter, close to 0.675
the dynamical behaviour of the condensate enters in an aperiodic regime, as quite visible on the
Poincaré section which exhibits a symmetric strange attractor, hallmark of chaotic oscillations.
The dynamics of the condensate is then very sensitive to initial conditions. The analysis of bi-
furcation points obtained numerically reveals once again the universality of chaos through the

Feigenbaum number given here by δ1 =
0.638− 0.465

0.675− 0.638
= 4.675675676.
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Figure 31: Bifurcation diagrams deduced from eq(69). (a) The feeding rate γ0 as control param-
eter with γ1 = 10−4, γ2 = 10−3 (b) The parameter of dipolar relaxation γ1 as control parameter
with γ0 = 10−2, γ2 = 10−3 (c) The three-body inelastic recombination factor γ2 as control pa-
rameter with γ0 = 10−2, γ1 = 10−4. The other parameters used are: V0 = 2, υ = 0.0001, α = 0,
β = 1, g0 = −0.75, g1 = 0.1, m=0.8, ε = 0.05, the initial conditions taken at the stable fixed point
(R = R

′
1 = 1.24503913, dR/dτ = 0 ).

III.2.2 Case of a BEC of atoms subjected to inelastic collisions

This subsection is planned as follows. Firstly, we analyze thoroughly the analytical condition for
apparition of chaotic oscillations in the dynamics of condensed atoms obtained in eq.(83).
Secondly, our analytical results are compared to numerical simulations(Bifurcation diagrams and
Poincaré sections).
Thirdly, to verify the reliability of our investigations, we compare our results with those of refer-
ences [22, 24, 25, 26] in which the condensate was studied by a variational approach.
From eq.(83), via Maple software, some regions of instability are plotted in parameter space, as
shown in figures (7) and (8). For each parameter space, we take a point inside of the unstable
and stable zones, and we plot the corresponding Poincaré sections to verify the analytical pre-
dictions. The aim of our study being the impact of inelastic processes (atomic pumping and
inelastic collisions ) on the dynamical behaviour of condensed atoms, we focus our attention on
the cases in which the instability regions in parameter space (γi, γj) have approximately linear
boundaries, and we attempt to find a connection between parameters related to inelastic colli-
sions between bosonic atoms and atomic feeding for the occurrence of chaotic oscillations.
Let’s consider the Fig.7(a) in parameter space (γ0, δ). The point with components (γ0 = 0.002, δ =

1) is inside of the unstable zone coloured in gray. With these parameters, the Poincaré section de-
picted in Fig.32(a) exhibits a strange attractor, hallmark of chaotic oscillations of the condensate.
On the contrary, the point (γ0 = 0.01, δ = 0.1) is outside of the unstable region. The correspond-
ing Poincaré section depicted in Fig.32(b) shows a set of five points attractor, characterizing the
period-5 limit cycle in phase space. The deep analysis of Poincaré sections reveals that, when
one increases the parameter related to atomic feeding γ0 while δ is kept constant, the number
of points characterizing the Poincaré sections decreases progressively. The periodic oscillations
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are finally obtained for very large values of γ0. This result is also quite visible on the bifurcation
diagram shown in Fig.31(a). For fixed values of optical depth, as the feeding parameter evolves,
from chaotic oscillations the dynamics of the condensate undergoes a period-doubling cascade
culminating in periodic oscillations.
By continuing with the parameter space (γi, γj), and particularly in the parameter space (γ2, γ0),
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Figure 32: Poincaré sections deriving from eq.(69). (a) The point (γ0 = 0.002, δ = 1) taken inside
the unstable zone (b) The point (γ0 = 0.01, δ = 0.1) taken inside the stable zone . The other
parameters used are: g0 = 0.75, g1 = −0.9, υ = 0.0001, m = 0.8, α = 0, β = 1, γ1 = 10−4,
γ2 = 10−3, ε = 0.05. Initial conditions (R = R

′
1 = 1.24503913, dR/dτ = 0).
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Figure 33: Poincaré sections deriving from eq.(69). (a) The point (γ2 = 0.03, γ0 = 0.04) taken
inside the unstable zone (b) The point (γ2 = 0.07, γ0 = 0.04) taken inside the stable zone . The
other parameters used are: g0 = 0.75, g1 = −0.9, V0 = 2, m = 0.8, υ = 0.0001, α = 0, β = 1,
γ1 = 10−4, γ2 = 10−3, ε = 0.05. Initial conditions (R = R

′
1 = 1.24503913, dR/dτ = 0).

reasoning as above, the point with coordinates (γ2 = 0.03, γ0 = 0.04) is inside of the unstable re-
gion coloured in gray. The Poncaré section depicted in Fig.33(a) exhibits a set of points randomly
confined in a finite region, characterizing a chaotic regime. by using the same set of data, and
taking the point with coordinates (γ2 = 0.07, γ0 = 0.04) which is outside of the zone of instabil-
ity, after the transient regime had died out, the Poincaré section plotted in Fig.33(b) exhibits a set
of two point attractors, signature in phase space of a period-2 limit cycle. It comes from Fig.31
that, for fixed values of optical depth and feeding parameter, as parameters related to inelastic
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collisions between bosonic atoms evolve, the regularization route is ensured.
Furthermore, with the remark that the curves delimiting the unstable region given by−0.0060 ≤
γ0 − 1.35γ2 ≤ 0.0070 in parameter space (γ2, γ0) and −0.0050 ≤ γ0 − 1.58γ1 ≤ 0.0085 in parame-
ter space (γ1, γ0) are approximately linear, we can deduce the following quotients between these
parameters for the occurrence of chaotic oscillations.

γ0

γ2
= 1.35 and

γ0

γ1
= 1.58. These ratios in-

dicate that the parameters related to atomic feeding, dipolar relaxation and three-body inelastic
collisions must be approximately in the same order for the occurrence of homoclinic chaos in the
dynamical behaviour of the condensate.

III.3 Transitions to chaos in the dynamics of a BEC with attractive two-body and re-

pulsive three-body interactions loaded into a moving optical Fourier-synthesized

lattice

III.3.1 Case of a BEC of atoms not subjected to inelastic collisions

In this subsection, through the fourth-order Runge-Kutta and Euler-Cromer methods, we per-
form computer simulations on the perturbed system eq.(42) firstly, to verify the reliability of the
analytical study, and secondly to determine the transition route to chaos.

III.3.1.1. Bifurcation responses of homoclinic trajectories

The initial conditions used in this subsection are taken at the stable fixed point (R1,0). We elimi-
nate the transient regime so that the fixed point considered as initial conditions don’t appear in
Poincaré sections. Such was not the case in the previous section. Furthermore, to ε we give the
value 0.01.

a) Bifurcation responses with the depth V0 of the optical lattice as control parameter

We use the following experimental set of data: g0 = −0.75, g1 = 0.1, υ = 1.5, γ = 0.05 and
m = 0.5. It comes from the condition for apparition of homoclinic chaos expressed in eq.(105)
and depicted in Fig.34(a) that, the threshold function ρ(V0,m, υ, γ, g1) versus the depth of the
optical lattice is positive for V0 beyond 0.2618. It is clear that this control parameter enhances
the dynamical behaviour of the condensate. In Melnikov’s sense, the critical value V0c = 0.2618

of the control parameter indicates the beginning of the instability in the dynamics of condensed
atoms.
Let’s verify this analytical prediction by numerical simulations. The bifurcation diagram and the
largest Lyapunov exponent depicted in figures 35(a) and 35(c) indicate really that the chaos is
enhanced in the dynamics of the condensate as predicted by the analytical study. Let’s deter-
mine the transition route leading to chaotic oscillations. As the control parameter evolves, the
point attractor (R1,0) loses stability via a supercritical Hopf bifurcation, resulting in a periodic
attractor. The outcome of that is the birth of periodic oscillations around the fixed point(R1,0),
as illustrated in Fig.36(a) with a point attractor as Poincaré section and in Fig.37(a) with a closed
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(a) (b)

(c) (d)

Figure 34: Plot of the homoclinic threshold function ρ(V0,m, υ, γ, g1) of chaos occurrence versus
(a) The optical intensity V0 (b) The elastic three-body recombination factor g1, with V0 = 20 (c)
The damping parameter γ, with V0 = 20 (d) The velocity of the optical lattice υ, with V0 = 15.
The other parameters used are: υ = 1.5, g0 = −0.75, g1 = 0.1, m = 0.5, γ = 0.05.

curve as phase portrait. By continuing to vary increasingly the control parameter, in the vicinity
of V0 = 0.50, this periodic attractor undergoes a secondary supercritical Hopf bifurcation or a
Neimark bifurcation, characterized by the birth of a second frequency incommensurate with the
former one. The outcome of that is the birth of two-period quasi-periodic oscillations, as one
can see on the Poincaré section depicted in Fig.36(b) which exhibits a closed curve and on the
phase portrait depicted in Fig.37(b) which exhibits a quasi-periodic attractor. As the control pa-
rameter is gradually increased, around V0 = 1.35 via another Hopf bifurcation, the dynamics of
the condensate bifurcates into period-2 oscillations, as one sees on the Poincaré section plotted
in Fig.36(c), which exhibits two points attractor, and on the phase portrait depicted in Fig.37(c)
which exhibits a period-2 attractor. These period-2 oscillations persist as the control parameter
evolves until the vicinity of V0 = 1.55, where another Hopf bifurcation leads the condensate into
another quasi-periodic regime, but with two loops as Poincaré section, as shown in Fig.36(d-e)
and in phase portraits displayed in Fig.37(d-e) which exhibit quasi-periodic attractors. By contin-
uing to increase gradually the control parameter, the quasi-periodic oscillations persist until its
value approaches V0 = 13.95, where the largest Lyapunov exponent depicted in Fig.35(c) crosses
the V0 axis, and becomes a positive number. At this bifurcation point, another Hopf bifurcation
leads the condensate to chaos, as quite visible on the Poincaré section depicted in Fig.36(e) which
exhibits a symmetric strange attractor, hallmark of a chaotic dynamics. The phase portrait shown
in Fig.37(e) presents erratic phase orbits confined randomly in a finite region. The behaviour of
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Figure 35: Bifurcation diagrams and corresponding Lyapunov exponents of homoclinic bifur-
cations, deduced from eq.(42) (a)-(c) The optical intensity V0 as control parameter (b)-(d) The
elastic three-body recombination factor as control parameter (e)-(g) The damping parameter γ as
control parameter (f)-(h) The optical velocity υ as control parameter . The other parameters used
are: υ = 1.5, g0 = −0.75, g1 = 0.1, ε = 0.01, m = 0.5, γ = 0.05, the initial conditions taken at the
stable fixed point (R = R1 = 0.9193815805, dR/dτ = 0).

Ph.D Thesis of Sylvin Tchatchueng Laboratory of mechanics, Materials and structures



94

0.9 0.905 0.91 0.915 0.92 0.925 0.93
−5

0

5
x 10

−3

R

d
R

/d
τ

(a)
0.9 0.905 0.91 0.915 0.92 0.925 0.93

−5

0

5
x 10

−3

R

d
R

/d
τ

(b)
0.9 0.91 0.92 0.93 0.94

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

R

d
R

/d
τ

(c)

0.8 1 1.2 1.4
−0.05

0

0.05

R

d
R

/d
τ

(d)
0.6 0.8 1 1.2 1.4

−0.1

−0.05

0

0.05

0.1

R

d
R

/d
τ

(e)
−3 −2 −1 0 1 2 3

−2

−1

0

1

2

R

d
R

/d
τ

(f)

Figure 36: Poincaré sections of homoclinic bifurcations, deduced from eq.(42) with the optical
intensity V0 as control parameter. (a) V0 = 0.1 (b) V0 = 1 (c) V0 = 1.35 (d) V0 = 5 (e) V0 = 10 (f)
V0 = 20. The other parameters used are: υ = 1.5, g0 = −0.75, g1 = 0.1, ε = 0.01, m = 0.5, γ =
0.05, the initial conditions taken at the stable fixed point (R = R1 = 0.9193815805, dR/dτ = 0).
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Figure 37: Phase portraits of homoclinic bifurcations, deduced from eq.(42) with the optical in-
tensity V0 as control parameter. (a) V0 = 0.1 (b) V0 = 1 (c) V0 = 1.35 (d) V0 = 5 (e) V0 = 10
(f) V0 = 20. The other parameters used are: υ = 1.5, g0 = −0.75, g1 = 0.1, ε = 0.01,
m = 0.5, γ = 0.05, the initial conditions taken at the stable fixed point (R = R1 = 0.9193815805,
dR/dτ = 0).
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Figure 38: Spatiotemporal evolution of condensate in the case of homoclinic bifurcations, de-
duced from eq.(42) with the optical intensity V0 as control parameter. (a) V0 = 0.1 (b) V0 = 1
(c) V0 = 1.35 (d) V0 = 5 (e) V0 = 10 (f) V0 = 20. The other parameters used are: υ = 1.5,
g0 = −0.75, g1 = 0.1, ε = 0.01, m = 0.5, γ = 0.05, the initial conditions taken at the stable fixed
point (R = R1 = 0.9193815805, dR/dτ = 0).

the condensate in this condition is very sensitive to initial conditions, and unpredictable. For
this control parameter, it is clear that to each limit cycle corresponds a torus attractor and to the
period-doubling of limit cycle corresponds torus-doubling of torus attractors. One recognizes
here the torus-doubling bifurcation route to chaos. Furthermore, from two-period quasi-periodic
oscillations of the condensate, its dynamical behaviour becomes directly chaotic. One recognizes
the Ruelle-Takens and Newhouse results [158, 159] in the so-called Ruelle-Takens scenario route
to chaos. That is to say that the chaotic oscillations can be obtained for finite incommensurate
frequencies, particularly the birth of the third incommensurate frequencies can lead directly to
chaos under very weak perturbations, contrary to the Landau theory which predicts more in-
commensurate frequencies for the occurrence of chaos. The gap of 47.64% as relative uncertainty
between the two critical values seems so large that one can condemn the theoretical study. In
fact, one cannot expect a good quantitative agreement between the two kinds of findings, be-
cause the MM is a perturbative method generally related to transient chaos, while bifurcation
diagrams provide information solely concerning steady chaos.
In addition, one observes on the spatiotemporal evolutions of the condensate that, in the case of
periodic oscillations corresponding to very weak values of optical depth V0, the real amplitude
of the wave function of the condensate is virtually constant, as well visible on the Fig.21(a-b-c)
for V0 taking respectively the values 0.1, 1.0 and 1.35. One can deduce a solitonic solution for
eq.(42) as bright solitons. Subsequently, when the control parameter V0 continues to increase,
progressively, the spatiotemporal evolutions of the real amplitude of the condensate appear like

Ph.D Thesis of Sylvin Tchatchueng Laboratory of mechanics, Materials and structures



96

waves envelope, as shown in Fig.21(d-e) for V0 respectively 5.0 and 10.0. One recognizes the en-
velope solitons as solitonic solutions of eq.(42). The Fig.21(f) exhibits the erratic oscillations for
V0 = 20, as predicted by the bifurcation diagram and the largest Lyapunov exponent. Roughly
speaking, the stable dynamics of the condensate is governed by the solitary waves, of type bright
solitons and envelope solitons. These solitonic solutions of eq.(42) can be interpreted as a perfect
balance between dissipation and nonlinearities.
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Figure 39: Poincaré sections of homoclinic bifurcations, deduced from eq.(42) with the strength
of three-body elastic atom-atom interaction g1 as control parameter. (a) g1 = 0.05 (b) g1 = 0.1 (c)
g1 = 0.13. The other parameters used are: V0 = 20, g0 = −0.75, ε = 0.01, m = 0.5, γ = 0.05, the
initial conditions taken at the stable fixed point (R = R1 = 0.9193815805, dR/dτ = 0).

b) Bifurcation responses with the strength of the three-body recombination g1 as control pa-
rameter

We use the same set of data as above, and to V0 we give the value 20. Remembering our work
hypothesis defined in eq.(84) and eq.(85), g1 must be taken between 0 and 0.1875. The condition
for the occurrence of the Melnikov chaos deduced from eq.(105) and plotted in Fig.34(b) shows
that the threshold function ρ(V0,m, υ, g1, γ) is always positive, excepted the vicinity of 0.1810

where the threshold function is not defined. Therefore, the dynamics of the condensate will
remain chaotic when the control parameter varies between 0 and 0.1875. But, in Melnikov’s
sense, it means that for this set of data, there are no periodic oscillations. The bifurcation diagram
plotted in Fig.35(b) confirms that, because it begins by a large branch instead of a tiny branch
as in the case of periodic oscillations. The beginning of this bifurcation diagram corresponding
to the negative part of the largest Lyapunov exponent shown in Fig.35(d) corresponds in fact
to quasi-periodic oscillations, as clearly seen on the Poincaré section (closed curve), and on the
phase portrait(quasi-periodic attractor), displayed in figures 39(a) and 40(a) respectively, for g1 =

0.05. By continuing to vary increasingly the control parameter, in the vicinity of 0.0701, via
a Hopf bifurcation, the dynamics of the condensate experiences suddenly a chaotic regime, as
clearly visible on the largest Lyapunov exponent displayed in Fig.35(d) which crosses the g1 axis,
becoming a positive number. The Poincaré section and the phase portrait depicted in Fig.39(b)
and Fig.40(b) respectively, for g1 = 0.1 present a strange attractor and erratic phase orbits. In
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fact, for g1 taken between 0.0701 and 0.1135, the eigenvalues corresponding to the stable fixed
points are very close to the imaginary complex number j (j2 = −1). One understands the Hopf
bifurcation leading to the chaotic oscillations of the condensate in the vicinity of g1 = 0.0701, and
the torus-doubling bifurcation observed around g1 = 0.1135 which culminates in another quasi-
periodic regime, with a Poincaré section exhibiting two closed curves as displayed in Fig.39(c)
for g1 = 0.13.
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Figure 40: Phase portraits of homoclinic bifurcations, deduced from eq.(42) with the strength of
three-body elastic atom-atom interaction g1 as control parameter. (a) g1 = 0.05 (b) g1 = 0.1 (c)
g1 = 0.13. The other parameters used are: V0 = 20, g0 = −0.75, ε = 0.01, m = 0.5, γ = 0.05, the
initial conditions taken at the stable fixed point (R = R1 = 0.9193815805, dR/dτ = 0).
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Figure 41: Poincaré sections of homoclinic bifurcations, deduced from eq.(42) with the dissipa-
tion parameter γ as control parameter. (a) γ = 0.01 (b) γ = 2 (c) γ = 3.5. The other parameters
used are: V0 = 20, g0 = −0.75, g1 = 0.1, ε = 0.01, m = 0.5, the initial conditions taken at the
stable fixed point (R = R1 = 0.9193815805, dR/dτ = 0).

c) Bifurcation responses with the damping coefficient γ as control parameter

We continue with the same set of data as above, but to g1 and V0 we give the value 0.1 and 20
respectively. The threshold function ρ(V0,m, υ, g1, γ) expressed in eq.(105) is plotted versus the
control parameter γ in Fig.34(c). It comes from this curve that, when the dissipation parameter
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evolves, the dynamics of the condensate remains chaotic until the control parameter reaches the
value 3.81, where the condensate undergoes a bifurcation culminating in a periodic regime. Ac-
cording to this analytical treatment, it is clear that the dissipation coefficient reduces the chaotic
behaviour of the condensate. Numerically, the bifurcation diagram and the largest Lyapunov ex-
ponent plotted in figures 35(e) and 35(g) respectively, show that when the dissipation coefficient
varies increasingly, the chaotic behaviour of the condensate is progressively reduced until the
vicinity of 3.305 where a period-doubling bifurcation leads the condensate to a periodic regime.
The gap between the two critical values is 13.25% as relative uncertainty. The Poincaré sections
and phase portraits shown in figures 41(a-b-c) and 42(a-b-c) allow us to conclude that the regu-
larization route is via the period-doubling scenario.
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Figure 42: Phase portraits of homoclinic bifurcations, deduced from eq.(42) with the dissipation
parameter γ as control parameter. (a) γ = 0.01 (b) γ = 2 (c) γ = 3.5. The other parameters used
are: V0 = 20, g0 = −0.75, g1 = 0.1, ε = 0.01, m = 0.5, the initial conditions taken at the stable
fixed point (R = R1 = 0.9193815805, dR/dτ = 0).

d) Bifurcation responses with the velocity of the optical lattice υ as control parameter

We consider as above, the following set of data: g0 = −0.75, g1 = 0.1, V0 = 15, γ = 0.05, m = 0.5.
Our work hypothesis expressed in eq.(84) and eq.(85) constraints the control parameter υ to vary
between 0 and 2.053. The threshold function ρ(V0,m, υ, g1, γ) deriving from eq.(105) and plotted
in Fig.34(d) reveals that when the control parameter evolves, the stability of the condensate is
progressively destroyed, and its chaotic behaviour is obtained in the vicinity of υ = 0.50.
Numerically, through the largest Lyapunov exponent displayed in Fig.35(h), the numerical sim-
ulations reveal that the dynamics of the condensate becomes chaotic for the velocity of optical
lattice more greater than 0.355. Therefore, this control parameter enhances the chaotic dynamics
of the condensate. Through the Poincaré sections and phase portraits depicted in figures 43(a-
b-c-d) and 44(a-b-c-d) respectively, it is clear that the quasi-periodicity is the route leading to
chaotic oscillations. In the chaotic zone, there are open windows of quasi-periodic oscillations,
as clearly visible on the largest Lyapunov exponent for υ between 1.02 and 1.49. That is well vis-
ible on the Poincaré section (closed curves) and phase portrait shown in figures 43(e) and 44(e)
respectively, for υ = 1.3. The relative uncertainty between the two critical values is 29.0%.

Ph.D Thesis of Sylvin Tchatchueng Laboratory of mechanics, Materials and structures



99

−1 −0.5 0 0.5 1
−0.5

0

0.5

R

d
R

/d
τ

(a)
−1 −0.5 0 0.5 1

−0.5

0

0.5

R

d
R

/d
τ

(b)
−0.5 0 0.5

−0.2

−0.1

0

0.1

0.2

0.3

R

d
R

/d
τ

(c)

(d)
0 0.2 0.4 0.6 0.8 1

−0.05

0

0.05

R

d
R

/d
τ

(e)
−3 −2 −1 0 1 2 3

−2

−1

0

1

2

d
R

/d
τ

R (f)

Figure 43: Poincaré sections of homoclinic bifurcations, deduced from eq.(42) with the velocity
of optical lattice υ as control parameter. (a) υ = 0.01 (b) υ = 0.1 (c) υ = 0.3 (d) υ = 0.4 (e)
υ = 1.3 (f) υ = 1.5. The other parameters used are: V0 = 15, g0 = −0.75, g1 = 0.1, ε = 0.01,
m = 0.5, γ = 0.05, the initial conditions taken at the stable fixed point (R = R1 = 0.9193815805,
dR/dτ = 0).
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Figure 44: Phase portraits of homoclinic bifurcations, deduced from eq.(42) with the velocity
of optical lattice υ as control parameter. (a) υ = 0.01 (b) υ = 0.1 (c) υ = 0.3 (d) υ = 0.4 (e)
υ = 1.3 (f) υ = 1.5. The other parameters used are: V0 = 15, g0 = −0.75, g1 = 0.1, ε = 0.01,
m = 0.5, γ = 0.05, the initial conditions taken at the stable fixed point (R = R1 = 0.9193815805,
dR/dτ = 0).
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Figure 45: (a) Plot of the homoclinic threshold function ρ(V0,m, υ, γ, g1) of chaos occurrence ver-
sus the optical shape parameter m. (b) Bifurcation diagram of homoclinic bifurcations, deduced
from eq.(42) with the shape parameter m as control parameter. The other parameters used are:
V0 = 10, g0 = −0.75, g1 = 0.1, ε = 0.01, υ = 1.5, γ = 0.05, the initial conditions taken at the stable
fixed point (R = R1 = 0.9193815805, dR/dτ = 0).
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Figure 46: Poincaré sections of homoclinic bifurcations, deduced from eq.(42) with the shape
parameter m as control parameter. (a) m = 0.1 (b) m = 0.5 (c) m = 0.8. The other parameters
used are: V0 = 10, g0 = −0.75, g1 = 0.1 ε = 0.01, γ = 0.05, υ = 1.5, the initial conditions taken at
the stable fixed point (R = R1 = 0.9193815805, dR/dτ = 0).
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Figure 47: Phase portraits of homoclinic bifurcations, deduced from eq.(42) with the shape pa-
rameter m as control parameter. (a) m = 0.1 (b) m = 0.5 (c) m = 0.8. The other parameters used
are: V0 = 10, g0 = −0.75, g1 = 0.1, ε = 0.01, γ = 0.05, υ = 1.5, the initial conditions taken at the
stable fixed point (R = R1 = 0.9193815805, dR/dτ = 0).

e) Bifurcation responses with the optical lattice shape m as control parameter

As above we use the same set of data, but to V0 we give the value 10. The threshold function
ρ(V0,m, υ, g1, γ) deriving from eq.(105) and plotted in Fig.45(a) reveals that there are no periodic
oscillations around the stable fixed point, because the threshold function ρ is always a positive
number for all possible values of the shape parameter m(0 ≤ m ≤ 1). That is confirmed in the
bifurcation diagram plotted with the same set of data in Fig.(45), and on the Poincaré sections
presented in Fig.(46) which always exhibit two closed loops for all value of control parameter m.
For this set of parameters, the dynamics of the condensate is always quasi-periodic. This result
is also visible on the phase portraits depicted in Fig.(47).

III.3.1.2. Bifurcation responses of heteroclinic trajectories

It is important to mention that the heteroclinic separatrix of the unperturbed system eq.(43)
crosses the R axis in the phase space (R,X) at (−R2, 0) and (+R2, 0), which represent the max-
ima of the potential energy. To use these unstable fixed points as initial conditions in numerical
simulations characterizes the heteroclinic trajectories.

a) Bifurcation responses with the depth of the optical lattice V0 as control parameter

We consider the following set of data generally used in experiments: g0 = −0.75, g1 = 0.1, υ = 1,
γ = 0.5, m = 0.5 and ε = 0.01. One observes in Fig.48(a) deriving from the theoretical prediction
of the heteroclinic chaos defined in eq.(114) that, the dynamics of the condensate is regular for
V0 between 0 and 2.09, and unstable for V0 beyond 2.09. Consequently, this control parameter
enhances the chaos in the dynamical behaviour of the condensate.
Let’s verify the reliability of this result through numerical simulations. Using the saddle point
(+R2, 0) as initial conditions, the bifurcation diagram and the largest Lyapunov exponent plotted
respectively in figures 49(a) and 49(c) show that the depth of the optical lattice really enhances
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(a) (b)

(c) (d)

Figure 48: Plot of the heteroclinic threshold function of chaos occurrence versus (a) The optical
intensity V0 (b)The elastic three-body recombination factor g1 (c) The damping parameter γ, and
with g1 = 0.05 (d) The velocity of the optical lattice υ. The other parameters used are: V0 = 10,
υ = 1, g0 = −0.75, g1 = 0.1, m = 0.5, γ = 0.5.

the chaotic behaviour of the condensate as analytically expected. When the control parameter
continue to evolve, in the vicinity of V0 = 1.45, the largest Lyapunov exponent becomes a pos-
itive number, and the dynamics of condensed atoms enters suddenly into an aperiodic regime.
The Poincaré sections before this bifurcation point always exhibit closed curves, indicating the
existence of quasi-periodic oscillations. The depth analysis of Poincaré sections(figures 50(a-b))
and phase portraits(figures 51(a-b)) of the condensate indicates that from two-period quasi peri-
odic oscillations before the bifurcation point, the dynamics of the condensate becomes suddenly
chaotic, and the heteroclinic separatrix is particularly affected.

b) Bifurcation responses with the strength of the three-body recombination g1 as control pa-
rameter

As usual, we consider the same set of data as above, and to V0 we give the value 10. According to
Fig.48(b), the dynamics of the condensate is regular for g1 between 0 and 0.01, and chaotic for g1

beyond 0.01. Therefore, this control parameter enhances the chaos in the dynamical behaviour
of the condensate. The numerical simulations through the bifurcation diagram in Fig.49(b) and
the largest Lyapunov exponent in Fig.49(d) confirm really the existence of regular oscillations for
very weak values of the control parameter. Once again, the quasi-periodicity characterizes the
zone of regularity, and the heteroclinic separatrix is particularly affected in the case of chaotic
oscillations.
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Figure 49: Bifurcation diagrams and corresponding Lyapunov exponents of heteroclinic bifur-
cations, deduced from eq.(42) (a)-(c) The optical intensity V0 as control parameter (b)-(d) The
elastic three-body recombination factor as control parameter (e)-(g) The damping parameter γ as
control parameter (f)-(h) The optical velocity υ as control parameter . The other parameters used
are: υ = 1, g0 = −0.75, g1 = 0.1, ε = 0.01, m = 0.5, γ = 0.5, the initial conditions taken at the
unstable fixed point (R = R2 = 2.579677792, dR/dτ = 0).
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Figure 50: Poincaré sections of heteroclinic bifurcations, deduced from eq.(42) with the optical
intensity V0 as control parameter. (a) V0 = 1 (b) V0 = 20. The other parameters used are: υ = 1,
g0 = −0.75, g1 = 0.1, ε = 0.01, m = 0.5, γ = 0.5, the initial conditions taken at the unstable fixed
point (R = R2 = 2.579677792, dR/dτ = 0).
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Figure 51: Phase portraits of heteroclinic bifurcations, deduced from eq.(42) with the optical
intensity V0 as control parameter. (a) V0 = 1 (b) V0 = 20. The other parameters used are: υ = 1,
g0 = −0.75, g1 = 0.1, ε = 0.01, m = 0.5, γ = 0.5, the initial conditions taken at the unstable fixed
point (R = R2 = 2.579677792, dR/dτ = 0).
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Figure 52: Poincaré sections of heteroclinic bifurcations, deduced from eq.(42) with the dissipa-
tion parameter γ as control parameter. (a) γ = 0.5 (b) γ = 4. The other parameters used are:
υ = 1, g0 = −0.75, g1 = 0.05, V0 = 10, ε = 0.01, m = 0.5, the initial conditions taken at the
unstable fixed point (R = R2 = 2.579677792, dR/dτ = 0).
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c) Bifurcation responses with the damping coefficient γ as control parameter

As above, we use the same set of data, and to g1 we give the value 0.05. The theoretical prediction
of the heteroclinic chaos depicted in Fig.48(c) reveals that the dissipation parameter reduces the
chaotic behaviour of the condensate, and the regular oscillations are obtained for γ beyond 1.88.
Through the bifurcation diagram and the largest Lyapunov exponent plotted in figures 49(e)
and 49(g)respectively, the critical value of the control parameter leading to a periodic regime is
γ = 2.71. The relative uncertainty of 30.62% between these critical values can seem enough, but
that was expected according to the fact that the MM is related to transient chaos whereas the
bifurcation diagrams and the largest Lyapunov exponent are related to steady chaos. The deep
analysis of Poincaré sections reveal that from chaotic oscillations, the dynamics of the condensate
becomes suddenly periodic(see Fig.(52)).
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Figure 53: Poincaré sections of heteroclinic bifurcations, deduced from eq.(42) with the velocity
of optical lattice υ as control parameter. (a) υ = 0.5 (b) υ = 0.9. The other parameters used are:
g0 = −0.75, g1 = 0.1, V0 = 10, ε = 0.01, m = 0.5, γ = 0.05, the initial conditions taken at the
stable fixed point (R = R2 = 2.579677792, dR/dτ = 0).

d) Bifurcation responses with the velocity of the optical lattice υ as control parameter

We consider as control parameter the velocity of the optical lattice υ. As above, we use the fol-
lowing experimental set of data: g0 = −0.75, g1 = 0.1, γ = 0.05, ε = 0.01, V0 = 10, and m = 0.5.
Our work hypothesis characterizing the coexistence of both homoclinic and heteroclinic orbits
defined in equations (84) and (85) compels the control parameter to vary between 0 and 2.053.
That was already mentioned in the case of homoclinic bifurcations. In Fig.48(d), the boundary
threshold function defined in eq.(114) characterizing the theoretical prediction of heteroclinic
chaos is always a positive number, except in the vicinity of υ = 1.905 where it is not defined.
Remembering that the Melnikov method predicts the end or the beginning of the periodic os-
cillations, one deduces from Fig.48(d) that there is no periodic regime in the dynamics of the
condensate.
Taking as initial conditions the unstable fixed point (R2, 0) to characterize the heteroclinic tra-
jectories, one observes through the bifurcation diagram in Fig.49(f) the non existence of periodic
oscillations. The corresponding largest Lyapunov exponent depicted in Fig.49(h) presents a neg-
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ative part for υ varying between 0 and 0.77, which can be interpreted as an existence of periodic
oscillations. However, the depth analysis of Poincaré sections for this range of the velocity of
the optical lattice υ does not exhibit a point attractor, but reveals two distorted closed curves,
characteristic of quasi-periodic oscillations as clearly shown on the Poincaré section presented
in Fig.53(a) for υ = 0.5. Moreover, from two-period quasi-periodic oscillations, in the vicinity
of υ = 0.77, via a Hopf bifurcation, the dynamics of the condensate culminates suddenly into
chaos. Once again, the heteroclinic separatrix is particularly affected.

III.3.2 Case of a BEC of atoms subjected to inelastic collisions

In this subsection, we take into account the inelastic processes in the dynamics of the condensate.
Firstly, with Maple software, we analyze thoroughly the theoretical conditions for the occurrence
of chaotic oscillations expressed in equations (124) and (133), and some zones of instability in
different parameter space are determined, and displayed in figures (12), (13), (14) and (15). Sec-
ondly, our theoretical results are verified by numerical simulations (Bifurcation diagrams and
Poincaré sections). For each parameter space, we take a point inside the instability zone and
then outside the instability zone and we plot the corresponding Poincaré sections to verify the
analytical prediction. Thirdly, to verify the reliability of our investigations, we compare our find-
ings with those of references [22, 24, 25, 26] in which the condensed atoms trapped in a harmonic
potential were studied by a variational approach. The aim of our study being the impact of in-
elastic processes on the dynamics of the condensate, we consider particularly the cases in which
the regions of instability in parameter space (γi, γj) have approximately linear boundaries, and
we attempt to find the link between parameters related to these inelastic collisions for the occur-
rence of chaotic oscillations.

III.3.2.1. Bifurcation responses of homoclinic orbits

We begin the analysis with the parameter space (γ0, δ) presented in Fig.12(a). The point (γ0 =

0.01, δ = 2) is inside of the instability zone coloured in gray. The Fig.55(a) exhibits a strange
attractor as Poincaré section, signature of chaotic oscillations of the condensate. Conversely, the
point (γ0 = 0.4, δ = 5) is outside of the region of instability. The corresponding Poincaré sec-
tion depicted in Fig.55(b) shows a set of seven points attractor, proof of existence of a period-7
limit cycle in phase space. The deep analysis of Poincaré sections reveals that, when one in-
creases the parameter related to atomic feeding γ0 while δ is kept constant, the number of points
characterizing the Poincaré sections decreases progressively. The periodic oscillations are finally
obtained for very large values of γ0. This result is also visible on the bifurcation diagram plotted
in Fig.54(a), and can be useful in the control of chaos in the dynamics of the condensate.
By continuing this reasoning with the parameter space (γ1, δ) displayed in Fig.12(b), the point of

components (γ1 = 0.0005, δ = 2) is within the instability zone coloured in gray. The correspond-
ing Poincaré section is a strange attractor, characteristic of a chaotic behaviour of the condensate.
Conversely, the point of components (γ1 = 0.1, δ = 2) is outside of the region of instability. The
corresponding Poincaré section exhibits once again a set of seven points attractor. The thorough
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Figure 54: Bifurcation diagrams of homoclinic bifurcation deduced from eq(69). (a)-(b) The feed-
ing rate γ0 as control parameter, with V0 respectively 2 for (a) and 0.02 for (b). (c) The three-body
inelastic recombination factor γ2 as control parameter. The other parameters used are υ = 0.0001,
α = 0, β = 1, g0 = −0.75, g1 = 0.1, m = 0.5, ε = 0.01, γ0 = 10−2, γ1 = 10−5, γ2 = 10−3, and
V0 = 2. The initial conditions taken at the stable fixed point (R = R1=1.316979712, dR/dτ = 0).

analysis of Poincaré sections reveals that when one increases gradually the parameter related
to the dipolar relaxation γ1, the number of points decreases and the Poincaré section is finally
restricted to a point attractor when one is far from threshold boundary function.
We pursue the treatment in parameter space (γi, γj), i=0,1,2 with Fig.13. It comes from eq.(124)
that for γ2 = 10−3, varying increasingly the atomic feeding parameter γ0 from 0 to 0.1, the pa-
rameter related to the dipolar relaxation γ1 does not exceed 0.035. The chaotic region coloured in
gray in parameter space (γ1, γ0) is approximately given by the following expression −0.0075 ≤
γ0 − 3.17γ1 ≤ 0.0269. The point (γ1 = 0.005, γ0 = 0.02) is inside of the instability zone. The
corresponding Poincaré section plotted in Fig.56(a) shows a strange attractor, proof of chaotic
oscillations. Conversely, the point (γ1 = 0.1, γ0 = 0.02) is outside of the instability region. The
corresponding Poincaré section plotted in Fig.56(b) exhibits a set of seven points attractor, proof
of existence of a period-7 attractor. The double inequality expressed above to characterize the
zone of instability coloured in gray can be restricted at

γ0

γ1
= 3.17. That is to say that the atomic

feeding and the dipolar relaxation parameters must be approximately in the same order for the
occurrence of erratic oscillations of the condensate. This result was already obtained in the pre-
vious section in the framework of a BEC with repulsive two-body and attractive three-body
interactions .
In parameter space (γ2, γ0) as presented in Fig.13(b) for γ1 = 10−5, the analytical condition for

the occurrence of the homoclinic chaos reveals that when γ0 increases between 0 and 0.1, γ2 in-
crease also between 0 and 0.0104. The region of instability in parameter space (γ2, γ0) coloured in
gray is approximately given by the following inequalities −0.0157 ≤ γ0 − 11.13γ2 ≤ 0.0171. The
point (γ2 = 0.005, γ0 = 0.06) is inside of the instability region, and the corresponding Poincaré
section exhibits a strange attractor, proof of existence of chaotic oscillations. Conversely, the
point(γ2 = 0.07, γ0 = 0.01) is outside of the instability zone. The corresponding Poincaré section
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Figure 55: Poincaré sections of homoclinic bifurcations deriving from eq.(69) in parameter space
(γ0, δ) (a) The point with components (γ0 = 0.01, δ = 2) inside the region of instability (b) The
point with components (γ0 = 0.4, δ = 5) inside the region of stability. The other parameters used
are: υ = 0.0001, α = 0, β = 1, m = 0.5, ε = 0.01, g0 = −0.75, g1 = 0.1, V0 = 2, γ1 = 10−5,
γ2 = 10−3, the initial conditions taken at the stable fixed point (R=R′1=1.316979712, dR/dτ = 0).

exhibits a set of seven points attractor, characterizing a period-7 limit cycle. From the double
inequality expressing the zone of instability coloured in gray, the chaotic oscillations of the con-
densate can be restricted at

γ0

γ2
= 11.13. That is to say that the feeding parameter is about one

order of magnitude larger than the thee-body recombination parameter. The deep computa-
tional analysis of Poincaré sections shows that in parameter space, the further away one is from
the boundary threshold function, progressively the dynamics of the condensate becomes regular.
Exploring thoroughly the regions of instability, we observe through numerical simulations that
for very weak values of the optical depth V0 and very weak values of the inelastic three-body
collision parameter γ2, the regions of instability in parameter space (γ1, γ0) are discrete and ap-
pear as a sequence of an island of points as one can see on the figure 13(c). In other words, the
regions of instability appear like a linear alternation of patterns. The centers Gn of these regions
of instability in parameter space (γ1, γ0) are in arithmetic progression and approximately given
by Gn(γ1 = 0.0005n, γ0 = 0.0016n) for the set of parameters used. The outcome of that, is merely
the existence of crises and growth-collapse cycles in the dynamics of the condensate.
Now, let’s compare our results with those of references [22, 24, 25, 26] in which the study was
made by a variational approach on a BEC with an attractive two-body and a repulsive three-
body recombination and trapped in a magnetic field. As relevant result, their study reveals that
quantitatively the chaotic dynamics occurs mainly when the feeding parameter is one or two
orders of magnitude larger than the three-body recombination parameter. It comes also from
their study that small values of feeding parameter are favourable to regular oscillations whereas
large values of feeding parameter are favourable to chaotic behaviour of the condensate. Using
the same set of parameters which in fact are those generally used in experiments, we obtain an-
alytically that the homoclinic chaos in the dynamics of the condensate is governed by the ratio
γ0

γ2
= 11.13. That is to say that the chaotic behaviour of the condensate occurs when the feeding
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(a) (b)

Figure 56: Poincaré sections of homoclinic bifurcations deriving from eq.(69) in parameter space
(γ1, γ0) (a) The point with components (γ1 = 0.005, γ0 = 0.02) inside the unstable region (b) The
point with components (γ1 = 0.1, γ0 = 0.02) inside the stable region. The other parameters used
are: υ = 0.0001, α = 0, β = 1, ε = 0.01, g0 = −0.75, g1 = 0.1, m = 0.5, V0 = 2, γ2 = 10−3. The
initial conditions taken at the stable fixed point (R = R′1=1.316979712, dR/dτ = 0)
.

parameter is about one order of magnitude larger than the thee-body recombination parameter.
This result is in perfect accord with their findings. However, our study reveals a certain dis-
agreement with the above-mentioned references. We observe that weak values of the feeding
parameter do not necessary imply regular oscillations, and large values of the feeding parame-
ter do not necessary imply erratic oscillations. In the optical lattices potential, the depth of the
trap potential plays a key role in the chaotic dynamics of the condensate. That can be viewed on
figures 12(a) and 14(a), where for weak values of the feeding parameter, to be inside or outside of
the instability region depends of values of the depth and the variable shape of the optical lattice.
Numerically that is also verified, as one can see on the bifurcation diagrams plotted in Fig.54. In
Fig.54(a) and Fig.54(c), one realizes that for the optical depth V0 taking the value 2 (per unit of
recoil energy), the dynamics of the condensate is chaotic for weak values of parameter related
to atomic feeding while in Fig.54(b), one realizes that for weak values of the atomic feeding pa-
rameter and for weak values of the optical depth (V0 = 0.02), the dynamics of the condensate
is regular. The depth and the variable shape of the optical lattice play a crucial role in the dy-
namical behaviour of the condensate. One can understand the choice of the optical lattice on
the form of the Jacobi sine function used in this thesis, choice which give the possibility to the
experimentalist to change the geometry of the optical lattice, thus allowing the control of chaos.

III.3.2.2. Bifurcation responses of heteroclinic orbits

The theoretical condition for the apparition of the heteroclinic chaos deriving from eq.(133) pro-
vides large regions of instability when we are in parameter space (γi, δ) with i=0,1,2, as one can
see through the figure 14. In fact, this result is not surprising, because the heteroclinic orbits
connecting unstable fixed points will be necessarily unstable. Once more, as in the case of ho-
moclinic bifurcations, one observes that the stable dynamics of the condensate is obtained with
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the very small values of the optical depth V0. Taking as initial conditions the unstable fixed
point (−R′

2, 0) or (+R
′
2, 0), the same program used to plot the homoclinic bifurcation diagrams

diverges, probably because the double well φ6 potential is unbounded at these points. Fig.15
exhibits in parameter space (γi, γj) with i 6= j, the regions of instability, which appear some-
times like an island of points when the feeding parameter and the dipolar relaxation parameters
vary. This result has been previously observed in Fig.13(c) in the case of homoclinic bifurca-
tions and can be interpreted as crisis, collapse and growth-collapse cycles in the dynamics of the
condensate.

III.4 Conclusion

A comparative study between analytical and numerical investigations is made. As relevant re-
sults, the depth and the parameter shape of the optical lattice always enhance the instability and
chaos in the dynamics of condensed atoms while its velocity annihilates the chaotic behaviour
of the condensate with repulsive two-body and attractive three-body interactions, and enhances
the dynamical behaviour of a condensate with attractive two-body and repulsive three-body
interactions. It comes from this study that the transition route to chaos is the period-doubling
scenario in the case of a condensate with repulsive two-body and attractive three-body elastic
collisions, and the quasi-periodicity for a condensate with attractive two-body and repulsive
three-body elastic collisions. Moreover, the study reveals that the weak values of depth and pa-
rameter shape of the optical lattice are favourable to regular oscillations and these parameters
are good candidates for chaos control in the dynamical behaviour of condensed atoms. When
they are used as control parameters, the bifurcation points which represents the instability points
leading to chaos describe the Feigenbaum numbers. This result can help in the control of chaos in
the dynamical behaviour of the condensate. It also turn out from this study that, the chaotic be-
haviour of a condensate with attractive two-body and repulsive three-body interactions between
atoms moreover subjected to inelastic collisions in the framework of homoclinic bifurcations oc-
curs when the feeding parameter is about one order of magnitude larger than the parameter
related to thee-body inelastic collisions.
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GENERAL CONCLUSION AND
FUTURES WORKS

Main results

This thesis deals with the study of global bifurcations and transitions routes to chaos in the dy-
namics of a Bose-Einstein condensate with elastic three-body collisions between atoms taken
into account. Moreover, the condensed atoms subjected to inelastic collisions are loaded into a
moving optical Fourier-synthesized lattice.
Firstly, we consider the dynamics of such a condensate without inelastic collisions. Seeking
the wave function of the condensate on the form of Bloch-like waves, the amplitude equation
obtained is a second order nonlinear differential equation. Subsequently, this differential equa-
tion is written as a first order system and the Melnikov method applied on it. The Melnikov
function(s) is(are) derived, and the condition for the occurrence of horseshoe chaos is deter-
mined. The threshold function characterizing the onset of chaos is plotted versus each physical
parameter, and the critical value of the control parameter determined. The numerical simula-
tions (Bifurcation diagrams, Poincaré sections, Lyapunov exponents, phase portraits and basins
of attraction) are subsequently performed to verify not only the reliability of analytical results,
but mainly the transition route to chaos for each physical parameter.
Secondly, taking into account some inelastic processes(linear feeding, dipolar relaxation and
three-body recombination) in the dynamics of the condensate, we are interested in finding out
how parameters related to these inelastic collisions act on the dynamical behaviour of the con-
densate, and mainly how they can be used to control the chaos therein. Once again, seeking
the wave function of the condensate on the form of Bloch-like waves, the amplitude equation
obtained is an integro-differential equation which is subsequently rewritten in the form of a
first order system to determine the Melnikov function(s) for homoclinic or both homoclinic and
heteroclinic orbits. The condition(s) for the occurrence of chaos is(are) derived, and effects of
different physical parameters on the appearance of chaotic oscillations are studied analytically.
Different regions of instability are found and plotted in different parameter space.
Let’s summarize our analytical and numerical study by answering the five questions underlined
in the outline of this thesis.
Concerning the first question, it comes from the study that the depth V0 and the shape param-
eter m of the optical lattice always enhance a chaotic behaviour of such condensates. To build
an optical lattice with weak values of these parameters is favourable to regular oscillations of
condensed atoms. Intuitively this result is surprising, because we expected from optical lattices
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with large depths regulars oscillations, due to the fact that bosonic particles need a lot of energy
to escape the potential barrier. Undoubtedly, the explanation of that is the existence of the non-
linearity in the equation modeling the dynamics of the condensate.
On the other hand, the velocity of the optical lattice υ reduces the chaotic behaviour of the con-
densate in the case of a positive scattering length and a negative strength of three-body elastic
collisions, and enhances the chaotic behaviour of a condensate with a negative scattering length
and a positive strength of three-body elastic collisions. Thus, for such a condensate with a pos-
itive scattering length, the numerical simulations reveal that a fixed optical lattice or an optical
lattice moving very slowly is favourable to a chaotic behaviour of condensed atoms, and the
regular oscillations are obtained for an optical lattice moving very rapidly. One can understand
the choice of a moving optical lattice used in this thesis. Furthermore, the study reveals that
the repulsive three-body interactions always destabilize the dynamics of a condensate with an
attractive two-body interaction, while under certain conditions, an attractive three-body interac-
tions can help to stabilize the dynamics of a condensate with a repulsive two-body interaction.
Let’s continue with the second question. In the case of such a condensate with inelastic colli-
sions neglected, the numerical simulations through the bifurcation diagrams, Poincaré sections,
and phase portraits reveal that the transition route to chaos is the period-doubling scenario for a
condensate with repulsive two-body and attractive three-body elastic collisions, and the quasi-
periodicity( Torus-doubling, Ruelle-Takens scenario, Torus breakdown, sudden chaos) via Hopf
bifurcations for a condensate with attractive two-body and repulsive three-body elastic colli-
sions. Moreover, in the case of period-doubling cascades leading to chaotic oscillations, the bi-
furcation points obey the Feigenbaum formula about the period-doubling process(Feigenbaum
numbers), indicating once again the universality of chaos in this physical system.
The spatiotemporal evolutions of the condensate in the case of stable dynamics( before the
chaotic regime characterized by the positive values of largest Lyapunov exponent) allow us
to answer the third question. In the case of period-doubling bifurcations leading to chaotic
oscillations(a condensate with repulsive two-body and attractive three-body interactions), the
spatiotemporal evolutions of the condensate before the bifurcation point leading to homoclinic
chaos depicted in figure Fig.(21)(a-b-c) show that the real amplitude of the condensate is vir-
tually constant for a long range of the spatiotemporal variable. The condensate being assumed
dissipative, intuitively one understands a certain balance between the dissipation and nonlinear-
ities. It is well known that this property is a signature of solitary waves. Mainly, for weak values
of optical depth and optical shape parameter, one has solitonic solutions as bright solitons and
black or gray solitons. On the other hand, in the case of quasi-periodicity as transition route to
homoclinic chaos(a condensate with attractive two-body and repulsive three-body interactions),
the spatiotemporal evolution of condensed atoms before the bifurcation point leading to chaos
depicted in figure Fig.(38)(d-e) show the solitonic solutions of eq.(41). One recognizes on these
figures, the envelope solitons. In addition, it is interesting to note that bright solitons can be ob-
tained for such a condensate with a scattering length as well positive as negative. That is clearly
visible on figures Fig.(5)(a) and Fig.(10)(a) which present bright solitons in the unperturbed sys-
tem eq.(43) for positive and negative values of the scattering length.
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For the fourth question, the analytical study reveals that for a fixed number of atoms in the
condensate, the attractive two-body and repulsive three-body elastic collisions tend to increase
the density of the traveling wave and increase the spatiotemporal extension of the condensate,
while the repulsive two-body and attractive three-body collisions tend to increase the density
and decrease the spatiotemporal extension of the condensate. Furthermore, the atomic feeding
parameter and parameters related to two-and three-body inelastic collisions must be in the same
order for the occurrence of homoclinic chaos in the case of a condensate with repulsive two-
body and attractive three-body elastic collisions between atoms. In the case of a condensate with
attractive two-body and repulsive three-body elastic collisions between atoms, the homoclinic
chaos occurs when the feeding parameter is about one order of magnitude larger than the thee-
body recombination factor. This result was obtained in other references in which the condensate
was studied by a variational approach, and the condensed atoms trapped by a harmonic poten-
tial.
The last question devoted to the control of chaos in the dynamical behaviour of such a conden-
sate finds answer in the different parts of this thesis. Firstly, in the case of a condensate with
repulsive two-body and attractive three-body elastic collisions between atoms, the depth and
the shape parameter of the optical lattice are good parameters for the control of chaos, because
when they are used as control parameters, the different points of instability which represent
in fact the bifurcation points gradually obtained, are given by the Feigenbaum formula in the
period-doubling phenomenon. That can allow the control of chaos in the dynamics of such a
condensate. Here resides the advantage in the use of an optical lattice, and mainly the type of
trap potential used in this thesis, the opportunity to the experimentalist to change the geometry
of the optical lattice by varying the intensity of Laser beams, or the shape parameter of the opti-
cal lattice to control the chaotic behaviour of the condensate.
It is well known today through the Feshbach resonance techniques that one has the ability to con-
trol the scattering length, varying it from positive to negative values, as it was shown recently in
the Bose-Einstein condensation of 85Rb. Our study reveals that the behaviour of the condensate
depends on the sign of the scattering length when the velocity of the optical lattice is used as
control parameter. From chaotic oscillations for weak values of velocity of the optical lattice in
the case of a condensate with a positive scattering length, the dynamics of the condensate can
become regular by reversing the sign of this scattering length through the Feshbach resonance
techniques. Coupling thus the velocity of the optical lattice and the Feshbach resonance tech-
niques, can allow the control of chaos in the dynamics of the condensate.
In parameter space (γi, δ = V0b0(m)), we observe that for a fixed value of depth of the optical lat-
tice taken inside the zone of instability, the regular oscillations of the condensate can be obtained
by increasing gradually the parameters related to inelastic collisions. With numerical simula-
tions(bifurcation diagrams) we observe that from chaotic dynamics for large values of optical
depth, as the parameters related to losses evolve, the condensate undergoes a cascade of period-
doubling bifurcations culminating finally to regular oscillations. Thus, coupling analytical and
numerical studies may help to control the homoclinic chaos in the dynamics of the condensate.
Moreover, we realize that with optical lattices trap potential, weak values of atomic feeding do
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not imply necessary regular oscillations, and large values of this parameter do not imply neces-
sary a chaotic behaviour of the condensate, as it is well known with a harmonic magnetic trap
potential. The depth of the optical lattice plays a key role in the control of chaos in the dynamics
of the condensate. In addition, we have discovered that in parameter space (γi, γj), if parameters
related to inelastic processes are in the same order then the chaotic behaviour of the condensate
is observed. That can be used to control the chaotic behaviour of the condensate.
Secondly, in the framework of the study of a condensate with an attractive two-body and a re-
pulsive three-body interactions between bosonic atoms subjected to some inelastic processes as
mentioned above, we obtain theoretically that the chaotic behaviour of the condensate in the case
of homoclinic bifurcations occurs when the feeding parameter is about one order of magnitude
larger than the thee-body recombination parameter. That can be helpful in controlling chaos in
the dynamics of the condensate.

Perspectives

The study has revealed that large values of depth and shape parameter of the optical
lattice are favourable to chaotic oscillations of condensed atoms. In the framework of
the atom Laser project for example, coherence in the beam of atoms compels the sup-
pression of chaos in the dynamics of condensed atoms. A further work that could be
based on this thesis is the suppression of chaos by a periodic force, according to the
OGY method.
Moreover, the study has revealed that the behaviour of the condensate depends of the
sign of the scattering length when the velocity of the optical lattice is used as control pa-
rameter. From chaotic oscillations for weak values of velocity of the optical lattice in the
case of a condensate with a positive scattering length, the dynamics of the condensate
can become regular by reversing the sign of this scattering length. An-other work based
on this thesis which could be made is the control of chaos in the dynamical behaviour
of condensed atoms with the Feshbach resonance techniques.
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Appendix A: Integration of T

T =

∫ +τc

−τc

X0(τ)

R3
0(τ)

(∫ τ

−τc

(
γ0R

2
0(τ)− γ1R

4
0(τ)− γ2R

6
0(τ)

)
dτ

)2

dτ. (A.1)

Let’s evaluate the different terms of T .
Directly via Maple software we obtain

χ1 =

∫ τ

−τc
R2

0(τ)dτ (A.2)
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2a
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
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2

)

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
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2

)



 .

χ2 =
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R4
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=
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
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)

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2

)




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g2
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(
sinh (aτ)

−1 + σ′ cosh (aτ)
+

sinh (aτc)
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)
. (A.3)

χ3 =

∫ τ

−τc
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0(τ)dτ

=
a5(σ′2 + 2)
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
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
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
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
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sinh (aτc)
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+
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∫ τ

−τc

(
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2
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0(τ)− γ2R6
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dτ = γ0χ1 − γ1χ2 − γ2χ3

= K1

[
arctan

(√
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(A.5)

Where K1, K2, and K3 are given by




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′
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′
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(A.6)

X0(τ)

R3
0(τ)

= −g0σ
′

2a
sinh(aτ) is an odd function. Hence, let us expand the square of the right-hand

side of eq.(A.5). Retaining only the odd part of the expansion, we obtain
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

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With K4, K5 and K6 given by




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(A.8)
Thus, the expression of T can be rewritten as

T = −g0σ
′

2a
(K4W1 +K5W2 +K6W3), (A.9)

with
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
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W2 =

∫ +τc

−τc
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, (A.11)

and

W3 =

∫ +τc
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With the integration by part method through the Maple software, we obtain
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√
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With the remark that
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With the remark that
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,

W3 can be performed directly with the Maple software. Thus, we obtain after some algebraic ma-
nipulations
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Appendix B: Integration of Σ

Σ =

∫ +τc

−τc

Xhom(τ)

R3
hom(τ)

(∫ τ

−τc

(
γ0R

2
hom(τ)− γ1R

4
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6
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)
dτ

)2

dτ. (B.1)

Let’s evaluate each term of Σ.
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A3 =
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Inserting these integrals into the expression of Σ defined in eq.(B.1), one obtains

∫ τ

−τc

(
γ0R

2
hom(τ)− γ1R

4
hom(τ)− γ2R

6
hom(τ)

)
dτ = γ0A1 − γ1A2 − γ2A3

= ∆1

[
arc tanh

(√
1− σ′
1 + σ′

tanh
(aτ

2

))
+ arc tanh

(√
1− σ′
1 + σ′

tanh
(aτc

2

))]

+∆2

[
sinh(aτ)

1 + σ′ cosh(aτ)
+

sinh(aτc)

1 + σ′ cosh(aτc)

]
+ ∆3

[
sinh(aτ)

(1 + σ′ cosh(aτ))2
+

sinh(aτc)

(1 + σ′ cosh(aτc))2

]
. (B.5)

∆1, ∆2 and ∆3 are given by





∆1 = − 2 γ0a√
1− σ′2g0

− 2 γ1a
3

(
1− σ′2

)3/2
g2

0

+
γ2a

5
(
σ′2 + 2

)

(
1− σ′2

)5/2
g3

0

∆2 =
γ1a

3σ′

g2
0 (1− σ′2)

− 3γ2a
5σ′

2g3
0 (1− σ′2)2

∆3 = − γ2a
5σ′

2g3
0 (1− σ′2)

.

(B.6)
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It comes from eq.(B.7) that the first part of the integrand of Σ is an odd function. The other part,
square of eq.(B.5) must be an odd function also, to avoid Σ being null. Hence, we truncate the
square of the right-hand side of eq.(B.5), and we retain only the odd part of the expansion. Thus,
one obtains
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The integration of eq.(B.8) between −τc and +τc leads to Σ expressed as

Σ =
g0σ
′

2a
(∆4Σ1 + ∆5Σ2 + ∆6Σ3) , (B.10)

where Σ1, Σ2 and Σ3 represent the following integrals
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These integrals can be carried out with the integration by parts method in the Maple software
environment. After some algebraic manipulations, we obtain
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Appendix C: Integration of F

F =

∫ +τc
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Let’s calculate each term of F.
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The symbol × denotes the multiplication as an arithmetic operation.
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B3 =

∫ τ

−τc
R6
het(τ)dτ = R′62 (τ + τc) +

3(Γ′ − 1)(Γ′ + 2)R′62
2ω′(Γ′ + 1)2

(
sinh(ω′τ)

Γ′ − cosh(ω′τ)
+

sinh(ω′τc)

Γ′ − cosh(ω′τc)

)

−(Γ′ − 1)2R′62
2ω′(Γ′ + 1)

(
sinh(ω′τ)

(Γ′ − cosh(ω′τ))2
+

sinh(ω′τc)

(Γ′ − cosh(ω′τc))2

)
+

(2Γ′2 + 6Γ′ + 7) (Γ′ − 1)R′62
ω′(Γ′ + 1)2

√
Γ′2 − 1

×

arc tanh



√

Γ′ + 1

Γ′ − 1
tanh

(
ω′ τ

2

)
+ arc tanh



√

Γ′ + 1

Γ′ − 1
tanh

(
ω′ τc

2

)


 . (C.4)

∫ τ

−τc

(
γ0R

2
het − γ1R

4
het − γ2R

6
het

)
dτ = γ0B1 − γ1B2 − γ2B3

= Z1


arc tanh



√

Γ′ + 1

Γ′ − 1
tanh

(
ω′ τ

2

)
+ arc tanh



√

Γ′ + 1

Γ′ − 1
tanh

(
ω′ τc

2

)


+ Z2(τ + τc)

+Z3

(
sinh(ω′τ)

Γ′ − cosh(ω′τ)
+

sinh(ω′τc)

Γ′ − cosh(ω′τc)

)
+ Z4

(
sinh(ω′τ)

(Γ′ − cosh(ω′τ))2
+

sinh(ω′τc)

(Γ′ − cosh(ω′τc))2

)
. (C.5)

The quantities Z1, Z2, Z3, and Z4 mentioned above are given by





Z1 = −2 γ0R
′2
2 (1− Γ′)

ω′
√

Γ′2 − 1
− 2 γ1R

′4
2 (Γ′ − 1) (Γ′ + 2)

ω′ (Γ′ + 1)
√

Γ′2 − 1
−
γ2R

′6
2

(
2 Γ′2 + 6 Γ′ + 7

)
(Γ′ − 1)

ω′ (Γ′ + 1)2
√

Γ′2 − 1

Z2 = γ0R
′2
2 − γ1R

′4
2 − γ2R

′6
2

Z3 = −γ1 (Γ′ − 1)R′42
ω′ (Γ′ + 1)

− 3γ2 (Γ′ − 1) (Γ′ + 2)R′62
2ω′ (Γ′ + 1)2

Z4 =
γ2R

′6
2 (Γ′ − 1)2

2ω′ (Γ′ + 1)
.

(C.6)

The last term of the integrand of F is given by the following expression

Xhet(τ)

R3
het(τ)

=
(1− Γ′)ω′ sinh (ω′ τ)

2R′22 (−1 + cosh (ω′ τ))2 . (C.7)

It is obvious to see that this quotient of functions is an odd function, and moreover does not exist
for τ = 0. Being one part of the integrand of F, the other part given by the square of eq.(C.5)
must also be an odd function. Hence, taking the square of the right-hand side of eq.(C.5), and
truncating the result only to odd functions of τ , the integrand of F becomes

Xhet(τ)

R3
het(τ)

(∫ τ

−τc

(
γ0R

2
het(τ)− γ1R

4
het(τ)− γ2R

6
het(τ)

)
dτ

)2

=

(1− Γ′)ω′

2R′22


 Z5 sinh(ω′τ)

(−1 + cosh (ω′ τ))2arc tanh



√

Γ′ + 1

Γ′ − 1
tanh

(
ω′ τ

2

)
+

Z6τ sinh(ω′τ)

(−1 + cosh (ω′ τ))2

+
Z7 sinh2(ω′τ)

(−1 + cosh (ω′ τ))2 (Γ′ − cosh(ω′τ))
+

Z8 sinh2(ω′τ)

(−1 + cosh (ω′ τ))2 (Γ′ − cosh(ω′τ))2

]
, (C.8)
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with the quantities Z5, Z6, Z7, Z8 given by the following expressions



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2
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2
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+
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(Γ′ − cosh (ω′ τc))
2
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ω′ τc
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(Γ′ − cosh (ω′ τc))
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(C.9)

It is clearly visible in eq.(C.8) that the integrand of F diverges in the vicinity of τ = 0. But, in
terms of area, this integral F can be approximated, by avoiding the vicinity of τ = 0. Thus, the
spatiotemporal variable τ will belong to the interval ]−τc,−τi[ ∪ ]τi, τc[, where the value of τi
is very close to zero. Hence, carrying out the integration of the right-hand side of eq.(C.8), the
approximate expression of F is given by

F =
ω′ (1− Γ′)

R′22
(Z5F1 + Z6F2 + Z7F3 + Z8F4) , (C.10)

where F1, F2, F3 and F4 denote the following integrals




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sinh(ω′τ)
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τi

τ sinh(ω′τ)dτ

(−1 + cosh (ω′ τ))2

F3 =
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τi

sinh2(ω′τ)dτ

(−1 + cosh (ω′ τ))2 (Γ′ − cosh(ω′τ))

F4 =

∫ τc

τi

sinh2(ω′τ)dτ
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(C.11)

The integralsF1 andF2 are performed by the integration by parts method, which lead to integrals
able to be carried out with Maple software. On the contrary, the integrals F3 and F4 are directly
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obtained by Maple software. The outcome of that is given by


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(C.12)
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[18] J. Söding, D. Guéry-Odelin, P. Desbiolles, F. Chevy, H. Inamori, J. Dalibard, Three-body
decay of a rubidium Bose-Einstein condensate, Appl.Phys B, 69, 257-261 (1999).

[19] F.Kh. Abdullaev, A. Gammal, Lauro Tomio and T. Frederico, Stability of trapped Bose-
Einstein condensates, Phys.Rev A, 63, 043604(1-14) (2001).

[20] A. Gammal, T. Frederico, Lauro Tomio, F.Kh. Abdullaev, Stability analysis of the D-
dimensional nonlinear Schrödinger equation with trap and two-and three-body interac-
tions, Physics Letters A, 267, 305-311 (2000).

[21] A. Gammal, T. Frederico, Lauro Tomio and Ph. Chomaz, Atomic Bose-Einstein condensa-
tion with three-body interactions and collective excitations, J.Phys.B: At.Mol.Opt.Phys, 33,
4053-4067 (2000).

[22] L. Tomio, V.S. Filho, A. Gammal and T. Frederico, Stability of atomic condensed systems
with attractive two-body interactions, Laser Physics, 13, 582-586 (2003).

[23] L. Tomio, V.S. Filho, A. Gammal and T. Frederico, Dynamics of Bose-Einstein condensed
atoms with attractive two-body interaction and three-body dissipation, Nuclear Physics
A, 684, 681-683 (2001).

[24] V.S. Filho, L. Tomio, A. Gammal, T. Frederico, Dynamical mean-field study of strongly
interacting BoseEinstein condensate, Physics Letters A, 325 , 420-425 (2004).

[25] V.S. Filho, T. Frederico, A. Gammal and L. Tomio, Stability of the trapped nonconservative
Gross-Pitaevskii equation with attractive two-body interaction, Phys.Rev E, 66, 036225(1-
6) (2002).

[26] V.S. Filho, F.Kh. Abdullaev, A. Gammal and L. Tomio, Autosolitons in trapped Bose-
Einstein condensates with two-and three-body inelastic processes, Phy.Rev A, 63,
053603(1-7), (2001).

[27] R. Chacón, D. Bote and R. Carretero-González, Controlling chaos of a Bose-Einstein con-
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[93] M. Krämer, L. Pitaevskii and S. Stringari, Macroscopic dynamics of a trapped Bose-Einstein
condensate in the presence of a 1D and 2D optical lattice, Phys.Rev.Lett, 88, 180404(1-4)
(2002).

[94] F. Ferlaino, P. Maddaloni, S. Burger, F.S. Cataliotti, C. Fort, M. Modugno, and M. Inguscio,
Dynamics of a Bose-Einstein condensate at finite temperature in an atom-optical coherence
filter, Phys.Rev A, 66, 011604(1-4) (2002).
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Abstract. We investigate the dynamics of a Bose-Einstein condensate with attractive two-body and repul-
sive three-body interactions between atoms trapped into a moving optical lattice and subjected to some
inelastic processes (a linear atomic feeding and two dissipative terms related to dipolar relaxation and
three-body recombination). We are interested in finding out how the nonconservative terms mentioned
above act on the dynamical behaviour of the condensate, and how they can be used in the control of
possible chaotic dynamics. Seeking the wave function of condensate on the form of Bloch waves, we notice
that the real amplitude of the condensate is governed by an integro-differential equation. As theoretical
tool of prediction of homoclinic and heteroclinic chaos, we use the Melnikov method, which provides two
Melnikov functions related to homoclinic and heteroclinic bifurcations. Applying the Melnikov criterion,
some regions of instability are plotted in the parameter space and reveal complex dynamics (solitonic stable
solutions, weak and strong instabilities leading to collapse, growth-collapse cycles and finally to chaotic os-
cillations). It comes from some parameter space that coupling the optical intensity and parameters related
to atomic feeding and atomic losses (dissipations) as control parameters can help to reduce or annihilate
chaotic behaviours of the condensate. Moreover, the theoretical study reveals that there is a certain ratio
between the atomic feeding parameter and the parameters related to the dissipation for the occurrence of
chaotic oscillations in the dynamics of condensate. The theoretical predictions are verified by numerical
simulations (Poincaré sections), and there is a certain reliability of our analytical treatment.

1 Introduction

Based on ideas of Bose about the quantum statistics of photons [1], the Bose-Einstein condensation (BEC) predicted
by Einstein in 1925 [2] is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute
zero. After the discovery of the superfluidity of 4He below the transition temperature of 2.17K by Kapitsa [3], Allen
and Misener [4] in 1938, London [5] suggested that this new phase of matter might have some connection with the
phenomenon of Bose-Einstein condensation. Thenceforth, to understand the link between those two phenomena, the
quest of temperatures very close to absolute zero became a new challenge in modern physics. The achievement of
this challenge gave rise to the first observation of the Bose-Einstein condensation of 87Rb atoms around 0.5 nK in
1995 [6]. Later on, at very low temperatures, the Bose-Einstein condensation of following atoms: 23Na, 7Li, 1H, 4He,
85Rb, 41K and 133Cs was achieved. Thus, a BEC can be viewed as the coldest place in the universe. Rewarded by the
Nobel prize in 2001 [7], this technological prowess has enabled numerous fascinating experiments in which fundamental
quantum mechanics is studied in a macroscopic scale, mainly when the bosonic atoms are trapped in optical lattices,
as illustrated in the following references. In [8] the superfluidity of Bose-Einstein condensates in optical lattices is
investigated and the authors have shown that apart from the usual Landau instability, which occurs when a BEC
flows faster than the speed of sound, the BEC can also suffer a dynamical instability, resulting in period-doubling and
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other sorts of symmetry breaking of the system. The authors of ref. [9] have shown that BEC in lattices can be used
to study nonlinear dynamics of three-dimensional systems. In [10], the stability of superfluid currents in a system of
ultracold bosons is studied using a moving optical lattice and the authors have proven that, superfluid currents in
a very weak lattice become unstable when their momentum exceeds 0.5 recoil momentum. The authors of [11] have
studied the magnetic solitons in spinor Bose-Einstein condensates confined in a one-dimensional optical lattice by the
Holstein-Primakoff transformation method. They arrived at the conclusion that, due to the long-range light-induced
and static magnetic dipole-dipole interactions, there exist different types of magnetic solitary excitations in different
parameter regions.

Recently, the dynamics of a Bose-Einstein condensate subjected to some inelastic processes (linear feeding from
thermal cloud and two dissipative terms related to dipolar relaxation and three-body collisions of atoms) has been
investigated. The authors of refs. [12–15] have studied the stability of a Bose-Einstein condensate with some inelastic
processes which appear in the equation modeling the condensate as an addition of an imaginary part in the Gross-
Pitaesvkii formalism, and the condensate is now governed by the complex Ginzburg-Landau equation (GLE). As
results, they have obtained through numerical simulations that the small values of feeding parameter or the small
values of the ratio between the feeding parameter and the three-body recombination parameter are favourable to
stable dynamics of condensate whereas under the large values of ratio between the feeding parameter and dissipative
parameters, the system becomes very unstable. In these studies, the authors have considered the bosonic atoms
trapped into a harmonic magnetic field, and the variational approach was the tool used in the treatment. Motivated
by their results obtained numerically, we are excited to know if the nature of the trap potential don’t affects the
relevant results of their study. Hence, we consider the same mean-field approximation, but with bosonic atoms trapped
into a moving optical lattice. Instead of the variational approach, the Melnikov method, already used in our earlier
work [16] in the case of repulsive two-and attractive three-body interactions between atoms is the method used in the
theoretical treatment. The advantage of this approach, although it implies complicated and sometimes nonintegrable
integrals, is the possibility to express analytically the condition of occurrence of chaotic dynamics of condensate. Thus,
the connections between the atomic feeding parameter and parameters related to the dissipation can be deduced
analytically, and verified numerically through the bifurcations diagrams and Poincaré sections.

We organize the study as follows: We first present the extended (GP) formalism that we have considered, and we
establish the integro-differential equation governing the particle number density of condensate in sect. 2. Section 3
is devoted to fixed points of unperturbed system. The Melnikov analysis is used in sect. 4 to predict theoretically
the conditions of occurrence of chaos in the framework of homoclinic and heteroclinic bifurcations. We exhibit our
numerical results and discussions in sect. 5, and we conclude the study in sect. 6.

2 Extended nonconservative Gross-Pitaevskii equation

At low enough temperatures, the mean-field approximation usually used to describe the dynamics of a Bose-Einstein
condensate (BEC) of dilute bosonic gases is a nonlinear Shrödinger equation (NLSE), the so-called Gross-Piteavskii
equation (GPE). In this formalism, the atom-atom interactions are restricted only to the elastic two-body interaction.
In ref. [17], the elastic three-body interaction in the dynamics of a BEC has been established theoretically. Although the
experimental proof of that elastic three-body interaction remain an open question, the repulsive three-body interaction
was introduced in the GP formalism [12–15,18–21] to stabilize the dynamics of condensed atoms with a negative s-
wave atom-atom scattering length which is unstable for a large number of atoms. The two kinds of inelastic processes
which can contribute significantly to the decay of a Bose-Einstein condensate are the three-body recombination and
the two-body dipolar relaxation. These inelastic collisions between atoms, which must be viewed as a dissipation
phenomenon in the dynamics of a condensate have been proved experimentally in ref. [22]. The inelastic collisions
between atoms (atomic losses) eject the atoms from the confining trap, and to keep constant the number of atoms,
a atomic pumping process is necessary, taking atoms from uncondensed state and injecting them into the condensate
(atomic feeding). In what follows, we consider a thin cigar-shaped condensate resulting from a 3D BEC with a strong
radial confinement, so that the transversal dynamics can be neglected. Moreover, we take into account the irreversible
terms related to losses and to the atomic feeding mentioned above. The bosonic atoms are trapped into a particular
moving optical lattice with the possibility to control its depth. Thus, the thin cigar-shaped condensate is governed by
the following quasi-one-dimensional (1D) time-dependent Gross-Pitaevskii-Ginzburg equation (GPGE),

ih̄
∂ψ

∂t
= − h̄2

2ma

∂2ψ

∂x2
+
(
Ṽtrap + g̃0|ψ|2 + g̃1|ψ|4

)
ψ + i

(
γ̃0 − γ̃1|ψ|2 − γ̃2|ψ|4

)
ψ, (1)

where ψ(x; t) is the wave function of condensate, ξ = x+υLt is the space-time variable, υL = ∆f
2k the velocity of traveling

lattice, with Δf the frequency difference between the two Fourier-synthesized counter-propagating laser beams. k = 2π
λ

is the laser wave vector, ma is the atomic mass. The negative real number g̃0 = 4πh̄2as

ma
is the interatomic two-body



Eur. Phys. J. Plus (2017) 132: 117 Page 3 of 17

interaction strength, with as the s-wave scattering length. The positive real number g̃1 is the strength of the effective

three-body interactions. η = 2K(m)k
π , with K(m) the complete elliptic integral of first kind. Ṽtrap = Ṽ0sn

2(ηξ;m)
is the periodic moving optical lattice. The function sn(·;m) is the Jacobian sine elliptic function of parameter m
(0 ≤ m ≤ 1). The choice of this form of trap potential compared with the classical form generally used is that it will
be very helpful in experiments, due to the possibility to change (with the variable shape m) the depth of the optical
lattice.

γ̃0 represents the rate of pumping process. γ̃1 and γ̃2 are parameters related to atomic losses. In fact, γ̃1 and γ̃2 are,
respectively, related to dipolar relaxation and to the three-body recombination. The signs (−) in front of dissipation
parameters displayed in eq. (1) imply that γ̃0, γ̃1 and γ̃2 will be positive real numbers.

Due to fact that generally the optical lattices are periodic functions, that compels to seek the solutions of eq. (1)
on the form of Bloch waves [23,24],

ψ(x; t) = ϕ(ξ) exp[i(α̃x+ β̃t)], (2)

where ϕ(ξ) is a complex function modeling the amplitude of the traveling wave. The parameters α̃ and β̃ are two real
constants to be determined with boundary conditions on the wave function. Considering the case where the traveling
wave ϕ(ξ) has the same velocity with the elliptic optical lattice, let us insert eq. (2) into eq. (1). Rescaling ϕ by k

3
2 and

normalizing the space-time variable ξ by 2K(m)
π , we obtain the dimensionless ordinary differential equation, describing

the dynamic of the complex traveling wave amplitude ϕ(ξ) given by

d2ϕ

dτ2
−
[
α2 + β + V0sn

2

(
2K(m)τ

π
,m

)]
ϕ− g0|ϕ|2ϕ− g1|ϕ|4ϕ = i

[
−(υ + 2α)

dϕ

dτ
+

(
γ0 − γ1|ϕ|2 − γ2|ϕ|4

)
ϕ

]
, (3)

with τ = ηξ, α = α̃
k , β = h̄β̃

Er
, g0 = g̃0k

3

Er
= 8πask, g1 = g̃1k

6

Er
, γ0 = γ̃0

Er
, γ1 = γ̃1k

3

Er
, γ2 = γ̃2k

6

Er
, V0 = Ṽ0

Er
, υ = 2maυL

h̄k and

Er = h̄2k2

2ma
the recoil energy, which is a natural energy scale for neutral atoms in periodic light fields.

Considering R(τ) and θ(τ), respectively, as the real amplitude and the phase of the traveling wave ϕ(ξ), eq. (3)
can be rewritten in the form of a nonintegrable system as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

d2R

dτ2
−R

(
dθ

dτ

)2

− (α2 + β)R− g0R
3 − g1R

5 =

[
(υ + 2α)

dθ

dτ
+ V0sn

2

(
2K(m)τ

π
;m

)]
R

2
dR

dτ

dθ

dτ
+R

d2θ

dτ2
= − (υ + 2α)

dR

dτ
+ γ0R− γ1R

3 − γ2R
5.

(4)

Before applying the Melnikov method, it is worthwhile to uncouple the two variables of system (4). Hence, we multiply
the second equation of system (4) by R(τ). Integrating the result between −∞ and τ yields

dθ

dτ
=

1

R2

∫ τ

−∞

(
γ0R

2(τ)− γ1R
4(τ)− γ2R

6(τ)
)
dτ −

(
υ + 2α

2

)
. (5)

The boundary conditions on the wave function due to fact that the wave amplitude must be null at τ = ±∞ leads to
∫ +∞

−∞

(
γ0R

2(τ)− γ1R
4(τ)− γ2R

6(τ)
)
dτ = 0. (6)

Equation (6) represents one constraint relation between parameters modeling nonconservative terms. Inserting eq. (5)
in the first equation of system (4), one obtains the following integro-differential equation governing the real amplitude
of the traveling wave:

d2R

dτ2
−
[
a2

4
+ V0p

( τ

2π
;m

)]
R− g0R

3 − g1R
5 =

1

R3(τ)

[∫ τ

−∞

(
γ0R

2(τ)− γ1R
4(τ)− γ2R

6(τ)
)
dτ

]2
, (7)

where the constant a is given by a2 = 4β − υ2 − 4αυ and p(x;m) = sn2(4K(m)x;m) the optical trap potential.
A periodic potential can be formed simply by overlapping two counter-propagating laser beams. The interference

between the two laser beams forms an optical standing wave which can trap the atoms. It is clearly shown in ref. [25]
that this Jacobian elliptic trap potential p(x;m) can be expanded in Fourier series to obtain a trigonometric form more
easy to use in calculations. The advantage of this trigonometric form is that its amplitude (the depth of optical lattice)
can be modified during possible experiments, by acting on the shape parameter m. Furthermore in this reference, it
is proven that there is not large difference between the full trap potential p(x;m) and its truncated Fourier expansion
of order n defined as

p(n)
( τ

2π
;m

)
=

n∑

j=1

bj−1 sin
2(jτ), (8)
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where the three first Fourier coefficients of this trap potential are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0(m) =
4π2q(1− q + q2 − q3 + q4)

m(K(m))2(1− q − q5 + q6)

b1(m) =
8π2q2(1 + q4)

m(K(m))2(1− q3 − q5 + q8)

b2(m) =
4π2q3

m(K(m))2(1− q3)2

(
1 +

2(1− q3)2

(1− q)(1− q5)

)
.

(9)

q(m) = exp(−πK(1−m)
K(m) ) and 0 ≤ m ≤ 1.

3 Fixed points and phase portrait for unperturbed system

We assume that the optical lattice potential is small amplitude. Hence, we introduce the following scale transforma-
tions: V0 → ǫV0. The nonconservative terms are smaller than the optical lattice depth. To bring the two terms of
perturbation closer (V0 and γi) with i = 0, 1, 2, we assume for parameters related to inelastic processes the following
scale transformations: γ0 → √

ǫγ0, γ1 → √
ǫγ1 and γ2 → √

ǫγ2. Thus, the integro-differential equation (7) can be
written as a first-order system:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ṙ = X

Ẋ =
a2

4
R+ g0R

3 + g1R
5 + ǫ

[
V0

2
(b0 + b1 + b2 − b0 cos(2τ)− b1 cos(4τ)− b2 cos(6τ))R

+
1

R3(τ)

(∫ τ

−∞

(
γ0R

2(τ)− γ1R
4(τ)− γ2R

6(τ)
)
dτ

)2 ]
.

(10)

The parameter ǫ (ǫ ≪ 1) characterizes the smallness of the lattice potential depth and nonconservative terms. One
can straightforwardly see that when ǫ ≪ 1, then

√
ǫ is bigger than ǫ. Thus, to multiply the small values of parameters

modeling the atomic feeding and dissipations with
√
ǫ will bring nearer the two terms of perturbations, that to avoid

the inelastic processes to be negligible.
For the unperturbed system, i.e., when ǫ = 0, eq. (10) is an integrable Hamiltonian system and can be rewritten

as ⎧
⎨
⎩

Ṙ = X

Ẋ = −dV (R)

dR
,

(11)

where V (R) represents the potential energy of system and can be straightforwardly deduced from eq. (10). In this
study, we work on the hypothesis g0 < 0 and g1 > 0. Under such conditions, the potential energy V (R) is an unbounded
two-well φ6 potential, and the integrable system eq. (11) exhibits five equilibrium points (see fig. 1). This unperturbed
system can exhibit homoclinc orbits only or both homoclinic and heteroclinics orbits. In our previous work [16], we
have studied the case of homoclinic orbits only, and now we focus our attention on the case of the coexistence of
homoclinic and heteroclinic orbits, to see how the presence of heteroclinic orbits act on the dynamic of condensate. In
other words, we reverse the signs of the interatomic two-and three-body interaction strength. It is well known, today,
through Feshbach resonance techniques, that the s-wave scattering length can vary from positive to negative values,
as shown in the Bose-Einstein condensation of 85Rb [26–28]. To fulfill the two conditions (five equilibrium points and
simultaneous existence of homoclinic and heteroclinic orbits) of potential energy, the parameters related to elastic two-
and three-body interactions must be linked as follows:

0 <
g1a

2

g20
<

3

4
. (12)

From the condition (12), deriving from the fact that the potential energy V (R) must intersect the R-axis five times,
the system (11) possesses three unstable hyperbolic fixed points at (0, 0), (−R2, 0) and (+R2, 0), and two stable
nonhyperbolic fixed points at (−R1, 0) and (+R1, 0). The three hyperbolic fixed points are saddle points whereas

the two nonhyperbolic fixed points are centres. R1 and R2 mentioned above, solution of dV (R)
dR = 0 are given by the
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Fig. 1. (a) A configuration of the unbounded φ6 potential with two wells. (b) Local bifurcation near the fixed points of the
corresponding potential. The other parameters used are: a = 2, g0 = −0.75, g1 = 0.1.

following expressions: ⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R1 =

√√√√− g0
2g1

(
1−

√
1− g1a

2

g20

)

R2 =

√√√√− g0
2g1

(
1 +

√
1− g1a

2

g20

)
.

(13)

4 Theoretical predictions of chaos: The Melnikov analysis

This section is devoted to theoretical predictions of occurrence of homoclinic and heteroclinic Smale’s horseshoe
chaos. The generalized Melnikov method (MM), first introduced by Melnikov [29] and developed by Wiggins [30–
34], consists in studying a system in which the unperturbed problem is an integrable Hamiltonian system having a
normally hyperbolic invariant set whose stable and unstable manifold intersect nontransversally. The Smale-Birkhoff
theorem states that a necessary condition for the occurrence of chaos is that the Melnikov function induced by the

perturbation should have simple zeros, i.e., M(τ0) = 0 and dM(τ0)
dτ0

�= 0 at τ = τ0. τ0 represents the cross-section time
of the Poincaré map.

According to the MM, the Melnikov function deriving from eq. (10) is given by

M±(τ0) =
V0

2
(b0 + b1 + b2)

∫ +∞

−∞
R0(τ)X0(τ)dτ − V0

2
b0

∫ +∞

−∞
cos(2τ + 2τ0)R0(τ)X0(τ)dτ

− V0

2
b1

∫ +∞

−∞
cos(4τ + 4τ0)R0(τ)X0(τ)dτ − V0

2
b2

∫ +∞

−∞
cos(6τ + 6τ0)R0(τ)X0(τ)dτ

+

∫ +∞

−∞

[
X0

R3
0

(∫ τ

−∞

(
γ0R

2
0 − γ1R

4
0 − γ2R

6
0

)
dτ

)2
]
dτ, (14)

where R0(τ) and X0(τ) represent the components of state vector in phase space and are solutions of eq. (11).
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Fig. 2. (a) The spatiotemporal evolution of the particle number density. (b) The first excited state of condensate, deduced
from unperturbed system eq. (11). The other parameters used are: a = 2, g0 = −0.75, g1 = 0.1.

4.1 Global homoclinic bifurcations

In this subsection, we investigate global bifurcations in the case of homoclinic orbits. The Hamiltonian system (11)
possesses a symmetric pair of homoclinic trajectories connecting the unstable point (R = 0, X = 0) of the potential
to itself. Recalling that the Hamiltonian of system (11) is constant on the homoclinic separatrix, and furthermore
observing that (R = 0, X = 0) belongs to this orbit, the components of state vector generating this separatrix are
given by ⎧

⎪⎪⎪⎨
⎪⎪⎪⎩

R±
hom(τ) = ± a√

−g0[1 + σ cosh(aτ)]

X±
hom(τ) = ± a2σ sinh(aτ)

2
√

−g0[1 + σ cosh(aτ)]3
,

(15)

with σ =
√

1− 4g1a2

3g2
0
. It comes from eq. (12) that 0 < σ < 1.

In eq. (15), the signs ± must be understood as follows: X−
hom corresponds to R+

hom and X+
hom corresponds to R−

hom.

Replacing, into eq. (14), R0(τ) by Rhom(τ) and X0(τ) by Xhom(τ), and carrying out the integration of the right-
hand side with the use of Maple software and the integrals table [35], we obtain after some calculations the following
homoclinic Melnikov function:

M±(τ0) =

[
b0(m) sin(2τ0) sin

(
2
a arc cosh

(
1
σ

))

sinh
(
2π
a

) +
2b1(m) sin(4τ0) sin

(
4
a arc cosh

(
1
σ

))

sinh
(
4π
a

)

+
3b2(m) sin(6τ0) sin

(
6
a arc cosh

(
1
σ

))

sinh
(
6π
a

)
]
×
(

πaV0

g0
√
1− σ2

)
+Σ. (16)

The quantity Σ defined as

Σ =

∫ +∞

−∞

Xhom

R3
hom

[∫ τ

−∞

(
γ0R

2
hom − γ1R

4
hom − γ2R

6
hom

)
dτ

]2
dτ, (17)

denoting the last integral of eq. (14) is evaluated with the remark that Rhom(τ) is practically null for ]−∞; τc[∪]τc; +∞[
(see fig. 2), where the symbol ∪ stands for the union operator. Therefore, Σ is evaluated taking the spatiotemporal
variable τ between −τc and τc. In fact, τc represents the value of τ for which R2

hom(τ), R
4
hom(τ) and R6

hom(τ) can be
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assumed close to zero, and its value depends on the set of parameters used. As example, taking the set of parameters as
those used to plot the particle number density of condensate for unperturbed system (11), when we solve R2

hom = 0.0001
we have as solution τ = 6.52. R4

hom = 0.0001 leads to τ = 4.22 and R6
hom = 0.0001 gives as solution τ = 3.45. Hence,

we give to τc the value 4 to our numerical simulations. After a rigorous calculations, the expression of Σ is given by

Σ =
g0σ

2a
(Δ4Σ1 +Δ5Σ2 +Δ6Σ3) . (18)

The expressions of unknown quantities appearing in eq. (18) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ1 =
2(σ cosh(aτc) + 1)

aσ
arc tanh

(√
1− σ

1 + σ
tanh

(aτc
2

))
−

√
1− σ2

σ
τc

Σ2 = +
4
√
1− σ2

aσ2
arc tanh

(√
1− σ

1 + σ
tanh

(aτc
2

))
+

2 sinh(aτc)

aσ
− 2τc

σ2

Σ3 = − 4

aσ2
√
1− σ2

arc tanh

(√
1− σ

1 + σ
tanh

(aτc
2

))
− 2

aσ

(
sinh(aτc)

1 + σ cosh(aτc)

)
+

2τc
σ2

(19)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ4 = 2Δ2
1 arc tanh

(√
1− σ

1 + σ
tanh

(aτc
2

))
+

2Δ1Δ2 sinh(aτc)

1 + σ cosh(aτc)
+

2Δ1Δ3 sinh(aτc)

(1 + σ cosh(aτc))2

Δ5 = 2Δ1Δ2 arc tanh

(√
1− σ

1 + σ
tanh

(aτc
2

))
+

2Δ2
2 sinh(aτc)

1 + σ cosh(aτc)
+

2Δ2Δ3 sinh(aτc)

(1 + σ cosh(aτc))2

Δ6 = 2Δ1Δ3 arc tanh

(√
1− σ

1 + σ
tanh

(aτc
2

))
+

2Δ2
3 sinh(aτc)

(1 + σ cosh(aτc))2
+

2Δ2Δ3 sinh(aτc)

1 + σ cosh(aτc)
.

(20)

The expressions of Δ1, Δ2 and Δ3 of eq. (20) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 = − 2 γ0a√
1− σ2g0

− 2 γ1a
3

(1− σ2)3/2g20
+

γ2a
5(σ2 + 2)

(1− σ2)5/2g30

Δ2 =
γ1a

3σ

g20(1− σ2)
− 3a5γ2σ

2g30(1− σ2)2

Δ3 = − γ2a
5σ

2g30(1− σ2)
.

(21)

The study of Fourier coefficients of our Jacobian elliptic potential versus the shape parameter m reveals that b1(m) ≪
b0(m) and b2(m) ≪ b0(m). That was already known through ref. [25]. Hence, we neglect b1(m) and b2(m) in the
Melnikov function expressed in eq. (16). Applying the Melnikov criterion on the homoclinic Melnikov function for the
apparition of homoclinic chaos leads to the following inequality:

δ ≥
∣∣∣∣∣
g0
√
1− σ2Σ sinh

(
2π
a

)

aπ sin
(
2
a arc cosh (σ−1)

)
∣∣∣∣∣ . (22)

δ = V0b0(m) represents in fact the amplitude of our trap potential. The advantage to gather together V0 and b0(m) in
δ is the possibility to change gradually the depth of trap potential by acting on the shape parameter m. That will be
very helpful in experiments. The case of equality provides the boundary threshold function in parameter space.

The stable and unstable regions in parameter space deriving from eq. (22) are plotted in figs. 4 and 5.
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Fig. 3. (a) The spatiotemporal evolution of the particle number density. (b) The first excited state of condensate for heteroclinic
orbits, deduced from the unperturbed system (11). The other parameters used are: a = 2, g0 = −0.75, g1 = 0.1.

4.2 Global heteroclinic bifurcations

The two unstable fixed points (−R2, 0) and (+R2, 0) of potential are connected by two trajectories (heteroclinic
separatrix). The state vector generating these orbits has the following components:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R±
het = ±R2

√
1− cosh(ωτ)

Γ − cosh(ωτ)

X±
het = ±

R2ω(1−Γ ) sinh(ωτ)
(Γ−cosh(ωτ))2

2
√

1−cosh(ωτ)
Γ−cosh(ωτ)

,

(23)

where ω = −g0

√
µ(1+µ)

g1
, μ =

√
1− g1a2

g2
0

and Γ = 1+4µ
1−2µ .

Working on the hypothesis of the simultaneous existence of homoclinic and heteroclinic orbits defined in eq. (12)
μ and Γ must fulfill the following inequalities: 1

2 < μ < 1 and Γ < −5.

In eq. (23), the signs ± must be understood as: X+
het(τ) corresponds to R+

het(τ) and X−
het(τ) corresponds to R−

het(τ).
Next, we inject Rhet(τ) and Xhet(τ) in the expression of the Melnikov function defined in eq. (14). Using the integrals
table [35] and verifying the results directly by Maple Software we obtain the following heteroclinic Melnikov function:

M±(τ0) =

[
b0(m) sin(2τ0) sin

(
2
ω arc cosh(−Γ )

)

sinh
(
2π
ω

) +
2b1(m) sin(4τ0) sin

(
4
ω arc cosh(−Γ )

)

sinh
(
4π
ω

)

+
3b2(m) sin(6τ0) sin

(
6
ω arc cosh(−Γ )

)

sinh
(
6π
ω

)
]
×
(
πV0R

2
2

ω

√
−Γ + 1

−Γ − 1

)
+H, (24)

with H the last integral of eq. (14) expressed as

H =

∫ +∞

−∞

Xhet

R3
het

[∫ τ

−∞

(
γ0R

2
het − γ1R

4
het − γ2R

6
het

)
dτ

]2
dτ. (25)

This integral diverges at the vicinity of τ = 0. In fact, for τ = 0, Rhet = 0 (see fig. 3) and one can straightforwardly
see the divergence of this integral. But, in terms of area, this integral can be approximated. We avoid the value τ = 0
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and the variable τ is taken between τi and τc, where the value of τi is very close to zero. Hence, the approximation of
H is given by

H =
ω (1− Γ )

R2
2

(Z5H1 + Z6H2 + Z7H3 + Z8H4) . (26)

The unknown quantities appearing in this expression are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 =

(cosh(ω τc)− Γ ) arc tanh

(
(Γ+1) tanh(ω τc

2 )√
Γ 2−1

)

ω(−1 + cosh(ω τc))(Γ − 1)
−
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(27)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(28)

The expressions of quantities Z1, Z2, Z3 and Z4 of eq. (28) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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ω (Γ + 1)2
√
Γ 2 − 1

Z2 = γ0R
2
2 − γ1R

4
2 − γ2R

6
2

Z3 = −R4
2(Γ − 1)(2 γ1Γ + 2 γ1 + 3 γ2R

2
2Γ + 6 γ2R

2
2)
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.

(29)
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Fig. 4. Stable and unstable zones in parameter space (γi, δ), i = 0, 1, 2 for homoclinic bifurcations. Modulated lattice potential
depth δ versus (a) the feeding parameter γ0; (b) the dipolar relaxation parameter γ1; (c) the three-body recombination factor
γ2. The other parameters used are: a = 2, g0 = −0.75, g1 = 0.1, γ0 = 10−2, γ1 = 10−5, γ2 = 10−3, τc = 4.

Fig. 5. Stable and unstable zones in parameter space (γi, γj), i = 0, 1, 2 for homoclinic bifurcations. (a) Feeding parameter
versus the dipolar relaxation parameter for γ2 = 10−3. (b) Feeding parameter versus the three-body inelastic recombination
factor for γ1 = 10−5. (c) Discrete unstable regions in parameter space (γ1, γ0) for γ2 = 10−5, V0 = 0.02, τc = 5. The other
parameters used are: a = 2, g0 = −0.75, g1 = 0.1, m = 0.5, V0 = 2, τc = 4.

Theoretically, the condition to obtain the heteroclinic Melnikov chaos of perturbed system (10) is expressed as follows:

δ ≥

∣∣∣∣∣∣

ω
√

−Γ−1
−Γ+1H sinh

(
2π
ω

)

πR2
2 sin

(
2
ω arc cosh(−Γ )

)

∣∣∣∣∣∣
. (30)

5 Numerical simulations and discussions

In this section, we first analyze thoroughly the theoretical conditions of apparition of chaotic oscillations in the dynam-
ics of condensed atoms obtained in eqs. (22) and (30). Next, our theoretical results are verified by the corresponding
numerical simulations. In the end, to verify the reliability of our investigations, we compare our findings with those of
refs. [12–15], in which the condensate was studied with variational approach. From eq. (22) and eq. (30), via Maple
software the regions of stable and unstable behaviours of condensate are obtained and shown in figs. 4, 5, 6 and 7. For
each parameter space, we take a point inside the unstable and stable zones and we plot the corresponding Poincaré
sections to verify the analytical predictions. The aim of our study being the impact of inelastic processes (nonconser-
vative terms) on the dynamics of condensate, we focus our attention on the cases for which the unstable regions in
parameter space (γi, γj) have linear boundaries, and we attempt to find the link between parameters related to losses
and atomic feeding to the occurrence of chaotic oscillations.
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Fig. 6. Unstable and stable zones in parameter space (γi, δ), i = 0, 1, 2 for heteroclinic bifurcations. Modulated lattice potential
depth δ versus: (a) feeding parameter γ0; (b) the dipolar relation parameter γ1; (c) the three-body inelastic recombination
factor γ2. The other parameters used are: a = 2, g0 = −0.75, g1 = 0.1, γ0 = 10−2, γ1 = 10−5, γ2 = 10−3, τc = 4, τi = 0.005,
V0 = 2.

Fig. 7. Unstable and stable zones in parameter space (γi, γj), i = 0, 1, 2 for heteroclinic bifurcations: (a) feeding parameter
versus the dipolar relation parameter for γ2 = 10−3; (b) feeding parameter versus the three-body inelastic recombination factor
for γ1 = 10−5. The other parameters used are: a = 2, g0 = −0.75, g1 = 0.1, m = 0.5, τc = 4, τi = 0.005, V0 = 2.

5.1 Case of homoclinic bifurcations

We begin the analysis with the plot of fig. 4(a) in parameter space (γ0, δ). The point with the components (γ0 =
0.01, δ = 2) is inside the unstable zone coloured in gray. The fig. 8(a) exhibits a strange attractor as Poincaré section,
hallmark of chaotic oscillations of condensate. On the contrary, the point (γ0 = 0.4, δ = 5) is outside the unstable
region. The corresponding Poincaré section depicted in fig. 8(b) shows a set of seven points, characterizing the period-
7 limit cycle in phase space. The deep analysis of Poincaré sections reveals that, when one increases the parameter
related to atomic feeding γ0 while δ is keeping constant, the number of points characterizing the Poincaré sections
decreases progressively. The periodic oscillations are finally obtained for very large values of γ0. This result is also
visible on the bifurcation diagram plotted in fig. 9(a).

Continuing this reasoning with fig. 4(b) in parameter space (γ1, δ) and proceeding as above, the point with compo-
nents (γ1 = 0.0005, δ = 2) is inside the unstable region. One realize that the corresponding Poincaré section is a strange
attractor, characteristic of chaotic behaviour of condensate. Conversely, the point (γ1 = 0.1, δ = 2) in parameter space
is outside the unstable region. The corresponding Poincaré section exhibits also a set of seven points. The thorough
analysis of Poincaré sections reveals that when one increases gradually the parameter related to the dipolar relaxation
γ1, the number of points decreases and the system leads finally to a point attractor when we are far from threshold
boundary function.
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Fig. 8. Poincaré sections deriving from fig. 4 in parameter space (γ0, δ) for γ1 = 10−5, γ2 = 10−3. (a) Point with components
(γ0 = 0.01, δ = 2) inside the unstable region. (b) Point with components (γ0 = 0.4, δ = 5) inside the stable region. The other
parameters used are: υ = 0.0001, α = 0, β = 1, m = 0.5, ǫ = 0.01, g0 = −0.75, g1 = 0.1, V0 = 2, the initial conditions are taken
at the stable fixed point R = R1 = 1.316979712 and dR
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= 0.
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Fig. 9. Bifurcation diagrams deduced from eq. (4). (a)-(b) The feeding rate γ0 as control parameter with γ1 = 10−5, γ2 = 10−3

and V0, respectively, 2 for (a) and 0.02 for (b). (c) The three-body inelastic recombination factor γ2 as control parameter and
γ0 = 10−2, γ1 = 10−5 and V0 = 2. The other parameters used are υ = 0.0001, α = 0, β = 1, g0 = −0.75, g1 = 0.1, m = 0.5,
ǫ = 0.01, the initial conditions are taken at the stable fixed point R = R1 = 1.316979712 and dR

dτ
= 0.

We pursue the investigations in parameter space (γi, γj), i = 0, 1, 2 with fig. 5. It comes from eq. (22) that, for
γ2 = 10−3, varying increasingly the atomic feeding parameter γ0 from 0 to 0.1, the corresponding parameter related to
the dipolar relaxation γ1 not exceed 0.035. The chaotic region coloured in gray in the parameter space (γ1, γ0) is given
by the following approximate expression: −0.0075 ≤ γ0 − 3.17γ1 ≤ 0.0269. The point with coordinates (γ1 = 0.005,
γ0 = 0.02) is inside the unstable zone. The corresponding Poincaré section plotted in fig. 10(a) shows a strange
attractor, proof of chaotic oscillations. The point with components (γ1 = 0.1, γ0 = 0.02) is outside the unstable
region. The corresponding Poincaré section plotted in fig. 10(b) exhibits a set of seven points. The atomic feeding and
the dipolar relaxation parameters are approximately linked as γ0

γ1
= 3.17 for the occurrence of erratic oscillations of

condensate.
With the fig. 5(b), for γ1 = 10−5, the theoretical condition of apparition of homoclinic chaos reveals that when γ0

increases between 0 and 0.1, γ2 varies between 0 and 0.0104. The unstable region in parameter space (γ2, γ0) coloured
in gray is given approximately by the following inequalities −0.0157 ≤ γ0 − 11.13γ2 ≤ 0.0171. The point (γ2 = 0.005,
γ0 = 0.06) is inside the unstable region and the corresponding Poincaré section exhibits a strange attractor, hallmark
of chaotic oscillations of condensate. Conversely, the point (γ2 = 0.07, γ0 = 0.01) is outside the unstable zone. The
corresponding Poincaré section exhibits a set of points. The chaotic oscillations of condensate are approximately
governed by the ratio γ0

γ2
= 11.13. The deep computational analysis of Poincaré sections shows that the more we are

far from the boundary threshold function in parameter space, the dynamics of condensate is regular.
Exploring thoroughly the chaotic regions, we observe through our computational simulations that for very small

values of optical intensity V0 and very weak value of the inelastic three-body recombination parameter γ2, the regions
of instability in parameter space (γ1, γ0) are discrete and appear as a sequence of an island of points as one sees through
fig. 5(c). In other words, the unstable regions appear like a linear alternation of patterns. The centres Gn of these
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Fig. 10. Poincaré sections deriving from fig. 5 in parameter space (γ1, γ0) for γ2 = 10−3. (a) Point with components (γ1 =
0.005, γ0 = 0.02) inside the unstable. (b) Point with components (γ1 = 0.1, γ0 = 0.02) inside the stable region. The other
parameters used are: υ = 0.0001, α = 0, β = 1, ǫ = 0.01, g0 = −0.75, g1 = 0.1, m = 0.5, V0 = 2, the initial conditions are taken
at the stable fixed point R = R1 = 1.316979712 and dR

dτ
= 0.

unstable regions in parameter space (γ1, γ0) are in arithmetic progression and given by Gn(γ1 = 0.0005n, γ0 = 0.0016n)
for the set of other parameters used. The outcome of that, is simply the existence of growth-collapse cycles in the
dynamics of condensate.

Let’s compare now our results with those of refs. [12–15], in which the study was made by a variational approach.
The relevant result from their numerical studies, verified by experiments is that the small values of feeding parameter
or the small values of the ratio between the feeding parameter and the three-body recombination parameter are
favourable to stable dynamics of condensate, whereas under the large values of ratio between the feeding parameter
and dissipation parameters, the system becomes very unstable (quantitatively, the chaotic dynamics occur mainly when
the feeding parameter is one or two orders of magnitude larger than the three-body recombination parameter). Using
the same set of parameters which in fact are those used in experiments, we obtain analytically that the homoclinic
chaotic dynamics of condensate are governed by the ratio γ0

γ2
= 11.13. I.e. the chaotic behaviours of condensate occur

when the feeding parameter is about one order of magnitude larger than the thee-body recombination parameter.
This result is in perfect accord with their findings. Our study reveals a certain disaccord with the above-mentioned
references. We observe that weak values of feeding parameter not imply necessary regular oscillations. In optical lattices
the depth of the trap potential plays an important role on the chaotic dynamics of condensate. That can be viewed on
the figs. 4(a) and 6(a), where for weak values of feeding parameter, to be inside or outside of unstable region depends
of the value of the modulated optical depth δ. Numerically that is also verified, as one can see through the bifurcation
diagrams plotted in fig. 9. In fig. 9(a) and (c), one realize that for the optical intensity V0 taking the value 2 (per unit
of recoil energy), the dynamics of condensate is chaotic for small values of parameters related to atomic feeding. In
fig. 9(b), one realizes that for weak values of atomic feeding parameter and very small values of the optical intensity
(V0 = 0.02), the dynamics of condensate is regular.

5.2 Case of heteroclinic bifurcations

The theoretical condition of heteroclinic chaos deriving from eq. (30) provides large regions of instability when we are
in parameter space (γi, δ) with i = 0, 1, 2, as one sees through fig. 6. In fact, this result is not surprising because the
heteroclinic orbits connecting unstable fixed points will be necessary unstable. Taking as initial conditions a fixed point
(−R2, 0) or (+R2, 0), the same program used to plot the homoclinic bifurcation diagrams diverges, probably because
the double-well φ6 potential is unbounded at these points. Figure 7 exhibits in parameter space (γi, γj) with i �= j,
the stable and unstable regions. One observes the discontinuity of the unstable regions, which appear like the island
of points when the feeding parameter and the dipolar relaxation parameters vary. This remark has been previously
observed in fig. 5(c) in the case of homoclinic bifurcations and can be interpreted as collapses and growth-collapse
cycles in the dynamics of condensate. It comes from fig. 7 that very small values of nonconservative terms are favourable
to the heteroclinic chaos, as one can see through the unstable regions coloured in gray.
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6 Conclusion

We have studied the dynamics of a Bose-Einstein condensate with bosonic atoms trapped into a moving optical lattice,
and subjected to some nonconservative terms neglected in the (GP) formalism. Let us summarize our theoretical
and numerical investigations. Firstly, we prove that the real amplitude of condensate is governed by an integro-
differential equation which thereafter is used to provide through the Melnikov method the appearance conditions of
the chaotic behaviours of condensate. From these analytical conditions, we realize that for a fixed values of the optical
intensity taken inside the unstable zone in parameter space (γi, δ = V0b0(m)), the regular dynamics of condensate can
be obtained by increasing gradually the parameters related to inelastic processes (nonconservative terms). Through
numerical investigations (bifurcation diagrams) we observe that from chaotic dynamics for large values of the optical
intensity, the condensate undergoes a cascade of period-doubling bifurcations culminating finally to regular oscillations.
Moreover, we realize that with optical lattices trap, weak values of atomic feeding and dissipation parameters not imply
necessary regular oscillations, and large values of these parameters not imply necessary chaotic behaviours, as it is well
known with harmonic magnetic trap potential. The depth of optical lattices plays an important role in the dynamic
of condensate, and its large values are favourable to chaotic oscillations.

Secondly, in the framework of homoclinic bifurcations, unstable regions in parameter space (γi, γj) reveals that
homoclinic chaotic behaviours of condensate occur when the feeding parameter is about one order of magnitude larger
than the thee-body recombination parameter. That is in agreement with numerical results of previous works. Moreover
for small values of the optical intensity and the inelastic three-body interactions parameter, the unstable regions appear
like a linear alternation of islands of points. That justifies theoretically the existence of collapses and growth-collapses
cycles in the dynamics of condensate. These phenomena (collapses, growth-collapse cycles and chaos) are also obtained
in the case of heteroclinic bifurcations for large values of the three-body recombination parameter.

Thirdly, the computational simulations reveal that the route leading to chaotic oscillations when the optical in-
tensity and the strength of elastic three-body interactions are used as control parameters is the quasi-periodicity,
mainly the torus-doubling bifurcations. In these cases, eq. (1) provides solitonic solutions as envelope solitons and
bright solitons in the case of stable dynamics and that can be explained as a balance between the dispersion and the
nonlinearity.

Appendix A. Integration of Σ

Σ =

∫ +∞

−∞

[
X0

R3
0

(∫ τ

−∞

(
γ0R

2
0 − γ1R

4
0 − γ2R

6
0

)
dτ

)2
]
dτ. (A.1)

In this expression, we replace R0 and X0, respectively, by Rhom and Xhom as defined in eq. (15). For a set of parameters
obeying the condition eq. (14), Rhom and Xhom can be considered as zero functions for ] −∞; τc[∪]τc; +∞[. For this
reason, Σ can be expressed as

Σ =

∫ +τc
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dτ, (A.2)

A1 =
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√
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with Δ1, Δ2 and Δ3 defined in eq. (21)

Xhom(τ)

R3
hom(τ)

=
g0σ sinh(aτ)

2a
. (A.7)

Taking the square of the right-hand side of eq. (A.6) and neglecting all even functions of τ , we obtain
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with Δ4, Δ5 and Δ6 defined in eq. (20). Integrating eq. (A.8) between −τc and +τc leads to Σ defined in eq. (17),
where Σ1, Σ2 and Σ3 appearing in eq. (18) obtained by the integration by part method, represent the following
integrals:
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Appendix B. Integration of H

H =
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It comes from fig. 3 that Xhet(τ) is practically null for ]−∞; τc[∪]τc; +∞[, where the value of τc depends on the set
of parameters used. Another remark is that H cannot be evaluated for τ = 0. But in terms of area, we approximate
the value of H by avoiding the vicinity of τ = 0. With this remark, H can be rewritten as
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B3 =

∫ τ

−τc

R6
het(τ)dτ

= R6
2

[
− (2Γ 2 + 6Γ + 7)(Γ − 1)

ω(Γ + 1)2
√
Γ 2 − 1

(
arc tanh

(
(Γ + 1) tanh

(
ω τ
2

)
√
Γ 2 − 1

)
+ arc tanh

(
(Γ + 1) tanh

(
ω τc
2

)
√
Γ 2 − 1

))

+ (τ + τc) +
3(Γ − 1)(Γ + 2)

2ω(Γ + 1)2

(
sinh(ωτ)

Γ − cosh(ωτ)
+

sinh(ωτc)

Γ − cosh(ωτc)

)

− (Γ − 1)2

2ω(Γ + 1)

(
sinh(ωτ)

(Γ − cosh(ωτ))2
+

sinh(ωτc)

(Γ − cosh(ωτc))2

)]
(B.5)

∫ τ

−τc

(
γ0R

2
het − γ1R

4
het − γ2R

6
het

)
dτ = γ0B1 − γ1B2 − γ2B3

= Z1

[
arc tanh

(
(Γ + 1) tanh

(
ω τ
2

)
√
Γ 2 − 1

)
+ arc tanh

(
(Γ + 1) tanh

(
ω τc
2

)
√
Γ 2 − 1

)]
+ Z2(τ + τc)

+ Z3

(
sinh(ωτ)

Γ − cosh(ωτ)
+

sinh(ωτc)

Γ − cosh(ωτc)

)
+ Z4

(
sinh(ωτ)

(Γ − cosh(ωτ))2
+

sinh(ωτc)

(Γ − cosh(ωτc))2

)
, (B.6)

with Z1, Z2, Z3 and Z4 defined in eq. (29),

Xhet(τ)

R3
het(τ)

=
(1− Γ )ω sinh(ω τ)

2R2
2(−1 + cosh(ω τ))2

. (B.7)

Taking the square of the right-hand side of eq. (B.6) and neglecting all even functions of τ , we obtain

Xhet(τ)

R3
het(τ)

(∫ τ

−τc

(
γ0R

2
het(τ)− γ1R

4
het(τ)− γ2R

6
het(τ)

)
dτ

)2

=

(1− Γ )ω

2R2
2

[
Z5 sinh(ωτ)

(−1 + cosh(ω τ))2
arc tanh

(
(Γ + 1) tanh

(
ω τ
2

)
√
Γ 2 − 1

)
+

Z6τ sinh(ωτ)

(−1 + cosh(ω τ))2

+
Z7 sinh

2(ωτ)

(−1 + cosh(ω τ))2(Γ − cosh(ωτ))
+

Z8 sinh
2(ωτ)

(−1 + cosh(ω τ))2(Γ − cosh(ωτ))2

]
. (B.8)

The expressions of Z5, Z6, Z7, and Z8 are defined in eq. (28). Integrating eq. (B.8) between −τc and +τc leads to
H defined in eq. (25), where H1, H2, H3 and H4 appearing in eq. (26) are the following integrals:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ +τc

−τc

sinh(ωτ)

(−1 + cosh(ω τ))2
arc tanh

(
(Γ + 1) tanh

(
ω τ
2

)
√
Γ 2 − 1

)
dτ = 2H1

∫ +τc

−τc

τ sinh(ωτ)dτ

(−1 + cosh(ω τ))2
= 2H2

∫ +τc

−τc

sinh2(ωτ)dτ

(−1 + cosh(ω τ))2(Γ − cosh(ωτ))
= 2H3

∫ +τc

−τc

sinh2(ωτ)dτ

(−1 + cosh(ω τ))2(Γ − cosh(ωτ))2
= 2H4.

(B.9)
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These integrals diverge at τ = 0. In terms of area, we have the approximate values of H1, H2, H3 and H4 by avoiding
the vicinity of τ = 0. Thus, the integrals of eq. (B.9) are calculated for τ belonging to [−τc,−τi] ∪ [τi, τc], where τi is
a value very close to zero. Hence, Hi with i = 1, 2, 3, 4 are finally given by the following integrals:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ +τc

τi

sinh(ωτ)

(−1 + cosh(ω τ))2
arc tanh

(
(Γ + 1) tanh

(
ω τ
2

)
√
Γ 2 − 1

)
dτ = H1

∫ +τc

τi

τ sinh(ωτ)dτ

(−1 + cosh(ω τ))2
= H2

∫ +τc

τi

sinh2(ωτ)dτ

(−1 + cosh(ω τ))2(Γ − cosh(ωτ))
= H3

∫ +τc

τi

sinh2(ωτ)dτ

(−1 + cosh(ω τ))2(Γ − cosh(ωτ))2
= H4.

(B.10)

The expressions of these integrals are given in eq. (27).
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Abstract We investigate global bifurcation of a Bose–
Einstein condensate with both repulsive two-body in-
teraction between atoms and attractive three-body in-
teraction loaded into a traveling optical lattice. Slow-
flow equations of the traveling wave function are the
first to derive and the reduced amplitude equation is
obtained. The Melnikov method is applied on the re-
duced parametrically driven system and the Melnikov
function is subsequently established. Effects of dif-
ferent physical parameters on the global bifurcation
are studied analytically and numerically, and different
chaotic regions of the parameter space are found. The
results suggest that optical intensity may help to en-
hance chaos while the strength of the effective three-
body interaction, the velocity of the optical lattice, and
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the damping coefficients annihilate or reduce chaotic
behavior of the steady-state traveling wave solution of
the particle number density of a Bose–Einstein con-
densate.

Keywords Bose–Einstein condensate · Optical
lattice · Chaos · Melnikov’s theory · Bifurcation

1 Introduction

After the experimental achievement of the Bose–
Einstein condensation back in 1995 [1], there has been
a surge of papers [2–8] focused on nonlinear phenom-
ena specific to Bose–Einstein-condensed gases. The
authors of [9] created the Faraday waves in a cigar-
shaped Bose–Einstein condensate. Further, the authors
in [10] have investigated analytically the dynamics of
a trapped, quasi-one-dimensional Bose–Einstein con-
densate subject to resonant and nonresonant periodic
modulation of the transverse confinement. In [11],
it is shown by extensive numerical simulations and
analytical variational calculations that elongated bi-
nary nonmiscible Bose–Einstein condensates subject
to periodic modulations of the radial confinement ex-
hibit a Faraday instability similar to that seen in one-
component condensates. In [12], the statics and dy-
namics of single and multiple matter-wave dark soli-
tons in the quasi one-dimensional setting in atomic
Bose–Einstein condensates, in higher dimensional
settings, as well as in the dimensionality crossover
regime is discussed. The authors of [13] have studied
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the resonant energy transfer in Bose–Einstein conden-
sates. The fractional and period-states of BECs loaded
into optical lattices have been considered in [14, 15],
as well as linear and nonlinear resonances (see [16,
17]).

In recent years, significant progress in the manipu-
lation of ultra-cold atoms have been achieved leading
to the possibility of trapping ultra-cold bosonic atoms
in optical lattice [18–20]. Taking into account the two-
body interactions between atoms in the Schrödinger
equation to describe the dynamic of the Bose–Einstein
condensate can be considered as the necessary condi-
tion for possible appearance of temporal [21, 22], spa-
tial [23, 24], and spatiotemporal [25, 26] chaos in the
dynamic of the condensate.

Another important topic in scientific research today
is the control of chaos. Broadly speaking, there are
two kinds of chaos control. One is the so-called OGY
method, first introduced in 1990 by Ott et al. [27–29],
which uses some weak feedback control to make the
chaotic trajectory approach and settle down finally to
a desired stabilized periodic orbit, formerly unstably
embedded in the chaotic manifold. The OGY method
is a kind of feedback control. The other kind of chaos
control belongs to nonfeedback control, which usually
uses given external or parametric excitations to control
system behavior [30–32]. Both kinds of chaos control
are still developing. As a matter of fact, chaos con-
trol may have a dual function: to generate chaos or
to suppress it. Numerous qualitative analysis demon-
strated the existence and characteristics of chaotic mo-
tions in deterministic non-linear systems. It is inter-
esting to know the parameter values below, which no
periodic motion would occur in the forced nonlinear
oscillator. The authors of [33] use a variation of Mel-
nikov’s method developed for a slowly varying oscil-
lator. The original Melnikov method [34] is applicable
to a one degree-of-freedom system with a time period
perturbation only. When the system is perturbed by
external excitations and dissipative forces, the Homo-
clinic motions can break into Homoclinic tangles pro-
viding the conditions for chaotic motions. Although
the Melnikov method is merely approximative, it is
one of a few methods allowing analytical prediction
of chaos occurrence. Moreover, it can be applied to
a relatively large class of dynamical systems. The
Melnikov integral has been generalized by [35–37] to
high-dimensional conservative Hamiltonian systems.

The possible existence of chaos in the dynamic of
condensate compelled it control, for a probable use in

technology. Recently in [38], the control of chaos in
BECs loaded into a moving optical lattice have been
investigated. They focused their attention on the con-
trol of chaos using as control parameter the traveling
optical lattice shape and they arrived to the conclusion
that the chaos could be control with a small change
of this control parameter. It is proved in [39–41] that
atomic traps are effectively described by the Gross–
Pitaevskii–Ginzburg (GPG) formulation of the non-
linear Schrödinger (NLSE) equation, which includes
two-body and three-body interactions. In this respect,
it has been used by [42, 43] the time-dependent (GPG)
equation to describe the dynamic of the condensate.
They investigated the case where the effects of in-
elastic two-body and three-body collisions on the dy-
namics of BEC’s are neglected, i.e., the two-body and
three-body interactions coefficients are real numbers.

In this paper, our attention is focused on the com-
bination of a Bose–Einstein condensate and a mov-
ing optical lattice. Through our analysis, we attempt
to study how the optical intensity, the strength of the
effective three-body interaction, the velocity of the op-
tical lattice, and the damping coefficient affect the dy-
namic of condensate. We use the (GPG) formalism
to investigate the dynamic of condensate in the hy-
pothesis where the two-body and three-body interac-
tions coefficients are real numbers. Furthermore, us-
ing the fact that in [44–48], it is shown that conden-
sates, as observed experimentally, are weakly dissipa-
tive and decay over time, we introduce a dissipative
term in (GPG). We analyze respectively the effects of
the above mentioned parameters in the occurrence of
homoclinic chaos, using the Melnikov method and nu-
merical simulations (bifurcation diagrams, basin of at-
traction, and phase portraits).

The plan of the paper is as follows: In Sect. 2, we
present the general formalism that we have considered,
and we establish the differential equation involving the
real amplitude of condensate. In Sect. 3, the Melnikov
analysis is used to determine the condition of appear-
ance of homoclinic chaos, and some chaotic threshold
functions are depicted. We exhibit our numerical re-
sults in Sect. 4, and our study is concluded in Sect. 5.

2 Derivation of the slow-flow equations

In the present paper, we consider a thin cigar-shaped
condensate with a strong radial confinement. Hence,
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we can neglect the transversal dynamic, and the con-
densate can be described by the quasi-one-dimensional
(1D) time-dependent Gross–Pitaevskii–Ginzburg
(GPG) [39–43] equation

(γ + i)�
∂ψ

∂t

= − �2

2ma

∂2ψ

∂x2

+ (
Ṽ0sn

2(ηξ,m) + g̃0|ψ |2 + g̃1|ψ |4)ψ (1)

where ψ(x; t) is the wave function of condensate,
Ṽ0sn

2(ηξ,m) is the periodic moving optical lattice.
ξ = x + υLt is the space time variable, υL = δ

2k
the

velocity of traveling lattice, with δ the frequency dif-
ference between the two Fourier-synthesized counter-
propagating laser beams. k = 2π

λ
is the laser wave

vector, ma is the atomic mass. g̃0 = 4π�2a
ma

is the in-
teratomic two-body interaction strength, with a the s-
wave scattering length, g̃1 is the strength of the effec-
tive three-body interaction. η = 2K(m)k

π
, with K(m)

the complete elliptic integral of the first kind. The
function sn(.;m) is the Jacobian sine elliptic function
of parameter m (0 ≤ m ≤ 1), γ is the damping param-
eter. The parameters of nonlinearity g̃0 and g̃1 in gen-
eral are the complex quantities. The imaginary parts
of g̃0 and g̃1 describe the effects of inelastic two-and
three-body collisions on the dynamics of BEC’s, re-
spectively. In this work, we assume that the cubic and
quintic parameters are real numbers. Furthermore, g̃0

is a positive number and g̃1 a negative number. A con-
densate which is initially in the ground state of the
nonperiodic moving lattice trap will evolve according
to Eq. (1). To understand for what value of the am-
plitude of the traveling wave solution the system will
start responding to the periodic excitation, it is use-
ful to study small perturbation of the wave function
of the ground state in a static point. Linearizing the
GPG equation in the small perturbation εψ , we can
determine the conditions under which the system be-
comes unstable when the periodic moving lattice trap
is switched on. This analysis is done by looking the
solutions of the form [38, 49]

ψ(x; t) = ϕ(ξ) exp
[
i(α̃x + β̃t)

]
(2)

where ϕ(ξ) is a complex function, and α̃ and β̃ are real
constants to be determined. It is important to note that
the traveling wave ϕ(ξ) has the same velocity as the el-
liptic optical lattice. Let us insert Eq. (2) into Eq. (1),

rescaling ϕ by k
3
2 and the space time variable ξ by

2K(m)
π

; we obtain the following ordinary differential
equation, describing the dynamic of the complex trav-
eling wave amplitude ϕ(ξ):

d2ϕ

dτ 2
+ γ υ

dϕ

dτ
− (

β + α2)ϕ − g0|ϕ|2ϕ − g1|ϕ|4ϕ

= −i

[
(υ + 2α)

dϕ

dτ
+ γβϕ

]

+ V0

[
sn2

(
2K(m)τ

π
;m

)]
ϕ (3)

with: τ = ηξ , α = α̃
k

, β = �β̃
Er

, g0 = g̃0k
3

Er
= 8πak,

g1 = g̃1k
6

Er
, V0 = Ṽ0

Er
, υ = 2maυL

�k
and Er = �2k2

2ma
the re-

coil energy. Furthermore, according to [26], we can
express the complex traveling wave amplitude ϕ(τ) in
the form

ϕ(τ) = R(τ)eiθ(τ) (4)

where R(τ) and θ(τ ) are respectively the real ampli-
tude and the phase of the traveling wave. Inserting
Eq. (4) into Eq. (3), we obtain the following differ-
ential system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2R

dτ 2
+ γ υ

dR

dτ
− R

(
dθ

dτ

)2

− (
β + α2)R

− g0R
3 − g1R

5

=
(

(υ + 2α)
dθ

dτ
+ V0sn

2
(

2K(m)τ

π
;m

))
R

2
dR

dτ

dθ

dτ
+ R

d2θ

dτ 2
+ γ υR

dθ

dτ

= −(υ + 2α)
dR

dτ
− γβR

(5)

Considering the simple case where the phase θ(τ )

varies linearly as dθ
dτ

= −(υ
2 + α) = −β

υ
(see [38]),

Eq. (5) can be summarized by the following ordinary
differential equation:

d2R

dτ 2
+ γ υ

dR

dτ
−

[
υ2

4
+ V0p

(
τ

2π
;m

)]
R

− g0R
3 − g1R

5 = 0 (6)

where p(x;m) = sn2(4K(m)x;m) is the optical lat-
tice trap potential. The case m = 0, i.e., p( τ

2π
;0) =

sin2(τ ), corresponding to a pure trigonometric po-
tential, has been recently studied in [26]. When the
parameter m is close to 1, the optical trap potential
p(x;m) is virtually constant except on a set of points
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of Lebesgue measure zero. The optical lattice in this
case is static and the spatiotemporal chaotic steady-
state is not possible. In the following of our theoreti-
cal analysis, let us expand the optical trap potential in
Fourier series as

p(x;m) =
∞∑

j=1

bj−1 sin2(2πjx) (7)

The three first Fourier coefficients after some calcula-
tions are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0(m) = 4π2q(1 − q + q2 − q3 + q4)

m(K(m))2(1 − q − q5 + q6)

b1(m) = 8π2q2(1 + q4)

m(K(m))2(1 − q3 − q5 + q8)

b2(m) = 4π2q3

m(K(m))2(1 − q3)2

(
1 + 2(1 − q3)2

(1 − q)(1 − q5)

)

(8)

with q(m) = exp(−πK(1−m)
K(m)

) the nome, and 0 ≤ m ≤ 0.99.
It is proved in [38] that there is not large difference be-
tween the full trap potential sn2(

4K(m)x
π ;m) and its trun-

cated Fourier expansion of order n define as

p(n)(x;m) =
n∑

j=1

bj−1 sin2(2πjx) (9)

In this new form of trap potential p(x;m), we straight-
forwardly obtain:

p(n)

(
τ

2π
;m

)
=

n∑

j=1

bj−1 sin2(jτ ) (10)

3 Melnikov’s approach to chaos

The aim of this section is to determine the condition of oc-
currence of homoclinic Smale’s horseshoe chaos. We use as
mathematical tools for the analytical prediction of chaos, the
Melnikov method (MM) proposed in [34, 50–56]. The Mel-
nikov method consists of studying a system in which the un-
perturbed problem is an integrable Hamiltonian system hav-
ing a normally hyperbolic invariant set whose stable and un-
stable manifold intersect non-transversally. For the sake of
simplicity, we assume that the dissipation term and the opti-
cal lattice potential are small amplitude. Thus, we introduce
the following scale transformations: γ → εγ , V0 → εV0.

The differential equation (6) can be expressed as a first-order
system in the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṙ = X

Ẋ = υ2

4
R + g0R3 + g1R5

+ ε

[
−γ υX + V0

2

(
b0 + b1 + b2

− b0 cos(2τ ) − b1 cos(4τ ) − b2 cos(6τ )
)
R

]

(11)

ε is a small parameter(ε � 1) characterizing the smallness of
dissipation and trap potential amplitude. For the unperturbed
system, i.e., when ε = 0, Eq. (11) is an Hamiltonian system,
and can be expressed as
⎧
⎪⎨

⎪⎩

Ṙ = X

Ẋ = υ2

4
R + g0R3 + g1R5

(12)

We can straightforwardly deduce from Eq. (12) that the
potential energy of the system is given by

V (R) = −υ2

8
R2 − g0

4
R4 − g1

6
R6 (13)

Depending on the set of the parameters, finally three
physically interesting situations can be considered where the
potential is: (i) single-well, (ii) double-well, or (iii) triple-
well. The unperturbed system has a homoclinic or hetero-
clinic orbit or both of them depending of the type of poten-
tial well. In this paper, we work in the hypothesis g0 > 0
and g1 < 0. This situation leads to a bounded double well
trap potential, and the system of Eq. (12) exhibits only ho-
moclinic orbits. Equation (12) has three equilibrium points
(see Fig. 1(a)), solutions of the algebraic equation

υ2

4
R + g0R3 + g1R5 = 0 (14)

Among these three equilibrium points. there are two sta-
ble fixed points at (±R1,0) and one unstable fixed point at

(0,0), with R2
1 = − g0

2g1
(1 +

√
1 − g1υ

2

g2
0

).

The Hamiltonian system Eq. (12) possesses two homo-
clinic orbits connecting the unstable point (0,0) of the po-
tential to itself. These orbits are given by the following com-
ponents:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R±
0 (τ ) = ± υ

√
g0[−1 + σ cosh(υτ)]

X±
0 (τ ) = ± υ2σ sinh(υτ)

2
√

g0[−1 + σ cosh(υτ)] 3
2

(15)

with σ =
√

1 − 4g1υ
2

3g2
0

.

The maximum value R2
0 max of the particle number

density of condensate deduced from unperturbed system
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Fig. 1 (a) A configuration of the φ6 potential with two wells.
(b) Local bifurcation near the fixed points of the correspond-
ing potential. The other parameters used are: υ = 2, g0 = 0.75,
g1 = −0.9

Eq. (12), is obtained for τ = 0 in the expression of R0(τ )

as defined in Eq. (15). R2
0 max is straightforwardly given by

the expression

R2
0 max = υ2

g0(−1 + σ)
(16)

The width of condensate at the mid-height �τ for the unper-
turbed system Eq. (12) is obtained by solving the equation

R2
0(τ ) = R2

0 max
2 . This value of �τ characterizing the spa-

tiotemporal extension of condensate is given by the expres-
sion

�τ = 2

υ
arccosh

(
2 − 1

σ

)
(17)

It comes from Figs. 2(d) and (e) that, by regulating in-
creasingly each interaction coefficient g0 and g1 tends to
increase the number of atoms in the condensate, and to de-
crease the spatiotemporal extension of condensate. Accord-
ing to the MM, the Melnikov function is defined as

M(τ0)

= −γ υ

∫ +∞
−∞

X2
0(τ ) dτ

+ V0

2
(b0 + b1 + b2)

∫ +∞
−∞

R0(τ )X0(τ ) dτ

− V0

2
b0

∫ +∞
−∞

cos(2τ + 2τ0)R0(τ )X0(τ ) dτ

− V0

2
b1

∫ +∞
−∞

cos(4τ + 4τ0)R0(τ )X0(τ ) dτ

− V0

2
b2

∫ +∞
−∞

cos(6τ + 6τ0)R0(τ )X0(τ ) dτ (18)

where τ0 is the cross-section time of the Poincaré map and
can be interpreted as the initial time of the forcing term. Car-
rying out the integration of the right-hand side of Eq. (18)
with the use of [57], we find after some algebraic manipula-
tions that

M±(τ0)

= 3γg0υ2

16g1

[
1 + 2

√√
√√2 −

(
4g1υ2

3g2
0

+ 3g2
0

4g1υ2

)

× arctan

(√
1 + σ

−1 + σ

)]
−

√

−3π2

4g1
V0

×
[
b0(m) csch

(
2π

υ

)
sinh

(
2

υ
arccos

(
− 1

σ

))
sin(2τ0)

+ 2b1(m) csch

(
4π

υ

)
sinh

(
4

υ
arccos

(
− 1

σ

))
sin(4τ0)

+ 3b2(m) csch

(
6π

υ

)
sinh

(
6

υ
arccos

(
− 1

σ

))

× sin(6τ0)

]
(19)

We begin our analysis by the determination of the con-
dition of appearance of homoclinic chaos at m = 0. From
Eq. (8), b0(0) = 1, b1(0) � 0 and b2(0) = 0. Thus, the the-
oretical condition for the occurrence of horseshoe chaos for
the homoclinic bifurcation solved from Eq. (19) can be ex-
pressed as
V0

γ
≥ U0(m = 0, υ, g1) (20)

where

U0(m = 0, υ, g1)

= g0υ2

8π

√
−3

g1
sinh

(
2π

υ

)

× csch

(
2

υ
arccos

(
− 1

σ

))

×
[

1 + 2

√√
√
√2 −

(
4g1υ2

3g2
0

+ 3g2
0

4g1υ2

)

× arctan

(√
1 + σ

−1 + σ

)]
(21)
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Fig. 2 (a)–(b) The spatiotemporal evolution of the particle
number density and first excited state of condensate, deduced
from unperturbed system Eq. (12). (c) Separatrix of unper-
turbed system Eq. (12). The other parameters used are: υ = 2,

g0 = 0.75, g1 = −0.9. (d)–(e) Maximum value and spatiotem-
poral extension of particle number density of condensate as
function of the strength of two-body and three-body interactions
for υ = 2

is the chaotic threshold function associated with a pure

trigonometric optical lattice. Next, we focus our attention

on the condition of occurrence of homoclinic chaos in the

case m > 0. The simple zeros of M(τ0) are not analytically

easy to find. To achieve our aim, we will attempt to do some

approximations. From Eq. (8), the calculations show that, at
the range 0 ≤ m ≤ 0.9, the maximum value of b2(m)

b0(m)
is 0.04

and the higher value of b1(m)
b0(m)

is 0.27. Hence, we can ne-
glect b2(m) and b1(m) in Eq. (19). Thus, the approximate

necessary condition of Eq. (11) to exhibit the horseshoe ho-
moclinic chaos can be expressed as

V0

γ
≥ U(m,υ,g1) (22)

with

U(m,υ,g1) = U0(m = 0, υ, g1)

b0(m)
(23)

the chaotic threshold function for the parameter shape over
the range 0 ≤ m ≤ 0.9. Figures 3(a) and (b) exhibit respec-
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Fig. 3 Threshold function U : (a) as function of the strength
of the three-body interaction g1 for m = 0.8. (b) as function of
the strength of the three-body interaction g1 and lattice variable
shape m. The other parameters used are: g0 = 0.75, υ = 2

tively the monotonically increasing behavior of the chaotic
boundary curve as function of the effective three-body in-
teraction between atoms, then as a function of the effective
three-body interaction and optical lattice variable shape.

4 Numerical simulations

4.1 Bifurcations diagrams and phase portraits

After the theoretical prediction of chaos summarized by
Eq. (22), we continue our investigations numerically with
the following method. We begin by choosing a set of param-
eters following [38, 58, 59], except the control parameter.
Solving Eq. (22) via MAPLE in the parameters space, i.e.,

plotting V0
γ − U versus the control parameter, we determine

not only the critical value of control parameter, but also the
range of control parameter corresponding to the homoclinic
chaos. Next, we depict with the same parameters, the bifur-
cation diagram, taking as initial conditions the values of real
amplitude around the maximum value of R (R0 max � 1.6)
of unperturbed system Eq. (12). This corresponds to dR

dτ
� 0.

The bifurcation diagram is used to determine the numerical
critical value, which is compared with the theoretical one, to
see if there is concordance between the Melnikov prediction
and the numerical results. In fact, we do not expect a perfect
coincidence between these values because the MM is a per-
turbative method generally related to transient chaos, while
bifurcation diagram provide information solely concerning
steady chaos. Furthermore, we plot some phase portraits to
verify the period-doubling bifurcations exhibited by the bi-
furcation diagrams. Combining these two studies can help
the control of chaos in the dynamic of (BEC), for a choice
of a set of parameters.

4.1.1 Global bifurcations with the optical intensity V0 as
control parameter

We take as values of parameters, the following data: m =
0.8, g0 = 0.75, g1 = −0.9, υ = 2, γ = 5, ε = 0.03. The the-
oretical prediction defined in Eq. (22) gives as critical value
of optical intensity for the occurrence of homoclinic chaos
V0c = 28.5. Numerically, according to Fig. 4(a), we obtain
as a critical value of V0 at the first bifurcation 49.5. To have
the real gap between this values, we will not forget that we
have done a scale transformation V0 → εV0 in Sect. 2. The
gap 0.63 between these values is probably due to the fact
that we have neglected b1(m) and b2(m) in the Melnikov
function to solve the problem analytically. This difference
can also be explained by the fact that the MM is approxi-
mate. Next, we increase gradually the optical intensity in the
phase space, to verify the period-doubling bifurcations route
leading to the homoclinic chaos, as it is well seen on the
bifurcation diagram.

For V0 = 20, this situation leads analytically to the peri-
odic oscillations. Figure 6(a) exhibits a limit cycle as phase
portrait and the regular dynamic of the condensate is shown
in Fig. 6(b). Now, let us give V0 the value 80. According
to Eq. (22), the dynamic of the condensate will be chaotic.
To verify that, we plot in Fig. 6(c) the phase portrait and we
obtain a period-2 attractor. The quasiperiodic oscillations of
condensate is shown in Fig. 6(d). When V0 = 135, we see
in Fig. 6(e) the period-4 attractor as a phase portrait and the
quasiperiodic oscillations of condensate in Fig. 6(f). Finally,
when V0 = 180, we observe in Fig. 6(g) that the phase orbit
evolves in a finite region and exhibits confusion, which is the
chaotic feature. The phase portrait in this case is a strange
attractor. Figure 6(h) presents the erratic spatiotemporal
evolution of condensate. In addition, the bifurcation
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Fig. 4 Bifurcation diagram of particle number density R2:
(a) as a function of optical intensity V0 for g1 = −0.9,
γ = 5, υ = 2, and ε = 0.03. Initial conditions: R(0) = 1.45,
dR
dτ

(0) = 0. (b) as function of the strength of the effective three-
-body interaction g1 for V0 = 200, γ = 5, υ = 2, and ε = 0.01.
Initial conditions: R(0) = 1.7, dR

dτ
(0) = 0. (c) as a function of

lattice velocity υ for V0 = 50, γ = 5, g1 = −0.9, and ε = 0.04.
Initial conditions: R(0) = 1.7, dR

dτ
(0) = −0.3. (d) as a function

of damping coefficient γ for V0 = 50, g1 = −0.9, υ = 2 and
ε = 0.04. Initial conditions: R(0) = 1.7, dR

dτ
(0) = −0.3. The

other parameters used are: g0 = 0.75, m = 0.8

Fig. 5 The effect of V0 on the basins of attraction. (a) V0 = 28,
(b) V0 = 30, (c) V0 = 45, (d) V0 = 70. The others parameters
used are: g0 = 0.75, m = 0.8, g1 = −0.9, γ = 5, υ = 2, and
ε = 0.02
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Fig. 6 (a)–(b) Regularized
oscillations for V0 = 20.
(c)–(d) Period-2 attractor
and quasiperiodic
oscillations for V0 = 80.
(e)–(f) Period-4 attractor
and quasiperiodic
oscillations for V0 = 135.
(g)–(h) Strange attractor
and irregular oscillations
for V0 = 180. The other
parameters used are: υ = 2,
m = 0.8, γ = 5, ε = 0.03,
g0 = 0.75, g1 = −0.9

diagram depicted in Fig. 4(a) summarizes the influence
of the potential well depth of the lattice V0 on the dy-
namic of the particle number density. There is concor-
dance between this bifurcation diagram and our phase por-
traits.

4.1.2 Global bifurcations with the strength of the effective
three-body interaction g1 as control parameter

In this paragraph, we take into consideration the set of the
following parameters: m = 0.8, g0 = 0.75, υ = 2, γ = 5,
ε = 0.01, and V0 = 200. According to the Melnikov predic-
tion, the critical value is gc = −0.0075. The critical value
of g1 obtained by the numerical calculations is −0.0105.
The gap 0.003 between these values can be explained as

mentioned above. Let us depict some phase portraits to ver-
ify the period-doubling bifurcations. We begin with g1 =
−0.8. Theoretically, we expect the chaotic dynamic of con-
densate. The numerical simulations present in Fig. 7(a) a
strange attractor as a phase portrait and the irregular spa-
tiotemporal evolutions of the condensate in Fig. 7(b). In-
creasing the control parameter at −0.05, theoretically the
chaotic dynamic of the condensate is expected. But we
observe in Fig. 7(c) a period-3 attractor as a phase por-
trait and the quasiperiodic oscillations of the condensate
in Fig. 7(d). Now, when g1 = −0.035, we expect analyti-
cally a chaotic dynamic of the condensate. The numerical
simulations present in Fig. 7(e) a period-2 attractor as the
phase portrait and quasiperiodic oscillations of condensate
in Fig. 7(f). Lastly, when g1 = −0.01, according to our the-
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Fig. 7 (a)–(b) Chaotic
oscillations for g1 = −0.8.
(c)–(d) Period-3 attractor
and quasiperiodic
oscillations for g1 = −0.05.
(e)–(f) Period-2 attractor
and quasiperiodic
oscillations for
g1 = −0.035.
(g)–(h) Regularized
oscillations for g1 = −0.01.
The other parameters used
are: υ = 2, m = 0.8, γ = 5,
ε = 0.01, g0 = 0.75, and
V0 = 200

oretical prediction, the regular behavior of the condensate is
expected. The phase portrait depicted in Fig. 7(g) shows a
limit cycle, proof of regular spatiotemporal evolution of the
condensate.

4.1.3 Global bifurcations with the velocity of optical lattice
υ as control parameter

In this paragraph, we use as a control parameter, the lat-
tice velocity υ . We give to the other parameters the val-
ues: m = 0.8, g0 = 0.75, g1 = −0.9, γ = 5, ε = 0.04, and
V0 = 50. The theoretical prediction defined in Eq. (22) indi-
cates that the homoclinic chaos will appear for 0 ≤ υ ≤ 2.70.
Numerically, the bifurcation diagram depicted in Fig. 4(c)

shows that from chaotic oscillations for υ close to 0, as
υ increases, the bifurcation leading to the regular dynamic
of condensate appears at υc = 3.46. Once more, one sees
that these two values are close, and the difference 0.76
can be explained as mentioned above. To verify the pro-
cess of period-doubling bifurcations leading to the homo-
clinic chaos as summarized in Fig. 4(c), we vary the con-
trol parameter as follows. We begin with υ = 1. Analyti-
cally, a chaotic dynamic of condensate is expected. Through
the phase portrait plotted in Fig. 8(a), we observe a strange
attractor, proof of chaotic oscillations, as we can see in
Fig. 8(b), with the irregular evolution of the condensate.
Carrying on with υ = 2.5, according to our theoretical cal-
culations, the dynamic of the condensate will be chaotic.
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Fig. 8 (a)–(b) Chaotic
oscillations for υ = 1.
(c)–(d) Period-2 attractor
and quasiperiodic
oscillations for υ = 2.5
(e)–(f) Regularized
oscillations for υ = 6. The
other parameters used are:
g1 = −0.9, m = 0.8, γ = 5,
ε = 0.04, g0 = 0.75, and
V0 = 50

The phase portrait exhibits in Fig. 8(c) a period-2 attrac-
tor, and we can see the quasiperiodic oscillations of con-
densate in Fig. 8(d). We end with υ = 6. The theoretical
prediction indicates a regular behavior of condensate. The
numerical simulations exhibit in Fig. 8(e) a limit cycle as a
phase portrait, and the periodic oscillations of condensate in
Fig. 8(f).

4.1.4 Global bifurcations with the damping coefficient γ as
control parameter

The damping parameter γ is used as a control parameter,
and the other parameters used are given by the following set
of data: m = 0.8, g0 = 0.75, g1 = −0.9, υ = 2, ε = 0.04,
and V0 = 50. According to the bifurcation diagram plotted
in Fig. 4(d), one sees that the periodic oscillations appear
at γc = 9.7, while the critical value of γ obtained theoret-
ically is 8.76. Recalling the scale transformation γ → εγ ,
the gap 0.0376 between these values can be explained as
indicated above. To confirm the period-doubling bifurca-
tions process leading to the homoclinic chaos, we depict
some phase portraits as follows. For γ = 0.5, according to
our theoretical prediction, the chaotic oscillations are ex-
pected. Figure 9(a) presents a strange attractor as phase

portrait and the aperiodic oscillations of condensate can
be seen in Fig. 9(b). Let us continue with γ = 6. Expect-
ing analytically a chaotic dynamics of condensate, we ob-
tain in Fig. 9(c) a period-2 attractor as the phase portrait,
and the quasiperiodic oscillations of the condensate are ob-
served in Fig. 9(d). Finally, when γ = 11, theoretically,
the regular dynamic of the condensate is expected. Fig-
ure 9(e) presents a limit cycle as the phase portrait, proof
of periodic oscillations of the condensate as we can see in
Fig. 9(f).

4.2 Basin erosion pattern

A basin of attraction is defined as the set of points taken as
initial conditions, which are attracted to a fixed point or an
invariant set. In this section, we choose the same set of pa-
rameters as in Sect. 4.1, i.e., m = 0.8, g0 = 0.75, g1 = −0.9,
υ = 2, γ = 5. When the optical intensity V0 is taken as the
control parameter as shown in the bifurcation diagram (see
Fig. 4(a)) of R2 versus V0 with ε = 0.02, by performing a
scan of the initial conditions in the (R0,X0) plane for vari-
ous values of V0, we find that when V0 is less than the homo-
clinic critical value, the basins of attraction are regular (see
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Fig. 9 (a)–(b) Chaotic
oscillations for γ = 0.5.
(c)–(d) Period-2 attractor
and quasiperiodic
oscillations for γ = 6.
(e)–(f) Regularized
oscillations for γ = 11. The
other parameters used are:
g1 = −0.9, m = 0.8, υ = 2,
ε = 0.04, g0 = 0.75 and
V0 = 50

Fig. 5(a)). As V0 increases above the analytical threshold
(i.e., V0c = 28.5), the regular shape of the basin of attrac-
tion is destroyed and the fractal behavior becomes more and
more visible (see Figs. 5(b) to 5(d)). Note that the results of
Fig. 5 represent the basins of attraction of the motion around
the two fixed points (±R1,0) of potential as in Fig. 1(a).

5 Conclusion

The goal of this paper was the study of the nonlinear dy-
namic of a (BEC) with a repulsive two-body interaction and
attractive three-body interaction loaded into a moving opti-
cal lattice. Our investigations reveal that the very small val-
ues of the optical intensity V0, i.e., the very small values of
the potential well depth of the lattice are favorable to the
regular oscillations. On the contrary, the very small values
of the strength of the effective three-body interaction g1, the
velocity of optical lattice υ , and the damping coefficient γ

are favorable to the chaotic oscillations of the condensate.
This study reveals also that the MM for the prediction of
homoclinic chaos in the dynamic of condensate with both
repulsive two-body interaction and attractive three-body in-

teraction predicts sure enough the appearance or the disap-
pearance of period-2-attractor in the phase space. Focusing
our attention on some control parameters as V0, g1, υ , γ , we
observe numerically that, when these parameters evolve, the
process of period-doubling bifurcations is the route leading
to a chaotic dynamic or to a periodic oscillations of conden-
sate. It comes from our investigations that regulating increas-
ingly these control parameters when others are fixed may be
helpful in regulating transient chaos in the dynamic of parti-
cle number density of condensate |ψ |2.
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