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Abstract

Rank-metric codes have been studied over finite fields and the applications have been
given in network coding and cryptography. Recent works on nested-lattice-based network
coding allow the construction of more efficient physical-layer network coding schemes
with network coding over finite principal ideal rings. In this new algebraic approach, it is
necessary to detect and correct errors introduced into the system.

In this thesis, it is shown that some results in the theory of rank-metric codes over finite
fields can be extended to finite commutative principal ideal rings. More precisely, the rank
metric is generalized and the rank-metric Singleton bound is established. The definition
of Gabidulin codes is extended and it is shown that their properties are preserved. The
theory of Grobner bases is used to give the unique decoding, minimal list decoding, and
error-erasure decoding algorithms of interleaved Gabidulin codes. These results are then
applied in space-time codes and in random linear network coding as in the case of finite
fields. Specifically, two existing encoding schemes of random linear network coding are

combined to improve the error correction.

Keywords: finite principal ideal rings, Galois extensions, Grobner bases, interleaved
Gabidulin codes, random linear network coding, rank-metric codes, skew polynomials,
space-time codes.



Résumé

Les codes en métrique rang ont été étudiés sur des corps finis et les applications ont
été données en codage réseau et en cryptographie. Des travaux récents sur le codage
réseau basé sur les réseaux de points emboités permettent de construire des schémas de
codage réseau de couche physique plus efficaces avec un codage réseau sur les anneaux
commutatifs finis principaux. Dans cette nouvelle approche algébrique, il est nécessaire
de détecter et de corriger les erreurs introduites dans le systéme.

Dans cette theése, il est montré que certains résultats de la théorie du codage en
métrique rang sur les corps finis peuvent étre étendus aux anneaux commutatifs finis
principaux. Plus précisément, la métrique rang est généralisée et la borne de Singleton
en métrique rang est établie. La définition des codes de Gabidulin est étendue et leurs
propriétés sont préservées. La théorie des bases de Grobner est utilisée pour donner des
algorithmes de décodage unique, de décodage en liste minimal et de décodage d’erreur-
effacement des codes de Gabidulin entrelacés. Ces résultats sont ensuite appliqués dans le
codage spatio-temporel et dans le codage réseau linéaire aléatoire, comme dans le cas des
corps finis. Plus précisément, deux systémes du codage réseau linéaire aléatoire existants

sont combinés pour améliorer la correction d’erreurs.

Mots clés: anneaux finis principaux, extensions de Galois, bases de Grébner, codes de
Gabidulin entrelacés, codage réseau linéaire aléatoire, codes en métrique rang, polynomes

tordus, codes spatio-temporels.
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Notations

Rings and modules

F, Finite field of order ¢

/. The ring of integers modulo n

Ly [i] The ring Z, + iZ, where i* = —1

R A finite commutative principal ideal ring

alb a divides b, i.e. b = ca for some c € R

pr (M) The minimum number of generators of the R-module M
({u;}1<j<r) | The R-submodule generated by {u;}i<j<,

Matrices
Rmxm The set of all m x n matrices with entries from R
I, The k x k identity matrix
row (A) The R-submodules generated by the row vectors of the matrix A
col (A) The R-submodules generated by the column vectors of the matrix A

diag (dy,...,d,) | A diagonal matrix
rank (A) The rank of the matrix A
freerank (A) The free rank of the matrix A

Galois extensions of finite principal ideal rings

R = Ry x -+ X Ry | The decomposition of R as the product of local rings R;

m;) The maximal ideal of R

]FQ(i) The residue field of R(i), i.e. R(i)/m(i)

V(i) the nilpotency index of m;

St The Galois extension of R; of dimension m
M) The maximal ideal of Sy

o) A generator of the Galois group of Sp;

S =81 x - x5, | The Galois extension of R of dimension m

o= (O'(i))l <i<p A generator of the Galois group of S

1X



Skew polynomials

S[X, o]
S[X70]<k

f=lo+ X+ + [ X"

deg (f)
Im (f)
le(f)
it(f)
f(b)
f(b)
ker f

Grobner bases of modules

S[X, O.]E+1

(e(O)’ e . ’e(@)
Xoed

ind (Xe)
Xaelh)| xozell)

Mon (S[X, o))
i

f=>" cX%el
Im (f)

le(f)

It (f)

deg (f)

fh

f-5 . h

Rank-metric codes

M
d(M)

d(C)

CJ_
Gabk (g)

77777

The skew polynomial ring over S with automorphism o
The set of all skew polynomials of degree less than k

An element of S[X, o], with f, #0

The degree of f,ie. n

The leading monomial of f,ie. X"

The leading coefficient of f, i.e. f,

The leading term of f, ie. f, X"

The element fob+ fio (b) + -+ + fno™ (b) where b € S
The vector (f (b1),..., f(b,)) where b =(by,...,b,) € S"
The kernel of f,ie. {z € S: f(z)=0}

over skew polynomials

The ¢ 4 1-fold direct product of S[X, o]
The canonical basis of S[X, o]+

A monomial in S[X, o]

The index of X*e® i.e.

X*el) divides X*2e) ie. [} =1y and ag < s
The set of monomials of S[X, o]

A monomial order on Mon (S[X,o]*™)

An element of S[X, o], with ¢; # 0 and X*1e() =

The leading monomial of f, i.e. X*1el)

o« e > Xane(ln)

The leading coefficient of f, i.e. ¢;
The leading term of f, i.e. ¢; X*1e(V)
The degree of f, i.e. ay

f reduces to h by F' in one step

f reduces to h by F

A matrix rank code, i.e. a subset of R™*"

The rank distance of a matrix rank code M , i.e.
min{rank (A —B): A, Be M, A # B}

A vector rank code, i.e. a subset of S™

The rank distance of the vector rank code C, i.e.
min{rank(u—v): u, veC, u#v}

The dual of C

The Gabidulin code of length n, dimension k£ and support g € S"

..,8Y) | An Interleaved Gabidulin code




Introduction

In a communication network, the transmitters can send information simultaneously to the
receivers. These are represented by a matrix where rows consist of various information.
Practically, it may happen some perturbations and the received signals be different from
the transmitted ones. In such predicament, for securing the system against noises, one
can use the rank-metric codes to detect and correct errors.

Rank-metric codes

Rank-metric codes [I6] are codes for which each codeword is a matrix and the distance
between two codewords is the rank of their difference. The most important family of
rank-metric codes is that of Gabidulin codes [16], [24], [63]. They are optimal in the
sense that they achieve the rank-metric Singleton bound. In [24], Gabidulin used the
Galois extension to give the vector representation of rank-metric codes. He also gave a
polynomial-time unique decoding algorithm of Gabidulin codes.

The length of a Gabidulin code is lower bounded by the degree of the Galois extension.
To increase the code length, we can use an interleaved Gabidulin code [46] which is a direct
sum of several Gabidulin codes. Another advantage of interleaved Gabidulin codes is the
existence of polynomial-time decoding algorithms [46], [67], [79] that can decode beyond
the error correction capability with high probability. Nowadays, rank-metric codes are
used in space-time coding [48], public key cryptosystems [25] and random linear network
coding [69].

Space-time codes based on rank-metric codes

A space-time code is a multiple-input/multiple-output transmit strategy for fading chan-
nels in point-to-point single-user scenarios. It was introduced in [74] by Tarokh et al. It
combines the space diversity, provided by multiple antennas, and the time diversity to
increase system capacity and reduce multipath fading. Among the performance criteria
for space-time codes, we have the rank criterion [74] which states that in order to achieve
the maximum diversity, the rank of the difference of two distinct codewords has to be
maximal. On the other hand, for any space-time block code there is a tradeoff between
the transmission rate and the transmit diversity gain [74], [47]. As in [37], a space-time
block code that achieves this rate-diversity tradeoff will be called an optimal space-time



block code. To construct these optimal codes, rank-metric codes can be used. Thus,
in [48] Lusina et al. used rank-preserving map from finite fields to Gaussian integers to
construct optimal space-time block codes from rank-metric codes over finite fields. In [2],
Asif et al. used interleaved Gabidulin codes to construct space-time block codes and com-
pared them to orthogonal space-time block codes. In [61], Puchinger et al. extended the
works of Lusina et al. [48] to Eisenstein integers. They also proposed decoding scheme
of space-time block codes using lattice-reduction-aided equalization and error-erasure de-
coding algorithm of Gabidulin codes. In [3], Augot et al. transposed the theory of rank

metric and Gabidulin codes to the case of fields of characteristic zero.

Rank-metric codes in random linear network coding

A random linear network coding is a technique that can be used to disseminate information
in networks and improve the performance of communication systems. In the transmission
model for end-to-end coding over finite fields, the channel equation is given by Y =
AX + E, where X is the transmitted matrix whose rows are packets transmitted by the
source node; Y is the received matrix whose rows are the packets received by the sink
node; A is a transfer matrix corresponding to the overall linear transformation applied
by intermediate nodes of the network and E is an error matrix whose rows are linear
combinations of corrupt packets injected in the network. Random matrices A and E are
unknown to the destination. The problem is to recover the transmitted codeword X from
the received matrix Y.

Since linear network coding is vector-space preserving, Koétter and Kschischang [38]
suggested the use of a basis of a vector space as the rows of the transmitted matrix. They
defined a distance function between subspaces, constructed a family of constant-dimension
subspace codes and the decoding algorithm. In [69] Silva et al. used the lifted rank-metric
codes to show that minimum distance decoding of constant-dimension subspace codes can
be reformulated as a generalized decoding problem for rank-metric codes. They then gave
an error-erasure decoding algorithm of Gabidulin codes to solve the problem of error

control in random linear network coding.

Network coding over finite principal ideal rings

A principal ideal ring is a ring in which any ideal is generated by one element. In a digital
modulation system, some signal constellation sets can be represented by a finite principal
ideal ring. In particular [22], if n is some positive integer then the signal constellation
set of the n?-ary square quadrature amplitude modulation is represented by the ring
Zyli] = Z, + iZ, where i* = —1 and Z, is the ring of integers modulo 1. The works
on nested-lattice-based network coding [51], [22] allow the construction of more efficient
physical-layer network coding schemes with network coding over finite principal ideal
rings. Motivated by this algebraic approach, space-time codes and random linear network
coding were studied in the specific cases of principal ideal rings.



In [37], Kiran and Rajan extended the definition of Gabidulin codes to Galois rings
and used a rank-preserving map to construct an optimal space-time block code. In [44],
Liu et al. defined the notion of ) -rank over the ring Z, [¢] and used it to construct
the rank metric space-time codes for the 2?* quadrature and amplitude modulated. The
works of Silva et al. [70] and Nobrega et al. [54] were extended respectively in [21] and
[53] to finite chain rings. The works of Kotter and Kschischang [38], and Gorla and
Ravagnani [30] were extended in [31] to finite principal ideal rings.

Note that the works of [31], [21I] and [53] allow to improve the error correction in
random linear network coding over finite principal ideal rings. As in the case of finite
fields, another method that one can use is rank-metric codes. Thus, in this thesis we
focus on a problem raised by Frank R. Kschischang which consists of studying properties
of rank-metric codes likely to be preserved over finite principal ideal rings. The resolution
of this problem will allow to give the encoding and decoding schemes for random linear
network coding over finite principal ideal rings. Moreover, an optimal space-time block
code will be constructed for all digital modulation systems whose signal constellation set
is algebraically represented [22] by a finite principal ideal ring.

Our contribution

To extend rank-metric codes to finite principal ideal rings, we first extend the rank metric
using the Smith normal form of a matrix. We then use the Galois extensions to prove that
Gabidulin codes can be extended to finite principal ideal rings and that their properties
are preserved. As in [46], we show that collaborative decoding of interleaved Gabidulin
codes can be translated to the problem of reconstruction of skew polynomials. Analogous
to [41], the theory of Grobner bases is used to give an iterative algorithm to solve this
reconstruction problem. The solutions of this problem allow us to give the unique decod-
ing, minimal list decoding, and error-erasure decoding algorithms of interleaved Gabidulin
codes. We then apply these results to space-time coding and random linear network cod-
ing. Specifically, we show that there is a rank-preserving map from a finite principal ideal
ring to a complex signal set and we use it to construct an optimal space-time block code.
We combine the encoding and decoding schemes of [69] and [70] to improve the error

correction in random linear network coding..

Organization of the thesis

In Chapter [I] we recall some properties of matrices and modules over principal ideal
rings. We show that the rank metric can be extended to principal ideal rings. We use
the Galois extensions of finite principal ideal rings to give the vector representation of
matrices. We also show that some properties of linearized polynomials over finite fields
can be generalized to finite principal ideal rings. We review some facts about the theory
of Grobner bases of modules over skew polynomials.

In Chapter [2| we establish the rank-metric Singleton bound and prove that Gabidulin
codes achieve this bound as in the case of finite fields. We describe the interleaved



Gabidulin codes, give the key equation and the algorithm to solve it. The decoding
algorithms are given.

In Chapter [3 the applications in space-time codes and in random linear network
coding are given.

We then present our conclusions and future research directions.



CHAPTER 1

PRELIMINARIES

In this chapter, we give mathematical tools that we will use to extend some results in
rank-metric codes over finite commutative principal ideal rings. This chapter is organized
as follows.

In Section 1.1, we describe finite chain rings and use the structure theorem for fi-
nite commutative rings to show that any finite commutative principal ideal ring can be
decomposed as a direct sum of finite chain rings.

In Section 1.2, we define the Smith normal form and give a method to compute it in
finite commutative principal ideal rings. We also show how to use the Smith normal form
to solve a linear system of equations.

In Section 1.3, we use the Smith normal form to show that the rank metric can be
extended to principal ideal rings.

In Section 1.4, we construct the Galois extension of finite principal ideal rings and use
it to give the vector representation of matrices.

In Section 1.5, we show that some properties of linearized polynomials can be extended
to finite principal ideal rings. We also give some properties of Grobner bases of modules
over skew polynomials that we will use to solve the key equation.

Throughout this thesis, by ring we mean a commutative ring with identity element,
ring homomorphisms are assumed to be unitary, and all modules are unital. Unless
otherwise specified, we assume that R is a finite principal ideal ring. An element u € R is
called a unit if uv = 1 for some v € R. Let a,b € R, we say that a divides b, denoted
alb, if b = ca for some ¢ € R. The set of all m x n matrices with entries from R will be
denoted by R™*". The k x k identity matrix is denoted by I;. Let A € R™*" we denote
by row (A) and col (A) the R-submodules generated by the row and column vectors of
A respectively.

1.1 Finite chain rings

Definition 1.1 [/9] A chain ring is a ring whose ideals are linearly ordered by inclusion.
A local ring is a ring with exactly one maximal ideal.

Proposition 1.2 [J9] A finite ring is a chain ring if and only if it is a local principal

vdeal ring.



Example 1.3 Ezamples of finite chain rings are the ring Zx, p is a prime, and the ring
Zar 1], whose mazimal ideals are pZy. and (1 + i) Zgx [i], respectively. Other examples of

construction of finite chain rings using the ring of algebraic integers are given in [37/.

In a finite chain ring, every ideal is a power of the maximal ideal. More specifically
we have the following:

Proposition 1.4 [[Y/Assume that R is a finite chain ring, ™ a generator of its maximal
ideal, v the nilpotency index of w, i.e., the smallest positive integer such that © = 0.
Then, every ideal of R is of the form ©'R, for i = 0,...,v, and for all a € R there is a

unique i € {0,...,v} and a unit u € R such that a = 7'u.

If a = 7'u as in Proposition , then the integer ¢ is denoted by v, (a). Thus, for all
a,b € R, a divides b if and only if v, (a) < v, ().

Definition 1.5 1) A Galois ring of characteristic p" and rank r, denoted by GR (p™, ),
is the ring Zyn [ X| /] (f), where f € Zyn [X] is a monic polynomial of degree r, irreducible
modulo p and (f) denotes the ideal generated by f.

2) A polynomial g (X) = X*+p(as 1 X'+ -+ a1 X 4+ ag) € GR (p", ) [ X], where
ag is a unit in GR (p",r) is called an Eisenstein polynomial over GR (p",r).

Proposition 1.6 [/9] The Galois ring GR (p", 1) is a finite chain ring whose the maximal
ideal is pGR (p™,r).

The following theorem give a characterization of finite chain rings.

Theorem 1.7 [/9, Theorem XVIIL.5] Assume that R is a finite chain ring, v the nilpo-
tency index of the maximal ideal m of R, the characteristic of R is p" and F, = R/m.

Then, there exist integers t and s such that
R=GR(p"r)[X]/ (9(X),p"X")

where t = v — (n—1)s > 0 and g(X) is an Eisenstein polynomial of degree s over

GR (p™,r). Conversely, any such quatient ring is a finite chain ring.

The structure theorem for finite commutative rings [49, Theorem VI.2| says that each
finite ring can be decomposed as a direct sum of finite local rings. Therefore, each fi-
nite principal ideal ring can be decomposed as a direct sum of finite chain rings. More
specifically, we have the following:

Theorem 1.8 [/9, Theorem VI.2] There exist a positive integer p and finite chain rings
Ry, fori=1,...,p, such that the finite principal ideal ring R is isomorphic to

Ry x «-+ X Ry,y. Furthermore, this decomposition is unique up to permutation of direct
summands.



Example 1.9 Let R = Zyy = Z/12Z, Rny = Z/37Z , Ry = Z/4AZ. The map
d:R— R(l) X R(g)

given by
x+12Z — (x + 3Z,x + 47Z)

is a ring isomorphism. The inverse morphism ®~ ' is defined by
(x 4+ 3Z,y + 4Z) — ey + yea,

where e; = 4 + 127 and e = 9 + 127.

1.2 Smith normal form

In [71], Smith proved that each matrix with integer coefficients can be reduced by el-
ementary transformations into a diagonal matrix such that each diagonal element is a
divisor of the next one. In [34], Kaplansky studied the rings in which this result can be
generalized, especially the principal ideal rings. In [72], Storjohann gave an algorithm
for computing the Smith normal form over principal ideal rings and its complexity. Each
finite principal ideal ring can be decomposed as a direct sum of finite chain rings. Thus,
one can also use the simple method given in the proof of [29, Theorem 1.1.12.] to compute
the Smith normal form over finite chain rings. As in the proof of [9, Theorem 15.9], one
can then compute the Smith normal form over finite principal ideal rings. The Smith
normal form allow to solve a system of linear equations over principal ideal rings [12], [52].
As other application, we will use the Smith normal form to show that the rank metric
can be extended to principal ideal rings.

1.2.1 Description

Definition 1.10 [9/ A matrix D = (d;;) € R™" is called a diagonal matriz if
d;; = 0 whenever i # j. A diagonal matric D = (d;;) € R™™ can be written as

D = diag (dy, . ..,d.), where r = min{n,m}, and d; = d;;, fori=1,..,r.

Remark 1.11 If m < n, then

d 0 0 0 0

. 0 do O 0 0
diag (dy,...,d,) = o

0 0 d- O 0



If m > n, then

d, 0 0

0 dy

: 0
diag (dy,...,d.) = 0 0 d,

0 0 O

0O .- 0 0

By [9, Theorem 15.24], we have the following:

Theorem 1.12 For all matrix A € R™ ", there are two invertible matrices P, Q, and a
diagonal matriz D = diag (dy,ds, . .., d.), satisfying the divisibility relations dy|ds| . .. |d,,
such that A = PDQ. The elements dy,ds, ..., d, are unique up to associates.

Definition 1.13 The matriz D, in Theorem[1.1%, is called a Smith normal form of
A.

1.2.2 Computing the Smith normal form over finite chain rings

We will give the steps that allow to compute the Smith normal form over finite chain
rings. Assume that R is a finite chain ring, 7 a generator of its maximal ideal. Let
A = (a;;) € R™". To compute the Smith normal form of A we can use the following
steps given in the proof of [29] Theorem 1.1.12.].
1) Choosing a pivot
- Multiplying by permutation matrices as necessary, we may assume that

ar =g (a11) < vy (aij)

for all 1, 5.
- Multiplying the first row by a unit, we may assume that a;; = 7.

a1

m Q1o -+ Q1n
Q21 Q22 -+ Q2n
Am,1 Gm2 *° Omn

2) Eliminating entries
- Using elementary row and column operations as necessary, we can assume that

a1 = 0a;1 = 0 for Z,j Z 2.

T 0 0
0 age as
0 Qm,2 Am,n



3) Iteration
- Apply induction to the submatrix of A obtained by deleting the first row and
column.
Note that the invertible matrices P, Q such that PAQ = D where D is a Smith
normal form of A can be computed simultaneously by applying the same row operations

on the matrix I,, and the same column operations on the matrix I,,.

Example 1.14 Let

A:

w o O
N NN
o O O
NN O

be a matriz with coefficients in Zy.
Step 0: initialization

D:A,P=I3,Q:I4-

Step 1: Ly <— L3 ( exchange the first row with last row)

320 2 00 1
D=(o0o2o02 |, P=|l010]| Q=L
020 0 100

Step 2: Ly «— 3Ly (multiplying the first row by 3)

120 2 00 3
D=(o2o02 |, P=l010]. Q=L
0200 100

Step 3: Cy +— Cy —2Cy; Cy +— Cy4 — 2Cy ( column operations)

1 20 2
10 00 00 3 0100
D: 2 2 7P: 1 5 —
8280 108 ° 000
0 0 01
St@p 4: Ly +— Ls— Ly
1 000 00 3 L2002
p=[oz202|, P=[o10] =" '""
. 00 0 2 ; B 1 30 ’ oo
0 001
Step 5: C4<—C4—CQ
1 000 00 3 L 200
010 3
D=|0200]|,P=]010], Q= 0010
00 0 2 1 30
0 001



Step 6: C; +— C,

1 2
1 000 0 0 3 01 g 8
D=|(0200],P=]010 |, =l 0001
2 1
00 0 30 00 10
Thus, D is a Smith normal form of A and PAQ = D.

1.2.3 Computing the Smith normal form over finite principal
ideal rings

By Theorem 1.8} there is a ring isomorphism ® : R — R(1)x---xR,). Let ®; : R — Ry

be the composition of ® and the i-th projection map Ry X --- X R,y — R, for

1=1,...,p. We extend & coefficient-by-coefficient as a map from R™*" to

R?l‘)x” X - X RZZ)X". We also extend ®; coefficient-by-coefficient as a map from R™*" to
RZ‘)X”. As in the proof of [9, Theorem 15.9|, we have the following:

Proposition 1.15 Let A € R™". Set Ay = ®;(A) € RZL)X" L fori=1,...,p. Let
D¢ € RZL)X” be a Smith normal form of Ay and let the invertible matrices Py, Q) with
coefficients in R such that Ay = P D) Q), fori=1,...,p. Set

D =07 ((Dqy, ..., D)),
P =071 ((Pu),....P()),

and

Q=2""((Qu):---.Qu)) -
Then, the matrices P, Q are invertible, A = PDQ, and D is a Smith normal form of A.

Thus, the computation of the Smith normal form over finite principal ideal rings is
reduced to the computation over finite chain rings.

Example 1.16 Consider the isomorphism ® : R — RyX R given in Example .
Let

§ 10 4 4
A= 4 2 8 2
11 6 0 6

be a matriz with coefficients in R. The image of A in Ry is

2 11
Ap=|12 22
2000
and the mmage of A in Ry is
0200
An=|020 2
3 20 2

10



By Example P2)A) Q) = D) where

1200
1000 0 0 3 0130
Doy=]10200], Pey=]1010 |, Qo= 000 1
0020 1 30 0010
We also have P(1)A1)Q) = D) where
2200
1000 1 00 02 9 0
0000 110
0001
Using @1, we get PAQ = D where
52 0 0
1 000 4 0 3 05 11 0
D= 2 , P=| 4 , =
0060 L 00 45
00 9 4

1.2.4 System of linear equations

As in [12] and [52], we will show how to use the Smith normal form to solve a system of

linear equations in R. A general system of m linear equations with n unknowns can be

written as
11T, + -+ a1 Ty = by
a21T1 + - + a2, Ty = by
(1.1)
Am 121 +-+ AmnTn = bm
where z4,...,x, are the unknowns, a;1,a12...,ann are the coefficients of the system,
and by,...,b,, are the constant terms.

Equation (1.1)) is equivalent to a matrix equation of the form

Ax=Db (1.2)
where
a1 - Q1n X by
A= , X = : and b =
Am,1 *° Amn Tn bm

Let D = diag (dy,...,d,) be a Smith normal form of A and the invertible matrices
P, Q such that PAQ = D. Then, Equation (1.2)) is equivalent to

Dy =c

where y = Q 'x and ¢ = Pb.
Thus, the necessary and sufficient conditions such that Equation (|1.1)) has a solution
are as follows :

d; must divide ¢;, for i =1,...,r, and ¢; =0, for i > r.

11



Example 1.17 Let A be the matriz given in Example[I.16. Consider the equation

Ax=Db (1.3)
where
2
b= 4
7
Since PAQ = D where
1000 4 0 3 52 00
0 5 11 0
D=]10200{|, P=]43281], Q= ;
00 4 5
006 0 1 70
00 9 4
Equation 15 equivalent to
10 00 )
0200 | y=]|]14 (1.4)
006 0 6

wherey = Q7 'x. A solution of (-) is (5,2,1,0). Thus, a solution of is (5,9,4,9).

1.3 Rank metric

In field theory, the rank of a matrix defines a group-norm in the matrix space of the same
size. In this subsection, we use the Smith normal form to extend this property to principal
ideal rings. Let M be a finitely generated R-module. Let {a;,...,a,} be a subset of M.
The R-submodule of M generated by {ai,...,a,} is denoted by (ay, ..., a,) . Recall that

{aj,...,a,} is linearly independent over R if whenever aja; + - - - + a,.a, = 0 for some
g, ..., € R then oy =0,...,a, = 0. If {a;,...,a,} is linearly independent, then we
say that it is a free base of the free module (ay,...,a,),. Asin [9, page 190] we use the

following notation.

Notation 1.18 Let M be a finitely generated R-module. The smallest number of elements
in M which generate M as an R-module is denoted by pgr (M). If M = {0}, then we set

Lemma 1.19 [/5/ Let F be a finitely generated free R-module and {ey,...,e,} be a free
basis of F'. Then, ur (F) = n and any generating set of F' consisting of n elements is a
free basis of F.

Proposition 1.20 Let M be a finitely generated R-module, ugr (M) := ry, and let N

be a submodule of M, ugr(N) := ry. Then, ry < 73 and there is a generating set
{uibr<i<ry, of M and ry scalars dy,...,d,, of R such that {d;u;}1<;<ry generates N,
with dy|ds|. .. |d,,. Furthermore, if M is a free module then {u;}1<i<y,, is a free basis of
M.

12



Proof. Let {y;}1<i<ry be a generating set of N and {z;}1<i<,,, be a generating set of
M. Then, since N is a submodule of M, there is a matrix A € R™*"~ such that

(yh S 7y7"N) = (‘rh s 71;7’1%) A.

Let D = diag (dy,...,d.) be a Smith normal form of A and P, Q be the invertible
matrices such that A = PDQ. Set

(Ury .o tpy,) = (T1,.. ., 2y, P

and
(V1,5 V) = (Y1, - Uy ) Q1

Then {u;}1<i<r,, and {v;}1<i<r, are respectively the generating sets of M and N, and
we have v; = d;u;, for v = 1,...,r. Thus, r = ry < ry. If M is a free module, then
{u; }1<i<r,, is a free basis of M, by Lemma[1.19, =

Note that if N and N’ are two submodules of a finitely generated R-module, then
pr (N + N') < ugr(N)+ pgr (N'). Thus, the minimum number of generators of a module
over a principal ideal ring has several properties similar to the dimension of vector spaces.
Therefore, analogous to the case of fields, we give the following definition.

Definition 1.21 (Rank of matriz). Let A € R™ ™.
(i) The rank of A, denoted by rankg (A), or simply by rank (A), is the number

pir (col (A)).
(ii) The free rank of A, denoted by freerankg (A) or simply by freerank (A), is
the mazimum of the ranks of free R-submodules of col (A).

Lemma 1.22 [, Lemma 15.12 | Suppose I, ..., I, are ideals in R such that
L+ ---+1,#R.

Then
pr(R/Iy x -+ x R/1,) =n.

Lemma 1.23 [, Theorem 15.33 | Let M be a finitely generated R-module. Then
M = (R/a1R) x -+ X (R/a,R)

with a1 R C asR C -+ C a,R. Furthermore, if no summand R/a;R is zero here, then this

decomposition is unique.

Proposition 1.24 Let A € R™"\ {0} and D = diag (di,...,d.) be a Smith normal
form of A. Then,
col (A) Zrow (A),
rank (A) =max{i € {1,...,7} : d; # 0},
and

freerank (A) = max{i € {1,...,7r}:d; is a unit}.
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Proof. Let P and Q be the invertible matrices such that A = PDQ. Set
s=max{i € {1,...,r}:d; # 0},

and
M=dRx- - xd,R.
Then,
row (A) =row (DQ) = M
and

col (A) = col (PD) = M.

Since R is a principal ideal ring, there is ¢; € R such that d;R = R/¢;R, fori =1,...,s.
As dy|dy| ... |ds, we have c;R C R C -+ C ¢sR. Thus, by Lemma pur (M) =s.

Let

t=max{ie€ {1,...,r}:d; is a unit}.
Assume that t # 0. Then ¢; =0, fori =1,...,t, so
col (A) = R"' x (R/ciy1R) x -+ x (R/csR).
Let F be a free submodule of col (A) such that
u:= ug (F) = freerank (col (A)).

Then, since R is a Frobenius ring, F' is an injective module [43]. So, col (A) = F & N
where N is a submodule of col (A). By Lemma [1.23]

N 2 (R/biR) % - - x (R/byR)
with by|by_1|- - - |br. Thus,
col (A) = R" x (R/b1R) x --- x (R/b,R) .
Consequently ¢ = u, by Lemma [[.23] =
Corollary 1.25 Let A € R™*™. We have rankg (A) = pg (row (A)) and freerankg (A)

is the maximum of the ranks of free R-submodules of row (A).

Example 1.26 If A is the matriz given in Example then rank (A) =3 and
freerank (A) = 1.

Remark 1.27 In linear algebra over fields, the rank-nullity theorem states that the sum
of the rank of a matrix and the dimension of its right kernel is equal to the number of its
columns. Using the definition of rank given in Definition this property is not true

in general over finite principal ideal rings, due to zero divisors. Indeed, let Zg be the ring

()

be a matriz with coefficients in Zg. The right kernel of A is generated by the vectors (3,0)
and (0,3). By Theorem rank (A) = 2. Thus, the rank-nullity theorem can not be
applied to the matriz A.

of integers modulo 6 and
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Proposition 1.28 (Rank Decompositions). Let E € R™", rank (E) = t.

1) There are A €eR™ ', rank (A) = t, and B eR™", freerank (B) = t, such that
E = AB.

2) There are A’eR™ ', freerank (A') = t, and B'€R™™, rank (B') = t, such that
E=AB.

Proof. Let D = diag (dy, . .., d,) be a Smith normal form of E and P, Q be the invertible
matrices such that E = PDQ.
1) Set
D-(D, D, )

where D; and D, are the submatrices of D of sizes m x t, and m x (n — t), respectively.

Set
[ Q
° (&)

where Q; and Qs are the submatrices of Q of sizes t X n, and (n — t) X n, respectively.
Then
E=AB

where A = PD; and B = Q,. By Proposition |1.24] rank (A) =t and freerank (B) = t.
2) This result can be proved as above using the column decomposition of P. m

The following theorem extends the notion of rank metric to principal ideal rings.

Theorem 1.29 The map R™*" — N given by A — rank (A) is a group-norm, i.e.,
(i) for all A € R™", rank (A) =0 if and only if A = 0;
(ii) for all A € R™ ™, rank (—A) = rank (A);
(i11) for all A, B € R™*™,

rank (A + B) < rank (A) + rank (B).
Proof. (i) and (ii) are straightforward. Proof of (iii): let A, B € R™*" | then
col (A +B) C col (A) + col (B).
Hence, by Proposition [I.20]
pr (col (A +B)) < ug(col (A) + col (B)).
But by the definition of g, we have
pr (col (A) + col (B)) < ug (col (A)) + pr (col (B)).
Thus, rank (A + B) < rank (A) + rank (B). m

Corollary 1.30 The map R™™ x R™"™ — N given by (A,B) — rank(A —B) is a
metric.

Remark 1.31 In general, freerank does not satisfy conditions (i) and (iii) of Theorem
(2239
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1.4 Galois extensions of finite principal ideal rings

In [24], Gabidulin used Galois extensions of finite fields to give a vector representation
of rank-metric codes. In [5], Auslander and Goldman introduced the notion of Galois
extension of commutative rings. In [I4], Chase, Harrison, and Rosenberg generalized the
classical Galois correspondence theorem from fields to commutative rings. In [28], Ganske
and McDonald studied the Galois theory of finite local commutative rings. In this section,
we show that every finite principal ideal rings admits the Galois extension of any order.

We then use this result to give a vector representation of matrices as in the case of finite

fields.

1.4.1 Galois extensions

Definition 1.32 [77/ Let F be a ring extension of a ring K and let G be a finite group
of automorphisms of F'. The ring F' is called a Galois extension of K with Galois group
G if :

(i) F¢ = K, where F¢€ ={z € F:7(x) =2, VT € G };

(1) for each mazimal ideal M of F and for each 7 € G\ {idg} there is an x € F with
T(x)—x ¢ M.

By Theorem , R = Ry x -+ X Ry. In the following, we identify R with R X
X R,). Let i € {1,..., p}, we denote by m(;) the maximal ideal of Ry;, Fy, = Ry /me
its residue field and v(; the nilpotency index of m;). We denote the natural projection
Ry — Fy,) by ¥). We extend ;) coeflicient-by-coefficient to polynomials over Ry;.

Let m be a nonzero positive integer. Let i € {1,...,p} and hy € R [X] be a
monic polynomial of degree m such that (h(i)) is irreducible in F, [X]. Set Si) =
Ry [X]/ (h@)), where (h(;)) denotes the ideal generated by hg). By [49], S is a free
local Galois extension of R; of R(;-dimension m, with the maximal ideal M ;) = m(;S(),
where the Galois group is cyclic of order m, generated by a power map o) : ag) — oz?;;)
on a suitable primitive element a(;. Moreover, Fq% = S4)/M).

Set S = Sqy x -+ xS, and 0 = (o)) » Let G (S) be the group generated by o.

1<i<

Proposition 1.33 With the above notations, the ring S is a Galois extension of R with
Galois group Gg (S).

Proof. Let 6 = (9(7;))19.9 € Gr(9) and z = (:c(i))lgigp € S such that 0 (z) = =x.
Then, for ¢ = 0,...,p, Op (x(i)) = x(;), consequently x; € R, thus SGr(%) = R,
Let 7 = (T(i))KKp € Gr(9)\{id} and let M be a maximal ideal of S, then there is
ip € {1,...,p} such that

M = Sqy % - X S(ig—1) X M(ig) X S(ig+1) X -+ X Sy,

where M(;,) is a maximal ideal of S(;y). Since 7(;y) # td and S(;,) is the Galois extension of
R;y), there is x(;) € S(;y) such that 7 (x(io)) — Z(io) & Miy). Set y = (y(i)>1gigp where
Yiio) = T(io) and y(;y = 0 if 4 # 4o, then we have 7 (y) —y ¢ M. =
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Remark 1.34 1) Since S(; is a free Rguy-module of rank m, then S is a free R-module
of rank m.

2) Since R is a finite chain ring, then Sy is also a finite chain ring.

3) Since Syy is a finite chain ring, then S is a finite principal ideal ring.

Proposition 1.35 [15, Theorem 3.2.] There is a monic polynomial h € R [X] of degree m
such that S = R[X]/ (h).

Example 1.36 Consider the isomorphism ® : R — RyX R given in Example .
We will construct a Galois extension of R of dimension 4. Set

hay=X*+2X° +2 € Ry [X],
hi) = X' +2X? +3X + 1 € Ry [X],
Sw = Ry [X]/ (hwy) ,

S =R X1/ (he) ,
agy =X + (hw),

@) =X + (he) -

Let the maps o1y : S(1y — Sq1) gwen by o) (x) =23, forallx € Sy, and o) : Sy — S
gwen by o) — aé), that 1s, for all

T =To+ T10(2) + 1’2(]1%2) + :1:304?2) S 5(2),
where xg, 1, T2, T3 € R,
_ 2 4 6
0@2) (T) = To + X1 + D205 + T30y,

Then, S(1y X S(2) is a Galois extension of Ry X Ry where the Galois group is generated
by (0(1), 0(2)). We extend @1 coefficient-by-coefficient to Ry [X] x R [X]. Set

h=a" (hay, h@) = X'+ 8X>+6X>+3X +5,
S =RI[X]/(h),
a=X+(h).
Then, by [15, Theorem 3.2.], S = Suyx S), Say = 45, S =295 and S = 45 ® 9S.

Thus, S is a Galois extension of R where the Galois group is generated by a power map
o+ 4ad + 902
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1.4.2 Vector representation of matrices

In this subsection, we define the group-norm in S™ that will allow to give an R-isomorphic

isometry between S™ and R™*".

Definition 1.37 Let u = (uy,...,u,) € S™. By considering S as R-module, the number
pr (({u1, ... u})) is called the rank of u and denoted by rankg (u) or simply by rank (u).
Where ({u1,...,u,}) denotes the R-submodule of S generated by {uq,...,u,}.

Remark 1.38 Using the same arguments as in the proof of Theorem[1.29, we can show
that the map rank : S™ — N given by u +— rank (u) is a group-norm.

The following proposition gives a relation between Definition and Definition [I.37]
Let (B1,..., Bm) be a free basis of S as R-module. Consider a = (ay,...,a,) € S™. For

Jj=1,...,n, a; can be written as
a; = E ai i Bi;
1<i<m
where a; ; € R. The matrix

Aa = (ai,j)

1<i<m, 1<j<n

is the matrix representation of a in the basis (51, ..., B,) over R.

Proposition 1.39 With the above notations, the map S™ — R™ " given by a — A, is
an R-isomorphic isometry between the normed spaces (S™, rank) and (R™ ™, rank).

Proof. Let a,b € §" and A € R. We have

a:(ﬁb'"aﬂm)Aa
and
b:(ﬁla"'a/ﬁm)Ab-

Therefore,
Aaixb = Aa + NAy.

We now prove that rank (a) = rank (A,). Let r = rank (a), then by Proposition [1.20]
there are r scalars dy,...,d, of R such that {d;5;}1<i<, generates ({a,...,a,}), with
di|ds|...|d,. Thus, there are B € R™*" and C € R"™" such that

(ala o 7an> - (dlﬁla v 7dr6r> B

and
(dlﬂla ce 7d7’/87") = (alv s 7an> C.

18



Let D € R™*" such that

d 0 -+ 0
0 dy :
c 0
D=1 o 0 d,
0 0 0
o --.. 0 0

We have A, = DB and D = A,C. Consequently,
col (A,) = col (DB) C col (D)

and

col (D) = col (A,C) C col (A,) .

Thus, col (A,) = col (D) and, by Proposition rank (Ap) =r. =
Proposition [I.2§ can be interpreted in vector representation as follows.

Proposition 1.40 Let u € S", rank (u) = t.
1) There are a €S, rank (a) = t, and B €R™", freerank (B) =t, such that u = aB.
2) There are a'€S*, freerank (') = t, and B'€R™™, rank (B') = t, such that u =
a'B’.

1.5 Skew polynomials

In [58], Ore introduced the notion of skew polynomials. He then gave a relation between
skew polynomials and linearized polynomials in [57]. In [24], Gabidulin used linearized
polynomials to give the encoding and decoding schemes of Gabidulin codes. In this
section, we show that some properties of linearized polynomials over finite fields [57] can

be generalized to finite principal ideal rings.

1.5.1 Definitions and properties

In the following, we give the definition of skew polynomials over S with automorphism o
without derivation.

Definition 1.41 The skew polynomial ring over S with automorphism o, denoted by
S[X, 0], is the ring of all polynomials in S[X] under the usual addition of polynomials, and
the multiplication is defined by the basic rule Xa = o (a) X, for all a € S, and extended
to all elements of S[X] by associativity and distributivity.

Let f=fo+ fiX+ -+ f, X" € S[X,0] with f, # 0, then n is called the degree of
f, X™ the leading monomial of f, f, the leading coefficient of f, f, X" the leading
term of f, denoted deg (f), Im (f), lc(f) and it (f) respectively. If f = 0, then we put
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deg (0) := —o0, Im (0) := 0, lc(0) := 0 and It (0) := 0. The skew polynomial f is called
monic if lc(f) = 1. We denote by S[X, o] the set of all skew polynomials of degree
less than k. As in the case of classical polynomials, we have the following:

Proposition 1.42 [71] For all f and g in S[X, 0], we have deg (f + g) < max{deg (f),deg (g)}
and deg (fg) < deg(f) + deg(g). Furthermore, if the leading coefficients of g is a unit,

then deg (fg) = deg(f) + deg(g) and there exist unique polynomials q, ¢', r and v’ in
S[X,o| such that f = qg +r (right division) and f = g¢' + ' (left division) with

deg () < deg(g) and deg (r') < deg(g).

McDonald gave the relation between skew polynomials and linear endomorphisms over
finite fields in [49, Corollary I1.16|. By [17, Chapter III, Proposition 1.2.], this result can
be extended as follows.

Proposition 1.43 The map:
S[X,0] — Homg (S, S)
given by

Z (]JZ'Xi'—> Z (ll'O'i

0<1<n 0<1<n

18 a homomorphism of R-algebras. It induces an isomorphism of R-algebras:
S[X,o]/(X™—1) = Homg (S,5).

Note that if R = F,, then S = Fym and o (z) = 29, for all + € F;m. Thus, we now
prove that some results in [57] can be extended to finite principal ideal rings.

Notation 1.44 Let f = fo+fiX+- -+ f. X" € S[X,0],be S andb = (by,...,b,) € S".
1. The element fob+ fi0(b) + - -+ fro™ (b) will be denoted by f (D).
2. The kernel of f isker f:={x € S: f(x)=0}.
3. The vector (f (b1),..., f (by)) will be denoted by f (b).
As §'= Suy x -+ x 5, and M;) = m(;)Sy), we have the following Lemma.
Lemma 1.45 Lety € S. If {y} is linearly independent over R, then y is a unit.

Proof. Suppose that {y} is linearly independent over R and y is not a unit. Set y =
(y(i))1<i<p where y(;) € S(;). Since y is not a unit, then there is ig € {1,..., p} such that
Y(io) is not a unit. Consequently, yq,) € M) = M) S(,) and there is 0 # b, € ml(/i(;g)_l
such that b(io)y(io) =0. Setb= (5(i))1§i§p where 5(1-0) = b(io) and ﬁ(i) = 0 if 7 # i9. Then
by = 0, which is impossible because {y} is linearly independent over R. =

Analogous to [57], we have the following two propositions.
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Proposition 1.46 Let {u;}1<j<, be a subset of S, which is linearly independent over R
Then, there is a monic skew polynomial f € S[X,o| of degree r such that ker f =
({u;}1<j<r), where ({ujti<j<,) denotes the R-submodule of S generated by {u;}1<;<,-

Proof. We prove by inductionon & € {1,...,7}. Set fi = X—0 (u;)u;'. Letz € S, then
z € ker fiiff fi () =0iff o (z) =0 (w)ui'z=0iff o (u;'z) =u;'zwiffu;'z € Riff z €
({u1}). Thus ker f; = ({u1}). Let k € {1,...,r—1}. Assume that there is a monic poly-
nomial fi € S[X, o] of degree k such that ker fi, = ({u;}1<j<k). We claim that fi (ugy1)
is a unit. Indeed, let a € R such that af; (ug1) = 0 then augyy € ker fi, = ({u; }1<j<i),
consequently, a = 0 because {u;}1<j<x+1 is R-linear independent. Thus by lemma |1.45]
fi (urgr) is aumit. Set fro = (X — 0 (fi (wrs1)) fr (urpa) ") X fi, then deg (fry1) = k+1
and {u;}1<j<pt1 C ker fry1 . Let x € ker fiiq, then fr(x) = 0, ie. o(fi(z)) —
o (fr (ugs1)) fa (Uk+1)_1 fe(x) =0, ie o (flc (uk+1>_1 Jr (JU)) = fr (Uk+1)_1 fre (2), ie.
I (ukﬂ)_l fr(x) € R, ie. there is A € R such that fj (uk+1)_1 fr(x) = A\ ie.

r — /\uk+1 € ker fk, le x € <{Uj}1§j§k+1> . Hence, ker fk+1 = <{uj}1§j§k+1> .

Proposition 1.47 Let {u;}1<j<, be a subset of S. Then, the matriz

(0" (4))) g<icr1. \<j<r 18 invertible if and only if {u;}1<j<, is linearly independent over R.

Proof. Assume that {u;}i1<;j<, is linearly independent over R. Let i € {1,...,r}. By
Proposition there is a monic skew polynomial T; € S[X, o] of degree r — 1 such that
ker T; = ({uj}1<j<rjzi). Using the same arguments as in the proof of Proposition [1.46]
we can show that T} (u;) is a unit. Set T} (u;)”" T} (X) = > o<j<r_1 Vi X7, where v; ; € S,

,,,,, 0<i<r—1, 1<j<r’

Conversely, assume that (0" (4;))gcic, 1<j<r is invertible. Let Ay,..., A, be the

elements of R such that A\ju;+---+\u, = 0. Then, we have A\jo? (uy)+---+\.0° (u,) = 0,
fori=0,...r —1. Consequently, Ay =--- =X, =0. =

Corollary 1.48 Let {u;}1<j<, be a subset of S, which is linearly independent over R and
let V e S[X, o] be a monic skew polynomial of degree r such that ker V- = ({u;}1<j<).
Let P € S[X,0]. Then, P(uj) =0, for j =1,...,r, if and only if there is Q € S[X, 0]
such that P = QV'.

Proof. Let () be the quotient and WW be the remainder of the right Euclidean division of
P by V in S[X,0]. Then, P (u;) =0, for j = 1,...,r, if and only if W (u;) = 0, for j =
1,...,r, if and only if W = 0, because deg (W) < r and the matrix (o (u;))
is invertible. m

0<i<r—1, 1<j<r
A direct consequence of Proposition [I.46] and Proposition [I1.40] is the following:

Proposition 1.49 Let w = (w;), ., € S", rank (w) =r. Then, there is a monic skew
polynomial P € S[X, o] of degree r such that P (w) = 0.

As in the case of finite fields [57], the following proposition gives the link between the
degree of a skew polynomial and the rank of its kernel.
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Proposition 1.50 Let P = ag + a1 X + - -+ + a, X" € S[X, 0] such that a;, is a unit for
some ig € {0,...,n}. Then, rank (ker P) < deg (P).

Proof. Suppose that deg (P) < rank (ker P). Set r = rank (ker P), then by Proposition
there is a free basis {bi}lgigm of S and the scalars A1, ..., A, of R such that {\;b;}1<i<,
generates ker P, with A1|As|...|A.. We then have \.P (b;) = 0, for i = 1,...,r. Hence,
by Corollary AP = 0. This is clearly impossible because A, # 0 and a;, is a unit.
Thus, rank (ker P) < deg (P). m

Remark 1.51 In Proposition if all coefficients of P are non-units, then we can
have deg (P) < rank (ker P). Indeed, let R = Z,, S = R[z]/(:*+2z+1) and a =
2+ (22+ 2+ 1). Then, S is a Galois extension of R where the Galois group is generated
by a power map o : a — a®. Set P = 2X —2 € S[X,0].Then, ker P is generated by 1
and 2a. Thus, all coefficients of P are non-units and deg (P) < rank (ker P).

Proposition[I.47 and Proposition[I.50]are some of the main results that allow to extend
the properties of Gabudulin codes to finite principal ideal rings. Note that if one of the
automorphisms o;) is not a generator of the respective Galois group, then the ring S is
not a Galois extension of R with Galois group G (S) and therefore, as in [3], Proposition
and Proposition will not be true in general. Indeed, consider the following:

Example 1.52 Consider the finite field Fy and the Galois extention Fou = Fy[2]/ (2* + 23 + 1),
seta=z+(z* + 23+ 1) and let 0 = (0(1), 9(2)) be the map from Foa XFoa to Fou XFoa, where
0y (z) = 2% and O (z) = x* for all x in For. The map 0 is an Fy X Fy-automorphism of
Fou X Fou and we have 6% = (9?1), id) .
1) Let G be the group generated by 0. The set Fo1a x {0} is a mazimal ideal of Faa x Fau
and for all x € Fya X Fou we have x—62 (z) € Fou x {0}. Thus, by Definition[1.33, Foi x Fau
1s not a Galois extension of Fy x Fy with the group G.
2) Seta=(a,a) and 1 = (1,1). Then {1,a,a®} is linearly independent over Fy x Fs.
By [20, Corollary 2.8/, the matrix

M = | 6(1) 6(a) 0(a?)

1 a ad
1 a* a
1 a a

are not linearly independent.
3) Let P =X —(1,1) in (Fys x Fpa) [X,0]. ker P is generated by (1,1) and (0,a + a*).
Thus, rank (ker P) > deg (P).
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1.5.2 Grobner bases of modules over skew polynomials

Grobner bases are a mathematical tool that allows to solve several problems in the set
of polynomials. It was introduced by Buchberger in his Ph.D thesis [10]. Nowadays,
Grobnes bases have many applications, especially in the coding theory. Indeed, in [23],
Fitzpatrick used this theory to give an iterative method for decoding alternate codes.
In [41], Kuijper and Trautmann adopted this iterative method to give a parametrization
approach to the list decoding algorithm of Gabidulin codes. The theory of Grébnes bases
has been generalized over rings. Thus, in [33], Jiménez and Lezama studied the theory of
Grobner bases of modules over skew Poincaré—Birkhoff-Witt extension. In this subsection,
we recall some results in this theory that we will use to solve the key equation.

Given a positive integer ¢, we denote by S[X,o]"! the ¢ + 1-fold direct product
of S[X,0]. For all u € S[X, 0], the [-th component of u is denoted by u¥), for
[ € {0,...,0}, ie. u= (u(o),u(l),...,u(z)). We consider S[X, o] as a left S[X,o]-
module where addition is defined componentwise and for a € S[X, 0] and u € S[X, o]*!,
au = (au®,au®, ... au®). We denote by e = (1,0,...,0), e = (0,1,0,...,0),

.., e® =(0,...,0,1) the canonical basis of S[X,0]*"!. A monomial in S[X, o]+ is
an element of the form X“e() where o € N and [ € {0,...,¢}. The set of monomials
of S[X, o] will be denoted by Mon (S[X,o]!). If X“e) € Mon (S[X,0]!), then
[ is called the index of X®*e® and denoted by ind (Xo‘e(l)). Let X*e(l), X2el2) ¢
Mon (S[X, a]“l), we say that X*et) divides X*2e('?), denoted X1e()|Xze(2) if
[y =l and there is § € N such that as = a1 + 3. We will say that any monomial Xeel) €
Mon (S[X,0]“*!) divides the null vector 0.

Definition 1.53 A monomial order on Mon (S[X,0]"™) is a total order = satisfying
the following two conditions:

(i) X (XeD) = X, for all X*e" € Mon (S[X,0]"*!) and every § € N;

(ii) if X°2e(?) = X1l then X* (X2e(2)) = X7 (X*1e) for all X“1e), X2e(2) €
Mon (S[X,0]"") and every § € N.

If X2el2) = Xorel) and Xo2el2) £ Xel) we will write X*2e(2) = X1elt1),
Xarelh) < Xa26(l2) means that X®2e(2) = Xa1ely)

Remark 1.54 By [39, Chapter 0, Section 17, Lemma 15] a monomial order on
Mon (S[X,0]"*") is a well order. Note that the condition (iii) of [33, Definition 15.] is
given so that a monomial order is a well order. So, in this specific case we do not need

this condition.

We fix a monomial order = on the monomials of S[X,o]**!. Let f € S[X, o]“!\ {0},
then f can be written uniquely as f = >~ | c; X%el) wheren e N, ¢; € S, fori=1,...,n,
c1 #0and X@el) = ... = Xaneln) We define:

e Im (f) ;== X*1el) as the leading monomial of f;

e [c(f) := ¢; as the leading coefficient of f;

o It (f) := c; X“1e(Was the leading term of f;
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e deg(f) := a; as the degree of f.

For f = 0 we define [t (0) := 0, Im (0) := 0, lc(0) := 0 and extend > to
Mon (S[X, o)) U{0} by X?e® = 0 for all X*e") € Mon (S[X,0]"!). Let W C
S[X, o], we write It (W) for {It (w) : w € W} and the submodule of S[X, o]**! gener-
ated by W is denoted by (W).

As in [33], we give the definition of the reduction process in S[X, o]

Definition 1.55 Let F be a finite set of nonzero vectors of S[X,o]*** and let £, h €
S[X, o], we say that f reduces to h by F in one step, denoted f z, h, if there exist
elements fy,...,f;, € F and ry,...,r, € S such that:

(i) Im (£) |lm (f), fori=1,...,t, i.e., there exist a; € N such thatlm (f) = X*Im (f;);

(it) lc (£) = rio® (le(f1)) + - + 0™ (lc(£y));

(iii) h = f — 370 ri X ;.

We say that f reduces to h by I, denoted f i>+ h, if and only if there exist vectors
hy, ..., h; € S[X, o]t such that

f5h Sh S Sh, S

f is reduced also called minimal w.r.t. F if £ = 0 or there is no one step reduction of £
by F', i.e., one of the first two conditions of Definition [1.5] fails. Otherwise, we will say
that f is reducible w.r.t. F. If f i>+ h and h is reduced w.r.t. F, then we say that h
1s a remainder for f w.r.t. F.

Remark 1.56 With the notations of the Definition [1.55, we have the following remarks:
(a) if £ = b, then Im (£) = Im (h) and £ —h € (F);
(b) by definition we will assume that O 0.

By [33, Theorem 23.], we have the following proposition.

Proposition 1.57 Let F = {f},... £} be a set of nonzero vectors of S[X, o]t and let
f € S[X, 0], then there exist qi,...,q € S[X, o] and the reduced vector h € S[X, ]!
w.r.t. F such that £ ihr h and

fZQ1f1++qtft+h

with
Im (f) = max {im (q1)Im (f,),...,Im (q)Im (£),lm (h)}.

Definition 1.58 [33] (a) Let M be a nonzero submodule of S[X, o)™ and let G be a non
empty finite subset of nonzero vectors of M, we say that G is a Grobner basis for M if
each element 0 # £ € M is reducible w.r.t. G. We will say that {0} is a Grébner basis
for M = 0.

(b) A set G C S[X, o] is called a Grébner basis provided that G is a Grébner basis
for (G).
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By [33] Theorem 26.|, we have the following:

Proposition 1.59 Let M be a nonzero submodule of S[X, o]*** and let G be a non empty
finite subset of nonzero vectors of M. Then, the following conditions are equivalent.

(i) G is a Grébner basis for M.

(ii) For any vector f € S[X,o]"*, f € M if and only if £ ihr 0.

(111) For any f € M there exist gi,...,8 € G such that Im (g;) |lm (f),
forj=1,...,t, i.e., there exist o; € N such that Im (g;) = X% Im (f),
and lc(f) € (0™ (lc(g1)),...,0% (lc(ge))).

By Proposition [1.55| and Proposition [1.59] we have the following:

Proposition 1.60 Let M be a submodule of S[X, o] and let G = {g1,...,g} C M.
If G is a Grébner basis for M then for all £ € M there exist qi,...,q € S[X, o] such that

f=qg + - +ag

with
Im (f) = max {Im (q¢1)Im (g1), ..., Im(q)Im(g)}.

According to [33], Corollary 31.], we have the following:

Proposition 1.61 Let M be a nonzero submodule of S[X,o]*t. Then, M has a Grébner
basis.
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CHAPTER II

RANK-METRIC CODES OVER FINITE
PRINCIPAL IDEAL RINGS

Recall that rank-metric codes are codes for which each codeword is a matrix and the
distance between two codewords is the rank of their difference. In this chapter, we show
that some results in rank-metric codes can be extended to finite principal ideal rings.
These results are given as follows.

In Section 2.1, we give the two representations of rank-metric codes and we prove that
the rank-metric Singleton bound can be extended to finite principal ideal rings.

In Section 2.2, we extend the definition of Gabidulin codes and prove that their prop-
erties are preserved.

In Section 2.3, we give some properties of interleaved Gabidulin codes. We show that
collaborative decoding of interleaved Gabidulin codes can be translated to the problem
of reconstruction of skew polynomials. We use the theory of Grobner bases to give an
iterative algorithm to solve this reconstruction problem.

In Section 2.4, we give the unique decoding, minimal list decoding, and error-erasure
decoding algorithms of interleaved Gabidulin codes.

2.1 Matrix and vector representations of rank-metric

codes

Analogous to the case of finite fields [16], [24], [63], we give the following definitions.

In matrix representation, rank codes are defined as subsets of a normed space
(R™ ™, rank), where the norm of a matrix A € R™*" is the rank of A over R. The rank
distance between two matrices A and B is the rank of their difference, i.e rank (A — B).
The rank distance of a matrix rank code M C R™ " is defined as the minimal

pairwise distance:
d(M) =min{rank(A—-B): A, Be M, A #B}.

A matrix rank code M C R™*"™ is said R-linear if it is a submodule of R"™*"™.
In vector representation, rank codes are defined as subsets of a normed S-module space
(S™, rank), where the norm of a vector u € S™ is the rank of u. The rank distance
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between two vectors u and v is the rank of their difference, i.e rank (u — v). The rank
distance of a vector rank code C C S™ is defined as the minimal pairwise distance:

d(C) =min{rank(u—v): u, veC, u#v}.

A vector rank code C C S™ is called linear if it is a submodule of S-module S™, further-
more if C is a free submodule of S™ then C is called a free rank code.

Let C C S™ be a linear rank code. The number ug (C), denoted by rankgs (C) or simply
by rank (C), is called the rank of C. A generator matrix of C is a rank(C) x n matrix
over S whose rows generate C. The inner product of two vectors u = (uy,...,u,) € S”
and v = (vq,...,v,) € S" is defined by

U -V =1uvy + -+ UpUy.
The dual of C is the submodule of S™ defined by
Ct={ucsS": u-v=0, foreveryveC}.

A parity-check matrix of C is a generator matrix of C*.

Note that by Proposition [I.39] there exists a relation between the matrix represen-
tation and the vector representation. As in the case of finite fields [16], [24], [63], the
following proposition establishes the rank-metric Singleton bound.

Proposition 2.1 (Singleton bound)
Let M C R™*™ be a rank code of rank distance d, then

|M| < ‘}%|min{m(n—d—|—1)7 n(m—d+1)}
where | M| and |R| denote the cardinality of M and R respectively.

Proof. Since the minimal distance of M is d, no two distinct code matrices A;, A, € M
have the same first n — (d — 1) columns. For, otherwise, we have rank (A; — Ay) < d—1,
which contradicts the minimality of d. So, |[M| < |R[™" ") Using the same argument
for the rows of two distinct code matrices of M, we also have |[M| < |R["™ @1,

Consequently, |[M| < |R[™ntmn=(d=D), nim=(d=1)} g

Definition 2.2 If M C R™*" and C C S™ be the rank codes of rank distance d such
that |M| = || = |R|™ntmin=dtl). n(m=dt1)} "o sqy that M and C are Mazimum Rank
Distance codes, or, MRD codes.

In finite fields, Gabidulin codes are MRD codes [16], [24], [63]. We will prove that this
property extends to finite principal ideal rings.
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2.2 Gabidulin codes

Let g =(g1,...,9n) € S™, such that {g,...,g,} is linearly independent over R. Let k be
an integer such that 0 < k£ < n.

Definition 2.3 (Gabidulin Codes)
A Gabidulin code Gaby (g) of length n, dimension k and support g is the S-module
given by:
Gaby (g) ={f (g) : f € S[X, 0]k}

Proposition 2.4 The Gabidulin code Gaby, (g) is a free rank code of rank k with a gen-

erator matrix
o(q1) - 0°(gn)
G = SV

" (g) - " (gn)

Proof. Let ¢ =(cy,...,c,) € Gaby (g). Then, there is f = fo+ fiX + - fr_1 X* 1 in
S|X, o] such that c = f (g), i.e.

e = foo® (g1) + fro (1) + - femr0" ' (g1)

o = f00% (gn) + 1o (gn) + - foo10" " (gn)
ie.
o’ (g) - 0% (gn)
(cryeevsen) = (fo, ) foo1) : :
a1 (g1) a1 (gn)
Thus, the rows of G generate Gaby (g). By Proposition and [20], Corollary 2.8|, the
rows of G are linearly independent over S, hence Gaby (g) is a free code of rank k. =

Theorem 2.5 (a) The rank distance, d, of Gaby (g) is given by d =n — k + 1.

(b) Gaby (g) is an MRD code.

Proof. (a) Since n < m and Gaby (g) is a free code of rank k, we have d <n —k + 1, by
Proposition 2.1} Let ¢ € Gaby (g) such that rank (c) = d. Then, there is f € S[X, 0]_,,
such that ¢ = f (g). By Proposition there is a monic skew polynomial P € S [X, ],
deg (P) = d, such that P(c) = 0. Consequently, (Pf)(g) = 0. As Pf # 0, we have
n < deg (Pf), by Corollary [1.48] But deg (Pf) = deg (P) +deg(f) <d+k— 1.

(b) Asn <m,d=n—k+ 1 and Gab (g) is a free code of rank k, then Gab (g) an
MRD code. =

As in the case of finite fields, the next theorem shows that the dual of a Gabidulin
code is also a Gabidulin code.
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Theorem 2.6 Let (Vij)1<;cp1<j<p b€ the inverse of the matriz (o° (g;)) Set

0<i<n—1,1<j<n’

h; = g TR (Vim) 1=1,...,n.

Then, the family {hi, ..., h,} is linearly independent over R and a parity-check matriz of
Gaby (g) is
o' (h) - 00 ()
H= : - :

o™t (hy) oo o1 (hy,)
Proof. The product of the two matrices (0 (9;))g<icn—1.1<j<n 204 (07" (Vin)) 1 cicp 0<icnr
is a lower unitriangular matrix. Thus, the matrix (¢~ (v;,,)) is invertible.
Therefore, by Proposition {V1ns- s Yo} is linearly indepeicieitiover R. Conse-
quently, {hy, ..., h,} is linearly independent over R. Thus, the rows of the matrix H are

linearly independent over S and GH” = 0. Since Gaby (g) is a free code of length n and
rank k, by [20, Proposition 2.9|, Gaby (g)L is a free code of rank n — k. Consequently, H
is a parity-check matrix of Gaby (g). m

In [45], Loidreau showed that decoding of Gabidulin codes can be translated to the
problem of reconstruction of skew polynomials. In the input of decoding algorithm given
in [45, page 40|, it is assumed that the rank of the error is less than or equal to the
error-correcting capability of the code. But in practice, the receiver does not know the
rank of the error. In [4], Augot et al. gave a similar algorithm without this condition.
We will prove that [4, Algorithm 2| can be extended to finite principal ideal rings.

For the remainder of this section, let to := |(n — k) /2| be the error correction capa-
bility of the Gabidulin code Gaby, (g). Similarly to [45, Proposition 1 and Proposition 2],
we give the following:

Lemma 2.7 Let y € S™ be a received word of the Gabidulin code Gaby (g). Assume
that there is f € S|X,0|<r such that rank (y — f(g)) < to. Then, the following linear

equation
o o™ (y1)
(Al A2><VT>: (21>
o (Yn)
with unknowns u = (ug, ..., Ugsrt,—1) and v = (vo, ..., Uy_1) has a solution, where
o’ (g1) - o (g)
A= : R :
o (gn) S gkt (gn)
and
_O—O (yl) PP _O—tO_1 (yl)
Ay = : . :
=0 (yn) o =0 (yn)
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Moreover, if u = (ug, ..., Ugsty—1) and Vv = (vg, ..., v—1) are a solution of this equation,
then U = Vf where U = ug + u1 X + -+ + gy 1 X0 and V = vg + 0, X + -+ +
Uto_lXtO_l 4+ Xto’

Proof. Set t = rank (y — f(g)). By Proposition [1.49] there is a monic skew polyno-
mials W € S[X, 0] of degree t such that W (y — f(g)) = 0. Therefore, X" 'W (y) =
X0V (f(g)). Set XMW f =ug+ui X +- - -+ g1 X" tand X0~ W = vy +v, X +
gy X7 4 X Then, u = (ug, . .., Uprgy—1) and v = (vg, ..., v _1) are a solution
of (2.1).

Now, let u = (ug, ..., Uksty—1) and v = (vg,...,v,-1) be a solution of ([2.I)). Set
U=ug+u X+ +tpyr 1 X0 and V = vg+ 0, X +- - -+ vy 1 X071+ X Then, we
have V (y) = U (g). Since rank (y — f (g)) < to, we also have rank (V (y — f (g))) < to,
that is, rank (U —V f)(g)) < to. Thus, By Proposition [1.49] there is a monic skew
polynomial L € S[X,0]c,41 such that (L(U -V f))(g) = 0. Asdeg(L(U—-Vf)) <
2tp + k —1 < n — 1, by Corollary [1.48] L (U —V f) = 0. Since L is monic, we have
U-Vf=0 m

Lemma [2.7 allows to obtain Algorithm [I]

Algorithm 1: Decoding Gabidulin codes up to half the minimum distance

Input: a received word y € S™ of the Gabidulin code Gaby (g).
Output: [ € S[X, 0], such that rank (y — f(g)) < |(n — k) /2] or "decoding

failure".

[uny

Solve linear equation ([2.1|)
if (ﬂ/ has no solution then
3 ‘ return "decoding failure”

N

4 else

5 Set U = ug +u1 X + -+ + Up gy 1 X071 and

V=vy+vX +- -+ v, 1 X0+ X where u = (ug, ..., ups_1) and

v = (vg,...,V,-1) are a solution of .

6 Compute the quotient () and the remainder P on the left Euclidean division of
U by V in S[X, o]

7 if P # 0 then

8 ‘ return "decoding failure”

9 else

10 t return ()

Theorem 2.8 Lety € S™ be a received word of the Gabidulin code Gaby (g). Let f €
S[X,o]. Then, Algorithm[1] returns f if and only if deg (f) < k and rank (y — f (g)) <
to-

Proof. Assume that Algorithm [l returns f , then U = V f where U and V are as in
Algorithm [I} Since deg (U) < k+ty— 1, we have deg (f) < k. As V (y) = U (g), we also
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have V (y — f (g)) = 0. Thus, by Proposition [L.50} rank (y — f (g)) < to. The converse
is given by Lemma[2.7] m

Recall that one can use the Smith normal form to solve . Thus, an implementation
and a simulation example of Algorithm [I| are given in Appendix A. In the next section

we will show that one can also use the iterative method similarly to [41].

2.3 Interleaved Gabidulin codes

Recall that an interleaved Gabidulin code is a direct sum of several Gabidulin codes [46],
[67]. In this subsection, we give the properties of interleaved Gabidulin codes, establish a

key equation and give an algorithm to solve it.

2.3.1 Definition and properties

Let l € {1,...,0}. Let n® and kO be the integers such that 0 < EO < n® < m.
Let g = (g%l), e ,gg(),)>, where {g%l), e ,gg()D} is a R-linear independent subset of S.

The rank distance of Gabya (g(l)) is denoted by d¥. The concatenation of ¢ vectors
c® e s c® e s is denoted by (c...c®) e GnWtnl®)

.....

{(c®--c®) e € Gaby (g¥), 1=1,...,0}.

set

We observe that if ¢ = 1 then an interleaved Gabidulin code is a Gabidulin code.

.....

77777

.....

77777

77777

.....

.....

,,,,,
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Proof. Assume that k) = k) and n®® =m, for I =1,...,¢. We have

M) e (O
) (gm’m,g(e))‘ _ | gEM etk

Smcﬂ)

.....

Sﬁ(n“)—d(l)ﬂ)

Rm@(n(l) —d® +1)

|R|mf(mfd(l)+1)

Notation 2.12 Recall that for U € S[X, 0], the I-th component of U is denoted by
UW, forlin {0,...,0}, ie. U= (U(O), e U(z)). In order to simplify the notations, the
element (AWM, ..., AY) in S[X,0]" is denoted by A.

For the remainder of this section, let y = (y™M---y¥) € GrW+4n® he g received
word of the interleaved Gabidulin code ]Gab(k(l) LKD) (g(l), o ,g(g)). The following the-

orem is the analogue of [41, Theorem 12].

Theorem 2.13 Let 7 € N. Then, the following statements are equivalent.
(i) There is U € S[X, o]**! such that:

1)U (y0) =00 (gV), forl=1,...¢;

2) deg (U(l)) — kW < deg (U(O)) —1, forl=1,...,¢;

8) U is monic;

4) deg (U) <7

5) the remainder of the left Euclidean division of U® by U is equal to zero, for
I=1,...¢.
Proof. Assume there is ¢ € [Gab(k(l) KO) (gW,...,g"¥) such that rank (y —c) < 7.

Let fO € S[X,0] 4w, I = 1,...,¢, such that ¢ = (f® (gW)--- f® (g)). Then,
by Proposition m, there exists a monic skew polynomial U® € S[X, o] of degree
rank (y — c) such that, for [ = 1,...,¢, U® (yO — fO (gD)) = 0, ie, UO (y) =
(U(O)f(l)) (g(l)). Set UO =UO fO for I =1,...,¢, then (U(O), e U(Z)) verifies the five
conditions of Theorem [2.13] (ii).

Conversely, assume there is U € S[X, o]“"! verifying the five conditions of Theorem
2.13|(ii). Let I € {1,...,¢} and let f® be the quotient of the left Euclidean division of U®)
by U, then UV = UO O As deg (UD) — kU < deg (U®) — 1, we have deg (f) <
k@ —1. Since U® (y) = UD (gW), we also have U (y® — O (g))) = 0. Thus, by
Proposition [1.50]

rank (y — (f(l) (g(l)) e f(f) (g(f)))) < deg (U(O)) < T

/+1
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Definition 2.14 (the key equation)
We say that U € S[X, o]t is a solution of the key equation if :
o UO) (y0) = U0 (g0, for 1 =1,....¢;
e deg (U(l)) — kW < deg (U(O)) —1, forl=1,...¢.
e U js monic;
A solution U is called minimal if deg (U(O)) s minimal.

In finite fields, the resolution of the key equation given in Definition is equivalent
to the problem of multi-sequence generalized linear skew-feedback shift register introduced
in [60]. In [60], Puchinger et al. solved this problem using row reduction. We will solve
the key equation using the iterative method introduced in [23], because it is easy to extend
this method to modules and finite rings (see, for example [42], [56], [13], [80], [1], [41],
[40]). Note that in [§], Bartz and Wachter-Zeh used this iterative method for decoding
interleaved subspace and Gabidulin codes, because its complexity is better than Gaussian
elimination. Further, it allows to compute a minimal Grobner basis for the interpolation

module.

2.3.2 Iterative solving the key equation

Similar to [41], [1], we give an iterative algorithm that allows to solve the key equation.
Recall that the elements a and b in S are said to be associated if b = ua for some unit
u €S,

Notation 2.15 Since associatedness is an equivalence relation on S, we denote
- the equivalence class of a € S by [a;
- a complete set of representatives of the equivalence classes by [S], without loss of

generality, assume that 1 € [S];
- and let [S]* := [S]\ {0}.

As S = Sy x -+ xS, where S(; is a finite chain ring and a generator of its maximal

ideal is in R(;), we have the following:
Lemma 2.16 For alla € S, a and o (a) are associated.

Proof. Let 7(; be a generator of the maximal ideal of R; for j = 1,...,p. Then 7(; be
a generator of the maximal ideal of S(;). So, for all a = (a(l), e ,a(p)) € S, there exist a
unit u;) € S(;) and i¢;) € N such that a(;) = u(j)wg.’;, for y = 1,...,p. Therefore a = uv
where u = (u(l), e ,u(p)) and v = (71'((11)), e ,W(;”))

Thus a and o (a) are associated because v is a unit in S. =

>. Since v € R, we have ¢ (a) = o (u) v.

Notation 2.17 Let y = (y"-- -y(é)) e S+ he o received word of the inter-

.....

My, g] the set of all U in S[X,0]""" such that U® (y») =UD (gV), for 1 =1,...,¢,
that is, U© <yi(l)> =W (gi(l)>, forl=1,...,¢0 andi=1,...,n.
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The set M[y,g] is a S[X, o]-submodule of S[X,c]*! and by Definition [2.14] all the
solutions of the key equation are in M|y, g]. Therefore, to find these solutions, just find a
Grobner basis for M|y, g] with a monomial order > that we will specify later. To compute
a Grobner basis for My, g], we will use the iterative method described in [56].

Notation 2.18 Set n(® := 0. We define by induction the subsets My, glu.:) as follows:
Mly, gl = S[X, ol and for all (1,7) € {1,...,0} x {1,...,n(l)}, My, gl is the
set of all U in My, g]u) such that U (yi(l)> =y® (gf”), where

L) =10y =1
(L1) = { (l,1—1) else

We have Mly,gloo 2> Mly.glay 2 -+ O My, glunw)y O My, gl 2O -+ D
My, glioney D - D My, gl D+ D My, glyn0) = Mly,g|. Note that as in [I] a
Grobner basis for S[X, o] is Bo,o) := {se(”) }OSTS& se[s] So, we will compute a Grobner
basis, B = {V(m)}ogrge, se[s]*
is, for all (7, s), ind(Ilm (V(r,s))) =, lc (V(T,S)) € [s], and deg (V(r,s)) is minimal among
the degree of all U € My, g] with ind(Im (U)) =r, lc(U) € [s].

Let ({,i) € {1,...,0} x {1,...,n®}. Assume that M[y,g]u has a Grébner basis
Bui) = {Ves) foerer, weps)+ Such that for all (r,s), ind(Im (Virs)) =1, le (Vi) € [s],
and deg (V,.5)) is minimal among the degree of all U € My, g](;) with ind(Im (U)) =r,
lc(U) € [s].

o Let Jis) be the set of all (+',s") € {0,...,0} x [S]* such that Im (V) <
Im (V(T,S)).

o Let D4 : My, glus) — S be defined as

Dy (U) = U (57) = (g}

e The discrepancy of V., is given by

for My, g] which has the same properties as B ), that

Aps) = Dai) (Vi) -
o Let b, € S such that
7 (Aprs)) = birs) D) = 0.

Lemma 2.19 With the above notations,
(a) Dy is an S-module homomorphism;
(b) Mly,glui = {U € M[y,glws : Dusy (U) = 0};
(¢) (X = b)) Virs) € My, gl

Using a Grobner basis, {V(m)}oqq se[s] for My, glq,), we now show how one can

compute a Grobner basis for My, glq.;). Let {V’(T 9 C S[X, o]*** be defined
) ) o<r<s, sels)*
as :
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o if A(T’s) = 0 then
! ) = V('ﬂs) (22)

(T7s

o if A ) # 0 and there exist 0.y € S, (r',5") € T such that

A(7’,5) + Z e(r’7s’)A(r’,s’) =0 (23)
(T",S’)EJ(T‘S)

then

V/(r,s) = V(r,s) + Z e(r’,s/)V(T/,s’) (24)
(rlvs/)e\y(r,s)

e otherwise,

Vzr,s) = (X - b(r,s)) V(r,s) (25)

Proposition 2.20 Let {VET s)} be the subset of S[X, o]t computed using
’ 0<r<¢, se[S]*

’ and . Then, {VE )} is a Grobner basis for My, glu:y and
") Jo<r<t, sels)r ,

for all (r,s), ind(lm (VET75)>) =r,lc (V’(m) € [s], and deg (V’(ns)) is minimal among
the degree of all U € My, g|q,) with ind(Im (U)) =r, lc(U) € [s].
Proof. By the definition of VET’S), we have V’(m) € Mly,glu, ind(lm (V’(m))) =r,

le <V'(T7S)> € [s]. We now prove that deg <VE )> is minimal among the degree of all

U € Mly.gluq with ind(Im (U)) = r, lc(U) € [s]. If V{,_ is defined as in (2.2) or
1' then the result follows. Assume that Vzm) is defined as in 1} and that there is

W € Mly,g];) such that ind(im (W) = r, le(W) € [s] and deg (W) < deg (V).

Then, since W € M|y, g]u and deg <V2r75)> = deg (V(5)) + 1, we have deg (W) =
deg (V). Therefore, as lc(W) € [s] and lc (V) € [s], there is a € S such that
Im (V(T,S) — aW) < Im (V(m)). Consequently, by Proposition we have

V(r,s) —aW = Z h(r’,s’)V(r/,s’)
(Tlvsl) Eu7(r,s)

where h( ) € S[X, o]. By the right Euclidean division of i sy by X — b o) there exist
Qs € S[X, 0] and A\ o) € S such that

hir s = Qe sty (X = b ) + A -

Hence, we have

Vig—aW =" > Qua (X —bes) Viry + D Ay Vi)
(r",8") €T (r,s) (r',s") €J(r,s)

Consequently, by Lemma [2.19]

Duy (Vew) = Y. AwsyDuy (Virs)
(Tlvsl)EJ(r,s)
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This contradicts the definition of V’

(r,8)"

Now we prove that {V’(r S)} is a Grobner basis for My, g]u,). Let U €

0<r<¢, se[S]*

Mly,glay, v = ind(Im (U)), s € [S]* such that lc(U) € [s] and o = deg(U) —
deg (Vi,.,)). Then, im (U) = X°lm (V) and le(U) € (o® (1c(V,,))). Thus,
by Proposition the result follows. =
Proposition justifies Algorithm [2
Algorithm 2: a Grobner basis of the key equation

Thus, the result follows.

Input: a received vector y = (y---y¥) € St 4n® of the interleaved
Gabidulin code IGab<k<1> k) (g™,....g").

Output: a Grobner basis {V(T,S for the module M|y, g].

J <+ {0,....0} x [S]"

for (r,s) € J do

t Vi < se(")

4 for [+ 1toldo

5 | for i< 1ton® do

77777

)}OSTSZ, se[9]”

[uny

N

w

6 for (r,s) € J do

7 Aps) V(,,(iz) <yi(l)> - V(%) (91@)

8 for (r,s) € J do

9 if A¢.5) =0 then

10 ‘ VETS < V(ns)

11 else

12 if there exists a nonempty J' C J such that

for (r', sy e J, Im (V ) < Im (V(m)) and
(r,s) +Zr’s YeJ! rs’)A(rs =0
for some 0 ¢ € S, then

13 | Vi & Ve + X anes 0oy Vi)
14 else
15 Vi < (X =bes) Vs

where b, is an element of S such that
7 (Agrs)) = birs)Ars) = 0.

16 for (r,s) € J do
17 L Virs) < Vig

18 return {V(T’S)}OSTSZ7 sels]"

Remark 2.21 Since S = Sy X -+ X S, where S(;) is a finite chain ring, the equation
is easy to solve in S(jy. Indeed, in S;) this equation is equivalent to: A oy divides
A5 for some (r',s") in Jirs). Thus, analogous to [13, Algorithm VI.5], it is easy to
compute a Grobner basis of Algorz'thm@ in Sy [X, 0], and then to apply the "strong

join" method described in [55] to obtain a Grébner basis in S[X, o]+t

36



Note that the monomial order of Algorithm [2] is not specified. We now define a
monomial order that will allow to give the solutions of the key equation.

.....

.....

.....

.....

ind(lm(U))=0and lc(U)=1. m
Now, we can apply Proposition [I.60] to obtain all the solutions of the key equation.

Theorem 2.24 Let {V . oE be a Grébner basis for M|y, g| obtained by Algo-

)}ogrge, se

,,,,,

a) The vector V g1y is a minimal solution of the key equation.
(0,1)
(b) All solution U of the key equation can be written as

U= ) we Vi

0<r<t, s[s]*
where w5 € S[X, 0], w1y is monic, for all s € [S]*\ {1},
deg (w(o,s)) + @0 < deg (wio,) +
and for all (r,s) € {1,...,0} x [S]*,
deg (w(r.9)) + () — K < deg (wion)) + o) — K.

Proof. (a) By construction of Vg 1y and by Proposition [2.23, V1) is a minimal solution.

(b) Let U be a solution of the key equation. Then, U € M[y, g| and, by Proposition
2.23] ind(Ilm (U)) = 0, lc(U) = 1, w.r.t. j(k(o) .... K©): Let o = deg (U) — deg (Vo,1)),
then

-----

Therefore since U — X*V o1y € M|y, g, by Proposition m,

U—- X"V = Z hirs)V(r,s),

0<r<t, se[S]*
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where h.5) € S[X, o] and

Im (U= X"Vu) = _max A{lm(hes)lm (Vi) }-

0<r<t, se[S]*

Set w1y = X 4 ho,1) and w5y = by if (r,5) # (0,1). Then,

U= Z w(r,s)V(r,s)a

0<r<t, se[S]*

W(o,1) 1S mMonic,

Im (U) = Im (w(o,)) Im (Vo,1))
and for all (r,s) # (0, 1),

,,,,,

As ind(im (V.s))) = r, we have

lm (w(ns)) Im (V(T,s)) _ Xdeg(w(r,s))-i-deg(v((;l))e(r)'

Thus, the result follows. m

2.4 Decoding algorithms of interleaved Gabidulin codes

In this section, we use the solutions of the key equation to give the minimal list decoding,

unique decoding, and error-erasure decoding algorithms of interleaved Gabidulin codes.

2.4.1 Minimal list decoding

In [41], Kuijper and Trautmann used an iterative parametrization approach to give a
minimal list decoding algorithm of Gabidulin codes over finite fields. In this subsection,
we show that this algorithm can be generalized to interleaved Gabidulin codes over finite
principal ideal rings.

Definition 2.25 Let a received word y € Gttt of the interleaved Gabidulin code
IGab(k(l) k) (g",...,g9). Minimal list decoding consists to find the value of

-----

tmin 1= min {rank (y —c)} (2.6)

,,,,,

.....
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Theorem and Theorem justify Algorithm (3| of minimal list decoding.
Algorithm 3: Minimal list decoding

Input: a received word y = (yM---y®) € G+ of the interleaved
Output: A list of f € S[X,0]_,0) X --- x S[X, 0] such that
rank (y — (f(l) (g(l)) o O (g(é)))) is minimal.
1 Compute a Grobner basis {V(m S for the module M|y, g] as in

Algorithmw.r.t. j(k(m K®)

2 Q)  deg (V(sz))

3 list < ()

4 7+0

5 while list = (0 do

6 Compute the set U of all U = Zogge, sels]* Wrs) V(r,s) Where

)}ogrg, sE

W5 € S[X, 0], w1y is monic, deg (w(,1)) = J,

deg (w(o,5)) + X0,5) < J + o1, for all s € [S]"\ {1}, and

deg (wirs)) + sy — K < j 4+ a1y — kO, for all (r,s) € {1,...,0} x [S]"
7 foreach U € U/ do

8 for [ < 1 to ¢ do
9 Compute the quotient Q) and the remainder P
on the left Euclidean division of U®) by U©® in S[X, 0]
10 if for alll € {1,...,¢}, PY =0 then
11 L list < list U {Q}

12 j+—J+1

13 return list

In general, the list size of minimal list decoding might be greater than one. In the
next subsection, we give a sufficient condition so that the list size is one and a decoding
algorithm in this case.

2.4.2 Unique decoding beyond the error correction capability

Gabidulin code IGab(km LK) (g(l), e ,g(e)) and let y = (y(l) x -y(é)) be a received
word. We may have t;, < tg or tg < tmn. Moreover, if t,;, < tg, then the list size of
minimal list decoding is one. The next lemma give a necessary and sufficient condition

so that t, < to.

Lemma 2.26 Let U be a minimal solution of the key equation and f € S[X, 0] cpa) X

- X S[X, 0] pw. The following statements are equivalent.

(i) rank (y — (fO (g1 - 7O (g9))) < to.
(i1) It holds both that:
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1) deg (U™) < to;
2) Ub = U(O)f(l)7 fOT l=1,...,70.

Proof. By Theorem [2.13] (ii)=> (i).

Proof that (i)== (ii). Assume that rank (y — (f® (g)--- f© (g))) < to. Then,
by Theorem m, there is (W, WO .. W®) € S[X, 0] verifying the five conditions
of Theorem m (i), with 7 = t5. Thus, since U is minimal, we have deg (U (0)) <
deg (W(O)) < to. Set

As
7 (y(l)) -y (g(l)) ’
we have
7 <€(l)) — (U(l) —_UO « f(l)) (g(l)) '
But, since

rank ((5(1) ... 5(4))) < to,

we also have

rank ((U(O) (8(1)) A (E(e)))) < ?o.

Consequently, by Proposition there exists a monic skew polynomial T € S[X, 04,41
such that for [ =1,...,¢,
T (U (D)) =0

ie.,

(T x (UD — U x f0)) (g?) = 0.

But {gf)}lggnm is R-linear independent and deg (T (U(l) —UO x f(l))) < n®, thus
using Corollary [I.48 we have

Tx (UY-U % f0) =0,

Therefore, since T' is a monic polynomial, we have
U ) « f(l) —0.

|

Lemma shows that if the rank of the error is at most the error correction capa-

bility, then every minimal solution of the key equation allows to recover the transmitted

codeword. We use this property to give the unique decoding method beyond the error
correction capability.
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Lemma 2.27 Assume there is f € S[X, 0] X -+ x S[X, 0] such that for every
manimal solution, U, of the key equation we have U = U fO for 1 =1,... 0. Then,
f is the unique element in S[X,0]_yw X --- x S[X, 0] such that

rank (y — (f(l) (g(l)) o fO (g(e)))) =t
where ty, s defined as in (@

Proof. We show first that in this condition, ¢,;, is equal to the degree of a minimal
solution of the key equation. Let U be a minimal solution of the key equation and let t be
the degree of U ©), Then, by the definition of t,,;, and by Theorem we have t < t,i,.
By the assumption, we have UY = U@ f® for | = 1,...,¢. Therefore, by Theorem m,
we also have t,;, < t. Thus, t,in =t.

Now, let b € S[X,0]_yw) X - x S[X, 0] such that

rank (y _ (b(l) (g(l)) A (g(f)))) -

Then, by Proposition , there exists a monic skew polynomial W € S[X, o] of degree
tmin such that, for i =1,..., 4, W (y(l) —p® (g(l))) = 0. Therefore, (W, wbpm, .. ,Wb(g))
is a minimal solution of the key equation. Thus b) = fO forl=1,.... (. =

Lemma [2.27] gives a sufficient condition so that the list size of minimal list decoding
is one. The following lemma gives a Grobner basis interpretation of this condition.

Lemma 2.28 Let {V(T,S)}0<r<g . be a Grobner basis for M|y, g| obtained by Algo-
rithm@ w.r.t. j(k@ KO- Set oy s) = deg (V(Efi)) Let QEQU be the quotient and P((é)l)

be the remainder of the left Fuclidean division of ‘/(E)l,)l) by V(g?i) in S[X,c]. The following
statements are equivalent.
(i) There is fe SIX, 0] cpy) X -+ X S[X, 0] pw such that for every minimal solution,
U, of the key equation we have UY = U fO  for i =1,... (.
(i) The Grébner basis {V(Tvs)}ogrge, U
1) Py =0, forl=1,....(;
2) apy) — kO < agg — kT, forallr € {1,...,0} and s € [S]* ;
! 0) A .
3) V(E)’)S) = V(E);)QEO)’I), foralll € {1,...,¢} and s € [S]*\ {1}.

has the following properties:

Proof. (i)= (ii):

1) Since V(o1) is a minimal solution of the key equation, we have V(&)I) = V(g?i) fO for

[ =1,...,0. Consequently, QEQJ) = fO and P((é,)n =0,forl=1,...,¢

2) Suppose there are r € {1,...,¢} and s € [S]* such that a(.q — k™ < agq) — k©.

Then, V1) + V(. is a minimal solution of the key equation. Consequently, we have
(r) (r _ (0) (0) T Q: ) _ O g (r) _ /0

V(OJ)—FV(W) = <V(071) + \/(T7S)> ). Since V(o,1) = V(OJ)f( ), we then have V(m) = V(r,s)f( ),

Hence, deg <V(§2)> = deg (X/(gog)f(r)), ie., deg (V(Efi)) < deg (Vé«%) + k™ — 1 which is

.....

3) Let s € [S]*\ {1}. Since deg (Vo)) is minimal among the degree of all U € My, g
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with ind(Im (U)) = 0, lc(U) € [s], then we have aqpq < apq1). If aps < o),
then V(o 1)+ V(o) is a minimal solution of the key equation and consequently we have
vy = v<o> O o = ), then Vigu+ Vg — e (v(ffi)) V(01 is a minimal
solution of the key equation and therefore we have V(E) )S) = V(E)Oi) fo

(ii)=> (i): Let U be a minimal solution of the key equation. Then, by Theorem [2.24]

U= Y weyVay
0<r<¢, se[S]*
where w(, 5 € S[X, 0], we1) =1, for all s € [S]*\ {1},
deg (w(o,5) + @(0,5) < ¥(0,1)
and for all (r,s) € {1,...,0} x [S]*,
deg (w(re) + g — k7 < o) — .

Let (r,s) € {1,...,¢} x [S]*, then w(, 5y = 0 because a(g 1) — kO < QAr.s) — k(™). Therefore
Ub = U(O)Qgé)’l), forl =1,...,¢, because V(Ei) V Q (0.1)) forl=1,...,¢and s € [S]*.
]

The previous lemmas allow to give Algorithm [ We have the following theorem.

Theorem 2.29 (a) If there is f € S[X,0]_yw) X -+ x S[X,0]_peo such that
rank (y — (f(l) (g(l)) o 0 (g“)))) < to, then Algorithm returns f.

(b) If Algom'thm returns £, then it is the um’que element in S[X, 0] pa) X -+ X
S[X, 0] pw such that rank (y — (f( (g(l ). . f© (89))) = tumin-

Proof. (a) Since V(g 1) is a minimal solution of the key equation, then, by Lemma m,
there is f € S[X,0]_,a) X - X S[X, 0] such that

rank (y — (fO (g0 - £ (g9))) < to

1fandonly1fa01)<t0andP )—Oforl—l L
(b) This result is a direct consequence of Lemma [2.27 and Lemma |
Recall that we may have t,,;, < to or tg < tmm. Thus, Algorithm (4] can uniquely decode

beyond the error correction capability. The following example is given as an illustration.

Example 2.30 Let R =74, S = R[z] / (2* +222+ 32+ 1) anda = z+(2* + 22 + 32 + 1).
Then, S is a Galois extension of R where the Galois group is generated by a power map
o:aa? Setgl) =g = (1,a,d? a®),

y = (3a® + 2a% + 2,a® + 2a,a® + 2,2a* + 2a% + 3a + 3),

y? = (a® 4+ 2a + 3,2a® + a® + 2a + 3,a® + a® + 2a + 3, 20> + 3).

We consider the received word y = ( y y® > of the interleaved Gabidulin code
IGabg 1y (gW,g8®). Using SageMathCloud [65], Algom'thm returns (fU, f@) where
fM =263 + 3a and f@ = 3a®> + 2a + 1. Therefore, the error vector is

£ =y— ( FO (gM) £ (@) )

and rank (€) = 2 >ty = 1. For more details, see Appendiz A.
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Algorithm 4: Unique decoding

Input: a received word y = (yM---y®) € §nDH4n® of the interleaved
Gabidulin code IGab<k<1)Mk([)) (gW,....g").
Output: "decoding failure" or the element f in S[X,0]_,0) X --- x S[X, 0]
such that for every minimal solution, U, of the key equation we have
UL =UOf0 forl=1,...,¢
1 to < | (mingeqr, g {dV} —1) /2]

2 Compute a Grobner basis {V/, . for the module M|y, g] as in

73)}0§r§£, sels]
Algorithm [2{ w.r.t. j(k(o)’._ KO)

3 Qs < deg (‘/(Yg))

a if there isr € {1,...,¢} and s € [S]" such that a.s — k™ < a1y — k© then

5 t return "decoding failure”

6 for [+ 1 to/ do

7 L Compute the quotient QEQU and the remainder P((é)l)

on the left Euclidean division of V(E)l,)l) by V(g% in S[X, o]
8 if there isl € {1,...,¢} such that P((é,)n # 0 then

9 ‘ return "decoding failure”

10 else

11 if @(0,1) <ty then

12 ‘ return Q(OJ)

13 else

14 if there isl € {1,...,0} and s € [S]"\ {1} such that V(E)l,)s) # V(S?i)QEQ’l) then
15 ‘ return "decoding failure”

16 else

17 L return Q(o,l)

Remark 2.31 In finite fields, Sidorenko et al. [68] gave an algorithm for decoding inter-
leaved Gabidulin codes beyond the error correction capability and an upper bound of the
failure probability. We implemented Algom'thm and compared it to [68, Algorithm 4] (see
Appendiz A). We observed that these two algorithms fail in the same cases. This coin-
cidence is probably due to the fact that, in [68, Algorithm 4], Sidorenko et al. computed
the error span polynomial using shift-register synthesis. We also compute the same error
span polynomial using Grébner bases. Thus, it would be interesting to see if there exists

the connection between a two algorithms.

2.4.3 Error-Erasure Decoding

As in [79], we define row and column erasures of interleaved Gabidulin codes. We then
show that errors and erasures decoding of an interleaved Gabidulin code is reduced to
errors decoding of another interleaved Gabidulin code.
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Let y = (y(l) . .y(e)) e 541 B g received vector for a transmitted codeword
(f® (gW)--- £ (g)) of the interleaved Gabidulin code IGab(k(1> k) (g",...,g9).

Assume that the error vector

c — (y<1) 3 .y(@) _ (fa) (gu)) . fO (g(f))) (2.7)

is decomposed into
e=e® 4B 4O (2.8)

where
e (¥ called the full error , is unknown, rank (¢®)) = ¢ ;
e ¢(® called the row erasure , can be expressed in the form

E(R) — (a(R’l)B(va) e a(R7Z)B(R7[))

with 2™ € $*""is known, rank (a®) = ¢(FD - and B € R xn™ g inknown, for
l=1,...,¢

o)

e (@ called the column erasure , can be expressed in the form

e = (aCVBED .. xCORCD)

with a(@) € §%““is unknown, B(@) € R“V*n" is known, freerank (BED) =D for
I=1,... 1

By Proposition m, there are the monic skew polynomials P € S[X, o] of degree
(7 such that PR (alfD) =0, for i =1,..., 0.

By [20, Proposition 2.9|, there are the free column matrices F
such that BEVFE) =0, for [ =1,..., 7.

(c)) c Rn”)x(n(l)_t(cyl))

Theorem 2.32 With the above notations, the relation can be transformed into

e =(yV. y®) - ( FO(gM)-.. f1o (g/w)))

where y'© = P (y(l)) FED gl = gOR@H - O = pED O for | =1,....¢, and
rank (¢') < tF),

Proof. Set e®) = (e(®)...e(B0) where e € $"” for I =1,...,¢ . Then, by (2.7)
and ([2.8), we have

e 4 el 4 @) =y _ fO (W) fori=1,...,L
Let [ € {1,...,¢}. Since ) = alBIBED and PR (a®) = 0, we have

PR (D) | pRD ((CD) = plRD (yO _ ) (g0)))

ie.,
PR (E(E,l)) + p&RD (a(C,l)) BED — p(RD) (y(l) — 10 (g(“)) (2.9)
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because €@ = a(@OBED | If we right multiply both sides of (2.9) by F(©) we get
€/(E,l) _ y/(l) . f/(l) (g/(l))

where ¢/(B) = p(&)) (g(E,l)) FCh
Set &' = (e/BV) ... g/(BD)  then

e = (yV ...y O) — (FO (gW) ... f1O (gO))

As rank ((E(E’l) . ~5(E’£))) = t¥, we have rank (€I(E’1) . ~€’(E’£)) <tf. m
Set &'V = kO 4 ¢t /) = p() — (D and assume that &'O < n/® forl=1,...,¢.
Then, according to Theorem the error and erasure decoding of the interleaved

-----

interleaved Gabidulin code [Gab(wn L R®) (g'™,...,g'®) . In particular we have the
following:

Corollary 2.33 With the above notations, if

2(E) < min {n(l) _ (k(l) 4 +BD t(C,l))}

iy

then the transmitted massage i.e., fO, ..., f© can be recovered.

Proof. Assume that 2t < ming <<y {n(l) — (k(l) + ¢t 4 t(c’l)) }
Then
AE) < d' — 1,

where d’ is the rank distance of the interleaved Gabidulin code IGab(k/(l)Mk,u)) (g'V,....,g'").

Hence, we can use Algorithm to determine /M, ..., f'® and then use the left Euclidean
division of f'® by PUD to determine f® fori=1,...,¢. m

As in [26], [69], [68], [7], simultaneous correction of errors and erasures allow to re-
cover the transmitted codeword in random linear network coding. As an illustration, see
subsection B.3]
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CHAPTER III

APPLICATIONS

As mentioned in the introduction, rank-metric codes have several applications. In this
chapter, we use encoding and decoding schemes of interleaved Gabidulin codes to detect
and correct errors in wireless communication systems. Specifically in space-time coding
and in random linear network coding. This chapter is organized as follows.

In Section 3.1, we give the discrete baseband wireless communication system model.

In Section 3.2, we recall the performance criteria for space-time block codes, and use
rank-metric codes to construct optimal space-time block codes.

In Section 3.3, we combine two existing network coding schemes and prove that the
problem of decoding random linear network codes can be reformulated as an error-erasure

decoding problem for rank-metric codes.

3.1 Overview of wireless communication systems

3.1.1 Basic elements of a wireless communication system

Information [ransmission Path

| Source PR Channel R .y
Encoding Encryption Encoding Modulation f Multiplexing é

Channel

Source Channel

| Decoding [ DECIYDUON g Decoding  [®™{Demodulation msDe-Multiplexing

Estimated

- L Recention Path
Information Receplion Path

Figure 3.1: Basic elements of a wireless communication system [18]

Wireless communication involves transfer of information without any physical connec-
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tion between two or more points [75]. Wireless communication system can be divided into
three elements [18]: the transmitter, the channel and the receiver (See Figure [3.1)).

The transmission path of a wireless communication system consists of :

- source coding ( data compression) is the process of encoding the information using
lesser number of bits than the uncoded version of the information [78§];

- encryption is the process of encoding a message or information in such a way that
only authorized parties can access it and those who are not authorized cannot [19];

- channel coding attempts to add redundancy to the data to make it more reliable
(which reduces data rate) and therefore more robust against the channel noise [78];

- modulation is the process whereby message information is embedded into a radio
frequency carrier [73];

- multiplexing is a technique by which multiple analog signals or digital data streams
are combined into a single signal to be transmitted over a shared medium [50].

The channel carries the signal, but will usually distort it. The receive path reconstructs
the source signal using the inverse operations of the transmission path. In the next
subsections, we will show how information is modulated and transmitted.

In the following, most of the definitions and results are from [59], [76], [73], [77].

3.1.2 Digital modulation

A real-valued emitted signal s(¢), with a frequency content concentrated in a narrow band

of frequencies near the carrier frequency f. (bandpass signal), can be written as
s(t) = a(t)cos (2w f.t + 6 (t))

where a (t) and 6 (t) represent respectively the envelope and phase of s(¢). In complex

notation, s(t) can be written as

s(t) = a(t)cos(2mf.t+0(t))
= Re (a (t) ei(27rfct+0(t)))
= Re (§(t)ei2”fct) ,

where
5(t) =al(t) 0t

and Re (-) denotes the real part operation. The signal 5(t) is called the complex enve-
lope or complex baseband representation of the bandpass signal s(t).

Digital modulation is the process of mapping a digital sequence to signals for trans-
mission over a communication channel. In linear modulation , the baseband complex

envelope can be written as

§(t) = Z anp (t — nTy),

where a,, are the transmitted symbols, p(¢) is the pulse shape and T represents the

duration symbol. The complex symbols a, take its values into a set of M complex
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Figure 3.2: The complex plane representation of the signal constellation [77].

numbers {si, s1,...,s)} called constellation representing a particular modulation. In
polar coordinates, we have s,, = r,e®" 1 <m < M (See Figure .
Some commonly used signal constellations are:
- Pulse Amplitude Modulation (PAM). Information only in amplitude:

0 =0and r,, = (2m—1-M)%, m=0,....,.M -1
- Phase Modulation or Phase Shift Keying (PSK). Information only in phase:

Qm:%vmandrm:r, m=0,.... M —1

- Quadrature Amplitude Modulation (QAM). Information in phase and ampli-
tude.

In [22], the n?-ary square quadrature amplitude modulation is algebraically represented
by the ring Z, [i| = Z,, + iZ,, where i* = —1 and Z, is the ring of integers modulo 7. For
example, the Quadrature Phase-Shift Keying (QPSK) is algebraically represented by the
ring Z, [i| = {0,1,7,1 + i} (See Figure [3.3).

2-Ary digits QPSK Complex representation
11 V2 cos (27cht—|—§) V2eit =1+
10 V2 cos (27rfct — %) V2e it =1—4
01 V2cos (2mf.t + 1) V2Tt = 1+
00 V2 cos (27rfct — ?jf) V2eTi= 1

3.1.3 Discrete time baseband representation of multipart propa-

gation

When the signal is modulated, it is transmitted over a wireless channel. Due to refraction,

reflection and diffraction in a wireless communication environment, the propagation of the
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Figure 3.3: The ring representation of QPSK: Z, [i] = {0,1,7,1 + i}.
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Figure 3.4: multipath propagation [32].
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signal transmitted by the source reaches the receiver side by different paths (See Figure
. This multipath propagation causes constructive and destructive interference, and
phase shifting of the signal. Thus, each n-th path received signal is associated with a
corresponding attenuation factor o, (t) and the propagation delay 7, (¢). Therefore, if
s(t) is the bandpass transmitted signal then, using the principle of superposition, the
bandpass received signal may be expressed in the form

r(t) =) an(t)s(t— 7, (t) +w(t)

where w (t) is the additive noise. According to the central limit theorem, we may assume
that w (¢) is a white Gaussian noise process.

A channel is said to be frequency-nonselective channel, or flat fading if the
bandwidth of the transmitted signal is much smaller than the coherence bandwidth of the
channel. In this case, the baseband received signal 7(¢) can be expressed in the form

7(t) = C(t)5(t) +w (t) (3.1)

where C (t) is the complex channel gain. Due to the multipath propagation, we may
assume that C (¢) is modeled as a zero-mean complex-valued Gaussian random process
(Rayleigh channel model).
If the time variations of the complex channel gain are very slow within a time interval
0 <t < T, when T is the symbol interval, then Equation may be simply expressed
as
r(t)=Cs(t)+w(t), 0<t<T (3.2)

where C' is constant within the time interval 0 < ¢ < 7T'. In this case, we call the channel
a slowly fading channel. Next, consider time to be discrete, where ¢; denotes the time
at which the k-th symbol Z := Z (¢;) is transmitted. In a discrete time baseband,
become

Ty = CS§) + Wy,

where 7y 1= 7 (t) and W = W (t).

3.1.4 Multiple-input, multiple-output channel

To reduce multipath fading and increase system capacity, we can use multiple-input and
multiple-output (MIMO) antenna systems (See Figures [3.5] and [3.6)).

By [35], Mobile operators have implemented 2 x 2 MIMO in their LTE 4G networks
for a number of years and are now beginning to deploy 4 x 4 MIMO to meet increased
data demands.

We will denote the number of transmit and receive antennas in the complex domain
by m; and m,, respectively. We consider a discrete-time complex baseband model of a
flat-fading MIMO channel with additive white Gaussian noise. A block-fading channel is
assumed, i.e., the channel matrix is constant over the whole block of n. data symbols.
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Figure 3.6: 4x4 MIMO [35].

Figure 3.7: MIMO model with m, transmit antennas and m,. receive antennas [6].
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The complex channel gain between the [-th transmit antenna and the ¢-th receive antenna
is denoted h;; (See Figure 3.7).
Let z;; be the j-th data symbol transmitted from the [-th transmit antenna. Then

the j-th data symbol received at the i-th antenna can be expressed as:

Yij = Z hul’l,j + N j (33)

1<I<ne

where n; ; is a noise term. In matrix representation, (3.3|) become
Y =HX+N

where Y = (y;;), H= (h;;), X = (2;;) and N = (n; ;).
In the next section, we show how to detect and correct errors in the MIMO channel.

3.2 Space-time block codes

3.2.1 Performance criteria for space-time block codes

A space-time block code Cgr is a set of codeword matrices X over C of size m; xn.. The
entries of each of the codeword matrices are drawn from a transmission symbol alphabet
set (or signal constellation) A. Let E; be the average energy of the signal constellation.
The constellation points are scaled by a factor of /E, such that the average energy of
the constellation points is 1. We assume that received matrix Y € C"*" is decomposed
into
Y = /EHX + N
where:
- X € Cgr is the sent codeword.

H € C™" is the channel matrix, which is known at the receiver (perfect channel
state information), and whose entries are independent and identically distributed (i.i.d.),
complex circularly symmetric Gaussian random variables with zero mean and unit vari-
ance.

N € C™™ represents the additive white noise, which is unknown at the receiver,
and whose entries are i.i.d, complex circularly symmetric Gaussian random variables with
zero mean and variance Nj.

When Y is received, maximum likelihood decoder consists to find X € Csr such

that
HY—\/EHf(H — min —\/EHXH

XeCsr
where ||-| F s the Frobenius norm. Maximum likelihood decoding fails if X is transmitted
and X # X. Thus, the pairwise error probability that X is selected when X is transmitted,

for any given channel matrix realization H, is

(K ) (v - VB, < - vEmx],)

The following theorem give the upper-bound on the pairwise error probability.
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Theorem 3.1 [7j)]
We have

P <X X H) < (H >\2-> - (B, JANg) ™"

where

. rzrcmk;(X—X)

r ~ ~\ H
- [T N\ is a product of nonzero eigenvalues of (X — X) (X — X) , with ()H is the
=1
Hermitian transpose operation.

To minimize the maximum pairwise error probability, the following two criteria were
derived [74]:

Rank criterion: the minimum rank r of X — X taken over all distinct codeword pairs
is the transmit diversity gain and should be maximized.

,,
Determinant criterion: the minimum of [] \; taken over all distinct codeword pairs
i=1
is the coding gain and must be maximized.

For any space-time block code there is a tradeoff between the transmission rate and
the transmit diversity gain [74], [47]. Specifically, using the same arguments as in the
proof of Proposition [2.1} we can show the following proposition.

Proposition 3.2 (Rate-Diversity Tradeoff) For any space-time code Csr,
RCST < my — dCST +1

where Re,, s the rate of Csr,

1
Regp = — 10g|,4| Csr|
nC
and deg, s the transmit diversity gain of Csr,

degy = min{rank (X —X"): X, X' € Csr, X # X'}

As in [37], a space-time block code that achieves this rate-diversity tradeoff will be
called an optimal space-time block code.

3.2.2 Space-time block codes from codes over finite principal ideal
rings

In this subsection, we generalize to finite principal ideal rings the methods of [48], [44],
[37], [61] in the construction of space-time block codes. More precisely, we show that there
is a rank-preserving map from a finite principal ideal ring to a complex signal set and
we use it to construct space-time block codes that are optimal under the rate-diversity
tradeoft [74], [47], |37].
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Let T' be a principal ideal ring such that there exists a surjective ring homomorphism
p: T — R. Let ¢* be a section of ¢, i.e., a map from R to T  such that ¢ o¢* = idgr. The
extension of ¢ (resp., ¢*) coefficient-by-coefficient to the set of matrix 7*" (resp., R™*")
is also denoted by ¢ (resp., ¢*). As an example, we may have T' = Z[i|, R = Z[i| /nZ|i],
where 7 is some positive integer, ¢ (v) = . +nZ|i] and ¢* (a + bi +nZ[i]) = (a mod 1) +
(b mod n) i, for all x € Z[i], a € Z, b € Z.

Lemma 3.3 Let A € T"*™. Then,
rankg (¢ (A)) < rankr (A).

Proof. Let r = rankr(A) and {by,...,b,} be a generating set of col (A). Then,
{¢(by),...,¢(b,)} is a generating set of col (p (A)). Consequently, rankg (¢ (A)) <
rankr (A). =

Theorem 3.4 Let M C R™"™ be a rank code of rank distance d and let d' be the rank
distance of ¢* (M), then d < d'. Moreover, if M is an MRD code, then d = d'.

Proof. Let ¢o* (M), ¢* (Mz) € ¢* (M) such that ¢* (M;) # ¢* (Mj). Then, M; # M,
and by Lemma [3.3]

rankr (¢* (M) —¢" (Mz2)) = rankg (¢ (¢" (M1) — ¢* (M)))
> d.
Thus, d <d'.
Assume that M is an MRD code. Then,
|90* (M)| _ |M| _ |R|min{m(n7d+1), n(m—d+1)} (34)

Using the same arguments as in the proof of Proposition we can show that
o (M)] < [y (R, ey 35

It follows from (3.4) and (3.5) that ' < d. =
By the previous theorem, we can use an MRD code in R to construct an MRD code
in 7. The following example is a generalization of [4§], [2].

Example 3.5 Since S = R[X]/ (h) where h is a monic polynomial, set h = ag + a1 X +
ot Ay X XM =X+ (h) and g = (o, a?,...,a™). Then, the Gabidulin code
Gaby (g) is a free S-linear rank code generated by g. Thus, Gaby (g) is a free R-linear

rank code generated by {g,ag,...,a™ 'g}. The matriz representation of g in the basis
(L,a,...,a™ 1) is
0 0 0 —ag
1 0 —aq
A, = 01 --- 0 —as
0 0 1 —apm—
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and the matriz representation of o’g is AL fori=1,...,m — 1. Therefore, the matriz

representation of Gaby (g) is a R-linear rank code generated by {Afg Its image

}lgigm'
in T s an MRD code of rank distance m. Moreover, all codeword have the full rank.

By Proposition |2.10}, the interleaved Gabidulin code IG’ab(k(l) LKD) (g(l), o ,g(e)) with

EO =1 and gV = (o, a?,...,a™), forl = 1,...,{, have the same proprieties. Thus, we

can use it to construct optimal space-time block code in T'.

The construction of space-time codes using rank metric codes allows to achieve the
rate-diversity tradeoff. Another advantage lies in the decoding algorithm. In MIMO chan-
nel, additive white Gaussian noise suggests the decoding of space-time codes using maxi-
mum likelihood decoding. But, the complexity of maximum likelihood decoding increases
exponentially as the code length increases. To reduce the complexity, in [61], Puchinger
et al. combined lattice-reduction-aided equalization techniques and error-erasure decoding
algorithm of Gabidulin codes to decode space-time codes. Recall that in our construc-
tion of space-time codes, we used the linear labeling method introduced in [22]. The
linear labeling allows to decode space-time codes using a new linear receiver architecture
called integer-forcing linear receiver, recently proposed in [8I] ( see, for example [66]).
The advantages of the integer-forcing linear receiver compared to lattice-reduction-aided
equalization techniques have been given, for example, in [81] and [66]. Thus, it would be
interesting to study the decoding of space-time codes using the combination of the integer-

forcing linear receiver and the decoding algorithms of interleaved Gabidulin codes.

3.3 Decoding of random linear network codes over fi-
nite principal ideal rings

In this section, we consider random linear network coding over finite principal ideal
rings. To improve the error correction, we combine the encoding schemes of [69] and
[70], that is, we consider that the transmitted matrix is represented by the matrix
X =1 Opnxg, In M ) where M is a code matrix of some matrix code M C R™*".

The channel equation is given by
Y =AX+E (3.6)

where the transfer matrix A € R™*™ and rank (E) := . Recall that the random
matrices A and E are unknown to the destination and the problem is to recover the
transmitted matrix X from the received matrix Y. As in [69] and [26], we will show that
this problem can be reformulated as an error-erasure decoding problem for rank-metric
codes.

When the matrix Y is received, the Smith normal form is used to successively trans-
form the decoding problem into error-erasure decoding. In the following, we give these

transformations.
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3.3.1 First transformation

Set
Y=(Y Y. Y5 ),

where Yy, Y; and Y, are submatrices of Y of sizes m, X £y, m, x m and m, X n,
respectively. Set freerank (Yo) := aos . Then, using the Smith normal form, there exist
the invertible matrices P, Q and the diagonal matrix Dy such that

I
P%Q:<§f£>.
2

Set
and

where P; and Py are the submatrices of P of sizes Qop X My, and (m, — agr) X my,
respectively. If we multiply both sides of . ) by P and Q we get the following:

Lemma 3.6 With the above notations,

Y:N<MRU+E (3.7)

where Y' = Py ( Y, Y, ), A" =PyA and E' is a matriz with rank (E') == ' < f—apy.

Proof. Set
Ez(EOEh]%>,

where Eg, E; and E, are submatrices of E of sizes m,. x 8y, m, xm and m,. xn, respectively.
If we multiply both sides of 1) by P and Q we get

I P.Y, PiY
( ay 0 P1Y, Py 2>:PA<0W60 L, M)+E

0 D2 P2Y1 P2Y2

where
E = PEQ.
Consequently,

]A’Ej . Iaof 0 P1E1 P1E2
~\ o D, P,E, P,E, |~

Set E' = ( P,E, P,E, > and rank (E') := ' | then ' < rank (E) — apy and

(vi v;)=a"(1, M)+E

o6



3.3.2 Second transformation

Set m,. := m, — gy and
Y= (Y] vy ).
where Y] and Y/, are submatrices of Y’ of sizes m!. x m and m,. x n, respectively.
Set rank (Y}) := o, freerank (Y]) := ayy. Using the Smith normal form, there

exist the invertible matrices P’, Q' and the diagonal matrix D' = diag (dy, ..., d,), with
di =---=d,,, =1, such that

Oqf

PYQ =D
Using Proposition [1.28] if we decompose E’ as in [26, Eq. (29)| then we get the

following;:

Lemma 3.7 With the above notations,
Y! =D'M' + E". (3.8)
where Y§ =P'Y,, M' = Q"M and E” is a matriz with rank (E") < f3'.
Proof. As rank (E") = /, by Proposition [1.28]
E - B'Z,
where B’ is a m, x ' matrix, rank (B') = §’, and Z’ is a 8’ x (m + n) matrix.

Set Z' = | Z} Z ) where Z} and Z, are submatrices of Z’ of sizes ' x m and ' x n,

respectively. By (3.7) we have
Y, = A+ B'Z,

and
Y, =A'M + B'Z,.

Consequently,
Y,=Y M+ B (Z, - Z'M).

If we multiply the above equation by P’, then we have
Y// _ D/M/ + E//
2 )

where E” = P'B’ (Z, — Z/M') and rank (E") < rank (B') =/". =

3.3.3 Third transformation

Set

and
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where D] is the submatrix of D’ of sizes oy x m, Y4, and Y7, are submatrices of Y5 of
sizes ay X n and (m, — ay) X n, respectively.

Let agyp := freerank (Y5,). If assp # 0 then, using the Smith normal form, there is a
Qaf X (m — aq) matrix U, such that the free rank of the matrix Y'Q’é = UY5, is agay.

Let Y22 be the matrix defined by Y22 = Y5, if agop # 0 and Y22 is a 1 X n zero
matrix else.

Let D7 be the m x m matrix and Y5] be the m x n matrix obtained respectively from
the matrices D} and Y}, by inserting all-zero rows below the last row if oy < m and by

deleting the a; — m last rows else.
Set Dy := Q' (DY —1,,) and Y9 := Q'Y)]. Note that, D; = 0 if oyy > m and
rank (f)l> < m — aiy5 else. We have the following:

Theorem 3.8 With the above notations, the matrix ?21 can be decomposed into

Yy =M+ D,W, + Wy Yy + E,

where M is the transmitted codeword, the matrices W1, Wy and E are unknown, rank (E)

B — Qo — Qigaf.
B}
E// — < E,/ > ’
2

where Ef and EJ are submatrices of E” of sizes a; x n and (m!. — a;) X n, respectively.
By (3.8), we have

Vi (D1 (B

Y, 0 E) |

Y/, =DM +E! (3.9)

Proof. Set

Thus,

and
"o
Y,, = EJ.

I., O
o Assume that freerank (YY,) # 0. As Y5, = UY5,, set E” = ( 01 U > E”.

Then,
E//

rank (E") < rank (E") < ' and E" = <Y’}’ ) Since freerank (Y5,) = agay, by
22

[20, Proposition 2.11|, there are (n — ager) X n matrix Y3, nx (n — agoy) matrix Fy and

n X aggy matrix Fy such that

o8
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As

Y
L = (F F2)<Y§’5>
= F1Y3+ F2Y5/57

we have
E] = E/F,Y; + E/F, YY),
that is,
E! = E; + E Y}, (3.10)

where E; = E/F,Y3 and E; = E/F,. Moreover, since

E”Fl ]_3//]_:\2
IEH/ ( ) — 1 1
Fl F2 0 I )

agaf

we have, rank (E3) < rank (EfFy) = rank (E") — sy < ' — ag2y. By (3.9) and (3.10),
Y4 =DM +E,;YZ + Es.

Let E) be the m X agyy matrix and Ej be the m x n matrix obtained respectively from
matrices E4 and E3 by inserting all-zero rows below the last row if a; < m and by deleting
the a; — m last rows else. Then,

Y, =DM’ + E|Y5, + Ei. (3.11)
If we left multiply both sides of (3.11)) by Q' we get
i\(21 =M+ ]51W1 + W2?22 +E.

where W, = M/, W, = Q'E), and E = Q'E}.
e Assume that freerank (Yg) = 0. Then, by (3.9), we have

Yy =M+D,W, +E,

where W, is defined as above and E = Q'E5, where E5 is the m x n matrix obtained
from the matrix E{ by inserting all-zero rows below the last row if ; < m or by deleting
the oy — m last rows else. m

Theorem and Corollary imply the following result.

Corollary 3.9 With the above notations, assume that M s the matrix representation
of an interleaved Gabidulin code of rank distance d. If rank <D1> + rank <Y22> +

2rank <E> < d—1, then the transmitted codeword can be recovered.
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3.3.4 Application example

The following example is computed using SageMathCloud [65]. For more details, see
Appendix A.

Example 3.10 Let R=17Zg, S = R[2] /(2> + 42> + 72> + 22+ 7) and

a=z+ (2" +42°+722+22+7). Then S is a Galois extension of R where the Galois
group 1is generated by a power map o : a + a®. Set gV = g = (a,a? d? a’,a%);
fO =142a+3a?+5a%; f@ = 14+4a+T7a*+2a*+5a*; V) = fO) (gV); c® = f&) (g@).
Then < c® c® ) is a codeword of the interleaved Gabidulin code IGabg 1y (g, g®?).
Let

M=(M M)

2)

where M, and My are respectively the matriz representations of ¢V and ¢? in the basis

(1,a,a?, a®, a*).

The transmitted matriz is
X — < 05><2 I5 M )

Assume that

P

I
= NN R s W Ot
B O R R O N O
— = Ot DN O N D
W Tt Y= DY =W
_— O N O N O W

and

&=
I

BZ

where

™

|
O WD N RO
S RN B B N
S B CRNC NSO

and

—_
ot
N}

7 —

oSS O O
w O
S N3
ot ot O
(G230 VI @)
- W
N Ot W
(N}
w
= W O
w O
[SLEETENN
— Ot W
Ot Ot =~
N O =
(G2 NG S )

The received matrix s
Y = AX + BZ.
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By Theorem there are the matrices Wi, Wo and E such that

/Y\vgl == M + ]31W1 + Wg?gz + E (312)
with rank (E) <1, where
0 6 545 736 4 4
5 75 135 6746
You=]1 02 47 35 210 3
7T 1 73575121
5736402201

=

I
o o o o o
o oo o o
o O O O O
o O O O O
SIS IO TS

and

Yu-(0762167551)
The vector representation of in the basis (1,a,a?, a3, a*) is
y =c+aPBW 4 a)BO) 4 )

(@) g(E)

where y, ¢, al©, e®) are respectively the vector representations of \?21, M, Wy, E
and B(©) =Yy, B s the last row of W1, a = 7a* + 7a® + 4a®> + 6a + 4.
Set
y:<ym ¢m>
where y € S° and y® € S°. Then
y D = D) 4 ((MBED 4 g(OVBED 4 (B

y® = c@ 4 (IB(R2) 4 4 OBC2) 4 (B2

Let
P = X 4 5a* + a® 4 6a% 4 20 + 2,
0001
76 20
FED—=| 1 2 7 0
0100
1000
and
1551
7336
FEY—=| 0010
0100
1 000



Then, PP (a®)) =0, BEGDFED = 0 and BEDFHE2) = 0.
Set y') = P (yO) FC) g/ = gOR(CD) o) — PR (D) FCD, for | € {1,2}.

Thus, by Theorem [2.33, there is € € S® such that
( Yy @) ) _ ( SCONIL) ) L
where rank (g') < 1.

When we apply Algorithm |4| for the received word ( y' )y > of the interleaved

Gabidulin code 1Gab(s ) (g’(l),g’@)), it returns (f’(l),f’(z)) where f'V = (7a* 4 5a® +
5a+1)X +4a* +3a® +4a+1 and f'@ = (5a* +7a® +5a® +4a+6) X + 2a* +5a° + 3a% + 5a.
The left Buclidean division of f'@ and f'® by PP gives respectively fO) and f.
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Conclusion and perspectives

Conclusion

We have studied some properties of rank-metric codes that are extended from the case
of finite fields to finite principal ideal rings. We have first generalized the rank metric
and established the rank-metric Singleton bound. As in the case of finite fields, we have
shown that Gabidulin codes achieve this bound and the dual of a Gabidulin code is also
a Gabidulin code. We have proved that collaborative decoding of interleaved Gabidulin
codes can be translated to the problem of reconstruction of skew polynomials. We have
used the theory of Grobner bases of modules over skew polynomials to give the unique
decoding, minimal list decoding, and error-erasure decoding algorithms of interleaved
Gabidulin codes. Specifically, we have given an iterative algorithm that can uniquely
decode interleaved Gabidulin codes beyond the error correction capability. We have also
shown that the errors and erasures decoding of an interleaved Gabidulin code is reduced
to errors decoding of another interleaved Gabidulin code. These codes are then applied in
space-time coding and in random linear network coding. More precisely, we have shown
that there is a rank-preserving map from a finite principal ideal ring to a complex signal
set and we have used it to construct an optimal space-time block code. Using the lifting
construction, we have shown that the decoding problem for random linear network coding
over finite principal ideal rings can be reformulated as an error-erasure decoding problem

for rank-metric codes.

Perspectives

The complexity of the algorithms. In our algorithms, we have used some op-
erations on skew polynomials (addition, multiplication, Euclidean division, evaluation,
...). In [62], Puchinger and Wachter-Zeh gave fast algorithms for operations on linearized
polynomials using normal bases. Since the Galois extension of finite principal ideal rings
admits a normal basis [I4], in our future work, we will first extend the results of [62] to
finite principal ideal rings, then we will give the complexity of our algorithms.

The failure probability of unique decoding algorithm. As we specified in
Remark [2.31], in our future work, we will investigate the connection between Algorithm
and [68, Algorithm 4]. This will allow us to give the upper bound of the failure probability
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of Algorithm [

Decoding space-time codes using rank metric codes. As we specified in Sub-
section [3.2.2] in our future work, we will study the decoding of space-time codes using
the combination of the integer-forcing linear receiver and the decoding algorithms of in-
terleaved Gabidulin codes.

Generalization of other properties. We have shown that some properties of rank-
metric codes can be extended over finite principal ideal rings. In our future work, we will
see if this is the case for other properties, such as packing properties, covering properties,
MacWilliams Identity [27].

Cryptography based on rank-metric codes. In 25|, Gabidulin et al. proposed a
cryptosystem using rank-metric codes over finite fields. In finite principal ideal rings we
have zero divisors that can be used to improve the cryptosystem. So, in our future work,
we will study the work of [25] over finite principal ideal rings.
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Coding gain,
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Complex baseband representation, [A7]
Complex channel gain,
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Diagonal matrix, [7]

Digital modulation, [A7]
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Dual of linear rank code,

Eisenstein polynomial, [f]

Fat fading channel, [50]

Free base,

Free rank,

Free rank code,
Frequency-nonselective channel,
Full error,, [44]

Gabidulin code,
Galois extensions, [16]
Galois ring, [6]
Generator matrix,
Grobner basis,

Index,
Inner product,

Interleaved Gabidulin codes,

Kernel of skew polynomial,
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Leading coefficient,
Leading monomial,
Leading term,

Left Euclidean division, [20]
Linear modulation, [47]
Linear rank code, [26]
Linearly independent,
Local ring, [7]

Maximum likelihood decoder,
Maximum Rank Distance codes ,
Minimal list decoding, [3§]

Monic skew polynomial, [20]
Monomial,

Monomial order,

MRD codes,

Optimal space-time block code,

Parity-check matrix, [27]
Principal ideal ring, [2)

Random linear network coding,

Rank code, [26]

Rank criterion,

Rank distance,

Rank distance of a matrix rank code,
Rank distance of a vector rank code,
Rank of a linear rank code, 27]

Rank of linear rank code,

Rank of matrix,

Rank of vector,

Rate, 53]
Rate-Diversity Tradeoff,



reduced,
reducible, [24]

Right Euclidean division, [20]

Row erasure, [44]

Singleton bound, [27]
Skew polynomials,
Slowly fading channel,
Smith normal form,
Space-time block code, 52|

Transmit diversity gain,

Unit,
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Appendix A: SAGE Implementation

We implemented in SageMathCloud the algorithms that we gave in the manuscript. We
also gave more details in the examples.
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34 | #
350/ # I.1. Program
36 | #
37 | def HensellLiftOfPrimitivePolynomial(p,nu,m):
38 e
39 Input: “p° the characteristic of the residue field,
40 “m° the dimension of the Galois extension,
41 “nu” the nilpotency index.
42 Output: a monic polynomial “h™ in “Z_ {p ”~ nu}[z] of degree "m"
43 such that “h® divises “z~(p”m-1)-1" and
a4 the projection of “h™ in "GF(p)[z] 1is a primitive polynomial.
45 e
46 Zpz.<z>=QQ[ ]
47 Hensel=Zpz(z~(p~m-1)-1).hensel_lift(p, nu)
48 Conway=conway_polynomial(p,m)
49 Fpz.<z>=GF(p)[]
50 i=0
51 while Fpz(Conway)<>Fpz(Hensel[i]) :
52 i=i+l
53 return Hensel[i]
54 | #
550 # I.2. Example
56 | #
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57 | # We will construct a Galois Extension of "Z_12" of dimension “4°.

58 | # Set "R12=Z_12", "'R3=Z_3" and "R4=Z_4° . The map "R3xR4 --> R12°

59 | # given by " (x,y) |--> (4*x+9*y)" is an isomorphim. Let ~S3=R3[a3]=R3[z]/(h3)"

60 | # and "S4=R4[a4]=R4[z]/(h4)" be the Galois extension of "R3" and "R4" such that
61 | # the Galois groups are respectively generated by the power maps

62 | # “sigma3: a3 |--> a3 ~ 3" and “sigma4: a4 |--> a4 ~ 2°

63 | # Since "R3[z]xR4[z]  is somorphic to “R12[z], the image of " (h3,h4)" in "R12[z]"
64 | # is “h12:=4*h3+9*h4" . Set ~S12:=R12[al12]=R12[z]/(h12) . Them "S12° is a Galois Extension
65| # of "R12° where the Galois group is generated by the power map

66 | # “sigmal2: al2 |--> 4*al2 ~ 3+9%a12/2°

67 | #

68 | R12=Integers(12)

69 | R3=Integers(3)

70 | p3=3

71 | nu3=1

72 | R3z.<z>=R3[]

73 | R4=Integers(4)

74 | p4=2

75 | nu4=2

76 | R4z.<z>=R4[]

77 f m12=4

78 | h3=R3z(HenselLiftOfPrimitivePolynomial(p3,nu3,mi2))
79 | h4=R4z(HenselLiftOfPrimitivePolynomial(p4,nu4,mi2))
80 | R12z.<z12>=R12[]

81 | h12=R12[ z  ](4*R12[ 2" ](h3)+9*R12[ z" ](h4))

82 | S12.<a12>=R12z.quotient(h12)

83 | b12=4%312 ~ 3+9%*al12~2

84 | sigmal2 = S12.hom([b12])

85 | c12=S12.random_element()

86 | print "h3","=",h3

87| ""

88 | print "h4","=",h4

89| ""

90 | print "h12","=", hi12

a1 | ""

92 | print "sigmal2 :
93 ""

94 | print "c12","=", c12

95| ""

96 | print "sigmal2(c12)","=", sigmal2(cl2)
97"

98 | print (sigmal2”mi12)(c12)==c12

, sigmal2

h3

zZ™ + 2¥z73 + 2

h4 ZM + 2%z272 + 3%z + 1

hl2 = z*4 + 8*z"3 + 6*z"2 + 3*z + 5

modulus z12”4 + 8*z1273 + 6*z1272 + 3*z12 + 5
Defn: al2 |--> 4*al2"3 + 9*al2~2

cl2 = 2*al2”~3 + 10*al2”2 + 9

sigmal2(cl2) = 6*al2”3 + 6*al2”2 + 2*al2 + 7

True

99 | # II. Decomposition of an element in Finite chain rings

100 | #

101 | # Whem "R=" Z_ {p "nu}", them S is a finite chain ring whose the maximal

102 | # ideal is generated by "p° . Thus, any element "u” in °S° can by decomposed in to
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103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
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139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

# “u:=p~j*v’ where v’ is a unit and “@<=j<=nu’
#
# II.1. Program
#
def ValuationOf(u,p,nu):
Input: “u:=p~j*v' where “v' 1is a unit
Output: " j°
S=parent(u)
i=0;
while S((p”i)*u)<>S(0) :
i=i+l
return nu-i

def NormOf(u,p,nu):
Input: “u:=p~j*v’ where v is a unit
Output: “p~j°
S=parent(u)
i=0;
while S((pri)*u)<>S(0) :i=i+1;
return p~(nu-1i)

def UnitOf(u,p,nu):
Input: “u:=p~j*v’
where v’ is a unit in the ring “S= Z_ {p “nu}[a]’
Output: v’

S=parent(u)

a=S.gen()
v=S(1)
if S(u)==S(0):
v=1
else :
w=ZZ[ z" ](S(u).1ift())//NormOf(u,p,nu)
v=w(a)
return S(v)
#
# II.2. Example
#
R9=Integers(9)
p9=3
nu9=2
mo=3

R9z.<z>=R9[]

h9=R9z (HenselLiftOfPrimitivePolynomial(p9,nu9,m9))
S9.<a9>=R9z.quotient(h9)

sigma9 = S9.hom([a9*p9])

S9x.<X> = S9['X',sigma9]

u9=S9.random_element()

print u9

print NormOf(u9,p9,nu9)

print UnitOf(u9,p9,nu9)

print u9==S9(NormOf(u9,p9,nu9)*Unit0f(u9,p9,nu9))

4*%3972 + a9 + 1

4%3972 + a9 + 1

True
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163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
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204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
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III. Smith Normal Form and Rank Metric
III.1. Smith Normal Form and Rank Metric over “Z_n"

The Smith Normal Form are implemented in SageMath in the ring “Z°.
We will use it to compute the Smith Normal Form in “Z_n".

H H OH HH HHH

III.1.1. Program
def SmithNormalFormOf(A):
Input: a matrix “A°
Output: [D,P,Q,af]
Where “af’ is a freerank of "A°, "D=diag(d_1,..,d_r)" is a
Smith normal form of A’ such that "d_1=1", . . ., “d_af=1",
and "P°, "Q are the invertible matrices such that "D=PAQ .
R=A.base_ring()
mu=R.order()
L=matrix(Zz,A)
D=matrix(R,L.smith_form()[0])
P=matrix(R,L.smith_form()[1])
Q=matrix(R,L.smith_form()[2])
af=0
r=min(D.nrows(),D.ncols())
ue=R(1)
while af<r and R(D[af,af]).is_unit() :
ue=zz(D[af,af])
ul=xgcd(uo,mu)[1]
u2=R(ul)
D[af,af]=u2*D[af,af]
for j in [0..P.nrows()-1]: P[af,j]=u2*P[af,]j]
af=af+l
return [D,P,Q,af]

def RankOf(A):
R=A.base_ring()
ar=0
D=SmithNormalFormOf(A)[Q]
r=min(D.nrows(),D.ncols())
while ar<r and R(D[ar,ar])<>R(0) :
ar=ar+l
return ar

def FreeRankOf(A):
return SmithNormalFormOf(A)[3]

III.1.2. Example
The following example is given in our manuscript.

H H H HH

Al2=matrix(R12,[

[8, 10, 4, 4],

[4, 2, 8, 2],

[11, 6, @, 6]

1
D12=SmithNormalFormOf(A12)[0]
P12=SmithNormalFormOf(A12)[1]
Q12=SmithNormalFormOf(A12)[2]
view("A12","=",A12)

view("D12","=",D12)

view("P12","=",P12)

view("Q12","=",Q12)

view(D12==P12*A12*Q12)

view("rank(A12)","=",Rank0f(A12))

view("freerank(A12)","=",FreeRank0f(A12))
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235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

8 10 4 4
A12=| 4 2 8 2
11 6 0 6

100 0
D12=10 2 0 0
006 0

0 0 1

P12={0 1 o0

1 10 0
1 6 0 0
anz=| ° L2
0 1
7 11 6

True

rank(A12) =3

freerank(A12) =1

IIT.2. Skmith Normal Form and Rank Metric over “Z_n[a]’

The ring “Z_n" is isomorphic to the product of the rings of integer modulo a power
of a prime number. Thus, to compute the Smith Normal Form in “Z_n[a] , it suffices
to compute in “Z_ {p ~ nu}[a] where “p a prime and "nu’ is a positive integer.

We use the simple method given in the proof of [Goldschmidt, 2006, Theorem 1.1.12.].

H H H B H HHH

III.2.2. Program
def PivotOf@3(A,il,ji1,p,nu,S,ma,na):
k@=1i1; he=jl1; vO=nu; v1=0
k=1i1; h=j1; ti=j1; tj=j1
PivotIsUnit=false
while PivotIsUnit==false and ti<ma:
h=j1; tj=j1
while PivotIsUnit==false and tj<na:
vl=ValuationOf(S(A[k,h]),p,nu)
if vi==0 :
PivotIsUnit=true
he=h
ke=k
vo=v1l
else:
if vicve :
he=h
ko=k
vo=v1l
tj=tj+1
h=h+1
ti=ti+l
k=k+1
return [ke,ho,vo]

def SmithNormalFormOf2(Al,p,nu):
Input: a matrix "Al°
Output: [D,P,Q]
Where “D=diag(d_1,..,d_r)" is a Smith normal form of “Al"
such that “d_1=1", . . ., “d_af=1", where “af  is a freerank of "A1l"
and P, "Q are the invertible matrices such that "D=PA1Q .
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275 S=Al.base_ring()

276 ma=Al.nrows()

277 na=Al.ncols()

278 A=matrix(S,Al)

279 ra=min(ma,na)

280 i0=0; jO0=0; vve=0;10=0

281 P=identity_matrix(S,ma)

282 Q=identity_matrix(S,na)

283 for 1 in [@..ra-2]:

284 [i0,j0,vve]=PivotOfe3(A,1,1,p,nu,S,ma,na)
285 A.swap_rows(1,i0)

286 P.swap_rows(1,i0)

287 A.swap_columns(1,j0)

288 Q.swap_columns(1,3j0)

289 ul=S(InverseOf(UnitOf(S(A[1,1]),p,nu)))
290 vl=vve

291 for i in [1l..ma-1]:

292 A[i,1]=ul*A[i,1]

293 for i in [0@..na-1]:

294 Q[i,1]=ul*Q[i,1]

295 for j in [1+1..na-1]:

296 wc= S(-UnitOf(S(A[1,3]),p,nu)*p~r(ValuationOf(S(A[1,j]),p,nu)-vl))
297 A[1,j]=5(@)

298 for i in [1+1..ma-1]:

299 A[i,j]=S(A[i,]j]l+wc*A[i,1])

300 for i in [0..na-1]:

301 Q[1,31=5(Q[4,j]+wc*Q[i,1])

302 for i in [1+1..ma-1]:

303 wr= S(-UnitOf(S(A[i,1]),p,nu)*p~r(ValuationOf(S(A[i,1]),p,nu)-vl))
304 A[i,1]=S(@)

305 for j in [1+1..na-1]:

306 A[1,3]1=S(A[1,]]+wr*A[1,3])

307 for j in [0..ma-1]:

308 P[i,j]=S(P[i,j]+wr*P[1,3])

309 if ma>ra:

310 l=ra-1

311 [ie,jo,vve]=PivotOofe3(A,1,1,p,nu,S,ma,na)
312 A.swap_rows(1,i0)

313 P.swap_rows(1,i0)

314 ul=S(InverseOf(UnitOf(S(A[1,1]),p,nu)))
315 vl=vve

316 A[1,1]=ul*A[1,1]

317 for j in [0..ma-1]:

318 P[1,j]=ul*P[1,]]

319 for i in [1+1..ma-1]:

320 wr= S(-UnitOf(S(A[i,1]),p,nu)*p~(ValuationOf(S(A[i,1]),p,nu)-vl))
321 A[i,1]=5(0)

322 for j in [@..ma-1]:

323 P[1,31=S(P[1,3]+wr*P[1,3])

324 if na>ra:

325 l=ra-1

326 [i@,j0,vve]=Pivot0Of@3(A,1,1,p,nu,S,ma,na)
327 A.swap_columns(1l,3j0)

328 Q.swap_columns(1,j0)

329 ul=S(InverseOf(UnitOf(S(A[1,1]),p,nu)))
330 vl=vvo

331 A[1,1]=ul*A[1,1]

332 for i in [0..na-1]:

333 Q[i,1]=ul*Q[i,1]

334 for j in [1+1..na-1]:

335 wc= S(-UnitOf(S(A[1l,3]),p,nu)*p~r(ValuationOf(S(A[1,j]),p,nu)-vl))
336 A[1,7]1=S(@)

337 for i in [@..na-1]:

338 Q[i,3]=S(Q[4,]]+wc*Q[i,1])

339 if (na>ra)==False and (ma>ra)==False:

340 l=ra-1

341 ul=S(InverseOf(UnitOf(S(A[1,1]),p,nu)))
342 A[1,1]=ul*A[1,1]

343 for i in [0@..na-1]:

344 Q[i,1]=ul*Q[i,1]

345 return [A,P,Q]

346 | #
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S=A.base_ring()

ar=0

D=SmithNormalFormOf2(A,p,nu)[0]

r=min(D.nrows(),D.ncols())

while ar<r and S(D[ar,ar])<>S(9)
ar=ar+l

return ar

def FreeRankOf2(A,p,nu):

+*

H H HHH HH

S=A.base_ring()

D=SmithNormalFormOf2(A,p,nu)[0]

af=0

r=min(D.nrows(),D.ncols())

u=S(1)

while af<r and S(D[af,af])==S(1)
af=af+l

return af

IV. Skew polynomials

Skew polynomials are implemented in SageMath.
We will give some functions that are not implemented.

IV.1. Program

def LeftDivisionOf(f,g,sigma,m):

Input: the skew polynomials “f° and “g  in ~Sx=S[X,sigma]’

such that “g° is monic

“m° the order of “sigma.

Output: [qg,r], such that ~f=g*gq+r  and “deg(r)<deg(g)’

Sx=parent(f)

q=5x(0)

r=f

c=Sx(9)

d1=Sx(g).degree()

d2=m-d1

while r<>Sx(0) and di1<=Sx(r).degree():
t=Sx(r).degree()-d1
c=((sigma~(d2))(Sx(r).leading_coefficient()))*X"t
q=Sx(qg+c)
r=Sx(r-g*c)

return [q,r]

def InverseOf(u):

Input: “u’ an inverse element in “S=R[a]’
Output: the inverse of “u’
S=parent(u)

Rz=S.cover_ring()
R=Rz.base_ring()
P=S(u).charpoly(z)
mu=R.order()

de=zz(P[0])

dl=xgcd(do,mu)[1]

d2=R(d1)

Q=2z["z" ](P)

v=2Z["z" ]((Q-Q[@])*ZZ(d2))//z
return S(-v(u))

def MinimalSkewPolynomialOf(v,sigma) :

Input: “v° a list of elements in ~S=R[a]"

which are linearly independent over "R’

Output: the monic skew polynomial in ~Sx=S[X,sigma]’
such that the kernel is generated by the elements of v’

S=parent(v[0])
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418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

447
448
449
450
451
452
453
454
455
456
457
458
459
460

Sx.<X> = S['X',sigma]

P=Sx(1)

for u in v:
P=Sx((P.operator_eval(u)*X-sigma(P.operator_eval(u)))*P)

P=InverseOf(Sx(P).leading_coefficient())*P

return P
#
# IV.2. Example
#

S12x.<X> = S12['X',sigmal2]
£12=S12x.random_element(degree=4)
g12=S12x.random_element(degree=3,monic=True)
[q12,r12]=LeftDivision0Of(f12,g12,sigmal2, m12)
print "S12x :", S12x

print "f12","=", f12

print "gl2","=", g12

print "g12","=", q12

print "r12","=", rl2

print f12==g12*ql12+ril2

P12=MinimalSkewPolynomialOf([1+2*al243,6%*al2+al2”4],sigmal2)
print "P12","=", P12

print [P12.operator_eval(1+2*al12”~3),P12.operator_eval(6*al2+al2~4)]

S12x : Skew Polynomial Ring in X over Univariate Quotient Polynomial Ring in al2 over Ring of integers modul
12 with modulus z1274 + 8%z12”3 + 6*z12”2 + 3*z12 + 5 twisted by al2 |--> 4*al2”3 + 9*al2”2

f12 = (11*al2”3 + 7*al2”2 + 5%al2 + 10)*X"4 + (11*al2”3 + 4*al2”2 + 3*al2 + 3)*X"3 + (5*al2”3 + 10*al2~2 +
11*al12 + 9)*X"2 + (1@*al2”3 + 2*3l12”2 + 6%*al2 + 1)*X + 4*al2”3 + 6*al2”2 + 4

gl2 = X"3 + (9*al2”3 + 4*al2”2)*X~2 + (6*al2”3 + 8*al2”2 + 7*al2 + 8)*X + 4*al2”3 + 8*%al2”2 + 7*al2 + 6
ql2 = (11*al2”3 + 5*al2 + 5)*X + 11*al2”3 + 9*%a3l12~2 + 6*al2 + 11

r12 = (7*al2”3 + 3*al2”2 + 6*al2 + 7)*X"2 + (3*al2”3 + 6%*al2”2 + 11*al2 + 7)*X + 3*al2~3 + 10*al2 + 11
True

P12 = X*2 + (4*al2”3 + 11*%al272 + 9%al2 + 7)*X + 2*al2”3 + al2”~2 + 3*al2 + 4

[0, o]

#

# V. Vector representation of matrices

#

# V.1. Program

#

def CoefficientOf(u):
Input: u in “S=R[a]’
Output: the list of coefficent of “u”
in the basis " (1,a,...,a*(m-1))"
S=parent(u)
Rz=S.cover_ring()
a=S.gen()
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461 m=S(a).charpoly(Rz.gen()).degree()

462 ul=S(u).lift()

463 u2=[ul[i] for i in [@..Rz(ul).degree()]]

464 u3=[0 for i in [@..m-Rz(ul).degree()-2]]

465 return u2+u3

466 | #

467 | def MatrixRepresentationOf(v):

468 e

469 Input: v a list with coefficient in “S=R[a]’

470 Output: the matrix representation of “v' in the
471 ring "R° relative to the basis " (1,a,...,a*(m-1))"
472 e

473 S=parent(v[0])

474 Rz=S.cover_ring()

475 R=Rz.base_ring()

476 a=S.gen()

477 m=S(a).charpoly(Rz.gen()).degree()

478 return matrix(R,len(v),m,[CoefficientOf(v[j]) for j in [@..len(v)-1]]).transpose()
479 | #

480 | def VectorRepresentationOf(V,S):

481 nn

482 Input: V' a matrix of "m” rows with coefficient in "R’
483 Output: the vector representation of "V in the
484 ring “S=R[a]  relative to the basis “(1,a,...,a*(m-1))"
485 e

486 a=S.gen()

487 Rz=S.cover_ring()

488 R=Rz.base_ring()

489 m=S(a).charpoly(Rz.gen()).degree()

490 Bs=matrix(S,1,m,[a”i for i in [0..m-1]])

491 v=Bs*V

492 return [v[0,i] for i in [0..v.ncols()-1]]

493 | #

494 | # V.2. Example

495 | #

496 | V12=random_matrix(R12,m12,4)
497 | vi2=VectorRepresentation0f(V12,512)
498 | U12=MatrixRepresentationOf(v12)
499 | print V12

S5ee | ""

501 | print vi12

52§ ""

503 | print v12[0]

504§ ""

505 | print CoefficientOf(v12[0])

506 | ""

507 | print U12==V12

[2 43 4]
[111 8]
[368 8]
[9 8 4 3]

[9*al2”3 + 3*al2”2 + al2 + 2, 8%*al2”3 + 6%al2”2 + al2 + 4, 4*3l12”3 + 8*al2”2 + al2 + 3, 3*al2”3 + 8*al2”2 +
8*al2 + 4]

9*%312”3 + 3*al2”2 + al2 + 2

[2, 1, 3, 9]

True

508 | # VI. Unique decoding gabidulin codes using Smith normal form

509 | #

510 | # We implement the decoding algorithm of Gabidulin codes

511 | # over the Galois exention of the rings of integer modulo a power
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# of a prime number using the Smith normal form.
#
# VI.1. Program
#
def VandermondeMatrixOf(v,s,sigma):
S=parent(v[0])
lv=len(v)
Vand=[[S(@) for j in [©..1lv-1]] for i in [0@..s-1]]
for i in [@..s-1]:
for j in [0..1lv-1]:
Vand[i][j]=S((sigma”(i))(v[i]))
return Vand

def UniqueDecodingGabUsingSmithNormalForm(g,y,k,p,nu,m,sigma):
S=parent(g[0])
Sx.<X> = S['X',sigma]
n=len(g)
to=Ffloor((n-k)/2)
A_1=(matrix(S,VandermondeMatrixOf(g,k+t0,sigma))).transpose()
A_2=(matrix(S,VandermondeMatrixOf(y,t0,sigma))).transpose()
A=block_matrix([[A_1,A_2]])
Y=matrix(S,n,1,[(sigma*t0@)(y[i]) for i in [0..n-1]])
[D,P,Q]=SmithNormalFormOf2(A,p,nu)
Y_2=P*Y

v_1=[ValuationOf(D[i][i],p,nu) for i in [@..k+2*t@-1]]+[nu for i in [k+2*t@..n-1] ]

v_2=[ValuationOf(Y_2[i][@],p,nu) for i in [@..n-1]]
if (v_1<=v_2)==false:

return 'decoding failure’
else:

Y_3=matrix(S,n,1,[(p~(v_2[i]-v_1[i]))*uUnitOf(Y_2[i][@],p,nu) for i in [0..n-1]])

Y_4=Q*Y_3[0:k+2*t0]
Y_5=1ist((Y_4.transpose())[0])
U=Sx(Y_5[0:k+t0])
V=Sx(XAt0-Sx(Y_5[k+t0:k+2*t0]))
[f_out,r_out]=LeftDivisionOf(U,V,sigma,m)
if r_out<>Sx(0):
return 'decoding failure'
else:
return f_out
#
# VI.2. Example
#
p25=5 # the characteristic of the residue field
nu25=2  # the nilpotency index

m25=6 # the degree of Galois extension
n25=5 # the length of Gabidulin code
k25=3 # dimensions of Gabidulin code

t25=1 # the rank of error

R25=Integers(ZZ(p25~nu25)) # base ring

R25z.<z>=R25[ ]
h25=R25z(HenselLiftOfPrimitivePolynomial(p25,nu25,m25))
S25.<a25>=R25z.quotient (h25) # Galois extension of base ring
sigma25 = S25.hom([a25"p25]) # a genarator of Galois group
S25x.<X> = S25['X',sigma25] # skew polynomial ring
g25=[S25(a2571i) for i in [0..n25-1]] # the support of Gabidulin code
£25=525x.random_element(degree=k25-1)
c25=[f25.0perator_eval(g25[i]) for i in [0..n25-1]]
A25=random_matrix(R25,m25,t25)

B25=random_matrix(R25,t25,n25)

E25=A25%B25

e25=VectorRepresentationOf(E25,525)

y25=[(c25[i]+e25[i]) for i in [0..n25-1]]

f25_out25=UniqueDecodingGabUsingSmithNormalForm(g25,y25,k25,p25,nu25,m25,sigma25)

S25x(25_out25)==525x(£25)
True
#

# VII. Computing a Grobner basis
#

# Recall that the ring “Z_n" is isomorphic to the product of integer rings modulo a power
# of a prime number. The linear equation is easy to solve in the finite chain rings.
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581 | # Thus, in this section, we will show how to compute a Grobner basis of the key equation
582 | # in the Galois extension of “Z_ {p ~ nu}. To obtain a Grobner basis in the Galois extension
583 | # of “Z_n", one can use the "strong join" method described in (Norton et al., 2002)
584 | # Assume that "R’ is the ring ~ Z_ {p ~nu} .

585 | # Then, the set of associated relation classes of 'S = R [a] is

586 | # “[S] = {0,1, p, p "2, ..., p “nu-1}}".

587 | # For “@<=r<=ell’ and “p ~{i}  is in “[S] ~{*}", the pair “(r, p ~{i})"

588 | # used to index the vector in the Grobner bases is replaced by "j = r * nu+ i".
589 | # Note that in this case, "r° is the quotient and™ i’ is the remainder

590 | # of the Euclidean division of “j by  nu’.

591 | # The following algorithm is similar to that of

592 | # (Byrne and Fitzpatrick 2002, algorithm VI.5)

593 | #

594 | def GrobnerBasis(g,y,k,p,nu,m,sigma):

595 nn

596 Input: “g °~ a list of the supports of Gabidulin codes

597 "y’ a received word of the interleaved Gabidulin code

598 “k=[1,k*{(1)},...,k*{(\ell)}] a list of the dimensions of Gabidulin codes
599 Output: a Grobner basis of the key equation

600 nn

601 S=parent(g[0][0])

602 Sx.<X> = S['X',sigma]

603 ell=len(g)

604 n=[len(g[1l]) for 1 in [0@..ell-1]]

605 V=[[Sx(0) for 1 in [@..ell]] for j in [O..nu*(ell+1)-1]]

606 def WeightOrderof(V,i,j,nu,k):

607 11=i//nu

608 12=j//nu

609 wl=Sx(V[i][11]).degree()-k[11]

610 w2=Sx(V[j][12]).degree()-k[12]

611 if wl < w2:

612 return true

613 else :

614 if wl==w2 and 11 > 12:

615 return true

616 else:

617 return false

618 for j in [0..nu*(ell+1)-1]:

619 V[31[3//nu]=Sx(p~(3%nu))

620 for 1 in [1..ell]:

621 for i in [0..n[1-1]-1]:

622 W=[[Sx(@) for r in [0..ell]] for j in [0..nu*(ell+1l)-1]]

623 D=[S(®) for j in [@..nu*(ell+1)-1]]

624 for j in [0..nu*(ell+1)-1]:

625 D[j1=Sx(V[j][@]).operator_eval(S(y[1-1][i]))-Sx(V[j]1[1]).operator_eval(S(g[1l-1][i]))
626 for j in [0..nu*(ell+1)-1]:

627 update=false

628 if D[j]==S(0):

629 W[jI=[V[j1[b] for b in [@..ell]]

630 update=true

631 continue

632 t=0

633 while ZZ(t)<=ZZ(nu*(ell+1)-1) and update==false :

634 vt=ValuationOf(D[t],p,nu)

635 vj=ValuationOf(D[j],p,nu)

636 if vt<=vj and WeightOrderof(V,t,j,nu,k):

637 ut=Unitof(D[t],p,nu)

638 uj=Unitof(D[j],p,nu)

639 for b in [0..ell]:

640 W[3T[b]=Sx(ut*(V[3]1[b])-(p*(vi-vt))*uj*(V[t][b]))
641 update=true

642 break

643 t=t+1

644 if update==false:

645 W[F1=[Sx((UnitOf(D[]j],p,nu)*X-sigma(UnitOf(D[j],p,nu)))*(V[jl[b])) for b in [0..ell]]
646 V=W

647 V[@]=[InverseOf(Sx(V[0][0]).leading_coefficient())*(V[0@][b]) for b in [0..ell]]
648 return V

649 | #

650 | # VII.2. Example

651 | #

652 | g9=[[S9(1), a9, a9~2],[a9"3,a9~5]]
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653 | yo=[[1+2*a9,a9, a9~2],[3*a9"3,a9"5]]

654 | k9=[1,2,1]

655 | V9=GrobnerBasis(g9,y9,k9,p9,nu9,m9,sigma9)

656 | el19=1en(g9)

657 | for j in [0..nu9*(ell9+1)-1]:

658 print V9[j]
[X + 8*%a972 + 8*a9 + 6, (2*a9"2 + 2*a9 + 2)*X*2 + (8*a9"2 + 6*a9 + 8)*X + 5*a9”2 + 3*a9 + 6, 3]
[(3*a9”2 + 6*a9 + 3)*X + 6*a9”2, (3*a9”2 + 3*a9 + 6)*X"2 + 3*X + 3*39"2 + 6*a9 + 6, 0]
[5*a9”~2 + 8*a9 + 1, (3*a9”2 + 7*a9 + 5)*X"2 + (a9 + 4)*X + 6*a9”2, (4*a9"2 + 7*a9 + 8)*X + 7*a9”2 + 5*a9 + ¢
[6*a9*2 + 6, 6*X"2 + (6*a9"2 + 6*a9 + 6)*X, (3*a9"2 + 3)*X + 6*ag]
[0, 0, (8*a9"2 + 7*a9 + 3)*X"2 + (3*a9”2 + 7*a9 + 2)*X + a9"2 + 2*a9 + 8]
[0, 8, (6%a972 + 3*a9)*X 2 + (3*a9 + 6)*X + 3*ad9”2 + 6*a9 + 6]

659 | #

660 | # VIII. Unique decoding beyond the error correction capability

661 | #

662 | # VIII.1. Program

663 | #

664 | def UniqueDecodingIGabUsingGrobnerBasis(g,y,k,p,nu,m,sigma):

665 nen

666 Input: g a list of the supports of Gabidulin codes

667 "y  a received word of the interleaved Gabidulin code

668 “k=k=[1,k*{(1)},...,k*{(\ell)}]  a list of the dimensions of Gabidulin codes

669 Output: "decoding failure" or the element ~\mathbf{\hat{f}}  such that

670 for every minimal solution, “\mathbf{U} , of the key equation we have

671 TUAM{(1) y=un{(0) }*F {(1)}" for "1=1,...,\ell".

672 e

673 S=parent(g[0][0])

674 Sx.<X> = S['X",sigma]

675 ell=len(g)

676 n=[len(g[l]) for 1 in [0@..ell-1]]

677 tO=min((n[i]-k[i+1])//2 for i in [0..ell-1])

678 V=GrobnerBasis(g,y,k,p,nu,m,sigma)

679 Alpha=[V[j][j//nu].degree() for j in [@..nu*(ell+1)-1]]

680 bl=nu

681 while bl<=nu*(ell+1)-1 and Alpha[@]-k[@]< Alpha[bl]-k[bl//nu]:

682 bl=b1+1

683 if bl<=nu*(ell+1l)-1 :

684 return 'decoding failure’

685 QP=[LeftDivisionOf(V[@][1],V[0][@],sigma,m) for 1 in [1..ell]]

686 b2=0

687 while b2<ell and Sx(QP[b2][1])==Sx(0):

688 b2=b2+1

689 if b2<ell :

690 return 'decoding failure’

691 else :

692 if Alpha[@]<=t0 :

693 return [QP[1][@] for 1 in [0@..ell-1]]

694 else:

695 b3=1

696 while b3<nu and [Sx(V[b3][1]) for 1 in [1..ell]]==[Sx((V[b3][@])*(QP[1-1][@])) for 1 in [1..ell]

697 b3=b3+1

698 if b3<nu :

699 return 'decoding failure’

700 else :

701 return [QP[1][@] for 1 in [0..ell-1]]

702 | #

703 | # VIII.2. Example

704 | #

705 | UniqueDecodingIGabUsingGrobnerBasis(g9,y9,k9,p9,nu9,m9,sigmag)
‘decoding failure'

706 | #

707 | # VII.3. Example

708 | # The following example is given in our manuscript.

709 | #

710 | m4=4

711 | nu2=2
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S4.<ad>=R4z.quotient(h4)

sigma4 = S4.hom([a4”p4])

S4x.<X> = S4['X',sigma4]

g4 _1=[S4(1), a4, ad"2,a4"3]

g4 _2=[S4(1), a4, ad"2,a4"3]
y4_1=[3*ad~3+2*%ad4"2+2,a4"2+2%ad,ad"3+2,2*%a4 3+2%a4 2+3%a4+3]
y4_2=[ad”2+2*ad4+3,2%a4"3+a4"2+2%ad+3,a4"3+a4"2+2%a4+3,2*%a4"3+3]
k4a=[1,1,1]

g4=[ga_1,g4_2]

yd=[y4_1,y4_2]
[f4_1,f4_2]=UniqueDecodingIGabUsingGrobnerBasis(g4,y4,k4,p4,nud,md,sigmas)
e4_1=[S4(y4_1[i]-f4_1.operator_eval(gd_1[i])) for i in [0..m4-1]]
ed _2=[S4(y4_2[i]-f4_2.operator_eval(gd 2[i])) for i in [0..m4-1]]
ed=e4_1+ed_2

E4=MatrixRepresentationOf(e4)

print "h4","=", h4

print "f4_1","=", f4_1

print "f4_2","=", f4_2

print "e4","=", e4

print "RankOf(e4)","=", RankOf(E4)

print E4
h4 = z" + 2*¥z72 + 3*z + 1

f4_1

2*a4”3 + 3*a4

f4_2 = 3*%a4"2 + 2*a4 + 1

e4 = [a4”3 + 2*ad”2 + ad + 2, 2*ad"2 + 2, 2*ad”3 + 2*¥ad"2 + 2*ad + 2, 2*ad"2 + 2,

+ a4 + 3, 3*ad4”3 + 2*¥ad”2 + 3*ad + 2, 3*ad”3 + ad”2 + a4 + 1]

RankOf(e4) = 2

[22222321]
[Le260131]
[22222321]
[L0200 33 3]

# VIII.3. Failure probability of unique decoding interleaved Gabidulin codes
#
# We give Failure probability of above example
#
n4=4
ella=2
t4=2 # the rank of error
k4_b=1
def FailureProbability2(N4):
Input: "N4° number of simulations
Output: "N4_1/N4° where N4_1 is the number of "decoding failure".
N4_1=0
for j in [0..N4-1]:
f4=[S4x.random_element(degree=k4 b-1) for _ in [0..ell4-1]]

2*%a4”2 + 2, 3*a4~3 + 3*a4”

c4=[[f4[1].operator_eval(gad 1[i]) for i in [0..n4-1]] for 1 in [0@..ell4-1]]

Ad=random_matrix(R4,m4,t4)
B4=random_matrix(R4,t4,elld*n4)
E4_b=A4*B4
t4_b=RankOf2(matrix(S4,E4_b),p4,nud)
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while t4_b<>t4:
Ad=random_matrix(R4,m4,t4)
B4=random_matrix(R4,t4,ell4*n4)
E4_b=A4*B4
t4_b=RankOf2(matrix(S4,E4_b),p4,nud)

e4_b=[matrix(S4,[[a4*i for i in [0..m4-1]]1])*matrix(S4,E4_b[:,n4*1:n4*(1+1)]) for 1 in [0..ell4-1] ]

y4_b=[[S4(c4[1][i]+e4_b[1][0][i]) for i in [@..n4-1]] for 1 in [0..ell4-1]]
f4_out=UniqueDecodingIGabUsingGrobnerBasis(g4,y4 b,k4,p4,nud,m4,sigmad)

if f4_out=='decoding failure':
N4_1=N4_1+1
N4_2=RR(N4_1/N4)
return N4_2

00
ureProbability2(N4)

00000000000000

compare our decoding algorithm of interleaved Gabidulin codes

the decoding algorithm of [Sidorenko et al., 2011]
the case of finite fields.

IX.1. Unique decoding interleaved Gabidulin codes using skew-feedback shift register synthesis

implement the decoding algorithm of interleaved Gabidulin codes

[Sidorenko et al., 2011]

SkewFeedbackShiftRegisterSynthesisOf3(s,sigma):
S=parent(s[0][0]) # finite field

Sx.<X> = S['X',sigma] # Skew Polynomial ring

L=len(s) # number of sequences

Nl=[len(s[1]) for 1 in [@..L-1]] # length of sequences
N=max(N1l) # maximum length of sequences

u=[N-N1[1] for 1 in [@..L-1]]

v=[Sx(1),0] # initialization of connection polynomial and the shift register length
of auxiliary variables
dl=[S(1) for 1 in [0..L-1]] # initialization of discrepancy

b=[[Sx(©),0,u[1l]] for 1 in [0..L-1] ] # initialization

for n in [1..N]:
for 1 in [O..L-1]:
if n>v[1]+u[l] :

d=S(sum([sx(v[e])[j]*((sigma~j)(s[1][n-1-j-u[1]])) for j in [e..v[1]]]))

if S(d)<>S(09):
if n-v[1]<=b[1][2]-b[1][1]:

v[e]=sx(v[e]-d*(X~(n-b[1][2]))*(d1[1]~-1)*b[1][e])

else :
bo=v[0]
bl=v[1]

v[@]=sx(v[e]-d*(X*(n-b[1][2]))*(d1[1]~-1)*b[1][e])

v[1]=b[1][1]+n-b[1][2]
b[1]=[Sx(b@),b1,n]
d1[1]=d

return [v]+[b]

ParityCheckMatrixof(g,k,m,sigma):

S=parent(g[0])

n=len(g)

G_0=VandermondeMatrix0Of(g,n,sigma)

G_l=matrix(S,G_0)

H_1=G_1~-1

h=[S((sigma~(m-n+k+1))(H_1[i,n-1])) for i in [0..n-1]]
H=VandermondeMatrixOf(h,n-k,sigma)

return H

ErrorLocationErrorValueDecoding(h,y,k,m,sigma):

Input: "y  a received word of the interleaved Gabidulin code
“h™ the first row of a parity check matrix of Gabidulin code

"k the dimensions of Gabidulin codes

Comparison of unique decoding interleaved Gabidulin codes
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826 "m’ the degree of Galois extension

827 e

828 S=parent(h[0]) # finite field

829 p=S.characteristic()

830 a=S.gen()

831 Sx.<X> = S['X"',sigma] # Skew Polynomial ring

832 ell=len(y) # number of sequences

833 n=len(h)

834 # Compute syndromes

835 H=matrix(S,VandermondeMatrixOf(h,n-k,sigma))

836 s=[list((matrix(S,[y[1]])*(H.transpose()))[@]) for 1 in [0..ell-1] ]
837 # Compute Shift-Register Synthesis

838 LSSR=SkewFeedbackShiftRegisterSynthesisOf3(s,sigma)

839 N=n-k

840 z=max ([0, LSSR[0][1]-N])

841 epsilon=sum([max([0,LSSR[1][1][2]-LSSR[1][1][1]-z-(N-LSSR[@][1])]) for 1 in [0@..ell-1]])
842 if epsilon <> 0 :

843 return 'decoding failure’

844 else :

845 # Find a basis for the root space of connection polynomial

846 Vx=LSSR[0@][0]

847 t=LSSR[0][1]

848 ImVx=[Vx.operator_eval(a”i) for i in [0..m-1]]

849 MVx=MatrixRepresentationOf(Imvx)

850 KerMVx=MVx.right_kernel()

851 tau=KerMvx.dimension()

852 if tau<>t:

853 return 'decoding failure'

854 else:

855 if t==0:

856 return y

857 else:

858 BasisKerMvx1l=KerMvx.basis()

859 BasisKerMvx2=(matrix(GF(p),[list(BasisKerMvx1[i]) for i in [©..tau-1]])).transpose()
860 RootSpaceVx=VectorRepresentationOf(BasisKerMvx2,S)

861 # Solve '(41)'

862 Al=matrix(S,VandermondeMatrixOf(RootSpaceVx,tau,sigmar(m-1)))
863 A2=A1"-1

864 TranOfs=[matrix(S,tau,1,[(sigma~(m-j))(s[1][j]) for j in [@..tau-1]]) for 1 in [0..ell-1]]
865 F1=[A2*TranOfs[1] for 1 in [@..ell-1]]

866 F2=[1list(F1[1].transpose()[0]) for 1 in [@..ell-1]]

867 F3=[MatrixRepresentationOf(F2[1]) for 1 in [0..ell-1]]
868 # Solve '(40)'

869 Mhl=MatrixRepresentationOf(h)

870 Mh2=block_matrix([[Mhl,identity_matrix(GF(p),m)]])

871 Mh3=Mh2.echelon_form()

872 Mh4=Mh3[:,n:]

873 B1=[Mh4*F3[1] for 1 in [0..ell-1]]

874 B2=[B1[1][n:,:] for 1 in [0..ell-1]]

875 B3=matrix(GF(p),m-n,tau)

876 if [B2[1]==B3 for 1 in [@..ell-1] ]<>[True for 1 in [0..ell-1]]:
877 return 'decoding failure'

878 else:

879 B5=[(B1[1][:n,:]).transpose() for 1 in [0..ell-1]]
880 e_out=[list((matrix(S,[RootSpaceVx])*B5[1])[0]) for 1 in [0..ell-1] ]
881 c_out=[[S(y[1l][i]-e_out[1][i]) for i in [©..n-1]] for 1 in [@..ell-1]]
882 return c_out

883

884 | # IX.3. Simulation results of Comparison

885 | #

886 | p3=5 # the characteristic of finite field

887 | m3=6 # the degree of Galois extension

888 | k3=2 # dimensions of Gabidulin codes

889 | n3=6 # the length of Gabidulin code

890 | t3=3 # the rank of error

891 | el13=3 # interleaving order

892 | R3z.<z> = GF(p3)[]

893 | Conway=R3z(conway_polynomial(p3,m3))

894 | S3.<a3>=R3z.quotient(Conway) # Galois extension of 'GF(P3)'

895 | sigma3 = S3.hom([a3”p3]) # a genarator of Galois group

896 | S3x.<X> =S3['X',sigma3] # skew polynomial ring
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897 | g3=[a3”i for i in [0..n3-1]] # the support of Gabidulin code
898 | h3=ParityCheckMatrix0f(g3,k3,m3,sigma3)[0] # the first row of a parity check matrix of Gabidulin code
899 | g3_2=[g3 for 1 in [0..ell3-1]]
900 | k3_2=[1]+[k3 for 1 in [0..ell3-1]]
901 | f3=[S3x.random_element(degree=k3-1) for 1 in [0..ell3-1]]
902 | c3=[[f3[1].operator_eval(g3[i]) for i in [0..n3-1]] for 1 in [0©..ell1l3-1]]
903 | E3=random_matrix(GF(p3), m3, n3*ell3,algorithm="echelonizable', rank=t3)
904 | e3=[matrix(S3,[[a3”~1 for i in [0..m3-1]]])*matrix(S3,E3[:,n3*1:n3*(1+1)]) for 1 in [@..ell1l3-1] ]
905 | y3=[[S3(c3[1][i]+e3[1][0][1i]) for i in [@..n3-1]] for 1 in [0..ell3-1]]
906 | f3_out=UniqueDecodingIGabUsingGrobnerBasis(g3_2,y3,k3_2,p3,1,m3,sigma3)
907 | c3_out=ErrorLocationErrorValueDecoding(h3,y3,k3,m3,sigma3)
908 | 3_out==f3
909 | c3_out==c3
True
True
910 | #
911 | # X. Decoding of random linear network codes
912 | #
913 | # X.1. Program
914 | #
915 | def RedimensionOf(L,mt):
916 nn
917 Input: a matrix "L with coefficents in the ring "R°
918 Output: the matrix of “mt® rows obtained from the matrix "L°
919 by inserting all zero rows below the last row if “L.nrows()<=mt"
920 or by deleting the “L.nrows()-mt" last rows else,
921 where "mt is the row size of the transmitted matrix
922 mn
923 R=L.base_ring()
924 ar=L.nrows()
925 if mt<=ar : L1=L[@:mt,:]
926 else:
927 L2=matrix(R,mt-ar,L.ncols())
928 Ll=block_matrix([[L],[L2]])
929 return L1
930 | #
931 | def SuccessiveTransformationOf(mt,bo,n,Y):
932 e
933 Input:The row size "mt® of the transmitted matrix.
934 The column size b@" of the zero matrix
935 and the column size "n° of a code matrix
936 using in the transmitted matrix.
937 A received matrix Y  with coefficents in the ring "R°.
938 Output: “[Yh_21,Dh_1,Yh_22]" such that
939 “Yh_21=M+Dh_1*W_1+W_2*Yh_22+Eh" where "M’ is a code matrix
940 nn
941 R=Y.base_ring()
942 # First transformation
943 Y_0=Y[:,0:b0]
944 a_fo=FreeRank0Of(Y_0)
945 P_2=SmithNormalFormOf(Y_©)[1][a_f0:,:]
946 Y1=P_2*Y[:,b0:]
947 # Second transformation
948 mir=Y.nrows()-a_fo@
949 Y1_1=Y1[:, :mt]
950 Y1_2=Y1[:,mt:mt+n]
951 a_fl=FreeRankOf(Y1_1)
952 a_1=RankOf(Y1_1)
953 [D1,P1,Q1]=SmithNormalFormOf(Y1_1)[0:3]
954 Y2_2=P1*Y1 2
955 # Third transformation
956 D1_1=D1[:a_1,:]
957 Y2_21=Y2_2[:a_1,:]
958 Y2_22=Y2_2[a_1:,:]
959 a_f22=FreeRank0f(Y2_22)
960 if a_f22==0:
961 Yh_22=matrix(R,1,n)
962 else :
963 Yh_22=SmithNormalFormOf(Y2_22)[1][:a_f22,:]*Y2_22
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964
965
966
967
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969
970
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987
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995
996
997
998
999
1000
lo01
1002
1003
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#

D2_1=RedimensionOf(D1_1,mt)
Y3_21=RedimensionOf(Y2_21,mt)

RankMetricCodesOverFinitePIR504.sagews

Dh_1=Q1*(D2_1-identity_matrix(mt,mt))
Yh_21=Q1%Y3_21

return [Yh_21,Dh_1,Yh_22]

# X.2. Example

#

R30=Integers(30)
n30=12
mt30=7
br3e=3
b030=3
mr30=10
M30=matrix(R30,mt30,n30)

Xt30=block_matrix([[matrix(R30,mt30,b030),identity _matrix(R30,mt30),M30]])

A30=random_matrix(R30,mr30,mt30)
B3@=random_matrix(R30,mr30,br3e)
Z30=random_matrix(R30,br30,b030+mt30+n30)
Y30=A30*Xt30+B30*Z730

T30=SuccessiveTransformationOf(mt30,b030,n30,Y30)

Yh30_21=T30[0]

Dh3@_1=T30[1]

Yh30_22=T30[2]

print

print

print

print

print

print

print

print

[0
[0
[0
[0
[0
[0
[0

[22
[ 8
[22
[24
[ 5
[ 4
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[18
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1004
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#

# X.3. Example
# The following example is given in our manuscript.

#

R8=Integers(8)

p8=2
nu8=
m8=>5

3

R8z.<z>=R8[]
h8=R8z (z"5+4%z"3+7%z"2+2%2+7)
S8.<a8>=R8z.quotient(h8)
sigma8 = S8.hom([a8”p8])
S8['X"',sigma8]

S8X.<X>

ng_1
n8_2

gt8 1=[a8”i for i in [1..n8_1]]
gt8 2=[a8”i for i in [1..n8_2]]

=5
=5

15

23
13

14

28

13

25

24
24
18

12
12

15]
5]
e]
e]

20]

10]
e]

00 0]

29
22

13

28
22
26
20
15

28
17

16
16

10
18
18
14

27

12

18
16
29
20
25
10
10

16
20
24
24
22

13
28
15

26
17
25
19
23

14
20

29
29
13
20
27
27

£8_1=S8x(1+2*a8+3*a8”2+5*a8"3)
£8_2=S8x(1+4*a8+7*a8"2+2*a8"3+5%a8"4)
c8_1=[f8_1.operator_eval(gt8 1[i]) for i in [0..n8_1-1]]
c8 2=[f8_2.operator_eval(gt8 2[i]) for i in [0..n8_2-1]]
M8_1=MatrixRepresentationOf(c8_1)
M8_2=MatrixRepresentationOf(c8_2)
M8=block_matrix([[M8_1,M8 2]])
n8=n8_1+n8_2
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mt8=M8.nrows ()
bo8=2

Xt8=block_matrix([[matrix(R8,mt8,b08),identity matrix(R8,mt8),M8]1])

br8=3
mr8=7
A8=matrix(RS, [
[5, 6, 6, 3,3],

[3, 2, 7, 1, @],

[4, 6, 0, 6, 7],

[4, 1, 2, 1, @],

[1, 4, 5, 6, 2],

[2, 5, 7, 5, @],

[4, 4, 1, 3, 1]

D

B8=matrix(R8, [

[6, 4, 2],

[4, 5, 5],

[2) 5) 4])

[6) 7) 6])

[3) 7) 2])

[2) 7J 1])

[6, 8, 7]

D

Z8=matrix (RS, [

[e, 7, 7, o, 6, 3, 3, 1, 5, 2, 6, 7, 4, 3, 4, 1
[e, o, 7, 5, 2, 4, 5, 2, 3, @0, 3, @0, 4, 5, 5, 6
[6, 3, ¢, 5, 5, 7, 2, 3, 7, 0, 4, 3, 5, 1, 5, 2
D

Y8=A8*Xt8+B8*Z8

#

# Successive transformations

#

T8=SuccessiveTransformationOf(mt8,b08,n8,Y8)
Yh8_21=T8[0]

Dh8_1=T8[1]

Yh8_22=T8[2]

#view("Xt8","=",Xt8)

#view("Y8","=",Y8)
#view("Yh8_21","=",Yh8 21)
#view("Dh8_1","=",Dh8_1)
#view("Yh8_22","=",Yh8 22)

print Yh8_ 21

print Dh8_1

print Yh8_22

[0654573644]
[5751356746]
[024735210 3]
[7173575121]
[5736402201]
[00004]
[00006]
[0 000 4]
[0000 7]
[00006 7]

[762167551]

#

# Error-Erasure Decoding

#
SNFh8_22_1=SmithNormalFormOf(Yh8_22[:,0:n8_1])
Fh8_22_ 1=SNFh8 22 1[2][:,SNFh8_22_1[3]:]
F8c_1=Fh8 22 1

SNFh8_22 2=SmithNormalFormOf(Yh8_ 22[:,n8_1:n8])

RankMetricCodesOverFinitePIR504.sagews
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1082 | Fh8_22_2=SNFh8_22_2[2][:,SNFh8_22_2[3]:]

1083 | F8c_2=Fh8 22 2

1084 | ah8_1=Rank0Of(Dh8_1)

1085 | SNFh8_1=SmithNormalFormOf(Dh8_1)

1086 | vh8_1=VectorRepresentationOf(( SNFh8_ 1[1]~-1)[:,:ah8_1],S8)
1087 | Pr8=MinimalSkewPolynomialOf(vh8_1,sigma8)

1088 | print F8c_1

le89| " "

1090 | print F8c_2

le91 )" "

1092 | print Pr8

1093
[0 00 1]
[7 6 2 0]
[127 0]
[0100]
[1 00 0]
[155 1]
[7 3 3 6]
[0010]
[06100]
[1000]

X + 5*a8”4 + a8"3 + 6*a8”2 + 2*a8 + 2

1094 | g8_new_1=matrix(S8,1,n8_1,[gt8_1])*F8c_1

1095 | g8_new_2=matrix(S8,1,n8_2,[gt8_2])*F8c_2

1096 | g8_new=[1list(g8_new_1[0]), list(g8_new_2[0])]

1097 | yh8_21_1=VectorRepresentationOf(Yh8_21[:,:n8_1],S8)

1098 | yh8_21 2=VectorRepresentationOf(Yh8 21[:,n8_1:n8_ 1+n8_2],S8)

1099 | y8_new_1=matrix(S8,1,n8_1,[Pr8.operator_eval(yh8 21 1[i]) for i in [0..n8_1-1]])*F8c_1
1100 | y8_new_2=matrix(S8,1,n8_2,[Pr8.operator_eval(yh8 21 2[i]) for i in [0..n8_2-1]])*F8c_2
1101 | y8_new=[1list(y8_new_1[0]), list(y8_new_2[0])]

1102 | k8_new=[1,1+Pr8.degree(),1+Pr8.degree()]

1103 | Out8=UniqueDecodingIGabUsingGrobnerBasis(g8_new,y8 new,k8 new,p8,nu8,m8,sigma8)

1104 | Out8

[(7*a8"4 + 5*a8”3 + 5*a8 + 1)*X + 4*a8"4 + 3*a8"3 + 4*a8 + 1, (5*a8"4 + 7*a8”3 + 5*a8"2 + 4*a8 + 6)*X + 2*a¢
+ 5*a8”3 + 3*a8”2 + 5*a8]

1105 | print LeftDivisionOf(Out8[0],Pr8,sigma8,m8)
1106 | print LeftDivisionOf(Out8[1],Pr8,sigma8,m8)
1107 | print LeftDivisionOf(Out8[0],Pr8,sigma8,m8)[0]==8_1
1108 | print LeftDivisionOf(Out8[1],Pr8,sigma8,m8)[0]==8_2

[5*a8”3 + 3*a8”2 + 2*a8 + 1, 0]
[5*a8”4 + 2*a8”3 + 7*a8"2 + 4*a8 + 1, 9]
True

True

1109 | #

1110 | # X.4. Example

1111 | # In this example, the matrices A, B, Z are random.
1112 | #

1113 | R32=Integers(32)

1114 | p32=2

1115 | nu32=5

1116 | m32=8

1117 | R32z.<z>=R32[]

1118 | h32=R32z(HensellLiftOfPrimitivePolynomial(p32,nu32,m32))
1119 | S32.<a32>=R32z.quotient(h32)

1120 | sigma32 = S32.hom([a327p32])

1121 | S32x.<X> = S32['X',sigma32]
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1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

n32_1=8
n32_2=8
n32_3=8
k32_1=2
k32_2=2
k32_3=2
gt32_1=[a32”i for i in [1..n32_1]]
gt32_2=[a32”i for i in [1..n32_2]]
gt32_3=[a327i for i in [1..n32_3]]
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£32_1=S32x.random_element(degree=k32_1-1)
£32_2=S32x.random_element(degree=k32_2-1)
£32_3=S32x.random_element(degree=k32_3-1)
c32_1=[f32_1.operator_eval(gt32_1[i]) for i in [0..n32_1-1]]
c32_2=[f32_2.operator_eval(gt32_2[i]) for i in [0..n32_2-1]]
c32_3=[f32_3.operator_eval(gt32_3[i]) for i in [0..n32_3-1]]

M32_1=MatrixRepresentationOf(c32_1)
M32_2=MatrixRepresentationOf(c32_2)
M32_3=MatrixRepresentationOf(c32_3)
M32=block_matrix([[M32_1,M32_2,M32_3]1])
n32=n32_1+n32_2+n32_3

mt32=M32.nrows()

b032=4

br32=7

mr32=12

Xt32=block_matrix([[matrix(R32,mt32,b032),identity_matrix(R32,mt32),M32]])

A32=random_matrix(R32,mr32,mt32)
B32=random_matrix(R32,mr32,br32)

Z32=random_matrix(R32,br32,b032+mt32+n32)

Y32=A32*Xt32+B32%Z32
print £32_1

print £32_2

print £32_3

print Xt32

print A32

print B32

print Z32

print Y32

(22*a32”7 + 30*a32”6 + 18*a32”5 + 13*a32”4 + 13*a32”3 + 31*a32”2 + a32 + 26)*X + 9*a32"7 + 26*a32”"6 + 24*a3:

+ 19%a3274 + 28*a32”3 + 22%a3272 + 13

(28*a32”7 + 4*a32”76 + 29*a3275 + 17*a32”4 + 6*a32”3

17*a32”5 + 4*a32"3 + 24%*a32"2 + 14%*a32

(14*a32~7 + 18*a32”6 + 7*a32”5 + 6*a32™4 +

+ 2*a32”4 + 31*a32”3 + 9*a32 + 9

[ © @ 0] 1 2 @ @ @ © 0 0|17
[ © @ 0] @ 1 0 @ @ @ @ 0| 9
[6 0 0 9| @ 6 1 © © © 0 0|25
[ © 0 0] @ 2 @ 1 © © 0 0|10
[ © © 0| @ @ @ @ 1 o o o] 8
[0 © 0 0| @ 6 @ 0 0 1 0 0|20
[ © 0 0] @ 2 @ @ @ © 1 0|11
[ © © 0| 0 0 0 @ @ o0 o 1|20

[ 527 29 19 31 24 26 27]
[31 521 1 4 5 27 27]

21
19

26
22
30
10
29

24*332"3

13
29
23

18
19
28
24

16
11
19

30

30
19

14
21
15
26
24
25

16

+ 11*a3272 + 10*a32 + 5)*X + 19*a32”7 + 28*a32"6 +

+ 31*%a3272 + 19*a32 + 25)*X + 6*a32"7 + 9*a32”6

14
23
19
22
14
17

26
30
25
10

16
13

13 25

17 30
25 27
6 22

22 20
25 5

14
13
17

16
17
7

26
16
22

10
13

11

15
18
26
10
29
25

29

21
18
19
19
18
16

17
20
27
16
20
29
11
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+ 20*a3:
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29
15
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1166 | #

1167 | # Successive transformations
1168 | #

1169 | T32=SuccessiveTransformationOf(mt32,b032,n32,Y32)
1170 | Yh32_21=T32[0]

1171 | Dh32_1=T32[1]

1172 | Yh32_22=T32[2]

1173 | print Yh32_21

1174 ""

1175 | print Dh32_1

1176 | ""

1177 | print Yh32_22

[ 730171031 215 320 221 9 729 8113111 313 12 17 11 31]
[20 29 1212 16 6 218 8 91210 8 4 30 13 16 16 26 29 2 17 20 14]
[ 616 24 © 12228 9 330 8 619 12 23 13 16 13 19 31 26 12 16 6]
[ 721 122 3302515 26 11 13 28 6 13 13 20 23 30 28 31 10 21 25 2]

https://cocalc.com/161292cf-d91b-443f-99ea-49c42e2f0fa9/raw/RankMetricCodesOverFinitePIR504.sagews.html 22/24



21/09/2019

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

https://cocalc.com/161292cf-d91b-443f-99ea-49c42e2f0fa9/raw/RankMetricCodesOverFinitePIR504.sagews.html

[14 8 20 12 22 26 18
[3123 4 9 4 28 27
[16 31 17 11
[13 20 5 20

L e B e O e W e e M e M
O ®O 0O ®O 0O OO0
© ®O ®©O ®O 0O OO0
© 0O 0O OO OO0

O 0O O O OO0

4 7 0
29 26 19

©O 0O O ®O OO0

© 0O 0O 0O 0O OO0

© 0O O OO0 OO0

RankMetricCodesOverFinitePIR504.sagews

18 22 228 911 22 1 24 10 31
15 20 16 30 31 23 2 3 11 29 24

12 8 19 19 27 18 2 27
327 7 4 7 42329

21]
14]
16]
18]
18]
17]
27]
13]

113 2
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[0000O0OOODOOODOODOOODOOO0OOOOO0 Q]

#

# Error-Erasure Decoding

#

SNFh32_22_1=SmithNormalFormOf(Yh32_22[:,0:n32_1])
Fh32_22_1=SNFh32_22_1[2][:,SNFh32_22_1[3]:]
if Fh32_22_1==matrix(R32,Fh32_22 1.nrows(),Fh32_22_1.ncols()):

F32c_1=identity _matrix(R32,n32_1)

else:

F32c_1=Fh32_22_1

#

13 23 28 9 4 23]
4 2 27 25 31 25]
3 28 29 11 10 26]

10 © 23 15 17 13]

SNFh32_22_2=SmithNormalFormOf(Yh32_22[:,n32_1:n32_1+n32_2])
Fh32_22 2=SNFh32_22 2[2][:,SNFh32_22 2[3]:]
if Fh32_22_2==matrix(R32,Fh32_22 2.nrows(),Fh32_22 2.ncols()):

F32c_2=identity_matrix(R32,n32_2)

else:

F32c_2=Fh32_22 2

#

SNFh32_22_ 3=SmithNormalFormOf(Yh32_22[:,n32_1+n32_2:n32_1+n32_2+n32_3])
Fh32_22_ 3=SNFh32_22 3[2][:,SNFh32_22 3[3]:]
if Fh32_22_ 3==matrix(R32,Fh32_22 3.nrows(),Fh32_22 3.ncols()):

F32c_3=identity_matrix(R32,n32_3)

else:

F32c_3=Fh32_22 3

#

ah32_1=RankOf(Dh32_1)
if ah32_1 ==0:
Pr32=532x(1)

else:

SNFh32_1=SmithNormalFormOf(Dh32_1)
vh32_1=VectorRepresentationOf(( SNFh32_1[1]~-1)[:,:ah32_1],532)
Pr32=MinimalSkewPolynomialOf(vh32_1,sigma32)

#

print F32c_

print F32c_

print F32c_

print Pr32
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© 0O O O 0O r OO0
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1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

1231
1232
1233
1234
1235

[e0000006 1]
[00000010]
[00000 10 0]
[e0001006 0]
[0001000 0]
[0010000 0]
[61000006 0]
[1000000 0]
[00000 00 1]
[00000010]
[e0000 106 0]
[0000 100 0]
[0001000 0]
[60100006 0]
[0100000 0]
[10000008 0]

X + 9*%a3277 + 3*a32”6 + 31*a32~5 + 12*a32”3 + 8*a32”2 + 2*a32 + 7

g32_new_1l=matrix(S32,1,n32_1,[gt32_1])*F32c_1

g32_new_2=matrix(S32,1,n32_2,[gt32_2])*F32c_2

g32_new_3=matrix(S32,1,n32_3,[gt32_3])*F32c_3
g32_new=[list(g32_new_1[0]),list(g32_new_2[0]),list(g32_new_3[0])]

yh32_21 1=VectorRepresentationOf(Yh32_21[:,:n32_1],532)

yh32_ 21 2=VectorRepresentationOf(Yh32_21[:,n32_1:n32_1+n32_2],S32)

yh32_ 21 3=VectorRepresentationOf(Yh32_21[:,n32_1+n32_2:n32_1+n32_2+n32_3],S32)
y32_new_l=matrix(S32,1,n32_1,[Pr32.operator_eval(yh32_21 1[i]) for i in [0..n32_1-1]])*F32c_1
y32_new_2=matrix(S32,1,n32_2,[Pr32.operator_eval(yh32_21 2[i]) for i in [0..n32_2-1]])*F32c_2
y32_new_3=matrix(S32,1,n32_3,[Pr32.operator_eval(yh32_21 3[i]) for i in [©..n32_3-1]])*F32c_3
y32_new=[list(y32_new_1[0]),list(y32_new_2[0]),list(y32_new_3[0])]
k32_new=[1,k32_1+Pr32.degree(),k32_2+Pr32.degree(),k32_3+Pr32.degree()]
Out32=UniqueDecodingIGabUsingGrobnerBasis(g32_new,y32_new, k32_new,p32,nu32,m32,sigma32)

Out32

[(14*a327~7 + 3*a32”6 + 28*a32~5 + 28*a32”4 + 25%a327~3 + 18*a32”2 + 16*a32 + 5)*X*2 + (25*a32~7 + 6*a32”6 +
22*a3275 + 5%a3274 + 23*a3273 + 31*a3272 + 29*a32 + 30)*X + 25*%a32”7 + 14*a3276 + 22*a32”5 + 12*a3274 +
17*a32”3 + 31*a32”2 + 13*a32 + 30, (18*a32~7 + 29*a32”6 + 9*a32”5 + 23*a32”4 + 19*a32”3 + 20*a32”2 + 10*a32
22)*X"2 + (31*a32”7 + 19*a32”6 + 23*a32”5 + 2*a3274 + 30*a3273 + 22*a3272 + 27*a32 + 8)*X + 13*a32"7 +
24*a3276 + 5%a3275 + 22*a3274 + 17*a32”3 + 12*a3272 + 22*a32 + 20, (8%*a32”7 + 13*a32”6 + 5*a3275 + 4*a32”4 4
12*a32”3 + 22*a32”2 + 30*a32 + 1)*X"2 + (26*a32"7 + 31*a32”6 + 9*a32”5 + 18*a32”4 + 16*a3273 + 21*a3272 +
16*a32 + 14)*X + 15%a32~7 + 10*a32”6 + 22*a32~5 + 30*a32”4 + 30%a3273 + 13*a32”2 + 21*a32 + 13]

if Out32=='decoding failure' : print "'decoding failure
else:
print LeftDivisionOf(Out32[@],Pr32,sigma32,m32)==[f32_1,S32x(0)]
print LeftDivisionOf(Out32[1],Pr32,sigma32,m32)==[f32_2,532x(0)]
print LeftDivisionOf(Out32[2],Pr32,sigma32,m32)==[f32_3,532x(0)]

True
True
True

generated 2019-09-21700:58:33 on CoCalc
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Rank-Metric Codes Over Finite Principal Ideal
Rings and Applications

Hermann Tchatchiem Kamche

Abstract—In this paper, it is shown that some results in the
theory of rank-metric codes over finite fields can be extended
to finite commutative principal ideal rings. More precisely, the
rank metric is generalized and the rank-metric Singleton bound
is established. The definition of Gabidulin codes is extended and it
is shown that its properties are preserved. The theory of Grobner
bases is used to give the unique decoding, minimal list decoding,
and error-erasure decoding algorithms of interleaved Gabidulin
codes. These results are then applied in space-time codes and in
random linear network coding as in the case of finite fields.
Specifically, two existing encoding schemes of random linear
network coding are combined to improve the error correction.

Index Terms— Finite principal ideal rings, Galois extension,
Grobner bases, interleaved Gabidulin codes, random linear
network coding, rank-metric codes, skew polynomials, space-time
codes.

1. INTRODUCTION

In a communication network, the transmitters can send
information simultaneously to the receivers. These are repre-
sented by a matrix where rows consist of various information.
Practically, it may happen some perturbations and the received
signals be different from the transmitted ones. In such predica-
ment, for securing the system against noises, one can use the
rank-metric codes to detect and correct errors.

A. Rank-Metric Codes

Rank-metric codes [1] are codes whose each codeword is
a matrix and the distance between two codewords is the rank
of their difference. The most important family of rank-metric
codes is that of Gabidulin codes [1]-[3]. They are optimal
in the sense that they achieve the rank-metric Singleton
bound. In [2], Gabidulin used the Galois extension to give
the vector representation of rank-metric codes. He also gave
a polynomial-time unique decoding algorithm of Gabidulin
codes.

The length of a Gabidulin code is lower bounded by the
degree of the Galois extension. To increase the code length,
we can use an interleaved Gabidulin code [4] which is a
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direct sum of several Gabidulin codes. Another advantage of
interleaved Gabidulin codes is the existence of polynomial-
time decoding algorithms [4]-[6] that can decode beyond the
error correction capability with high probability. Nowadays,
rank-metric codes are used in space-time coding [7], public
key cryptosystems [8] and random linear network coding [9].

B. Space-time codes based on rank-metric codes

A space-time code is a multiple-input/multiple-output trans-
mit strategy for fading channels in point-to-point single-user
scenarios. It was introduced in [10] by Tarokh et al. It com-
bines the space diversity, provided by multiple antennas, and
the time diversity to increase system capacity and reduce mul-
tipath fading. Among the performance criteria for space-time
codes, we have the rank criterion [10] which states that in order
to achieve the maximum diversity, the rank of the difference of
two distinct codewords has to be maximal. On the other hand,
for any space-time block code there is a tradeoff between the
transmission rate and the transmit diversity gain [10], [11].
As in [12], a space-time block code that achieves this rate-
diversity tradeoff will be called an optimal space-time block
code. To construct these optimal codes, rank-metric codes can
be used. Thus, in [7] Lusina et al. used rank-preserving map
from finite fields to Gaussian integers to construct optimal
space-time block codes from rank-metric codes over finite
fields. In [13], Asif et al. used interleaved Gabidulin codes
to construct space-time block codes and compared them to
orthogonal space-time block codes. In [14], Puchinger et al.
extended the works of Lusina et al. [7] to Eisenstein integers.
They also proposed decoding scheme of space-time block
codes using lattice-reduction-aided equalization and error-
erasure decoding algorithm of Gabidulin codes. In [15], Augot
et al. transposed the theory of rank metric and Gabidulin codes
to the case of fields of characteristic zero.

C. Rank-Metric Codes in Random Linear Network Coding

A random linear network coding is a technique that can be
used to disseminate information in networks and improve the
performance of communication systems. In the transmission
model for end-to-end coding over finite fields, the channel
equation is given by Y = AX + E, where X is the transmitted
matrix whose rows are packets transmitted by the source node;
Y is the received matrix whose rows are the packets received
by the sink node; A is a transfer matrix corresponding to the
overall linear transformation applied by intermediate nodes

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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of the network and E is an error matrix whose rows are
linear combinations of corrupt packets injected in the network.
Random matrices A and E are unknown to the destination.
The problem is to recover the transmitted codeword X from
the received matrix Y.

Since linear network coding is vector-space preserving, Kot-
ter and Kschischang [16] suggested the use of a basis of a vec-
tor space as the rows of the transmitted matrix. They defined
a distance function between subspaces, constructed a family
of constant-dimension subspace codes and the decoding algo-
rithm. In [9] Silva et al. used the lifted rank-metric codes to
show that minimum distance decoding of constant-dimension
subspace codes can be reformulated as a generalized decoding
problem for rank-metric codes. They then gave an error-
erasure decoding algorithm of Gabidulin codes to solve the
problem of error control in random linear network coding.

D. Network Coding Over Finite Principal Ideal Rings

A principal ideal ring is a ring in which any ideal is
generated by one element. In a digital modulation system,
some signal constellation sets can be represented by a finite
principal ideal ring. In particular [17], if # is some positive
integer then the signal constellation set of the #%-ary square
quadrature amplitude modulation is represented by the ring
Zylil = Zy + iZ, where i2 = —1 and Zy is the ring of
integers modulo 7. The works on nested-lattice-based network
coding [17], [18] allow the construction of more efficient
physical-layer network coding schemes with network coding
over finite principal ideal rings. Motivated by this algebraic
approach, space-time codes and random linear network coding
were studied in the specific cases of principal ideal rings.

In [12], Kiran and Rajan extended the definition of
Gabidulin codes to Galois rings and used a rank-preserving
map to construct an optimal space-time block code. In [19],
Liu et al. defined the notion of Zo—rank over the ring Z[i]
and used it to construct the rank metric space-time codes
for the 2% quadrature and amplitude modulated. The works
of Silva et al. [20] and Nobrega et al. [21] were extended
respectively in [22] and [23] to finite chain rings. The works
of Kotter and Kschischang [16], and Gorla and Ravagnani [24]
were extended in [25] to finite principal ideal rings.

Note that the works of [22], [25] and [23] allow to improve
the error correction in random linear network coding over finite
principal ideal rings. As in the case of finite fields, another
method that one can use is rank-metric codes. Thus, in this
paper we focus on a problem raised by Frank R. Kschischang
which consists of studying properties of rank-metric codes
likely to be preserved over finite principal ideal rings. The
resolution of this problem will allow to give the encoding and
decoding schemes for random linear network coding over finite
principal ideal rings. Moreover, an optimal space-time block
code will be constructed for all digital modulation systems
whose signal constellation set is algebraically represented [17]
by a finite principal ideal ring.

E. Our Contribution

To extend rank-metric codes to finite principal ideal rings,
we first extend the rank metric using the Smith normal form
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of a matrix. We then use the Galois extensions to prove that
Gabidulin codes can be extended to finite principal ideal rings
and that its properties are preserved. As in [4], we show
that collaborative decoding of interleaved Gabidulin codes
can be translated to the problem of reconstruction of skew
polynomials. Analogous to [26], the theory of Grobner bases is
used to give an iterative algorithm to solve this reconstruction
problem. The solutions of this problem allow us to give the
unique decoding, minimal list decoding, and error-erasure
decoding algorithms of interleaved Gabidulin codes. We then
apply these results to space-time coding and random linear
network coding. Specifically, we show that there is a rank-
preserving map from a finite principal ideal ring to a complex
signal set and we use it to construct an optimal space-time
block code. We combine the encoding and decoding schemes
of [9] and [20] to improve the error correction in random linear
network coding.

F. Structure of the Paper

In Section II, we set basic notations and review some
facts about skew polynomials. In Section III, we show that
the rank metric can be extended to principal ideal rings.
We establish the rank-metric Singleton bound and prove that
Gabidulin codes achieve this bound as in the case of finite
fields. In Section IV, we describe the interleaved Gabidulin
codes, give the key equation and an algorithm to solve it. The
decoding algorithms are given in Section V. The applications
in space-time codes and in random linear network coding
are given in Section VI. We present our conclusions in
Section VIIL.

II. PRELIMINARIES
A. Smith Normal Form

Throughout this paper, by ring we mean a commutative ring
with identity element, ring homomorphisms are assumed to be
unitary, and all modules are unital. Unless otherwise specified,
we assume that R is a finite principal ideal ring.

An element u € R is called a unit if uv = 1 for some v € R.
Let a, b € R, we say that a divides b, denoted al|b, if b = ca
for some ¢ € R. The set of all m x n matrices with entries
from R will be denoted by R™*". The k x k identity matrix
is denoted by Ix. Let A € R™*", we denote by row (A) and
col (A) the R-submodules generated by the row and column
vectors of A, respectively.

A matrix D = (d; ;) € R™" is called a diagonal matrix
if d; j = 0 whenever i # j. A diagonal matrix D = (d,"j) €
R™ ™ can be written as D = diag (dy,...,d,), where r =
min{n,m}, and d; = d;;, for i = 1, ...,r. By [27, Theorem
15.24], for all matrix A € R™*", there are two invertible
matrices P, Q and a diagonal matrix D = diag (dy, d>, . .., d;)
satisfying the divisibility relations di|da| . . . |d,, such that A =
PDQ. The elements dy, da, .. ., d, are unique up to associates
and the matrix D is called a Smith normal form of A.

Example 2.1: Let R = Z,. Set

8

10 4 4
A= 4 2 8 2
6 0 6
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Using SageMathCloud [28], we compute a Smith normal form
of A, and we get
1 0 0 O
0 2 0 O
0 0 6 0
In [29], Storjohann gave an algorithm for computing the
Smith normal form over principal ideal rings and its complex-

ity. As in [30] and [31], one can use the Smith normal form to
solve a linear system of equations over principal ideal rings.

B. Finite Chain Rings

A local ring is a ring with exactly one maximal ideal.
A chain ring is a ring whose ideals are linearly ordered by
inclusion. It is known (see, e.g., [32]) that a finite ring is
a chain ring if and only if it is a local principal ideal ring.
Therefore, by the structure theorem of finite commutative rings
[32, Theorem VI.2], each finite principal ideal ring can be
decomposed as a direct sum of finite chain rings.

Examples of finite chain rings are the ring Z «, p is a prime,
and the ring Z,«[i], whose the maximal ideals are pZ ok and
(1 4 i)Zyk[i], respectively. Other examples of construction of
finite chain rings using the ring of algebraic integers are given
in [12]. The characterization of finite chain rings is given in
[32, Theorem XVII.5].

In a finite chain ring, every ideal is a power of the maximal
ideal. More specifically, assume that R is a finite chain ring,
7 a generator of its maximal ideal, v the nilpotency index of
7, i.e., the smallest positive integer such that zV = 0. Then,
every ideal of R is of the form iR, fori =0,...,v, and for
all a € R\{0} there is a unique i € {0,...,v — 1} and a unit
u € R such that a = z'u.

Thus, to compute the Smith normal form over finite chain
rings, one can also use the simple method given in the proof
of [33, Theorem 1.1.12.]. As in the proof of [27, Theorem
15.9], one can then compute the Smith normal form over finite
principal ideal rings.

C. Galois Extension of Finite Principal Ideal Rings
Let p be the positive integer such that

R =Ry x -+ X Rp),

where R(;) is a finite chain ring, for i = 1,..., p. Using
this isomorphism, we identify R with Ry x --- x R(,). Let
i €{l,...,p}, we denote by m(;) the maximal ideal of R(;),
]qu = R(;)/my;) its residue field and v(;) the nilpotency index
of m(;. We denote the natural projection Ry — Fg,) by w).
We extend y;) coefficient-by-coefficient to polynomials over
R(;). Let m be a nonzero positive integer. Let i € {1,..., p}
and h(;) € R;)[X] be a monic polynomial of degree m such
that () (h) is irreducible in Fg, [X]. Set

Sy = Ro[X1/ (k@)

where (h(;)) denotes the ideal generated by h(;. By [32], S(;
is a free local Galois extension of R(; of R(;)-dimension m,
with the maximal ideal ;) = m(;S(;), where the Galois
group is cyclic of order m, generated by a power map
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oG) A = azii()i) on the suitable primitive element o).

Moreover, IE‘q(nly) = S)/M). Set
§= 8y x - xS

and o = (a(i)) 1<i<, Let Gr(S) be the group generated by o,
then by [34, Proposition 1.2(5), pp.80], S is a Galois extension
of R with the Galois group G (S). Since R(;) is a finite chain
ring and S(;) is a free R(;-module of rank m, then § is a
finite principal ideal ring and it is a free R-module of rank m.
Note that by [35, Theorem 3.2.], there is a monic polynomial
h € R[X] of degree m such that § = R[X]/ (h).

Example 2.2: Let R = Zj2. By the Chinese remainder
theorem [27, page 175], we have R = R(1)x R(2) where R(1) =
I3 and Ry = Zg. Set Sy = Fx, ho) = X442X2 43X +1,
So) = Ro[X]/ (h(z)), ap) = X + (h(z)). Let the maps
auy = Say — Sqy given by o (x) = x3, for all x € Sy,
and o) : Sy — Sp) given by ap) a(zz), that is,
xo0 + x1a2) + xza(zz) + x3a(32) € S), where
X0, X1, X2, X3 € R(z), 0(2)(x) = x0+x1a%2)+x2a?2)+x3a?2).
Then Sy x S(z) is a Galois extension of R(j) x R(z) where
the Galois group is generated by (0(1), 0(2))-

for all x =

D. Skew Polynomials

In this subsection, we show that some properties of lin-
earized polynomials over finite fields [36] can be generalized
to finite principal ideal rings. Let S[X, o] be the set of all
(skew) polynomials ap + a1 X + --- + a, X", where n € N,
ai € S, fori = 0,...,n, and X is an indeterminate. The
addition in S[X, o] is defined to be the usual addition of
polynomials and the multiplication is defined by the basic
rule Xa = o (a)X, for all a € S, and extended to all
elements of S[X, o] by associativity and distributivity. The
set S[X, o] with the above operations forms a ring called the
skew polynomial ring over S with automorphism o.

Let f = fo+ fiX+ -+ fuX" € S[X, o] with f, # 0,
then n is called the degree of f, X" the leading monomial
of f, fu the leading coefficient of f, f, X" the leading term
of f, denoted deg(f), Im(f), lc(f) and It(f) respectively.
If f =0, then we put deg(0) := —oo, Im(0) := 0, Ic(0) :=
0 and /r(0) := 0. The skew polynomial f is called monic
if lc(f) = 1. We denote by S[X, o] the set of all skew
polynomials of degree less than k.

It has been proved (see, e.g., [37]) that for all f and
g in S[X,o], we have deg(f + g) < max{deg(f), deg(g)}
and deg(fg) < deg(f) + deg(g). Furthermore, if the leading
coefficients of g is a unit, then deg(fg) = deg(f) + deg(g)
and there exist unique polynomials ¢, ¢/, r and r’ in S[X, o]
such that f = gg + r (right division) and f = gq’ + r’ (left
division) with deg(r) < deg(g) and deg(r’) < deg(g).

Note that if R = F,, then § =Fym and o (x) = x4, for all
x € [Fym. Thus, we now prove that some results in [36] can
be extended to finite principal ideal rings.

Notation 2.3: Let f = fo+ fiX+- -+ fX" € S[X, 0],
beSandb=(by,...,b,) € S".

1) The element fob + fio(b) + --- + f,0"(b) will be

denoted by f(b).
2) The kernel of f is ker f :={x € §: f(x) =0}.
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3) The vector (f (b1),...,f (by)) will be denoted by
f (b).
As § = Sy x -+ X §(py and M) = m(;)S(;), we have the
following Lemma.
Lemma 2.4: Let y € S. If {y} is linearly independent over
R, then y is a unit.

Proof: Suppose that {y} is linearly independent over R
and y is.not a unit: Set y = (y(.i)).lfl.fp where yi) € Sg)-
Since y is not a unit, then there is ig € {1, ..., p} such that
Y(ip) 18 not a unit. Consequently, (i) € Miy). As
Miiy) = M(ip)SGip)> there is 0 # b, € ml();(;(;)_l such that
bii) Yy = 0. Set b = (Ba)),_;, where Biiy) = biy) and
Pay =0 if i #ip. Then by = OTVVﬁich is impossible because
{y} is linearly independent over R. [ |

Analogous to [36], we have the following two propositions.
Proposition 2.5: Let {uj}i<j<, be a subset of S, which
is linearly independent over R. Then, there is a monic skew
polynomial f € S[X, o] of degree r such that
ker f = ({uj}1=j=), where ({uj}1<j<,) denotes the R-
submodule of S generated by {u;}i<j<.

Proof: ~ We prove by induction on k € {l,...,r}.
Set fi = X — o (u1)u; ', we have ker fi = ({u1}). Let
k e {l,...,r — 1}. Assume there is a monic polynomial
fr € S[X,o] of degree k such that ker f;y = ({uj}lfjfk).
We claim that f; (ux+1) is a unit. Indeed, let a € R such that
afr (ug+1) = 0, then augyy € ker fr = ({ui}lsjgk). Conse-
quently, a = 0 because {u;}1<j<k+1 is R-linear independent.
Therefore, by Lemma 2.4, fi (ux+1) is a unit. Set fry] =
(X — o (fk ure1)) fi (uig1) ") X fi, then deg (fiy1) = k+1
and ker fir1 = ({uj}i1<j<kt1) |

Proposition 2.6: Let {u;}1<j<, be a subset of S. Then,
the matrix (ai (”J))0<i<r—1, |<i<, is invertible if and only
if {u;}1<j<, is linearly independent over R.

Proof: Assume that {u;}i<j<, is linearly independent
over R. Let i € {l,...,r}. By Proposition 2.5, there is a
monic skew polynomial 7; € S[X, o] of degree r — 1 such
that ker T; = ({uj}1<j<r, j ). Using the same arguments as in
the proof of Proposition 2.5, we can show that 7; (u;) is a unit.
Set T; (u;) "' T; (X) = Zo<j<r—1 vi,jX/, where v; ; € S, then

the matrix (v;;),_;_, 0<j<r_1 18 the inverse of the matrix

(Ul (”j))ogsr—l, 1<j<r '

Conversely, assume that (a‘ (”i))()gisr—l, l<j<r is invert-
ible. Let A1, ..., A, be the elements of R such that Aju; +
-+ Aru, = 0. Then, we have 10" ur)+-- 4 Aol (uy) =0,
fori =0,...,r — 1. Consequently, Ay =--- =4, = 0. [ |

From the preceding proposition, we get the following
corollary.

Corollary 2.7: Let {u;}1<j<, be a subset of S, which is
linearly independent over R and let V € S[X, o] be a monic
skew polynomial of degree r such that ker V = ({uj}lfjfr).
Let P € S[X,o]. Then, P (uj) =0, for j =1,...,r, if and
only if there is Q € S[X, o] such that P = QV.

E. Grobner Bases of Modules Over Skew Polynomials

In [38], Jiménez and Lezama studied the theory of Grobner
bases of modules over skew Poincaré-Birkhoff—Witt exten-
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sion. In this subsection, we recall some results in this theory
that we will use to solve the key equation.

Let ¢ be a positive integer, we denote by S[X,]‘*! the
¢ + 1-fold direct product of S[X, ¢]. For all u € S[X, ]ttt
the /-th component of u is denoted by u® forlefo,...,0),
ie.u = (u(o),u(l),...,u(f)). We consider S[X,c]‘t! as
a left S[X, o]-module where addition is defined componen-
twise and for ¢ € S[X,o] and u € S[X,c]t!, au =
(@u®,au®, ... au®). We denote by @ = (1,0,...,0),
e =(0,1,0,...,0), ..., e =(0,...,0,1) the canonical
basis of S[X, s]‘*!. A monomial in S[X, ¢]‘*! is an element
of the form X%e®) where « € N and I € {0,...,¢).
The set of monomials of S[X,c]ft! will be denoted by
Mon (S[X,c1“*1). If X“e!) € Mon (S[X,c]‘*!), then [ is
called the index of X*e() and denoted by ind (X*e?)). Let
x#el, x2e® e Mon (S[X,s]/*!), we say that X*1e()
divides X“2e2), denoted X“1 eV | x%2e2) if || = I, and there
is f € N such that ay = a1+ . We will say that any monomial
x%e) e Mon (S[X, o]“l) divides the null vector 0.

Definition 2.8: A monomial order on Mon (S[X, o] is
a total order > satisfying the following two conditions:

(i) x# (X“e(l)) > X%, for all
x%e® e Mon (S[X,01°") and every g € N;

(i) if X2e® > x@e(D) then

x’ (Xaze(lz)) = x# (Xale(ll))

for all X*1e®), x*2e®) e Mon (S[X,o1°*") and every
S eN.

If X*2e®) > xa1el) gnd x*2e2) * X*e) we will write
x*e) o yxarell)
xo1e) < X*e2) means that X*2e) > Xo1elh),

Remark 2.9: By [39, Chapter 0, Section 17, Lemma 15] a
monomial order on Mon (S[X, c]*!) is a well order. Note
that the condition (iii) of [38, Definition 15.] is given so that a
monomial order is a well order. So, in this restricted specific
case we do not need this condition.

We fix a monomial order > on the monomials of
S[X, o1, Let £ € S[X, 01T\ {0}, then f can be written
uniquely as f = D" ciX%el) where n € N, ¢; € §, for
i =1,...,n, ¢ # 0and X%el) » ... » x%el) We
define:

o Im (f) := X“1e!) as the leading monomial of f;

o lc(f) := c; as the leading coefficient of f;

o It (f) := c1 X*1e) as the leading term of f;

o deg (f) := a; as the degree of f.

For f = 0 we define I (0) := 0, Im (0) := 0, Ic(0) := 0
and extend > to Mon (S[X,a1“t!) U {0} by X“e) > 0 for
all X%e® e Mon (S[X,1°*"). According to [38, Theorem
26.], we give the following:

Definition 2.10: Let M be a nonzero submodule of
S[X, 01! and let G be a non empty finite subset of nonzero
vectors of M, we say that G is a Grobner basis for M if for
all f € M there exist g, ..., 8 € G such that Im (g;) |Im (£),
for j =1,...,1t, i.e, there exist a; € N such that /m (f) =
X% lm (gj), and Ic(f) € (6™ (lc(g1)),...,0% (Ic(g)))-
We will say that {0} is a Grobner basis for M = {0}.
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By [38, Theorem 23.] and [38, Theorem 26.], we have the
following:

Proposition 2.11: Let M be a submodule of S[X, o]t!
and let G = {g1,..., g} C M. If G is a Grébner basis for M
then for all f € M there exist g1, ..., q: € S[X, o] such that
f=qigi +  +q:g with

Im (£) = max {im (q1) Im (g1) , ..., Im (q1) Im (g1)} .

III. RANK-METRIC CODES OVER PRINCIPAL IDEAL RINGS

In this section, as in the case of finite fields, we give the two
representations of rank codes [40]: matrix representation and
vector representation. We establish the rank-metric Singleton
bound. We extend the definition of Gabidulin codes and prove
that its properties are preserved.

A. Rank Metric

In field theory, the rank of a matrix defines a group-norm in
the matrix space of the same size. We extend this property to
principal ideal rings. As in [27, page 190] we use the following
notation.
Notation 3.1: Let M be a finitely generated R-module. The
smallest number of elements in M which generate M as an
R-module is denoted by ug(M). If M = {0}, then we set
1r(M) =0.
By [41], if F is a finitely generated free R-module and
{e1,...,en} is a free basis of F, i.e., a linearly independent
generating set, then ug(F) = n and any generating set of F
consisting of n elements is a free basis of F. Using the Smith
normal form, we have the following proposition.
Proposition 3.2: Let M be a finitely generated R-module,
UR(M) =ry, and let N be a submodule of M, ur(N) = ry.
Then, ry < ry and there is a generating set {u;}1<;<,, of
M and ry scalars di,...,d,, of R such that {dju;}1<i<ry
generates N, with di|d>]...|d;, . Furthermore, if M is a free
module then {u;}1<i<,, is a free basis of M.
Note that if N and N’ are two submodules of a finitely
generated R-module, then u g (N + N/) <ugr (N)+ug (N/).
Thus, the minimum number of generators of a module over
a principal ideal ring has several properties similar to the
dimension of vector spaces. Therefore, analogous to the case
of fields, we give the following definition.
Definition 3.3: (Rank of matrix). Let A € R™*".
(i) The rank of A, denoted by rankg (A), or simply by
rank (A), is the number g (col (A)).

(i) The free rank of A, denoted by freerankg(A), or
simply by freerank (A), is the maximum of the ranks
of free R-submodules of col (A).

Using the Smith normal form and [27, Theorem 15.33 |, we
have the following proposition.

Proposition 3.4: Let A € R™ "\ {0} and
D =diag(d, ..., d;) be a Smith normal form of A. Then,

col (A) Zrow (A),

rank (A) =max{i € {l,...,r}:d; #0},
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and
freerank (A) = max{i € {1,...,r} :d; is a unit}.
Corollary 3.5: Let A € R™*". We have
rankgr (A) = ug (row (A))

and freerankg (A) is the maximum of the ranks of free R-
submodules of row (A).

Example 3.6: If A is the matrix given in Example 2.1, then
rank (A) =3 and freerank (A) = 1.

Remark 3.7: In linear algebra over fields, the rank-nullity
theorem states that the sum of the rank of a matrix and the
dimension of its right kernel is equal to the number of its
columns. Using the definition of rank given in Definition 3.3,
this property is not true in general over finite principal ideal
rings, due to zero divisors. Indeed, let Zg be the ring of integers

modulo 6 and
2 0
2=(5 2)

be a matrix with coefficients in Ze¢. The right kernel of A
is generated by the vectors (3, 0) and (0, 3). By Proposition
3.4, rank (A) = 2. Thus, the rank-nullity theorem can not be
applied to the matrix A.
Using the Smith normal form, we have the following
proposition.
Proposition 3.8: (Rank Decompositions). Let E € R™*",
rank (E) =1t.
1) There are A € R™*', rank (A) = t, and B € R'™",
freerank (B) = ¢, such that E = AB.
2) There are A’ € R™*, freerank (A’) = t, and B’ €
R, rank (B') =1, such that E = A'B.
The following theorem extends the notion of rank metric to
principal ideal rings.
Theorem 3.9: The map R™*" — N given by
A +— rank (A) is a group-norm, i.e.,
(1) for all A € R™*", rank (A) =0 if and only if A = 0;
(i) for all A € R™*", rank (—A) = rank (A);
(iii) for all A, B € R™*",

rank (A + B) < rank (A) 4 rank (B) .

Proof: The proof is similar to that in the case of fields if
we replace the dimension of the vector space by the minimum
number of generators of a module. [ |

Remark 3.10: In general, freerank does not satisfy condi-
tions (i) and (iii) of Theorem 3.9.

B. Vector Representation of Matrices

In this subsection, we define the group-norm in S" that
will allow to give an R-isomorphic isometry between S” and
Rm ><n.

Definition 3.11: Let u = (uy,...,u,) € S". By consider-
ing S as R-module, the number ug (({u1,...,u,})) is called
the rank of u and denoted by rankg (u) or simply by rank (u).

Remark 3.12: Using the same arguments as in the proof of
Theorem 3.9, we can show that the map rank : S — N given
by u + rank (u) is a group-norm.
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The following proposition gives a relation between Def-
inition 3.3 and Definition 3.11. Let (f1,..., fm) be a free
basis of S as R-module. Consider a = (ay,...,a,) € S".
For j =1,...,n, aj can be written as a; = > ,_;,, 4i,; Bi,
where a; ; € R. The matrix Ay := (a;; |<i<m, l;j;n is the
matrix representation of a in the basis (f1, ..., fm) over R.
Analogous to [40], we have the following:

Proposition 3.13: With the above notations, the map S —
R™*™ given by a = A, is an R-isomorphic isometry between
the normed spaces (8", rank) and (R™*", rank).

Proposition 3.8 can be interpreted in vector representation
as follows.

Proposition 3.14: Letu € S", rank (u) =t.

1) There are a € S, rank(a) = , and B € R,
freerank (B) = t, such that u = aB.

2) There are a’ € S', freerank (a’) =1, and B" € R"*",
rank (B’) =t, such that u = a’B’.

A direct consequence of Proposition 2.5 and Proposi-
tion 3.14 is the following:

Proposition 3.15: Let w = (w;);<j<, € S",
rank (w) = r. Then, there is a monic skew polynomial P €
S[X, o] of degree r such that P (w) = 0.

As in the case of finite fields [36], the following proposition
gives the link between the degree of a skew polynomial and
the rank of its kernel.

Proposition 3.16: Let P = ap+a1 X+ - -+a, X" € S[X, 0]
such that ag;, is a unit for some ip € {0,...,#}. Then,
rank (ker P) < deg (P).

Proof: Suppose that deg (P) < rank (ker P). Set r =
rank (ker P), then by Proposition 3.2 there is a free basis
{bi}1<i<m of S and the scalars Ay,...,4, in R such that
{2ibi}1<i<r generates ker P, with A1|42]...|4,. We then have
ArP (b;j) = 0, fori = 1,...,r. Hence, by Corollary 2.7,
ArP = 0. This is clearly impossible because A, # 0 and a;,
is a unit. Thus, rank (ker P) < deg (P). [ |

Remark 3.17: In Proposition 3.16, if all coefficients of P
are non-units, then we can have deg(P) < rank (ker P).
Indeed, let R = Zs4, S = R[z]/(*+z+1) and a =
7+ (12 +z+1). Then, S is a Galois extension of R where
the Galois group is generated by a power map o : a > a>.
Set P = 2X — 2 € S[X,o]. Then, ker P is generated
by 1 and 2a. Thus, all coefficients of P are non-units and
deg (P) < rank (ker P).

Remark 3.18: Proposition 2.6 and Proposition 3.16 are
some of the main results that allow to extend the properties of
Gabudulin codes to finite principal ideal rings. Note that if one
of the automorphisms ;) is not a generator of the respective
Galois group, then the ring S is not a Galois extension of R
with Galois group G g (S) and therefore, as in [15], Proposition
2.6 and Proposition 3.16 will not be true in general. Indeed,
consider the following example.

Example 3.19: Let the finite field [, and the Galois exten-
sion Fps = Folz]l/ (24 + 23+ 1). Seta = z + (2 + 23 + 1).
Let 0 = (01, 0(2)) be the map from Fas x Fas to Fas x Foa,
where 01y (x) = x? and Op) (x) = x* for all x in Fy. The
map 0 is an F x [Fo-automorphism of Fys x [F54 and we have

0> = (03)id).
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1) Let G be the group generated by 6. The set o4 x {0} is
a maximal ideal of Fp4 x Fp4 and for all x € Fp x Fpu we
have x — 62 (x) € Fy4 x {0}. Thus, by [34, Proposition 1.2(5),
pp-80], Fp4 x Fys is not a Galois extension of Fp x [Fo with
the group G.

2) Seta =(a,a) and 1 = (1, 1). Then {1, a, a’} is linearly
independent over Fp x 5. Set

1 a a?
M=|0@1) 06 0
0>(1) 6%(@) 6> (az)
1,1 (a,a) (az,az)
= @1 (a%a*) (a*,d®
(1, 1) (a4,a) (a8,a2)

By [42, Corollary 2.8], the matrix M is not invertible because
the rows of the matrix

a a2
Ll4 Cl8
a (12

are not linearly independent.

3)Let P =X — (1, 1) in (Fp x Faa) [X, O]. The set ker P
is generated by (1, 1) and (0, a + a*). Thus,
rank (ker P) > deg (P).

C. Matrix and Vector Representation of Rank-Metric Codes

Analogous to the case of finite fields [1]-[3], we give the
following definitions.

In matrix representation, rank codes are defined as subsets
of a normed space (R"*", rank), where the norm of a matrix
A € R™" is the rank of A over R. The rank distance
between two matrices A and B is the rank of their difference
rank (A — B). The rank distance of a matrix rank code M C
R™*" is defined as the minimal pairwise distance:

d (M) = min {rank (A—B): A, Be M, A #B}.

A matrix rank code M C R™*" is called R-linear if M is a
submodule of R™*",

In vector representation, rank codes are defined as subsets
of a normed S-module space (S”, rank), where the norm of
a vector u € §” is the rank of u. The rank distance of two
vectors u and v is the rank of their difference rank (u — v).
The rank distance of a vector rank code C C S” is defined as
the minimal pairwise distance:

d(C) =minf{rank(u—v): u, veC, u#v}.

A vector rank code C C §" is called linear if C is a submodule
of S-module S”, furthermore if C is a free submodule of §”
then C is called a free rank code.

Let C C S" be a linear rank code. The number s (C),
denoted by rankg (C) or simply by rank (C), is called the rank
of C. A generator matrix of C is a rank(C) x n matrix over S
whose rows generate C. The inner product of two vectors u =
(ui,...,uy) € 8" and v=(vy,...,0,) € S" is defined by

u-v=uiovy+- -+ uv,.
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The dual of C is the submodule of S” defined by

Cl:{ueS”: u-v=0, foreveryveC}.
A parity-check matrix of C is a generator matrix of C*.
Note that by Proposition 3.13, there exists a relation
between the matrix representation and the vector represen-
tation. As in the case of finite fields [1]-[3], the following
proposition establishes the rank-metric Singleton bound.
Proposition 3.20: (Singleton bound)
Let M C R™*" be a rank code of rank distance d, then

|M| < |R|min{m(n—d+1), n(m—d+1)}

where |M| and |R| denote the cardinality of M and R

respectively.
Proof: The proof is similar to that in the case of finite
fields, see e.g. [43, Theorem 1 ]. [ |

Definition 3.21: Let M C R™ " and C C S" be the rank
codes of rank distance d such that

|M| — |C| — |R|min{m(n—d+1), n(m—d+1)} ,

then we say that M and C are maximum rank distance codes,
or, MRD codes.

In finite fields, Gabidulin codes are MRD codes [1]-[3].
We will prove that this property extends to finite principal
ideal rings.

D. Gabidulin Codes

Letg = (g1,...,8n) € S",such that {gq, ..., g,} is linearly
independent over R. Let k be an integer such that 0 < k < n.

Definition 3.22: (Gabidulin Codes)

A Gabidulin code Gaby (g) of length n, dimension k£ and
support g is the S-module given by:

Gaby (g) ={f(g): f € SIX, 0]}

Proposition 3.23: The Gabidulin code Gaby (g) is a free
rank code of rank k& with a generator matrix
o (g1) o (gn)
G = . .

okl (g1) okt (gn)

Proof: The rows of G generate Gaby (g). By Proposition
2.6 and [42, Corollary 2.8], the rows of G are linearly
independent over S, thus Gaby (g) is a free code of rank k.

|
Theorem 3.24: (a) The rank distance, d, of Gaby (g) is
givenbyd =n—k+1.
(b) Gaby (g) is an MRD code.

Proof: Using Corollary 2.7 and Proposition 3.15, the proof

is similar to that of [44, Proposition 7.]. [ |
Theorem 3.25: Let (y; ;) be the inverse of the

' : I<izn,1<j<n
matrix (0 (87)) o<y 1.1<j<n- Set

hi — 0_—n+k+1 (Vi,n) ,
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Then, the family {1, ..., h,} is linearly independent over R
and a parity-check matrix of Gaby (g) is

a0 () a° (hn)
H = z 5
o.nfkfl (hl) O_nfkfl (hn)

Proof: The product of the two matrices
(gi (gj))0§i§n—1,1§j§n and (01_n+j (yi’”))lfifnﬁfjfn—l
is a lower unitriangular matrix. Thus, the matrix
(o1t ()’i,"))]gign,OSjgnfl is invertible.  Therefore,

by Proposition 2.6, {y1,...,Yn,n} is linearly independent
over R. Consequently, {h1,...,h,} is linearly independent
over R. Thus, the rows of the matrix H are linearly
independent over S and GH” = 0. Since Gaby (g) is a free
code of length n and the rank k, by [42, Proposition 2.9],
Gaby (g)* is a free code of rank n — k. Consequently, H is a
parity-check matrix of Gaby (g). |

In [45], Loidreau showed that decoding of Gabidulin codes
can be translated to the problem of reconstruction of skew
polynomials. In the input of decoding algorithm given in [45,
page 40], it is assumed that the rank of the error is less
than or equal to the error-correcting capability of the code.
But in practice, the receiver does not know the rank of the
error. In [44], Augot et al. gave a similar algorithm without
this condition. We will prove that [44, Algorithm 2] can be
extended to finite principal ideal rings.

For the remainder of this section, let 7o := [(n — k) /2] be
the error correction capability of the Gabidulin code Gaby (g).
Similarly to [45, Proposition 1 and Proposition 2], we give the
following:

Lemma 3.26: Let y € S" be a received word of the
Gabidulin code Gaby (g). Assume that there is [ € S[X, o]k
such that rank (y — f (g)) < ty. Then, the following linear

equation
u’
(A1 Az) (VT ) =

with unknowns u =

o’ (y1)
: (1
ol (yn)

(uo,...,ukﬂ(),l) and v =

(00, - .., vy—1) has a solution, where
o (g1) g 01 (g1)
A= : :
o0 (gn) ogk+to—1 (gn)
and
—a (1) —a""1 (y1)
Ay = E :
—o? (¥n) —gh~! (yn)

Moreover, if u = (uo, . Mk+[07]) and v = (uo, ey v,(),l)
are a solution of this equation, then U = Vf where U =
wo+ur X 4+ F gy 1 X0 and V =vg o1 X+ +
V-1 X071 4 X0,

Proof: Set t = rank (y — f (g)). By Proposition 3.15,
there is a monic skew polynomials W € S[X, o] of degree
t such that W (y — £ (g)) = 0. Therefore, X""~'W (y) =
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XO7IW (f (g)). Set X"OT'Wf = wup + w X + -
uk+,0_1Xk+’°*l and X" 'W =pg+01 X +-- -—|—l)t0_1Xt°7l +

X" Then, w= (o, ..., urtr—1) and v.= (0o, ..., vy—1) are
a solution of (1).
Now, let u = (uo, e uk+,0,1) and v = (vo, R v,(,,l) be

a solution of (1). Set U = ug 4+ u1 X + - - - + tppgy—1 X*H0~1
and V =09 + 01X + -+ + 05— X071 + X0 Then, we have
V (y) = U (g). Since rank (y — f (g)) < to, we also have
rank (V (y — £ (g))) < to, that is, rank (U — V) (g)) < to.
Thus, By Proposition 3.15, there is a monic skew polynomial
L € S[X,0]l<y+1 such that (L (U —-Vf))(g) = 0. As
deg(L(U—-Vf)) <2t0+k—1<n-—1, by Corollary 2.7,
LU —Vf)=0. Since L is monic, we have U —Vf =0. B
Lemma 3.26 allows to give Algorithm 1.

Algorithm 1 Decoding Gabidulin Codes up to Half the
Minimum Distance
Input: a received word y € S§” of the Gabidulin code
Gaby (g).
Output: f € S[X, o]k such that
rank (y — f(g)) < L(n — k) /2] or "decoding
failure".
1 Solve linear equation (1)
2 if (1) has no solution then
3 | return "decoding failure"
4 else
5| Set U =up+uiX 44 ttgr—1 X*~1 and
V=00+01X+ 40,1 X0 + X where
u = (ug, ..., ugs—1) and v = (0o, ..., v4—1) are a
solution of (1).
6 | Compute the quotient Q and the remainder P on the
left Euclidean division of U by V in S[X,o].
7 | if P # 0 then
| return "decoding failure"
else
1 | | return Q

Theorem 3.27: Let 'y € S§" be a received word of the
Gabidulin code Gaby (g). Let f € S[X, o]. Then, Algorithm
1 returns f if and only if deg (f) < k and rank (y — f (g)) <
10.

Proof: Assume that Algorithm 1 returns f ,then U = V f
where U and V are as in Algorithm 1. Since deg(U) <
k 4+ to — 1, we have deg(f) < k. As V(y) = U (g), we
also have V (y — f(g)) = 0. Thus, by Proposition 3.16,
rank (y — f (g)) < fo. The converse is given by Lemma 3.26.

|

Recall that one can use the Smith normal form to solve (1).
In the next section we will show that one can also use the
iterative method similarly to [26].

IV. INTERLEAVED GABIDULIN CODES

Recall that an interleaved Gabidulin code is a direct sum of
several Gabidulin codes. In this section, we give the properties
of interleaved Gabidulin codes, establish a key equation and
give an algorithm to solve it.
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- 4+ A. Description

Letl e{1,...,¢}. Let n® and k© be the integers such that
0 <k® <n® <m.

i / I D, .
Let g(l) - (;:g),...,gr(l()l)), where {gg),...,g’(lg)} is a

R-linear independent subset of S. The rank distance of
Gabya (g(l)) is denoted by dV). The concatenation of ¢ vec-
tors e e s e©® e 57 is denoted by (eW...c®) e
V4

Definition 4.1: An interleaved Gabidulin code,

.....

{(c(l) . ~~c(f)) e e Gab, (g(l)) ,I=1,... ,5} :

We observe that if £ = 1 then an interleaved Gabidulin code
is a Gabidulin code.

Proposition 4.2: The  interleaved  Gabidulin  code
IGab k) (g(l), e g(f)) is a free linear rank code of

,,,,,

rank kD + ... + kO and rank distance mine(1,....¢) {d(”}.
Proof: The proof is similar to that of [46, Lemma 2.17].
|

Corollary 4.3: It kO = kM and n® =m, fori =1,...,¢,
then 1Gab ), ) (g™, ...,g9) is an MRD code.

Notation 4.4: Recall that for U € S[X,c]“!, the I-th
component of U is denoted by U(l), for [ in {0,..., ¢}, ie.
U= (U O, .U ([)). In order to simplify the notations, the
element (A, ..., A©) in S[X, 1" is denoted by A.

For the remainder of this section, let y = (y(l) . -y(f)) €
g1+ be 2 received word of the interleaved Gabidulin
is the analogue’ of [26, Theorem 12].

Theorem 4.5: Let © € N. Then, the following statements
are equivalent.

(i) There is e € IGabga) . o) (gM,...,g9) such that

rank (y —c¢) <.

(ii) There is U € S[X, ¢]“*! such that:

INRIAR (y(l)) =u® (g(l)), forl=1,...,¢
2) deg (UD)—kD < deg (UO)—1,forl=1,....,¢
3) U© s monic;
4) deg (U(O)) <7
5) the remainder of the left Euclidean division of U")
by U© is equal to zero, for I =1,...,¢.
Proof: Using Proposition 3.16 and Proposition 3.15, the
proof is similar to that of [26, Theorem 12] and [4]. [ |

Definition 4.6: (the key equation)

We say that U € S[X, 0 ]°*! is a solution of the key equation
if :

e UO(yO) =UD (g), fori =1,...,6

o deg (UD) —kD < deg (U®) — 1, fori=1,...,¢L.

e UD g monic;

A solution U is called minimal if deg (U?) is minimal.

In finite fields, the resolution of the key equation given in
Definition 4.6 is equivalent to the problem of multi-sequence
generalized linear skew-feedback shift register introduced in
[47]. In [47], Puchinger et al. solved this problem using
row reduction. We will solve the key equation using the
iterative method introduced in [48], because it is easy to extend
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this method to modules and finite rings [49]-[51]. Note that
in [52], Bartz and Wachter-Zeh used this iterative method for
decoding interleaved subspace and Gabidulin codes, because
its complexity is better than Gaussian elimination. Further,
it allows to compute a minimal Grobner basis for the interpo-
lation module.

B. Iterative Solving the key Equation

Similar to [26], [50], we give an iterative algorithm that
allows to solve the key equation. Recall that the elements a
and b in S are said to be associated if b = ua for some unit
ues.

Notation 4.7: Since associatedness is an equivalence rela-
tion on S,

- the equivalent class of a € § is denoted by [a];

- a complete set of representatives of the equivalence
classes is denoted by [S], without loss of generality,
assume that 1 € [S];

- we denote by [ST* := [S]\ {0}.

As § = Sy X -+ x §(,), where S(;y is a finite chain ring
and a generator of its maximal ideal is in R(;), we have the
following:

Lemma 4.8: For all a € S, a and o (a) are associated.

Notation 4.9: Let y = (yD...y0) ¢ gnD+4n®
be a received word of the interleaved Gabidulin code
IGabo, oy (87, 20). Set g = (gM---g¥),

We denote by M|y, g] the set of all U in S[X, a]“l such
that UQ (yO) = v® (gV), for I = 1,...,¢, that is,
u© (yi(l)) =y" (gl-(l)), foril=1,...,0andi =1,...,n0.

The set M|y, g] is a S[X, o]-submodule of S[X, a1t and
by Definition 4.6, all the solutions of the key equation are in
M|y, g]. Therefore, to find these solutions, just find a Grobner
basis for My, g] with a monomial order > that we will specify
later. To compute a Grobner basis for M|y, g], we will use the
iterative method described in [49].

Notation 4.10: Set n© := 0. We define by induction the
subsets My, gl¢,i) as following:
Mly, glo.0) = SIX,o]“! and for all (/,i) € {I,...,¢} x
{1,....nD}, Mly, gl is the set of all U in My, gl(.

such that U© (yl.(l)) =y (gl.(l)), where

i) = [

We have Mly,glo,0) D Mly,gla,y D -+ D
My, glqnmy O Mly.gley O -+ D My, gl @) O

- D Mly, gle,1y D -+ D Mly, gl 0y = Mly, gl. Note
that as in [50] a Grobner basis for S[X, o]t is Bo,0) =
{se(r)}ofrﬂ,, selST* So, we will compute a Grobner basis,
B = {V(ras)}()grgf, se[ST+ for My, g] which has the same
properties as B,0), that is, for all (r, s), ind(Im (V(.5))) =r,
Ic (V(,s)) € [s], and deg (V) is minimal among the degree
of all U € My, g] with ind(Im (U)) = r, lc (U) € [s].

Let (I,i) e {l,...,{} x {1, .. ,n(”}. Assume that
MLy, g](;,;) has a Grobner basis By, ;) = {V(”S)}Osrsf, selS]*
such that for all (r, s), ind(Im (V(,,s))) =r,lc (V(,,S)) € [s],

(—1,n0D)ifi =1
(l,i — 1) else
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and deg (V(m)) is minimal among the degree of all U €
Mly, g](u) with ind(Im (U)) =r, Ic (U) € [s].

- Let Ji.y) be the setof all (+/,s") € {0, ..., £} x [S]* such
that Im (V(r’,s’)) <Im (V(r,s))-
- Let Dq,iy : Mly, g](u) — § be defined as

Dy ) =V (5) = v ().

- The discrepancy of V) is given by
Ags) = Daiy (Vi) -
- Let b5 € S such that
7 () = b D) = 0.

Lemma 4.11: With the above notations,

(a) D, is an S-module homomorphism;

(b) Mly,glu, = {U e Mly, g](u) : Dy (U) = 0};

© (X =bg.9) Vo) € MLy, gla.p)-

Using a Grobner basis, {V(m)}ogga sespe for
Mly, g](u), we now show how one can compute a Grobner

i . / 41
basis for M[y, glg,i. Let [V(r’s)}()frff, st C S[X, 0]
be defined as :
o if A(r’s) = 0 then
V/(r,s) = V(r,s) 2)
o if Ay # 0 and there exist 0.5y € S, (', s") € Tirs)
such that
A(r,s) + Z g(r/"s./)A(r,’X,) =0 3)
(r/’S/)EsY(r,S)
then

V/(r,s) = V(r,s) +

>

(r/ss/)€u7(r,s)

e(r’,s’)v(r’,s’) 4)

o otherwise,
ér,s) = (X - b(r,s)) V(r,s) )

Proposition 4.12: Let {V’ be the subset

(’v")}()ggf, selST
of S[X, o]t computed using (2), (4) and (5). Then,

is a Grobner basis for My, gl¢,;) and

) 0<r=<¢, se[SJ*
for all (,5), ind(m (Vi) = r. le (Vi) € Is)
and deg (Vém)z is minimal among the degree of all U €
Mly, glu,iy with ind(Im (U)) =r, lc (U) € [s].

Proof: By the definition of V|, . we have V{ €
My, gl.iy. ind(im (ng))) —r e (ng)) € [s]. We now

prove that deg Vzr 5) is minimal among the degree of all
U e Mly,glg,) with ind(Im (U)) = r, lc(U) € [s]. If

Vém) is defined as in (2) or (4), then the result follows.
Assume that V/ is defined as in (5) and that there is

(r,5)

W e Mly, g](u)’such that ind(Im (W)) = r, lc (W) € [s]

and deg (W) < deg (Vér 5

and deg (V(,,)) = deg (V) + 1, we have deg(W) =

. Then, since W € My, g](LL)
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deg (V(rm). Therefore, as Ic (W) € [s] and Ic (V(M)) € [s],
there is a € S such that

Im (V(M) — aW) <Ilm (V(m)) .

Consequently, by Proposition 2.11, we have

>

(r',s") €~7(r,s)

Vi) —aW = hi shV s

where h( ¢y € S[X,o]. By the right Euclidean division of
hq sy by X—b( ¢y there exist Q- ¢y € S[X, o] and A¢ ) €
S such that

sy = Q) (X = b)) + A 50
Hence, we have

Vi,s) —aW =

2

(r',s") Et—7(r,s)

>

(r’,s/) Ec.7(r,.v)

Q.5 (X = b)) Vs
A sHVirs)-

Consequently, by Lemma 4.11,

Diy (Vo) = D,

(r/ss/)exy(r,s)

A sy Dty (Vrsn)

This contradicts the definition of Vzr 5) Thus, the result
follows.
/
Now we prove that {V(”“')}Ogg, setst ©
for My, glu.i). Let U € Mly, glu,i, ¥ = ind(Im (U)), s €
[ST* such that Ic (U) € [s] and a = deg (U) — deg (V’(m) .
Then,

is a Grobner basis

im (U) = X“im (Vi,.,))

e U) e (0% (1e (Vi)

Thus, the result follows. [ |

Proposition 4.12 justifies Algorithm 2.

Remark 4.13: Since § = Sy x --- x S(,), where Sj)
is a finite chain ring, the equation (3) is easy to solve in
S(j)- Indeed, in S(;) this equation is equivalent to: A s
divides Ay for some (r’,s’) in J,s). Thus, analogous to
[53, Algorithm VI.5], it is easy to compute a Grobner basis of
Algorithm 2 in S(;)[X, o(j)]”l, and then to apply the "strong
join" method described in [54] to obtain a Grobner basis in
S[X, o]t

Note that the monomial order of Algorithm 2 is not speci-
fied. We now define a monomial order that will allow to give
the solutions of the key equation.

Definition 4.14: Set k©) := 1. The relation < (KO, k©) 1
defined on the monomial of S[X, ¢ ]¢*! by:

and

,,,,,

if and only if a; —k™) < ay —k® or [ a; —k") = ay — k()
and /1 > [»].
By [55, Theorem 29], the relation j(k«))

KO is a mono-
mial order.

,,,,,
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Algorithm 2 A Grobner Basis of the key Equation

Input: a received vector y = (y(I) .- y() e gnDtn®@
of the interleaved Gabidulin code
IGab(km) ’’’’’ k(O (g(l), ce, g(f)).
Output: a Grobner basis {V(r:~?)}o<r<(, se[ST* for the
module My, g].
1 J < {0,...,¢} x [ST*
2 for (r,5) € J do
3 L V(r’s) < Se(r)

gafor [ < 1¢to ¢ do
s | for i < 1t n® do

6 for (r,s) € J do
(0) 0] 0 0
7 B Ags) < V(r,s) (yi ) B V(r,s) (gi )
8 for (r,5) € J do
9 if A(.5) =0 then
10 | V/(r,s) <~ Vi
11 else
12 if there exists a nonempty J' C J such that

for (r’, s’) e J, Im (V(r/,sf)) <Im (V(m))
and A(r,s) + Z(r’,s’)ej’ e(r’,s’)A(r’,s’) = 0

for some 0 ¢y € S, then

13 V/(r,s) < V(’%S)

+ 20 sheg O sHVirs)

14 else

15 Vies < (X =bes) Vs

where b ) is an element of S such that

o (A(r,s)) - b(r,s)A(r,s) =0.

16 for (r,s5) € J do
17 L Vis) < Vzr,s)

[

8 return {V(,.,S)}Ogrﬁ,’ selST*

Proposition 4.15: The vector U € M]Jy,g] is a solu-
tion of the key equation if and only if, w.r.t. j(k(o) ’’’’’ O
ind(Im (U)) =0 and Ic (U) = 1.

Now, we can apply Proposition 2.11 to obtain all the
solutions of the key equation.

Theorem 4.]6.: Let {V(M)}Oﬁrﬂ,’ selST* be a Grobner basis
for MJy, g] obtained by Algorithm 2 w.r.t. 2O

a(rs) = deg (V((rtl)).
(a) The vector V(o,1) is a minimal solution of the key

equation.
(b) All solution U of the key equation can be written as

2

0<r=t, se[S]*

KO- Set

.....

U= W(r,s5) ¥ (r,9)

where w(.5) € S[X,0], we,1) is monic, for all s €
[STA\ {1},

deg (w(0.s)) + (0.5) < deg (wo.1) + (1)
and for all (r,s) € {1,...,€} x [S]%,

deg (w(r5)) + () — k) < deg (wio.1)) + .1 — k).
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Proof:  (a) By construction of V(1) and by Proposi-
tion 4.15, V(o,1) is a minimal solution.
(b) Let U be a solution of the key equation. Then,
U € Mly, g] and, by Proposition 4.15, ind(Im (U)) = 0,
lc(U) =1, wrt. f(k(O) KO- Let

.....

a = deg (U) —deg (V(o.1)) ,

.....

U — X*V(,1) € M[y, gl, by Proposition 2.11,

>

O<r=<t, se[S]*

then Im (U — X“V(o,l)) < (kO KO Im (U). Therefore since

U-— XaV(O,]) = h(r,s)V(r,s):

where h(.5) € S[X, o] and
Im (U — XaV(o,l))

max

= Of"ff,ase[s]* {lm (h(r,s)) lm (V(r,s))} .

Set we,1y = X* + h(o,1) and w(.5) = h(.5) if (r,5) # (0, 1).
Then, the result follows. |

V. DECODING ALGORITHMS OF INTERLEAVED
GABIDULIN CODES

In this section, we use the solutions of the key equation to
give the minimal list decoding, unique decoding, and error-
erasure decoding algorithms of interleaved Gabidulin codes.

A. Minimal List Decoding

In [26], Kuijper and Trautmann used an iterative parame-
trization approach to give a minimal list decoding algorithm of
Gabidulin codes over finite fields. In this subsection, we show
that this algorithm can be generalized to interleaved Gabidulin
codes over finite principal ideal rings.

Definition 5.1: Let a received word y € §""'+ 1 of the
interleaved Gabidulin code IGClb(k(l) k) (g(l), c, g([)).

.....

Minimal list decoding consists to find the value of

{rank (y — o)} (6)

Imin =

as well as all codewords ¢ € IGab(k(l) ’’’’’ k() (g(l), R g(f))
such that rank (y — ¢) = tmin.

Theorem 4.5 and Theorem 4.16 justify Algorithm 3 of
minimal list decoding.

In general, the list size of minimal list decoding might be
greater than one. In the next subsection, we give a sufficient
condition so that the list size is one and a decoding algorithm
in this case.

B. Unique Decoding Beyond the Error Correction Capability

Let #o := |(mineq,. 0{dP}—1)/2| be the error
correction capability of the interleaved Gabidulin code
IGab(ku) """ G (g(l), cees g([)) andlety = (y(l) e y([)) be a
received word. We may have tpi, < o or o < fmin. Moreover,
if tmin < fo, then the list size of minimal list decoding is one.
The next lemma give a necessary and sufficient condition so
that fimin < 19.

Lemma 5.2: Let U be a minimal solution of the key equa-
tion and f € S[X, o]l x -+ x S[X, 0]_,©. The following
statements are equivalent.
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Algorithm 3 Minimal List Decoding

Input: a received word y = (y(1...y() e gVt
of the interleaved Gabidulin code
1Gabg, oy (8, 89).

Output: A list of f € S[X,0]_;) X - -+ x S[X, 0] _0
such that rank (y — (fV (gV)--- £ (g0)))
is minimal.

1 Compute a Grobner basis {V(r,x)}o<r<f, selST* for the

module My, g] as in Algorithm 2 W.Lt. f(k((» _____ k)

2 a(ry) < deg (V((:’z))

3list <0

4j<«0

5 while [ist = do

6 | Compute the set I/ of all

U =2 0<r<t, sersy W) Vins) Where

W(,5) € S[X, 0], w(o,1y is monic, deg (w(,1)) = j,
deg (w(0,5)) + @(0,5) < j + 0,1y, for all s € [ST*\ {1},
and

deg (w(r5)) + sy — kT < j + a1 — kO, for all
(r,s) ef{l,..., ¢} < [S]*

7 | foreach U € U do

8 for [ < 1to ¢ do

9 Compute the quotient Q) and the remainder
PO on the left Euclidean division of U") by
U© in S[X, 0]

10 if foralll € {1,...,¢}), PO =0 then
1 | list < list U{Q)

2| j<j+l

3 return /ist

o

(i) rank (y _ (f(l) (g(l)) o f(f) (g(t”)))) < 1.
(i) It holds both that:
1) deg (U(O)) < fo:
2) UD =y f0 fori=1,...,¢.
Proof: By Theorem 4.5, (i))=— (i).

The proof that (i)=> (ii) is similar to that of [15, Proposi-
tion 8]. [ |

Lemma 5.2 shows that if the rank of the error is at most
the error correction capability, then every minimal solution of
the key equation allows to recover the transmitted codeword.
We use this property to give the unique decoding method
beyond the error correction capability.

Lemma 5.3: Assume there is f € S[X,0] ) X -+- X
S[X, o]_@ such that for every minimal solution, U, of the
key equation we have U = U© fO fori =1,...,¢. Then,
f is the unique element in S[X, o] ;1) X -+ X S[X, 0] 0
such that

o = (1 () 6)) <

where fyin is defined as in (6).

Proof: We show first that in this condition, i, is equal
to the degree of a minimal solution of the key equation. Let
U be a minimal solution of the key equation and let ¢ be
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the degree of U, Then, by the definition of fpi, and by
Theorem 4.5, we have ¢ < fi,. By the assumption, we have
U = U(U)f(l), for/ =1,...,¢. Therefore, by Theorem 4.5,
we also have tyin, < t. Thus, fpin = 1.

Now, let b e S[X,o] ) X -+ x S[X,0] 4@ such that
rank (y — (b1 (g) -5 (g9))) = tiyin. Then, by Propo-
sition 3.15, there exists a monic skew polynomial W
€ S[X,o] of degree fmin such that, for I = 1,...,¢,
W (y» — 5D (g?)) = 0. Therefore, (W, W1, ..., wp©)
is a minimal solution of the key equation. Thus b®) = fO,
forl=1,...,¢. [ |

Lemma 5.3 gives a sufficient condition so that the list size
of minimal list decoding is one. The following lemma gives a
Grobner basis interpretation of this condition.

Lemma 5.4: Lﬁt {V(’J)}Og.gf, se[ST* be a Grobner basis
for My, g] obtained by Algorithm 2 w.r.t. j(k((»

"""" k(()). Set
aps i=deg (V). Let 0% . be the quotient and P, be
(rs) =deg | Vi) ) ©,1) q o,1)

v

the remainder of the left Euclidean division of V((é,)l) by o.1)

in S[X, o]. The following statements are equivalent.

(i) Thereis f € S[X,0]_pa) X -+ x S[X, 0] _;0 such that
for every minimal solution, U, of the key equation we
have U = U(O)f(l), fori=1,...,¢.

(ii)) The Grobner basis {V(’,S)}Ogrse, selST* has the follow-
ing properties:

1) PQy =0 forl=1,. ¢
2) a@,1) — kO < agy — kO, forall r € {1,...,¢}
an((ll)s © [S]*(Oi 0
3 Vs = Vo Loy
s € [ST\{1}.

Proof: (1)== (ii):
1) Since VSO’I) is a minimal solution of the key equation,

we have V((O,)l) = V{g)’)l)f(l), for/ =1,...,¢. Consequently,

Qlgyy = fO and PQ =0, for i =1,....¢.
2) Suppose there are r € {1,...,¢} and s € [S]* such that
A(r,s) — k0 < ao,1) — k©_ Then, V0,1) + V() is a minimal
solution of the key equation. Consequently, we have V((Or,)l) +
vy = (Ve + V) 10 since VL = Vi) O,
) (0,1) (rs)) - (0,1) (0,1)
we then have V((rfz) = V((r?z) £, Hence, deg (V((er) =
deg (V((r(’)g)f(’)>, i.e., deg (V((rr’i)) < deg (V((r(?g)) + k0 —1
which is absurd because w.r.t. 24O, k0> ind(Im (Vi.g))) =
r.
3) Let s € [S]*\{1}. Since deg(V(o,5)) is minimal among
the degree of all U € M with ind(Im (U)) = 0, Ic (U) €
[s], then we have a(,) < a@,n. If a@p,s) < @(,1), then
Vo,1) + V(0,5) is @ minimal solution of the key equation and
v rO 1f a,s) = 00,1
0,s) s >
)V(O,l) is a minimal solution

for all I € {1,...,¢} and

consequently we have V((é)s) =

then V(o 1) + V(o,5) — lc (V((OOB;)

of the key equation and therefore we have V((é?s) = V((OO,)S) Fo.
(ii)= (i): Let U be a minimal solution of the key equation.
Then, by Theorem 4.16,

U=

2

0<r=<t, se[S]*

W(r,s5) Y (r,s)
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where w(.5) € S[X, 0], we,1) =1, for all s € [ST*\ {1},
deg (0(0,5)) + @(0,5) < 2(0,1)
and for all (r,s) € {1,..., ¢} x [S]*,
deg (w(s)) + ors) — k7 < a1y — k.
Let (r,s) € {1,..., €} x [S]*, then w( ) = 0 because
ao,1) — KO < A(r,5) — k). Therefore U® = U(O)QEQ’I), for

! 0 U
I'=1,....C because V() =V 0, for i =1,....¢
and s € [S]*. [ |
The previous lemmas allow to give Algorithm 4.

Algorithm 4 Unique Decoding

Input: a received word y = (y(1) ...y e gVt
of the interleaved Gabidulin code
IGab(k(l) ,,,, k(O (g(l), R g(f)).
Output: "decoding failure" or the element f in
S[X, o] 4 x -+ x S[X, 0] 4@ such that for
every minimal solution, U, of the key equation
we have UV = U(O)f(l), forl=1,...,¢.
1ty < | (mingeqr,...0p {dP} = 1) /2]
Compute a Grobner basis {V(m)}osrsf, se[ST* for the
module M|y, g] as in Algorithm 2 w.r.t. ﬁ(kw) ,,,,, k()
0(5) < deg (V((rfz))
if there isr € {1,...,€} and s € [S]* such that
O(r,s) — k0 < a,1) — k@ then
| return "decoding failure"

~

w

I

wn

6 for [ < 1to{ do
7 | Compute the quotient QEQ’I) and the remainder P(((Ql)
on the left Euclidean division of V(((i)l) by V((OO,)I) in
S[X, o].
8 if there is | € {1,..., €} such that P());, # 0 then
9 | return "decoding failure"
10 else
11 if a(,1) < to then
12 | return Qo )
13 | else
14 if there isl € {1,...,¢} and s € [S]*\ {1} such
0 ©) HO
that V(O’S) #* V(O,s)Q(O,l) then
15 | return "decoding failure"
16 else
17 L return Q(O,l)
We have the following theorem. A
Theorem 5.5: (a) If there is f €

S[X,ol 4,y x - x  S[X,0] 0 such that
rank (y — (f@ (g) - £O (g9))) < 1, then Algorithm 4
returns f.

(b) If Algorithm 4 returns f, then it is the unique
element in S[X,o] ;a0 x -+ x S[X,0] 4o such that
rank (y _ (f(l) (g(l)) . f(f) (g(é’)))) = toin.

Proof: (a) Since V() is a minimal solution

of the key -equation, then, by Lemma 5.2, there
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is f e S[X,ol w1y x -+ x S[X,0] 4 such that
rank ( _ (f(l) (g(l)) . f(f) (g(f)))) < 1o if and only

if a0,1) < 0 and P(p)y) =0, forl=1,...,¢.
(b) This result is a direct consequence of Lemma 5.3 and
Lemma 5.4. u
Recall that we may have fpin < fo Or fp < tmin. Thus,
Algorithm 4 can uniquely decode beyond the error correction
capability. The following example is given as an illustration.
Example 5.6: Let

R =7 S:R[z]/(z4+2zz+3z+1)

anda = z+(z4 +272 4374 1). Then, S is a Galois extension
of R where the Galois group is generated by a power map
o:ar>a’ Setg) =g? =(1,a,d? d),

y(l) = (3a3 + 24> +2,a2 + 2a,
a+2,2a + 24> 4+ 3a +3)

vy = (@®>+2a+3,24° +a® +2a +3,
a+a*+2a+ 3,24 +3).

We consider the received word y = (y(1 y@) of the inter-
leaved Gabidulin code I Gab(y,1) (g(l), g(z)). Using SageMath-
Cloud [28], Algorithm 4 returns (f(), f@) where f(V) =
2a3+3a and f @ = 34242a+1. Therefore, the error vector is
e=y—(fD (") @ (g?)) and rank (e) =2 > 1o = 1.

Remark 5.7: In finite fields, Sidorenko et al. [56] gave an
algorithm for decoding interleaved Gabidulin codes beyond the
error correction capability and an upper bound of the failure
probability. We implemented Algorithm 4 and compared it to
[56, Algorithm 4]. We observed that these two algorithms fail
in the same cases. Thus, it would be interesting to study if
there exists the connection between the two algorithms.

C. Error-Erasure Decoding

As in [6], we define row and column erasures of interleaved
Gabidulin codes. We then show that errors and erasures
decoding of an interleaved Gabidulin code is reduced to errors
decoding of another interleaved Gabidulin code.

Lety = (yV...y9) e §nV+410 e g received vector
for a transmitted codeword () (g(V) .. f© (g(?)) of the
interleaved Gabidulin code IGab(ka) ’’’’’ k() (g - g([)) .

Assume that the error vector

e — (y(n . <f>) (fu)( (1>)...f(€) (g(m)) %)

is decomposed into
e=eB 4B 4 O (3)

where
- e(E), called the full error, is unknown, rank (e(£)) = ¢(£);
. e(R), called the row erasure, can be expressed in the form

e® — (a(R,nB(R,l) . ,a(R,e)B(R,f))

. (R,D)
with a

B ¢

c St(RJ) is known, rank (a(R,l)) — [(RJ)’ and

RA) oy O) .
RY"7>X" is unknown, for [ =1, ..., (;
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- e(©, called the column erasure, can be expressed in the
form

e©) — (a<c,1>B(c,1> . a(c,f)B(c,a)

with a(C:) ¢ §7“" is unknown, B(C:) ¢ R0 xn®
freerank (BICD) =D for1=1,..., ¢

By Proposition 3.15, there are the monic skew polynomials
PRD e §[X, o] of degree 1D such that P(RD (alR®D) =0,
forl=1,...,¢.

By [42, Proposition 2.9], there are the free column matrices
FCD ¢ pnx(0=1“") qich that BRDFCD = 0, for | =
1,...,¢.

Theorem 5.8: With the above notations, the relation (7) can
be transformed into

e — (y/(l) - _y/(f)) _ ( o (g/a)) 1O (g/w)))

where y') = p(R.)) (y(l)) FCD, gD = gORC.D,

'O =pPRIFD forl=1,...,¢, and rank (&') < ).
Proof: Set eB) = (e(E’l) e e(E’[)) where

eED ¢ S”m, for/ =1,...,¢. Then, by (7) and (8), we have

eBD 4 gRD 4 O — y(O) _ ¢® (g(l)) , forl=1,...,¢.

aROBRD  and

is known,

Let [ € {I,...,¢). Since e®D =
P(R:l) (a(Ral)) = 0, we have

pRD (E(E,z)) + p(RD (€<c,1)) — p(R,l>( 0 fa)( (l)))
ie.,
PRI (g(E:D)
+pRD (a(c 1))B(c,1)

because €D = a(C-DBCD If we right multiply both sides
of (9) by F€D we get

e/ (ED) —

= PRD (y _ f0) (g0)) ®)

y' O _ 10 (g/(n)

where ¢/(E-) = p(R.D) (E(EJ)) FC.D.
Set 8/ = (3/(E’1) .. _€/(E,€))’ then

e = (y/m - .y/(e)) _ ( £ (g/m) L 1O (gm)) .

As rank ((e(E’l) o gEDY) = 4B
we have rank (e/(E’l) g EDY < 4E ]

Set k'O = kO 4 (RO (1) — O _ (€D and assume
that kO < D, for | = 1,...,¢. Then, according to
Theorem 5.8, the error and erasure decoding of the interleaved
Gabidulin code IGabga, . o) (gM,...,g9) is reduced
to the error decoding of the interleaved Gabidulin code
IGab(k/u) """" w0y (8 ( o g/(f)) . In particular we have the
following:

Corollary 5.9: With the above notations, If

2:E) < min {n(l) _ (k(l) 1 RD +,<c,l>)}
1<i<t

then the transmitted massage i.e., f (1), o f ([), can recover.

Proof: Assume that

245) < min {0 — (k0 4150 4 ()]

1<i=t
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Then,
2B < g’ —1,

where d’ is the rank distance of the interleaved Gabidulin
code IGClb(k/(l) _____ %0 (g’(l), e ,g’('f)). Hence, we can use
Algorithm 4 to determine £/, ..., f/© and then use the
left Euclidean division of ') by P to determine £ for
[=1,...,¢. [ |

As in [9], [57], [58], simultaneous correction of errors and
erasures allows to recover the transmitted codeword in random

linear network coding. As an illustration, see subsection VI-B.

VI. APPLICATIONS

A. Space-Time Block Codes From Codes Over Finite
Principal Ideal Rings

A space-time block code is a finite set of complex matrices
of the same size. Recall that the rank criterion [10] for space-
time block codes states that, in order to achieve the maximum
diversity, the rank of the difference of two distinct codewords
has to be maximal. In this subsection, we generalize to finite
principal ideal rings the methods of [7], [12], [14], [19] in
the construction of space-time block codes. More precisely,
we show that there is a rank-preserving map from a finite
principal ideal ring to a complex signal set and we use it to
construct space-time block codes that are optimal under the
rate-diversity tradeoff [10]-[12].

Let T be a principal ideal ring such that there exists a
surjective ring homomorphism ¢ : T — R. Let ¢* be a section
of ¢, i.e., a map from R to T such that ¢ o 9™ = idg. The
extension of ¢ (resp., ¢*) coefficient-by-coefficient to the set
of matrix T"*" (resp., R™*") is also denoted by ¢ (resp.,
©»*). As an example, we may have T = Z[i], R = Z[i]/nZ[i],
where 5 is some positive integer, p(x) = x + yZ[i] and
0* (a+ bi + nZli]) = (a mod n) + (b mod n)i, for all x €
Zlil,a € Z, b € Z.

Lemma 6.1: Let A € T™*", Then,

rankg (p (A)) < rankr (A).

Proof: Letr =rankr (A) and {by, ...
ing set of col (A). Then, {¢ (by), ...
set of col (¢ (A)). Consequently,
rankg (¢ (A)) < rankr (A). [ |

Theorem 6.2: Let M C R™" be a rank code of rank
distance d and let d’ be the rank distance of ¢* (M), then
d < d’. Moreover, if M is an MRD code, then d = d’.

Proof: Let ¢* (M), ¢o*(Mz) € ¢* (M) such that
p*(My) # ¢*(Mp). Then, M; # M; and by Lemma
6.1, rankr (p* (My) — @™ (M3)) is greater than or equal to
rankg (¢ (p* (M) — ¢* (M2))). But,

rankg (¢ (9™ (M1) — ¢* (M2))) > d.

Thus, d <d'.
Assume that M is an MRD code. Then,

, b, } be a generat-
,o (bs)} is a generating

|(p* (M)| — |M| — |R|min{m(n—d+1), n(m—d+1)} (10)
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Using the same arguments as in the proof of Proposition 3.20,
we can show that

|¢* (M)’ < ‘(0* (R)|min{m(n—d’+l), n(m—d'+1)} (11
It follows from (10) and (11) that d’ < d. [ ]

By the previous theorem, we can use an MRD code in R
to construct an MRD code in T. The following example is a
generalization of [7], [13].

Example 6.3: Since S = R[X]/(h) where h is a monic
polynomial, set » = ap + a1 X + -+ + am_1 X" 4 x|
a =X+ (h) and g = (o, 0%, ..., a™). Then, the Gabidulin
code Gab; (g) is a free S-linear rank code generated by g.
Thus, Gab; (g) is a free R-linear rank code generated by

{g,ag, . ..,a’"‘lg}. The matrix representation of g in the
basis (1, o, ..., a’"’l) is
0 0 0 —ao
1 0 0 —a
Ag = 0 1 0 —-a
0 0 -+ 1 —au_

and the matrix representation of a'g is A?l for i =
1,...,m—1. Therefore, the matrix rerresentation of Gab (g)

is a R-linear rank code generated by {A! } . Its image in

8)i<i<m

T is an MRD code of rank distance m. Moreover, all code-
word have the full rank. By Proposition 4.2, the interleaved
Gabidulin code /Gab, . iy (g™,...,g9) with kD =1
and g(l) = (a, aZ, ... ,am), for/ = 1,...,¢, have the same
proprieties. Thus, we can use it to construct optimal space-time
block code in T.

B. Decoding of Random Linear Network Codes Over Finite
Principal Ideal Rings

In this subsection, we consider random linear network
coding over finite principal ideal rings. To improve the error
correction, we combine the encoding schemes of [9] and [20],
that is, we consider that the transmitted matrix is represented
by the matrix X = (0,,xp, In M) where M is a code matrix
of some matrix code M C R™*". The channel equation is
given by

Y=AX+E (12)

where the transfer matrix A € R™ ™ and rank (E) := .
Recall that the random matrices A and E are unknown to
the destination and the problem is to recover the transmitted
matrix X from the received matrix Y. As in [9] and [57],
we will show that this problem can be reformulated as an
error-erasure decoding problem for rank-metric codes.

When the matrix Y is received, the Smith normal form
is used to successively transform the decoding problem into
error-erasure decoding. In the following, we give these trans-
formations.

1) First Transformation: Set

Y:(Y() Y, Yz),

where Yo, Y; and Y, are submatrices of Y of sizes m, x fo,
my x m and m, x n, respectively. Set freerank (Yo) :=aoys .
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Then, using the Smith normal form, there exist the invertible
matrices P, Q and the diagonal matrix D, such that

- (' 5
= Q 0
Q_(O Im+n)

Py
r=(5)
where P and P; are the submatrices of P of sizes aor x m,,
and (m, — aos) x m;, respectively. If we multiply both sides

of (12) by P and Q we get the following:
Lemma 6.4: With the above notations,

Y =A(I, M)+FE (13)
where Y =P, (Y1 Y, ), A’ = P>A and E’ is a matrix with

rank (E') := B/ < B — aoy.
2) Second Transformation: Set m). :== m, — ooy and

Y = (Y] Yj).

Set

and

where Y| and Y/ are submatrices of Y’ of sizes m) x m and
m). x n, respectively.

Set rank (Y}) = a1, freerank(Y}) := aiy. Using the
Smith normal form, there exist the invertible matrices P/, Q’

and the diagonal matrix D' = diag (di, ..., d,), with
d=--- :dalf =1, such that
P'Y|Q =D

Using Proposition 3.8, if we decompose E’ as in [57, Eq.
(29)] then we get the following:
Lemma 6.5: With the above notations,

Y, =D'M +E'. (14)

where Y, = P'Y,, M = QM and E” is a matrix with
rank (E") < p’.
3) Third Transformation: Set

D/
/ — 1
v=(3)

Y//
Yw:( 21)
2\Y,

where D] is the submatrix of D" of sizes a; x m, Y}, and
Y/, are submatrices of Y} of sizes a; xn and (m] — a;) x n,
respectively.

Let a5 := freerank (Y5,). If azap # O then, using the
Smith normal form, there is a azf x (m/r — al) matrix U,
such that the free rank of the matrix Y5 := UY?, is a2.

Let Y2, be the matrix defined by Y2, := Y, if axnyp #0
and Yo is a 1 x n zero matrix else.

Let D] be the m x m matrix and Y}] be the m x n
matrix obtained respectively from the matrices D} and Y7,
by inserting all-zero rows below the last row if a; < m and
by deleting the oy — m last rows else.

and
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SetD; := Q' (D] — I,) and Yo, := Q'Y%}. Note that, D; =
0 if o;f > m and rank (D) < m — a;s else. We have the
following:

Theorem 6.6: With the above notations, the matrix ?21 can
be decomposed into

Y2 =M +D/W; + WoY2 +E,

where M is the transmitted codeword, the matrices Wi, W»
and E are unknown, rank (E) < 8 —aoy — axny.

Proof: Set
E//
v (i)
E}

where E{ and EJ are submatrices of E” of sizes a1 x n and
(m). — a1) x n, respectively. By (14), we have

Y4\ _ (D \ . (E
(w)‘(o M+ e )

¥4, = DIM + ]

Thus,
(15)

and
"o

e Assume that freerank (Yy,) # 0. As Y}, = UY},, set

E" = (181 :;)J) E”. Then,

1/
rank (") < rank (E") < B and E” = (‘l;:,},) Since
2

freerank (Y’z”z) = a2y, by [42, Proposition 2.11], there are
(n —a2f) x n matrix Y3, n x (n —axnys) matrix F; and
n x oy ¢ matrix Fy such that

Y

As
Y
b= (r e ()
=F Y3+ FQY%,
we have
E| = E/F,Y3 + E[F,Y%),
that is,

E/ = E3 + E,Y}), (16)

where E; = E{F Y3 and E4 = E[F>. Moreover, since

E’{Fl E/{Fz
F2) = ( 0 I ) N

) f

E/// ( F]

we have,

rank (E3) < rank (E/{Fl) = rank (Em) —axnf < B - a2 f.
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By (15) and (16),
Yy = D{M + E4Y%, +E;.

Let E be the m x azy matrix and E; be the m x n matrix
obtained respectively from matrices E4 and E3 by inserting
all-zero rows below the last row if a; < m and by deleting
the a1 — m last rows else. Then,

Y3, =D{M' +E;Y7, + E;. (17)

If we left multiply both sides of (17) by Q" we get
?21 =M+ IA)1W1 + Wz?zz + E.

where Wi = M/, W, = Q'E} and E = Q'E}.
e Assume that freerank (Y22) = 0. Then, by (15), we have

?21 = M—|—ﬁ1W1 +ﬁ,

where W is defined as above and E = Q’Es, where Es is
the m x n matrix obtained from the matrix E{ by inserting
all-zero rows below the last row if a1 < m or by deleting the
a1 — m last rows else. [ |

Theorem 6.6 and Corollary 5.9 imply the following result.

Corollary 6.7: With the above notations, assume that M is
the matrix representation of an interleaved Gabidulin code of
rank distance d. If

rank (ﬁl) + rank (?22) + 2rank (E) <d-—1,

then the transmitted codeword can be recovered.
Example 6.8: See Appendix.

VII. CONCLUSION

We have studied some properties of rank-metric codes that
are extended from the case of finite fields to finite principal
ideal rings. We have first generalized the rank metric and
established the rank-metric Singleton bound. As in the case of
finite fields, we have shown that Gabidulin codes achieve this
bound and that collaborative decoding of interleaved Gabidulin
codes can be translated to the problem of reconstruction
of skew polynomials. We have used the theory of Grobner
bases of modules over skew polynomials to give the unique
decoding, minimal list decoding, and error-erasure decoding
algorithms of interleaved Gabidulin codes. These codes are
then applied in space-time coding and in random linear
network coding. Specifically, we have shown that there is a
rank-preserving map from a finite principal ideal ring to a
complex signal set and we have used it to construct an optimal
space-time block code. Using the lifting construction, we have
shown that the decoding problem for random linear network
coding over finite principal ideal rings can be reformulated as
an error-erasure decoding problem for rank-metric codes.

Analogous to the case of finite fields, we have given an iter-
ative algorithm that can uniquely decode interleaved Gabidulin
codes beyond the error correction capability. It would be
interesting to study the complexity and the failure probability
of this algorithm.
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APPENDIX
EXAMPLE

The following example exemplifies the application to ran-
dom linear network codes from Section VI-B. It was computed
in SageMathCloud [28].

Let R =Zg, S = R[z]/ (ZS +43 + 72+ 22+ 7) and a =
z+ (15 +4z> + 722 + 22 + 7). Then S is a Galois extension
of R where the Galois group is generated by a power map
o :avr> a’ Set gV =g@ = (a,a%,a% a,a’); fOV =
1+2a+3a>+5a%; f® =1+4a+74a> + 24> + 5a*; V) =
FD (gM); @ = @ (g@). Then (e ¢@) is a codeword
of the interleaved Gabidulin code IGab, ) (g(l), g(z)). Let

M=(M, M)

where M and M, are respectively the matrix representations
of ¢V and ¢@ in the basis (1, a,a?, a3, a%).
The transmitted matrix is

X=(05X2 I5 M)
Assume that
5 6 6 3 3
32 7 1 0
4 6 0 6 7
A=|4 1 2 1 0
1 4 5 6 2
2 5 7 5 0
4 4 1 3 1
and
E =BZ
where
6 4 2
4 5 5
2 5 4
B=]16 7 6
37 2
2 7 1
6 0 7
and
Z=(Z1 Z2)
with
o 7 7 0 6 3 3 1 5
Zi={0 0 7 5 2 4 5 2 3
6 305 5 7 2 3 7
and
2 6 7 4 3 4 1 2
Z,={0 3 0 4 5 5 6 5
0 4 3 5 1 5 2 5
The received matrix is
Y = AX + BZ.

By Theorem 6.6, there are the matrices W, W5 and E such
that

Y =M +D/W; + WaYp +E (18)
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with rank (E) < 1, where

0 6 545 7 3 6 4 4

5751356 746

Yo y=|0 2 4 7 3 5 2 1 0 3

717 35 7 51 21

5 7 3 6 4 02 2 0 1
00 0 0 4
0 00 0 6
D=0 0 0 0 4
000 0 7
00 0 0 7

and
Yo=(0 7 6 2 1 6 7 5 5 1),

The vector representation of (18) in the basis
(1, a,a?, a’, a4) is
y=c+ a@®BR) 4 g OB©) | o(E)

where Y, € a(©), e _are respectivelAy the vector representa-
tions of Y1, M, W, E and B©O = Yoo, B®) is the last row
of Wy, a® =7a*+74° + 44> + 6a + 4.

Set

y = (y(l) y(Z))
where y() € §5 and y® € $°. Then
y(l) =M p RBRD 4 {OBED 4 (B

y® = @ 4 ROBR) | {OBCD) | g(ED)

Let
P® = x +54* + a® + 6a% + 2a + 2,
0 0 0 1
76 2 0
FRD_l1 2 7 0
01 0 0
1 00 0
and
1 5 5 1
7 3 3 6
FRY 10 0 1 0
01 0 0
1 0 0 0

Then, PR (a®) = 0, BEEDFRD = ¢ and BICIFRD = 0.

Set y/(l) - p® (y(l)) FCD, g/(l) — g(l)F(C,l), R4O]
pR.D (c(l)) F(C*l), for [ € {1, 2}. Thus, by Theorem 5.8, there
is ¢’ € S such that

(YO y@)= (¢ @) 4¢

where rank (e’) <1.

When we apply Algorithm 4 for the received
word (y') y' @) of the interleaved Gabidulin code
I1Gab,2) (g’(l),g’(z)), it returns (f’(l),f’(z)) where

'O = (7a* + 54 + 5a + DX + 4a* + 3a® + 4a + 1 and
'@ = (5a* +7a’ 4+ 5a% + 4a + 6) X + 2a* + 5a° + 3a* + 5a.
The left Euclidean division of f'") and f'® by PR gives
respectively f1) and f®.
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