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RESUME

Zadeh [40] a proposé la mesure de possibilité et la mesure de nécessité pour décrire les
expressions vagues. Ces mesures ont permis d’étudier les caractéristiques d’une variable floue
et d’appliquer les résultats obtenus dans divers domaines (agriculture, médécine, finance,...).
Cependant, ces deux premiéres mesures n’étant pas duales, Liu [20] a proposé la mesure de
crédibilité qui est la moyenne arithmétique des deux mesures précédentes. A 'aide de cette
mesure de crédibilité, il a défini les deux premiers moments d’une variable floue: ’espérance
mathématique et la variance. De plus, Huang [11] et Li et al. [16] ont proposé respectivement
la semi-variance et le coefficient d’asymétrie d’une variable floue et les ont utilisés pour la
détermination d’un portefeuille optimal dans un ensemble de portfeuilles d’un nombre fini
d’actifs dont les rendements sont exprimés par des expressions vagues. Peng et al. [27] ont
introduit deux relations de dominance sur les variables floues et ils les ont utilisées pour
I’analyse du risque.

Dans cette thése, nous introduisons, a I'aide de la mesure de crédibilité, les moments
et les semi-moments d’ordre k (k est un entier naturel non nul) ainsi qu’une nouvelle rela-
tion de dominance. Nous déterminons les propriétés de ces moments et semi-moments, nous

caractérisons chacune de ces trois dominances et nous déterminons leurs propriétés.
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Les résultats théoriques obtenus sont appliqués & la détermination d’un portefeuille opti-
mal d’actifs dont les rendements sont vagues et représentés par des nombres flous triangulaires
selon deux approches: I’approche basée sur les quatre premiers moments et I’approche basée

sur les portefeuilles non dominés.

Mots clés: Variable floue, Mesure de crédibilité, Moments, Relation de dominance, Porte-

feuille optimal.
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ABSTRACT

In the literature, three measures were proposed to deal with imprecision and uncertainty
in phenomenons. Zadeh [40] proposed the two first measures, namely possibility and necessity
measures, and they enable to determine and study fuzzy variable’s parameters and to apply
theoretical results in some research areas (medical diagnosis, robot control, strategic decision,
games,...). The third measure, namely credibility measure and proposed by Liu [20], is a dual
measure and the average of the two first measures. Following that, scholars (Liu [20], Huang
[11], Li et al. [16]) determined the three first moments (mean, variance, skewness) and the
first semi-moment (semi-variance) of a fuzzy variable. They used the obtained results to solve
portfolio selection problem with fuzzy returns by means of the mean-semi-variance model and
the mean-variance-skewness model. Furthermore, Peng et al. [27] introduced two dominance
relations on fuzzy variables, namely the first and the second order dominances, and they used
them to analyze risk in fuzzy context.

In this thesis, we introduce moments and semi-moments of order k£ (k € N) of a fuzzy
variable and we study their properties. We introduce a new dominance relation on fuzzy
variables, we characterize three dominance relations (the two previous ones and the new one)

and determine their properties.
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The obtained theoretical results are applied to solve the main problem of portfolio selec-
tion with fuzzy returns described by triangular fuzzy numbers by means of two approaches:
the first approach based on four first moments (mean, variance, skewness, kurtosis) and the
second approach based on the core of portfolios of a finite family of assets, that is, the subset

of non dominated portfolios.

Keywords: Fuzzy variable, Credibility measure, Moments, Dominance relation, Portfolio

selection.
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INTRODUCTION

Since many decades, portfolio selection theory had been used to solve some problems

in Finance and it contributed to the development of financial market. The main problem is
to invest a given capital on a finite number of assets so that the future return obtained from
that investment has a maximum expected benefit and provides less loss (risk). Notice that
future return is a convex linear combination of futures returns of assets where the scalars of
that combination are the percentages of the capital invested on assets. In that sense, scholars
developed theoretical tools in order to solve portfolio selection question.
In the literature, there are two branches to formalize futures returns in portfolio selection
theory. In the first branch introduced by Markowitz [22], many scholars (Sharpe [33], Stone
[35], Sengupta [32], Grauer [9], Rom and Ferguson [28|, Krauss [14] and Konno [13]) described
future returns by random variables, studied ramdom variables and proposed optimization
models of portfolios based on characteristics (parameters) of those variables such as mean,
variance, semi-variance and skewness. We notice that one of those four parameters defines the
objective function of the optimization model and the others define its constraints. We do not
consider this branch of literature in this thesis.

In the second branch that we consider, empirical studies (Tanaka et al. [37], Carlsson et
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al. [6], Huang [10], Smimou et al. [34]) proved that in some situations, future returns cannot
be described by random variables due to lack of information or historical data or human
being feelings. This can be explained by at least two reasons: (i) data bases do not exist or
are incomplete or contain wrong information and values and (ii) in some cases, investors ask
experts’ advice to estimate returns: in fact, an expert can express assets future returns as
follows: “around 20F”, “between 15F and 25F”, “approximately 20F”, “no more than 25F and
no less than 15F”. Following that direction, we develop theoretical tools on fuzzy variables in
order to solve portfolio selection question with vague returns.

To introduce such theoretical tools, we need a measure for fuzzy variables which plays the
similar role as the probability measure for random variables. Zadeh [40] introduced possibility
and necessity measures. These two measures are not dual, that means, even if the chance for
an event to be realized is known, it is not easy to deduce the chance of this event to not
be realized. Recently, Liu [20] introduced credibility measure as a self-dual measure which
is the average of possibility and necessity measures. Based on credibility measure, many
scholars (Liu [20], Huang [11], Li et al. [16]) introduced and studied first parameters of a fuzzy
variable such as mean, variance, semi-variance, skewness. To solve portfolio selection question,
Huang [11] proposed the mean-semi-variance deterministic model and implemented his model
to determine a best portfolio on a set of seven assets with returns described by triangular
fuzzy variables. More later, Li et al. ([16]) proposed the mean-variance-skewness deterministic
model with skewness as objective function. They implemented their model on the same set of
assets and obtained a better sharing of capital on those assets, that is, a portfolio with best
parameters (greater mean, greater skewness, less variance and less semi-variance) than the

one obtained by Huang. As we noticed in the two branches of the literature, expected benefits
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(resp. risks or losses) of a future return are formalized by the mean (resp. variance, semi-
variance and skewness) of the (random or fuzzy) variable representing the return. However,
Peng et al. [27] introduced two binary relations on fuzzy variables, namely the first and the
second order dominance relations, to compare fuzzy variables. They characterize the first
order dominance for triangular fuzzy variables and give some properties of those dominance
relations. Consequently, there is a need to extend such studies based on parameters and
dominance relations of fuzzy variables in order to improve the determination of best portfolios
with fuzzy returns.

The aim of this thesis is to study, by means of the credibility measure, parameters of fuzzy
variables and dominance relations on fuzzy variables in order to tackle the question of portfolio
optimization with fuzzy returns. Our modest contribution to the development of uncertainty
theory and its application in Finance is made up through the following aspects: introduc-
tion of moments and semi-moments of order k of a fuzzy variable, determination of their
properties, introduction of a new dominance relation on fuzzy variables, characterization and
determination of properties of three dominance relations, application in portfolio selection in
Finance by the determination of best portfolios through the mean-variance-skewness-kurtosis
model and by the determination of some non dominated portfolios with respect to the first
order dominance.

This thesis contains five chapters and an appendix which contains some useful notions,
their proofs and two published papers. Chapter one presents some basic notions on fuzzy sets,
fuzzy numbers and fuzzy arithmetic. It recalls definitions and properties of possibility and
necessity measures. It ends with illustration of some parameters of fuzzy numbers based on

the possibility measure introduced by Saeidifar and Pasha [30].
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Chapter two recalls definition and properties of credibility measure and its link with the
membership function of a fuzzy variable. We deduce the credibility that a fuzzy event occurs.
We recall first parameters of a fuzzy variable based on the credibility measure such as mean,
variance, semi-variance and skewness. We deduce some basic properties of mean and variance.

In Chapter three, we introduce moments and semi-moments of a fuzzy variable and deter-
mine their properties. We characterize moments for symmetric fuzzy variables. We compare
moment and semi-moment of a fuzzy variable and determine necessary and sufficient condi-
tion under which even moments of a fuzzy variable are null. The particular cases of kurtosis,
semi-kurtosis, normalized kurtosis and normalized semi-kurtosis of a fuzzy variable are stud-
ied. We compute parameters of a convex linear combination of independent fuzzy variables,
which represents a description of a portfolio with fuzzy returns.

In Chapter four, we introduce a new dominance relation on fuzzy variables, namely the
mean-risk dominance, through the fuzzy lower partial moment of a fuzzy variable. We char-
acterize that new dominance relation and, the first and second order dominance relations.
Comparisons between those dominance relations and some of their properties are established.

Chapter five proposes some new deterministic portfolio optimization models whose objec-
tive function is either kurtosis or semi-kurtosis of portfolios with fuzzy returns. In addition,
we introduce the core of a portfolio of a finite number of assets with respect to the first order
dominance. We establish that it is non empty and is a union of the set of best portfolios and
the set of incomparable portfolios. We implement with Matlab, on the set of portfolios of
the seven assets introduced by Huang [11], our two optimization models and the set of best
portfolios. We display optimal portfolios with respect to our deterministic models and best

portfolios with respect to the first order dominance.
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Finally, we give some concluding remarks and perspectives. The appendix presents some

details on Fuzzy Lower Moments and some proofs.
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CHAPTER ONE

FUZZY SETS AND POSSIBILITY THEORY

In this chapter, we present basic and useful notions on fuzzy sets, fuzzy numbers and fuzzy
arithmetic. We also present some well-known concepts and results obtained in possibility the-
ory.

Throughout this thesis, X is a nonempty set namely the universal set and P(X) is the power

set of X (set of subsets of X). If X is finite, card(X) is its cardinal.

1.1 Fuzzy numbers

1.1.1 Fuzzy numbers and its characteristics

Definition 1.1.1. A fuzzy subset A of X is defined by its membership function: pa : X —

[0,1] such that, to each x € X, is associated pa(x).

Let x be an element of X. pa(z) represents the membership grade of z to A.
If Vo € A pa(z) € {0,1}, then A becomes a crisp subset of X. A fuzzy subset A of X is

denoted by {(z,pa(x)),z € X}.

Let us recall some useful characteristics of a fuzzy subset.

Definition 1.1.2. Let A be a fuzzy subset of X and « €]0, 1].

TASSAK DEFFO CHRISTIAN PhD. Thesis
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1. The kernel of A is the crisp subset of X denoted by Ker(A) and defined by:

Ker(A) ={z € X/ua(z) = 1}.

2. The support of A is the crisp subset of X denoted by Supp(A) and defined by:

Supp(A) =A{z € X/pa(z) > 0}.

3. The height of A is the real number defined by: sup,cx pa(x).

4. A is a normalized fuzzy subset if sup,ex pa(z) = 1.

5. A is a fuzzy quantity if A is a normalized fuzzy subset of R.

6. The a-level set (a-cut) of A is a crisp subset of X, denoted by A, and defined by:

Ay ={z € X/pa(x) > a}.

Let us recall definition of a fuzzy number and some usual examples.

Definition 1.1.3. Let A be a fuzzy subset of R and pa its membership function.

A is a fuzzy number if the following conditions are satisfied:

o Sup,ep pa(e) = 1.

® L4 is convex, that means, Vr,y € R,VA € [0,1], pa(Ax+ (1 —Ay)) > min(pa(z), pa(y)).

e L4 is upper semi-continuous, that is, Yo €]0, 1], Ay is a closed subset of R.

e Supp(A) is a compact subset of R.

Remark 1.1.1. The notions of compact and closure are relative to the usual topology defined

on R.
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Example 1.1.1. 1. A trapezoidal fuzzy number denoted by (a,b,c,d) with a < b < c < d

1s defined by the following membership function:

(=2), ifa<z<b
1, ifb<z<c
(=9), fe<z<d

0, elsewhere

Ve e R, u(z) =

In this case, Supp(A) = [a,d] and Ker(A) = [b,c] .

2. When b = ¢, we obtain the triangular fuzzy number (a,b,d).

Figures 1.1 and 1.2 display the trapezoidal fuzzy number (1,2,3,4) and the triangular

fuzzy number (1,3.5,4).

1 T T T T 1
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Figure 1.1: Trapezoidal fuzzy number
(1,2,3,4). Figure 1.2: Triangular fuzzy number (1,3.5,4).

Throughout this thesis, F is the set of fuzzy numbers of R.
Let us end this paragraph by introducing a well-known family of fuzzy numbers, namely

parametric fuzzy numbers.
Definition 1.1.4. Let A € F. The parametric form of A is defined by its a-level sets by:

Va € [07 1]7 [A]Oc = [Q(a)va(a)]'
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Example 1.1.2. 1) Let A be a trapezoidal fuzzy number denoted by (a,b,c,d).

Its parametric form is given by:
Va € [0,1], [Ala = [a+ (b—a)a,d — (d — ¢)a.

2) The parametric form of a triangular fuzzy number A = (a,b,d) is given by:
Va € [0,1], [Ala = [a+ (b — a)o,d — (d — b)a].

In the next paragraph, we recall some operations made on fuzzy numbers similarly to
those made on real numbers.

1.1.2 Fuzzy arithmetic

We recall the well-known Zadeh’s Extension Principle which is the basis of fuzzy arithmetic.

Definition 1.1.5. Let Y be a nonempty set and ® : X — P(Y) be a mapping that corresponds
to each element x of X, one or many elements of Y.

A fuzzy subset B of Y compatible with ® and associated with A is defined by:

_ Sup{xéX,y:@(x)} /’LA(m) Zf {x € X7y = (I)(CC)} 7& @
Yy €Y, pup(y) { 0, otherwise

Let us apply that principle in an example.

Example 1.1.3. Let us set: X = {a,b,c}, Y = {p, q} two universal sets and

A = {(a;0.4),(b;0.7),(¢;0.2)} a fuzzy subset of X. ® : X — Y is a mapping defined by:
®(a) = ®(c) = q and (b) = p.

Let us define the fuzzy subset B of Y compatible with ® and associated with A. Its membership
function is given by:

1B(P) = SUP{pex p=a(z)) HA(x) = sup{ua(b)} = 0.7 and pp(q) = SuPrex g=a(2)) HA(T) =

sup{pa(a),pa(c)} = 0.4. Thus, we have: B = {(p;0.7),(q;0.4)}.

TASSAK DEFFO CHRISTIAN PhD. Thesis



Fuzzy sets and possibility theory 13

The first application of Zadeh’s Extension principle is the definition of a unary operation

on F. In the following, we recall such operation and some of its usual examples.

Definition 1.1.6. (Bouchon-Meunier [3]) Let § be an unary operation defined on R.
A unary operation A defined on F associated with § is a mapping from F to F that corresponds

to each fuzzy number A, another fuzzy number AA whose membership function is defined by:
Vz € R, pian)(2) = sup{pa(z),z € R and z = §()}.

Let us recall three well-known types of unary operations A defining opposite of a fuzzy

number, inverse of a fuzzy number, and product of a fuzzy number by a real number.

Definition 1.1.7. 1) In the case where 6 : R — R, such that 6(x) = —x, and A € F, AA is

the opposite of A denoted by —A and whose membership function is defined by:

Vz € R, pu—a)(2) = pa(—2).

2) In the case where § : R* — R, such that §(z) = 1, and A € F, AA is the inverse of A

denoted by % and whose membership function is defined by:

" 1
VzeR 7:“(%)(z) = ,UA(;)-
3) In the case where § : R — R, such that 6(z) = Az, and A € F, AA is the product of A by

the real number A denoted by AA and whose membership function is defined by:

pa(A"12) f AF£0
VAER, V2 € R unay(2) = ¢ 0ifA=0and z#0 )
sup{pa(z),z € R} if A\ =0 and z =0

In the following Example, we apply those three unary operations on a trapezoidal fuzzy

number.

TASSAK DEFFO CHRISTIAN PhD. Thesis
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Example 1.1.4. Let A = (2,4,7,8) be a trapezoidal fuzzy number. Then —A = (-8, -7, —4, —2),

1111

3A =(3,12,21,24) and § = G713

).
Another application of Zadeh’s Extension Principle is the definition of a binary operation

on F. In what follows, we recall such operation and some of its four usual cases.

Definition 1.1.8. Let ¢ be a binary operation defined on R.

A binary operation ¢ defined on F and associated to ¢ is a mapping defined from F X F
to F that corresponds to two fuzzy numbers A and A’, another fuzzy number ApA’ whose
membership function is defined by:

Vz € R, piagary(z) = sup{min(pa(z), pa(y)), (z,y) € R* and z = p(x,y)}.

Let us recall four well-known types of binary operations ¢ defining sum, product, difference

and quotient of two fuzzy numbers.

Definition 1.1.9. 1) In the case where ¢ : R x R — R, such that o(z,y) =z +y, A€ F
and A" € F, ApA’ is the sum of A and A’ denoted by A+ A" and whose membership function
is defined by:
Vz € R, patan (2) = sup{min(pa(z), pa(y)), (z,y) € R* and z = z + y}.
2) In the case where ¢ : R x R — R, such that (x,y) =xy, A€ F and A’ € F, ApA’ is the
product of A and A’ denoted by A x A" and whose membership function is defined by:
Vz € R, pyaxary(2) = sup{min(ua(z), pa()), (z,y) € R® and z =y},
3) In the case where p : R x R — R, such that p(z,y) =z —y, A€ F and A" € F, ApA’ is

the difference of A and A’ denoted by A — A’ and whose membership function is defined by:

Vz € R, pua—ar)(2) = sup{min(pa(z), na(y)), (z,y) € R? and z = = — y}.
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4) In the case where ¢ : R x R* — R, such that p(z,y) = %, for Ae F and A" € F, ApA’ is

the quotient of A and A’ denoted by % and whose membership function is defined by:
) . x
Vz € R,,u(%)(z) = sup{min(ps(z), pa(y)), (z,y) € R x R* and z = ;}
In the following Example, we apply the sum on two trapezoidal fuzzy numbers.

Example 1.1.5. Let A = (a,b,c,d) and A" = (a’,b',,d") be two trapezoidal fuzzy numbers.

The sum of A and A’ is the trapezoidal fuzzy number: A+ A" = (a+d,b+b,c+,d+d).

The following example presents a concrete situation where we can illustrate the Extension

Principle and some of the previous operations.

Example 1.1.6. John was approximately twenty years old when he arrived in Cameroon.
He left this country roughly two years later after living there for one year and 6 months
approximately.
- How can we characterize the age of John?
- How can we characterize the age of all individuals who are younger than John?
By considering that the universal set X = [0,+o00[ as a time space expressed in years, we
propose answers to these questions in three steps.
1) We assume that we represent:
- the expression “approximately 20 years old” by the triangular fuzzy number

1 59 61

1
A = (20 — =,20,20 + =) = (=2, 20, —);
1 (0 37 070+3) (370a3)7

- the expression“approzimately 2 years old” by the triangular fuzzy number

1 23 _ 25

1
Ay =(2——,2,2 2, —
2 ( ) &y + 712

- the expression “approximately 1 year old and 6 months” by the triangular fuzzy number
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1 17 3 19

3
ot ) =R

2) By applying the sum on F, the age of John is represented by the triangular fuzzy number
A=A+ As + Az = (23, 4—27, 24). In order words, John is around 23 and half years old.

3) By applying the Extension Principle where ¢ is the mapping defined by ¢(x) = {y/y <
x}, the age of individuals younger than John is defined by the fuzzy subset B of X whose

membership function pp is linked to the membership function of A by the relation up(y) =

SUP{, /y<a} HA(T). More precisely, we obtain:

1, ify €[0,%]
pp(y) =% 2(24—y), ify €[4, 24]
0, if y € [24, +o0]

That means, if you are less than 23 and half years old, you are younger than John, if you are
at least 24 years old, you are not younger than John. If you are between the two ages, you are

younger than John with the degree 2(24 — y) where y is your age.
Let us end this subsection with operations on parametrical fuzzy numbers.

Proposition 1.1.1. Let A, B be two fuzzy numbers given by their respective parametric forms

[Ala = [a(a),@()], [Bla = [b(a),b(a)] and A € R.

e The parametric form of the fuzzy number A + B is given by:

[A+ Bla = [a(@) + b(a), a(e) + b(a)].
e The parametric form of the fuzzy number AA is given by:
(Ao = [Aa(a), Aa(a)].

In the following Subsection, we recall the two first measures introduced by Zadeh [40] and
some parameters of a parametrical fuzzy variable with respect to the possibility measure. For

that, we review notions on o-algebra.
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1.2 Possibility and necessity measures

1.2.1 o-algebra

Definition 1.2.1. 1) A collection A consisting of subsets of X is called an algebra over X
if the three following conditions are satisfied: (a) X € A; (b) if A € A then A° € A; (c) if
Ai,Ag, ., Ap € A, then ], € A.

2) The collection A is a o-algebra over X if the two conditions (b) and (c) below are satisfied

and A is closed under countable union, that means, if Ay, As, ... € A, then |72, € A.
Let us recall some usual examples.

Example 1.2.1. 1) The collection {0, X} is the smallest o-algebra over X and the P(X), is
the largest o-algebra over X.

2) Let A be a subset of X such that A # 0 and A # X. Then A= {0, A, A, X} is a o-algebra
generated by A over X.

3) The smallest o-algebra By containing all open intervals is called the Borel algebra over the

set of real numbers. We have: B(R) C Prg.

Remark 1.2.1. 1)Each element in P(X) is called an event.

2) When X is finite, we have: card P(X) = 264X,

In the following Subsection, we study possibility and necessity measures introduced by
Zadeh [40].

1.2.2 Possibility and necessity measures on fuzzy variables

Definition 1.2.2. (Zadeh, [40]) 1) A function Pos : P(X) — [0,1] is called possibility

measure if (i) Pos(X) = 1, (i) Pos(0) = 0 and (iii) Pos(UierA;) = sup;cr A; for any

TASSAK DEFFO CHRISTIAN PhD. Thesis



Fuzzy sets and possibility theory 18

collection (A;)icr in P(X).

2) The necessity measure is a function Nec: P(X) — [0, 1] defined by:
VA € P(X),Nec(A) =1 — Pos(A°).

3) The triplet (X, P(X), Pos) is called a possibility space.
4) The triplet (X, P(X), Nec) is called a necessity space.
5) A possibility distribution on X is a function 7 : X — [0,1] that satisfies the following

normalization condition: sup,ex m(x) = 1.

Remark 1.2.2. 1) A possibility measure Pos can be defined by means of a possibility distri-
bution m as follows: VA € P(X), Pos(A) = sup,c 4 7(z).
2) The necessity measure Nec satisfies the following conditions: ¥(A, B) € P(X)?, (i) Nec(AN

B) = min(Nec(A), Nec(B)) and (ii) Nec(A) + Nec(A°) < 1.

In the following, (X, P(X), Pos) is a possibility space.

We give two examples of possibility measure based on possibility distribution when X is

finite.

Example 1.2.2. 1) Let X = {a,b,c,d,e, f} and 7 the possibility distribution on X defined
by m(a) = 7(b) = 1,7(c) = w(d) = § and w(e) = n(f) = }.

The possibility measure associated with  is defined by: Pos({a,b}) = Pos({a,c}) = Pos({c,b}) =
1, Pos({d, f}) = 1 and Pos({e, f}) = 1.

2) Let X = {x1,x9,....,xn} and and w the possibility distribution on X defined by Vx; €
X, m(z;) = yi.

The possibility measure associated with 7 is defined by: Pos({xi,, Tiy, ..., T4, }) = maxXi<j<p Yi,-
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Let us recall basic notions of fuzzy variables on a possibility space.

Definition 1.2.3. 1) A fuzzy variable £ is a function from the (X, P(X), Pos) to R.

2) Let & be a fuzzy variable with membership function p.

€ is symmetric if 3a € R,Vr € R, u(a —r) = pla +r).

3) Let r € R. A fuzzy event {£ < r} associated to a fuzzy variable & with membership function

u, is a subset of X defined by:

{E<r}={reX ux)<r}

4) Let & be is a fuzzy variable with membership function p and r € R. The possibility measure

of a fuzzy event {§ < r} is defined as:

Pos({¢ < r}) = sup ().

z<r

We give some usual examples of fuzzy variables.

Example 1.2.3. Let a,b,c,d be four real numbers such that a < b < ¢ < d.
1) A fuzzy number £ is an equipossible fuzzy variable if its membership function satisfies:

da,b € R, such that a < b and

1, ifa<r<b
0, otherwise.

Vr e R, u(r) = {
We denote it by & = (a,b).

2) A fuzzy variable £ is a trapezoidal fuzzy variable if its membership function satisfies:

Ja,b,c,d € R, such that a < b < c<d and

(572), ifa<r<b
- 1, ifb<r<c
M= (=), e <d
0, otherwise.
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We denote it by & = (a,b,c,d).

L I
| [
s |
a b | |

Figure 1.3: Equipossible variable (a,b). Figure 1.4: Trapezoidal variable (a,b,c,d).

3) A trapezoidal fuzzy variable £ = (a,b,c,d) is symmetric when b —a = d — ¢ and a

triangular fuzzy variable £ = (a,b,d) is symmetric when b—a =d —b.

Let us notice that when b = ¢, £ = (a,b,c,d) becomes a triangular fuzzy variable

¢ =(a,b,d).

In the following example, we determine possibility and necessity of some fuzzy events of

a fuzzy variable by means of the level sets of the fuzzy variable.

Example 1.2.4. Let £ be a fuzzy variable, a €]0,1] and [aq, bs] the a- level set of €. Then,

we have:

Pos({€ < aq}) = a and Pos({€ > by}) = a, Nec({€ > an}) =1 — a and Nec({€ < b,}) =

TASSAK DEFFO CHRISTIAN PhD. Thesis



Fuzzy sets and possibility theory 21

1—oa.

Let us end this section by displaying in the following table some similarities between prob-
ability and possibility measures when the universe X is finite. For that, 7w, Pos,p and P are
possibility distribution, possibility measure, probability distribution and probability measure
respectively.

Let A, B € P(X).

Possibility theory Probability theory
SuprX 71'(.%) =1 ZxEX p( ) 1
Pos(AU B) = max(Pos(A), Pos(B)) P(AUB)=P(A)+PB)ifAnB=10
Pos(A) = sup,c 4 () P(A) =3 cap(x)
max(Pos(A), Pos(A°)) =1 and Pos(A) + Pos(A€) > 1 P(A) + P(Ac) 1

In the next paragraph, we recall some known parameters of a parametrical fuzzy variable
in a possibility space, namely possibility distance quantity, interval approximation, mean and
variance.

1.2.3 Some characteristics of a fuzzy variable based on the possibility mea-
sure

The nearest weighted possibilistic interval

Let us recall the possibility distance quantity of a fuzzy number.

Definition 1.2.4. (Saeidifar and Pasha, [30] ) Let A be a parametrical fuzzy number defined
by Vo € [0, 1], [A]o = [a(a),a(a)] and let Cp,Cy € R such that Supp(A) = [CL, Cy].

A possibilistic distance quantity of A is the positive real number defined by:

d(A, Supp(A)) = [} Pos(A < a(@))(a(a) — C1)? dar+ [} Pos(A > a(a))(@(a) — Cv)? do)]},

that 1is,

1
d(A, Supp(A \// —Cp)? da —i—/o a(a(a) — Cy)? da. (1.1)
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Interpretation 1.2.1. Relation (1.1) is a type expected distance between the endpoints of its

level sets and the two endpoints of its support.
For the three other parameters, we need the following function.

Definition 1.2.5. A function f : [0,1] — R is a weighting function if it is non-negative,

increasing and satisfies the following normalization condition fol fla) da=1.

Example 1.2.5. The following functions f : [0,1] — R and g : [0,1] — R defined respectively

as f(z) = 2z and g(x) = 322 are weighting functions.
We now recall the interval approximation of a parametrical fuzzy number.

Definition 1.2.6. (Saeidifar and Pasha, [30]) Let [A], = [a(a),a(a)] be a fuzzy number and
f be a weighting function.

1) The nearest lower weighted possibilistic point (NLWPP) of A associated with f is the real
number defined by: NLW PPy(A) = fol f(a)a(a) da.

2) The nearest upper weighted possibilistic point (NUWPP) of A associated with f is the real
number defined by: NUW PP(A) = fol fla)a(a) da.

3) The interval approximation of A or the nearest f—weighted possibilistic interval of A is the

real interval defined by: NW PIg(A) = [INLWPP;(A), NUW PP;(A)].

Let us recall the nearest weighted possibilistic point of a parametrical fuzzy number.

The nearest weighted possibilistic point

Definition 1.2.7. (Saeidifar and Pasha, [30] ) Let [A]q = [a(a),a(a)] be a fuzzy number and
f be a weighting function. The f—weighted possibilistic mean (WPM) of fuzzy number A is

the real number defined by: M s(A) = fol f(a)w dev.
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When f(a) = 2a, M ;(A) is simply denoted by M(A) and its becomes:

L 1
M ;(A) = FI(A) = /0 a(a(a) +(a)) da.

In that case, M(A) is called the weighted possibilistic mean value of fuzzy number A.

Therefore, we have the following result.

Theorem 1.2.1. (Saeidifar and Pasha, [30] ) Let [A], = [a(a),a(@)] be a fuzzy number and
f be a weighting function. Then Mf(A) is the nearest weighted possibilistic point to A which

1S unique.
Let us give an application of the previous notions on a trapezoidal fuzzy number.

Example 1.2.6. 1) Let A =(—2,—1,1,3) be a trapezoidal fuzzy number and f(a) = 2a.
(i) The parametric form of A is given by Va € [0,1], [A]lo = [a(a),a(®)] = [-2 + «a, 3 — 24a].

(ii) The nearest weighted possibilistic interval to A is NWPI;(A) = [-2,2].

1

The nearest weighted possibilistic point to fuzzy number A is M(A) = 13-

; ; AT _ atbtctd
2) If A= (a,b,c,d) is a trapezoidal fuzzy number, then: M(A) = ek,

We end with possibilistic variance of a parametrical fuzzy number.

Possibilistic variance

Definition 1.2.8. (Saeidifar and Pasha, see ([30]) ) Let [A]a = [a(a),a(a)] be a fuzzy number
and M (A) its weighted possibilistic mean value.

The possibilistic variance of a fuzzy number A is the real number defined by:

1
04 = Var(A) = /0 a[(a(a) — M(A))? + (@(a) — M(A))? da.
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Interpretation 1.2.2. 1) The possibilistic variance of a fuzzy number A explains the variation
of this fuzzy number with respect to its possibilistic mean value M(A).

2) Similarly to probability theory, one can define possibilistic skwewness and kurtosis.
We apply the previous notion on the trapezoidal number of the previous example.

Example 1.2.7. Let A be the trapezoidal fuzzy number of the previous example where M(A) =

1

12°

The possibilistic variance of A is obtained as follows:

Var(A) :/01 af(-2+a-— %)24—(3—204— —)?lda=""~34

The possibility measure gives the possibility of occurrence of fuzzy (imprecise) events such
as: “around 107, “approximately 27, “between 3 and 47, “almost young”, and so on... That is the
reason why this measure deals with these types of uncertainty: imprecision and vagueness.
Nevertheless, this measure is not dual and that is a significant inconvenience for the description
of uncertain financial markets, in that sense it doesn’t make decisions consistent with the law

of contradiction and excluded middle.
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CHAPTER Two

FIRST PARAMETERS OF A FUZZY
VARIABLE BASED ON THE CREDIBILITY
MEASURE

In this chapter, we present the credibility measure introduced earlier by Liu [20]. We recall
some well-known parameters of a fuzzy variable such as mean, variance, semi-variance and

skewness. We deduce some basic properties of the mean and the variance.

2.1 Credibility measure and membership function

2.1.1 Credibility measure: definitions and examples

Definition 2.1.1. Liu/20] Let Cr : P(X) — [0,1] be a function and I C N.

1) Cr is a credibility measure if:

- Aziom 1 (Normality): Cr(X) =1;

- Aziom 2 (Monotonicity): VA, B € P(X), Cr(A) < Cr(B) whenever A C B;

- Aziom 3 (Self-duality): VA € P(X),Cr(A) + Cr(A¢) =1 ;

- Aziom 4 (Mazimality): ¥(A4;)icr € P(X) with sup; Cr(4;) < 5 , Cr(U;4;) = sup; Cr(4;) .

2) The triplet (X, P(X),Cr) is called a credibility space.
Let us recall some usual examples of credibility measure.

Example 2.1.1. 1) Let X = {X;, Xo}.
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i) There are four events: 0, {X1},{X2} and X.

ii) The set function Cr is defined by: Cr(0) = 0,Cr({X1}) = 0.3,Cr({X2}) = 0.7 and
Cr(X)=1.

Cr is a credibility measure because it satisfies the four axioms.

2) Let X = {X1, Xo, X3}.

i) There are eight events: 0, {X1}, { X2}, { X3}, {X1, Xo}, {X1, X3}, {X2, X3} and X.

ii) The set function Cr is defined by: Cr(0) = 0,Cr({X1}) = 0.3,Cr({X2}) = 0.4,Cr({X3}) =
0.6, Cr({ X1, Xo1) = 0.4, Cr({X1, X3}) = 0.6, Or({ X2, X3}) = 0.7, Cr(X) = 1.

Cr is a credibility measure because it satisfies the four axioms.

3) Let X =R. The set function Cr is defined by:

1if 6=R
Cr(0) = 0if 6=10
% otherwise

Cr is a credibility measure because it satisfies the four axioms.
Let us end this paragraph with the link between Cr, Pos and Nec.

Remark 2.1.1. A useful link between Cr, Pos and Nec is

VA € P(X), Cr(A) = 1[1 4 Pos(A) — Pos(A®)] = 1[Pos(A) + Nec(A)).

Let us notice that, Definition 1.2.3 defines events associated with a fuzzy variable on
a possibility space. Since the work of Liu [20]|, a new approach defined it on a credibility
space. Thereby, throughout this thesis, a fuzzy variable is defined on the credibility space

(X,P(X),Cr).
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2.1.2 Link between credibility measure and the membership function of a
fuzzy variable

Definition 2.1.2. (Liu [20], B. Liu and Y. Liu [21]) 1) A fuzzy variable is defined as a
function from a credibility space (X,P(X),Cr) to R.

2) A fuzzy variable £ is nonnegative, denoted by £ > 0, if C({£ <0}) =0.

3) Let & and & be two fuzzy variables defined on the credibility space (X, P(X),Cr).

i) &1 =& if &1(x) = &a(x) for almost x € X, that means, Cr({x € X, & (z) # &(x)}) = 0.

ii) &1 and & are independent fuzzy variables if for any sets By, Ba of R, Cr({&1 € B1}N{& €

Ba}) = min(Cr({& € Bi}), Cr({€2 € Ba})).

Definition 2.1.3. (B. Liu and Y.Liu, [20]) Let § be a fuzzy variable defined on (X, P(X),Cr).

Then its membership function is derived from the credibility measure by:
Vre Ru(r) = (2Cr({{ =r})) AL (2.1)

The following result, established by Liu, gives the credibility measure of events with respect

to a fuzzy variable £ by means of its membership function.

Theorem 2.1.1. (Credibility Inversion Theorem, B. Liu and Y.Liu [20], p.445) Let § be a

fuzzy variable with membership function u. Then for any set A of reals numbers, we have:

Cr({§ € A}) = G(supp(t) + 1= sup (1) (2.2)

Let us calculate the credibility measure of some usual events by applying the previous

result.

Example 2.1.2. 1) In the usual cases where A =] — oco;r] or A = [r;+oo] with r € R, then
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Cr({§ € A}) becomes
{ C’I"({f < ’l“}) = %(Supxe}foo,r] ,u(x) +1- SUPze]r,400] ,LL(I'))
CT({§ > T}) = %(Supxe[r,Jroo[ ,U,(QZ) +1- SUPze]—oo,r] ,U,(l’)
2) For an equipossible fuzzy variable & = (a,b), we have:
0, ifr<a
Cri{é<ry) =4 3ifa<r<b (2.3)
1, b<r
and
1, ifr<a
Cr({€>r}) =< Sifa<r<b . (2.4)
0, b<r
A proof of those results:
a) Let us take r € R:
-Ifr <a, then Cr({¢ <r})=3(0+1-1) = 0.
~Ifa<r<b, thenCr({¢<r})=3(1+1-1)=3.
SIfb<r, Cr{é<r}) =3(14+1-0)=1.
b) Cr({& > r}) is obtained by using the self-duality aziom.
3) For a trapezoidal fuzzy variable & = (a,b, c,d), we have:
0, ifr<a
s(5=a), fa<r<b
Cri{¢ <r}) =4 3 ifb<r<c (2.5)
1—-3(=9), ife<r<d
1, ifd<r
and
1, ifr<a
1—%(’,; 8), ifa<r<b
Cri{¢>r}) =4 3, ifb<r<c (2.6)
(=), ife<r<d
0, ifd<r
A proof of those results:
a) Let us take r € R:
-Ifr<a, then Cr({¢ <r})=3(0+1-1) = 0.
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-Ifa<r<b, then Cr({£ <r}) = %(2:; +1-1)= %(z:g)

-Ifb<r<ec, then Cr({{ <r}) = %(1 +1-— ”:g) =1- %(ul)

Ifd<r, Cr({e <)) =3(1+1-0) =

b) Cr({& > r}) is obtained by using the self-duality aziom.

4) For a triangular fuzzy variable (a,b,d), we just set b = ¢ in the expressions of Cr({{ < r})

and Cr({& > r}) for a trapezoidal variable (a,b,c,d).
Let us end this section by introducing the credibility distribution of a fuzzy variable.

Definition 2.1.4. (Liu,[17]) 1) The credibility distribution of a fuzzy variable § is an appli-

cation ® : R — [0, 1] defined by: Vr € R,
O(r) = Cr({§ <r}). (2.7)

2) Let ® be the distribution function of .

® is a degenerate distribution function if Jtg € R such that ¥Vt € R,t > to, ®(t) = 1 and
Vit € Rt < tg, ®(t) = 0.

3) The density credibility function of £, when it exists, is the function defined such that:

VreR,®(r) = ['__o(t) dt.

Example 2.1.3. The distribution function ® of a trapezoidal fuzzy variable § = (a,b,c,d) is
given by (2.5) and the distribution function ® of an equipossible fuzzy variable & = (a,b) is

given by (2.3).

Proposition 2.1.1. Let ® be a distribution function.

® is an increasing function.

Proof: The result is obtained by using the fact that C'r is an increasing function. O

TASSAK DEFFO CHRISTIAN PhD. Thesis



First parameters of a fuzzy variable based on the credibility measure 30

2.2 First parameters of a fuzzy variable

2.2.1 Expected value: definitions and examples
Definition 2.2.1. (B. Liu and Y.Liu [20], p.446) Let & be a fuzzy variable.

The expected value of & is the real number defined by:

“+00

0
Bl = [ erlgzrpar- [ ore<har (28)
provided that at least one of the two integrals is finite.
Let us calculate expected values of some well-known fuzzy variables.

Example 2.2.1. Let us consider an equipossible fuzzy variable £ = (a,b):
We distinguish three cases: 0 < a, a <0 <b and b < 0.
1) If 0 < a, we have Cr({{ < r}) = 0 when r < 0. Then, according to relations (2.8) and

(2.4):

a bl b
E[&]:/ldr—k/dr:aJr .
0 a2 2

2) If a < 0 < b, then, according to relations (2.8),(2.3) and (2.4):

01 b1 +b
E[§]:—/ 2dr+/02dr:a2 .

3) If b < 0, we have Cr({{ > r}) = 0 when r > 0. Then, according to relations (2.8) and

(2.3):

b1 0 b
EM:—/2W—A1MZG;.

Therefore, the expected value of the equipossible fuzzy variable £ = (a,b) is:

a+b

Elg =222
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Example 2.2.2. ) Let us consider a trapezoidal fuzzy variable & = (a,b,c,d):

We distinguish five cases: 0 < a <b<c<d,a<0<b<c<d,a<b<0<c<d,
a<b<c<0<danda<b<ec<d<O.

1)If0<a<b<c<d, wehave Cr({§ <r}) =0 when r < 0 Then, according to relations

(2.8) and (2.6):

a b1 r—a °1 11 r—d a+b+c+d
Ble)= [ 1 1- = - 1 _atbtetd
[€] /0 dr—I—/a 2(b_a)dr+/b 2(17“4—/C 2(C_d)dr 1

2) If a < 0 < b < c<d, then, according to relations (2.8),(2.5) and (2.6):

0 b c d
1 r—a 1 r—a 1 1 r—d a+b+c+d
Flél = — — d 1—— d —d — dr= —.
€] /a SL r+/0 SA— H/b 2 H/C =) 1

3) If a < b<0<c<d, then, according to relations (2.8),(2.5) and (2.6):

b 0 c d
1 r—a 1 1 1 r—d a+b+c+d

4)Ifa<b<c<0<d, then, according to relations (2.8),(2.5) and (2.6):

b1 r—qa €1 0 1 r—d a1 r—d a+b+c+d

5)Ifa<b<c<d<0, we have Cr({{ > r}) =0 when r > 0. Then, according to relations

(2.8) and (2.5):

b c d 0
1 r— 1 1 r—
E[f]:—/ L a)dr—/dr—/ - d)dr_/ldr:‘Hb‘FC""d‘
2% —a , 2 . 2'%c—d . 1

Therefore, the expected value of the trapezoidal fuzzy variable & = (a, b, c,d) is:

a+b+c+d

Elg =21

II) We deduce from those results that, when b = ¢, the expected value of the triangular fuzzy

variable &€ = (a,b,d) is: E[¢] = %{)er'
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Remark 2.2.1. According to relations (2.7) and (2.8), the expected value of & can be defined

by means of credibility distribution ® of & as follows:

400 0
Ef¢) = /0 [1—®(r)] dr — / O(r) dr. (2.9)

—0
We end with some properties of the expected value of fuzzy variables.

The following result establishes the expected value of a fuzzy variable £ by means of a credi-

bility distribution function.

2.2.2 Some basic properties

Proposition 2.2.1. Let £ be a fuzzy variable with a bijective credibility distribution function

®. The expected value of £ is defined by:

1
El¢] = /0 &L (u) du (2.10)

Proof: According to the definition, E[¢] = 0+oo Cr{¢>r}dr — ffoo Cr{{ <r}dr. By
using the fact that Vr € R, ®(r) = Cr{¢ < r}, we have:

E[¢] = 0+°o[1 —®(r)] dr — fi)oo ®(r) dr. By setting u = ®(r), it follows that r = ®~1(u)

du .
and dr = W—l(u)' The new integral becomes:
El§] = fé(o) d®=1(u) — fol ud® 1 (u) du. By the two following equalities:
Jo) 47 () = @71(1) and [ ud®~ () = &~1(1) = [y &7 (u) du,

it follows that E[¢] = fol &~ (u) du. O

The following result establishes that the expected value is a linear operator.

Proposition 2.2.2. Let £ be a fuzzy variable with finite expected value. Then,

Va,b € R, E[at + b] = aE[¢] + b, (2.11)
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Proof: Let us consider a,b € R. According to relation (2.8) :
Elag +b] = 0+OO Cr(a€+b>r)dr — fi)oo Cr(a&+b<r)dr.
We distinguish two cases:
1st case: If a = 0. We have: E[al +b] = E[b] =b=aFE[¢] +.
2nd case: If a # 0.
We have: a6 +b>r < € > %b and al +b<rs €< %b.
- Let us evaluate [° Cr({a&+b > r})dr.
We set: 1’ = "= We have: r € [0, +oo[& 1/ € [~2, +oo[ and dr’ = Ldr. Thus: [;7° Cr({a& +
b} > r)dr = afjgo Cr({&>r'"})dr'.
- Let us evaluate fBOO Cr({a&+b<r})dr.

We set: v’ = T;b

We have: r €] — 00, 0] < 1’ €] — 00, —2] and dr’ = Ldr. Thus:

ffoo Cr({a&+b<r})dr= afjé Cr({& < r'})dr'.
- Let us evaluate E[a& + b]

a) If a and b have the same sign, then —3 < 0 and we have:

+o0o 0
Plag+t)= [ Cr({as+b > r)yar - /_ Cr({ag +b < r})dr

+oo

=q B Cr({&€>7r"})dr' — a/__a Cr({& <r'})dr

+oo 0 .
A Or(te 2’ - a/_ Cr({€ <r'Har’ + a/ Cr({¢ <r'})dr'

+o0 0

0
—a([ or({e > - / Cr({e < ¥ Ndr') +a / (Cr({€ > Ddr’ + Cr({€ < r'})dr).

0 —

Qo

Qo

Finally, we obtain: E[a& + b] = aE[¢] + b.
- If a and b have opposite signs, then —g > 0 and by a similar way, we add and remove the

_b
term a [, * Cr({ > r'})dr’ to obtain the result. O
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Remark 2.2.2. (B. Liu and Y. Liu [21]) When & and & are independent fuzzy variables

with finite expected values, a and b are two reals numbers, then:
Ela& + b&2] = aE[&1] + bE[Ea].

In the following subsection, we recall definitions, examples and properties of the variance
and the semi-variance of a fuzzy variable.

2.2.3 Variance and Semi-variance of a fuzzy variable: Definition, Examples
and Properties

Variance

Definition 2.2.2. (B. Liu and Y.Liu [20]) Let £ be a fuzzy variable with finite expected value

e. The variance of £ is the real number defined by:

Vel = El(€ —¢)). (2.12)
Let us determine variance of an equipossible fuzzy variable.

Example 2.2.3. Let & be an equipossible fuzzy variable (a,b) with E[§] = e = “TH’. Then for
any positive real number r, we can easily check that:
1 . < (b—a)?
Crfe—eyzn =4 2 IS A
0, if r > =~
Thus, according to relations (2.12) and (2.8) the variance of & is:

foo (b=a)®

vie = | 0r<{<5—e>2>}2r>dr=/o L=

The following result determines variance of a trapezoidal fuzzy variable.

Proposition 2.2.3. 1) Let £ be a trapezoidal fuzzy variable (a,b,c,d) with E[§] = e =

atbletd We set: oy = max(b—a,d —¢), f1 =min(b—a,d —c) and vy = c —b.
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The variance of £ is defined by:

3303 + 210281 + 11a1 82 — B3 + 600172 + 6602y — 128192 — 682y + 36a1 By — 87°
384041 ’

2) Let € be a triangular fuzzy variable (a,b, ) with E[¢] = e = “F2%¢ . We set: oy = max(b —
a,c—b) and f; = min(b — a,c — b).
The variance of £ is defined by:

_ 3307 +21a3p1 + 111 B} — B}
384a '

V]

Proof: 1) Let £ be a trapezoidal fuzzy variable (a, b, ¢, d) with E[(] = e = 2t0tetd Tet us

. _ _ _ _ a+2v—0 _ a+2y—0 _ a+2y+28 _ 3a+2y+p
set: a=b—a,B=d—-c,y=c—b A=""5-F B=""F C=""" D=7,

and X = %ﬁ'ﬁ.

For the calculation of the variance of £, we distinguish two cases: @ > 8 and a < 3. The case
where a = 8 will be study in the case of symmetric fuzzy variables.

For any positive number r, we obtain:

In the case where a > f3,
DoVt i < < (A)?

3, if A2 <r < B?

doe VT if B <1 < X2

Cr —e)AHl > ) = 5 ! -

ez =0 T e

VT if 02 < < D?

0, if r > D?

ife<b

and
if0<r< B?

SV i B2 <1 < X7
Cri{€—e) )y zr)=q L X2 <r<c?  ifexb.
eV if 02 < r < D?

0, if r > D?

1
29
d—

First case: a > g If e < b.

According to relations (2.12) and (2.8), the variance of £ is:

[e8) 2 2b—a—e—/T 2 2 d—e—/r
VIl = [ or{(E - e} 2 r) dr = [ 20T a4 [ L dr + [y T dr +
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[5G E gyy [B ai g

2«

3303 + 21&25 + 11aB? — B3 + 60a7? + 6602y — 12872 — 662y + 3606y — 8>

That is, V[¢] = Y™

If e >b.

Then VIE] = [ Cr({(€ — o))} = ) dr = [ § dr + [ S50 dr+ [0 520" dr +

2 e—a—+/T
Cg 55— dr

3203 4 24028 + 8aB? + 48ay? + 7202y + 24a By — 87
384«

that is, V[¢] =
Second case: a < 3

By the same way, we obtain:

3383 + 215%a + 11802 — a2 + 60372 4 6632y — 602y — 12072 + 368y — 83
3843 '

V¢l =
The last case where a = f3, is studied in the particular case of symmetric variable.

2) In the particular case of a triangular fuzzy variable £ = (a, b, ¢), by setting: a; = max{b—

3303 + 21a3f: + Lo f? — B} _

a,c—b} and 51 = min{b — a,c — b}, we get: VI[¢{]= BTV
a1

Let us recall a useful property on the linearity of the variance of a fuzzy variable.

Theorem 2.2.1. (B. Liu, [18]) Let a and b be reals numbers and & a fuzzy variable whose
variance exists. Then:

V]a& +b) = a*V[¢].

Remark 2.2.3. 1) Variance is a parameter which evaluates the spread or the deviation of
values taken by a fuzzy variable from its expected value.

2) Variance can be used to distinguish two fuzzy variables which have the same expected value.
For example, let us consider two triangular fuzzy variables & = (1,3,5) and & = (0,3,6). We

have: E[&1] = E[&] =3, V[&] = § and V&) = 3.
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Let us recall definition and properties of the Semi-variance which is the parameter which
allows to distinguish the low part deviation from the expected value and the high part devia-
tion. In finance, low part deviation means a possible loss of investment and high part deviation

means a potential return of investment. For that, we introduce the fuzzy variable

(E—e)” = { g—lfeg iig ¢ (2.13)

associated to the fuzzy variable £ with expected value e. It defines the low part deviation of

a fuzzy variable £ from its expected value e.

Semi-variance

Definition 2.2.3. (Huang [11], page 3) Let £ be a fuzzy variable with finite expected value e.

The semi-variance of & is the real number defined by:
SVel = Bl - )], (2.14)

Remark 2.2.4. SV[¢§] = E[[(§ —e) ]! = [, Cr({[(§ —e)7]? > r}) dr = [, Cr({(€ -
)" <=} dr= [ Cr({¢ <e—/r}) dr.

Let us recall semi-variance of some usual fuzzy variables.

Example 2.2.4. 1) For an equipossible variable § = (a,b), we have:

(e—b)? (e—a)? 1 h— 2
SV[{]:/ dr—i—/ Ly bzaf
0 (e=b)2 2 4

2) For a trapezoidal fuzzy variable & = (a,b,c,d), we obtain:

SV = [(e — a)® +min(0, (b — e)®)] + max (0, (e — ¢)3).

6(b—a)

1
6(d—c)
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3) In the particular case of a triangular fuzzy variable & = (a,b,c) with expected value e, we
have:

(b —¢e)3min(0, (b — e)3)].

Let us recall the result which establishes that the variance of £ is greater than the semi-

variance and the two parameters are equal if £ is symmetric.

Theorem 2.2.2. (Huang [11], page 3)

Let & be a fuzzy variable with finite expected value e, SV[€] and V€] the semi-variance and
variance of £ respectively.

1) 0 < SVIg < Vgl

2) If £ has a symmetric membership function then SV [¢] = V[].

The following Subsection recalls definition, examples and properties of the skewness of a
fuzzy variable.

2.2.4 Skewness of a fuzzy variable: Definition, Examples and Properties

Definition 2.2.4. (Li et al. [16], page 240) Let § be a fuzzy variable with finite expected value

e. The skewness of & is the real number defined by:

Slel = El(€ —e)’]. (2.15)
Remark 2.2.5. S[¢] = E[(§ — €)% = [ Cr({(¢ —e)* > r}) dr — [' Cr({(§ —e)® <
r}) dr =3 [ r2Cr({€ > e+r}) dr — 3 [ r2Cr({€ < e—r}) dr.
Let us recall skewness of some usual fuzzy variables.

Example 2.2.5. 1) For an equipossible fuzzy variable £ = (a,b), we obtain:

(552)3 .2 (552)3 .2
S[g]—s/ dr—3/ L,
0 2 0 2
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2) For a trapezoidal fuzzy variable & = (a, b, ¢, d) with expected value e, we obtain:

1
8(b—a)

1

[(b—e)! = (a—e)] + 8(c—d)

S[El = [(c—e)* = (d—e)].

Remark 2.2.6. In the particular case of a triangular fuzzy variable & = (a,b, c) with expected

value e, we have:

Sl = g7

We end this chapter with some properties of the skewness.

Theorem 2.2.3. (Li et al. [16], pages 240 et 241) Let a and b be two reals numbers and & a
fuzzy variable with finite expected value.
1) S[a& +b) = a3S[¢].

2) If € is a symmetric fuzzy variable, then S[¢] = 0.

Remark 2.2.7. 1) Skewness is a parameter which describes the asymmetry of fuzzy variables.
2) Skewness can be used to distinguish two fuzzy variables which have the same expected value
and the same variance (or the same semi-variance).

For example, let us consider two triangular fuzzy variables & = (1,2,4) and & = (%, %, %)

We have: B[] = E[&] = §, V[&] = V(&) = 35, Sla] = 25 and S[&] = —35.

According to what precedes, parameters like mean, variance, semi-variance, skewness,
describe fuzzy variables. But they are first moments and semi-moments of a fuzzy variable. A
main question is to study moments and semi-moments of order k (k € N*) of fuzzy variables.

That is the focus of the next Chapter.
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CHAPTER THREE

MOMENTS AND SEMI-MOMENTS OF
FUZZY VARIABLES BASED ON
CREDIBILITY MEASURE

In this Chapter, we generalize the entire family of parameters describing a fuzzy variable by
introducing its moments and semi-moments. Some characterizations and useful properties of
those parameters are established. Many results of this Chapter are in our first article Sadefo,

Tassak and Fono [29].

3.1 Kurtosis and semi-kurtosis of a fuzzy variable

In the next Section, we introduce the kurtosis of a fuzzy variable. We study some of its
properties and give some examples.

3.1.1 Kurtosis: Definitions, Examples and Properties

Definition 3.1.1. (Sadefo et al., [29], Definition 4 P520) Let £ be a fuzzy variable such that

E[¢] = e < 0.

1. The kurtosis of £ is the real number denoted by K[£] and defined by:

K[¢] = E[(¢ —e)*].
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2. The normalized kurtosis of € is the real number denoted by K'[¢] and defined by:

Let us rewrite K[¢] and K1[£] by means of a credibility measure. Let £ be a fuzzy variable

such that E[{] = e < oo.

e The kurtosis K[¢] is given by:

K[¢] = Om Cr{(€ —e)* > r} dr. (3.1)

e The normalized kurtosis K1[] is given by:

S or{(&—e)t > r}dr
7 Cr{(e — )2 > r}ar]?

Ki[¢] = (3-2)

Remark 3.1.1. 1) Kurtosis is a parameter used to describe a fuzzy variable’s tail, such as
fat-tail or thin-tail. In finance, investors prefer portfolio return described by fuzzy variables
with smaller kurtosis indicating the fat tail.

2) Kurtosis allows to distinguish two fuzzy variables with the same mean, the same variance

and the same skewness as it is proved in this next example.

Example 3.1.1. Let & = (2,%,%) and & = (4,5,13%@,%) be two fuzzy
variables.
We have E[¢1] = El&)] = 408YB V]g)] = V]gy] = 28WB 4ng SK[¢)] = SK[E] = 0.

But K[&1] ~ 120.027 and K[&2] ~ 68.6.
The following result establishes some properties of the kurtosis.

Proposition 3.1.1. Let £ be a fuzzy variable such that E[§] = e.
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1. The kurtosis of £ is defined by

K[¢] = o Cr{i€—e>r}VvCr{—e< yridr (3.3)

0

2. The normalized kurtosis of & is defined by

S OT{E—e> Yryv Or{€—e< Yridr |
[fo " Cr{e —e = ¥y v Or{E —e < ridr?

K'lg) =

3. Va,b € R, K[a& + b] = a*K[¢].
4. Ya,b € R, K'a& + b] = K1[¢].

Proof: 1) It is easy to show that: Cr{(¢ —e)? > r} =Cr{¢ —e > Yr}vCr{¢ —e < Yr}.
Hence we have the following equality:

K[¢] = 0+<>0 Cr{(§ - 6)4 > ridr = 0+OO Cri€—e>r}VvCr{€—e< {/r}dr

2) We deduce the second result from the definition of K'[¢] and by using the fact that:

+o0 +oo
V¢ = Cr{(¢€ —e)? >rydr = Cr{i€ —e> Jr}VvOr{¢ —e < Ir}dr

0 0
3) i) Let a,b € R. We have K [af +b] = E[(aé+b— E[a&+b])*]. Since E[al+b] = aE[¢]+b, we
deduce that K[a+b] = E[(aé+b—aE[¢]—b)*] = E[(aé—aE[£))}] = a*E[(6-E[€)*] = a*K[¢].

ii) Since V[a& + b] = a®V[¢], we deduce K'[aé + b] = K1[¢]. O

The following result rewrites the previous formulae when £ becomes a symmetric fuzzy

variable.

Corollary 3.1.1. If € is a symmetric fuzzy variable, then
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1. (3.3) becomes

+oo

Kig = [ ore- ez (3.5)

2. (3.4) becomes
0+°° Cr{{—e> Yr}dr ‘
i Crte— e = grtark

K¢ = (3.6)

Proof: When € is a symmetric fuzzy variable, we have:
Cri(¢—e)* >rydr=Cr{¢ —e> ¥r} and Cr{(¢ —e)? > r}dr = Cr{¢ — e > Yr} and the

proof is complete. O

Let us end this Subsection with the following result which determines the kurtosis and

normalized kurtosis of trapezoidal and triangular fuzzy variables.

Proposition 3.1.2. Let £ = (a,b,c,d) be a fuzzy trapezoidal variable with expected value
El¢]=e. Weset: a =b—a, f =d—c, I5(§) and l.(§) are respectively the length of the support

and the kernel of €.

1. The kurtosis K[£] of £ is given by:

K16 = (2000 + 1P (%) SO ) G J
o= Al Dk 0+ et - SO
2. If€ = (a,b,¢,d) is symmetric, then
o the previous expression of K[£] becomes:
Ke] = Ble(&) + B! +108°(Le(€) + B + B! (3.7)

160
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e its normalized Kurtosis K1[€] is

5lle(8) + " + 108%[le() + B + B

Ki[¢] = 160[W]Q

3. Let & = (a,b,c) be a triangular fuzzy variable such that E[§] = % = e. We set:
a1 = max(b—a,c—b), v =min(b— a,c —b).
The kurtosis K[€] of € is given by:

_ 253af + 39501y + 1717 + 290a3y” + 700ty —+°

Kl 10.2400;

Proof: 1) Let £ = (a,b,c,d) be a trapezoidal fuzzy variable such that E[¢{] = e,a =
b—a,f=d-c
By using the fact that Cr{(¢ —e)* > r} = Cr{¢ —e > ¥/r} v Or{¢ — e < {/r}, we can easily
obtain the following results:
i)When « > 3, then e < ¢. We can distinguish the two following cases as follows:
1%'case: e < b

1—%, if0<r<(b—e)
Lifb—e)t<r<(c—e)?

CT{({—@)‘LZr}: _%;ﬁe*dj lf(c_e)élg,rg(e_aTb)‘l
—fokee if e~ 25t <r < (e - a)t

0, if r > (e —a)L.
and finally we get:

K[ = [y Or{(§ — ) = rpdr = ({2502, (535) + (it (Sl 4

(e=a)® | (b—¢)® _ (c—¢)®

10« + 10« 108 °

2deage: e > b
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and finally we get:

KIg) = [ Or{(€ = e)* 2 rpdr = (=200 (555) 4 (It t (Hmgigtesd) o+

(e=a)® _ (c—¢)®

10a 108

ii) When « < 3, we use a similar way to calculate K[¢].

iii)When o = 3, we have:

and this result implies that:

+oo c— 4 2 c— 2 4
i = [ rtte- ot > rpar - e DAL I0R b

2) Let € = (a, b, ) be a triangular fuzzy variable such that E[{] = e,a=b—a,5=c—b.
By using the fact that Cr{(¢ —e)* > r} = Cr{¢ —e > ¥/r} v Or{¢ — e < {/r}, we can easily
obtain the following results:

i)When a > 3, then e < b and

1- (1/77;—;—(1’ ifo<r<(b—e)?
_é/;Jrefc . _ 4 L‘Fﬁzl
crle—azr— |~ =0t (e
<r<(e—a)

_ 4 _ .
—aet, i (4)
0, if r > (e—a)4
and finally we get:
+o0 2530° + 395045 + 17a8* + 2900252 4+ 700233 — 3°

- —e)t > r}dr =
Km_o Cr{(§—e)" = r}d 10.240cx

ii) When « < 3, we use a similar way to calculate K[¢].

iii)When « = 3, we have:

7 .
CT{(£_6)4ZT}:{ a2a ,if0<r<a

0, if r > a.
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where & = ¢ — b = b—a and this result implies that: K[¢] = 0+oo Cr{(—e)* > r}dr = ‘1“—3. 0

From the previous formulae, we deduce the normalized kurtosis of some examples of trape-

zoidal fuzzy variables.

Example 3.1.2. K1[(—1,2,3,4)] = 2114 K'[(1,2,3,4)] = 28 K![(-2,-1,3,4)] = 318

and K'[(1,2,2,4)] = 52928.

Remark 3.1.2. We notice that: for a triangular fuzzy number & = (a, b, c), we have:

- if b=a, then K[| = %74 with E[€] = %.

- ’Lf b:C, then K[f] - %QZL wzth E[f] = %3{;'

In the following, we introduce semi-kurtosis and establish some of its properties. We display
some usual examples.

3.1.2 Semi-kurtosis: Definitions, Examples and Properties

Definition 3.1.2. Let £ be a fuzzy variable with finite expected value e. Then the semi-kurtosis

of € is the real number denoted by K° and defined by:

+o00
K5 = E[[(€ - e)7"] = o orle- e)7]" = r}dr. (3-8)

Let us determine the semi-kurtosis of trapezoidal and triangular fuzzy numbers.

Example 3.1.3. 1. The semi-kurtosis of a trapezoidal fuzzy variable & = (a,b,c,d) with

a+b+ct+d
4

expected value e = s given by:

KS[e] = (e = a)" s min0, (= €)°)] + 1=y max(0. (e — o)

10(b — a)
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2. The semi-kurtosis of a triangular fuzzy number & = (a,b,c) with expected value e =

7a+24b+c 18 deduced from the semi-kurtosis of a trapezoidal one by this way:

(b — )5 min(0, (b — e))].

Let us end this Subsection by introducing normalized semi-kurtosis.

Definition 3.1.3. Let £ a fuzzy variable with expected value e.

The normalized semi-kurtosis of £ is the real number denoted by Kf[g] and defined by:

K5[¢]
KS g _
= gy
Example 3.1.4. 1. The normalized semi-kurtosis of a trapezoidal fuzzy variable § = (a,b, ¢, d)

with expected value e is defined as follows:

Top=a (e — @)® + min(0, (b — €)°)] + =g max(0, (e — ¢)°)
[G(blfa) [(e — a)3 + min(0, (b —€)3)] + (i(dilfc) max (0, (e — ¢)3)]]2

K7 =

2. The normalized semi-kurtosis of a triangular fuzzy variable §& = (a,b,c) with expected

value e is defined as follows:

o=y l(e — a) + g (b — €)® min(0, (b — €))]

S —
) e =P T 2 - om0, 0= el

In the next Section, we introduce moments and semi-moments of a fuzzy variable and study
their properties. Thereby, those notions are generalizations of the new parameters (kurtosis

and semi-kurtosis) and the known ones (expected value, variance, semi-variance, skewness).

3.2 Moments and semi-moments of fuzzy variables

In the following subsection, we determine, for an integer £ > 1, the k-moment of a symmetric

trapezoidal fuzzy variable.
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3.2.1 Moments of symmetric trapezoidal and triangular fuzzy variables

Proposition 3.2.1. Let £ = (a,b,c,d) be a symmetric trapezoidal fuzzy variable with expected

value E[€] = e. For an integer k > 1, the k-moment my[¢] = E[(€ — €)¥] is given by:

0, ifk is odd

my[§] = Zf Crt [(c—=b)4alk =2

2T (k1)

, if k is even
Proof: For a symmetric trapezoidal fuzzy variable £ = (a, b, ¢, d), we can easily prove the

following result:

Cr{(€ = e)f 2} = Cr{g—e = Yrpv Cr{e — e = 4},
,1f0<r<( )’f

Cr{€ —e) 2} = f+a;+ylu5%kgrs@¥+5%
0, if r > (52 by Bk

wherea =d—c=b—a.

So, we can conclude that:

(52 +A)F Sl X520 O (28 (e=)F T S G (28) (e=b)F 7

mkﬁ[f] = fO CT{(& - e)k 2 T} = 2k+1(k+1) = 2k+1(k+1)
k
211 o p) ] 2
Cgﬁl[ik +11))+ L The proof is complete. O

From the previous result, we deduce moments and semi-moments of a symmetric triangular

fuzzy variable.

Corollary 3.2.1. Let £ = (a,b,c) be a symmetric triangular fuzzy variable with expected value

Bl¢] = e. For an integer k > 1, the k-moment my[€] = E[(€ — ¢)}] is given by:

o Ifl=2p+1, then

maop+1[€] = mk[€] =0 (3.9)
o If k=2p, then
k
male] = 5 (3.10)
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Proof: We prove that, for a symmetric fuzzy variable £, my[€] is null when k is an odd
number.
By definition, we have:
mi[€] = E[(€ — )] = [, Cr{(¢ - ElEDF = r}dr — [° Or{(£ — BIE))* < r}dr, vk € N*.
In ([16]), X. Li has already proved that for a symmetric fuzzy variable £, E[¢] = e and
Cr{é—e>r} = Cr{¢—e < —r}, where e is a real number such that y(e—r) = p(e+r),vr € R
and p is the membership function of €.
Furthermore, we have:
mgl€] = 0+°° cr{(¢ — e)k > ridr— fi)oo Cr{(¢— e)k <r}dr= f0+oo k‘rk_lCr{ﬁ —e>r}dr—
ffoo krk=1Cr{¢ —e < rldr = 0+°o krk=1Cr{¢ —e < —r}dr—f0+°° krk=1Cr{¢ —e < r}dr = 0.
Now, we assume that k is an even integer.
For a symmetric triangular fuzzy variable £ = (a, b, ¢), we can easily show the following result:
Since Cr{(¢ —e)f >r} = Or{¢ —e> ¥r} v Cr{¢ —e < ¥/r}, we have:

ai%, fo<r<ak

Cr{¢-ef >} = { 2

0, if r > ak

where a = ¢ — b = b — a. Then, we have my[¢] = foak a;j/;dr = spm of. O

We end this Section by introducing semi-moment and by establishing a link between a
moment and a semi-moment of a fuzzy variable.

3.2.2 Semi-moment of fuzzy variables and link between moments and semi-
moments

Let £ be a fuzzy variable with finite expected value e.
Definition 3.2.1. Let p € N*.

1. The semi-moment of order n = 2p of & is the real number denoted by M2Sp and defined
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by:

+o0o
M3 [€] = My[E] = E(((€ - e) 7)) = o orle- e) 7| > r}dr. (3.11)

2. The normalized semi-moment of £ is the real number denoted by Mégp’l and defined by:

si Msyl€]
Moy )= sty

In the case where p = 1, we obtain the well-known semi-variance of £ and for p = 2, we

obtain the semi-kurtosis of &.
In the following, we study the link between moment and semi-moment of a fuzzy variable.

The following result compares semi-moment and moment of a fuzzy variable.

Proposition 3.2.2. Let & be a fuzzy variable with finite expected value e, p € N and, Mg’p[g]

and Mop[€] the semi-moment and moment of € respectively. Then

0 < M3, [€] < Moy[€]. (3.12)

(E—e)Pife<e

. : . _ o) 120 —
Proof: Let §# € © and r € R. With (2.13), we have: [(§ —¢e)7] { 0if € > e

Thus we distinguish two cases as follows:

i) If £(0) < e, then [(£(0) —e)7]*" = (£(0) — €). And [(£(0) — )7 =1 & (§(0) —e)* > 1.
ii) If £(0) > e, then [(£(0) — €)7]” = 0 and (£(0) — €)* > [(£(0) — e)J*.

For those two cases, we have:

[(£(8) — €)7]% > r implies (£(A) — €)% > r. We deduce that V8,7, {6/[(£(F) —e)7]2P > r} C
{6/(£(0)—€)?? > r}. Since Cr is monotone, we have: Vr, Cr{[(—e)7]? > r} < Cr{(¢—e)? >

r}. Hence, Myy[¢] = 0+°O Cr{(¢ —e)? > r}dr > f0+°° Cr{[(¢ —e)7]?P > r}dr = Mi,[f]
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For p = 2, we prove (3.14). O

The following result establishes a necessary and sufficient condition under which even

moments of a fuzzy variable are null.

Proposition 3.2.3. Let £ be a fuzzy variable with finite expected value e. Then
Msp[€] =0 if and only if Cr{{ =e} = 1. (3.13)

Proof: Let £ be a fuzzy variable with finite expected value e and p € N* .
(<) : Assume that Cr{{ = e} = 1. Thus we have: Cr{{ —e = 0} = 1 if and only if
Cr{(¢ —e)? = 0} = 1. With the self-duality of Cr, we have Cr{(¢ —¢e)?’ # 0} = 0.
Let r > 0. We have: Cr{(¢ —e)?? > r} < Cr{(¢ —e)?*’ > 0} < Cr{(¢ —e)?’ # 0} = 0. That
means Vr > 0,Cr{({—e)? > r} = 0. We deduce that: Ma,[¢] = OJFOO Cr{(¢—e)?’ > r}dr = 0.
(=:) Assume that Ms,[¢] = 0. Since Cr takes values in [0;1], this equality means Cr{({ —
e)?? > r} = 0,¥r > 0. Since Cr is self-dual, we have Cr{(¢ — €)* = 0} = 1 and we deduce
that Cr{{ —e=0} =1, that is, Cr{{ =e} =1. O

Furthermore, the following result deduces some interesting links between kurtosis and

semi-kurtosis of a fuzzy variable.

Corollary 3.2.2. Let £ be a fuzzy variable with finite expected value e, K°[¢] and K[€] the

semi-kurtosis and kurtosis of & respectively. Then

0 < K°[¢] < K[€]. (3.14)

K[¢] =0 if and only if Cr{ =€} = 1. (3.15)
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Ks[g] =0 if and only if Cr{{ = e} = 1,i.e., K[{] = 0. (3.16)

K9[¢) = K[€] if € is symmetric . (3.17)

In the next Section, we characterize moments for a convex linear combination of a finite

family of independent triangular fuzzy variables called a portfolio of triangular fuzzy variables.

3.3 Moments of a portfolio of triangular fuzzy variables

Definition 3.3.1. Let (& = (a;, b;, ¢;))i=12,....n be a family of n independent triangular fuzzy
variables and x = (x1,...,xy) be a family of n positive reals of [0,1] such that > | x; = 1.
The portfolio of the n fuzzy variables is the linear combination of those fuzzy variables defined

by E(x) =D 0wl = (Dojq @i, i ibi, D iy Tici).

Example 3.3.1. Let & = (2,4,5), & = (—6,1,3), & = (7,11,16) be three independent
triangular fuzzy variables and xz,y,z € [0,1] be three real numbers such that x +y + z = 1.
Then § = x&1 + y&a + 283 = (20 — 6y + 7z,4x + y + 112,52 + 3y + 162) is a portfolio of the

three fuzzy variables &1,&2, 3.

Interpretation 3.3.1. A portfolio indicates futures returns after investment. The returns of
investment of the n assets of the portfolio are described by the fuzzy variables x1&1,...,2:&,...,
xné&n where the scalars x1,..., x;,...,Ty are the proportions of investment on those assets. A
portfolio suggests how the investor can share his capital among the different assets of the

portfolio.
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Since the portfolio of a finite family of triangular fuzzy variables is a triangular fuzzy

variable, we deduce its parameters from previous results as follows.

Corollary 3.3.1. Let {(x) = Y i, x:i& be a portfolio.

Then

1. The mean of {(x) is

El¢(2)] = i S ilas + 261 + 1),

i=1

2. The variance of £(x) is

= — L Y T 3 Y T (o —
V[f(l‘)] - 1922221 Zlnzl J;kxlakﬂl [; k(ls(gk))] ‘; k( k 5k2)‘+

1 5 y
(32Zk S srmioni Zl‘k &k))] ;I‘k(ak—ﬂk)!)

(\Zk:l mz(ak—ﬁkﬂ + % ZZ:I xkls(fk))g _
32 he1 T + Br + |ak — Bil)

(o) — (on-+ 50 +

(\Zz:lrk(ak—ﬁkﬂ):& (\Zk 19Ek(ak Br)| ) “Zk 127k(ak Br) \’3
n 5 +
3> pe1 Trlag + Br — g — Brl) 62k=1 rr(o + Br + lag — Brl)

3. The Skewness of {(x) is

SKIE)] = o (3 miler — a3 wiles 26+ a)
=1 =1

4. The Kurtosis of £(x) is

= — L Y x 5 - i (o —
K[¢(x)] = 51205 ST araianh [; k(s (&k))] \; k(o — Br)|+

1
n n t TRk
(512 S ST s ; k(ls(&k)] |kz:1 k(o — Br)|)x
(Bl 4 Lsmn g0, (60)°
52;;:1 T (o + B + lag — Bi)

((\ Dbt l’i(ak—ﬁk)l )5 (|2Z:1 xlz(ak—ﬁk)\ )5 + |(|ZZ:1 mIZ(ak_ﬁk)‘ )5|

5> ey xr(ak + B — |ow — Bil) " 1030 wr(ak + Br + ok — Bil)

(& D #(20s(6) — (e + A +
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Proof: We deduce these results from Proposition 3.1.2 and the expressions of mean, vari-

ance and skewness of a fuzzy variable. O

The following result determines the semi-variance and the semi-kurtosis of a portfolio.

Proposition 3.3.1. Let (&)g=1...n be a family of independent trapezoidal fuzzy variables
with finite expected values (eg)k=1,.. n, (Tk)k=1,...nbe a family of n positive reals and &{(x) =

> peq zk&k. Then

1. The semi-variance of &(x) is

6>y wr(be — ak)

Ve ()]

1
6> py Tr(dr — ci

) max(0, (Z zi(er — cx))?).
k=1

2. The semi-kurtosis of £(x) is

n

(O ziler — ax))® + min(0, ) zi(be — ex))?))+
=1

k=1

1

S —

1
1030 zp(dy — cx

) max(0, (Z zr(er — ci))”).
k=1

Proof: We deduce these results from Example 3.1.3 and the semi-variance formula of a

trapezoidal fuzzy variable. O

Those new concepts about the fuzzy variables, obtained by means of the credibility mea-
sure, are part of the quantitative approach for solving the portfolio selection problem. In the
next Chapter, we introduce another approach, namely qualitative approach, based upon the

pairwise comparison of fuzzy variables.
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CHAPTER FOUR

DOMINANCE RELATIONS ON FUZZY
VARIABLES BASED ON THE CREDIBILITY
MEASURE

In this Chapter, we define and characterize three dominance relations on fuzzy variables. We
establish some links between these dominance relations and determine some of their properties.

Some results of this Chapter are in our recent article Tassak, Sadefo, Fono and Andjiga [38].

4.1 Mean-risk dominance based on FLPM,, ;: Definitions, Ex-
amples and Characterization

In this Section, we introduce a new dominance relation on fuzzy variables and characterize
it in some particular cases. For that, we introduce fuzzy lower partial moment of a fuzzy
variable which is studied in details in Appendix. E(.) is the expectation operator based on a

credibility measure and £ is a fuzzy variable.

Definition 4.1.1. Let o € N* and 7 € R.
The fuzzy lower partial moment of & with order o and target value T is the real number denoted

by FLPM, -[§] and defined by:
FLPM, ;[¢] = Emax(t — £, 0)%]. (4.1)

In the following remark, we express the fuzzy lower partial moment of a fuzzy variable by
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means of its distribution function or its derivative when it exists and we establish some useful

links between fuzzy lower partial moment and semi-moment.

Remark 4.1.1. Let £ be a fuzzy variable, o« € N* and 7 € R.

1. The FLPM of £ can be defined by means of its distribution function as follows:

+o0 T
FLPM, ;[¢] = Cr{max(t — &,0)* > r} dr = a/ (1 — ) 1@ (u)du
0 —o0
(4.2)
2. When ® has a derivative ¢ and & has a lower bounded support, we have:
FLPM, ;] = / (1 —u)*d®(u) = / (1 —u)*¢(u)du. (4.3)

3. If the target value T = E[¢] = p and o € 2N\ {0}, then FLPM, ,[€] is the semi-moment

of order o of €.

4. For the particular of a = 0, we have the so-called credibility of loss of & given by:

FLPM, ;&) = Cr{¢{ < 7}.

5. In the case where o = 1, FLPM, ;[¢] = E[max(r — &,0)] is called the expected loss of
&. Here the constant target value T can be considered as the threshold point separating

returns in two parts: downside returns and upside returns relative to the threshold.

The following result determines necessary and sufficient conditions on the credibility dis-

tribution function ® of £ under which its fuzzy lower partial moment is null.

Proposition 4.1.1. Let £ be a fuzzy variable, ® its credibility distribution function, o € N*
and 7 € R.

FLPM, +[¢] =0 & ®(r7) =0. (4.4)
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Proof: (=) Assume that FLPM, ;[¢] = 0, then (4.2) implies Vi € R, 7 <7 = ®(r) =0,
that means, ®(77) = sup{®(r),r < 7} = 0.
(<) If ®(77) = 0, then the inequality ®(r) > 0 implies Vr € R,r < 7 = &(r) = 0.

According to the relation (4.2), the previous implication leads to FLPM,, +[¢{] = 0. O

In the following, we introduce and study the new dominance relation on fuzzy variables.

Definition 4.1.2. Let o € N* and 7 € R.
The fuzzy mean-risk dominance with order v and target value T is the binary relation on the

set of fuzzy variables denoted by > and defined as follows: for two fuzzy variables &1, &2,

. E[&] > E[&]
& Zar 2 4f { FLPMa,7[61] < FLPM, ;[&]

Remark 4.1.2. 1) From the previous definition, we deduce the strict dominance of =q r by:

E[&1] > El&]

&1 =ar &2 if { FLPM,,[€1] < FLPM., 6] with at least one strict inequality .  (4.5)

2) In Finance, the choice of parameters o and T is made by the decision maker (investor)
according to the minimum benefit T he expects to obtain and how he evaluates the risk o to

obtain such benefits.

The following result characterizes the new dominance relation >, » in the three following
cases: (1) the two fuzzy variables have disjoint supports and 7 is less than the minimum of the
lower bounds of the two supports, (2) the two fuzzy variables are symmetric and 7 is between
the lower bounds of the two supports and (3) one of the two fuzzy variables is a crisp number
and the other one is a fuzzy variable with 7 as its upper bound.

Notice that the three results of this theorem can be interpreted as follows:
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1. The first case means that, in absence of risk, the “best” fuzzy variable is the one with

greater expected return.

2. According to the second case, when two distributions have equal means, it is more

suitable to choose the less risky one.

3. The third case reveals that: if two distributions have the same expected return value
which is below to the target, in the most case , the “best” distribution is the one which

make “certain” to get this value.
We now state our result.
Theorem 4.1.1. Assume that (4.5) holds. Then:

1. If @1(77) = ®o(77) =0, then & > &2 if and only if E[&] > E[és).
&1 = El&]
(77)
(77)

2\ T

El
1

2. If¢ ® , then &1 o+ &2.
)

=0
>0
3. If E[&1] = E[&] = 7 —1r (with r > 0), &1 is a degenerate distribution that assigns

credibility 1 to T —r with r > 0, and o is a non-degenerate distribution with ®o(7) = 1,

then:

&1 =ar &2 if and only if a > 1.

To establish this proof, we recall the Jensens’ Inequality for fuzzy variable introduced
earlier by Liu [19] (Theorem 1.59, page 68):
“Let £ be a fuzzy variable and f : R — R a strictly convex function. If E[¢] and E[f(§)] are

finite, then f(E[¢]) < E[f(&)]."
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We now establish the proof of the Theorem.
Proof: 1) Let us assume that ®1(77) = ®o(77) = 0.
By relation (4.4), we have FLPM,, - [¢1] = FLPM,, ;[§2] = 0.
(=) Assume on the contrary that & >, & and E[{;] < E[{2]. This inequality and the
equality imply that there is not any strict inequality between the means or the fuzzy lower
partial moments of the fuzzy variables §; and &». This contradicts §1 =q,r §2. Therefore, we
have: F[¢1] > E[&).
(<) Assume that E[{;] > E[£]. Thus, the equality FLPM, - [{1] = FLPM,, ;[§2] = 0 and the
definition of >, ; imply &1 a7 &2.
2) Assume that E[] = E[&2], @1(77) =0, P2(77) > 0.
That means FLPM, -[¢1] = 0 and FLPM,, +[£1] > 0, according to relation (4.4).
3) Let us assume that ®; is a degenerate distribution that assigns credibility 1 to 7 — r with
r > 0, and @9 is a non-degenerate distribution that has ®o(7) =1 and E[{;] = E[é] =7 —r.
Let us set f(y) = (1 —y)® for y < 7, and r > 0.
According to the fact that ®; is a degenerate distribution function that assigns credibility 1
to 7 —r, we have [7_ (7 —y)*d®1(y) = r* and f(E[&1]) = r.
f is strictly convex as o > 1. By the Inequality of Jensens and the fact that E[{] =
El&)], we have: E[f(&)] = af (1 —y)* '®(y) dy > f(E[&1]) = r* . Finally, we have
a [T (T =) ®(y) dy > a [T (T —y)* ' P1(y) dy. Thus & a7 Eo.

We can prove the converse case in the same way. O

Let us compare two trapezoidal fuzzy variables by means of the mean-risk dominance.
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Example 4.1.1. Let & = (—1,— ,%,2) and & = (—2,0,1,3) be two trapezoidal fuzzy vari-

2
ables.

We have: E[&1] = E[&)] = 1.

By taking T = 3 and o = 2. We have: FLPM,, ;[&] = 13 < FLPM, ;&) = 3L, It follows that

61 ig 1 62-
2
Let us end this subsection by justifying that >, - is not a complete relation on the set of

fuzzy variables.

Remark 4.1.3. Let & = (1,4,5) and & = (2,3,4) be two fuzzy variables, « = 2 and 7 = 4.
We have: E[&1]) = I, El¢] = 3, FLPMy4[&1] = 3 and FLPM 4[&5] = 5. Thus, E[&1] > E[&)]
and FLPMs 4[&1] > FLPM;4[&s]. Hence & o4 &o and & ¥4 &1. Thereby, = is not a

complete relation.

In the next Section, we recall the first and second orders dominance relations on the set of
fuzzy variables introduced by Peng et al. [27]. We characterize each of those dominance rela-
tions and determine some of their first properties. For that, ®; and ®, denote the credibility

distribution functions of fuzzy variables £; and &» respectively.

4.2 First and second orders dominance relations

The next Subsection focus on the first order dominance relation.

4.2.1 The First Order Dominance Relation: Definition, Examples and Char-
acterization

Definition 4.2.1. (See Peng et al. [27], page 32, Definition 7) The first order dominance is

the binary relation on fuzzy variables denoted =1 and defined by: V&1, &a,

§1 2186 if Vr e R, Oi(r) < Oa(r).
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From the previous definition, we deduce the strict dominance of >1 by:
&1 -1 & iEVr e R,®i(r) < Oo(r) and Irg € R, @1(rg) < P2(rg). The indifference is given by:

&1 ~1 & i Vr € R, ®y(r) = Do(r) .

The following result characterizes the first order dominance relation for trapezoidal fuzzy

variables.

Theorem 4.2.1. Let & = (a1,b1,c1,d1) and & = (ag,ba, co,d2) be two trapezoidal fuzzy

variables.
1.
a; > a
b1 > by
- - .
S m1&e o> e (4.6)
dy > do

2. &1 ~1 & if and only if & = &o.

In other words, & %1 & if and only if (a1 < ag or by < bg or ¢; < ¢z or di < da).
Figure 4.1 illustrates that the trapezoidal fuzzy variable & = (ag, bz, c2,d2) dominates & =
(a1,b1,c1,dy) by means of =1 while Figure 4.2 illustrates that there is no dominance between
the two fuzzy variables by means of =1 .
We now established our Theorem.
Proof: 1) (=) Assume that a1 < ag or by < by or ¢1 < c2 or di < d2 and let us prove that
&1 %1 &, that is, there exists some ro € R such that ®;(rg) > ®2(rp). We distinguish four
cases:
- Assume that a1 < ag. Let r €]a;as[;r > a1 = ®1(r) > ®1(a1) = 0and r < ag = Po(r) =0,

Thus @1(r) > Po(r).
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o2 dZ

Figure 4.1: Fuzzy variable
(a1,b1,c1,d1) dominated by the
other one (ag, ba, ca2,d2).

\4

al bl a2 &2 c2 d2 1l dl

Figure 4.2: Incomparable fuzzy variables.

- Assume that by < ba. By taking r €]by; ba[, we have @4 (r) > Pa(r).

- Assume that ¢; < co. By taking r €]ey; cof, we have &4 (r) > Po(r).

- Assume that d; < da. By taking r €]dy; da], we have ®1(r) > Po(r).

Finally, we have: & %1 &.

(<) Assume that that a1 > ag,by > ba,c; > co and di > da. Let us prove that & is

dominated by &1, that is, Vr € R, &1 (r)

< Bo(r).

We consider the 8 following cases and the results are obtained according to relation (2.5):

i) Vr €] — 005 as]: ®o(r) = ®1(r) = 0 since r < az < aj. Thus, 1(r) < Pao(r).

ii) Vr € [ag;a1]: ®2(r) = 57—2< > 0 and ®1(r) = 0. Thus, ®1(r) < $a(7r).

= 2(b2—a2)

iii) If a > by, then Vr € [by;a1],®1(r) = 0 and ®o(r) = § that is @1 (r) < ®o(r).

Else, that is a1 < be: Vr € [a1; ba], ®1(r)

r—ai r—as

We just have to prove that 0

We set: f(r) = (121(211) and g(r) = 2

b1—a1) — 2(b2—a2)’

= o —ayy and 2(r) = 5205
Vr € [al; bz] .

= (b2—a2)”

(b1—a1)—ai(b2—as2)

Let 1o €la; ba|. f(ro) = g(ro) & ro = 2

(b1—a1)—(bz2—az2)

. The quantities ro—a; = —(gﬁl:aall))i(‘(l;;a;g)
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_ _(ba=b1)(b2—a2)
and ro — b2 = (bliall)f(?)szlg)

have the same sign as a; > ag and by > bg. This is a con-
tradiction to the fact that 7o €|ai;b2[. By the fact that f(a1) < g(a1), f(b2) < g(b2), f

and ¢ are strictly non-decreasing on |aq;bs| and f(r) # g(r),Vr €]as;ba], we conclude that

f(r) < g(r),¥Yr € [a1; ba], that is (1:1_—021) < 2(22__‘122).

iv) Vr € [max(ay, ba); b1]: ®o(r) = 3 and ®q(r) = 2(21_1;1) < 1. Thus, ®(r) < a(r).

V) Vr € [b1; ca]: Po(r) = O1(r) = % since by <71 < by and ca <71 < ¢;. Thus, ®1(r) < Po(r).

vi) Vr € [eo;min(ey, d2)]: Po(r) =1 — 2(’;;%2) > 1 and and ®1(r) = 3. Thus, ®1(r) < &o(r).
vii) Vr € [min(cy, d2);di]: By using a similar proof as in iii), we get ®1(r) < ®o(r).

vill) Vr € [di; +oo, P2(r) = @1(r) = 1. So @1(r) < Pa(r).

2) The second result is deduced from the first one. O

Let us state the following example which displays two comparable fuzzy trapezoidal vari-

ables by means of >1. It also justifies that > is not a complete relation.

Example 4.2.1. Let us consider the three trapezoidal fuzzy variables: p1 = (—2,—1,4,9),
p2=(1,2,3,7) and ps = (2,3,4,8). We have the following comparisons:

0P3 =1 P2, P2 %1 p1 since 3 <4 and 7 <9, p3 %1 p1 since 8 < 9.

Let us end this Section by giving two properties of =1 on the particular family of trape-

zoidal fuzzy variables.

Proposition 4.2.1. Let & and &; be two trapezoidal fuzzy variables.

A& =1 A, if A>0

e ) * .
If & =1 &, then VA € R { A& =1 A&, ifA<0

Proof: Assume that V¢t € {i,j}, & = (at,b,¢,dy) and & =1 ;. According to the

Extension Principle of Zadeh, if A > 0, then A\ = (Aag, Aby, Aeg, Ady) and if A < 0, then
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)\f = ()\dt, )\Ct, /\bt, /\at).

By using the characterization of the first order dominance, we obtain the result. O

In the following Subsection, we recall the second order dominance relation on fuzzy vari-
ables introduced by Peng et al. [27]. We introduce the notions of crossing points of two fuzzy
variables and characterize them. Then, we use this new notion to characterize .

4.2.2 The Second Order Dominance Relation: Definitions, Examples and
Characterization

Definition and determination of crossing points
Let us recall the definition of the second order dominance relation.

Definition 4.2.2. (Peng et al. [27], page 33, Definition 8) Let & and & be two fuzzy vari-
ables with ®1, ®o their respective cumulative credibility distribution functions, ¢1 and ¢o their

respective density functions with ¢1 # ¢s.

t
§1 7286 ifVt € ]R,/ [@y(r) — ®1(r)]dr > 0.

—0o0
From the previous definition, we deduce the strict dominance of =5 by:

VtER, [1__[®a(r) — ®1(r)]dr >0
Ity € R, [T [@a(r) — ®1(r)]dr > 0

§1 -2 & if {
We note that fioo[fbg(r) — & (r)]dr represents a balance of areas between ®; and o, that

means, the difference of areas resulting from integrating each function from —oo to ¢, with

the following order: the area below ®5 minus the area below ®;.

In the following, we will characterize the second order dominance relation >o by writing

the fuzzy counterpart of the characterization of the second order dominance’s characterization
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proposed recently by Osuna [25]|. Therefore, we introduce, analogously as did Osuna [25] for
random variables (see Definition 3.1 P 760), the two notions of interval of coincidence and

crossing points for two fuzzy variables.

The intervals of coincidence of two fuzzy variables, denoted by IC, is the half open interval,
open at the right, where the two curves of their distributions functions coincide. For example,
in Figure 4.3, the two straight lines entitled I.C. are the two intervals of coincidence of ®;

and ®5. Formally, we have:

Definition 4.2.3. The half-open interval [a,b), with a < b is an interval of coincidence (IC)

for @1 and @y if ©1(t) = Po(t) for allt € [a,b).

From previous definition, we can deduce that any value ty belongs to an interval of coin-

cidence if there exists some € > 0 such that the interval [to, o + €) is IC.

We now introduce two types of crossing points (CP) for fuzzy variables, namely, crossing
points of type I and II. Analogously to Definition 3.2 of page 760 in Osuna [25], the crossing
point of type II of £; and & is the point where the two curves of their distribution functions
intersect and the curve which strictly minimizes before that point strictly maximizes after it.
The crossing point of type I of £&; and &5 is the upper bound of a given interval of coincidence
(point where the two curves of their distribution functions coincide before it and are distinct

after it). Formally, we have the following definition:

Definition 4.2.4. 1. Let [a,tg) be an IC.
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to corresponds to a CP of type I if there exists some € > 0 such that for all s € (0,€),

®i(a—s) # Pa(a —s)
P1(to + s) # Pa(to + 5)
Qi(a—s)—Pa(a—s) <0 and Pi(tog+s) — Pa(to+5) >0
or
Qi(a—s)—Pa(a—s) >0 and i(to+s) — P2(to+5) <0

2. Any other value tg corresponds to a CP of type Il if there exists some € > 0 such that

for all s € (0,¢€), we have

D1 (to — s) # Pa(to — s)
D (to + s) # Pato + )
<I>1(t0 — S) - (I)Q(to - 8) <0 and (I)l(to + S) — (I)Q(to + S) >0
or
@1(& — S) — (I)Q(CL — S) > 0 and (I)l(to + S) — q)g(to + S) <0

3. Convention: (a) if ty belongs to an IC, it does not correspond to a CP;
(b) let my = inf{t/®1(t) > 0} and mg = inf{t/P2(t) > 0}, and let t; = min(mq, ms) :

the interval (—oo,t1) is an IC and t1 does not correspond to a CP.

I Lt

21 ool —

1 X ,//

u ”’ + L A

1 2z 3 4 5 § 7T ¥ 8
0 >

Figure 4.3: Intervals of coincidence
(IC) of two curves. Figure 4.4: Crossing point(CP) of two distributions.

The following result establishes a characterization of the second order dominance relation.

The proof is given in appendix.
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Theorem 4.2.2. Let & and & be two fuzzy variables, ®1 and Po their respective absolutely
continuous credibility distributions. Let us suppose that there is a finite number of crossing
points {to1,....,tox} (ordered so increasing) such that to; > min{inf{t : ®;(¢t) > 0},inf{t :
Do(t) > 0}}. Then

&1 =2 & if and only if

Vi€ {1,2, ...k}, [T [®a(r) — @1(r)]dr > 0
fj::[q)g(’l") — ®1(r)]dr =0 and Iton € {to1, - tok }s ff‘;’é[q)g(r) — &y (r)]dr >0

I [@a(r) — @1(r)]dr > 0

Remark 4.2.1. When there is no crossing point, the distribution’s curves do not intersect

and we can use the first order dominance relation to compare two fuzzy variables.

We end this Section by the characterization of crossing points.

Determination of Crossing Points of two fuzzy variables

The following result determines crossing points of two trapezoidal or triangular fuzzy variables
in the following six cases: (i) the three first cases are illustrated by Figure 4.5 and (ii) the
three last cases allow us to find crossing points when the kernel of one of at least one of the
fuzzy variables is a peak.

For that, & = (as,bi,¢i,d;) and & = (aj,bj,¢j,d;) are two fuzzy numbers. p; and p; are
their respective membership functions, ®; and ®; are their respective credibility distribution

functions. The proof of this proposition is given in appendix.
Proposition 4.2.2. Let rg and € be two reals numbers with ¢ > 0. We have:

1. Vs e (0,6),{ #ilro = 5) < (1o = 8), pi(ro + 5) > pi(ro + 5) = 1o 1S a crossing point

o — 8,70+ S € [ai\/aj,bi/\bj]

of type II.
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2. Vs € (0,6),{ #ilro = 8) < pr(ro = 8), pilro + 5) > pi(ro + 5) = 1o 1S G crossing point

ro—S,T0+ S € [CZ‘\/Cj,di/\dj]

of type 11.

3. ([bi,ci] C [bs,¢j] and [ai, d;]) C [aj,d;], by # c¢i,bj # ¢j) = ¢; is a crossing point of type I

and b; = min{t/[t,¢;) is I.C'}.
4. (lai, di] C [aj,d;],b; = c;i,bj # ¢j,b; € [bj, ¢j]) = ¢ is a crossing point of type II .
5. ([ai, di] C [aj,dj], by # i, b5 = ¢j,b; € [bs, ¢i]) = ¢ is a crossing point of type II.
6. ([ai,di] C [aj,d;],b; = ¢; = bj = ¢j,a; # aj,d; # dj) = ¢; is a crossing point of type II.

Remark 4.2.2. The previous Proposition allows to obtain crossing points between two fuzzy

variables directly by means of their membership functions.

Remark 4.2.3. We have an analogous result with ro € R and € € R in the following case:

Vs € (0,€), pui(ro — s) > pj(ro — s) and pi(ro+s) < pj(ro + s).

Remark 4.2.4. e We have an analogous result if I > 0,3rg,Vs € (0,€), pui(ro — s) >

pj(ro — s) and pi(ro + s) < pj(ro + s).

CPl

Figure 4.5: Crossings points of type I and type II of two fuzzy variables obtained by member-
ship functions.
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Figure 4.6: Incomparable fuzzy variables by means of »s.

e The binary relation =9 on the set of fuzzy variables is not complete.
Let us prove that by considering the two following triangular fuzzy variables & = (1,3, 8)
and & = (2,3,4) drawn in Figure 4.6 and, ®1 and ®o are their respective credibility
distributions.
By Proposition 4.2.2, we can prove that the only crossing point is obtained at rg = 3.
Then, we have:
ff’oo[(bl(r) — Oy(r)]dr = i > 0, fj;o[i)l(r) — Oy(r)]dr = %1 < 0 and by Theorem 4.2.2

we conclude that & %9 & and & #a &1

The following example compares two trapezoidal fuzzy variables by means of the second

order dominance =5.

Example 4.2.2. Let n; = (1,2,3,4) and n2 = (—1,0,1,2) be two trapezoidal fuzzy variables
and ®1, ®o their respective distribution functions.
It is easy to check that there is no crossing point between ®1 and ®o. Therefore, we have:

fj;o[ég(:r) — @y (x)] de =2 > 0, that is, n1 =2 n2 by Theorem 4.2.2.

The following Section establishes the relationship between the three dominance relations
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and some common properties of such relations.

4.3 Other Properties of the three dominance relations

4.3.1 Relations between the three dominance relations

The following result justifies that =1 is stronger than =, r and =. Furthermore, =5 is stronger

than =1 -.

Proposition 4.3.1. Let & and & be two fuzzy variables with finite expected values. Then:

Va e N* VT € R, &1 =ar &
&1 7268

§1i1§2=>{

Sl 7226 =V eR & =17 &

Proof: Let & and & be two fuzzy variables with uncertainty distributions ®; and @,
respectively, o and 7 some given non null integer and real respectively.
1) We prove the first result.
a) Assume that & > & and we prove that & >, - &o.

&1 71 & = Vr e R, ®(r) < Po(r), that is,
VreR,Cr{& <r} < Cr{& <r} (4.7)

and

Vre R,Cr{& >r} > Cr{& >r} (4.8)

According to the definition of > .

On the other hand, we have: E[§;] = 0+°° Cri{& >r}dr — fi)oo Cr{& <r}drVie{l;2}
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According to (4.7) and (4.8), we conclude that E[{1] > E[&a].

In the same manner, we have: FLPM, ;[&] = o [7_ (7 — 2)* 7 1Cr{& < a}da Vi € {1;2}
These last relations lead to FLPM, ;[&1] < FLPM,, +[{2]. Finally, we obtain & >, ; .

b) Since Vr € R, ®(r) < ®o(r) then Vi € R, ffoo[cbg(r) — ®4(r)] dr > 0. We easily obtain
the proof.

2) We prove the second result.

Let us assume that & =9 &. The following equality

El&] = [i7°01 = i(r)) dr— [ ®i(r) dr, Vi€ {1,2}, leads to:

E[&] — E[&] = fj;o [@2(r) — ®1(r)] dr. By using the characterization of =5 and by the fact
that & =2 &2, we obtain fj;o [®o(r) — @1(r)] dr >0, that means E[&;1] > E[&2].

On the other hand, by using relation (4.2), we get:

FLPM, ,[&1] —FLPM; ;[&] = f_TOO(T —u)? (@1 —®3)(u) du which implies that FLPM; [&] —
FLPM; [§2] < 0 by the fact that & >2 &. Finally, by the fact that E[¢;] > E[é] and

FLPM; ;[¢1] < FLPM; ;[&2], we conclude that & =1 ; &. O

The following example justifies that the converse of the two previous implications are false.

2(1,1’

I\
RA

v

Figure 4.7: Links between the three dominance relations where only the link from =2 to =1 -
holds.
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Example 4.3.1. Let us consider the triangular fuzzy variables & = (1,3,5) and & = (2, 3,4).

e By Proposition 4.2.2, the unique crossing point is ro = 3. Then, we have:
ff’oo[Ql(r) — Oy(r)]dr = 1 > O,fjozo[@l(r) — ®o(r)]dr = 0 and by Theorem 5.2.1 we

conclude that & =9 &. But by Theorem 4.2.1, & %1 &.

e By using the same fuzzy variables, we have:
E[{l] = E[EQ] = 3, FLPM273[§1] = % and FLPMQ’g[é.Q} = % So FLPMQ,g[gg] < FLPM273[£1].

Hence & =23 &1. But by Theorem 4.2.1, & 1 &1.

The following example specifies that the mean-risk dominance =, r does not imply the

second order dominance >2 (See Figure 4.7).

Example 4.3.2. Let us consider the triangular fuzzy variables & = (1.5,4,5) and & =
(2,3,4) with respective distribution functions ®1 and Pq.

ro = % 1s the only crossing point between ®1 and ®5. We have:

f_%oo@g(r) — ®y(r)] dr ~ —0.042 that is, f_%oo[cbg(r) — ®4(r)] dr <0 and by Theorem 5.2.1,
we conclude that & ig &,

But, E&] = 3.625, E[&2] = 3, i.e., E[&1] > E[&], FLPMs 4[&1] = 1.042 and FLPM>; 4[&] = %,

that means, FLPMs 4[§1] < FLPM3 4[&2]. Thus, & =24 &a.

In the following Subsection, we examine if each of the three dominance relations satisfies
or violates some well-known properties of fuzzy variables.

4.3.2 Some properties of dominance relations

Let us recall six properties of dominance relations introduced by Wang and Kerre [39].

Let S be the set of independent trapezoidal fuzzy variables, A and A’ two finite subsets of S
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and s a method of comparison of two elements of S (dominance relation on S). We denote
by ~ps and =) its indifference and strict components. Let us introduce some well-known

properties of > .
Definition 4.3.1. (Wang and Kerre [39])
1. Ay) VA€ A Ary A
2. Ay)V(A,B) € A2 If A=y B and B =) A, then A~ B
3. A3)V(A,B,C) € A3, A=y B and B =3 C = A=y C.
4. Ag) V(A, B) € A2 inf supp(A) > sup supp(B) = A =y B.
Stronger version: A}) V(A, B) € A%, inf supp(A) > sup supp(B) = A = B.
5. As) Let ABe ANA. A=y Bon A< A=y Bon A
6. Ag) Let A, B € A such that A+ C, B+ C be elements of A.
If A=y B, then A+C =y B+ C.

Ag) Let A, B € A such that A+ C, B + C be elements of A with C # (.

IfAsy B, then A+ C =y B+ C.

The following result consists on checking the properties given above when =€ {>4.7, =1
) i?}

Proposition 4.3.2. 1) Vo € N*, V7 € R, = ; satisfies A1, Az, A3, Ay and As and it violates
Ag and Aj.
2) =1 satisfies A1, Aa, A3, Ay, As, Ag and Ag.

3) = satisfies A1, Aa, A3, Ay, As, Ag and Ag.
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Then, we summarize those results in the following table. Notice that given a line, Y (Yes)

in a column indicates that the dominance relation in that line satisfies the property in the

column and N (No) means that the fuzzy dominance violates it.

Dominances and properties | Ay | Ay | Ag | As | A | A5 | Ag A
=1 Y| Y| Y| Y| Y|Y|Y|Y

9 Y| Y| Y| Y| Y|Y|Y|Y

~a,r Y| Y| Y| Y| Y| Y| N|N

After introducing and analyzing the two approaches for comparing fuzzy variables and

thereby portfolios of trapezoidal fuzzy variables, we apply the obtained results by solving the

question of selection of the best portfolio of fuzzy variables in Finance.

TASSAK DEFFO CHRISTIAN
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CHAPTER FIVE

APPLICATION IN FINANCE

In this Chapter, we apply theoretical results for each of the two approaches developed in
the two preceded chapters to solve a portfolio optimization problem in Finance. We display

numerical results and make some comparisons.

5.1 Main question

Let us consider an investor who likes to invest his capital in n securities in the proportion
T1, T2,..., Tp such that Vi € {1,2,...,n}, x; € [0,1] and >, z; = 1. It is well-known that
an investment of a part x; of the capital in the " security generates a return denoted by
x;&; which is not currently known. As we raised earlier in the Introduction, we assume that
the unknown future returns are fuzzy variables instead of random variables. In other words,
making up such investment consists on constituting a portfolio ((x;,&;))1<i<n Where the n
fuzzy variables x1£q, ..., x,€, are future returns of the n securities and the fuzzy variable

§=E&x1 + Eoxo + ... + Epxy is the total future return or the portfolio future return. In fact,

(pi+di—pi)

& is given by o

where p; is the closing price of the ith security at present, p. is the
estimated closing price in the next year and d; is the estimated dividends during the coming

year. It is clear that p/ and d; are unknown at present. If they are estimated as fuzzy variables,

then &; is a fuzzy variable.
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The main question becomes the determination of best portfolios in the case where the
future returns of securities are fuzzy variables in a credibility space. To study this question,
first scholars (Huang [11], Li et al.[16]) proposed models based on parameters (three first mo-
ments and the first semi-moment) of fuzzy variables such as expected value (mean), variance,

semi-variance and skewness.

In the following, we complement those models by proposing new ones that take into account
the fourth moment or the second semi-moment. In addition, we propose a new approach based
on first dominance relation on fuzzy variables inducing the core of the set of portfolios made

up of non dominated portfolios.

5.2 Portfolio selection with fuzzy return: optimization models
based on parameters of future return

5.2.1 New models and relationships with previous ones

Our models (the main one and its four variants) are based on expected return, variance,
semi-variance, skewness, kurtosis and semi-kurtosis of a portfolio. Our main model has semi-
kurtosis as objective function and expected return, variance and skewness as constraints. To
define such constraints, we set the minimal expected return, the minimal skewness and the
maximal risk (variance) denoted by «,~ and f respectively. We assune that investor has to
select portfolio that maximizes its odd moments and minimizes its even moments or semi-

moments. we deduce the following mean-variance-skewness-semi-kurtosis model.
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minimize K[z1&; + zolo + ... + 2,&5)

subject to
Elxi1& +x2éo + ... + 2080] > @
Vizi&r + 228 + ... +20&0] < B (5.1)

Slx1&r + x2bo + ... + 20k >
1 +x9+..+x,=1
2 >0,i=1,2,....n

where K° E,V and S designed the semi-kurtosis, the mean, the variance and the skewness
operators respectively.

The first constraint of this model ensures that the expected return is no less than the given
target value «, the second one assures that risk does not exceed the given level 5 the investor
can bear, the third one assures that the skewness is no less than the given target value ~
The last two constraints stipulate that all the capital will be invested in n securities and
short-selling is not allowed.

From model (5.1), Corollary 3.3.1 and Proposition 3.3.1, we obtain the following deterministic

programm.

Theorem 5.2.1. Let (§ = (@i, bi, ¢;))i=1,2,..n be a family of n independent triangular fuzzy
variables and f a function such that f(x1,x2,...,2Ts) = m[@& zi(ei — a;))® +

W(Z?ﬂ wi(bi — e:))° min(0, 327, wi(bi — e5))].
Then model (5.1) becomes the following deterministic program:

min f(x1, T2, ..., Ty)

subject to

P l"z(az +2b; + ¢;) > 4o

(S wiler — a0)? Sy a2 — a0 — el

(82 —1 il — ai) + 3] 325 1%( i = Cz)\)((ZZ:?xz(cz—bi))2+
(Zz 1 xl(b - al)) ) < 192/8(21 1 .CC,(CZ az) + | Zz 1 CCZ( — a; — Cz)‘)
(i wilei — aq))? Yoy wilei — 2b 4 a;) > 32y
r1+x2+ .t x, =1
2 >0,i=1,2...n
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The other variants of model (5.1) can be deduced from the previous model by changing the
objective function either by expected value, semi-variance, skewness or kurtosis. Therefore,

we have the following four variants of the main model and deterministic program.

1. The first variant of model (5.1) minimizes risk (variance) when the expected return and
the skewness are both no less than the given target values a and  respectively and the
semi-kurtosis is no more than the given target value 6. If one cancels the constraints
on skewness and semi-kurtosis in that variant, then it degenerates to the mean-variance

model proposed earlier by Huang ([11]).

2. The second variant of model (5.1) maximizes the expected return when the skewness
is no less than the given target value + and, the variance and the semi-kurtosis are no

more than 8 and 6 respectively.

3. The third variant of model (5.1) maximizes the skewness when the expected return is
not less than o and, the variance and the semi-kurtosis are no more than the given target
values B and 6 respectively. If we cancel the second constraint on the semi-kurtosis in

that variant, then it degenerates to the mean-variance-skewness model proposed by Li
([16]).

4. The fourth variant of model (5.1), introduced by Sadefo et al. (|29]), is the multi-
objective nonlinear programming which minimizes the variance and the semi-kurtosis
and maximizes the expected value and the skewness when the different target values are

unknown.

In the following Subsection, we display numerical examples on the two new models,

namely the mean-variance-skewness-kurtosis model and the mean-variance-skewness-semi-
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kurtosis model, and we compare obtained portfolios with those obtained by Huang ([11])
and Li et al. ([16]).

5.2.2 Numerical implementation of two new models and comparison of
results

The data, we consider in this Section, are introduced and used by Huang ([11]) for the mean-
semi-variance model and, used by Li et al. (|16]) for the mean-variance-skewness model. Those

data are seven triangular security returns as presented in Table 1 below.

Security i Fuzzy return Security i Fuzzy return
1 & =(-0.3,1.8,2.3) 5 & = (—0.7,2.4,2.7)
2 §2 =(-0.4,2.0,2.2) 6 & = (—0.8,2.5,3.0)
3 & =(-0.5,1.9,2.7) 7 & = (—0.6,1.8,3.0)
4 & = (—0.6,2.2,2.8)

Table 1: Fuzzy returns of 7 securities (units per stock).

For instance, the return of the first security is described by the fuzzy variable §; = (—0.3,1.8,2.3)
which represents about 1.8 units per stock.

To apply our the two new models, we use the following threshold values proposed by Li et al.
([16]): « = 1.6,5 = 0.8 and v = —0.6823. In general, it is important to notice that v must
be at the most equal to —0.6823. Since the returns are asymmetric, the investor may em-
ploy either semi-variance or variance, either kurtosis or semi-kurtosis to determine an optimal

portfolio. Thus, we consider the following four models:

1. the first one is the mean-semi-variance model from Huang ([11]):

minimize VS[I1§1 4+ x0éy + -+ .73757]
subject to
Elr161 +x2éo + -+ x767] > « (5.2)
1+t F+ar=1
x;>0,i=1,2,...,7
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2. the second one is the mean-variance-skewness model from Li ([16]):

maximize S[z1&1 + 262 + ... + 27&7]
subject to
E[l‘lfl 4+ x2bo + ... + :E7§7] >«
Vizi1§1 + 2o + ... + 2787] < B
T1+x2+...+xr=1
x; >0,i=1,2,...,7

3. the two following models of Sadefo et al. (|29]): the mean-variance-skewness-kurtosis

model and the mean-variance-skewness-semi-kurtosis model

and

minimize K[x1& + 22 + ... + x7&7]
subject to
Elx1& + 228 + ...+ 2787] > «
Vg€ + x2éo + ...+ 27&7) < B
Slz1& + 2280 + ... + 2787 >
Ti+x20+...+x7=1
2> 0,i=1,2,...7

minimize K°[z1&) + zolo + ... + 27&7]
subject to

Elx1& + x2éo + ...+ 2787]) > o
Viz€r +x2éo + ...+ 2787) < B

Slziér +xolo + ... + 27&7] >

T+ T+ ... t+ax7=1

2> 0,i=1,2,..7

where K is the kurtosis operator.

(5.4)

(5.5)

We use Matlab to solve those four models and we obtain portfolios presented in Table 2.

Security i 1 2 3 4 5 6 7
Huang’s model (5.2) 00.00% | 47.06% | 00.00% | 35.28% | 17.66% | 00.00% | 00.00%
Li et al.’s model (5.3) 20.00% | 00.00% | 00.00% | 80.00% | 00.00% | 00.00% | 00.00%

Sadefo et al.’s model (5.4) | 20.04% | 00.00% | 00.00% | 79.89% | 00.00% | 00.07% | 00.00%
Sadefo et al.’s model (5.5) | 20.00% | 00.00% | 00.00% | 80.00% | 00.00% | 00.00% | 00.00%

Table 2: Optimal selection from each model.

Let us explain the obtained investment’s proportions by illustrating with line 4 of Table 2

which stipulates that: if one intends to invest 10000 units, he will invest 2004 units of the
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security 1, 7989 units of the security 4, 7 units of the security 6 and nothing elsewhere.

The computation of parameters of portfolios of the previous table are summarized in the

following table.

Mean | Variance | Semi-variance | Skewness | Kurtosis | Semi-kurtosis
Huang’s model (5.2) 1.60 0.7235 0.6124 -0.7543 1.7972 1.7415
Li et al.’s model (5.3) 1.60 0.7019 0.6141 -0.6823 1.7291 1.6872
Sadefo et al.’s model (5.4) | 1.60 0.7018 0.6140 -0.6823 1.7290 1.6873
Sadefo et al.’s model (5.5) | 1.60 0.7019 0.6141 -0.6823 1.7291 1.6872

Table 3 : Comparison of the four first moments of different optimal portfolios.

We can make the following observations:

e When we consider semi-kurtosis (K*) as an objective function, Li et al.’s model (5.3)

and Sadefo et al’s model (5.5) give the same optimal portfolio (according to lines 3 and

5 of Table 2).

Therefore, the latter confirms and enhances results obtained by the first one. Those

models allow to obtain a portfolio with the highest skewness (—0.6823) and the lowest

semi-kurtosis (1.6872) (see lines 3 and 5 of Table 3) which are the optimal values of the

objective functions of the two models respectively.

e When we consider kurtosis (K) as an objective function, Sadefo et al’s model (5.4)

provides the lowest variance (0.7018), the highest skewness (—0.623) and the lowest

kurtosis (1.729) (see line 4 of Table 3).

In that case, model (5.4) proposes an optimal portfolio different from the three other

models (see Table 2).
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e The histogram of Figure 5.1 illustrates parameters of the four total returns (combina-

tions of the seven returns) obtained by different authors as described in Table 3.

Let us explain why Sadefo et al’s model (5.5) with the semi-kurtosis and Li et al.’s model

(5.3) coincide (as stipulated in the previous first observation).

Remark 5.2.1. The main reason why the two models coincide (generate the same
optimal portfolio) in our numerical examples with the seven fuzzy variables is: each
of the seven wariables & = (a4, b;,¢;) have a large spread on their left, that is, Vi €
{1,2,...,7},¢i — b; < b; — a;, and thereby a small “good” part (right of the b;). On one
hand, the skewness assures the spread of the distribution on the left side (so that one
can be able to say at what degree the distribution is concentrated on the left) and on the
other hand, the semi-kurtosis allows to avoid penalizing the “good part” (“positive part")
when applying the model. Therefore by adding the semi-kurtosis to Li et al.’s model (5.8)

we obtain the same optimal portfolio from our seven variables.

B Huang
Hlietal
© Fono et al.(K)

H Fono et al.(SK)

Figure 5.1: Comparison of different models.

TASSAK DEFFO CHRISTIAN PhD. Thesis



Application in Finance 83

1. Now, if we replace the first fuzzy variable & = (—0.3,1.8,2.3) by the new fuzzy variable
&g = (—0.1,0.0,2.0) (its “positive part" is greater than the “negative part"), then with
the seven fuzzy variables from & to &g, lines 8 and 5 of the two previous tables become

respectively:

Security 1 2 3 4 5 6 7 8

Li et al.’s model (5.3) 00.00% | 00.00% | 33.00% | 67.00% | 00.00% | 00.00% | 00.00%

Sadefo et al.’s model (5.5) | 00.00% | 00.00% | 36.00% | 64.00% | 00.00% | 00.00% | 00.00%

Table 4: New optimal portfolios.

Mean | Variance | Semi-variance | Skewness | Semi-kurtosis
Li et al.’s model (5.3) 1.60 | 0.7213 0.6561 -0.6954 1.7951
Sadefo et al.’s model (5.5) | 1.60 | 0.7164 0.6323 -0.6860 1.7702

Table 5: Parameters of new optimal portfolios.

By comparing these new tables and the previous one, semi-kurtosis used in Sadefo et
al.’s model (5.5) displays an optimal portfolio better than the one given by Li et al.’s
model (5.83). In other words, by adding semi-kurtosis on Li et al.’s model, we improve
the optimal portfolio with the same mean, the less variance, the less semi-variance, the

greater skewness and the less semi-kurtosis.

In the following Section, we introduce the notion of core of the set of portfolios of a finite
number of assets with respect to the first order dominance. We implement a part of the core
on the example of seven assets of Table 1 to determine optimal portfolios as non dominated

portfolios with respect to that dominance.
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5.3 Core of portfolios: Definitions, First Properties and imple-
mentation

5.3.1 Core of a finite family of assets: Definition and non-emptiness

Let us consider the family A = (£)1<i<y of n assets where returns are described by trapezoidal
fuzzy numbers. For example, for n = 7, we have the seven assets where returns are described
by triangular fuzzy numbers of Table 1.

A portfolio return & associated with A is a convex linear combination of the n assets returns
defined by € = > | x;&; where x; represents the proportion of capital invested in asset . The
set of portfolios associated with Ais P = {& =>"" | z;&,x; € [0,1], 27, x; = 1 and & € A}.
A main question is to determine non dominated portfolios by means of a dominance relation.
Based on Game Theory terminology, we will determine the core Cr(P) of (P, R) where R is
a dominance on P.

First, let us observe that according to Proposition 4.3.1 of Chapter 4, all portfolios which are
not dominated through =5 or =, ; are not dominated through =; too, that means, the set

of non dominated portfolios through >1 contains the two other sets. More formally, we have:

Ct2(P) - Cil(P)
{ Cro.(P) S Cxy (P)

In the following, we will determine the core C-, (P) defined by:

C-,(P)={§ € P.Yne P\ {&},n #1 &} (5.6)

By using the fact that > is not a complete relation on P, we can express the core as a union

of the following two sets:

C-(P)={¢ePVnePt#nnti1&and EL1npU{{e PVne P,{ =1 n} =AUT (5.7)
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where

I'(P)={(ePVnePEr1n} (5.8)

is the set of best portfolios of P and A(P) = {{ € P,Vn € P,{ # n,n %1 § and € #1 n} is the

set of incomparable portfolios of P.

The following result establishes that the core of portfolios is non-empty.

Proposition 5.3.1. Let us consider the family A = (§)1<i<n of n trapezoidal fuzzy variables

and P={{ =" &, @i € [0,1],3 0 2, =1 and & € A}.
Co\ (P) £0. (5.9)

Proof: Let us set: Vi € {1,...,n},& = (a;, bi, ¢i, d;) and a = maxi<ij<p aj, b = maxj<i<y b;,
€ = Mmaxi<i<p C;, d = Maxi<i<n d;.
There exists j € {1,...,n} such that §; has at least one value among a,b,c,d (without loss
of generality, we assume that the only maximum value is a). It is obvious that &; is gener-
ated by the vector y = (0,0,...,1,0,...,0) where 1 is the 4t component and in that case we
have: & = > vi& = (a,bj,cj,d;). Therefore, for x = (21, z2,...,2j,...,x,) with z; # 1,
iy wias < aand (300 @i, Yo wibi, 3oy wici, 3oimy wids) 71 & and & € Co, (P).

The proof is obtained. O.

Let us display necessary and sufficient conditions for the belonging of a portfolio to the

core.

Remark 5.3.1. Let us consider the family x = (x;)1<i<n Such that > i jx; = 1 and Vi €

{1,..,n},z; > 0, P is the set of portfolios of trapezoidal fuzzy assets & = (a;, b, ci,d;),Vi €
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{1,...,n}. Let us set:

Zil Yiay > Z?:1 Zia;

n ‘ ZT‘_I y;b; > Zn—l ;b
Ty = {(Yi)1<i<n yi=1Yie{l,...,n},y; 20 and n " - (510
(IERY {1} S e > S e 3 10

Yo yids > D00 wd;
We have:

Zx,ﬁ, € C~,(P) if and only if T, = 0. (5.11)
=1

The following result establishes that two comparable portfolios of two incomparable assets

are equivalent.

Proposition 5.3.2. Let & = (a1,b1,c1,d1) and & = (ag, by, ca,da) be two incomparable
trapezoidal fuzzy variables by means of =1, and G the set of convex linear combinations of &1
and &s.

If two portfolios of G are comparable by means of >=1, then they are equivalent.

Proof: Let x1&1 4+ x2& and y1£1 + y2€2 be two comparable portfolios of G with positive
reals numbers x1, x2,y1, y2 such that x1 +x2 =1 and y; + y2 = 1.

Without loss of generality, we assume that a; > ag and by < be (£; and & are incomparable).
xr1a1 + w202 2> Y101 + Y202
2101 + 2202 > y1b1 + y2bo
x101 + T2c2 = Y101 + Y202
x1dy + T2do > Yy1d1 + Yoda

2181 + 2282 =1 y1&1 + Y26 &

We have:
r1a1+2202 > Yy1a1+y2a2 < z1a1+(1—21)az > yra1+(1—y1)az & v1(ar —az2) > y1(a1 —az).
In the same way, we obtain: x1b; +x2by > y1b1 +y2be < x1(b1 —b2) > y1(b1 —b2). We consider
two cases:
- If a1 # ag and by # by (without loss of generality, we assume that a; > ag and by < by),

then z1(a1 —ag) > yi(a1 —a2) = x1 > yp and z1(by — b2) > y1(b1 — b2) = 1 < y1. Thus, we
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obtain x; = y; which implies that xo = y2. So, £1&1 + 2282 ~+, Y11 + ¥282.
- If a1 = ag or by = by, we use a similar way and the inequalities z1¢1 + zoco > Y101 + yoca,
x1dy + xade > y1dy + yads to get the result. O

In the following, we implement the set I'(P) of best portfolios contained in the core.

5.3.2 Numerical implementation of the set of best portfolios of finite family
of assets

For the determination of I'(P), we introduce the following notations. For (z;)1<i<n, (¥i)i1<i<n
such that z;,y; € [0,1] and > ;z; = > .i" ;y; = 1 and for all i € {1,...,n}, & = (a;, b, ¢;),
we have:

f = (f(:rh ...,.’L‘n),g(.’L'l, ...,.’L’n),h(l'l, 71'”)) and n= (f(y17 "'7yn)ag(y17 "'7yn)7 h(yla 73/71))

where f(z1,...,2n) = >y @i, g(T1, ..., Tn) = Y iy T3 and h(zq, ..., xn) = D1 xici.

Based on characterization of =1 and those notations, (5.8) becomes:

f(xlv ,ZL’n) > f(y17 7yn)
n 91,y Tn) > 9(Y1, -y Yn)
D(P) =) @i, , V(Wi 1<icn, § 7@, s Tn) = (Y1, ooy Yn) }. (5.12)
=1 Z?:l xT; = 1, Z?:l Yi = 1
x; € [0, 1],yi S [O, 1],Vi € {1, ,n}

Thereby, I'(P) is determined by the following optimization program:

max f(x1, ..., Tp)
max g(z1, ..., Tn)
max h(x1, ..., Tp) . (5.13)

i wi=1
x; € 0,1]Vi € {1,...,n}

In the following, we implement the previous program for the usual family A = (&)1<i<7

of seven assets with returns described in Table 1 of the previous Section.
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In that case, the set of portfolios becomes P = {{ = (—0.3z; — 0.4z9 — 0.523 — 0.624 —
0.7x5 — 0.8z — 0.6x7,1.8x1 + 229 + 1.923 + 2.224 + 2.425 + 2.52x¢ + 1.827,2.321 + 2.229 +

2.7x3 + 2.84 + 2.7x5 + 316 + 3w7) where Vi € {1,...,7},2; € [0,1] and 1_ x; = 1}.

The optimization program which determines I' becomes:

( maximize — 0.3x7 — 0.4w5 — 0.523 — 0.624 — 0.7x5 — 0.876 — 0.627

maximize 1.8x; + 2x9 + 1.923 + 2.2x4 + 2.4x5 + 2.526 + 1.827

maximize 2.3z 4+ 2.2x9 + 2.7x3 + 2.8x4 4+ 2.7x5 + 326 + 327 (5.14)
subject to '
T1+x9+...+x7=1

z; >0,i=1,...,7.

\

By solving (5.14) using Matlab, we obtain the following three elements of I": &, &', £”,

chosen among many others which are presented in the three last lines of following table with

optimal portfolios of Table 2.

Security i 1 2 3 4 5 6 7
Huang’s model (5.2) 00.00% | 47.06% | 00.00% | 35.28% | 17.66% | 00.00% | 00.00%
Li et al.’s model (5.3) 20.00% | 00.00% | 00.00% | 80.00% | 00.00% | 00.00% | 00.00%

Sadefo et al.’s model (5.4) | 20.04% | 00.00% | 00.00% | 79.89% | 00.00% | 00.07% | 00.00%
Sadefo et al.’s model (5.5) | 20.00% | 00.00% | 00.00% | 80.00% | 00.00% | 00.00% | 00.00%
Best portfolio £ 14.77% | 35.01% | 32.28% | 21.7% | 16.42% | 20.17% | 08.2%
Best portfolio &’ 39.66% | 09.2% | 01.47% | 01.28% | 18.83% | 25.82% | 03.76%
Best portfolio £” 41.72% | 05.55% | 01.10% | 00.86% | 17.29% | 31.47% | 02.02%

Table 6: Optimal selection from models and best portfolios.

We can analyze the obtained best portfolios in the core in the way that a rational investor
who intends to invest in the assets described by A must:

- diversify the capital on different assets (since values of z; in each of the three portfolios of
the core are non null)

- invest more on assets &1, &2, {5 and & (at least 17% of the capital) and less on assets &3, &4

and & (at most 8% of the capital).
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Finally, this investor can choose one of the three portfolios &, £, £” as his shared capital.

Optimal portfolios obtained from optimization models and from the core can be viewed

as triangular fuzzy variables in the following table.

Optimal portfolio

Triangular fuzzy variable

Huang’s model (5.2)

(—0.5235; 2.1412; 2.5)

Li et al.’s model (5.3)

(—0.54;2.12;2.7)

Sadefo et al.’s model (5.4)

(—0.54002; 2.12005; 2.6999)

Sadefo et al.’s model (5.5)

(—0.54;2.12;2.7)

Best portfolio &

(—0.5393;2.1221; 2.5537)

Best portfolio &

(—0.5317; 2.1191; 2.5859)

Best portfolio &”

(—0.5429; 2.1399; 2.607)

Table 7 : Optimal portfolios from models and best portfolios viewed as triangular fuzzy vari-

ables.

We observe that portfolios of Table 7 obtained from different models are non dominated each

other with respect to relation =1 according to Theorem 4.2.1. It is easy to check that, by

implementing (5.11), the three portfolios belong to the core Cs, (P) contains all the portfolios

of Table 7.

The following table presents some parameters (mean, variance, skewness, kurtosis, semi-

variance and semi-kurtosis) of portfolios of Table 7 (the three best portfolios and those of

Table 3).
Portfolio Mean | Variance | Skewness | Kurtosis | Semi-variance | Semi-kurtosis

Huang’s model [11] 1.6 0.7235 -0.7543 1.7972 0.6124 1.7415

Li et al.’s model [16] 1.6 0.7019 -0.6823 1.7291 0.6141 1.6872
Sadefo et al.’s model [29] 1.6 0.7018 -0.6823 1.7290 0.6140 1.6873
Sadefo et al.’s model [29] 1.6 0.7019 -0.6823 1.7291 0.6141 1.6872
Best portfolio & 1.5605 | 0.6973 -0.6666 1.7033 0.5832 1.5489

Best portfolio &’ 1.5712 0.69 -0.6634 1.6668 0.5863 1.5585

Best portfolio ¢” 1.5849 | 0.7029 -0.687 1.7277 0.5994 1.6299

Table 8 : Comparison of four first moments of different optimal and best portfolios.
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From Table 8, we can make the following analysis: except the mean, the two new best
portfolios £ and & have better parameters (variance, skewness, kurtosis, semi-variance and
semi-kurtosis) than those of portfolios obtained from quantitative approach whereas the third
best portfolio £” has better semi-variance and semi-kurtosis. The mean of the three best port-
folios is less than those of the four optimal portfolios by the fact that the latter (models with
parameters) were implemented with the target value of the mean equals to 1.6 (that was the
minimal mean required by the investor). We notice that portfolios obtained from the set of
best portfolios are suitable to get the shared capital of risk averse investors. Thereby, a risk
averse investor who intends to invest on the seven assets can choose between the two best

portfolios £ and £ (see lines 6 and 7 of Table 2 or Table 1).

We can conclude that some main advantages of the approach based on the core (with best
portfolios) are the following:
- it proposes more than one way of sharing a capital in different assets;
- the proposed results do not depend on targets values required to mean, variance, skewness
and kurtosis. It means that, each investor can choose a portfolio according to his preference
(maximum benefit, minimum risk);

- it contains all optimal portfolios obtained from models.
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Finally, we illustrate these results by the following histogram:
2
E Huang
mLietal
= Sadefo etal{K)
= Sadefo etal{Sk}
= Tassak etal{1}
= Tassak et al{2}
= Tassak etal{3)
Figure 5.2: Comparison of characteristic values of optimal portfolios total returns.
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CONCLUSION

In this thesis, we choose credibility measure to develop tools on fuzzy variables and
apply some of them to improve portfolio optimization.

We define some new concepts as moments, semi-moments and partial moments of fuzzy
variables and characterize them for trapezoidal fuzzy variables. Those concepts extend the
first three moments of a fuzzy variable introduced and studied earlier by Liu [20], Huang[11],
Li et al. |[16]. We establish some of their useful properties and we analyze the particular
case of kurtosis and semi-kurtosis (fourth moment and second semi-moment). Those results
provide a new framework in statistics on fuzzy variables. Some applications of the obtained
theoretical results enable us to describe the mean-variance-skewness-kurtosis and the mean-
variance-skewness-semi-kurtosis portfolio optimization models. This quantitative approach for
portfolio selection in fuzzy case improve the previous ones existing in the literature.

Furthermore, we introduce the mean risk dominance on fuzzy variables. That complements
the two dominance relations existing in the literature, namely the first and second order dom-
inance relations. We characterize these three dominance relations and establish that each of
the three dominance relations satisfies many well-known properties of comparison tools of

fuzzy variables. We justify that the first order dominance is stronger than the two others and
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the second order dominance is stronger than the mean risk dominance where the downside
risk is the expected loss. The characterization of the second order dominance allows us to
introduce and characterize two types of crossing points between two fuzzy variables. This
result complements the literature on comparison of fuzzy variables. The first order domi-
nance of that qualitative approach was applied in portfolio selection in order to introduce the
set of non dominated portfolios, that is, the core of the set of portfolios. We establish the
non-emptiness of the core. We implement a part of the core which is the set of best portfo-

lios and we observe that the core contains optimal portfolios provided by deterministic models.

We implement, with Matlab, the proposed models for each of the two approaches in an
example of the set of portfolios which components are seven assets introduced by Huang [11]
used by Li et al.[16]. Numerical results justify that some portfolios proposed by dominance

models are better than those proposed by quantitative models with targets value.

A next research topic is the theoretical determination of cores through respectively the
second order dominance and the mean-risk dominance relations. These new cores are subsets
of the core studied in this thesis. This open question leads us to the characterization of the
minimal subset of the core of portfolios according to the first order dominance containing
optimal portfolios obtained from deterministic models. Moreover, we intend to introduce a
new poverty index based on fuzzy lower partial moment in order to evaluate an individual’s

poverty level in a population where individuals’ incomes are unknown or imprecise.
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Appendix

The Appendix is organized in two main parts:

1. The first part gives more details about the Fuzzy Lower Partial Moment.

2. The second part presents two scientific publications whose results are provided by this

thesis.
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Fuzzy Lower Partial moment and
dominance relations
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Some examples of Fuzzy Lower Partial Moment

Let us calculate the Fuzzy Lower Partial Moment (FLPM) of trapezoidal and triangular fuzzy

variables.

Example 1:

1. The FLPM of trapezoidal fuzzy variable & =

FLPM,, - [¢] =

2. The FLPM of triangular fuzzy variable £ =

FLPM,,[€] =

Remark 1:

(a,b,c,d) is:
(0, ifT<a
e ifa <7 <b
[(T_‘;)(;;f)((gff))::], ithr<e (5.15)
Sy * Tl fes <
\ 2(at1)(b—a) Sarnd—c o HT2>d
(a,b,d) is
0 (if 7')<+?
2(;57);;@, ifa<t<b
o il thered B
2arDl-a) T i@ o ET=d

From Example 1, we can deduce that:

1. Let & = (Ya(x), %(x), ve(x), va(w)) where va(x) = 321 miai, 1o(z) =

>oiy Tibiyve(x) =

o xici,va(x) = Do xid;, be a trapezoidal fuzzy return of a portfolio of n trapezoidal

returns (a;, bi, ¢i, d;i)i=12,..n

. Then the Fuzzy Lower Partial Moment of the portfolio re-

turn &, is given by:

FLPM, ,[¢] =

0if 7 < vq(x)
Sy 1 7a() < 7 < ()
G e i w(#) < 7 < (a)
o (7—ye(2))" oy if Ye(x) < 7 < 74(2)

B
e (D) (a(@)—
«@ Yo T a+1)(vq(
" R Qe 5 A ) VN
(5.17)

)
[(T—7a () —(7— %( )
2(a+1) (7 () —Ya(z) 2(a+1)(ya(z)—ve(x))
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where v, (z) = >0 | @iz for z =a,b,c,d e R witha <b<c < d.

2. When 7 = E[{], we can deduce that: (i) FLPMs ;[¢] is the semi-variance of the portfolio

return ¢ and (i) FLPMy [{] is the semi-kurtosis of the portfolio return &.

Some results on Fuzzy Lower Partial Moment

The following result determines the credibility distribution function ® of a fuzzy variable £ by
the derivatives of its FLPM when £ has a lower bounded support. More precisely, it establishes
that we can determine the credibility distribution ®(7) only by the FLPM,, ; with o € N*.
Proposition 1:

The credibility distribution function ® of a fuzzy variable £ with lower bounded support

satisfies the following relation:

d* 1 d*
dTiaFLPMO"T = Oé' @(T), that iS, q)(’]_) = adTiaFLPMaﬂ— (518)

Proof: Let ® be the credibility distribution function of fuzzy variable £ with lower bounded

support. We have:

da da T
—FLPM, = — —u)%dd
TRFLPMo, = 0 [ (- wda(w)

—0o0

_ /T 1 w)dd(w)].

o
oo AT

It is easy to check that Va € N*, jT—aa(T —u)® = a! and finally, we have:

T T

ald®(u) = a!/ d®(u) = al[®(7) — lim P (u)]

U—r—00

da

dre

FLPM, , = /

— 00 —0o0

= al[®(7) — 0] = al®(7).

Hence the result. O
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The following result determines necessary and sufficient conditions on a FLPM under
which the density function ¢ of & satisfying a particular inequality, belongs to exponential
family.

Proposition 2:
Let ¢, be the credibility density function of a nonnegative fuzzy variable ¢ satisfying the
following condition:

d

@%(u) > ¢y(u)(u+ D'(7)), Vu € (0,00) (5.19)

where D’(7) is the derivative of D(-) with respect to 7.

¢~ belongs to exponential family, that means,
by (u) = eV UHE@IDO) g e (0,00), >0, (5.20)

where K (-) is an arbitrary function, if and only if, its FLPM, , satisfy a recurrence relationship

, d
FLPMay1r = (7 + D'(7))FLPMa, — - FLPMo . (5.21)
9

Proof: (=) Assume that the credibility density function ¢, is defined by: ¢ (u) = 7 “+EW+D()
where u € (0,00), >0, K and D two arbitrary functions.

By computing the derivative of ¢, given by relation (5.20) with respect to 7, one can easily
check that ¢, satisfies relation (5.19).

Let us prove that FLPMy 41, = (7 + D' (7))FLPM, - — %FLPMOM.
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We have:

d d T
L FLPM,, = — )@t K@)+ D ()
S / "(r — ) L erut K@D g,
0 dy
= [ = et D@,
0
= /T u(T B u)aeau+K(u)+D(“/)du . /T D/(,y) (7_ - u)aefy u—i—K(u)-}-D(»y)du
0 0
= / ('LL — 74+ T)(T — u)ae’YU+K(u)+D('y)du + D,(V)FLPMQJ—
0

= / (1 — u)o ey KD gy 4 7'/ (1 — u)®eV KD gy 4 D'(v)FLPM,, -
0 0

= —FLPMg1., + (7 + D'(y))FLPM,, ,.

Hence the result.

(<) Now we prove the sufficient condition.

By means of relation (4.2), relation (5.21) can be expressed as follows:
fo — O“H(b (u) du = (1 + D'(y fo T —u)py(u fo — 0‘+1¢ (u) du which

implies that:

/ [~ w0w)(—u — D) + (w0 ()] du = 0 (5.22)
0 g

By using the fact that ¢, satisfies relation (5.19), relation (5.22) traduces the nullity of the
integration of a positive function.
Thus, we obtain:

d [0 a /

@«T —u)%¢y(u)) = (T — u)*dy(u)(u+ D'(7)) (5.23)
Finally, by integrating each side of relation (5.23) with respect to 7, we obtain:

(T — u)¥¢, (u) = ke +PO) |k > 0, which leads to:
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by (u) = e FPOIHEW) with K (u) = ln(ﬁ), u €]0; 7].
It suffices to consider the function ¢ defined as:

by (u) = VDMK with K (u) = In |(#)a)], u € (0;+00) \ {7} and K(7) =0. O

((

Some proofs on crossing points

To establish Proposition 4.2.2, we need the following Lemma.
Lemma 1:

Let r9 and € be two reals numbers with € > 0. We have:

L. Vs € (076),{ pi(ro — s) < pj(ro — s), pi(ro + s) > pj(ro + s)

ro — 8,10 + 5 € [a; V aj, b; A bj] = ®i(rg — 5) < ®j(ro —

s), ®i(ro +s) > ®;(ro + s).

2. Vs € (0,6)7{ pi(ro —s) < pj(ro —s), ui(ro +s) > pj(ro+s)

ro — 8,70 + 5 € [¢; V ¢j, di N dj] = @i(ro — s) > @;(ro —

s), ®i(ro +5) < ®j(ro + s).
3. Vr € R, (7’ S [bl V bj,cz- A Cj]) = @Z(T’) = @j(?‘).

Proof of Lemma 1: Let us recall that ® is given by (2.5).

1) Let be a real number s such that 0 < s <€, pui(ro — s) < p;(r —s), pi(ro +s) > p;(ro+s)
and 79 — 5,70 + s € [a; V aj,b; A bj]. We have:

pi(ro — s) < pj(ro — s) = ®;(rg — s) < ®j(ro — s) (with ®;(rg — s) = Lui(rg — s) and
®j(rg — s) = $u;(ro — s)) and

pi(ro + s) > pi(ro +s) = @i(ro +s) > P;(ro + s) (with ®;(rg + s) = %,ui(rg + s) and
®;(ro+s) = sp;(ro+ s)).

2) Let be a real number s such that 0 < s <€, pi(ro —s) < pj(ro —s), ui(ro+s) > pj(ro + )
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and 79 — 5,70 + 5 € [¢; V ¢j,d; A dj]. We have:

pi(ro — s) < pj(ro — s) = ®;(ro — s) > ®;(ro — s) (with ®;(rg —s) = 1 — Sp;(ro — s) and
®j(ro—s) =1—1p;(ro—s)) and

wi(ro +s) > pi(ro+s) = i(ro +s) < ®j(ro + ) (with ®;(rg +s) =1 — %ui(ro + s) and
Qi(ro+s)=1- %,uj(ro + s5)).

3) If r € [b; V bj,c; Acj], then ®;(r) = @;(r) = 5. O

Proof of Proposition 4.2.2: 1) Let us consider € € R}, 7y € R and s a real number such that
0 < s <eand pi(ro—s) < pj(ro—s) , pi(ro+s) > pj(ro+s), with ro—s, ro+s € [a;Va;, b Abj].
According to Lemma 1, we have ®;(rg — s) < ®;(rg — s) and ®;(rg + s) > ®;(r¢ + s) and by
Definition 4.2.4, we can conclude that rg is a crossing point of type II.

We prove the converse case in the same manner.

2) We use the same method as in 1.

3) Let us prove that ¢; is a crossing point of type I.

[bi, ¢i] C [bj,cj] = [bi V bj,c; Acj] = [bi,¢;] and by Lemma 1 and Definition 4.2.3, we have:

b; = min{t/[t, ¢;)isI.C'}.

Now, let us find €9 > 0 such that Vs : 0 < s < €, ®;(b; — s) < ®;(b; — s) and ®;(c; + s) >
Qi(ci + 9).

i) If b; # bj and ¢; # ¢

Then we set €9 = (b; — bj) A (¢j — ¢;) and we easily check that ¢y > 0 according to the fact
that [b;, ¢;] C [bj, ¢;] and b; # bj, ¢; # ¢;. We have two cases:

1st case: b; —b; <cj —¢;

We have ¢g = b; — b;, and b; — eg = bj, ¢c; + €9 = ¢; + b; — b;.

We obtain: ®;(b; — s) < ®;(b;) (with ®;(b;) = %) because b; — s < b; and ®; increases; on the
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other hand, by the fact that 0 < s < €y, and ®; increases, we have: ®;(b; —s) > ®;(b; —€g) =
®;(bj) = 3-

Furthermore, ®;(c; + s) > ®;(¢;) (with ®;(¢;) = %) because ®; increases and

Qi(ci+35) < Pi(cy) = % because ¢; + s < ¢; + €9 < ¢; + ¢; — ¢; = ¢j and ®; increases.

2nd case: ¢j — ¢; < b; — b;

We have ¢g = ¢; — ¢;, and ¢; + €9 = ¢j,b; — €9 = b; — ¢j + ¢;.

We obtain @;(b; — s) — ®;(b; — s) < 0 because: ®;(b; — s) < ®;(b;) (with ®;(b;) = 1) and
bi —eo —bj = b —bj — (¢j — ¢;) > 0, that is b; — g > bj, so ®;(b; —s) > D;(b; — €9) > ®;(b;)
(with ®;(b;) = 1) as ®; increases and b; — €9 > b;.

Furthermore, ®;(c;+5)—®;(c;+s) > 0; indeed, ¢;+s < c;+eg = ¢;, 50 @j(c;i+5) < ®j(c;) = 3.
On the other hand ®; increases and ®;(c; + s) > ®;(¢;) (with ®;(c;) = 3).

ii) If b; = bj and ¢; # ¢;

Then €y = ¢j — ¢; and we easily conclude as in i).

iii) If ¢; = ¢; and b; # b;

Then €y = b; — b; and we easily conclude as in i).

iv) If ¢; = ¢; and b; = b;.

Then we take €9 = (b; — a;) A (dj — ¢;).

It is easy to check that for all s such that 0 < s < €, we have: bj—s €]a;, b;[ and cj+s €]c;, d;].
(ci = ¢j,b; = bj) = [bj,c;] = [bi,c;]; thus the support of & is included in the support of &;
and their kernels coincide that means p; and p; coincide only in [b;, ¢;], and this justifies the
fact that Vs €la;, bi[, 1 (s) > pi(s) and Vs €]c;, d;[, pi(s) < pj(s).

Furthermore, Vs € [a;, b;[, ®j(s) > ®;(s) by the fact that 1;(s) > pi(s) and Vs € [¢;, d;[, P;(s) <

®;(s) by the fact that p;(s) < pj(s); these last inequalities lead us to ®;(c; +s) > ®;(¢; +
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5), ®i(bj —s) < @j(bj +s).

4) By taking ¢y = min(b; — bj,c; — b;), we can easily check that Vs such that: 0 < s < €,
Di(c; —s) < Pj(e; — 5), Pi(ci +5) > Pj(c; + ).

5) By taking g = min(b; — b;, ¢; — bj,) we can easily check that Vs such that: 0 < s < e,
Di(c; —s) < Pi(c; —5),Pj(cj+5) > Pi(cj + 9).

6) By taking ep = min(a; — aj,d; — d;), we can easily check that Vs such that: 0 < s < €,

q)j(Cj — S) > (I)i(Cj — S),fbj(Cj + S) < (I)i(Cj + S). O

Proof of the characterization of the second order dominance re-
lation

Without loss of generality, we assume that between &; and &2, &1 is the one that could domi-
nates. In other words, the curve of ®; starts below.

1) Necessity of Theorem 4.2.2.

According to the definition of >3, we have: V¢ € R, fioo[fbg(r) — ®y(r)]dr > 0 and Jty €
R, [ [®2(r) — ®1(r)]dr > 0.

(i) We have, according to the first assumption:

(Vt € R, [T [®a(r) — ®1(r)]dr > 0) = Vi € {1,2, ...k}, [ [®a(r) — 1 (r)]dr > 0.

(ii) Furthermore, (V¢ € R, ffoo[q)g(r) — ®1(r)]dr > 0) = [T2[@y(r) — @1(r)]dr > 0, that
means, f_Jr;O[CI)Q(r) — ®y(r)]dr > 0 or fj;o [@o(r) — @1(r)]dr = 0.

- In the first case, where fj;o [®o(r) — @1(r)]dr > 0, we immediately obtain the result.

- In the second case, where [F2°[®(r)—®1(r)]dr = 0, we justify that Jton € {to1, ..., tox }, [ 7 [@a(r)—
@y (r)]dr > 0.

Let us assume that Vs € {to1, ..., tox}, [°_[®2(r) — @1 (r)]dr < 0 and establish a contradiction.
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According to the first assumption, we obtain in this second case: Vs € {to1, ..., tor } ffoo [Do(r)—
&y (r)]dr =0.
As fj;o [@2(7) —®1(r)]dr = 0, we have Vs € {to1, ..., tox }, f_soo[fbg(r)—(I>1(r)]dr+fs+oo[<b2(r)—

O, (r)]dr = 0, that is,

/+OO [(I)Q(?“) — <I>1(7")]d’l" =0,Vs € {t01, ...,tOk} (5.24)

Finally, to obtain a contradiction with respect to the second assumption, we prove that
VtER, [T [®a(r) — ®1(r)]dr = 0.

x) If t < tg1 where tg is the first crossing point, then ffoo[q)Q(r) — ®4(r)]dr = 0 because
ffﬁ;[fbg('r) — &y (r)]dr = 0, and the sign of the quantity ®2(r) — ®1(r) remains unchanged
until the first crossing point #g;.

) If to; <t < to; where to; and to; are two consecutive crossing points such that to; < to;, then
ffoo@g(r) — @4 (r)]dr = 0 because ff(go[(I)z(T) — @4 (r)]dr = 0, and the sign of the quantity
®y(r) — ®1(r) remains unchanged between the two crossing points to; and to;.

) If t > tor where to is the last crossing point, we have:

According to (5.24), tjkoo [®o(r) — @1(r)]dr = 0, and consequently, ftgk [Da(r) — @1(r)]dr =0
by the fact that the sign of the quantity ®(r) — ®1(r) remains unchanged after the last
crossing point. Thus, ff&[@g(r) — ®4(r)]dr = 0 and *[ti)k [Pa(r) — @1(r)]dr = 0, imply that
[ [ @a(r) — @1 (r)]dr = 0.

Hence, the contradiction is obtained by the fact that V¢ € R, ffoo[cbg(r) — ®4(r)]dr = 0.

2) Sufficiency of Theorem 4.2.2.

From the assumptions of the the theorem, we have Vi € {1,2, ..., k}, ff‘go [@o(r)—P1(r)]dr > 0,

that means, the area balance sign condition for > is fulfilled at all crossing points.
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Since tp; corresponds to the first crossing point, we obtain ff(go[q)g(r) — ®4(r)]dr > 0 and
Yt €] — oo, to1], ffoo[ég(r) — @4 (r)]dr > 0, because to; is the first crossing point and we have
supposed that the curve of ®; starts below. So the curve of ®; should have stay below (or
coincides in some intervals of coincidence) all the way from —oo to to;.

Let us analyze the condition in the interval |tgi,tp2]. Since tge corresponds to the second
crossing point, it is clear from the definition of crossing point that, ®a(r) > &1(r),Vr €
|—00, to1] and Po(1) < @4 (r), Vr €]to1, to1]. We can write: Vi €|to1, toz], fioo[q)g(r)—él(r)]dr =
S22 [@o(r) =@y (r)]dr— [0 [®2(r) — @1 (r)]dr. Since (Do(r) < O1(r)],Vr Eltor, toa] = [ [@a(r)—
& (r)]dr < 0) and fi‘fo[Q)g(r) — ®y(r)]dr > 0 from the assumptions, we have: fjoo[(I)Q(T) -
D1 (r)]dr > [12 [®o(r) — @1 (r)]dr > 0.

We can say that the fulfillment of the condition at ty; and gy involves the fulfillment at all ¢,
t €tor, toz]. It follows inductively that for finite k, the fulfillment of the sign condition at all
toi, (toi € {to1,to2, ..., tor}) implies the fulfillment at all ¢, ¢ €] — oo, tox].

Now, we prove that the fulfillment of the sign condition at ¢o; and fj;o[ég(r) —®y(r)]dr >0,
will imply the fulfillment at all ¢, ¢ €]tog, +00].

Let us assume (by considering £ as an odd number) that ®a(r) > ®1(r), Vr €Jtor—1), tox]
and ®o(r) < ®y(r),Vr Etox, +oo ( where tox is the last crossing point). We have: Vt € t €
Jto, +o0l,

[t [®@a(r) — d1(r)dr = [T2@a(r) — ®1(r)]dr — [[7°[@2(r) — ®1(r)]dr. Since (Pa(r) <
Oy (r),Vr €ltor, +oo0[= t+°o[(1>2(r) — ®4(r)]dr < 0) and fj;o[ég(r) — ®1(r)]dr > 0 from the
assumptions, we have: ffoo[(I)Q(T) — @ (r)]dr > fj;o@g(r) — &1 (r)]dr > 0.

Therefore, if Vi € {1,2, ..., k}, fi(go [@2(r) — @1 (r)]dr > 0 and [T2°[@y(r) — ®1(r)]dr > 0, then

fioo@g(r) — &y (r)]dr > 0,Vt €] — 0o, +oo[. This result and the condition of fulfillment as
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strict inequality at some ton € {to1,...,tox} or for the integral from —oo to 400 as stated in

the theorem, implies 5. The proof can be done in the same manner when k is even. This

completes the proof for sufficiency and the proof of the theorem. O

Proofs of dominance relations properties

The proofs of some results of Proposition 4.3.2 require the following lemma:

Lemma 2:

Let &1, & and 60 be three independent trapezoidal fuzzy variables. ®; , ®9, &} and P, are

respectively the credibility distributions functions of fuzzy variables &1, &2, &1 + 6 and & + 6.

Then we have:

° (37‘0 S R, @1(7“0) = (I)Q(T())) <~ (Hto S R, q)ll(to) = (I)/Q(t()))

e For all crossing point v € R between ®; and Py, Ju, € R, crossing point between &)

and @), such that: ffoo[q)l(r) — Do(r)] dr = [T [®) (1) — ®h(r)] dr.

Uy
o0

o [IZ1@1(r) = @a(r)] dr = [CT[@(r) = Dh(r)] dr.

Vi

V2

ERE ;

c’

v

dl

Figure 5.3: A particular position of two fuzzy variables.
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Interpretation:
According to Lemma 2, there exists a crossing point between ®; and P, if and only if there
exists a crossing point between @} and @/, and the area between two distributions functions
keep unchanged by translating them.
Proof of Lemma 2: Let us consider the assumptions of the lemma.
We set: & = (a,b,¢,d), & = (', U, ,d) and 0 = (a”,b",",d").
Without loss of generality, we suppose in all this proof that a < a’ <V <b<d <c<d <d
(see Figure 5.3). The other cases can be proved in the same way.
1) Let us recall that & +60 = (a+a”,b+b",c+ ", d+d")and &+ 0 = (o +a”, b/ + V", +
A d +d").

o/ (b—a)—a(b'—a’)

We have: ®1(r) = ®a(r) & (=2 = br/%‘;’/ orr € [bd]) & (r=r = “—a)—('—a) O

—a

r € [b,c]) (see Figure 5.3 with ro = v1). Furthermore, we have:

r—(a+a”) r—(a’+a’)
) o1 —(ata”) — O+0)—(@+a")

(a/+a//)[(b+b//)7(a+a//)]7(a+a/l)[(b/+bl/)7(al+a//]
b-a)—(t/—a’) )

i) First Sr=1t)=
that is @ (tg) = P4(to). to exists if and only if r¢ exists and ¢y € [@’ + a”,b" + V"] if and only
if o € [d/,b'].

ii) Secondly, we have: rg € [b, ] & tg € [b+ 1", + ], according to the expressions of &1 + 6
and & + 6.

2) Let v € R be a crossing point between ®; and ®s.

v satisfies ®1(v) = Po(v), thus, according to 1), Ju, € R such that & (u,) = P4(u,). By the
assumptions a < @’ <V <b < < ¢ < d < d, there exists two crossing points between ®;
and ®o: vy € [@/, V] (type II) and vy = ¢ (type I). (see Figure 5.3).

According to 1), we set:

1) uy, = (“/Jra“)[(b+b//)_(aﬁgf;])1_[éflf;i/)[(b/+b//)_(a/+a”] and we consider the real intervals [a’, V']
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and [a' + a”, b’ + V"] with vy € [@/,V] and u,, € [’ +d”, b +b"].

We have Vr € [d/,b]: ®1(r) — Pao(r) = ’“‘“f“”’}if;{},ﬁ?’_}%’”a’(”*“) and,

v,r. c [al+al/’ bl _|_b//}7

_ robtl ) (e [0 b (o) () (k)
() = B(r) = ()~ a @ +5)—(a+a)] -

The sign of ®1(r) — ®2(r) is the opposite sign of A = % before v; and the same sign

of A after vy.

a—b+b'—d’
a+a//)] [(b/+b//)7(a/+a//)]

The sign of @ (r) — ®,(r) is the opposite sign of B = (R before u,,
and the same sign of B after u,, .

By the fact that A and B have the same sign, we conclude that:

(Vr < v, @1(r) < Po(r)) < (Vr < uyy, D) (r) < P4(r)). That is, u,, is a crossing point of type
II between @) and 5.

i) uy, = ¢ + ¢ and we check that u,, is a crossing point of type I between &} and ®} by
considering the interval of coincidence [b+ b, ¢ + ¢”].

On the other hand, computations display that:

fféo[(pl(r) — Oo(r)] dr = ff;é (@ (1) — ®,(r)] dr = (a'—a)?

To—a—btq) 0d

S22 @1 (r) = @o(r)] dr = [12[@(r) — 2h(r)] dr = T,
3) Finally, computations display that:

Jr2M@1(r) = @5(r)] dr = [T[B](r) — Bh(r)] dr = eLze=bielerd od

By the previous results of items 1), 2) and 3), we obtain results of the lemma. O

Proof of Proposition 4.3.2:
We consider, £ = (a,b,¢,d), n = (a’,V/,¢,d') and 6 = (a”,V",¢",d") be three elements of A

with respective credibility distributions functions @1, ®5, ®3. Let us suppose that £ +n =

TASSAK DEFFO CHRISTIAN PhD. Thesis



109

(a+d b+b" c+",d+d"),n+6=(d+d" V+V' + d+d") are two elements of A

and that @}, @) are their respective credibility distributions functions.

1. Mean-risk dominance FLPM,, -, o € N*, 7 € R:

El¢] > E[¢]

-
FLPM, - [¢] < FLPM, - [¢] - Therefore, & =4 7 £.

A1) We have: {

Aj) Let us assume that § =, n and 1 =4 - &.

J Elél = En) Eln] > E[¢]
We have: { FLPM,.,[¢] < FLPMa. 1] and { FLPM,, [] < FLPMa., [¢] , that leads
El¢] = Eln]
to { FLPM,[¢] = FLPM, . [n] Thus, § ~a.r 7.
As) Let us assume that £ =, n and n = 7 0.
. | El¢] = E[n] Eln] > E[0] .
We have: { FLPM, - [¢] < FLPM . [1] and { FLPM,, - [n] < FLPM, ,[6] ’ by the
E[¢] > E[]

transitivity of inequalities, that leads to { FLPM, . [¢] < FLPM,, 4
Hence, & =4+ 0.

Ay) Let us assume that inf supp(§) > sup supp(n), that is, a > d’. Necessarily, we have:
a>a,b>V, c>candd > d. By the fact that, E[¢] = atbtetd and Bl = dHttcrd
we have E[¢] > E[6].

On the other hand, we have: FLPM, ;[¢] = [T (7 — w)* '®;(u)du and FLPM, ;[n] =
[T (7 — w)* '@y (u)du. By the fact that a > o/, b > V', ¢ > ¢ and d > d', we
have ®(r) < ®o(r), Vr € R (according to theorem 7). That leads to FLPM, ;[¢] <
FLPM, -[n]. As E[¢] > E[n] and FLPM,, -[¢{] < FLPM,, ;[n], we conclude that £ = - 7.
A!)) The proof is similar to the one of Ay.

Ajs) The proof is justified by the fact that, the comparison between ¢ and 7 following

>, depends only on the parameters of these two fuzzy variables (mean, fuzzy lower

partial moment) and not on the other variables.
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Ag) Let us justify by a counterexample that this property is not satisfied by the domi-

nance relation = » 7.

Let us consider the trapezoidal fuzzy variables & = (1,2,8,9), & = (2,3,3.5,4) and

& = (9,10,11,12).

We set: & = & + &

T =10.5.

(10,12,19,21), & =

&+ & = (11,13,14.5,16), o = 2 and

If @y, Pg, P}, ), are respectively the credibility distribution functions of fuzzy variables

&1,&2,&], &, then we have:

Oifz <1 0ifr <2
5 if1<e<? T2 o< p <3
O(x) =4 $if2<z<8 P20) =3 Lif3<az<35
ifl<z<?2 r—3if35<r<4
lifz>9 Lifz >4
[ 0if z < 10 0if z < 11
2710 0 < e <12 oM i <a <3
Pl(z)=1¢ 2if12<x<19 ,Ph(z) =< Lif13<a <145
2T g <a<m 213 a5 <2 <16
lif 2 > 21 1if 2 > 16

Computations display that: E[¢]

5, El&] = 3.125, that is E[§] > E[&2] and

[1991® () — Bo(2)](10.5 — x) da ~ —6.13 that is FLPM, ;[¢1] < FLPM,;[€2]. There-
fore, &1 =2.10.5 &2-

We also obtain: E[¢]] = 15.5, E[£)] = 13.625, that is E[¢]] > E[£] and figf[@’l(x) -
P (2)](10.5—x) dx ~ 0.005 that is FLPM,, ;[£]] > FLPM,, ;[£]. Therefore, & #2,10.5 &5
Finally, we have: & =210.5 & and & #2105 &, that means that the property Ag is not
satisfied by the dominance relation =, - 7.

Af) The previous counterexample indicates that property Af is not satisfied by the

dominance relation =, 7 .

TASSAK DEFFO CHRISTIAN

PhD. Thesis



111

2. First order dominance >1:
A1) We have: a > a,b>b, c>cand d>d. So, £ = &.
Ag) Let us assume that £ =1 n and n = 1;£.
We have:
Emn=(a>d,b>b,c>d,d>d)andn =1 = (d >a,b >b,d >c¢,d >d). We
obtain: a=da', b="0,c=c and d =d'. That is, £ ~1 1.
Ajz) Let us assume that £ =1 n and n =1 0.
We have:
Exin=>(a>d,b>V,c>d,d>d)andn =1 0= (/! >d" UV >b", >, d >d").
By using the transitivity of inequalities, it follows that: a > a”, b > b”, ¢ > ¢ and
d>d". That is, £ =1 0.
Ay) Let us assume that inf supp(§) > sup supp(n), that is, a > d’. Necessarily, we have:
a>a,b>b,c>c and d > d'. That is, £ =1 1. A))) The proof is similar to the one of
Ay.
As) The proof is justified by the fact that, the comparison between £ and 7 following >4
depends only on the parameters of these two fuzzy variables (a,b,c,d,a’,b',c,d") and
not on the other variables.
Ag) Let us assume that £ =1 7.
We have: a > d’, b >V, ¢ >, d > d'. Those inequalities imply that: a +a” > a’ + a”,
b+V' >0+ e+ >+, d+d">d +d'. Thus, E+60 =1 n+6.

Af) The proof is similar to the one of Ag.

3. Second order dominance >=s:
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A1) We have: Vt € R, ffoo[q)l(r) — ®4(r)] dr > 0. Therefore, £ =2 &.

As) Let us assume that £ =9 n and n =2 &.

We have:

Eron =Vt eR, [1_[®o(r) —Di(r)] dr > 0and g =2 € = Vt € R, [*__[®1(r) —
Dy(r)] dr > 0.

We obtain by those two inequalities: Vt € R, ffoo[@l(r) —®y(r)] dr = 0. That is, £ ~2 7.
Ag) Let us assume that £ =9 n and 1 =2 0.

We have:

Eran =Vt eR, [T _[Ba(r) — ®i(r)] dr > 0and n =2 0 = Vt € R, [*__[®3(r) —
Oy (r)] dr > 0.

We obtain by the transitivity of inequalities: V¢ € R, ffoo[(bg(r) — ®4(r)] dr > 0. That
is, &€ =2 0.

Ay) Let us assume that inf supp(§) > sup supp(n), that is, a > d’. Necessarily, we have:
a>a,b>V,c>c and d > d. Those inequalities imply that: ®1(r) < ®a(r), Vr € R
(according to Theorem 7). That leads to V¢ € R, ffoo[d)g (r)=®1(r)] dr > 0. This means,
§=>n.

As) The proof is justified by the fact that, the comparison between ¢ and 7 following
=9 depends only on parameters of these two fuzzy variables (credibility distribution
function) and not on parameters of other variables.

Ag) Let us assume that £ =9 7.

By the characterization of >3, we have:

For all crossing point v € R, between ® and &', [Y [®y(r) — ®1(r)] dr > 0 and

[F2[®o(r) — @1(r)] dr > 0.

TASSAK DEFFO CHRISTIAN PhD. Thesis



113

According to Lemma 2: Vu, € R, crossing point between &} and @, ffoo[<1>2(r) -
Oy (r)] dr = [ [@h(r) — @4 (r)] dr = 0 and [T [@a(r) — &1(r)] dr = [T T[@4(r) —
@ (r)] dr > 0. Thus, £+ 6 =3 n+0.

Af) The proof is similar to the one of Ag. O
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1. Introduction

An important area of finance research is portfolio selection
which is to select a combination of assets under the constraints
of the investor objectives. In classical portfolio theory security
returns were assumed to be random variables, and the portfolio
selection problem is handled by means of probabilistic theory
(see Bachelier, 1900 and Markowitz, 1952). One core of portfolio
selection is to find a quantitative risk definition of portfolio
investment. Therefore, allocation capital in different risky assets
to minimize risk and to maximize returns is the main concern of
portfolio selection. Before the seminal work of Markowitz (1952),
there were no measurable terms for risk. The mean-variance
model, proposed by Markowitz (1952), opened the door for
mathematical analysis of the portfolio selection problem by
considering the trade-off between return and risk. As in Markowitz
(1959), variance has been widely accepted as a risk measure
by numerous portfolio selection models. However variance as
a risk measure has some shortcomings and limitations (see
Markowitz, 1959).

One important shortcoming is that analysis based on variance
considers high returns as equally undesirable low returns (i.e. it
does not take into account the asymmetry of the probability
distribution). Then there is a controversy over the issue of whether
higher moments should be considered in portfolio selection
models. Some authors, such as Samuelson (1970), Kraus and

* Corresponding author. Tel.: +33 4 34 43 25 11; fax: +33 434 43 24 61.
E-mail addresses: sadefo@yahoo.fr, sadefo@lameta.univ-montp1.fr
(J. Sadefo Kamdem).

0167-6687/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2012.07.003

Litzenberger (1976), Konno and Suzuki (1995), Konno et al. (1993),
and Briec et al. (2007), have argued that it is important to take
into account higher moments than the first and second ones. For
instance Samuelson (1970) showed that investors would prefer
a portfolio with a larger third order moment if the first and
second moments are the same. The above literature assumed that
the securities returns are random variables with fixed expected
returns and variance values.

However randomness is not the only type of uncertainty
in reality, especially when taking into account human factors.
The security returns are sensitive to economic, environmental,
political, social and people’s psychological factors. Thus investors
receive efficient or inefficient information from the real world
and, ambiguous factors usually exist in it. As discussed in Hasuike
et al. (2009), investors can make use of a fuzzy set to reflect
the vagueness and ambiguity of securities (i.e. incompleteness
of information due to the lack of data). In such situations, it
may be convenient to express these uncertainties using various
imprecise linguistic expressions: for example, investors could
evaluate portfolio returns as follows: (i) the return is about b, but
definitely not less than a and not greater than b, (ii) the return is
most likely in the interval [a, b] and similar. Therefore scholars
have recognized that the Probability Theory could not be used
in this context, but we can use Fuzzy Set Theory in Portfolio
Selection Problems. And the security return is considered as a fuzzy
variable.

In addition to the probabilistic portfolio approach, they are two
approaches.

In one approach, some scholars have proposed the use of
imprecise probability, possibility, etc., to deal with uncertainty in
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portfolio selection since the 1990’s. For example, some authors
such as Tanaka and Guo (1999) quantified mean and variance of
a portfolio through fuzzy probability and possibility distributions,
Carlsson et al. (2001, 2002) used their own definitions of mean and
variance of fuzzy numbers.

Although, early researchers used possibility measure, it does
not have the self-duality property which is very important and
it is absolutely needed in application research. The self-duality
property helps to make decision results consistent with the
laws of contradiction and excluded middle. In fact, when the
investors know the possibility level of a portfolio reaching a target
return, they cannot know the possibility level of the opposite
event, i.e., the event of this portfolio not being able to achieve
the target return! This will confuse and worry the decision
maker. Therefore, this approach will not be considered in this
paper.

In the other approach we consider, Liu (2002) introduced a
credibility measure in the new theory of uncertainty. It is a
self-dual measure which has been applied in many application
areas. Therefore, scholars such as Liu and Liu (2002), Li et al.
(2010), Kar et al. (2011) and Huang (2010) used that measure
to analyze portfolio selection with fuzzy returns. In that view, Li
et al.(2010) and Huang (2008) quantified portfolio returns and risk
by the expected value and variance based on credibility measure.
More precisely, they introduced notions of mean, variance, semi-
variance and skewness of a given fuzzy variable, determined some
of their properties and applied those theoretical results in finance
for a portfolio selection with fuzzy returns. They deduced the two
following models and its variants: the mean-semi-variance model,
then the mean-variance-skewness model.

Up to now, only the three first moments and/or semi-moments
were examined and applied in fuzzy finance. Higher moments
of fuzzy variables and their applications are not yet examined.
Moreover, several empirical studies show that portfolio returns
have fat tails. Generally, investors would prefer a portfolio return
with smaller kurtosis which indicates the leptokurtosis (fat-tails or
thin-tails) when the mean value, the variance and the asymmetry
are the same.

In the continuation of the first research works, the goal of this
paper is to contribute to a sound formal foundation of statistics
and finance built upon the Fuzzy Set Theory. More precisely, (i) we
introduce notions of k-moments (for example kurtosis for k = 4)
and semi-moments (for example semi-kurtosis for k = 4), (ii) we
determine their mathematical properties, (iii) we use them for
portfolio selection with fuzzy risk factors and, (iv) we display some
numerical examples for our optimization model on a family of
independent triangular fuzzy returns.

The paper is organized as follows. In Section 2, we review some
preliminary knowledge on fuzzy variables and credibility measure.
We also recall the three first moments of a fuzzy variable namely
mean, variance, and skewness of a fuzzy variable. In Section 3, we
determine, for an integer k > 1, the k-moment of a symmetric
trapezoidal fuzzy variable. We introduce kurtosis for fuzzy
variables, study some of its properties and, we compute kurtosis
of trapezoidal fuzzy numbers and triangular fuzzy numbers. In
Section 4, we introduce the notion of semi-moment of order n =
2p (p € N*) of a fuzzy variable. We deduce that the particular
cases of the semi-moment are the known notion of semi-variance
and the new notion of semi-kurtosis forp = 1andp = 2
respectively. We compute the semi-variance and the semi-kurtosis
of a trapezoidal fuzzy variable. We establish some useful links
between moments and semi-moments of fuzzy variables. Section 5
suggests some deterministic optimization programs with a family
of independent triangular fuzzy numbers and, propose some
numerical examples on mean-variance-skewness—semi-kurtosis
program and mean-variance-skewness—kurtosis program with

a family of seven triangular fuzzy returns introduced and used
by Huang (2008) and, used by Li et al. (2010) in their models.
Section 6 contains some concluding remarks and the proofs are in
Section 7.

2. Preliminaries
2.1. On fuzzy variables and credibility measure

Let & be a fuzzy variable with membership function w. For any
x € R, u(x) represents the possibility that & takes value x. For

any set B, Liu and Liu (2002) defined the credibility measure as the
average of possibility measure and necessity measure as follows:

Cr(ls € B = 5 (Slelgu(x) ~ sup (o) + 1>. )

It is easy to show that the credibility measure is self-dual, that is,

Cr({& € BY) + Cr({£ € BY) = 1.

Remark 1. Note that for £ taking values in B, Zadeh (1978) has
defined the possibility measure of B by

Pos({§ € B}) = sup u(®)
xeB
and the necessity measure of £ by
Nec({& € B}) = 1 — sup u(x).
xeBt

But neither, of these measures are self-dual. That reason also
justified the introduction of the credibility measure by Liu (2002).

Example 1. 1. Let £ = (a, b, c, d) be a trapezoidal fuzzy number
(witha<b <c<d).Foranyr € R,

0 ifr<a
‘1 —
1
C{E<rh = 5 ifb<r<c
1= 3(29) fe<r<d
2\c—d
1 ifd<r
and
1 ifr<a
1—1 r—d ifa<r<b
2\b—a
1
C({§ >rh = 3 ifb<r<c
1 —_
_(r d ifc<r<d
2\c—d
0 ifd <r.

2. Leté = (a, b, c) be a triangular fuzzy number (witha < b < c).
Forallr € R,

0 ifr<a
1 —
E(; Z) ifa<r<b
afe<p=1" "
ifc<r
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and
1 ifr<a
1—%(;_2) ifa<r<b
aggzrh=1,
E(b—c) ifb<r<c
0 ifc<r.

Let us end this section by giving some notations useful
throughout this paper.

o For a trapezoidal fuzzy variable &£ = (a, b, ¢, d) such thata # b
and ¢ # d, supp(§) = [a, d] its support, cor(§) = [b, c] its
core, I; the length of supp(£€) and I, the length of cor(§). We set:

a=b—a, B=d—c, () =d—a and
) =c—b.

o For a triangular fuzzy variable § = (a, b, ¢) such that b # aand
¢ # a, we set:

oy =max{b—a,c—b} and y =min{b—a,c—b}.

e & = (a,b, c, d)issymmetric(thatis3t € R, Vr € R, u(t—r) =
w(t+r1)ifa = B,and & = (a, b, ¢) is symmetric if; = y.

2.2, On the three first moments of fuzzy variables: expected value,
variance and skewness

The definitions of the expected value, variance and skewness of
fuzzy variables are obtained from Li et al. (2010).

Definition 1. Let £ be a fuzzy variable. Then its expected value is
defined as

00 0
E[s]=e=fo+ Cr{szr}dr—f Crie <} dr @

-0

provided that at least one of the above integrals is finite.

Remark 2. Note that, expected value is one of the most important
concepts of a fuzzy variable, which gives the center of its
distribution.

Example 2. The expected value of a trapezoidal fuzzy variable
denoted £ = (a,b, c,d) is given by E[f] = “bietd and the
expected value of a triangular fuzzy variable denoted £ = (a, b, ¢)
is given by E[£] = &H2+c,

Definition 2. Let £ be a fuzzy variable with finite expected value
e. Then its variance is defined as

VIE] =E[ — e)*]. 3)

Let us determine the variance of a trapezoidal fuzzy variable and
that of a triangular fuzzy variable.

Example 3. 1. Let £ = (g, b, ¢, d) be a fuzzy trapezoidal variable
with expected value E[§] = #2224 — ¢, The variance V[£] of
£ is given by:

3 —_—
vie = - [ze@ +1en] (52

(et - )’

max
+ 6a VB

)

e — B [ 1 @+p)
e [its@)— -
(=2 ®) ()
6oV B 6o A B ’

2. We can easily check that if § is symmetric (@ = 8), V[£] simply
becomes

1 2
} |:Z(ls(§) +lc(§))i|

3

3[8) + B2 + B2
VIE] = M
24
3. Let& = (a, b, ¢) be a triangular fuzzy variable such that E[§] =
a+2b+c —e

v X
The variance V[£] of & can be deduced from the variance of a
trapezoidal one by this way:

3303 + 2122y + 1ay? — 3

Vil = 384a,

4, More precisely:

- The variances of the following three trapezoidal fuzzy
variables are:
V[(-1,2,3 4)]—41

L} 9 tl - 24!

41

VI(-1,0,1,4)] = —.
[( )] 24

- The variances of the following three triangular fuzzy variables
are:

13
VI(1.2,3,4]= -, and

2491
V[(-1,0,4] = 1536 and
123
VI(-1,1,2)]=V[(1,2,49] = 756"

Remark 3. Note that, the variance of a fuzzy variable provides a
degree of the spread of the distribution around its expected value.
A small value of the variance indicates that the fuzzy variable is
tightly concentrated around its expected value; and a large value
of the variance indicates that the fuzzy variable has a wide spread
around its expected value.

In finance, the investor use the variance to make a suitable
choice among those of fuzzy variables that describe the same
expected security’s return. We can illustrate it in what follows: let
Vi = (3,4,6,7) and V, = (2, 4,6, 8) be two trapezoidal fuzzy
variables with the same core [4, 6], the same mean 5, i.e., V; and
V;, describe the same return that we can name: “between 4 and 6”
as depicted in Fig. 1.

Surely, a rational investor may have this question in his mind:
“Which of the two variables best describe the previous return”?.
An answer to that question is: Vy is better than V, in describing the
return “between 4 and 6".

The justification we can give is that the spread of V; (variance
of V; = 1.16) is less than the one of V; (variance of V, = 2.16). The
lower the variance is, the more it reduces uncertainty and allows
the investor to make a good description of his portfolio’s returns.

Let us end this subsection with some useful preliminaries on the
skewness of a fuzzy variable.

Definition 3 (See Li et al, 2010). Let £ be a fuzzy variable with finite
expected value e. Then its skewness is defined as

Sk(&) = E[(§ — e)°]. (4)

Remark 4 (See Li et al., 2010). If £ has a symmetric membership,
then Sk[£] = 0.
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! | Corollary 1. Let £ = (a, b, c) be a symmetric triangular fuzzy
08 | variable with expected value E[§] = e. For an integer k > 1, the
g': i k-moment my = E[(§ — e)*] is given by:
06 ‘ - VI=(3467) o If k= 2p, then
0.5 i : . V2=(2,4,6,8) myp =my = 0. (5)
0.4 | )
03 ! e If k=2p+1,then
0.2 k
f 2 P ) o
0.1 f m = my,_1 thatis, m = —. 6
. :‘ 2p+1 = @ p+1 2p—1 2p+1 2%k+2 (6)

o 2 4 6 8 10 12 14 168 18 20
Fig. 1. Trapezoidal fuzzy numbers with the same core.

In the following example, we determine the skewness of a
trapezoidal and triangular fuzzy variable respectively.

Example 4. 1. The skewness of a trapezoidal fuzzy variable § =
(a, b, c, d) is given by

e = g5 )[(bze)4_(aze)4]
te=o [(Cze)4" (d:y]'

= (a, b, ¢) isgiven

2. The skewness of a triangular fuzzy variable &
by

Sk[g] = s(bl 2 [(?)4_(%)4]
s (55 (Y]

(c — a)?
2

that is,

Sk[E] = (c +a—2b).

Example 5. Let & = (2, %, %) and &, =
154473 pe two fuzzy variables.

We have E(&) = E(&) = Y8 () = V(&) =
and SK (&) = SK(&;) = 0.

The previous example justifies that if we have two portfolios
where returns are &; and &, then the investor cannot discriminate
since their three first moments are the same. Thereby, it is
important to introduce and analyze k-moments and k-semi-
moments for a fuzzy variable.

(4 5 13+4/73
s 2y 2

298+30\/ 73

3. Moments of fuzzy variables

In the following subsection, we determine, for an integerk > 1,
the k-moment of a symmetric trapezoidal fuzzy variable.

3.1. k-moment of a symmetric trapezoidal fuzzy variable

Proposition 1. Let £ = (a, b, c, d) be a symmetric trapezoidal fuzzy
variable with expected value E[§] = e. For an integer k > 1, the
k-moment my = E[(§ — )] is given by:

O if kis odd

Mg = E CE4(c —b) + %

261 (k£ 1)

if kis even.

3.2. Kurtosis: Definitions, first properties and some particular cases

In this section, we introduce the kurtosis of a fuzzy variable. We
study its properties and give some examples.
Definition 4. Let £ be a fuzzy variable such that E[§] = e < oc.
1. The kurtosis of &, denoted K[£], is given by:

K[£] = E[ — )*].
2. The normalized kurtosis of £, denoted K'[£], is given by:
E[(§ — )]

(o[€])*

Let us rewrite K[£] and K; [£] by means of a credibility measure.
Let & be a fuzzy variable such that E[§] = e < oc.

Ki[§] =

e The kurtosis K[£] is given by:

+00
k1= [ e -0tz ™
0
e The normalized kurtosis K;[£] is given by:
®Cr{(§ — e)* > r}dr

+
Ki[g] = —° 5. (8)
[ fFecriE —o? > r}dr}

Example 6. Let &, and &; be the two fuzzy variables of Example 5.
We have K[&] = +(38/B)% ~ 120,027 and K[§;] =

5 (5+/73\4 15+~/ﬁ4 1~
ﬁ( 2 )+E( 2 )+1so—686

The following result establishes some properties on the
linearity of the kurtosis.

Proposition 2. Let & be a fuzzy variable such that E[§] = e.
1. The kurtosis of & is defined by

ke = | e —es MvalE—e< IR (©
2. The norleized kurtosis of & is defined by
Jo o crlg —e> YrivCrls —e < Yryar
[ crle —e = dm v erte —e < Frjar]

3. Va,b € R, K[a& + b] = a*K[£].
4. VYa,b € R,K'[a€ + b] = K'[£].

When & becomes a symmetric fuzzy variable, then the previous
formulas become

K'[E] = (10)

Corollary 2. If & is a symmetric fuzzy variable, then
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1. (9) becomes

+00
KI£] =f Cr{g —e > Jridr. (11)
0
2. (10) becomes
Jo = Crlg —e > Jrydr

. (12)
+00 2 2
[ o Cr{§ —e> ﬁ}dr]

K'[E] =

Let us end this section with the following proposition which
determines the kurtosis of trapezoidal and triangular fuzzy
variables.

Proposition 3. Let £ = (g, b, c, d) be a fuzzy trapezoidal variable
with expected value E[§] = e.

1. The kurtosis K[£] of & is given by:

5 —
K[E] = — [}1(1;@) +tc<§))] (%)

5
(o)
+ max 10a v B ’

(=2 + 16©) o py

1 @+ 8)
100 v B 20 [E"(E)_ 4 ]
| o (=24 )
X [Z(’s@)-“c(f))] - W

2. If &€ = (a, b, c, d) is symmetric, then
e the previous expression of K[£] becomes:
K] = 5[L(&) + B1* + 108°[L(§) + B1* + B°

160
e its normalized kurtosis K,[£] is

 5[0.(8) + B1* + 10B%[l.(§) + B + B*
Kkl = 3e@)+812+52 1 ’

3. Let & = (a, b, c) be a triangular fuzzy variable such that E[£] =
a+2b4c —e

The kurtosis K[£] of & can be deduced from the kurtosis of a
trapezoidal one by this way:
K[¢]
_253e 439507y + 17a1y* + 29003y ? + 70e3y® — y°
B 10.240¢1 ’

(13)

We deduce from the previous formulae that the normalized
kurtosis of some examples of trapezoidal fuzzy variables are:

27414 2178

K'[(-1,2,3,9]=——, K'[(1,2,3,49]=—,

[( )] 8405 [( )] a5
3798 90928
K'(-2,-1,3,4)] = — K'[(1,2,2,4)] = .
[(=2,-1,3,4)] 1805 and K°[(1,2,2,4)] 25915

We notice that: for § = (a, b, ¢) a triangular fuzzy number, we
have:

- ifb = g, then K[£] = ;22-y* with E[£] = 2&E¢,

- ifb = ¢, thenK[§] = ;Z3-0* with E[§] = 22

3.3. First four moments of portfolio

Example 7. Let (¢§; = (a;, b;, i, d;))i=1,2,..n be a family of n
independent trapezoidal fuzzy variables and x = (x1,...,%;) a
family of n positive reals. The expected value of

£ = zn:xiéi = (Xn:xiai, zn:xibi, ixiq, ixidi) (14)
P e = =

is a fuzzy variable and its expectation is

oW = EE@] = 3 )@ +bi+ o+ d)x. (15)

i=1

Proposition 4. Let £ (x) be the portfolio return defined by (14).

e The variance of & (x) is (see Box 1).
o The skewness of &(x) is

n 4
> x(b — &)
=1

Sk[E®)] = —; 2
83 xilbx — @)
=1
n 4
> xe(ax — ex) 1
= N

4 n
8 x(c — di)
k=1

4 4

- xlee — ex) 3 Xi(de — ex)
k=1 | =
4 4

e The kurtosis of &(x) is (see Box II).

Corollary 3. Let (§ = (aj, by, ;))i=1,2,...,n be a family of n indepen-
dent triangular fuzzy variables,x = (xq, ..., Xp) a family of n positive
reals, and £ (x) = Y_;_, x;&; be the portfolio return.

Then

1. The mean of & (x) is:
1 n
E[E®)] = Z in(a{ + 2b; + ).
i=1

2. The variance of &(x) is:

3
1 n
VE®] = ————— [Zxkas(sk))]
192 3 Y xxog By LE=1
k=11=1
x 3 xelow — BO)| + (+
k=1 323 Y xxien By
k=11=1

2
x [Z xkas(sk»} > alon — B0 )
k=1 k=1
x ([}1 3 %@L — (@ + ﬂo)D
k=1
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-1 n 3 n
V]l = —————— [Zxkus(sk) + lc(sk))] > xelew — Bi)
192 3 3" xmapy Lk=1 k=1
k=1i=1
1 n 2 n 1 n
+|— {Z (s (&) + L @k»] > xelew — Bo) ([Z X2l &) — (@ + ﬂk))])
32 E Exkxlakﬂ’ k=1 k=1 k=1
k=1i=1
n 3 n 3
|k)_:] 2 (ak—Br) n El X lax—Br) n
=141 kE xils (&) —_—t %kz Xelc (6)
=1 =1
+ n n
3 Ko + B+ o — Bel) 3 Ko+ B — |l — Bel)
k=1 k=1
n 3 n 3
|k§ Xk (@k—Br) n k);1 Xe(ox—Br) n
B 11y xl@E | +|| 52— - 1> uk@)
k=1 k=1
n
5"2 x(oe + Bic + lox — Bil)
=1
Box 1.
1 n 5 n
KE®] = —————F—— [Zxk(ls@k) + tc@k))} D xlen— B
5120 Z Zxkxwtkﬂz k=1 k=1
k=1i=1
1 n 4 n 1 n
+|— [Zxkas(sk) + tc(sk))} > xelow — Bo) ([Z D xeQlE) — (o + ﬂk»D
512 3 Y xixionfy Lk=1 k=1 k=t
k=1i=1
n 5 n 5
kg e (ok—Br) n E] *i(ok—Br) n
141y xlk@&) e DI (D
k=1 k=1
+ n n
5% xe(e + Br + lok — Bil) 5% (o + B — lew — Bel)
k=1 k=1
n 5 n 5
ik);l Xilox—Br) n kg] X (ox—Br) n
B 1y xk@E | +|| 55— 1> uk®)
k=1 k=1
n
101‘2 x(ox + B+ low — Bel)
=1
Box II.
n 3 n 3 n 3
EI xe(@—B) n L;l x(@k—Br) ‘E] xe(ek—Br)
gt %k;lxkls(fk) — + |
+ n + n
3kZXk(0!k+ﬁk+ ek — Bil) 5kzxk(dk+ﬁk+lwk—ﬁk|)
=1 =1
. 3
‘kgl e 3. The skewness of & (x) is:
_ 1 n 2 n
n SK[EM)] = — xi(ci—a) )| . ) x(c—2b;i + ap).
3kzxk(0lk+ﬂk— ek — Bkl) 32 (; ) ;
-1
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4. The kurtosis of & (x) is:

5
-l n
KE®] = ———F—F— [Zxk(ls@k))]
5120 3° 3" xmxapfy LA=1
k=11=
x | xlon — BO| + (;
k=1 5123 3 xexienfy
k=11=1

=B

4
x [Z xk(zs(sm]

)

{ Zxkal &) — (o + ﬂk»D

5
( Z"k("k Bi) n

+1 1;1 Xiels (&)

5 E X (o + B + | — i)

5

i
| Y x(ek—Br)
=]
4

5 kika + Be— la — Bi)
=1

5

n n
‘ 3 xk(ox—Pi) | 3 xu(oe—Bi)
k=1 k=1

n
10"2 X (o + Br + | — Brl)
=1

4. Semi-moment of fuzzy variables

Let & be a fuzzy variable with finite expected value e. We define
the variable (§ — e)~ as follows:

- - if¢ <
R £
4.1. Definitions
Definition 5. Letp € N*,
1. The semi-moment of order n = 2p is
M5,[61 = My[£] = E[[(5 — )11
+o0
[ et - o7 2 o (17)
0
2. The normalized semi-moment of £ is defined by:
M5, [€]
Ms’1[§] — 2p i
» (M3[€D)?

In the case where p = 1, we obtain the well-known semi-
variance of £ which is interpreted and described as follows.

Remark 5. The variance of & is used to measure the spread of its
distribution about e = E[£]. Note that, variance concerns not only
the part “¢ is less than e”, but also the part “£ is greater than e”. If

we are only interested with the first part, then we should use the
concept of semi-variance.

Definition 6. Let £ be a fuzzy variable with expected value e.
The semi-variance of & is defined as

+o00
VIIEl =Ell¢E —o) 1= f Cr{l6 —e) P =ridr.  (18)
0
For the example of semi-variance of triangular and trapezoidal
fuzzy variables, we have the following example:
Example 8. 1. The semi-variance of a trapezoidal fuzzy number

& =(a,b,c,d)(wherea, b, c,d € Rsuchthata # bandc # d)
with expected value e = £H4cH i given by:

Vgl = [(e — a)° + min(0, (b — &)*)]

5(b )
1
+ 5@=9 max(0, (e — ¢)*).
2. The semi-variance of a triangular fuzzy number § = (a, b, ¢)
with expected value e = %2+ js deduced from the semi-
variance of a trapezoidal one by this way:

413

—_ 1 _m3
“s0-0 [(e R P

In the following subsection, we focus on the semi-kurtosis
(i.e.p =2in(17)).

—¢)>min(0, (b — e))] .

4.2. Semi-kurtosis: Definitions and examples

Definition 7. Let & be a fuzzy variable with finite expected value
e. Then the semi-kurtosis of & is defined

+00
K°E]=E[¢E -] = fo cr{[ — 71" = r}dr. (19)

Let us give the semi-kurtosis of a trapezoidal fuzzy number and
a triangular fuzzy number.

Example 9. 1. The semi-kurtosis of a trapezoidal fuzzy variable
& = (a, b, ¢, d) with expected value e = 2+ is given by:

R[] = — (e — 0)° + min(0, (b — )]

1000 — a)
1 5
+ W max(0, (e — ¢)”).

2. The semi-kurtosis of a triangular fuzzy number § = (a, b, ¢)
with expected value e = ““b“ is deduced from the semi-
kurtosis of a trapezoidal one by this way:

K°[£]

—a)®

1 [ N 1
T 1006-9 (b—c)

— €)3min(0, (b — e))i| .

Definition 8. Let & a fuzzy variable with expected value e.
The normalized semi-kurtosis of & is defined by:
KS[£]
KSlE] = ——=5.
1= wge)e

Example 10. 1. The normalized semi-kurtosis of a trapezoidal
fuzzy variable § = (g, b, ¢, d) with expected value e is defined
as follows: K$[£] is given in Box IIL
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wo=gL(e — @)° +min(0, (b — )*)] + = Max(0, (e —¢)*)

Ki[£] =

Box III.

2. The normalized semi-kurtosis of a triangular fuzzy variable £ =
(a, b, ¢) with expected value e is defined as follows:

Ki1€]
g [~ 0 + 55 6 — ¥ min(0, (b — )]

Proposition 5. Let (§)i=1,..» be a family of independent trape-
zoidal fuzzy variables with finite expected values (ex)x=1,..n,
(Xk)k=1,...,n be a family of n positive reals and & (x) = ELl Xi&x. Then
1. The semi-variance of & (x) is

VSE®] = —
6 3 xx(bx — @)
k=1
n 3 n 3
x (E xXilex — ak)) +min | 0, (Z Xi(bx — ek))
k=1 k=1

3
1 n
+ ———max |0, (Zxk(ek — ck))
k=1

n
6 kZ X (dy — &)
=1
2. The semi-kurtosis of & (x) is

CE@ = —
10’§1Xk(bk - ak)

n 5 n 5
X (Z xelex — ak)> + min { O, (Z X (by — ek))
k=1

k=1

5
1 n
+————max |0, ( E Xe(ex — Ck))
k=1

n
10’; X (dx — )
=1

We end this section by establishing a link between moment and
semi-moment of fuzzy variables.

4.3. Links between moments and semi-moments

Proposition 6. Let & be a fuzzy variable with finite expected value

e, p € Nand, pr [£] and My, [£] the semi-moment and moment of

£ respectively. Then
0 < M5, [£] < My[£]. (20)
Proposition 7. Let & be a fuzzy variable with finite expected value e.
Then
My[£1=0 ifandonlyif Cr{§ =e}=1. (21)
Proposition 8. Let & be a fuzzy variable with finite expected value e.
Then
M5,[E1=0 ifandonlyif Cr{§=e}=1,

ie, Mypl£] = 0. (22)

2
[soa (e — @7 + min©, (b — 9]+ 5 max(0, e — )|

Proposition 9. Let & be a symmetric fuzzy variable with finite
expected value e. Then

M3,[£] = My [£]. (23)

Remark 6. The previous results generalize those established by
Huang (2008) when we consider moment and semi-moment as
variance and semi-variance.

Furthermore, we can deduce the links between kurtosis and
semi-kurtosis of a fuzzy variable.
Corollary 4. Let & be a fuzzy variable with finite expected value e,
K5[£] and K[£] the semi-kurtosis and kurtosis of £ respectively. Then
1.

0 < K°[£] < K[£]. (24)
2.

K[E1=0 ifandonlyif Cr{§ =e}=1. (25)
3.

K5[£1=0 ifandonlyif Cr{€ =e}=1,
4,

k5[] = K[£]. (27)

5. An application in finance

5.1. Review, model, and a deterministic program with a family of
triangular fuzzy numbers

Let & be a fuzzy variable representing the return of the ith

security and let x; be the proportion of the total capital invested in
/.

security i. In general, &; is given as %:_p") where p; is the closing

price of the ith security at present, p; is the estimated closing

price in the next year and d; is the estimated dividends during the

coming year.

It is clear that p] and d; are unknown at present. If they are
estimated as fuzzy variables, then §&; is also a fuzzy variable.
Thereby, the returns x{&q, ..., X,&, of n securities and the total
return & = £1x1 + &x; + -« - + £, are also fuzzy variables.

When minimal expected return, minimal skewness and max-
imal risk (variance) are given as «, y and 8 respectively, the in-
vestors prefer a portfolio with small semi-kurtosis or kurtosis.
Therefore, we deduce the following mean-variance-skewness-
semi-kurtosis model:

minimize K[x:£1 + X262 + « - - + Xofn]

subject to
E[xi&1+ %6+ +x6] >
Vixi€1 + %6+ +x€n] < B (28)

SxXi1€1 + %€ + -+ x€a]l 2 ¥
X+Xt+ o tx =1
x>0, i=1,2,...,n

where KS,E, V and S designed the semi-kurtosis, the mean, the
variance and the skewness operators respectively.

The first constraint of this model ensures that the expected
return is no less than some target value ¢, the second one assures
that risk does not exceed some given level 8 the investor can bear,
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the third one assures that the skewness is no less than some target
value y. The last two constraints mean that all the capital will be
invested in n securities and short-selling is not allowed.

From model (28) and, Propositions 4 and 5, we obtain the
following deterministic program.

Theorem 1. Let (§; = (a;, bi, ¢i))i=1,2....,
dent triangular fuzzy variables.
Then model (28) becomes the following deterministic program:

min 7[(2){1(9! —g ) n;
102xi(b - a) in(b —dy)

(Zx, o —e,)) mm( Soncs —e,))}

subject to
n

in(ai + 2b; + ¢;) > 4o
i=1

i=n 2
11 (ZX;(C.‘ — a,-))

i=1

+2 (8 'in:xi(q —a)+3 in(Zbi —ai— Ci)‘)

i=1 i=1

i=n 2 i=n 2
(Z xi(6 — bi)) + (Z xi(bi — ai))
i=1 =1

i=n i=n

<1928 (in(cf —a)+ Y x(2bi—a—c) )
i1 i1

n 2 n
(Z xi(ci — ﬂi)) in(ci —2b;i+ay) > 32y

i=1 i=1
X+x+tx =1
x>0, i=1,2,...,n

» be a family of n indepen-

in(Zbi —0— )
=

i=n

The other variants of model (28) can be deduced from the
previous model by changing the objective function either by mean,
variance, skewness or Kurtosis.

Remark 7. It is important to notice that, similarly as above, one
can write four variants of the previous model and deterministic
program. These variants are described as follows.

1. The first variant of model (28) minimizes risk (variance) when
the expected return and the skewness are both no less than
some given target values ¢ and y respectively and the semi-
kurtosis is no more than the given target value 4. If one cancels
the constraints on skewness and semi-kurtosis in this variant,
then this first variant degenerates to the mean-variance model
proposed earlier by Huang (2008).

2. The second variant of model (28) maximizes the expected
return when the skewness is no less than some given target
values y and, the variance and the semi-kurtosis are no more
than 8 and 0 respectively.

3. The third variant of model (28) maximizes the skewness when
the expected return is not less than « and, the variance and
the semi-kurtosis are no more than some given target values
B and 6 respectively. If we cancel the second constraint on the
semi-kurtosis in this variant, then this third variant degenerates
to the mean-variance-skewness model proposed by Li et al.
(2010).

4. The fourth variant of model (28) is the multi-objective
nonlinear programming which minimizes the risk and the
semi-kurtosis and maximizes the expected value and the
skewness when the different target values are unknown.

Let us explain why we minimize the fourth moment and semi-
moment as in the well-known probability theory or Markowitz
theory.!

Remark 8. In portfolio selection when return is a random variable
and probability theory is used, it is well established that
investors choose the portfolio that maximizes its even moments
(e.g. mean and skewness) and that minimizes its odd moments
or semi-moments (e.g. semi-variance, variance, semi-kurtosis and
kurtosis). In portfolio selection when return is a fuzzy variable and
credibilistic theory is used, the investor also has to select a portfolio
that maximizes its even moments and minimizes its odd moments
or semi-moments. The two reasons are:

1. In general, the moments in credibility theory and probability
theory are defined “similarly” via the “Expectation” operator
“E”. For a given fuzzy variable &, E[£] is given by (2).

Baoding Liu and Liu (2002) (see Remark 1, p. 446) show that if
the fuzzy variable £ is replaced with a random variable (whose
density function is ¢) and Cr is replaced with the probability
measure Prob (whose dual is itself), the representation of the
expected value of the fuzzy variable is identical to that of the
random variable. Technically speaking, E[£] of (2) becomes
E[§]1= f too x¢ (x)dx which is exactly the expected value of the
random variable £.
Let us recall the proof:

400

E[§] =

[ el L[] o0
- o] [_[f ]
= | e [ es [ oo [ ]

+o0 0
:/ x¢(x)dx+/ x¢ (x)dx
0 —oc

Prob{§ > r}dr — f ’ Prob{§ <r}dr (29)

400
= f X (x)dx. (30)
—00
When the right-hand side of (29) is of form co— o0, the expected
value is not defined.

2. In particular, for a symmetric trapezoidal fuzzy variable § =
(a, b, ¢, d), the kurtosis is given by (13). That expression
stipulates that the kurtosis is an increasing function of
the length I.(¢§) of the core, that means, more the core
increases, more the kurtosis increases. One of its meaningful
interpretations is: a great length of the core which produces
“fat tails” traduces a lack of information for the investors, and
consequently there is more uncertainty when the core is large.
So, according to the fact that, the investor needs more
information for his portfolios fuzzy returns, it is better for him
to minimize the kurtosis in order to have portfolio fuzzy returns
with “thin tails” that means more information.

In the following subsection, we display numerical examples on
our two models, namely the mean-variance-skweness-kurtosis
model and the mean-variance-skewness-semi-kurtosis model,
and those used by Huang (2008) and Li et al. (2010).

5.2. Numerical examples
The data, we consider in this section, are introduced and used
by Huang (2008) for the mean-semi-variance model and, used by

1 This explanation has been requested by an anonymous referee.
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Table 1
Fuzzy returns of 7 securities (units per stock).

Security i Fuzzy return

1 & =(-03,18,2.3)
2 & =(—04,2.0,2.2)
3 & =(-05,1.9,2.7)
4 £4=(-06,2.2,2.8)
5 & =(-07,2.4,2.7)
6 & = (—0.8,2.5,3.0)
7 & =(-06,1.8,3.0)

Li et al. (2010) for the mean-variance-skewness model. Those data
are seven triangular security returns as illustrated in Table 1.

For instance, the return of the first security is described by the
fuzzy variable &, = (—0.3, 1.8, 2.3) which represents about 1.8
units per stock.

In order to use the previous proposed models to determine an
optimal portfolio from these seven securities, the investor needs
to set three parameters: the minimum expected return o, the
bearable maximum risk 8, and the minimum tolerable skewness
y. As in the previous case, we takee = 1.6, = 0.8andy =
—0.6823 (it is important to notice that y is at the most equal to
—0.6823).

Since the returns are asymmetric, the investor may also employ
either semi-variance or variance, either kurtosis or semi-kurtosis
to create an optimal portfolio. We consider the following four
models:

1. the first one is the mean-semi-variance model from Huang
(2008):

minimize VS[x;£, + X262 + « - - + x7&7]

subject to

EX&1 + 6+ +x5] > (31)
X1+x+--+x=1

x>0, i=12,...,7

2. the second one is the mean-variance-skewness model from Li
et al. (2010)

maximize S[x1&1 + X262 + - -+ + x7&7]
subject to

Ex11 + %6+ +x%5] > @
VIxi§1 + %06+ -+ x:5/1 < B
Xi+X+-+x=1

x>0, i=1,2...,7

(32)

3. the two following models of our paper: the mean-variance-
skewness—kurtosis model and the mean-variance-skewness—
semi-kurtosis model

minimize K[x1&; + X262 + - - - + x7&7]

subject to
E[x1§1 + %62+ + %7871 > &
Vixi§i + x5+ +x6]1< B (33)

S[x1&1 + %262 + -+ X751 > ¥
XM+x+--+x=1

x>0 i=1,2,...,7
and
minimize K5[x:£; + %8 + « - - + x77]
subject to
Exi&1+ %6+ +x8] 2«
VIxi1 + %6+ + %81 < B (34)

Sxi€1 +Xba+ -+ X751 >y
X1+Xx+-+x=1
x>0, i=1,2,...,7

where K designed the kurtosis operator.

= Huang

HL etal

Fono et al. (Kurtosis)

™ Fono et al. (semi-
kurtosis)

Fig. 2. Comparison of values of characteristics of different optimal total return of
portfolio (combinations of the set of seven security returns) obtained by different
authors.

We use MATLAB to solve the four models mentioned above and
the computational results are shown in the following tables.
We can make the following observations:

e When we consider semi-kurtosis (K3) as an objective function,
Li et al.’s model (32) and Fono et al.’s model (34) give the same
optimal portfolio (according to lines 2 and 4 of Table 2).
Therefore, the latter confirms and enhances the results obtained
by the first one. Those models allow us to obtain highest
skewness (—0.6823) and lowest semi-kurtosis (1.6872) (see
lines 2 and 3 of Table 3) which are the optimal values of the
objective functions of the two models respectively.

When we consider kurtosis (K) as an objective function, Fono
et al.'s model (33) provides the lowest variance (0.7018), the
highest skewness (—0.623) and the lowest kurtosis (1.729) (see
line 3 of Table 3).

In this case, model (33) proposes an optimal portfolio different
from the three other models (see Table 2). More precisely,
the investment’s proportions obtained (according to line 3 of
Table 2) just means that: if one wishes to invest 10000 units, he
will invest 2004 units of the security 1, 7989 units of the security
4,7 units of the security 6 and nothing elsewhere.

The histogram of Fig. 2 shows the different values of character-
istics of the four total returns (combinations of the seven re-
turns) obtained by these authors as described in Table 3.

Let us explain why Fono et al’s model (34) with the semi-
kurtosis and Li et al.’s model (32) coincide (as stipulated in the
previous first observation).?

Remark 9. 1. The main reason why the two models coincide
(generate the same optimal portfolio) in our numerical
examples with the seven fuzzy variables is: each of the seven
variables & = (a;, b;, ¢;) have a large spread on their left, that is,
vie{1,2,...,7}, ¢ — b;i < bj — g;, and thereby a small “good”
part (right of the b;). On one hand, the skewness measures the
spread of the distribution on the left side (so that one is able
to say at what degree the distribution is concentrated on the
left) and on the other hand, semi-kurtosis allows us to avoid
penalizing the “good part” (“positive part”) when applying
the model. Therefore by adding the semi-kurtosis to Li et al.’s
model (32) we obtain the same optimal portfolio from our seven
variables.

2. Now, if we replace the first fuzzy variable &, = (—0.3, 1.8, 2.3)
by the new fuzzy variable & = (—0.1, 0.0, 2.0) (its “positive
part” is greater than the “negative part”), then lines 2 and 4 of
the two previous tables become respectively:

2 This has been requested by an anonymous referee,
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Table 2
Optimal selection from each model.
Security i
1(%) 2(%) 3(%) 4(%) 5(%) 6(%) 7(%)
Huang's model (31) (Huang, 00.00 47.06 00.00 35.28 17.66 00.00 00.00
2008)
Li et al.'s model (32) (Li et al., 20.00 00.00 00.00 80.00 00.00 00.00 00.00
2010)
Fono et al.'s model (33) 20.04 00.00 00.00 79.89 00.00 00.07 00.00
Fono et al.’s model (34) 20.00 00.00 00.00 80.00 00.00 00.00 00.00
Table 3
Comparison of the four first moments of the different optimal portfolios.
Mean Variance Semi-variance Skewness Kurtosis Semi-kurtosis
Huang's model (31) (Huang, 1.60 0.7235 06124 —0.7543 1.7972 1.7415
2008)
Liet al.’s model (32) (Li et al., 1.60 0.7019 0.6141 —0.6823 1.7291 1.6872
2010)
Fono et al.'s model (33) 1.60 0.7018 0.6140 —0.6823 1.7290 1.6873
Fono et al.’s model (34) 1.60 0.7019 0.6141 —0.6823 1.7291 1.6872

With the seven last fuzzy variables (from &, from &), we
have:

Security i 2 3 4 5 6 7 8
@ [ [ & | * | B | &) | &
Lietal's 00.00, 00.00| 33.00 67.00 00.00, 00.00, 00.00
model (32)
Fono 00.00, 00.00| 36.00 64.00, 00.00 00.00, 00.00
etal’s
model (34)
Mean| Variance| Semi- Skewnesg Semi-
variance kurtosis
Lietal's 160 | 07213 0.6361 0.6954| 1.7931
model (32)
Fono 1.60 | 0.7164 0.6323 —0.6860 | 1.7702
etal’s
model (34)

By comparing these new tables and the previous one, semi-
kurtosis used in Fono et al.'s model (34) displays an optimal
portfolio better than the one given by Li et al.'s model (32). In
other words, by adding semi-kurtosis to Li et al.’s model, we
improve the optimal portfolio: the same mean, less variance,
less semi-variance, greater skewness and less semi-kurtosis.

6. Concluding remarks

Different from Huang (2008) and Li et al. (2010), after recalling
the definition of mean, variance, semi-variance and skewness, this
paper introduces originally the k-moments (kurtosis for k = 4)and
2k-semi-moments (semi-kurtosis for k = 2) for portfolio selection
with fuzzy risk factors (i.e. returns) and, their mathematical
properties are studied. Kurtosis and semi-kurtosis measure the
leptokurtocity of credibilistic portfolio return. As an extension
of the mean-variance-skewness model for credibilistic portfolio,
the mean-variance-skewness-semi-kurtosis is presented and
the corresponding variant (the mean-variance-skewness-kurtosis
model) is also considered. We briefly give a numerical example
for our optimization models and it appears that the application of
those new theoretical notions enhances the allocation of a capital
in the fuzzy environment.

7. Proof of the results

Throughout this section & is a fuzzy variable with E[£] = e.

Proof of Proposition 1. For a symmetric trapezoidal fuzzy vari-
able & = (a, b, c, d), we can easily show the following result:

i —ef>r)=Crlg —e> r) virig —e> Jr).

1 . c—bh\k
=, ifo<r<|—
2 2

Yr c—b 1
g 1
c—b k
<
“( 2 “’)

3t T2
C
<
b k
+5)

i —ef>r}=

2B B
k
if( 7b>
2
0, ifr> (C_

wherea =d—c=b—a.
So, we can conclude that:

b g\¥

= th
/( * e —ot 2
0

k k=i

>3 LY — bt

i=0j=0
2+ (k+ 1)
k %
Y G @By (c— bt

=0

2

m[§]

2k (k4 1)

k

- - "
> G e —b) + ol
i=0
261k + 1)
The proof is complete. O
Proof of Corollary 1. We show that, for a symmetric fuzzy
variable &, mi[&] is nil when k is an odd number.
By definition, we have:

mil€] = E[(€ — E[E])"]
+00
=f Cr{(& — E[ED* = rdr
0

0
= / Cr{(§ —E[EDX < r)dr, Vke N
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In Li et al. (2010), Li has already proved that for a symmetric
fuzzy variable &, E[§] = eand Cr{é —e >r} =Cr{§ —e < —r},
where e is a real number such that u(e —r) = p(e +r), Vr e R
and s« is the membership function of &.

Furthermore, we have:

+00 0
m[§] = / Cr{(€ — o) = ridr */ Cr{(€ — " < r)dr
0 oo

+o0
= / kr*='cr{g — e > r}dr
0

0
— / kr='Cr{g — e < r)dr
oo
= / kr*'cr{g —e < —r)dr
0
400
— / kr*='Cr(g —e < r}dr = 0.
0

Now, we assume that k is an even integer.

For a symmetric triangular fuzzy variable & = (a, b, c¢), we can
easily show the following result.

Since Cr{(§ —e)* = 1} = Cr{§ —e = Y} v Cr{g —e < 7},

we have:

oa—Yr
- >ry=1{"24
0, ifr >«

ifo <r <ot
k

wheree =c—b=b—a.
ko

k k7=
So, we can conclude that: m[£] = [ “Ydr = o

1
[ 2k+2
Proof of Proposition 2. (1) It is easy to show that: Cr{(§ — e)* >
r} = Cr{g —e > ¥}V Cr{E —e < Yr). Hence we have the
following equality:

+00
K[E] = f Cr{(E — 0)* = ridr
0
= fm CrlE —e > Yr) v Crlg — e < Yrhdr.
0

(2) We deduce the second result from the definition of K'[£] and
by using the fact that:

vig] = /-m Cr{(E — ) = ridr
0

=/ mCr{é—ez%)vCr{s—es%}dr.
0

(3) (i) Let a, b € R. We have K[a& + b] = E[(a& + b — E[a& + b])*].
Since E[a& + b] = aE[&] + b, we deduce that K[a& + b] = E[(a& +
b—aE[£]—b)*] = E[(a£ —aE[£])*] = a*E[(§ —E[£])*] = a*K[£].

(ii) Since V[a& + b] = @®V[&], we deduce K'[a& + b] =
k'€l O

Proof of Corollary 2. When & is a symmetric fuzzy variable, we
have: Cr{(§ — e)* > r}dr = Cr{é —e > Jr}and Cr{(& — e)? >
r}dr = Cr{ — e > ¥r} and the proof is complete. O

Proof of Proposition 3. (1) Let £ = (a, b, ¢, d) be a trapezoidal
fuzzy variable such thatE[§] = e, =b—a, =d —c.
By using the fact that Cr{(§ — e)* > r} = Cr{f —e >
Jr} v Cr{E — e < J/r}, we can easily obtain the following results:
(i) When ¢ > B, thene < c. We can so distinguish the two
following cases as follows:

st case:e < b

4 _
P i fo<r<@b—et
200
1
> if(b—e)*<r<(—e?
Jr+e—d
2B ’ P
alE -tz = ifc—e)*<r< e 2tP
- 2
—Jr+e—a
2a ’

4
if (e—a:b) <r<(e—a?

0, ifr> (e—a)4

and finally we get:

+oo
K[§] = / Cr{(€ —e)* = r)dr
0

7((e7a)+(e7b))5 (ﬂfa)
- 2 "\ 5a8
(e—a)+(e—b)\* [a(d—e) +Ble—a)
* 2 ) ' 2aB

<e—a)5+(b—e)5 (c—e)?
100 100 108

+

2nd case:e > b

1
5 ifo<r<(c—e?

Yr+e—d

= 4

o ad _a+b

-t zn=1 €7 S'S(e z)
—Jr+e—a
2a ’

4
if (e—azib> <r<(e-at

0. ifr>(e—a)?

and finally we get:

+00
Kig] = f Cr{(E — 0)* = r)dr
0

_(le—a+E-b\ (p-w

-(= ) (%)

+((E—H)+(£’—b) 4 (a(d—e)+ﬁ(e—a))
2 ’ 2ap

(e—a® (c—e’
10¢ 108

(ii) When o < B, we use a similar way to calculate K[£].
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(iii) When o = 8, we have:

i —etzr=] 2 4

o =d — ¢ = b — aand this result implies that:

+00
K[£] =f Cr{ —e)* = r)dr
0

_5l(c —b) + BI* + 108%[(c — b) + BI* + B*
a 160 ’

(2) Let & = (a, b, ¢) be a triangular fuzzy variable such that
E[§] = e, @ = b—a, B = c—b.By using the fact that Cr{(£ —e)* >
r}=Cr{ —e > Jr} v Cr{€ — e < J/r}, we can easily obtain the
following results:

(i)When e« > g, thene < band

TR il inl Y JOR
2«
_Vite-c
286
i (b 4 a+p 4
i —etzn={ - =r={—
—Jr+e—a
2a '4
if(a:ﬁ) <r<(-a?
0, ifr>(e—a?

and finally we get:

+oo
K[s]=f Cr{& — ) > ridr
0

2530 + 395" + 17aB* + 2900° B2 + 7007 B° — B°
- 10.240« '

(ii) When & < 8, we use a similar way to calculate K[£].
(iii) When o = B, we have:

o— 4
20

0

k

fo<r<a
4

G —e)* >r) =
ifr >a

where « = ¢ — b = b — a and this result implies that: K[§] =

fraiE-et=rdr=%. o

Proof of Corollary 3. We deduce these results from Proposition 3.
m]

Proof of Proposition 6. Let 6 € ® andr € R. With (16), we have:
[E—e7]* = {((f —o¥ :g =¢. Thus we distinguish two cases
as follows:

() IF£0) < e, then [(£(0) — e) 1% = (5(0) — e)*. And
[(E@)—e) 1P =1 (EO)—e)? >71.

(i) IF£(0) > e, then [(£(8) —e)~]1* = Oand (£(0) — e)? >
[(£(8) — e)~]?. Thus the inequality [(£(8) — e)~]** > r implies
(£(0) — €)% > r.We deduce that V0,1, {0/[(£(0) — e)"]? > r}

c {0/(E@®) — e)® > r}. Since Cr is monotone, we have:

vr, Cr{[(§ —e) 1?7 = r} < Cr{(5§ — e)® > r}. Hence K[§] =

L CrE = = ridr = 7706 — )7 = ridr = K°[£].
Forp = 2, we show (24). O

Proof of Proposition 7. Assume that & is symmetric and let p €
N*,

(«): Assume that Cr{§ = e} = 1. Thus we have: Cr{§ —e =
0} = 1iff Cr{(€ — e)* = 0} = 1. With the self-duality of Cr, we
have Cr{(§ — e)® # 0} = 0.

Letr > 0. We have: Cr{(§ —e)® > r} < Cr{(§ — )% > 0} <
Cr{(&€ —e)? # 0} = 0.That means Vr > 0, Cr{(§ —e)?? > r} =0.
And we deduce K[£] = uMQ Cr{(¢ —e)® > r}dr = 0.

(=) Assume that K[£] = 0. Since Cr takes values in [0; 1],
this equality means Cr{(§ — e)® > r} = 0,Vr > 0. Since Cr is
self-dual, we have Cr{(§ — e)® = 0} = 1 and we deduce that
Cr{& —e =0} = 1,thatis,Cr{&§ =e} = 1.

Assume that & is symmetric and replace p = 2 in the precede
proof to obtain (25). 0O

Proof of Proposition 8. Let p € N*. Assume that M,,[§] = 0.
With Proposition 6, we have M3,[£] = 0.

Assume that M3 [§] = 0. that is, E[[(§ — e)~]*’] = 0. Since

E[[(§ —e) 1) = [,"™ Cr{[(§ — &) 1 = r}dr, and the credibility
measure Cr takes its value in [0; 1], then Cr{[(§ — e)"]? > r} =
0, Vr > 0.By the self-duality of Cr, we have Cr{[(§ —e) ]?" = 0} =
1 and, deduce that

Cr{E—e)” =0} =1. (35)

Sinceé —e = (6 —e)~ + (£ —e)*, then(35) implies& —e = (& —
O AndE[E —o)] =E[(E—o) ] = [ Cr{(§ —o)* = r}dr =0.
This equality implies that Cr{(¢§ —e)™ > r} =0, Vr > 0. Since Cr
is self-dual, we obtain Cr{(§ —e)" =0} = 1.

With Cr{(§ —e)~ = 0} = land Cr{(§ —e)™ = 0} = 1,
we deduce Cr{(§ —e) = 0} = 1, thatis, Cr{§ = e} = 1.
With Proposition 7, we have Mp,[§] = 0. Whenp = 2 and £ is
symmetric we obtain (26). O

Proof of Proposition 9. p € N*. Assume that & is symmetric and

let us show (27).
Since Myp[€] = [ Cr{(6 — e)® > r}dr and M [E] =
0+°° Cr{[(€—e)~]% > r}dr, it suffices to show that: Cr{(£ —e)*

r} = Cr{[(€ — e)~]% > r}. For that we distinguish two cases:

v

- Ifr < 0, then we have Cr{(§ — e)? > r} = Cr{[(§ — e)"]*
r}=0C{@}=1.

- If r > 0, then (with r = r??) and assume that r’ > 0. We
have (6 —e)® > r & (£ —e) €] — oo; —1'] U [1'; 40,
and [ —e) 1% > 1 & (§—e) €] — oo —r']U[r'; +ool.
Therefore, we obtain Cr{(§ —e)? > r} = 1-Cr{—1' < &—e <
FLC{[(E —e) 1P >r}=1-Cr{—r' < (§—e)” <1’}

v

It rests to show that Cr{—1r" < & —e < r'} = Cf{—1' <
E—-e)~ <1}

Let 4« be the membership function of & — e and u’ be the
membership function of (§ — e)~. Let us recall that ©/ =
{u ifs <e

0  otherwise.
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Peng et al (Int J Uncertain Fuzziness Knowl Based Syst 15:29-41, 2007) introduced, by means of the credibility
measure, two dominance relations on fuzzy variables, namely the first- and the second-order dominances. In this
paper, we characterize each of these dominance relations, and we justify that they satisfy six well-known properties
of comparison methods. We propose a Game Theory approach for the determination of optimal portfolios when
returns are fuzzy by introducing the set of best portfolios with respect to the first- and the second-order dominances.
Based on the characterization of the first-order dominance, we numerically display some of the best portfolios of the

classical set of portfolios of seven independent assets described by triangular fuzzy numbers.
Journal of the Operational Research Society (2017). doi:10.1057/s41274-016-0164-5

Keywords: credibility measure; fuzzy variable; first-order dominance; second-order dominance; set of best portfolios

1. Introduction

A part of the literature on portfolio selection deals with the fact
that asset future returns are represented by random variables.
Thus, from seminal works of Markowitz (1952) and Tobin
(1965), many scholars (Brogan and Stidham 2008; Dentcheva
and Ruszczynski 2004; Grauer and Best 1991; Konno and
Suzuki 1995; Kraus and Litzenberger 1976; Samuelson 1970;
Sengupta 1989; Sharpe 1971) develop tools on random
variables in order to determine the best portfolios. We do
not consider this literature in this paper.

However, we sometimes faced up to situations where random
variables values are not completely known. In some cases, an
investor seeks expert’s advice to get an idea on the investment’s
future returns and the expert’s opinion can be a vague concept
such as “around 20MU',” “about 20MU,” “between 18MU and
22MU.” There are much other information and knowledge that
cannot generally be well described by random variables because
of database with incomplete or wrong information and some-
times the lack of sample data. For instance, investors in energy
sector would like to estimate the coal reserves in some area, but
even so after exploration, analysis drawn by appraisers will

*Correspondence: Jules Sadefo Kamdem, DFR SJE, Campus de Troubiran,
Université de Guyane, B.P. 792, 97337 Cayenne Cedex, France.

E-mail: jsadefo@gmail.com; jules.sadefo@univ-guyane.fr;
sadefo@lameta.univ-montp1.fr

'MU: Monetary Unit

always be “about billions of tons.” The precede estimation
“billions of tons” is a value expert’s estimation rather than
observation because the coal reserve has an exact true value that
we do not know but estimate. In such situations, future returns
expressed as vague concepts are represented by fuzzy variables.
Therefore, scholars ( Liu and Liu 2002; Huang 2008; Li er al,
2010; Sadefo Kamdem et al, 2012) studied, by means of the
credibility measure, moments and semi-moments of fuzzy
variables and they used the obtained theoretical results to
propose portfolio optimization models when returns are fuzzy. In
that approach based on parameters of fuzzy variables (namely
quantitative approach), we have the mean-variance model
proposed by Huang (2008), the mean—variance—skewness model
proposed by Li et al, (2010) and the mean—variance—skewness—
semi-kurtosis model proposed by Sadefo Kamdem et al (2012).
More recently, Chen and Tsaur (2016) proposed a weighted
fuzzy portfolio model based on a weighted function of
possibility mean and variance in order to approach portfolio
selection differently in response to the varying investment return.
Saborido et al (2016) proposed the mean—downside risk
skewness model for portfolio selection which takes into account
the multidimensional nature of the portfolio selection problem.
Bilbao-Terol et al (2016) proposed a sequential goal program-
ming model with fuzzy hierarchies for solving portfolio selection
problem. In fuzzy portfolio theory, some proposed models are
sometimes implemented by efficient algorithms such as muta-
tion, crossover and reparation operators proposed by Saborido
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et al (2016) and the fuzzy goal programming and linear physical
programming applied by Kucukbay and Araz (2016).

It is important to notice that for most of the previously cited
models, constraints are defined by means of target values, that
is, all selected (best) portfolios depend on given target values.
For instance, risky investors would like to maximize their
benefits as possible with a maximum risk level to avoid,
whereas risk-averse investors intend first to reduce the risk of
investment with a minimum benefit to obtain. This method is
not flexible in the sense that it proposes optimal portfolios by
taking into account investor’s preferences given by different
target values, which can vary from one to another and
consequently does not solve this problem in a general way. On
the other hand, it is burdensome for an investor to evaluate risk
in all situations. However, Georgescu and Kinnunen (2013)
proved that the risk evaluation depends on the fact that the
agent or investor is more or less risk averse and they propose
the credibility index of riskiness of Aumann—Serrano type to
evaluate and to compare two risks described by fuzzy
variables. Our new approach focuses on the determination of
optimal portfolios in the case where there is no information
relative to the investor’s preferences.

This approach is based on ranking of several alternatives
(variables). Some scholars (Cheng et al, 2012; Chu and Tsao
2002; Detyniecki and Yager 2001; Peng et al, 2007; Saeidifar
2011 and, Wang and Kerre 2001) proposed several approaches
and properties for ranking fuzzy variables with respect to
possibility or credibility measures. In this paper, we focus on
two dominances, namely the first- and the second-order
dominances, introduced by Peng er al (2007) as a fuzzy
extension of stochastic dominance of random variables to fuzzy
variables. In order to improve first results obtained by Peng et al
(2007), we propose characterizations of these two dominances,
we determine some properties for those dominances, and we
bring a contribution to portfolio selection problem by introduc-
ing an approach, inspired from Game Theory and based on
dominances, for obtaining optimal portfolios.

The paper is planned as follows: Section 2 reviews some
useful notions on credibility measure and credibility distribution
of a fuzzy variable introduced by Liu and Liu (2002). We end
by recalling the first- and the second-order dominance relations
on fuzzy variables introduced by Peng et al (2007). In
Section 3, we characterize the first-order dominance for trape-
zoidal fuzzy numbers and we justify that it is not a complete
binary relation (it does not compare some couples of trapezoidal
fuzzy numbers). We introduce the two notions of interval of
coincidence and crossing point of two fuzzy variables. We use
crossing points to characterize the second-order dominance
relation and we justify that it is not a complete relation. We
establish that the first-order dominance is stronger that the
second one and we prove that the two dominances satisfy six
well-known properties of comparison methods of fuzzy vari-
ables. We apply the two proposed dominances in portfolio
selection by introducing the set of best portfolios of a finite
number of assets with respect to the first- and the second-order

dominance. Based on characterization of the first-order dom-
inance, we implement new notion to numerically display some
of the best portfolios of the usual example of the set of
portfolios of seven assets introduced by Huang (2008). Com-
parisons of the three best portfolios with those obtained by the
quantitative approach are presented. Section 4 gives some
concluding remarks, and Section | is Appendix containing
characterization of crossing points of fuzzy variables, proofs of
some results and some parameters of a triangular fuzzy number.

2. Preliminaries

Let & be a fuzzy variable described on R by its membership
function g interpreted as: for any x € R, u(x) represents the
degree that ¢ takes value x. The core of ¢ is a crisp subset of R
defined by Cor(¢) = {x € R, u(x) = 1}.

A fuzzy number ¢ which is a fuzzy variable satisfying:
Ja,b,c,d € R witha <b<c<dsuch that (1) uis upper semi-
continuous, (2) Vr & |a,d], u(r) =0, (3) p is increasing on
[a, b] and decreasing on [c, d] and (4) Vr € [b,c], u(r) = 1.
Thus, we denote it by & = (a,b,c,d). In the particular case
where y is a straight line on [a, b] and [¢, d], ¢ = (a,b,c,d) is
the usual and well-known trapezoidal fuzzy number. If b = ¢,
then ¢ = (a,b,d) is a triangular fuzzy number.

Liu (2004, 2014) and Liu and Liu (2002) introduced the
credibility measure defined as follows: for any set B,

Cr({éeBD:%(sg’g ulx) — sup ll(x)+1)< (1)

Notice that it is an average of the possibility and necessity
measures introduced earlier by Zadeh (1978) as follows: for
any set B, Pos({¢ € B}) = sup,.; p(x) and Nec({¢ € B}) =
= supepe pu(x).

Liu (2004) defined the cumulative credibility distribution
function (for short distribution function) ® : R — [0,1] of a
fuzzy variable ¢ as follows:

1
2

VieR,®(t)=Cr{é<t} =1+ sup p(x) — sup pu(x)|.
|

x€]—o0;1] x€|ti+o0|

2
Liu (2004) proved that @ is a continuous function.

The distribution function @® of a fuzzy number &=
(a,b,c,d) is defined by:

0 if r<a
;;A(r) if a<r<b
Vre R, 0(r) = % ifbsr<e g
l—%,u(r) if c<r<d
1 it d<r
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@ is an increasing function, that is, Vx € [a,b],Vy € [b,c],Vz €
[e,d], D(x) <D(y) < D(z). With (3), it is easy to check that ®
is a continuous function using the fact that the membership
function g is upper semi-continuous.

Throughout this paper: @, ®, are distribution functions of
the fuzzy variables & and &, respectively.

Let us end this section by recalling the first- and second-
order dominance relations on the set of fuzzy variables
introduced by Peng er al (2005).

Definition 1 (See Peng et al, 2007, pages 32 and 33, Defi-
nitions 7 and 8)

1. The first-order dominance is the binary relation on
fuzzy variables denoted >, and defined by:

=18 if Ve R Dy (r) < Ds(r). )

I

2. The second-order dominance is the binary relation on
fuzzy variables denoted =, and defined by:
t

[@,(r) = @y (r)]dr>0. (5)

o0

&= & if VtGR-,/

In the definition of >, we note that [*_[®,(r) — ®;(r)|dr
represents a balance of areas between the curves of ®; and @,
that is, the difference of areas resulting from integrating each
function from —oo to t, with the following order: the area
below the curve of ®, minus the area below the curve of @;.

From the previous definitions, we deduce strict
dominance relations by: & =y & iff (VreR,®(r)<®,
(r) and FreeR, @ (ro) <D2(r0)) and & &iff

1 T
{V’ER’-L,X [@o(r)=@1(Mldr>0 1 dition, the indiffer-
3toER, [ [®y(r) =D (r)]dr>0
ence of = is given by: &~ &fVrER, @) (r)=0,(r).

In the next section, we study the two-order dominance

relations on fuzzy variables.

3. First- and second-order dominances:
characterization, properties and application

In the following subsection, we characterize the first-order
dominance on trapezoidal fuzzy numbers and we justify that it
is not a complete binary relation on fuzzy variables.

3.1. First-order dominance: characterization
and not completeness

Our first main result characterizes >, for two trapezoidal

fuzzy variables.

Theorem 1 Let & = (a,b,c,d) and & = (d b, c/,d') be
two trapezoidal fuzzy variables.

1.

a>ad
. . >0
SRS R4 o> (6)
d>d
2. & ~1& ifandonlyif &) =&,

In other words, &%#,&, if and only if (a<d' or b<l' or
c<d ord<d).

By means of >, Figure 1 illustrates that on left, trapezoidal
fuzzy number & = (d/,b',c/,d’) dominates &, = (a,b,c,d)
while on right, neither dominates another.

Proof 1) (=) It is obvious to prove the necessary condition.
(<) Assume that that a>d’, b>b', c>¢ and d > d'.

Let us prove that &; = &, that is, Vr € R, @ (r) < Dy(r).

We consider the 8 following cases : r €] —oo;d],
reldial, re[bia, remax(a,b);b], re b,
r e [¢;min(e,d’)], r € [min(c,d');d], r € [d;+oc[, and
the results are easily obtained according to relation (3). O

The following example compares two trapezoidal fuzzy
numbers by means of the previous characterization, and it
justifies that > is not a complete binary relation.

Example 1 1. Let us consider the three trapezoidal fuzzy
numbers:  p; = (-2,-1,4,9), p,=(1,2,3,7) and
p3 = (2,3,4,8). We have the three following compar-
isons: p3 =1 py. p3 7, py since 8<9 and p, #, p; since
3<4 and 7<9.

2. p; and p, are incomparable by means of the first-
order dominance.

In the following subsection, we characterize the second-
order dominance relation >, . For that, we proceed as follows:
we introduce the notion of interval of coincidence of two fuzzy
variables, and we use it to introduce the notion of crossing
points of two fuzzy variables. We then characterize the
dominance by means of crossing points. We characterize
crossing points for two trapezoidal fuzzy variables in
Appendix.

3.2. Characterization of the second-order dominance

3.2.1. Interval of coincidence and crossing points for fuzzy
variables The intervals of coincidence of two fuzzy variables
are the half-open interval, open at the right, where the two
curves of their distributions functions coincide. For example,
in Figure 2, the two straight lines entitled 1.C. are the two
intervals of coincidence of two curves. Formally, we have:
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ab cdab ¢ d a b ab ¢ dc d

Figure 1 On left,(a’,b',c’,d") dominates (a, b, ¢, d), and on right, they are incomparable, with respect to the first-order dominance.

0 0 7

Figure 2 On left, crossing a point of two distribution function and on right intervals of coincidence of two distribution functions.

Definition 2 The half-open interval [a, b), with a<b is an CP of type I if there exists some e > 0 such that for all
interval of coincidence (IC) for ®@; and @, if @,(r) = s € (0,¢), we have
D,(z) for all € [a, b). D1(a—s) £ Dofa—s)
From this definition, we can deduce that any value #y @ (tg+5) # Dyt +5)
belongs to an interval of coincidence if there exists some € > 0 Dy (a—s)—Dy(a—s) <0 and O (tg+s)—Dy(to+s) >0
such that the interval 1o, 1) + ¢) is IC. or
We now introduce two types of crossing points for Dy(a—s5)—Dy(a—s)>0 and D(tg+s)—Da(tg+s) <0

fuzzy variables, namely crossing points of types I and II.
The crossing point of type II of & and &, is the point
where the two curves of their distribution functions intersect

2. Any other value #, corresponds to a CP of type II if
there exists some ¢ > 0 such that for all s € (0,¢), we

and the curve which strictly minimizes before that point have

strictly maximizes after it. The crossing point of type I @y (19— 5) # Dy (g — 5)

of ¢ and ¢, is the upper bound of a given interval of Oy (1 +5) £ sty +5)

coincidence (point where the two curves of the distribution @y (19— 5) — Dy(to—5) <0 and Dy (tg+5) — Dy(ty+5) >0
functions coincide before it and are distinct after it). oF

Formally, we have the following definition. Characteriza- ®(a—s5)—Dy(a—s) >0 and Dy (tg+s)— D;(to+5) <O
tions of crossing points for trapezoidal fuzzy numbers are

given in Appendix. 3. Convention: (a) if #y belongs to an IC, it does not

correspond to a CP; (b) let my = inf{t/®(r) > 0}

and my = inf{z/®,(r) > 0}, and let 1, = min(m,,

1. If o does not belong to an IC, but [a, 1) is an IC and my) : the interval (—oo,#;) is an IC and #; does not
a = inf ¢ such that [a, ty) is an IC, ty corresponds to a correspond to a CP.

Definition 3 Crossing points (CP)
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We notice that Osuna (2012) (Definition 3.2 of page 760)
introduced interval of coincidence and crossing points for
random variables. Therefore, the previous definitions are fuzzy
counterparts of such notions.

In the following, we characterize by means of crossing
points the second-order dominance of two fuzzy variables. We
display one example of comparison of two trapezoidal fuzzy
variables by means of such characterization, and we justify
that this dominance does not compare some couples of
trapezoidal fuzzy variables.

3.2.2. Second-order dominance: characterization and non-
completeness Our second main result establishes a
characterization of the second-order dominance relation.
The definition of this dominance stipulates that we compare
two fuzzy variables by checking the positivity of the balance
area between the two curves of their distribution functions
from the left (—oo) to each real number 7. Since we have
infinite real numbers, we have to check infinite areas in order
to compare two fuzzy variables by means of the second-order
dominance. In addition to this definition, the following
theorem stipulates that we have to check a finite number of
areas from the left to each crossing point between the two
variables (since crossing points are finite). Its proof is in

Appendix.

Theorem 2 Let & and &, be two fuzzy variables with a finite
number of crossing points {to1,...,tn} (ordered so
increasing) such that to; > min{inf{z : ®;(¢) > 0},inf
{t: ®,(t) > 0}}. Let ®y and @, their respective abso-
lutely continuous credibility distributions. Then,

&) =2 & if and only if

Vi€ {1,2,..k}, ["[@:(r) — @y (r)]dr >0
S 21 @a(r) = @y(r)]dr =0 and
Fton € {tor, -, tox}, J™ [@2(r) — D (r)]dr > 0
S [@a(r) = @ (n)dr > 0
™

Remark 1 1. We have an analogous result if Je >0,
3o, Vs € (0,€), g;(ro — s) > p;(ro — ) and ;(ro +5) <
w(ro + ).

2. When there is no crossing point, the distribution’s
curves do not intersect and we can use the first-order
dominance to compare two fuzzy variables.

3. In other words, the second-order dominance relation
=5 is useful for comparing two fuzzy variables when they
cannot be compared with respect to the first-order domi-
nance relation > .

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 2 3 4 5 6 7 8

Figure 3 Incomparable fuzzy variables by means of the second-
order dominance.

The following example compares two trapezoidal fuzzy
variables by means of the second-order dominance relation. It
also justifies that this dominance is not a complete binary
relation on fuzzy variables (see Figure 2).

Example 2 1. Let & =(1,2,3,4) and &, = (—1,0,1,2) be
two trapezoidal fuzzy variables. It is easy to check that
there is no crossing point between ®; and ®,. We have:
S @a(x) — @ (x)] dx =2 > 0, that is, & = & by (7).

2. The binary relation > on the set of fuzzy variables
is not complete. Let &; = (1,3,8) and &, = (2,3,4) be the
two triangular fuzzy variables in Figure 3. The only
crossing point is ) =3 (by using Proposition 3 in
[2[@1(r) = @a(r)ldr =
>0, [72[@(r) — ®y(r))dr == <0 and by Theo-
rem 2, we conclude that &,%#,¢, and cfﬁfch].

Appendix). Then, we have:

In the following subsection, we establish some properties of
the dominances. For that, we establish relationships between
the two dominances and we show that these dominances
satisfy some well-known properties of comparisons methods
of fuzzy variables.

3.3. Comparison and some properties of dominances
The following result stipulates that >, is stronger than >5.
Proposition 1 Let &, and &, be two fuzzy variables. Then,

Gmib=8 o

Proof Let us assume that & = ¢ and we prove that
{R=X<H
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Since Vr € R, ®(r) <®a(r) Ve € R, [*_[®(r) — Dy
(r)] dr>0.0

The following example justifies that the converse of the
previous implication is not true.

Example 3 Let us consider the triangular fuzzy variables
¢ =(1,3,5) and & = (2,3,4). The only crossing point
is ro = 3 (by using Proposition 3 established in Appen-
dix). Then, we have:

3 1 +00 5
S @i(r) = da(n)]dr =5 >0, [ZX[1(r) = @2(r)]
dr =0, and by Theorem 2 , we conclude that & >, &;.
But by Theorem 1, &% &;.

Remark 2 Let us notice that, according to Proposition 1, if
&, does not dominate &, with respect to =5, then &; does
not dominate ¢, with respect to >.

Let us recall six reasonable properties for ordering fuzzy
quantities introduced by Wang and Kerre (2001).

Let S be the set of independent trapezoidal fuzzy variables,
Aand A’ two finite subsets of S and > a comparison method
of two elements of S (dominance relation on S). We denote by
~y and >, its indifference and strict components. Let us
introduce some well-known properties of >;.

Definition 4 (Wang and Kerre 2001, page 380, Section 3)

1. A VAEAA =y A.

2. A)Y(A,B) € A A =y Band B =y A, then A ~ yB.

3. A3) VY(A,BC)e A AxyB and By C=
AryC.

4. Ay) Y(A,B)e A infsupp(A) > supsupp(B) =A =y
B. Stronger version: A) Y(A,B)e A infsupp(A) >
supsupp(B) = A=y B.

5. mAs) Let ABE ANA. A=yBon A& A=y B
on A

6. Ag) Let A,B € A such that A + C, B + C be elements
of A If A=y B, then A+ C =y B+ C. Aj) Let
A,B € A such that A+ C,B + C be elements of A
with C # 0. If A =y B, then A + C =y B+ C.

Our third main result establishes that first- and second-order
dominances satisfy previous properties.

Proposition 2 1) =, satisfies A1, Ay,A3, A4, As,Ag and Ay,

2) = satisfies Ay, Az, A3, A4, As, A and A,

Proofs of some results of Proposition 2 require the following
lemma which stipulates that translating two trapezoidal fuzzy
variables by adding a third trapezoidal fuzzy variable
preserves the crossing points. The proofs of the proposition
and the lemma are in Appendix.

Lemma 1 Let &, & and 0 be three independent trapezoidal
fuzzy variables. ®y, @, @, and ) are, respectively, the
credibility distributions functions of fuzzy variables &, &,
&1+ 0 and & + 0. Then, we have:

o (3rg € R, (ry) = Da(rg)) & (310 € R, D)
(o) = D) (10)).

e For all crossing points v € R between ®; and @, ,
3u, € R, crossing point between @ and ¥, such that:
S [@1(r) = Do(r)] dr = [ [@(r) = @4 (r)] dr.

o [TT@(r) = Do(r)] dr = [TT(@ (r) — Dy(r)] dr.

= )
J—oc

In the following subsection, we apply the characterization of
the first-order dominance for Portfolio Selection in Finance.
For that, we introduce the set of best portfolios as a subset of
portfolios which dominate in each pairwise comparison. Based
on the characterization of the first dominance, we determine
the optimization model that defines that set. We implement, by
means of MATLAB, the obtained model to determine some of
the best portfolios in the set of portfolios of seven assets where
future returns are triangular fuzzy variables introduced by
Huang (2008). We compare parameters of these best portfolios
with the ones of selected portfolios obtained with quantitative
models.

3.4. Application in Finance: set of best portfolios of a finite
number of assets

Let us consider a family A = (), ., of n assets where
returns are described by triangular fuzzy variables. A portfolio
return ¢ associated with A is a linear combination of the n asset
returns defined by ¢ =" x¢& where x; represents the
proportion of capital invested in asset i. We have x; € [0, 1]
and we assume that and Y7, x; = 1, that is, all the capital is
invested (shared) in the n assets. Hence, we have the set of
portfolios associated with A is

”PA:{é:ZX,é,v,x,e[O,l],ijzl and fieA}.
i=1 i=1
®)

The main question is to determine the best portfolios of Py
with respect to one of the two dominance relations. Notice that
the subset of best elements of a set according to a dominance
relation is extremely studied in Game Theory and Social
Choice. Using the well-known Game Theory terminology, we
can say that the best portfolios are Condorcet winners in Py,
that is, portfolios which dominate other ones in each pairwise
comparison. More formally, the set of best portfolios of Py
with respect to - or with respect to -, respectively, denoted
by Bs,(P4) and Bs,(Pa), are, respectively, defined by:
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Bs,(Pa) = {& € Pa,Vn € Pa, & =1 11} 9)
and
By, (Pa) = {¢ € Pa,¥n € Pa, & =2 n}. (10)

According to Remark 2, non-dominated portfolios with respect
to > belong to the family of non-dominated portfolios with
respect to ;. In other words, we have: By, (P4) C Bx, (Pa).
In the rest of this section, we will implement the larger set of
best portfolios By, (P4) defined by (9).

For that, we introduce the following notations. For (x;), - ; -,

()1 <i<n such that x;,y; € [0,1] and 370 x; =370, v =1

maximize
maximize
maximize
subject to
X +x+-+x=1
x>0i=1,...,7.

variables (see Huang 2008; Li er al, 2010; Sadefo Kamdem
et al, 2012):

¢ =(-0.3,1.8,2.3), & =(-04,2.0,2.2), &= (=05,
1.9,2.7), & =(-06,22,2.8), & =(-0.7,24,2.7), &=
(—0.8,2.5,3.0) and &; = (—0.6,1.8,3.0).

In that case, the set of portfolios defined by (8) becomes
Ps = {cf = (—0.3x; — 0.4x; — 0.5x3 — 0.6x4 — 0.7x5 — 0.8x¢
—0.6x7,1.8x) +2xp + 1.9x3 + 2.2x4 + 2.4x5 + 2.5x6 + 1.8 x7,
2.3x) +2.2x + 2.7x3 + 2.8x4 + 2.7x5 + 3x6 + 3x7) whereVi €
{1,..,7},x €[0,1]and ¥} x = 1}.

The multiobjective optimization program which determines
By, (Pa), defined by (12), becomes:

—0.3x; — 0.4x, — 0.5x3 — 0.6x4 — 0.7x5 — 0.8x4 — 0.6x7
1.8x) + 2x2 + 1.9x3 + 2.2x4 + 2.4x5 + 2.5%¢ + 1.8x7
2.3x1 + 2.2X5 + 2.7x3 + 2.8%4 + 2.7X5 + 3Xg + 3X7

(13)

and for all i€ {l,...,n}, & = (ai,bi,c;), we have: &=
(Fxt, .o xn),8(x1, .oy x0), A(xy, .. x,)) and = (F(yi, ..oy
Yu), &8s yn) h(vis .. ya))  where  f(xi,....x) =Y 1,
Xiti, 8(x1, .., Xy) = Yoiy xibjand h(xy, .. x,) = D1 Xici.

Based on characterization of >, (see Theorem 1) and those
notations, (9) becomes:

n

By, (Pa) = {Z/‘":iiv -V()’i)| <i<n

i=1

J s e o) T EP1y 5 oo n)

gxry e X)) =81 e yn) (11)
T(xty s Xn) 2R,
Yihix=130 1

xi€[0,1],y; €[0,1],Vie{l,...,n}

B, (P4) defined by (11) is determined by the following
multiobjective optimization program:

max f(xy, ..., x,)
max g(xy, ..., x,)
max a(xy, ..., %) 5 (12)

Tixi=1
x €[0,1]Vie{l,... n}
In the following, we implement the previous multiobjective
program for the usual family A = (&), ., of seven assets
with returns described by the following triangular fuzzy

The implementation is done with the MATLAB’s command
“gamultiobj” used for multiobjective optimization problems’.

The three last lines of the following table show the three best
portfolios (elements of By (P4)) obtained by solving (13)). In
addition, lines 2 to 5 in Table 1 recall the best portfolios
obtained previously with quantitative approach (by solving
models based on parameters) and given in Table 2 of page 527
of Sadefo Kamdem er al (2012). Notice that each line indicates
how the portfolio shares the capital in the seven assets.

Contrary to the four first portfolios obtained by means of
parameters which indicated that an investor who intends to
invest in the assets described by A must share its capital only
on some assets (in each four first lines, at least one percentage
x; is null), the three best portfolios &, & and ¢” indicate that he
must (1) diversify the capital on different assets (since values
of x; in each of the three portfolios are non-null), and (2) invest
more on the assets &1, &, & and &g (at least 17%) and less on
assets &3, &, and &; (at most 8%). Portfolios in Table 1 can be
viewed as triangular fuzzy variables in the following table.

Lines 2 to 5 of the following table recall parameters (mean,
variance, skewness, kurtosis, semi-variance and semi-kurtosis)
of the four first portfolios in Table 2 (given in Table 3 of page
527 in Sadefo Kamdem er al, 2012), and its three last lines
present the ones of the three best portfolios that we have
computed with formulas recalled in Appendix.

Characteristics of the computer used for this implementation are:
Pentium (R)4, CPU (1.80 GHZ), RAM (512 MO)
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Table 1 Optimal selection from models based on parameters and from the set of best portfolios of > .

Security i 1 (%) 2(%) 3 (%) 4 (%) 5(%) 6 (%) 7 (%)
Huang (2008) 00.00 47.06 00.00 35.28 17.66 00.00 00.00
Li et al (2010) 20.00 00.00 00.00 80.00 00.00 00.00 00.00
Sadefo Kamdem et al (2012) 20.04 00.00 00.00 79.89 00.00 00.07 00.00
Sadefo Kamdem er al (2012) 20.00 00.00 00.00 80.00 00.00 00.00 00.00
Tassak et al (Best portfolio &) 14.77 35.01 32.28 21.7 16.42 20.17 08.2

Tassak et al (Best portfolio &) 39.66 09.2 01.47 01.28 18.83 25.82 03.76
Tassak et al (Best portfolio &) 41.72 05.55 01.10 00.86 17.29 31.47 02.02

Table 2 Optimal portfolios from models and the best portfolios
viewed as triangular fuzzy variables

Optimal portfolio Triangular fuzzy variable

Huang (2008)

Li et al (2010)

Sadefo Kamdem er al (2012)
Sadefo Kamdem et al (2012)
Tassak er al (Best portfolio &)
Tassak er al (Best portfolio &)
Tassak et al (Best portfolio &)

(—0.5;2
(~0.5:2
(—0.5;2
(-0.5;2
(~0.5:2
(-0.5;2
(—0.5:2

Analysis in Table 3 shows that, except the mean, the two new
best portfolios ¢ and ¢ have better parameters (variance,
skewness, kurtosis, semi-variance and semi-kurtosis) than those
of portfolios obtained from quantitative approach, whereas the
third best portfolio & has better semi-variance and semi-
kurtosis. The mean of the three best portfolios is less than those
of the four optimal portfolios by the fact that the latter (models
with parameters) were implemented with the target value of the
mean equals to 1.6 (that was the minimal mean required by the
investor). Therefore, the investor who intends to invest on the
seven assets can choose between the two best portfolios ¢ and &'
(see lines 6 and 7 in Table 2 or Table 1).

We can illustrate these different results by the following
histogram illustrated in Figure 4 (where BP means best
portfolio):

4. Concluding remarks

In this paper, we characterize two tools to compare fuzzy
variables, namely the first- and the second-order dominance

relations. We justify that the first-order dominance is stronger
than the second one and these two binary relations on fuzzy
variables are not complete. We prove that they satisfy six
properties. These results complement the literature on domi-
nance relations on fuzzy variables. The characterization of the
second-order dominance is based on new notions of crossing
points between two fuzzy variables’ distribution functions’
curves . In addition, crossing points of two fuzzy variables have
been characterized by means of their membership functions and
thus complement the literature on characteristics of fuzzy
variables.

We introduce the set of best portfolios as a subset of
portfolios which dominate in each pairwise comparison other
ones through one of the two dominances. The characterization
of the first-order dominance allows us to write an optimization
model describing elements of its set of the best portfolios. The
numerical implementation of the model with the example of
seven triangular assets, introduced by Huang (2008) and used
by Li ef al (2010) and Sadefo Kamdem et al (2012), displays
the best portfolios which have better parameters than those
obtained by Huang (2008), Li et al (2010) and Sadefo Kamdem
et al (2012). This new approach (qualitative approach) for
portfolio selection with fuzzy returns, based on dominances of
fuzzy variables, is flexible (it is not restricted to target values)
and it improves previous approach (quantitative approach) by
providing the best portfolios with better parameters.

One can examine some open questions such as: (1)
comparisons between the first- and second-order dominance
relations and those existing in the literature (for instance,
comparison methods introduced by Wang and Kerre (2001),
(2) determination of the set of best portfolios with respect to
the second-order dominance by using its characterization and

Table 3 Comparison of the four first moments of different optimal and best portfolios

Portfolio Mean Variance Skewness Kurtosis Semi-variance Semi-kurtosis
Huang (2008) 1.6 0.7235 —0.7543 1.7972 0.6124 1.7415
Li et al (2010) 1.6 0.7019 —0.6823 1.7291 0.6141 1.6872
Sadefo Kamdem er al (2012) 1.6 0.7018 —0.6823 1.7290 0.6140 1.6873
Sadefo Kamdem et al (2012) 1.6 0.7019 —0.6823 1.7291 0.6141 1.6872
Tassak et al (Best portfolio &) 1.5605 0.6973 —0.6666 1.7033 0.5832 1.5489
Tassak et al (Best portfolio &) 1.5712 0.69 —0.6634 1.6668 0.5863 1.5585
Tassak et al (Best portfolio ¢") 1.5849 0.7029 —0.687 17273 0.5994 1.6299
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Figure 4 Comparison of characteristic values of optimal portfolio total returns.

(3) determination of necessary and sufficient conditions of the
non-emptiness of the set of best portfolios with respect to an
order dominance relation for a finite number of assets
represented by trapezoidal fuzzy numbers.
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Appendix

Determination of crossing points of two trapezoidal fuzzy
numbers

Definition 3 introduces crossing points of two fuzzy variables
by means of their distributions functions. Since characteriza-
tion of the second dominance is based on those points, it is
important to give a simple way to determine those points for
two trapezoidal fuzzy numbers. Therefore, the three first cases
of the following result stipulate that a crossing point of two
fuzzy numbers is either the intersection point of the increasing
parts of the curves of their membership functions, either the
intersection point of the decreasing parts of such curves, either
the upper bound of the interval of coincidence of the constant
parts of the curves. As illustrated in Figure 5, CP1 is the
crossing point of type I and CP2 is the crossing point of type
11. In addition, the three last cases of the result allow us to find
crossing points when the core of at least one of the fuzzy
numbers is a single point.

Proposition 3 Let & = (a;, bi,ci,d;) and &; = (a;,bj, ¢j, dj)
be two fuzzy variables with p; and p; are their respective
membership functions, ®; and ®; are their respective
distribution functions. Let ry and € be two reals numbers
with € > 0 . We have:

Y Fvin ot
is a crossing point of type II.

2. voe(o.g, { A0 <o (k) > k)
is a crossing point of type II.

3. ([b,‘,C,] c [b]!CJ] and [“iadx] e [“j-””vbi # ci, by #
¢j) = ¢ is a crossing point of type I and b; =
min{r/[t,¢;) is I.C}.

4. (lai,d;] C laj,d],bi = ci,b; # ¢j,b;i € [bj,¢)]) = ciis
a crossing point of type 1I .

5. (lai,di| C laj.dj|,bi # ci,bj = ¢;j,b; € |bi,ci]) = ¢jis

a crossing point of type 11.

=10

=1

Figure 5 Crossing points: type I (CP1) and type II (CP2) of two
trapezoidal fuzzy variables based on their membership functions.

6. (lai.di] C laj,dj].bi = ¢; = bj = ¢j,a; # aj,d; # d;)

= ¢; Is a crossing point of type II.

To establish our result, we need the following lemma.

Lemma 2 Let ry and € be two reals numbers with € > 0. We
have:

- wi(ro = ) <py(ro — 5), ty(ro + 8) > wi(ro + 5) o
1. vse w'”'{m—»\.mﬂ AP = B —5) <®;

(ro —5), Di(ro + ) > ;(ro + ).

Hi(ro = 8) <py(ro = 8), 1(ro + 5) > py(ro +5)
2. Vse(09), { ro—s,10+5 € [ V¢j,d; Adj)

= Oi(rg —5) > O;(ro — 5), Qi(ro +5) <D;(ro +5).
3. VreR,(relbVbciAgl) = O(r) = O;(r).

The proof of this lemma is obvious.

Remark 3 We have an analogous result with ry € R and
€>0 in the following case: Vs € (0,¢), p;(ro —s) >
w(ro —s) and p;(ro + ) <p(ro + 5).

We now give the proof of Proposition 3.

Proof of Proposition 3

1. Letusconsider e > 0,7y € R and s a real number such
that O0<s<e and p;(ro —s) <uj(n) —8) , (ro+
s) > w(ro +5), with rg — 5,79 +5 € lai V a;, b; A bj).
According to Lemma 1, we have ®;(rg — s) <®;(ry —
s) and @;(ry +5) > ®;(rg 4 s) and by Definition 3,
we can conclude that ry is a crossing point of type II.
We prove the converse case by the same manner.

2. We use the same method as in (1).

3. Let us prove that ¢; is a crossing point of type L.
[biyci] € [bj,cjl = [bi V bj,ci Acj] = [bi,ci] and by
Lemma 2 and Definition 2, we have: b; = min{z/
[t,¢i)is1.C}. Now, let us find ¢ > 0 such that Vs :
0<s<eg, ®i(bi —s)<Dj(b; —s) and Di(c; +5) >
(i + ).

i) If b; # bjand ¢; # ¢; Then, we set g = (b; — b;) A
(¢j — ¢;) and we easily check that ¢y > 0 according
to the fact that [b;, ;| C [bj, ¢;] and b; # bj,¢; # ¢;.
We have two cases: first case: b; — b;<c; — ¢; We
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have €y = b; — b;, and b; — €y = bj,¢c; + €0 = ¢; +
bi — bj. We obtain: @;(b; — s) <D;(b;) :% because
b; — s<b; and ®; increases; on the other hand, by
the fact that 0<s<ep, and ®; increases, we have:
;(b; — s) > j(b; — €0) = ;(b;) = 5. Furthermore,
Di(c; +5) > Di(c;) :% because ®; increases and
Di(ci + 5) <Dj(c;) = % ci+s<ci+
€ <c¢; + ¢ — ¢; = ¢; and @; increases. Second case:
¢j—c;<bj—b;Wehave eg =c¢; —¢;,and ¢; + ¢ =
¢jybi — o = bj —¢j+¢;. We obtain @;(b; —s) —
®;(b; — s) <0 because: ®;(b; —5)<P;(b;) =1 and
bi—e—bj=b;—bj—(cj—c¢;) >0, that is,
b; — &g > bj, 50 Bj(b;—s) > ;(bi— o) > Dj(b)) = §
as @; increases and b; — €y > b;. Furthermore, Di(ci+
§)=®j(ci+s) >0 ; indeed, ¢;+s<ci+e=c¢j, 0
®;(ci+5) <®;(c;) =4%. On the other hand ®; increa-
ses and @;(¢;+s) > (I),‘(C;):%.

because

ii) If b; = b; and ¢; # ¢; Then, € = ¢; —¢; and we

easily conclude as in i).

iii) If ¢; = ¢; and b; # b; Then, ¢y = b; — b; and we

easily conclude as in i).

iv) If ¢; = ¢j and b; = b;. Then, we take €g = (b; — ;) A

(dj — ¢;). It is easy to check that for all s such that
0<s<e, we have: b —s € (aj,b;) and ¢j+s €
(ci,dj). (ci = cj,bi =by) = [bj,¢j] = [bi,ci]; thus,
the support of ¢; is included in the support of ¢; and
their cores coincide that means y; and g; coincide
only in [bj,¢;], and this justifies the fact that Vs €
(@, bi), pi(s) > pi(s) and Vs € (ci, dj), pis) <py(s)-
Furthermore, Vs € [a;, b;), ®;(s) > ®;(s) by the fact
that 4(s) > p;(s) and Vs € [c;, d;), ®;(s) <Di(s) by
the fact that g,(s) <p(s); these last inequalities lead
us to Qi(cj +5) > Oj(c; + s), Vi(bj— 5) <D;(b; +5).

4. By taking ey = min(b; — bj,c; — b;), we can easily

check that Vs such that: 0<s<e, ®;(c;—s)<®;
(ci —5), Di(ci +5) > Di(c; +3).

By taking ¢y = min(b; — b;,c; — b;,) we can ecasily
check that Vs such that: 0 <s<e, ®j(c; —5) <D;(c; —
s), Qi(cj+5) > Oi(c; +5).

By taking ¢y = min(a; — a;,d; — d;), we can easily
check that Vs such that: 0<s<e, Dj(c;i—s)>
D;(cj —5), Dj(c; +5) <Di(c; +5). O

Proof of Theorem 2 The proof is similar to the one proposed

by Osuna (2012) for random variables.

In the following, we establish the proofs of the fol-

lowing results: Lemma 1 and Proposition 2. []

Proofs of some results

We establish the proof of Lemma 1.

1 Y 7 R
‘!'//V ! | \\ |\\\
v, 17//;;{.( ] : A | .
7 \ AN
S AN .
0 a' b b ¢ d ¢ d

Figure 6 A particular position of two trapezoidal fuzzy
variables.

Proof of Lemma 1 Let us consider the assumptions of the
lemma. We set: & = (a,b,c,d), & = (d,b',¢,d') and
0= (d",b",c",d"). Without loss of generality, we sup-
pose in all these proofs that a <d' <b' <b<c' <c<d' <d
(see Figure 6 for illustration). The other cases can be
proved in the same way. By writing &, + 0 = (a +da”,b +

b c+c",d+d") and

EGH+0=(d+d b +b"c+

¢”,d" +d") and by considering the crossing points v =

d (b—a)—a(t/—d'
b-a)-(—a)

(type 1I) and v, = ¢’ (type D)(see Figure 6),

we easily obtain the proof.

We now establish the proof of Proposition 2. [J

Proof of Proposition 2 We consider, ¢ = (a,b,¢,d), n=
(@, b',c,d") and 6 = (a",b",c",d") be three elements of
A with respective credibility distributions functions @,

@,
b+b'.c+c.d+d"),

®;. Let us suppose that ¢+y=(a+d’,

n+0=(d+d,b+b"c+

", d' +d") are two elements of A and that @, @) are
their respective credibility distributions functions.

1.

Those properties can be easily proved for the first-
order dominance relation ».

Second-order dominance >5: Properties A1,A;, Az, Ay
and As can be checked easily. Ag) Let us assume that
& =5 n. By the characterization of >, we have: For
all crossing points v € R, between ® and @', [*
[©:(r) = @y (r)] dr >0 and sz[lbz(r) — @ (r)] dr
> 0. According to Lemma 2, Vu, € R, crossing point
between @) and @), ["[@y(r) — Dy (r)] dr =
S [@5(r) — @) (r)] dr >0. and [ [®(r) — Dy (r)]
dr = [*X[®)(r) — @ (r)] dr > 0. Thus, &+ 0 =5 n+
0. A}) The proof is similar to the one of Ag.

The proof is ended. [

We recall formulas of different characteristics of a triangu-
lar fuzzy variable ¢ = (a,b,c) with finite expected value
e (see Sadefo Kamdem et al, 2012). For that, we set: o =
max(b —a,c — b) and y = min(b — a,c — b).
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1. Expected value and variance: 4. Semi-variance:
v A+2b+¢ | 4
e=E]=——— and £ = _a)? oV 3
4 1 sv[¢] Sb—a) {(e a) +(bfc) (b—e)"min(0, (b —e) )}
Vi = 3303 + 2103, + Loy 7 — B ' '
= 3841, : 5. Semi-kurtosis:
’ 1
2. Skewness: Spe o NS B
wness K°[g 00 —a) {(e a) +(h—(') (b—e)” min(0, (b e))].
NEE ( ;2 ) (c+a—2b).
3. K Received 8 June 2016;
- nurtosts: accepted 28 November 2016
K[E] = 25301 +39504y + 1707* +2900372 +70037° —9°
= 10.2400, :
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