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RESUME

Zadeh [40] a proposé la mesure de possibilité et la mesure de nécessité pour décrire les

expressions vagues. Ces mesures ont permis d’étudier les caractéristiques d’une variable floue

et d’appliquer les résultats obtenus dans divers domaines (agriculture, médécine, finance,...).

Cependant, ces deux premières mesures n’étant pas duales, Liu [20] a proposé la mesure de

crédibilité qui est la moyenne arithmétique des deux mesures précédentes. A l’aide de cette

mesure de crédibilité, il a défini les deux premiers moments d’une variable floue: l’espérance

mathématique et la variance. De plus, Huang [11] et Li et al. [16] ont proposé respectivement

la semi-variance et le coefficient d’asymétrie d’une variable floue et les ont utilisés pour la

détermination d’un portefeuille optimal dans un ensemble de portfeuilles d’un nombre fini

d’actifs dont les rendements sont exprimés par des expressions vagues. Peng et al. [27] ont

introduit deux relations de dominance sur les variables floues et ils les ont utilisées pour

l’analyse du risque.

Dans cette thèse, nous introduisons, à l’aide de la mesure de crédibilité, les moments

et les semi-moments d’ordre k (k est un entier naturel non nul) ainsi qu’une nouvelle rela-

tion de dominance. Nous déterminons les propriétés de ces moments et semi-moments, nous

caractérisons chacune de ces trois dominances et nous déterminons leurs propriétés.
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Les résultats théoriques obtenus sont appliqués à la détermination d’un portefeuille opti-

mal d’actifs dont les rendements sont vagues et représentés par des nombres flous triangulaires

selon deux approches: l’approche basée sur les quatre premiers moments et l’approche basée

sur les portefeuilles non dominés.

Mots clés: Variable floue, Mesure de crédibilité, Moments, Relation de dominance, Porte-

feuille optimal.

TASSAK DEFFO CHRISTIAN PhD. Thesis



ABSTRACT

In the literature, three measures were proposed to deal with imprecision and uncertainty

in phenomenons. Zadeh [40] proposed the two first measures, namely possibility and necessity

measures, and they enable to determine and study fuzzy variable’s parameters and to apply

theoretical results in some research areas (medical diagnosis, robot control, strategic decision,

games,...). The third measure, namely credibility measure and proposed by Liu [20], is a dual

measure and the average of the two first measures. Following that, scholars (Liu [20], Huang

[11], Li et al. [16]) determined the three first moments (mean, variance, skewness) and the

first semi-moment (semi-variance) of a fuzzy variable. They used the obtained results to solve

portfolio selection problem with fuzzy returns by means of the mean-semi-variance model and

the mean-variance-skewness model. Furthermore, Peng et al. [27] introduced two dominance

relations on fuzzy variables, namely the first and the second order dominances, and they used

them to analyze risk in fuzzy context.

In this thesis, we introduce moments and semi-moments of order k (k ∈ N) of a fuzzy

variable and we study their properties. We introduce a new dominance relation on fuzzy

variables, we characterize three dominance relations (the two previous ones and the new one)

and determine their properties.
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1

The obtained theoretical results are applied to solve the main problem of portfolio selec-

tion with fuzzy returns described by triangular fuzzy numbers by means of two approaches:

the first approach based on four first moments (mean, variance, skewness, kurtosis) and the

second approach based on the core of portfolios of a finite family of assets, that is, the subset

of non dominated portfolios.

Keywords: Fuzzy variable, Credibility measure, Moments, Dominance relation, Portfolio

selection.
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INTRODUCTION

Since many decades, portfolio selection theory had been used to solve some problems

in Finance and it contributed to the development of financial market. The main problem is

to invest a given capital on a finite number of assets so that the future return obtained from

that investment has a maximum expected benefit and provides less loss (risk). Notice that

future return is a convex linear combination of futures returns of assets where the scalars of

that combination are the percentages of the capital invested on assets. In that sense, scholars

developed theoretical tools in order to solve portfolio selection question.

In the literature, there are two branches to formalize futures returns in portfolio selection

theory. In the first branch introduced by Markowitz [22], many scholars (Sharpe [33], Stone

[35], Sengupta [32], Grauer [9], Rom and Ferguson [28], Krauss [14] and Konno [13]) described

future returns by random variables, studied ramdom variables and proposed optimization

models of portfolios based on characteristics (parameters) of those variables such as mean,

variance, semi-variance and skewness. We notice that one of those four parameters defines the

objective function of the optimization model and the others define its constraints. We do not

consider this branch of literature in this thesis.

In the second branch that we consider, empirical studies (Tanaka et al. [37], Carlsson et
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al. [6], Huang [10], Smimou et al. [34]) proved that in some situations, future returns cannot

be described by random variables due to lack of information or historical data or human

being feelings. This can be explained by at least two reasons: (i) data bases do not exist or

are incomplete or contain wrong information and values and (ii) in some cases, investors ask

experts’ advice to estimate returns: in fact, an expert can express assets future returns as

follows: “around 20F”, “between 15F and 25F”, “approximately 20F”, “no more than 25F and

no less than 15F”. Following that direction, we develop theoretical tools on fuzzy variables in

order to solve portfolio selection question with vague returns.

To introduce such theoretical tools, we need a measure for fuzzy variables which plays the

similar role as the probability measure for random variables. Zadeh [40] introduced possibility

and necessity measures. These two measures are not dual, that means, even if the chance for

an event to be realized is known, it is not easy to deduce the chance of this event to not

be realized. Recently, Liu [20] introduced credibility measure as a self-dual measure which

is the average of possibility and necessity measures. Based on credibility measure, many

scholars (Liu [20], Huang [11], Li et al. [16]) introduced and studied first parameters of a fuzzy

variable such as mean, variance, semi-variance, skewness. To solve portfolio selection question,

Huang [11] proposed the mean-semi-variance deterministic model and implemented his model

to determine a best portfolio on a set of seven assets with returns described by triangular

fuzzy variables. More later, Li et al. ([16]) proposed the mean-variance-skewness deterministic

model with skewness as objective function. They implemented their model on the same set of

assets and obtained a better sharing of capital on those assets, that is, a portfolio with best

parameters (greater mean, greater skewness, less variance and less semi-variance) than the

one obtained by Huang. As we noticed in the two branches of the literature, expected benefits
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(resp. risks or losses) of a future return are formalized by the mean (resp. variance, semi-

variance and skewness) of the (random or fuzzy) variable representing the return. However,

Peng et al. [27] introduced two binary relations on fuzzy variables, namely the first and the

second order dominance relations, to compare fuzzy variables. They characterize the first

order dominance for triangular fuzzy variables and give some properties of those dominance

relations. Consequently, there is a need to extend such studies based on parameters and

dominance relations of fuzzy variables in order to improve the determination of best portfolios

with fuzzy returns.

The aim of this thesis is to study, by means of the credibility measure, parameters of fuzzy

variables and dominance relations on fuzzy variables in order to tackle the question of portfolio

optimization with fuzzy returns. Our modest contribution to the development of uncertainty

theory and its application in Finance is made up through the following aspects: introduc-

tion of moments and semi-moments of order k of a fuzzy variable, determination of their

properties, introduction of a new dominance relation on fuzzy variables, characterization and

determination of properties of three dominance relations, application in portfolio selection in

Finance by the determination of best portfolios through the mean-variance-skewness-kurtosis

model and by the determination of some non dominated portfolios with respect to the first

order dominance.

This thesis contains five chapters and an appendix which contains some useful notions,

their proofs and two published papers. Chapter one presents some basic notions on fuzzy sets,

fuzzy numbers and fuzzy arithmetic. It recalls definitions and properties of possibility and

necessity measures. It ends with illustration of some parameters of fuzzy numbers based on

the possibility measure introduced by Saeidifar and Pasha [30].
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Chapter two recalls definition and properties of credibility measure and its link with the

membership function of a fuzzy variable. We deduce the credibility that a fuzzy event occurs.

We recall first parameters of a fuzzy variable based on the credibility measure such as mean,

variance, semi-variance and skewness. We deduce some basic properties of mean and variance.

In Chapter three, we introduce moments and semi-moments of a fuzzy variable and deter-

mine their properties. We characterize moments for symmetric fuzzy variables. We compare

moment and semi-moment of a fuzzy variable and determine necessary and sufficient condi-

tion under which even moments of a fuzzy variable are null. The particular cases of kurtosis,

semi-kurtosis, normalized kurtosis and normalized semi-kurtosis of a fuzzy variable are stud-

ied. We compute parameters of a convex linear combination of independent fuzzy variables,

which represents a description of a portfolio with fuzzy returns.

In Chapter four, we introduce a new dominance relation on fuzzy variables, namely the

mean-risk dominance, through the fuzzy lower partial moment of a fuzzy variable. We char-

acterize that new dominance relation and, the first and second order dominance relations.

Comparisons between those dominance relations and some of their properties are established.

Chapter five proposes some new deterministic portfolio optimization models whose objec-

tive function is either kurtosis or semi-kurtosis of portfolios with fuzzy returns. In addition,

we introduce the core of a portfolio of a finite number of assets with respect to the first order

dominance. We establish that it is non empty and is a union of the set of best portfolios and

the set of incomparable portfolios. We implement with Matlab, on the set of portfolios of

the seven assets introduced by Huang [11], our two optimization models and the set of best

portfolios. We display optimal portfolios with respect to our deterministic models and best

portfolios with respect to the first order dominance.
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Finally, we give some concluding remarks and perspectives. The appendix presents some

details on Fuzzy Lower Moments and some proofs.
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Chapter One

Fuzzy sets and possibility theory

In this chapter, we present basic and useful notions on fuzzy sets, fuzzy numbers and fuzzy

arithmetic. We also present some well-known concepts and results obtained in possibility the-

ory.

Throughout this thesis, X is a nonempty set namely the universal set and P(X) is the power

set of X (set of subsets of X). If X is finite, card(X) is its cardinal.

1.1 Fuzzy numbers

1.1.1 Fuzzy numbers and its characteristics

Definition 1.1.1. A fuzzy subset A of X is defined by its membership function: µA : X →

[0, 1] such that, to each x ∈ X, is associated µA(x).

Let x be an element of X. µA(x) represents the membership grade of x to A.

If ∀x ∈ A,µA(x) ∈ {0, 1}, then A becomes a crisp subset of X. A fuzzy subset A of X is

denoted by {(x, µA(x)), x ∈ X}.

Let us recall some useful characteristics of a fuzzy subset.

Definition 1.1.2. Let A be a fuzzy subset of X and α ∈]0, 1].
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Fuzzy sets and possibility theory 10

1. The kernel of A is the crisp subset of X denoted by Ker(A) and defined by:

Ker(A) = {x ∈ X/µA(x) = 1}.

2. The support of A is the crisp subset of X denoted by Supp(A) and defined by:

Supp(A) = {x ∈ X/µA(x) > 0}.

3. The height of A is the real number defined by: supx∈X µA(x).

4. A is a normalized fuzzy subset if supx∈X µA(x) = 1.

5. A is a fuzzy quantity if A is a normalized fuzzy subset of R.

6. The α-level set (α-cut) of A is a crisp subset of X, denoted by Aα and defined by:

Aα = {x ∈ X/µA(x) ≥ α}.

Let us recall definition of a fuzzy number and some usual examples.

Definition 1.1.3. Let A be a fuzzy subset of R and µA its membership function.

A is a fuzzy number if the following conditions are satisfied:

• supx∈R µA(x) = 1.

• µA is convex, that means, ∀x, y ∈ R, ∀λ ∈ [0, 1], µA(λx+(1−λy)) ≥ min(µA(x), µA(y)).

• µA is upper semi-continuous, that is, ∀α ∈]0, 1], Aα is a closed subset of R.

• Supp(A) is a compact subset of R.

Remark 1.1.1. The notions of compact and closure are relative to the usual topology defined

on R.
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Fuzzy sets and possibility theory 11

Example 1.1.1. 1. A trapezoidal fuzzy number denoted by (a, b, c, d) with a < b < c < d

is defined by the following membership function:

∀x ∈ R, µ(x) =


(x−a
b−a ), if a ≤ x ≤ b

1, if b ≤ x ≤ c

(x−d
c−d ), if c ≤ x ≤ d

0, elsewhere

.

In this case, Supp(A) = [a, d] and Ker(A) = [b, c] .

2. When b = c, we obtain the triangular fuzzy number (a, b, d).

Figures 1.1 and 1.2 display the trapezoidal fuzzy number (1, 2, 3, 4) and the triangular

fuzzy number (1, 3.5, 4).

Figure 1.1: Trapezoidal fuzzy number
(1, 2, 3, 4). Figure 1.2: Triangular fuzzy number (1, 3.5, 4).

Throughout this thesis, F is the set of fuzzy numbers of R.

Let us end this paragraph by introducing a well-known family of fuzzy numbers, namely

parametric fuzzy numbers.

Definition 1.1.4. Let A ∈ F . The parametric form of A is defined by its α-level sets by:

∀α ∈ [0, 1], [A]α = [a(α), a(α)].
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Example 1.1.2. 1) Let A be a trapezoidal fuzzy number denoted by (a, b, c, d).

Its parametric form is given by:

∀α ∈ [0, 1], [A]α = [a+ (b− a)α, d− (d− c)α].

2) The parametric form of a triangular fuzzy number A = (a, b, d) is given by:

∀α ∈ [0, 1], [A]α = [a+ (b− a)α, d− (d− b)α].

In the next paragraph, we recall some operations made on fuzzy numbers similarly to

those made on real numbers.

1.1.2 Fuzzy arithmetic

We recall the well-known Zadeh’s Extension Principle which is the basis of fuzzy arithmetic.

Definition 1.1.5. Let Y be a nonempty set and Φ : X → P(Y ) be a mapping that corresponds

to each element x of X, one or many elements of Y .

A fuzzy subset B of Y compatible with Φ and associated with A is defined by:

∀y ∈ Y, µB(y) =

{
sup{x∈X,y=Φ(x)} µA(x) if {x ∈ X, y = Φ(x)} ̸= ∅
0, otherwise

.

Let us apply that principle in an example.

Example 1.1.3. Let us set: X = {a, b, c}, Y = {p, q} two universal sets and

A = {(a; 0.4), (b; 0.7), (c; 0.2)} a fuzzy subset of X. Φ : X → Y is a mapping defined by:

Φ(a) = Φ(c) = q and Φ(b) = p.

Let us define the fuzzy subset B of Y compatible with Φ and associated with A. Its membership

function is given by:

µB(p) = sup{x∈X,p=Φ(x)} µA(x) = sup{µA(b)} = 0.7 and µB(q) = sup{x∈X,q=Φ(x)} µA(x) =

sup{µA(a), µA(c)} = 0.4. Thus, we have: B = {(p; 0.7), (q; 0.4)}.
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Fuzzy sets and possibility theory 13

The first application of Zadeh’s Extension principle is the definition of a unary operation

on F . In the following, we recall such operation and some of its usual examples.

Definition 1.1.6. (Bouchon-Meunier [3]) Let δ be an unary operation defined on R.

A unary operation ∆ defined on F associated with δ is a mapping from F to F that corresponds

to each fuzzy number A, another fuzzy number ∆A whose membership function is defined by:

∀z ∈ R, µ(∆A)(z) = sup{µA(x), x ∈ R and z = δ(x)}.

Let us recall three well-known types of unary operations ∆ defining opposite of a fuzzy

number, inverse of a fuzzy number, and product of a fuzzy number by a real number.

Definition 1.1.7. 1) In the case where δ : R → R, such that δ(x) = −x, and A ∈ F , ∆A is

the opposite of A denoted by −A and whose membership function is defined by:

∀z ∈ R, µ(−A)(z) = µA(−z).

2) In the case where δ : R∗ → R, such that δ(x) = 1
x , and A ∈ F , ∆A is the inverse of A

denoted by 1
A and whose membership function is defined by:

∀z ∈ R∗, µ( 1
A
)(z) = µA(

1

z
).

3) In the case where δ : R → R, such that δ(x) = λx, and A ∈ F , ∆A is the product of A by

the real number λ denoted by λA and whose membership function is defined by:

∀λ ∈ R, ∀z ∈ R, µ(λA)(z) =


µA(λ

−1z) if λ ̸= 0
0 if λ = 0 and z ̸= 0
sup{µA(x), x ∈ R} if λ = 0 and z = 0

.

In the following Example, we apply those three unary operations on a trapezoidal fuzzy

number.
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Example 1.1.4. Let A = (2, 4, 7, 8) be a trapezoidal fuzzy number. Then −A = (−8,−7,−4,−2),

3A = (3, 12, 21, 24) and 1
A = (

1

8
,
1

7
,
1

4
,
1

2
).

Another application of Zadeh’s Extension Principle is the definition of a binary operation

on F . In what follows, we recall such operation and some of its four usual cases.

Definition 1.1.8. Let φ be a binary operation defined on R.

A binary operation ϕ defined on F and associated to φ is a mapping defined from F × F

to F that corresponds to two fuzzy numbers A and A′, another fuzzy number AϕA′ whose

membership function is defined by:

∀z ∈ R, µ(AϕA′)(z) = sup{min(µA(x), µA(y)), (x, y) ∈ R2 and z = φ(x, y)}.

Let us recall four well-known types of binary operations ϕ defining sum, product, difference

and quotient of two fuzzy numbers.

Definition 1.1.9. 1) In the case where φ : R × R → R, such that φ(x, y) = x + y, A ∈ F

and A′ ∈ F , AϕA′ is the sum of A and A′ denoted by A+A′ and whose membership function

is defined by:

∀z ∈ R, µ(A+A′)(z) = sup{min(µA(x), µA(y)), (x, y) ∈ R2 and z = x+ y}.

2) In the case where φ : R×R → R, such that φ(x, y) = xy, A ∈ F and A′ ∈ F , AϕA′ is the

product of A and A′ denoted by A×A′ and whose membership function is defined by:

∀z ∈ R, µ(A×A′)(z) = sup{min(µA(x), µA(y)), (x, y) ∈ R2 and z = xy}.

3) In the case where φ : R× R → R, such that φ(x, y) = x− y, A ∈ F and A′ ∈ F , AϕA′ is

the difference of A and A′ denoted by A−A′ and whose membership function is defined by:

∀z ∈ R, µ(A−A′)(z) = sup{min(µA(x), µA(y)), (x, y) ∈ R2 and z = x− y}.
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4) In the case where φ : R×R∗ → R, such that φ(x, y) = x
y , for A ∈ F and A′ ∈ F , AϕA′ is

the quotient of A and A′ denoted by A
A′ and whose membership function is defined by:

∀z ∈ R, µ( A
A′ )

(z) = sup{min(µA(x), µA(y)), (x, y) ∈ R× R∗ and z =
x

y
}.

In the following Example, we apply the sum on two trapezoidal fuzzy numbers.

Example 1.1.5. Let A = (a, b, c, d) and A′ = (a′, b′, c′, d′) be two trapezoidal fuzzy numbers.

The sum of A and A′ is the trapezoidal fuzzy number: A+A′ = (a+ a′, b+ b′, c+ c′, d+ d′).

The following example presents a concrete situation where we can illustrate the Extension

Principle and some of the previous operations.

Example 1.1.6. John was approximately twenty years old when he arrived in Cameroon.

He left this country roughly two years later after living there for one year and 6 months

approximately.

- How can we characterize the age of John?

- How can we characterize the age of all individuals who are younger than John?

By considering that the universal set X = [0,+∞[ as a time space expressed in years, we

propose answers to these questions in three steps.

1) We assume that we represent:

- the expression “approximately 20 years old” by the triangular fuzzy number

A1 = (20− 1

3
, 20, 20 +

1

3
) = (

59

3
, 20,

61

3
);

- the expression“approximately 2 years old” by the triangular fuzzy number

A2 = (2− 1

12
, 2, 2 +

1

12
) = (

23

12
, 2,

25

12
) and

- the expression “approximately 1 year old and 6 months” by the triangular fuzzy number
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A3 = (
3

2
− 1

12
,
3

2
,
3

2
+

1

12
) = (

17

12
,
3

2
,
19

12
).

2) By applying the sum on F , the age of John is represented by the triangular fuzzy number

A = A1 +A2 +A3 = (23,
47

2
, 24). In order words, John is around 23 and half years old.

3) By applying the Extension Principle where φ is the mapping defined by φ(x) = {y/y ≤

x}, the age of individuals younger than John is defined by the fuzzy subset B of X whose

membership function µB is linked to the membership function of A by the relation µB(y) =

sup{x/y≤x} µA(x). More precisely, we obtain:

µB(y) =


1, if y ∈ [0, 472 ]
2(24− y), if y ∈ [472 , 24]
0, if y ∈ [24,+∞[

.

That means, if you are less than 23 and half years old, you are younger than John, if you are

at least 24 years old, you are not younger than John. If you are between the two ages, you are

younger than John with the degree 2(24− y) where y is your age.

Let us end this subsection with operations on parametrical fuzzy numbers.

Proposition 1.1.1. Let A,B be two fuzzy numbers given by their respective parametric forms

[A]α = [a(α), a(α)], [B]α = [b(α), b(α)] and λ ∈ R.

• The parametric form of the fuzzy number A+B is given by:

[A+B]α = [a(α) + b(α), a(α) + b(α)].

• The parametric form of the fuzzy number λA is given by:

[λA]α = [λa(α), λa(α)].

In the following Subsection, we recall the two first measures introduced by Zadeh [40] and

some parameters of a parametrical fuzzy variable with respect to the possibility measure. For

that, we review notions on σ-algebra.
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1.2 Possibility and necessity measures

1.2.1 σ-algebra

Definition 1.2.1. 1) A collection A consisting of subsets of X is called an algebra over X

if the three following conditions are satisfied: (a) X ∈ A; (b) if A ∈ A then Ac ∈ A; (c) if

A1, A2, ..., An ∈ A, then
∪n

i=1 ∈ A.

2) The collection A is a σ-algebra over X if the two conditions (b) and (c) below are satisfied

and A is closed under countable union, that means, if A1, A2, ... ∈ A, then
∪∞

i=1 ∈ A.

Let us recall some usual examples.

Example 1.2.1. 1) The collection {∅, X} is the smallest σ-algebra over X and the P(X), is

the largest σ-algebra over X.

2) Let A be a subset of X such that A ̸= ∅ and A ̸= X. Then A = {∅, A,Ac, X} is a σ-algebra

generated by A over X.

3) The smallest σ-algebra BR containing all open intervals is called the Borel algebra over the

set of real numbers. We have: B(R) ⊂ PR.

Remark 1.2.1. 1)Each element in P(X) is called an event.

2) When X is finite, we have: card P(X) = 2cardX .

In the following Subsection, we study possibility and necessity measures introduced by

Zadeh [40].

1.2.2 Possibility and necessity measures on fuzzy variables

Definition 1.2.2. (Zadeh, [40]) 1) A function Pos : P(X) → [0, 1] is called possibility

measure if (i) Pos(X) = 1, (ii) Pos(∅) = 0 and (iii) Pos(∪i∈IAi) = supi∈I Ai for any
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collection (Ai)i∈I in P(X).

2) The necessity measure is a function Nec : P(X) → [0, 1] defined by:

∀A ∈ P(X), Nec(A) = 1− Pos(Ac).

3) The triplet (X,P(X), Pos) is called a possibility space.

4) The triplet (X,P(X), Nec) is called a necessity space.

5) A possibility distribution on X is a function π : X → [0, 1] that satisfies the following

normalization condition: supx∈X π(x) = 1.

Remark 1.2.2. 1) A possibility measure Pos can be defined by means of a possibility distri-

bution π as follows: ∀A ∈ P(X), Pos(A) = supx∈A π(x).

2) The necessity measure Nec satisfies the following conditions: ∀(A,B) ∈ P(X)2, (i) Nec(A∩

B) = min(Nec(A), Nec(B)) and (ii) Nec(A) +Nec(Ac) ≤ 1.

In the following, (X,P(X), Pos) is a possibility space.

We give two examples of possibility measure based on possibility distribution when X is

finite.

Example 1.2.2. 1) Let X = {a, b, c, d, e, f} and π the possibility distribution on X defined

by π(a) = π(b) = 1, π(c) = π(d) = 1
3 and π(e) = π(f) = 1

4 .

The possibility measure associated with π is defined by: Pos({a, b}) = Pos({a, c}) = Pos({c, b}) =

1, Pos({d, f}) = 1
3 and Pos({e, f}) = 1

4 .

2) Let X = {x1, x2, ..., xn} and and π the possibility distribution on X defined by ∀xi ∈

X,π(xi) = yi.

The possibility measure associated with π is defined by: Pos({xi1 , xi2 , ..., xik}) = max1≤j≤k yij .
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Let us recall basic notions of fuzzy variables on a possibility space.

Definition 1.2.3. 1) A fuzzy variable ξ is a function from the (X,P(X), Pos) to R.

2) Let ξ be a fuzzy variable with membership function µ.

ξ is symmetric if ∃a ∈ R, ∀r ∈ R, µ(a− r) = µ(a+ r).

3) Let r ∈ R. A fuzzy event {ξ ≤ r} associated to a fuzzy variable ξ with membership function

µ, is a subset of X defined by:

{ξ ≤ r} = {x ∈ X,µ(x) ≤ r}.

4) Let ξ be is a fuzzy variable with membership function µ and r ∈ R. The possibility measure

of a fuzzy event {ξ ≤ r} is defined as:

Pos({ξ ≤ r}) = sup
x≤r

µ(x).

We give some usual examples of fuzzy variables.

Example 1.2.3. Let a, b, c, d be four real numbers such that a < b < c < d.

1) A fuzzy number ξ is an equipossible fuzzy variable if its membership function satisfies:

∃a, b ∈ R, such that a < b and

∀r ∈ R, µ(r) =
{

1, if a ≤ r ≤ b
0, otherwise.

We denote it by ξ = (a, b).

2) A fuzzy variable ξ is a trapezoidal fuzzy variable if its membership function satisfies:

∃a, b, c, d ∈ R, such that a < b < c < d and

µ(r) =


( r−a
b−a ), if a ≤ r ≤ b

1, if b ≤ r ≤ c

( r−d
c−d ), if c ≤ r ≤ d

0, otherwise.
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We denote it by ξ = (a, b, c, d).

Figure 1.3: Equipossible variable (a,b). Figure 1.4: Trapezoidal variable (a,b,c,d).

3) A trapezoidal fuzzy variable ξ = (a, b, c, d) is symmetric when b − a = d − c and a

triangular fuzzy variable ξ = (a, b, d) is symmetric when b− a = d− b.

Let us notice that when b = c, ξ = (a, b, c, d) becomes a triangular fuzzy variable

ξ = (a, b, d).

In the following example, we determine possibility and necessity of some fuzzy events of

a fuzzy variable by means of the level sets of the fuzzy variable.

Example 1.2.4. Let ξ be a fuzzy variable, α ∈]0, 1] and [aα, bα] the α- level set of ξ. Then,

we have:

Pos({ξ ≤ aα}) = α and Pos({ξ ≥ bα}) = α, Nec({ξ ≥ aα}) = 1 − α and Nec({ξ ≤ bα}) =
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1− α.

Let us end this section by displaying in the following table some similarities between prob-

ability and possibility measures when the universe X is finite. For that, π, Pos, p and P are

possibility distribution, possibility measure, probability distribution and probability measure

respectively.

Let A,B ∈ P(X).
Possibility theory Probability theory
supx∈X π(x) = 1

∑
x∈X p(x) = 1

Pos(A ∪B) = max(Pos(A), Pos(B)) P (A ∪B) = P (A) + P (B) if A ∩B = ∅
Pos(A) = supx∈A π(x) P (A) =

∑
x∈A p(x)

max(Pos(A), Pos(Ac)) = 1 and Pos(A) + Pos(Ac) ≥ 1 P (A) + P (Ac) = 1

In the next paragraph, we recall some known parameters of a parametrical fuzzy variable

in a possibility space, namely possibility distance quantity, interval approximation, mean and

variance.

1.2.3 Some characteristics of a fuzzy variable based on the possibility mea-
sure

The nearest weighted possibilistic interval

Let us recall the possibility distance quantity of a fuzzy number.

Definition 1.2.4. (Saeidifar and Pasha, [30] ) Let A be a parametrical fuzzy number defined

by ∀α ∈ [0, 1], [A]α = [a(α), a(α)] and let CL, CU ∈ R such that Supp(A) = [CL, CU ].

A possibilistic distance quantity of A is the positive real number defined by:

d(A,Supp(A)) = [
∫ 1
0 Pos(A ≤ a(α))(a(α)−CL)

2 dα+
∫ 1
0 Pos(A ≥ a(α))(a(α)−CU )

2 dα)]
1
2 ,

that is,

d(A,Supp(A)) =

√∫ 1

0
α(a(α)− CL)2 dα+

∫ 1

0
α(a(α)− CU )2 dα. (1.1)
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Interpretation 1.2.1. Relation (1.1) is a type expected distance between the endpoints of its

level sets and the two endpoints of its support.

For the three other parameters, we need the following function.

Definition 1.2.5. A function f : [0, 1] → R is a weighting function if it is non-negative,

increasing and satisfies the following normalization condition
∫ 1
0 f(α) dα = 1.

Example 1.2.5. The following functions f : [0, 1] → R and g : [0, 1] → R defined respectively

as f(x) = 2x and g(x) = 3x2 are weighting functions.

We now recall the interval approximation of a parametrical fuzzy number.

Definition 1.2.6. (Saeidifar and Pasha, [30]) Let [A]α = [a(α), a(α)] be a fuzzy number and

f be a weighting function.

1) The nearest lower weighted possibilistic point (NLWPP) of A associated with f is the real

number defined by: NLWPPf (A) =
∫ 1
0 f(α)a(α) dα.

2) The nearest upper weighted possibilistic point (NUWPP) of A associated with f is the real

number defined by: NUWPPf (A) =
∫ 1
0 f(α)a(α) dα.

3) The interval approximation of A or the nearest f−weighted possibilistic interval of A is the

real interval defined by: NWPIf (A) = [NLWPPf (A), NUWPPf (A)].

Let us recall the nearest weighted possibilistic point of a parametrical fuzzy number.

The nearest weighted possibilistic point

Definition 1.2.7. (Saeidifar and Pasha, [30] ) Let [A]α = [a(α), a(α)] be a fuzzy number and

f be a weighting function. The f−weighted possibilistic mean (WPM) of fuzzy number A is

the real number defined by: Mf (A) =
∫ 1
0 f(α)a(α)+a(α)

2 dα.
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When f(α) = 2α, Mf (A) is simply denoted by M(A) and its becomes:

Mf (A) = M(A) =

∫ 1

0
α(a(α) + a(α)) dα.

In that case, M(A) is called the weighted possibilistic mean value of fuzzy number A.

Therefore, we have the following result.

Theorem 1.2.1. (Saeidifar and Pasha, [30] ) Let [A]α = [a(α), a(α)] be a fuzzy number and

f be a weighting function. Then Mf (A) is the nearest weighted possibilistic point to A which

is unique.

Let us give an application of the previous notions on a trapezoidal fuzzy number.

Example 1.2.6. 1) Let A = (−2,−1, 1, 3) be a trapezoidal fuzzy number and f(α) = 2α.

(i) The parametric form of A is given by ∀α ∈ [0, 1], [A]α = [a(α), a(α)] = [−2 + α, 3− 2α].

(ii) The nearest weighted possibilistic interval to A is NWPIf (A) = [−2
3 ,

5
6 ].

The nearest weighted possibilistic point to fuzzy number A is M(A) = 1
12 .

2) If A = (a, b, c, d) is a trapezoidal fuzzy number, then: M(A) = a+b+c+d
4 .

We end with possibilistic variance of a parametrical fuzzy number.

Possibilistic variance

Definition 1.2.8. (Saeidifar and Pasha, see ([30]) ) Let [A]α = [a(α), a(α)] be a fuzzy number

and M(A) its weighted possibilistic mean value.

The possibilistic variance of a fuzzy number A is the real number defined by:

σ2
A = V ar(A) =

∫ 1

0
α[(a(α)−M(A))2 + (a(α)−M(A))2] dα.
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Interpretation 1.2.2. 1) The possibilistic variance of a fuzzy number A explains the variation

of this fuzzy number with respect to its possibilistic mean value M(A).

2) Similarly to probability theory, one can define possibilistic skwewness and kurtosis.

We apply the previous notion on the trapezoidal number of the previous example.

Example 1.2.7. Let A be the trapezoidal fuzzy number of the previous example where M(A) =

1
12 .

The possibilistic variance of A is obtained as follows:

V ar(A) =

∫ 1

0
α[(−2 + α− 1

12
)2 + (3− 2α− 1

12
)2] dα =

345

144
≃ 3.4

The possibility measure gives the possibility of occurrence of fuzzy (imprecise) events such

as: “around 10”, “approximately 2”, “between 3 and 4”, “almost young”, and so on... That is the

reason why this measure deals with these types of uncertainty: imprecision and vagueness.

Nevertheless, this measure is not dual and that is a significant inconvenience for the description

of uncertain financial markets, in that sense it doesn’t make decisions consistent with the law

of contradiction and excluded middle.
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Chapter Two

First parameters of a fuzzy
variable based on the credibility

measure

In this chapter, we present the credibility measure introduced earlier by Liu [20]. We recall

some well-known parameters of a fuzzy variable such as mean, variance, semi-variance and

skewness. We deduce some basic properties of the mean and the variance.

2.1 Credibility measure and membership function

2.1.1 Credibility measure: definitions and examples

Definition 2.1.1. Liu[20] Let Cr : P(X) → [0, 1] be a function and I ⊆ N.

1) Cr is a credibility measure if:

- Axiom 1 (Normality): Cr(X) = 1;

- Axiom 2 (Monotonicity): ∀A,B ∈ P(X), Cr(A) ≤ Cr(B) whenever A ⊂ B;

- Axiom 3 (Self-duality): ∀A ∈ P(X), Cr(A) + Cr(Ac) = 1 ;

- Axiom 4 (Maximality): ∀(Ai)i∈I ⊆ P(X) with supiCr(Ai) <
1
2 , Cr(∪iAi) = supiCr(Ai) .

2) The triplet (X,P(X), Cr) is called a credibility space.

Let us recall some usual examples of credibility measure.

Example 2.1.1. 1) Let X = {X1, X2}.
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i) There are four events: ∅, {X1}, {X2} and X.

ii) The set function Cr is defined by: Cr(∅) = 0, Cr({X1}) = 0.3, Cr({X2}) = 0.7 and

Cr(X) = 1.

Cr is a credibility measure because it satisfies the four axioms.

2) Let X = {X1, X2, X3}.

i) There are eight events: ∅, {X1}, {X2}, {X3}, {X1, X2}, {X1, X3}, {X2, X3} and X.

ii) The set function Cr is defined by: Cr(∅) = 0, Cr({X1}) = 0.3, Cr({X2}) = 0.4, Cr({X3}) =

0.6, Cr({X1, X2}) = 0.4, Cr({X1, X3}) = 0.6, Cr({X2, X3}) = 0.7, Cr(X) = 1.

Cr is a credibility measure because it satisfies the four axioms.

3) Let X = R. The set function Cr is defined by:

Cr(θ) =


1 if θ = R
0 if θ = ∅
1
2 otherwise

.

Cr is a credibility measure because it satisfies the four axioms.

Let us end this paragraph with the link between Cr, Pos and Nec.

Remark 2.1.1. A useful link between Cr, Pos and Nec is

∀A ∈ P(X), Cr(A) = 1
2 [1 + Pos(A)− Pos(Ac)] = 1

2 [Pos(A) +Nec(A)].

Let us notice that, Definition 1.2.3 defines events associated with a fuzzy variable on

a possibility space. Since the work of Liu [20], a new approach defined it on a credibility

space. Thereby, throughout this thesis, a fuzzy variable is defined on the credibility space

(X,P(X), Cr).
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2.1.2 Link between credibility measure and the membership function of a
fuzzy variable

Definition 2.1.2. (Liu [20], B. Liu and Y. Liu [21]) 1) A fuzzy variable is defined as a

function from a credibility space (X,P(X), Cr) to R.

2) A fuzzy variable ξ is nonnegative, denoted by ξ ≥ 0, if C({ξ < 0}) = 0.

3) Let ξ1 and ξ2 be two fuzzy variables defined on the credibility space (X,P(X), Cr).

i) ξ1 = ξ2 if ξ1(x) = ξ2(x) for almost x ∈ X, that means, Cr({x ∈ X, ξ1(x) ̸= ξ2(x)}) = 0.

ii) ξ1 and ξ2 are independent fuzzy variables if for any sets B1, B2 of R, Cr({ξ1 ∈ B1}∩{ξ2 ∈

B2}) = min(Cr({ξ1 ∈ B1}), Cr({ξ2 ∈ B2})).

Definition 2.1.3. (B. Liu and Y.Liu, [20]) Let ξ be a fuzzy variable defined on (X,P(X), Cr).

Then its membership function is derived from the credibility measure by:

∀r ∈ R, µ(r) = (2Cr({ξ = r})) ∧ 1. (2.1)

The following result, established by Liu, gives the credibility measure of events with respect

to a fuzzy variable ξ by means of its membership function.

Theorem 2.1.1. (Credibility Inversion Theorem, B. Liu and Y.Liu [20], p.445) Let ξ be a

fuzzy variable with membership function µ. Then for any set A of reals numbers, we have:

Cr({ξ ∈ A}) = 1

2
(sup
t∈A

µ(t) + 1− sup
t∈Ac

µ(t)). (2.2)

Let us calculate the credibility measure of some usual events by applying the previous

result.

Example 2.1.2. 1) In the usual cases where A =] −∞; r] or A = [r; +∞[ with r ∈ R, then
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Cr({ξ ∈ A}) becomes

{
Cr({ξ ≤ r}) = 1

2(supx∈]−∞,r] µ(x) + 1− supx∈]r,+∞[ µ(x))

Cr({ξ ≥ r}) = 1
2(supx∈[r,+∞[ µ(x) + 1− supx∈]−∞,r[ µ(x))

.

2) For an equipossible fuzzy variable ξ = (a, b), we have:

Cr({ξ ≤ r}) =


0, if r ≤ a
1
2 if a ≤ r ≤ b
1, b ≤ r

(2.3)

and

Cr({ξ ≥ r}) =


1, if r ≤ a
1
2 if a ≤ r ≤ b
0, b ≤ r

. (2.4)

A proof of those results:

a) Let us take r ∈ R:

- If r ≤ a, then Cr({ξ ≤ r}) = 1
2(0 + 1− 1) = 0.

- If a ≤ r ≤ b, then Cr({ξ ≤ r}) = 1
2(1 + 1− 1) = 1

2 .

- If b ≤ r, Cr({ξ ≤ r}) = 1
2(1 + 1− 0) = 1.

b) Cr({ξ ≥ r}) is obtained by using the self-duality axiom.

3) For a trapezoidal fuzzy variable ξ = (a, b, c, d), we have:

Cr({ξ ≤ r}) =


0, if r < a
1
2(

r−a
b−a ), if a ≤ r < b

1
2 , if b ≤ r < c

1− 1
2(

r−d
c−d ), if c ≤ r < d

1, if d ≤ r

(2.5)

and

Cr({ξ ≥ r}) =


1, if r < a
1− 1

2(
r−a
b−a ), if a ≤ r < b

1
2 , if b ≤ r < c
1
2(

r−d
c−d ), if c ≤ r < d

0, if d ≤ r

(2.6)

A proof of those results:

a) Let us take r ∈ R:

- If r ≤ a, then Cr({ξ ≤ r}) = 1
2(0 + 1− 1) = 0.
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- If a ≤ r ≤ b, then Cr({ξ ≤ r}) = 1
2(

r−a
b−a + 1− 1) = 1

2(
r−a
b−a ).

- If b ≤ r ≤ c, then Cr({ξ ≤ r}) = 1
2(1 + 1− r−d

c−d ) = 1− 1
2(

r−d
c−d ).

- If d ≤ r, Cr({ξ ≤ r}) = 1
2(1 + 1− 0) = 1.

b) Cr({ξ ≥ r}) is obtained by using the self-duality axiom.

4) For a triangular fuzzy variable (a, b, d), we just set b = c in the expressions of Cr({ξ ≤ r})

and Cr({ξ ≥ r}) for a trapezoidal variable (a, b, c, d).

Let us end this section by introducing the credibility distribution of a fuzzy variable.

Definition 2.1.4. (Liu,[17]) 1) The credibility distribution of a fuzzy variable ξ is an appli-

cation Φ : R → [0, 1] defined by: ∀r ∈ R,

Φ(r) = Cr({ξ ≤ r}). (2.7)

2) Let Φ be the distribution function of ξ.

Φ is a degenerate distribution function if ∃t0 ∈ R such that ∀t ∈ R, t ≥ t0, Φ(t) = 1 and

∀t ∈ R, t < t0, Φ(t) = 0.

3) The density credibility function of ξ, when it exists, is the function defined such that:

∀r ∈ R,Φ(r) =
∫ t
−∞ ϕ(t) dt.

Example 2.1.3. The distribution function Φ of a trapezoidal fuzzy variable ξ = (a, b, c, d) is

given by (2.5) and the distribution function Φ of an equipossible fuzzy variable ξ = (a, b) is

given by (2.3).

Proposition 2.1.1. Let Φ be a distribution function.

Φ is an increasing function.

Proof : The result is obtained by using the fact that Cr is an increasing function. 2
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2.2 First parameters of a fuzzy variable

2.2.1 Expected value: definitions and examples

Definition 2.2.1. (B. Liu and Y.Liu [20], p.446) Let ξ be a fuzzy variable.

The expected value of ξ is the real number defined by:

E[ξ] =

∫ +∞

0
Cr({ξ ≥ r})dr −

∫ 0

−∞
Cr({ξ ≤ r})dr (2.8)

provided that at least one of the two integrals is finite.

Let us calculate expected values of some well-known fuzzy variables.

Example 2.2.1. Let us consider an equipossible fuzzy variable ξ = (a, b):

We distinguish three cases: 0 ≤ a, a < 0 ≤ b and b < 0.

1) If 0 ≤ a, we have Cr({ξ ≤ r}) = 0 when r < 0. Then, according to relations (2.8) and

(2.4):

E[ξ] =

∫ a

0
1 dr +

∫ b

a

1

2
dr =

a+ b

2
.

2) If a < 0 ≤ b, then, according to relations (2.8),(2.3) and (2.4):

E[ξ] = −
∫ 0

a

1

2
dr +

∫ b

0

1

2
dr =

a+ b

2
.

3) If b < 0, we have Cr({ξ ≥ r}) = 0 when r > 0. Then, according to relations (2.8) and

(2.3):

E[ξ] = −
∫ b

a

1

2
dr −

∫ 0

b
1 dr =

a+ b

2
.

Therefore, the expected value of the equipossible fuzzy variable ξ = (a, b) is:

E[ξ] =
a+ b

2
.
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Example 2.2.2. I) Let us consider a trapezoidal fuzzy variable ξ = (a, b, c, d):

We distinguish five cases: 0 ≤ a < b < c < d, a < 0 ≤ b < c < d, a < b < 0 ≤ c < d,

a < b < c ≤ 0 < d and a < b < c < d ≤ 0.

1) If 0 ≤ a < b < c < d, we have Cr({ξ ≤ r}) = 0 when r < 0 Then, according to relations

(2.8) and (2.6):

E[ξ] =

∫ a

0
1 dr +

∫ b

a
1− 1

2
(
r − a

b− a
) dr +

∫ c

b

1

2
dr +

∫ d

c

1

2
(
r − d

c− d
) dr =

a+ b+ c+ d

4
.

2) If a < 0 ≤ b < c < d, then, according to relations (2.8),(2.5) and (2.6):

E[ξ] = −
∫ 0

a

1

2
(
r − a

b− a
) dr+

∫ b

0
1− 1

2
(
r − a

b− a
) dr+

∫ c

b

1

2
dr+

∫ d

c

1

2
(
r − d

c− d
) dr =

a+ b+ c+ d

4
.

3) If a < b < 0 ≤ c < d, then, according to relations (2.8),(2.5) and (2.6):

E[ξ] = −
∫ b

a

1

2
(
r − a

b− a
) dr −

∫ 0

b

1

2
dr +

∫ c

0

1

2
dr +

∫ d

c

1

2
(
r − d

c− d
) dr =

a+ b+ c+ d

4
.

4) If a < b < c ≤ 0 < d , then, according to relations (2.8),(2.5) and (2.6):

E[ξ] = −
∫ b

a

1

2
(
r − a

b− a
) dr−

∫ c

b

1

2
dr−

∫ 0

c
1− 1

2
(
r − d

c− d
) dr+

∫ d

0

1

2
(
r − d

c− d
) dr =

a+ b+ c+ d

4
.

5) If a < b < c < d ≤ 0, we have Cr({ξ ≥ r}) = 0 when r > 0. Then, according to relations

(2.8) and (2.5):

E[ξ] = −
∫ b

a

1

2
(
r − a

b− a
) dr −

∫ c

b

1

2
dr −

∫ d

c
1− 1

2
(
r − d

c− d
) dr −

∫ 0

d
1 dr =

a+ b+ c+ d

4
.

Therefore, the expected value of the trapezoidal fuzzy variable ξ = (a, b, c, d) is:

E[ξ] =
a+ b+ c+ d

4
.

II) We deduce from those results that, when b = c, the expected value of the triangular fuzzy

variable ξ = (a, b, d) is: E[ξ] = a+2b+d
4 .
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Remark 2.2.1. According to relations (2.7) and (2.8), the expected value of ξ can be defined

by means of credibility distribution Φ of ξ as follows:

E[ξ] =

∫ +∞

0
[1− Φ(r)] dr −

∫ 0

−∞
Φ(r) dr. (2.9)

We end with some properties of the expected value of fuzzy variables.

The following result establishes the expected value of a fuzzy variable ξ by means of a credi-

bility distribution function.

2.2.2 Some basic properties

Proposition 2.2.1. Let ξ be a fuzzy variable with a bijective credibility distribution function

Φ. The expected value of ξ is defined by:

E[ξ] =

∫ 1

0
Φ−1(u) du (2.10)

Proof: According to the definition, E[ξ] =
∫ +∞
0 Cr{ξ ≥ r} dr −

∫ 0
−∞Cr{ξ ≤ r} dr. By

using the fact that ∀r ∈ R,Φ(r) = Cr{ξ ≤ r}, we have:

E[ξ] =
∫ +∞
0 [1 − Φ(r)] dr −

∫ 0
−∞Φ(r) dr. By setting u = Φ(r), it follows that r = Φ−1(u)

and dr =
du

Φ′ ◦ Φ−1(u)
. The new integral becomes:

E[ξ] =
∫ 1
Φ(0) dΦ

−1(u)−
∫ 1
0 udΦ−1(u) du. By the two following equalities:∫ 1

Φ(0) dΦ
−1(u) = Φ−1(1) and

∫ 1
0 udΦ−1(u) = Φ−1(1)−

∫ 1
0 Φ−1(u) du,

it follows that E[ξ] =
∫ 1
0 Φ−1(u) du. 2

The following result establishes that the expected value is a linear operator.

Proposition 2.2.2. Let ξ be a fuzzy variable with finite expected value. Then,

∀a, b ∈ R, E[aξ + b] = aE[ξ] + b. (2.11)
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Proof: Let us consider a, b ∈ R. According to relation (2.8) :

E[aξ + b] =
∫ +∞
0 Cr(aξ + b ≥ r)dr −

∫ 0
−∞Cr(aξ + b ≤ r)dr.

We distinguish two cases:

1st case: If a = 0. We have: E[aξ + b] = E[b] = b = aE[ξ] + b.

2nd case: If a ̸= 0.

We have: aξ + b ≥ r ⇔ ξ ≥ r−b
a and aξ + b ≤ r ⇔ ξ ≤ r−b

a .

- Let us evaluate
∫∞
0 Cr({aξ + b ≥ r})dr.

We set: r′ = r−b
a . We have: r ∈ [0,+∞[⇔ r′ ∈ [− b

a ,+∞[ and dr′ = 1
adr. Thus:

∫ +∞
0 Cr({aξ+

b} ≥ r)dr = a
∫ +∞
− b

a

Cr({ξ ≥ r′})dr′.

- Let us evaluate
∫ 0
−∞Cr({aξ + b ≤ r})dr.

We set: r′ = r−b
a

We have: r ∈]−∞, 0] ⇔ r′ ∈]−∞,− b
a ] and dr′ = 1

adr. Thus:∫ 0
−∞Cr({aξ + b ≤ r})dr = a

∫ − b
a

−∞ Cr({ξ ≤ r′})dr′.

- Let us evaluate E[aξ + b]

a) If a and b have the same sign, then − b
a < 0 and we have:

E[aξ + b] =

∫ +∞

0
Cr({aξ + b ≥ r})dr −

∫ 0

−∞
Cr({aξ + b ≤ r})dr

= a

∫ +∞

− b
a

Cr({ξ ≥ r′})dr′ − a

∫ − b
a

−∞
Cr({ξ ≤ r′})dr′

= a

∫ +∞

− b
a

Cr({ξ ≥ r′})dr′ − a

∫ 0

−∞
Cr({ξ ≤ r′})dr′ + a

∫ 0

− b
a

Cr({ξ ≤ r′})dr′

= a(

∫ +∞

0
Cr({ξ ≥ r′})dr′ −

∫ 0

−∞
Cr({ξ ≤ r′})dr′) + a

∫ 0

− b
a

(Cr({ξ ≥ r′})dr′ + Cr({ξ ≤ r′})dr′).

Finally, we obtain: E[aξ + b] = aE[ξ] + b.

- If a and b have opposite signs, then − b
a > 0 and by a similar way, we add and remove the

term a
∫ − b

a
0 Cr({ξ ≥ r′})dr′ to obtain the result. 2
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Remark 2.2.2. (B. Liu and Y. Liu [21]) When ξ1 and ξ2 are independent fuzzy variables

with finite expected values, a and b are two reals numbers, then:

E[aξ1 + bξ2] = aE[ξ1] + bE[ξ2].

In the following subsection, we recall definitions, examples and properties of the variance

and the semi-variance of a fuzzy variable.

2.2.3 Variance and Semi-variance of a fuzzy variable: Definition, Examples
and Properties

Variance

Definition 2.2.2. (B. Liu and Y.Liu [20]) Let ξ be a fuzzy variable with finite expected value

e. The variance of ξ is the real number defined by:

V [ξ] = E[(ξ − e)2]. (2.12)

Let us determine variance of an equipossible fuzzy variable.

Example 2.2.3. Let ξ be an equipossible fuzzy variable (a, b) with E[ξ] = e = a+b
2 . Then for

any positive real number r, we can easily check that:

Cr({(ξ − e)2)} ≥ r) =

{
1
2 , if r ≤ (b−a)2

4

0, if r > (b−a)2

4

.

Thus, according to relations (2.12) and (2.8) the variance of ξ is:

V [ξ] =

∫ +∞

0
Cr({(ξ − e)2)} ≥ r) dr =

∫ (b−a)2

4

0

1

2
dr =

(b− a)2

8
.

The following result determines variance of a trapezoidal fuzzy variable.

Proposition 2.2.3. 1) Let ξ be a trapezoidal fuzzy variable (a, b, c, d) with E[ξ] = e =

a+b+c+d
4 . We set: α1 = max(b− a, d− c), β1 = min(b− a, d− c) and γ = c− b.
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The variance of ξ is defined by:

33α3
1 + 21α2

1β1 + 11α1β
2
1 − β3

1 + 60α1γ
2 + 66α2

1γ − 12β1γ
2 − 6β2

1γ + 36α1β1γ − 8γ3

384α1
.

2) Let ξ be a triangular fuzzy variable (a, b, c) with E[ξ] = e = a+2b+c
4 . We set: α1 = max(b−

a, c− b) and β1 = min(b− a, c− b).

The variance of ξ is defined by:

V [ξ]=
33α3

1 + 21α2
1β1 + 11α1β

2
1 − β3

1

384α1
.

Proof: 1) Let ξ be a trapezoidal fuzzy variable (a, b, c, d) with E[ξ] = e = a+b+c+d
4 . Let us

set: α = b− a, β = d− c, γ = c− b, A = α+2γ−β
4 , B = α+2γ−β

4 , C = α+2γ+2β
4 , D = 3α+2γ+β

4 ,

and X = α+3γ+β
4 .

For the calculation of the variance of ξ, we distinguish two cases: α > β and α < β. The case

where α = β will be study in the case of symmetric fuzzy variables.

For any positive number r, we obtain:

In the case where α > β,

Cr({(ξ − e)2)} ≥ r) =



2b−a−e−
√
r

2α , if 0 < r ≤ (A)2
1
2 , if A2 < r ≤ B2

d−e−
√
r

2β , if B2 < r ≤ X2

e−a−
√
r

2α , if X2 < r ≤ C2

e−a−
√
r

2α , if C2 < r ≤ D2

0, if r > D2

if e < b

and

Cr({(ξ − e)2)} ≥ r) =



1
2 , if 0 < r ≤ B2

d−e−
√
r

2β , if B2 < r ≤ X2

e−
√
r

2α , if X2 < r ≤ C2

e−
√
r

2α , if C2 < r ≤ D2

0, if r > D2

if e ≥ b .

First case: α > β If e < b.

According to relations (2.12) and (2.8), the variance of ξ is:

V [ξ] =
∫ +∞
0 Cr({(ξ − e)2)} ≥ r) dr =

∫ A2

0
2b−a−e−

√
r

2α dr +
∫ B2

A2
1
2 dr +

∫ X2

B2
d−e−

√
r

2β dr +
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∫ C2

X2
e−a−

√
r

2α dr +
∫ D2

C2
e−a−

√
r

2α dr

That is, V [ξ] =
33α3 + 21α2β + 11αβ2 − β3 + 60αγ2 + 66α2γ − 12βγ2 − 6β2γ + 36αβγ − 8γ3

384α
.

If e ≥ b.

Then V [ξ] =
∫ +∞
0 Cr({(ξ − e)2)} ≥ r) dr =

∫ B2

0
1
2 dr +

∫ X2

B2
d−e−

√
r

2β dr +
∫ C2

X2
e−a−

√
r

2α dr +∫ D2

C2
e−a−

√
r

2α dr

that is, V [ξ] =
32α3 + 24α2β + 8αβ2 + 48αγ2 + 72α2γ + 24αβγ − 8γ3

384α
.

Second case: α < β

By the same way, we obtain:

V [ξ] =
33β3 + 21β2α+ 11βα2 − α3 + 60βγ2 + 66β2γ − 6α2γ − 12αγ2 + 36αβγ − 8γ3

384β
.

The last case where α = β, is studied in the particular case of symmetric variable.

2) In the particular case of a triangular fuzzy variable ξ = (a, b, c), by setting: α1 = max{b−

a, c− b} and β1 = min{b− a, c− b}, we get: V [ξ]=
33α3

1 + 21α2
1β1 + 11α1β

2
1 − β3

1

384α1
. 2

Let us recall a useful property on the linearity of the variance of a fuzzy variable.

Theorem 2.2.1. (B. Liu, [18]) Let a and b be reals numbers and ξ a fuzzy variable whose

variance exists. Then:

V [aξ + b] = a2V [ξ].

Remark 2.2.3. 1) Variance is a parameter which evaluates the spread or the deviation of

values taken by a fuzzy variable from its expected value.

2) Variance can be used to distinguish two fuzzy variables which have the same expected value.

For example, let us consider two triangular fuzzy variables ξ1 = (1, 3, 5) and ξ2 = (0, 3, 6). We

have: E[ξ1] = E[ξ2] = 3, V [ξ1] =
2
3 and V [ξ2] =

3
2 .
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Let us recall definition and properties of the Semi-variance which is the parameter which

allows to distinguish the low part deviation from the expected value and the high part devia-

tion. In finance, low part deviation means a possible loss of investment and high part deviation

means a potential return of investment. For that, we introduce the fuzzy variable

(ξ − e)− =

{
ξ − e, if ξ ≤ e
0, if ξ > e

(2.13)

associated to the fuzzy variable ξ with expected value e. It defines the low part deviation of

a fuzzy variable ξ from its expected value e.

Semi-variance

Definition 2.2.3. (Huang [11], page 3) Let ξ be a fuzzy variable with finite expected value e.

The semi-variance of ξ is the real number defined by:

SV [ξ] = E[[(ξ − e)−]2]. (2.14)

Remark 2.2.4. SV [ξ] = E[[(ξ − e)−]2] =
∫ +∞
0 Cr({[(ξ − e)−]2 ≥ r}) dr =

∫ +∞
0 Cr({(ξ −

e)− ≤ −
√
r}) dr =

∫ +∞
0 Cr({ξ ≤ e−

√
r}) dr.

Let us recall semi-variance of some usual fuzzy variables.

Example 2.2.4. 1) For an equipossible variable ξ = (a, b), we have:

SV [ξ] =

∫ (e−b)2

0
dr +

∫ (e−a)2

(e−b)2

1

2
dr =

(b− a)2

4
.

2) For a trapezoidal fuzzy variable ξ = (a, b, c, d), we obtain:

SV [ξ] =
1

6(b− a)
[(e− a)3 +min(0, (b− e)3)] +

1

6(d− c)
max(0, (e− c)3).
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3) In the particular case of a triangular fuzzy variable ξ = (a, b, c) with expected value e, we

have:

SV [ξ] =
1

6(b− a)
[(e− a)3 +

4

(b− c)
(b− e)3min(0, (b− e)3)].

Let us recall the result which establishes that the variance of ξ is greater than the semi-

variance and the two parameters are equal if ξ is symmetric.

Theorem 2.2.2. (Huang [11], page 3)

Let ξ be a fuzzy variable with finite expected value e, SV [ξ] and V [ξ] the semi-variance and

variance of ξ respectively.

1) 0 ≤ SV [ξ] ≤ V [ξ].

2) If ξ has a symmetric membership function then SV [ξ] = V [ξ].

The following Subsection recalls definition, examples and properties of the skewness of a

fuzzy variable.

2.2.4 Skewness of a fuzzy variable: Definition, Examples and Properties

Definition 2.2.4. (Li et al. [16], page 240) Let ξ be a fuzzy variable with finite expected value

e. The skewness of ξ is the real number defined by:

S[ξ] = E[(ξ − e)3]. (2.15)

Remark 2.2.5. S[ξ] = E[(ξ − e)3] =
∫ +∞
0 Cr({(ξ − e)3 ≥ r}) dr −

∫ 0
−∞Cr({(ξ − e)3 ≤

r}) dr = 3
∫ +∞
0 r2Cr({ξ ≥ e+ r}) dr − 3

∫ +∞
0 r2Cr({ξ ≤ e− r}) dr.

Let us recall skewness of some usual fuzzy variables.

Example 2.2.5. 1) For an equipossible fuzzy variable ξ = (a, b), we obtain:

S[ξ] = 3

∫ ( b−a
2

)3

0

r2

2
dr − 3

∫ ( b−a
2

)3

0

r2

2
dr = 0.

TASSAK DEFFO CHRISTIAN PhD. Thesis



First parameters of a fuzzy variable based on the credibility measure 39

2) For a trapezoidal fuzzy variable ξ = (a, b, c, d) with expected value e, we obtain:

S[ξ] =
1

8(b− a)
[(b− e)4 − (a− e)4] +

1

8(c− d)
[(c− e)4 − (d− e)4].

Remark 2.2.6. In the particular case of a triangular fuzzy variable ξ = (a, b, c) with expected

value e, we have:

S[ξ] =
1

8(b− a)
[(b− e)4 − (a− e)4] +

1

8(b− c)
[(b− e)4 − (c− e)4] =

(c− a)2

32
(c+ a− 2b).

We end this chapter with some properties of the skewness.

Theorem 2.2.3. (Li et al. [16], pages 240 et 241) Let a and b be two reals numbers and ξ a

fuzzy variable with finite expected value.

1) S[aξ + b] = a3S[ξ].

2) If ξ is a symmetric fuzzy variable, then S[ξ] = 0.

Remark 2.2.7. 1) Skewness is a parameter which describes the asymmetry of fuzzy variables.

2) Skewness can be used to distinguish two fuzzy variables which have the same expected value

and the same variance (or the same semi-variance).

For example, let us consider two triangular fuzzy variables ξ1 = (1, 2, 4) and ξ2 = (12 ,
5
2 ,

7
2).

We have: E[ξ1] = E[ξ2] =
9
4 , V [ξ1] = V [ξ2] =

179
384 , S[ξ1] =

27
32 and S[ξ2] = −27

32 .

According to what precedes, parameters like mean, variance, semi-variance, skewness,

describe fuzzy variables. But they are first moments and semi-moments of a fuzzy variable. A

main question is to study moments and semi-moments of order k (k ∈ N∗) of fuzzy variables.

That is the focus of the next Chapter.
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Chapter Three

Moments and Semi-moments of
fuzzy variables based on

credibility measure

In this Chapter, we generalize the entire family of parameters describing a fuzzy variable by

introducing its moments and semi-moments. Some characterizations and useful properties of

those parameters are established. Many results of this Chapter are in our first article Sadefo,

Tassak and Fono [29].

3.1 Kurtosis and semi-kurtosis of a fuzzy variable

In the next Section, we introduce the kurtosis of a fuzzy variable. We study some of its

properties and give some examples.

3.1.1 Kurtosis: Definitions, Examples and Properties

Definition 3.1.1. (Sadefo et al., [29], Definition 4 P520) Let ξ be a fuzzy variable such that

E[ξ] = e < ∞.

1. The kurtosis of ξ is the real number denoted by K[ξ] and defined by:

K[ξ] = E[(ξ − e)4].
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2. The normalized kurtosis of ξ is the real number denoted by K1[ξ] and defined by:

K1[ξ] =
E[(ξ − e)4]

(σ[ξ])4
.

Let us rewrite K[ξ] and K1[ξ] by means of a credibility measure. Let ξ be a fuzzy variable

such that E[ξ] = e < ∞.

• The kurtosis K[ξ] is given by:

K[ξ] =

∫ +∞

0
Cr{(ξ − e)4 ≥ r} dr. (3.1)

• The normalized kurtosis K1[ξ] is given by:

K1[ξ] =

∫ +∞
0 Cr{(ξ − e)4 ≥ r}dr

[
∫ +∞
0 Cr{(ξ − e)2 ≥ r}dr]2

. (3.2)

Remark 3.1.1. 1) Kurtosis is a parameter used to describe a fuzzy variable’s tail, such as

fat-tail or thin-tail. In finance, investors prefer portfolio return described by fuzzy variables

with smaller kurtosis indicating the fat tail.

2) Kurtosis allows to distinguish two fuzzy variables with the same mean, the same variance

and the same skewness as it is proved in this next example.

Example 3.1.1. Let ξ1 = (2, 23+
√
73

4 , 19+
√
73

2 ) and ξ2 = (4, 5, 13+
√
73

2 , 15+
√
73

2 ) be two fuzzy

variables.

We have E[ξ1] = E[ξ2] =
46+

√
73

4 , V [ξ1] = V [ξ2] =
298+30

√
73

96 and SK[ξ1] = SK[ξ2] = 0.

But K[ξ1] ≃ 120.027 and K[ξ2] ≃ 68.6.

The following result establishes some properties of the kurtosis.

Proposition 3.1.1. Let ξ be a fuzzy variable such that E[ξ] = e.
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1. The kurtosis of ξ is defined by

K[ξ] =

∫ +∞

0
Cr{ξ − e ≥ 4

√
r} ∨ Cr{ξ − e ≤ 4

√
r}dr. (3.3)

2. The normalized kurtosis of ξ is defined by

K1[ξ] =

∫ +∞
0 Cr{ξ − e ≥ 4

√
r} ∨ Cr{ξ − e ≤ 4

√
r}dr

[
∫ +∞
0 Cr{ξ − e ≥ 2

√
r} ∨ Cr{ξ − e ≤ 2

√
r}dr]2

. (3.4)

3. ∀a, b ∈ R,K[aξ + b] = a4K[ξ].

4. ∀a, b ∈ R,K1[aξ + b] = K1[ξ].

Proof : 1) It is easy to show that: Cr{(ξ− e)4 ≥ r} = Cr{ξ− e ≥ 4
√
r}∨Cr{ξ− e ≤ 4

√
r}.

Hence we have the following equality:

K[ξ] =

∫ +∞

0
Cr{(ξ − e)4 ≥ r}dr =

∫ +∞

0
Cr{ξ − e ≥ 4

√
r} ∨ Cr{ξ − e ≤ 4

√
r}dr.

2) We deduce the second result from the definition of K1[ξ] and by using the fact that:

V [ξ] =

∫ +∞

0
Cr{(ξ − e)2 ≥ r}dr =

∫ +∞

0
Cr{ξ − e ≥ 2

√
r} ∨ Cr{ξ − e ≤ 2

√
r}dr.

3) i) Let a, b ∈ R. We have K[aξ+b] = E[(aξ+b−E[aξ+b])4]. Since E[aξ+b] = aE[ξ]+b, we

deduce that K[aξ+b] = E[(aξ+b−aE[ξ]−b)4] = E[(aξ−aE[ξ])4] = a4E[(ξ−E[ξ])4] = a4K[ξ].

ii) Since V [aξ + b] = a2V [ξ], we deduce K1[aξ + b] = K1[ξ]. 2

The following result rewrites the previous formulae when ξ becomes a symmetric fuzzy

variable.

Corollary 3.1.1. If ξ is a symmetric fuzzy variable, then
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1. (3.3) becomes

K[ξ] =

∫ +∞

0
Cr{ξ − e ≥ 4

√
r}dr. (3.5)

2. (3.4) becomes

K1[ξ] =

∫ +∞
0 Cr{ξ − e ≥ 4

√
r}dr

[
∫ +∞
0 Cr{ξ − e ≥ 2

√
r}dr]2

. (3.6)

Proof : When ξ is a symmetric fuzzy variable, we have:

Cr{(ξ − e)4 ≥ r}dr = Cr{ξ − e ≥ 4
√
r} and Cr{(ξ − e)2 ≥ r}dr = Cr{ξ − e ≥ 2

√
r} and the

proof is complete. 2

Let us end this Subsection with the following result which determines the kurtosis and

normalized kurtosis of trapezoidal and triangular fuzzy variables.

Proposition 3.1.2. Let ξ = (a, b, c, d) be a fuzzy trapezoidal variable with expected value

E[ξ] = e. We set: α = b−a, β = d−c, ls(ξ) and lc(ξ) are respectively the length of the support

and the kernel of ξ.

1. The kurtosis K[ξ] of ξ is given by:

K[ξ] = −[
1

4
(ls(ξ) + lc(ξ))]

5(
|α− β|
5αβ

) + max(
( |α−β|

4 − 1
2 lc(ξ))

5

10α ∨ β
, 0) +

( |α−β|
4 + 1

2 ls(ξ))
5

10α ∨ β

|α− β|
2αβ

[
1

2
ls(ξ)−

(α+ β)

4
][
1

4
(ls(ξ) + lc(ξ))]

4 −
( |α−β|

4 + 1
2 lc(ξ))

5

10α ∧ β
.

2. If ξ = (a, b, c, d) is symmetric, then

• the previous expression of K[ξ] becomes:

K[ξ] =
5[lc(ξ) + β]4 + 10β2[lc(ξ) + β]2 + β4

160
. (3.7)
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• its normalized Kurtosis K1[ξ] is

K1[ξ] =
5[lc(ξ) + β]4 + 10β2[lc(ξ) + β]2 + β4

160[3[lc(ξ)+β]2+β2

24 ]2
.

3. Let ξ = (a, b, c) be a triangular fuzzy variable such that E[ξ] = a+2b+c
4 = e. We set:

α1 = max(b− a, c− b), γ = min(b− a, c− b).

The kurtosis K[ξ] of ξ is given by:

K[ξ] =
253α5

1 + 395α4
1γ + 17α1γ

4 + 290α3
1γ

2 + 70α2
1γ

3 − γ5

10.240α1
.

Proof : 1) Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable such that E[ξ] = e, α =

b− a, β = d− c.

By using the fact that Cr{(ξ − e)4 ≥ r} = Cr{ξ − e ≥ 4
√
r} ∨Cr{ξ − e ≤ 4

√
r}, we can easily

obtain the following results:

i)When α > β, then e < c. We can distinguish the two following cases as follows:

1stcase: e < b

Cr{(ξ − e)4 ≥ r} =



1−
4
√
r+e−a
2α , if 0 ≤ r ≤ (b− e)4

1
2 , if (b− e)4 ≤ r ≤ (c− e)4

−
4
√
r+e−d
2β , if (c− e)4 ≤ r ≤ (e− a+b

2 )4

− 4
√
r+e−a
2α , if (e− a+b

2 )4 ≤ r ≤ (e− a)4

0, if r ≥ (e− a)4.

and finally we get:

K[ξ] =
∫ +∞
0 Cr{(ξ − e)4 ≥ r}dr = ( (e−a)+(e−b)

2 )5.(β−α
5αβ ) + ( (e−a)+(e−b)

2 )4.(α(d−e)+β(e−a)
2αβ ) +

(e−a)5

10α + (b−e)5

10α − (c−e)5

10β .

2ndcase: e > b

Cr{(ξ − e)4 ≥ r} =


1
2 , if 0 ≤ r ≤ (c− e)4

−
4
√
r+e−d
2β , if (c− e)4 ≤ r ≤ (e− a+b

2 )4

− 4
√
r+e−a
2α , if (e− a+b

2 )4 ≤ r ≤ (e− a)4

0, if r ≥ (e− a)4.
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and finally we get:

K[ξ] =
∫ +∞
0 Cr{(ξ − e)4 ≥ r}dr = ( (e−a)+(e−b)

2 )5.(β−α
5αβ ) + ( (e−a)+(e−b)

2 )4.(α(d−e)+β(e−a)
2αβ ) +

(e−a)5

10α − (c−e)5

10β .

ii) When α < β, we use a similar way to calculate K[ξ].

iii)When α = β, we have:

Cr{(ξ − e)4 ≥ r} =


1
2 , if 0 ≤ r ≤ ( c−b

2 )4

−
4√r
2β + c−b

4β + 1
2 , if ( c−b

2 )4 ≤ r ≤ ( c−b
2 + β)4

0, if r ≥ ( c−b
2 + β)4

α = d− c = b− a

and this result implies that:

K[ξ] =

∫ +∞

0
Cr{(ξ − e)4 ≥ r}dr =

5[(c− b) + β]4 + 10β2[(c− b) + β]2 + β4

160
.

2) Let ξ = (a, b, c) be a triangular fuzzy variable such that E[ξ] = e, α = b− a, β = c− b.

By using the fact that Cr{(ξ − e)4 ≥ r} = Cr{ξ − e ≥ 4
√
r} ∨Cr{ξ − e ≤ 4

√
r}, we can easily

obtain the following results:

i)When α > β, then e < b and

Cr{(ξ − e)4 ≥ r} =


1−

4√r+e−a
2α , if 0 ≤ r ≤ (b− e)4

−
4
√
r+e−c
2β , if (b− e)4 ≤ r ≤ (α+β

4 )4

− 4
√
r+e−a
2α , if (α+β

4 )4 ≤ r ≤ (e− a)4

0, if r ≥ (e− a)4

and finally we get:

K[ξ] =

∫ +∞

0
Cr{(ξ − e)4 ≥ r}dr =

253α5 + 395α4β + 17αβ4 + 290α3β2 + 70α2β3 − β5

10.240α
.

ii) When α < β, we use a similar way to calculate K[ξ].

iii)When α = β, we have:

Cr{(ξ − e)4 ≥ r} =

{
α− k√4
2α , if 0 ≤ r ≤ αk

0, if r ≥ α4.
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where α = c− b = b−a and this result implies that: K[ξ] =
∫ +∞
0 Cr{(ξ− e)4 ≥ r}dr = α4

10 . 2

From the previous formulae, we deduce the normalized kurtosis of some examples of trape-

zoidal fuzzy variables.

Example 3.1.2. K1[(−1, 2, 3, 4)] = 27414
8405 , K1[(1, 2, 3, 4)] = 2178

845 , K1[(−2,−1, 3, 4)] = 3798
1805

and K1[(1, 2, 2, 4)] = 90928
25215 .

Remark 3.1.2. We notice that: for a triangular fuzzy number ξ = (a, b, c), we have:

- if b=a, then K[ξ] = 253
10.240γ

4 with E[ξ] = 3b+c
4 .

- if b=c, then K[ξ] = 253
10.240α

4 with E[ξ] = a+3b
4 .

In the following, we introduce semi-kurtosis and establish some of its properties. We display

some usual examples.

3.1.2 Semi-kurtosis: Definitions, Examples and Properties

Definition 3.1.2. Let ξ be a fuzzy variable with finite expected value e. Then the semi-kurtosis

of ξ is the real number denoted by KS and defined by:

KS [ξ] = E[[(ξ − e)−]4] =

∫ +∞

0
Cr{[(ξ − e)−]4 ≥ r}dr. (3.8)

Let us determine the semi-kurtosis of trapezoidal and triangular fuzzy numbers.

Example 3.1.3. 1. The semi-kurtosis of a trapezoidal fuzzy variable ξ = (a, b, c, d) with

expected value e = a+b+c+d
4 is given by:

KS [ξ] =
1

10(b− a)
[(e− a)5 +min(0, (b− e)5)] +

1

10(d− c)
max(0, (e− c)5).
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2. The semi-kurtosis of a triangular fuzzy number ξ = (a, b, c) with expected value e =

a+2b+c
4 is deduced from the semi-kurtosis of a trapezoidal one by this way:

KS [ξ] =
1

10(b− a)
[(e− a)5 +

4

(b− c)
(b− e)5min(0, (b− e))].

Let us end this Subsection by introducing normalized semi-kurtosis.

Definition 3.1.3. Let ξ a fuzzy variable with expected value e.

The normalized semi-kurtosis of ξ is the real number denoted by KS
1 [ξ] and defined by:

KS
1 [ξ] =

KS [ξ]

(V S [ξ])2
.

Example 3.1.4. 1. The normalized semi-kurtosis of a trapezoidal fuzzy variable ξ = (a, b, c, d)

with expected value e is defined as follows:

KS
1 [ξ] =

1
10(b−a) [(e− a)5 +min(0, (b− e)5)] + 1

10(d−c) max(0, (e− c)5)

[ 1
6(b−a) [(e− a)3 +min(0, (b− e)3)] + 1

6(d−c) max(0, (e− c)3)]]2
.

2. The normalized semi-kurtosis of a triangular fuzzy variable ξ = (a, b, c) with expected

value e is defined as follows:

KS
1 [ξ] =

1
10(b−a) [(e− a)5 + 4

(b−c)(b− e)5min(0, (b− e))]

[ 1
6(b−a) [(e− a)3 + 4

(b−c)(b− e)3min(0, (b− e))]]2
.

In the next Section, we introduce moments and semi-moments of a fuzzy variable and study

their properties. Thereby, those notions are generalizations of the new parameters (kurtosis

and semi-kurtosis) and the known ones (expected value, variance, semi-variance, skewness).

3.2 Moments and semi-moments of fuzzy variables

In the following subsection, we determine, for an integer k > 1, the k-moment of a symmetric

trapezoidal fuzzy variable.
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3.2.1 Moments of symmetric trapezoidal and triangular fuzzy variables

Proposition 3.2.1. Let ξ = (a, b, c, d) be a symmetric trapezoidal fuzzy variable with expected

value E[ξ] = e. For an integer k > 1, the k-moment mk[ξ] = E[(ξ − e)k] is given by:

mk[ξ] =

 0, if k is odd∑ k
2
i=0 C

2i+1
k+1 [(c−b)+α]k−2i

2k+1(k+1)
, if k is even

Proof : For a symmetric trapezoidal fuzzy variable ξ = (a, b, c, d), we can easily prove the

following result:

Cr{(ξ − e)k ≥ r} = Cr{ξ − e ≥ k
√
r} ∨ Cr{ξ − e ≥ k

√
r}.

Cr{(ξ − e)k ≥ r} =


1
2 , if 0 ≤ r ≤ ( c−b

2 )k

−
k
√
r

2β + c−b
4β + 1

2 , if ( c−b
2 )k ≤ r ≤ ( c−b

2 + β)k

0, if r ≥ ( c−b
2 + β)k

where α = d− c = b− a.

So, we can conclude that:

mk[ξ] =
∫ ( c−b

2
+β)k

0 Cr{(ξ − e)k ≥ r} =
∑k

i=0

∑k−i
j=0 C

j
k−i(2β)

j(c−b)k−j

2k+1(k+1)
=

∑k
j=0 C

j+1
k+1(2β)

j(c−b)k−j

2k+1(k+1)
=

∑ k
2
i=0 C

2i+1
k+1 [(c−b)+α]k−2i

2k+1(k+1)
. The proof is complete. 2

From the previous result, we deduce moments and semi-moments of a symmetric triangular

fuzzy variable.

Corollary 3.2.1. Let ξ = (a, b, c) be a symmetric triangular fuzzy variable with expected value

E[ξ] = e. For an integer k ≥ 1, the k-moment mk[ξ] = E[(ξ − e)k] is given by:

• If k = 2p+ 1, then

m2p+1[ξ] = mk[ξ] = 0 (3.9)

• If k = 2p, then

m2p[ξ] =
αk

2k + 2
. (3.10)
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Proof : We prove that, for a symmetric fuzzy variable ξ,mk[ξ] is null when k is an odd

number.

By definition, we have:

mk[ξ] = E[(ξ−E[ξ])k] =
∫ +∞
0 Cr{(ξ−E[ξ])k ≥ r}dr−

∫ 0
−∞Cr{(ξ−E[ξ])k ≤ r}dr,∀k ∈ N∗.

In ([16]), X. Li has already proved that for a symmetric fuzzy variable ξ, E[ξ] = e and

Cr{ξ−e ≥ r} = Cr{ξ−e ≤ −r}, where e is a real number such that µ(e−r) = µ(e+r),∀r ∈ R

and µ is the membership function of ξ.

Furthermore, we have:

mk[ξ] =
∫ +∞
0 Cr{(ξ − e)k ≥ r}dr−

∫ 0
−∞Cr{(ξ − e)k ≤ r}dr =

∫ +∞
0 krk−1Cr{ξ − e ≥ r}dr−∫ 0

−∞ krk−1Cr{ξ−e ≤ r}dr =
∫ +∞
0 krk−1Cr{ξ−e ≤ −r}dr−

∫ +∞
0 krk−1Cr{ξ−e ≤ r}dr = 0.

Now, we assume that k is an even integer.

For a symmetric triangular fuzzy variable ξ = (a, b, c), we can easily show the following result:

Since Cr{(ξ − e)k ≥ r} = Cr{ξ − e ≥ k
√
r} ∨ Cr{ξ − e ≤ k

√
r}, we have:

Cr{(ξ − e)k ≥ r} =

{
α− k

√
r

2α , if 0 ≤ r ≤ αk

0, if r ≥ αk

where α = c− b = b− a. Then, we have mk[ξ] =
∫ αk

0
α− k

√
r

2α dr = 1
2k+2 α

k. 2

We end this Section by introducing semi-moment and by establishing a link between a

moment and a semi-moment of a fuzzy variable.

3.2.2 Semi-moment of fuzzy variables and link between moments and semi-
moments

Let ξ be a fuzzy variable with finite expected value e.

Definition 3.2.1. Let p ∈ N∗.

1. The semi-moment of order n = 2p of ξ is the real number denoted by MS
2p and defined
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by:

MS
2p[ξ] = MS

n [ξ] = E[[(ξ − e)−]2p] =

∫ +∞

0
Cr{[(ξ − e)−]2p ≥ r}dr. (3.11)

2. The normalized semi-moment of ξ is the real number denoted by MS,1
2p and defined by:

MS,1
2p [ξ] =

MS
2p[ξ]

(MS
2 [ξ])

p
.

In the case where p = 1, we obtain the well-known semi-variance of ξ and for p = 2, we

obtain the semi-kurtosis of ξ.

In the following, we study the link between moment and semi-moment of a fuzzy variable.

The following result compares semi-moment and moment of a fuzzy variable.

Proposition 3.2.2. Let ξ be a fuzzy variable with finite expected value e, p ∈ N and, MS
2p[ξ]

and M2p[ξ] the semi-moment and moment of ξ respectively. Then

0 ≤ MS
2p[ξ] ≤ M2p[ξ]. (3.12)

Proof : Let θ ∈ Θ and r ∈ R. With (2.13), we have: [(ξ − e)−]2p =

{
(ξ − e)2p if ξ ≤ e
0 if ξ > e

.

Thus we distinguish two cases as follows:

i) If ξ(θ) ≤ e, then [(ξ(θ)− e)−]2p = (ξ(θ)− e)2p. And [(ξ(θ)− e)−]2p ≥ r ⇔ (ξ(θ)− e)2p ≥ r.

ii) If ξ(θ) > e, then [(ξ(θ)− e)−]2p = 0 and (ξ(θ)− e)2p ≥ [(ξ(θ)− e)−]2p.

For those two cases, we have:

[(ξ(θ)− e)−]2p ≥ r implies (ξ(θ)− e)2p ≥ r. We deduce that ∀θ, r, {θ/[(ξ(θ)− e)−]2p ≥ r} ⊆

{θ/(ξ(θ)−e)2p ≥ r}. Since Cr is monotone, we have: ∀r, Cr{[(ξ−e)−]2p ≥ r} ≤ Cr{(ξ−e)2p ≥

r}. Hence, M2p[ξ] =
∫ +∞
0 Cr{(ξ − e)2p ≥ r}dr ≥

∫ +∞
0 Cr{[(ξ − e)−]2p ≥ r}dr = MS

2p[ξ].
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For p = 2, we prove (3.14). 2

The following result establishes a necessary and sufficient condition under which even

moments of a fuzzy variable are null.

Proposition 3.2.3. Let ξ be a fuzzy variable with finite expected value e. Then

M2p[ξ] = 0 if and only if Cr{ξ = e} = 1. (3.13)

Proof : Let ξ be a fuzzy variable with finite expected value e and p ∈ N∗ .

(⇐) : Assume that Cr{ξ = e} = 1. Thus we have: Cr{ξ − e = 0} = 1 if and only if

Cr{(ξ − e)2p = 0} = 1. With the self-duality of Cr, we have Cr{(ξ − e)2p ̸= 0} = 0.

Let r > 0. We have: Cr{(ξ − e)2p ≥ r} ≤ Cr{(ξ − e)2p > 0} ≤ Cr{(ξ − e)2p ̸= 0} = 0. That

means ∀r > 0, Cr{(ξ−e)2p ≥ r} = 0. We deduce that: M2p[ξ] =
∫ +∞
0 Cr{(ξ−e)2p ≥ r}dr = 0.

(⇒:) Assume that M2p[ξ] = 0. Since Cr takes values in [0; 1], this equality means Cr{(ξ −

e)2p ≥ r} = 0, ∀r > 0. Since Cr is self-dual, we have Cr{(ξ − e)2p = 0} = 1 and we deduce

that Cr{ξ − e = 0} = 1, that is, Cr{ξ = e} = 1. 2

Furthermore, the following result deduces some interesting links between kurtosis and

semi-kurtosis of a fuzzy variable.

Corollary 3.2.2. Let ξ be a fuzzy variable with finite expected value e, KS [ξ] and K[ξ] the

semi-kurtosis and kurtosis of ξ respectively. Then

1.

0 ≤ KS [ξ] ≤ K[ξ]. (3.14)

2.

K[ξ] = 0 if and only if Cr{ξ = e} = 1. (3.15)
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3.

KS [ξ] = 0 if and only if Cr{ξ = e} = 1, i.e.,K[ξ] = 0. (3.16)

4.

KS [ξ] = K[ξ] if ξ is symmetric . (3.17)

In the next Section, we characterize moments for a convex linear combination of a finite

family of independent triangular fuzzy variables called a portfolio of triangular fuzzy variables.

3.3 Moments of a portfolio of triangular fuzzy variables

Definition 3.3.1. Let (ξi = (ai, bi, ci))i=1,2,...,n be a family of n independent triangular fuzzy

variables and x = (x1, . . . , xn) be a family of n positive reals of [0, 1] such that
∑n

i=1 xi = 1.

The portfolio of the n fuzzy variables is the linear combination of those fuzzy variables defined

by ξ(x) =
∑n

i=1 xiξi = (
∑n

i=1 xiai,
∑n

i=1 xibi,
∑n

i=1 xici).

Example 3.3.1. Let ξ1 = (2, 4, 5), ξ1 = (−6, 1, 3), ξ3 = (7, 11, 16) be three independent

triangular fuzzy variables and x, y, z ∈ [0, 1] be three real numbers such that x + y + z = 1.

Then ξ = xξ1 + yξ2 + zξ3 = (2x− 6y + 7z, 4x+ y + 11z, 5x+ 3y + 16z) is a portfolio of the

three fuzzy variables ξ1, ξ2, ξ3.

Interpretation 3.3.1. A portfolio indicates futures returns after investment. The returns of

investment of the n assets of the portfolio are described by the fuzzy variables x1ξ1,...,xiξi,...,

xnξn where the scalars x1,..., xi,...,xn are the proportions of investment on those assets. A

portfolio suggests how the investor can share his capital among the different assets of the

portfolio.
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Since the portfolio of a finite family of triangular fuzzy variables is a triangular fuzzy

variable, we deduce its parameters from previous results as follows.

Corollary 3.3.1. Let ξ(x) =
∑n

i=1 xiξi be a portfolio.

Then

1. The mean of ξ(x) is:

E[ξ(x)] =
1

4

n∑
i=1

xi(ai + 2bi + ci).

2. The variance of ξ(x) is:

V [ξ(x)] = − 1

192
∑n

k=1

∑n
l=1 xkxlαkβl

[

n∑
k=1

xk(ls(ξk))]
3|

n∑
k=1

xk(αk − βk)|+

(
1

32
∑n

k=1

∑n
l=1 xkxlαkβl

[
n∑

k=1

xk(ls(ξk))]
2|

n∑
k=1

xk(αk − βk)|)×

([
1

4

n∑
k=1

xk(2ls(ξk)− (αk + βk))]) +
(
|
∑n

k=1 xk(αk−βk)|
4 + 1

2

∑n
k=1 xkls(ξk))

3

3
∑n

k=1 xk(αk + βk + |αk − βk|)
−

(
|
∑n

k=1 xk(αk−βk)|
4 )3

3
∑n

k=1 xk(αk + βk − |αk − βk|)
+

(
|
∑n

k=1 xk(αk−βk)|
4 )3 + | |

∑n
k=1 xk(αk−βk)|

4 |3

6
∑n

k=1 xk(αk + βk + |αk − βk|)
.

3. The Skewness of ξ(x) is:

SK[ξ(x)] =
1

32
(

n∑
i=1

xi(ci − ai))
2.

n∑
i=1

xi(ci − 2bi + ai)

4. The Kurtosis of ξ(x) is:

K[ξ(x)] = − 1

5120
∑n

k=1

∑n
l=1 xkxlαkβl

[

n∑
k=1

xk(ls(ξk))]
5|

n∑
k=1

xk(αk − βk)|+

(
1

512
∑n

k=1

∑n
l=1 xkxlαkβl

[

n∑
k=1

xk(ls(ξk)]
4|

n∑
k=1

xk(αk − βk)|)×

([
1

4

n∑
k=1

xk(2ls(ξk)− (αk + βk))]) +
(
|
∑n

k=1 xk(αk−βk)|
4 + 1

2

∑n
k=1 xkls(ξk))

5

5
∑n

k=1 xk(αk + βk + |αk − βk|)
−

(
(|
∑n

k=1 xk(αk−βk)|
4 )5

5
∑n

k=1 xk(αk + βk − |αk − βk|)
+

(
|
∑n

k=1 xk(αk−βk)|
4 )5 + |( |

∑n
k=1 xk(αk−βk)|

4 )5|
10

∑n
k=1 xk(αk + βk + |αk − βk|)

.
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Proof : We deduce these results from Proposition 3.1.2 and the expressions of mean, vari-

ance and skewness of a fuzzy variable. 2

The following result determines the semi-variance and the semi-kurtosis of a portfolio.

Proposition 3.3.1. Let (ξk)k=1,...,n be a family of independent trapezoidal fuzzy variables

with finite expected values (ek)k=1,...,n, (xk)k=1,...,nbe a family of n positive reals and ξ(x) =∑n
k=1 xkξk. Then

1. The semi-variance of ξ(x) is

V S [ξ(x)] =
1

6
∑n

k=1 xk(bk − ak)
[(

n∑
k=1

xk(ek − ak))
3 +min(0, (

n∑
k=1

xk(bk − ek))
3)]+

1

6
∑n

k=1 xk(dk − ck)
max(0, (

n∑
k=1

xk(ek − ck))
3).

2. The semi-kurtosis of ξ(x) is

KS [ξ(x)] =
1

10
∑n

k=1 xk(bk − ak)
[(

n∑
k=1

xk(ek − ak))
5 +min(0, (

n∑
k=1

xk(bk − ek))
5)]+

1

10
∑n

k=1 xk(dk − ck)
max(0, (

n∑
k=1

xk(ek − ck))
5).

Proof : We deduce these results from Example 3.1.3 and the semi-variance formula of a

trapezoidal fuzzy variable. 2

Those new concepts about the fuzzy variables, obtained by means of the credibility mea-

sure, are part of the quantitative approach for solving the portfolio selection problem. In the

next Chapter, we introduce another approach, namely qualitative approach, based upon the

pairwise comparison of fuzzy variables.
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Chapter Four

Dominance relations on fuzzy
variables based on the credibility

measure

In this Chapter, we define and characterize three dominance relations on fuzzy variables. We

establish some links between these dominance relations and determine some of their properties.

Some results of this Chapter are in our recent article Tassak, Sadefo, Fono and Andjiga [38].

4.1 Mean-risk dominance based on FLPMα,τ : Definitions, Ex-
amples and Characterization

In this Section, we introduce a new dominance relation on fuzzy variables and characterize

it in some particular cases. For that, we introduce fuzzy lower partial moment of a fuzzy

variable which is studied in details in Appendix. E(.) is the expectation operator based on a

credibility measure and ξ is a fuzzy variable.

Definition 4.1.1. Let α ∈ N∗ and τ ∈ R.

The fuzzy lower partial moment of ξ with order α and target value τ is the real number denoted

by FLPMα,τ [ξ] and defined by:

FLPMα,τ [ξ] = E[max(τ − ξ, 0)α]. (4.1)

In the following remark, we express the fuzzy lower partial moment of a fuzzy variable by
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means of its distribution function or its derivative when it exists and we establish some useful

links between fuzzy lower partial moment and semi-moment.

Remark 4.1.1. Let ξ be a fuzzy variable, α ∈ N∗ and τ ∈ R.

1. The FLPM of ξ can be defined by means of its distribution function as follows:

FLPMα,τ [ξ] =

∫ +∞

0
Cr{max(τ − ξ, 0)α ≥ r} dr = α

∫ τ

−∞
(τ − u)α−1Φ(u)du

(4.2)

2. When Φ has a derivative ϕ and ξ has a lower bounded support, we have:

FLPMα,τ [ξ] =

∫ τ

−∞
(τ − u)αdΦ(u) =

∫ τ

−∞
(τ − u)αϕ(u)du. (4.3)

3. If the target value τ = E[ξ] = µ and α ∈ 2N\{0}, then FLPMα,µ[ξ] is the semi-moment

of order α of ξ.

4. For the particular of α = 0, we have the so-called credibility of loss of ξ given by:

FLPM0,τ [ξ] = Cr{ξ ≤ τ}.

5. In the case where α = 1, FLPM1,τ [ξ] = E[max(τ − ξ, 0)] is called the expected loss of

ξ. Here the constant target value τ can be considered as the threshold point separating

returns in two parts: downside returns and upside returns relative to the threshold.

The following result determines necessary and sufficient conditions on the credibility dis-

tribution function Φ of ξ under which its fuzzy lower partial moment is null.

Proposition 4.1.1. Let ξ be a fuzzy variable, Φ its credibility distribution function, α ∈ N∗

and τ ∈ R.

FLPMα,τ [ξ] = 0 ⇔ Φ(τ−) = 0. (4.4)
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Proof : (⇒) Assume that FLPMα,τ [ξ] = 0, then (4.2) implies ∀r ∈ R, r < τ =⇒ Φ(r) = 0,

that means, Φ(τ−) = sup{Φ(r), r < τ} = 0.

(⇐) If Φ(τ−) = 0, then the inequality Φ(r) ≥ 0 implies ∀r ∈ R, r < τ =⇒ Φ(r) = 0.

According to the relation (4.2), the previous implication leads to FLPMα,τ [ξ] = 0. 2

In the following, we introduce and study the new dominance relation on fuzzy variables.

Definition 4.1.2. Let α ∈ N∗ and τ ∈ R.

The fuzzy mean-risk dominance with order α and target value τ is the binary relation on the

set of fuzzy variables denoted by ≽α,τ and defined as follows: for two fuzzy variables ξ1, ξ2,

ξ1 ≽α,τ ξ2 if
{

E[ξ1] ≥ E[ξ2]
FLPMα,τ [ξ1] ≤ FLPMα,τ [ξ2]

.

Remark 4.1.2. 1) From the previous definition, we deduce the strict dominance of ≽α,τ by:

ξ1 ≻α,τ ξ2 if
{

E[ξ1] ≥ E[ξ2]
FLPMα,τ [ξ1] ≤ FLPMα,τ [ξ2]

with at least one strict inequality . (4.5)

2) In Finance, the choice of parameters α and τ is made by the decision maker (investor)

according to the minimum benefit τ he expects to obtain and how he evaluates the risk α to

obtain such benefits.

The following result characterizes the new dominance relation ≽α,τ in the three following

cases: (1) the two fuzzy variables have disjoint supports and τ is less than the minimum of the

lower bounds of the two supports, (2) the two fuzzy variables are symmetric and τ is between

the lower bounds of the two supports and (3) one of the two fuzzy variables is a crisp number

and the other one is a fuzzy variable with τ as its upper bound.

Notice that the three results of this theorem can be interpreted as follows:
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1. The first case means that, in absence of risk, the “best” fuzzy variable is the one with

greater expected return.

2. According to the second case, when two distributions have equal means, it is more

suitable to choose the less risky one.

3. The third case reveals that: if two distributions have the same expected return value

which is below to the target, in the most case , the “best” distribution is the one which

make “certain” to get this value.

We now state our result.

Theorem 4.1.1. Assume that (4.5) holds. Then:

1. If Φ1(τ
−) = Φ2(τ

−) = 0, then ξ1 ≻α,τ ξ2 if and only if E[ξ1] > E[ξ2].

2. If


E[ξ1] = E[ξ2]
Φ1(τ

−) = 0
Φ2(τ

−) > 0
, then ξ1 ≻α,τ ξ2.

3. If E[ξ1] = E[ξ2] = τ − r (with r > 0), Φ1 is a degenerate distribution that assigns

credibility 1 to τ −r with r > 0, and Φ2 is a non-degenerate distribution with Φ2(τ) = 1,

then:

ξ1 ≻α,τ ξ2 if and only if α > 1.

To establish this proof, we recall the Jensens’ Inequality for fuzzy variable introduced

earlier by Liu [19] (Theorem 1.59, page 68):

“Let ξ be a fuzzy variable and f : R → R a strictly convex function. If E[ξ] and E[f(ξ)] are

finite, then f(E[ξ]) < E[f(ξ)]."
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We now establish the proof of the Theorem.

Proof : 1) Let us assume that Φ1(τ
−) = Φ2(τ

−) = 0.

By relation (4.4), we have FLPMα,τ [ξ1] = FLPMα,τ [ξ2] = 0.

(⇒) Assume on the contrary that ξ1 ≻α,τ ξ2 and E[ξ1] ≤ E[ξ2]. This inequality and the

equality imply that there is not any strict inequality between the means or the fuzzy lower

partial moments of the fuzzy variables ξ1 and ξ2. This contradicts ξ1 ≽α,τ ξ2. Therefore, we

have: E[ξ1] > E[ξ2].

(⇐) Assume that E[ξ1] > E[ξ2]. Thus, the equality FLPMα,τ [ξ1] = FLPMα,τ [ξ2] = 0 and the

definition of ≻α,τ imply ξ1 ≻α,τ ξ2.

2) Assume that E[ξ1] = E[ξ2],Φ1(τ
−) = 0,Φ2(τ

−) > 0.

That means FLPMα,τ [ξ1] = 0 and FLPMα,τ [ξ1] > 0, according to relation (4.4).

3) Let us assume that Φ1 is a degenerate distribution that assigns credibility 1 to τ − r with

r > 0, and Φ2 is a non-degenerate distribution that has Φ2(τ) = 1 and E[ξ1] = E[ξ2] = τ − r.

Let us set f(y) = (τ − y)α for y ≤ τ, and r > 0.

According to the fact that Φ1 is a degenerate distribution function that assigns credibility 1

to τ − r, we have
∫ τ
−∞(τ − y)αdΦ1(y) = rα and f(E[ξ1]) = rα.

f is strictly convex as α > 1. By the Inequality of Jensens and the fact that E[ξ1] =

E[ξ2], we have: E[f(ξ2)] = α
∫ τ
−∞(τ − y)α−1Φ2(y) dy > f(E[ξ1]) = rα . Finally, we have

α
∫ τ
−∞(τ − y)α−1Φ2(y) dy > α

∫ τ
−∞(τ − y)α−1Φ1(y) dy. Thus ξ1 ≻α,τ ξ2.

We can prove the converse case in the same way. 2

Let us compare two trapezoidal fuzzy variables by means of the mean-risk dominance.
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Example 4.1.1. Let ξ1 = (−1,−1
2 ,

3
2 , 2) and ξ2 = (−2, 0, 1, 3) be two trapezoidal fuzzy vari-

ables.

We have: E[ξ1] = E[ξ2] =
1
2 .

By taking τ = 1
2 and α = 2. We have: FLPMα,τ [ξ1] =

19
24 ≤ FLPMα,τ [ξ2] =

31
24 . It follows that

ξ1 ≽2, 1
2
ξ2.

Let us end this subsection by justifying that ≽α,τ is not a complete relation on the set of

fuzzy variables.

Remark 4.1.3. Let ξ1 = (1, 4, 5) and ξ2 = (2, 3, 4) be two fuzzy variables, α = 2 and τ = 4.

We have: E[ξ1] =
7
2 , E[ξ2] = 3, FLPM2,4[ξ1] =

3
2 and FLPM2,4[ξ2] =

4
3 . Thus, E[ξ1] > E[ξ2]

and FLPM2,4[ξ1] > FLPM2,4[ξ2]. Hence ξ1 �2,4 ξ2 and ξ2 �2,4 ξ1. Thereby, ≽α,τ is not a

complete relation.

In the next Section, we recall the first and second orders dominance relations on the set of

fuzzy variables introduced by Peng et al. [27]. We characterize each of those dominance rela-

tions and determine some of their first properties. For that, Φ1 and Φ2 denote the credibility

distribution functions of fuzzy variables ξ1 and ξ2 respectively.

4.2 First and second orders dominance relations

The next Subsection focus on the first order dominance relation.

4.2.1 The First Order Dominance Relation: Definition, Examples and Char-
acterization

Definition 4.2.1. (See Peng et al. [27], page 32, Definition 7) The first order dominance is

the binary relation on fuzzy variables denoted ≽1 and defined by: ∀ξ1, ξ2,

ξ1 ≽1 ξ2 if ∀r ∈ R,Φ1(r) ≤ Φ2(r).
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From the previous definition, we deduce the strict dominance of ≽1 by:

ξ1 ≻1 ξ2 if ∀r ∈ R,Φ1(r) ≤ Φ2(r) and ∃r0 ∈ R,Φ1(r0) < Φ2(r0). The indifference is given by:

ξ1 ∼1 ξ2 if ∀r ∈ R,Φ1(r) = Φ2(r) .

The following result characterizes the first order dominance relation for trapezoidal fuzzy

variables.

Theorem 4.2.1. Let ξ1 = (a1, b1, c1, d1) and ξ2 = (a2, b2, c2, d2) be two trapezoidal fuzzy

variables.

1.

ξ1 ≽1 ξ2 ⇔


a1 ≥ a2
b1 ≥ b2
c1 ≥ c2
d1 ≥ d2

. (4.6)

2. ξ1 ∼1 ξ2 if and only if ξ1 = ξ2.

In other words, ξ1 �1 ξ2 if and only if (a1 < a2 or b1 < b2 or c1 < c2 or d1 < d2).

Figure 4.1 illustrates that the trapezoidal fuzzy variable ξ2 = (a2, b2, c2, d2) dominates ξ1 =

(a1, b1, c1, d1) by means of ≽1 while Figure 4.2 illustrates that there is no dominance between

the two fuzzy variables by means of ≽1 .

We now established our Theorem.

Proof: 1) (⇒) Assume that a1 < a2 or b1 < b2 or c1 < c2 or d1 < d2 and let us prove that

ξ1 �1 ξ2, that is, there exists some r0 ∈ R such that Φ1(r0) > Φ2(r0). We distinguish four

cases:

- Assume that a1 < a2. Let r ∈]a1; a2[; r > a1 ⇒ Φ1(r) > Φ1(a1) = 0 and r < a2 ⇒ Φ2(r) = 0,

Thus Φ1(r) > Φ2(r).

TASSAK DEFFO CHRISTIAN PhD. Thesis



Dominance relations on fuzzy variables based on the credibility measure 62

Figure 4.1: Fuzzy variable
(a1, b1, c1, d1) dominated by the
other one (a2, b2, c2, d2). Figure 4.2: Incomparable fuzzy variables.

- Assume that b1 < b2. By taking r ∈]b1; b2[, we have Φ1(r) > Φ2(r).

- Assume that c1 < c2. By taking r ∈]c1; c2[, we have Φ1(r) > Φ2(r).

- Assume that d1 < d2. By taking r ∈]d1; d2[, we have Φ1(r) > Φ2(r).

Finally, we have: ξ1 �1 ξ2.

(⇐) Assume that that a1 ≥ a2,b1 ≥ b2,c1 ≥ c2 and d1 ≥ d2. Let us prove that ξ2 is

dominated by ξ1, that is, ∀r ∈ R,Φ1(r) ≤ Φ2(r).

We consider the 8 following cases and the results are obtained according to relation (2.5):

i) ∀r ∈]−∞; a2]: Φ2(r) = Φ1(r) = 0 since r ≤ a2 ≤ a1. Thus, Φ1(r) ≤ Φ2(r).

ii) ∀r ∈ [a2; a1]: Φ2(r) =
r−a2

2(b2−a2)
≥ 0 and Φ1(r) = 0. Thus, Φ1(r) ≤ Φ2(r).

iii) If a1 ≥ b2, then ∀r ∈ [b2; a1],Φ1(r) = 0 and Φ2(r) =
1
2 that is Φ1(r) ≤ Φ2(r).

Else, that is a1 < b2: ∀r ∈ [a1; b2], Φ1(r) =
r−a1

2(b1−a1)
and Φ2(r) =

r−a2
2(b2−a2)

.

We just have to prove that r−a1
(b1−a1)

≤ r−a2
2(b2−a2)

, ∀r ∈ [a1; b2] .

We set: f(r) = r−a1
(b1−a1)

and g(r) = r−a2
(b2−a2)

.

Let r0 ∈]a1; b2[. f(r0) = g(r0) ⇔ r0 =
a2(b1−a1)−a1(b2−a2)

(b1−a1)−(b2−a2)
. The quantities r0−a1 =

(b1−a1)(a2−a1)
(b1−a1)−(b2−a2)
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and r0 − b2 = (b2−b1)(b2−a2)
(b1−a1)−(b2−a2)

have the same sign as a1 ≥ a2 and b1 ≥ b2. This is a con-

tradiction to the fact that r0 ∈]a1; b2[. By the fact that f(a1) ≤ g(a1), f(b2) ≤ g(b2), f

and g are strictly non-decreasing on ]a1; b2[ and f(r) ̸= g(r), ∀r ∈]a1; b2[, we conclude that

f(r) ≤ g(r),∀r ∈ [a1; b2], that is r−a1
(b1−a1)

≤ r−a2
2(b2−a2)

.

iv) ∀r ∈ [max(a1, b2); b1]: Φ2(r) =
1
2 and Φ1(r) =

r−a1
2(b1−a1)

≤ 1
2 . Thus, Φ1(r) ≤ Φ2(r).

v) ∀r ∈ [b1; c2]: Φ2(r) = Φ1(r) =
1
2 since b2 ≤ r ≤ b1 and c2 ≤ r ≤ c1. Thus, Φ1(r) ≤ Φ2(r).

vi) ∀r ∈ [c2;min(c1, d2)]: Φ2(r) = 1− r−d2
2(c2−d2)

≥ 1
2 and and Φ1(r) =

1
2 . Thus, Φ1(r) ≤ Φ2(r).

vii) ∀r ∈ [min(c1, d2); d1]: By using a similar proof as in iii), we get Φ1(r) ≤ Φ2(r).

viii) ∀r ∈ [d1; +∞[,Φ2(r) = Φ1(r) = 1. So Φ1(r) ≤ Φ2(r).

2) The second result is deduced from the first one. 2

Let us state the following example which displays two comparable fuzzy trapezoidal vari-

ables by means of ≽1. It also justifies that ≽1 is not a complete relation.

Example 4.2.1. Let us consider the three trapezoidal fuzzy variables: ρ1 = (−2,−1, 4, 9),

ρ2 = (1, 2, 3, 7) and ρ3 = (2, 3, 4, 8). We have the following comparisons:

ρ3 ≽1 ρ2, ρ2 �1 ρ1 since 3 < 4 and 7 < 9, ρ3 �1 ρ1 since 8 < 9.

Let us end this Section by giving two properties of ≽1 on the particular family of trape-

zoidal fuzzy variables.

Proposition 4.2.1. Let ξi and ξj be two trapezoidal fuzzy variables.

If ξi ≽1 ξj , then ∀λ ∈ R∗,

{
λξi ≽1 λξj , if λ > 0
λξj ≽1 λξi, if λ < 0

.

Proof: Assume that ∀t ∈ {i, j}, ξt = (at, bt, ct, dt) and ξi ≽1 ξj . According to the

Extension Principle of Zadeh, if λ > 0, then λξt = (λat, λbt, λct, λdt) and if λ < 0, then
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λξ = (λdt, λct, λbt, λat).

By using the characterization of the first order dominance, we obtain the result. 2

In the following Subsection, we recall the second order dominance relation on fuzzy vari-

ables introduced by Peng et al. [27]. We introduce the notions of crossing points of two fuzzy

variables and characterize them. Then, we use this new notion to characterize ≽2.

4.2.2 The Second Order Dominance Relation: Definitions, Examples and
Characterization

Definition and determination of crossing points

Let us recall the definition of the second order dominance relation.

Definition 4.2.2. (Peng et al. [27], page 33, Definition 8) Let ξ1 and ξ2 be two fuzzy vari-

ables with Φ1,Φ2 their respective cumulative credibility distribution functions, ϕ1 and ϕ2 their

respective density functions with ϕ1 ̸= ϕ2.

ξ1 ≽2 ξ2 if ∀t ∈ R,
∫ t

−∞
[Φ2(r)− Φ1(r)]dr ≥ 0.

From the previous definition, we deduce the strict dominance of ≽2 by:

ξ1 ≻2 ξ2 if

{
∀t ∈ R,

∫ t
−∞[Φ2(r)− Φ1(r)]dr ≥ 0

∃t0 ∈ R,
∫ t0
−∞[Φ2(r)− Φ1(r)]dr > 0

.

We note that
∫ t
−∞[Φ2(r) − Φ1(r)]dr represents a balance of areas between Φ1 and Φ2, that

means, the difference of areas resulting from integrating each function from −∞ to t, with

the following order: the area below Φ2 minus the area below Φ1.

In the following, we will characterize the second order dominance relation ≽2 by writing

the fuzzy counterpart of the characterization of the second order dominance’s characterization
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proposed recently by Osuna [25]. Therefore, we introduce, analogously as did Osuna [25] for

random variables (see Definition 3.1 P 760), the two notions of interval of coincidence and

crossing points for two fuzzy variables.

The intervals of coincidence of two fuzzy variables, denoted by IC, is the half open interval,

open at the right, where the two curves of their distributions functions coincide. For example,

in Figure 4.3, the two straight lines entitled I.C. are the two intervals of coincidence of Φ1

and Φ2. Formally, we have:

Definition 4.2.3. The half-open interval [a, b), with a < b is an interval of coincidence (IC)

for Φ1 and Φ2 if Φ1(t) = Φ2(t) for all t ∈ [a, b).

From previous definition, we can deduce that any value t0 belongs to an interval of coin-

cidence if there exists some ϵ > 0 such that the interval [t0, t0 + ϵ) is IC.

We now introduce two types of crossing points (CP) for fuzzy variables, namely, crossing

points of type I and II. Analogously to Definition 3.2 of page 760 in Osuna [25], the crossing

point of type II of ξ1 and ξ2 is the point where the two curves of their distribution functions

intersect and the curve which strictly minimizes before that point strictly maximizes after it.

The crossing point of type I of ξ1 and ξ2 is the upper bound of a given interval of coincidence

(point where the two curves of their distribution functions coincide before it and are distinct

after it). Formally, we have the following definition:

Definition 4.2.4. 1. Let [a, t0) be an IC.
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t0 corresponds to a CP of type I if there exists some ϵ > 0 such that for all s ∈ (0, ϵ),
Φ1(a− s) ̸= Φ2(a− s)
Φ1(t0 + s) ̸= Φ2(t0 + s) Φ1(a− s)− Φ2(a− s) < 0 and Φ1(t0 + s)− Φ2(t0 + s) > 0

or
Φ1(a− s)− Φ2(a− s) > 0 and Φ1(t0 + s)− Φ2(t0 + s) < 0

 .

2. Any other value t0 corresponds to a CP of type II if there exists some ϵ > 0 such that

for all s ∈ (0, ϵ), we have
Φ1(t0 − s) ̸= Φ2(t0 − s)
Φ1(t0 + s) ̸= Φ2(t0 + s) Φ1(t0 − s)− Φ2(t0 − s) < 0 and Φ1(t0 + s)− Φ2(t0 + s) > 0

or
Φ1(a− s)− Φ2(a− s) > 0 and Φ1(t0 + s)− Φ2(t0 + s) < 0

 .

3. Convention: (a) if t0 belongs to an IC, it does not correspond to a CP;

(b) let m1 = inf{t/Φ1(t) > 0} and m2 = inf{t/Φ2(t) > 0}, and let t1 = min(m1,m2) :

the interval (−∞, t1) is an IC and t1 does not correspond to a CP.

Figure 4.3: Intervals of coincidence
(IC) of two curves. Figure 4.4: Crossing point(CP) of two distributions.

The following result establishes a characterization of the second order dominance relation.

The proof is given in appendix.

TASSAK DEFFO CHRISTIAN PhD. Thesis



Dominance relations on fuzzy variables based on the credibility measure 67

Theorem 4.2.2. Let ξ1 and ξ2 be two fuzzy variables, Φ1 and Φ2 their respective absolutely

continuous credibility distributions. Let us suppose that there is a finite number of crossing

points {t01, ..., t0k} (ordered so increasing) such that t01 > min{inf{t : Φ1(t) > 0}, inf{t :

Φ2(t) > 0}}. Then

ξ1 ≻2 ξ2 if and only if
∀i ∈ {1, 2, ..., k},

∫ t0i
−∞[Φ2(r)− Φ1(r)]dr ≥ 0 ∫ +∞

−∞ [Φ2(r)− Φ1(r)]dr = 0 and ∃t0h ∈ {t01, ..., t0k},
∫ t0h
−∞[Φ2(r)− Φ1(r)]dr > 0

or∫∞
−∞[Φ2(r)− Φ1(r)]dr > 0

 .

Remark 4.2.1. When there is no crossing point, the distribution’s curves do not intersect

and we can use the first order dominance relation to compare two fuzzy variables.

We end this Section by the characterization of crossing points.

Determination of Crossing Points of two fuzzy variables

The following result determines crossing points of two trapezoidal or triangular fuzzy variables

in the following six cases: (i) the three first cases are illustrated by Figure 4.5 and (ii) the

three last cases allow us to find crossing points when the kernel of one of at least one of the

fuzzy variables is a peak.

For that, ξi = (ai, bi, ci, di) and ξj = (aj , bj , cj , dj) are two fuzzy numbers. µi and µj are

their respective membership functions, Φi and Φj are their respective credibility distribution

functions. The proof of this proposition is given in appendix.

Proposition 4.2.2. Let r0 and ϵ be two reals numbers with ϵ > 0. We have:

1. ∀s ∈ (0, ϵ),

{
µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
r0 − s, r0 + s ∈ [ai ∨ aj , bi ∧ bj ]

⇒ r0 is a crossing point

of type II.
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2. ∀s ∈ (0, ϵ),

{
µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
r0 − s, r0 + s ∈ [ci ∨ cj , di ∧ dj ]

⇒ r0 is a crossing point

of type II.

3. ([bi, ci] ⊆ [bj , cj ] and [ai, di] ⊆ [aj , dj ], bi ̸= ci, bj ̸= cj) ⇒ ci is a crossing point of type I

and bi = min{t/[t, ci) is I.C}.

4. ([ai, di] ⊆ [aj , dj ], bi = ci, bj ̸= cj , bi ∈ [bj , cj ]) ⇒ ci is a crossing point of type II .

5. ([ai, di] ⊆ [aj , dj ], bi ̸= ci, bj = cj , bj ∈ [bi, ci]) ⇒ cj is a crossing point of type II.

6. ([ai, di] ⊆ [aj , dj ], bi = ci = bj = cj , ai ̸= aj , di ̸= dj) ⇒ cj is a crossing point of type II.

Remark 4.2.2. The previous Proposition allows to obtain crossing points between two fuzzy

variables directly by means of their membership functions.

Remark 4.2.3. We have an analogous result with r0 ∈ R and ϵ ∈ R+
∗ in the following case:

∀s ∈ (0, ϵ), µi(r0 − s) > µj(r0 − s) and µi(r0 + s) < µj(r0 + s).

Remark 4.2.4. • We have an analogous result if ∃ϵ > 0, ∃r0, ∀s ∈ (0, ϵ), µi(r0 − s) >

µj(r0 − s) and µi(r0 + s) < µj(r0 + s).

Figure 4.5: Crossings points of type I and type II of two fuzzy variables obtained by member-
ship functions.

TASSAK DEFFO CHRISTIAN PhD. Thesis



Dominance relations on fuzzy variables based on the credibility measure 69

Figure 4.6: Incomparable fuzzy variables by means of ≽2.

• The binary relation ≽2 on the set of fuzzy variables is not complete.

Let us prove that by considering the two following triangular fuzzy variables ξ1 = (1, 3, 8)

and ξ2 = (2, 3, 4) drawn in Figure 4.6 and, Φ1 and Φ2 are their respective credibility

distributions.

By Proposition 4.2.2, we can prove that the only crossing point is obtained at r0 = 3.

Then, we have:∫ 3
−∞[Φ1(r)− Φ2(r)]dr = 1

4 > 0,
∫ +∞
−∞ [Φ1(r)− Φ2(r)]dr = −1

5 < 0 and by Theorem 4.2.2

we conclude that ξ1 �2 ξ2 and ξ2 �2 ξ1.

The following example compares two trapezoidal fuzzy variables by means of the second

order dominance ≽2.

Example 4.2.2. Let η1 = (1, 2, 3, 4) and η2 = (−1, 0, 1, 2) be two trapezoidal fuzzy variables

and Φ1, Φ2 their respective distribution functions.

It is easy to check that there is no crossing point between Φ1 and Φ2. Therefore, we have:∫ +∞
−∞ [Φ2(x)− Φ1(x)] dx = 2 > 0, that is, η1 ≽2 η2 by Theorem 4.2.2.

The following Section establishes the relationship between the three dominance relations
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and some common properties of such relations.

4.3 Other Properties of the three dominance relations

4.3.1 Relations between the three dominance relations

The following result justifies that ≽1 is stronger than ≽α,τ and ≽2. Furthermore, ≽2 is stronger

than ≽1,τ .

Proposition 4.3.1. Let ξ1 and ξ2 be two fuzzy variables with finite expected values. Then:

1.

ξ1 ≽1 ξ2 ⇒
{

∀α ∈ N∗, ∀τ ∈ R, ξ1 ≽α,τ ξ2
ξ1 ≽2 ξ2

.

2.

ξ1 ≽2 ξ2 ⇒ ∀τ ∈ R, ξ1 ≽1,τ ξ2.

Proof: Let ξ1 and ξ2 be two fuzzy variables with uncertainty distributions Φ1 and Φ2

respectively, α and τ some given non null integer and real respectively.

1) We prove the first result.

a) Assume that ξ1 ≽1 ξ2 and we prove that ξ1 ≽α,τ ξ2.

ξ1 ≽1 ξ2 ⇒ ∀r ∈ R,Φ1(r) ≤ Φ2(r), that is,

∀r ∈ R, Cr{ξ1 ≤ r} ≤ Cr{ξ2 ≤ r} (4.7)

and

∀r ∈ R, Cr{ξ1 ≥ r} ≥ Cr{ξ2 ≥ r} (4.8)

According to the definition of ≽1 .

On the other hand, we have: E[ξi] =
∫ +∞
0 Cr{ξi ≥ r} dr −

∫ 0
−∞Cr{ξi ≤ r} dr ∀i ∈ {1; 2}
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According to (4.7) and (4.8), we conclude that E[ξ1] ≥ E[ξ2].

In the same manner, we have: FLPMα,τ [ξi] = α
∫ τ
−∞(τ − x)α−1Cr{ξi ≤ x}dx ∀i ∈ {1; 2}

These last relations lead to FLPMα,τ [ξ1] < FLPMα,τ [ξ2]. Finally, we obtain ξ1 ≽α,τ ξ2.

b) Since ∀r ∈ R,Φ1(r) ≤ Φ2(r) then ∀t ∈ R,
∫ t
−∞[Φ2(r) − Φ1(r)] dr ≥ 0. We easily obtain

the proof.

2) We prove the second result.

Let us assume that ξ1 ≽2 ξ2. The following equality

E[ξi] =
∫ +∞
0 (1− Φi(r)) dr −

∫ 0
−∞Φi(r) dr, ∀i ∈ {1, 2}, leads to:

E[ξ1]−E[ξ2] =
∫ +∞
−∞ [Φ2(r)−Φ1(r)] dr. By using the characterization of ≽2 and by the fact

that ξ1 ≽2 ξ2, we obtain
∫ +∞
−∞ [Φ2(r)− Φ1(r)] dr ≥ 0, that means E[ξ1] ≥ E[ξ2].

On the other hand, by using relation (4.2), we get:

FLPM1,τ [ξ1]−FLPM1,τ [ξ2] =
∫ τ
−∞(τ−u)0 (Φ1−Φ2)(u) du which implies that FLPM1,τ [ξ1]−

FLPM1,τ [ξ2] ≤ 0 by the fact that ξ1 ≽2 ξ2. Finally, by the fact that E[ξ1] ≥ E[ξ2] and

FLPM1,τ [ξ1] ≤ FLPM1,τ [ξ2], we conclude that ξ1 ≽1,τ ξ2. 2

The following example justifies that the converse of the two previous implications are false.

Figure 4.7: Links between the three dominance relations where only the link from ≽2 to ≽1,τ

holds.
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Example 4.3.1. Let us consider the triangular fuzzy variables ξ1 = (1, 3, 5) and ξ2 = (2, 3, 4).

• By Proposition 4.2.2, the unique crossing point is r0 = 3. Then, we have:∫ 3
−∞[Φ1(r) − Φ2(r)]dr = 1

4 > 0,
∫ +∞
−∞ [Φ1(r) − Φ2(r)]dr = 0 and by Theorem 5.2.1 we

conclude that ξ2 ≽2 ξ1. But by Theorem 4.2.1, ξ2 �1 ξ1.

• By using the same fuzzy variables, we have:

E[ξ1] = E[ξ2] = 3, FLPM2,3[ξ1] =
2
3 and FLPM2,3[ξ2] =

1
6 . So FLPM2,3[ξ2] < FLPM2,3[ξ1].

Hence ξ2 ≽2,3 ξ1. But by Theorem 4.2.1, ξ2 �1 ξ1.

The following example specifies that the mean-risk dominance ≽α,τ does not imply the

second order dominance ≽2 (See Figure 4.7).

Example 4.3.2. Let us consider the triangular fuzzy variables ξ1 = (1.5, 4, 5) and ξ2 =

(2, 3, 4) with respective distribution functions Φ1 and Φ2.

r0 =
7
3 is the only crossing point between Φ1 and Φ2. We have:∫ 7

3
−∞[Φ2(r)−Φ1(r)] dr ≃ −0.042 that is,

∫ 7
3
−∞[Φ2(r)−Φ1(r)] dr < 0 and by Theorem 5.2.1,

we conclude that ξ1 �2 ξ2.

But, E[ξ1] = 3.625, E[ξ2] = 3, i.e., E[ξ1] > E[ξ2], FLPM2,4[ξ1] ≈ 1.042 and FLPM2,4[ξ2] =
4
3 ,

that means, FLPM2,4[ξ1] < FLPM2,4[ξ2]. Thus, ξ1 ≽2,4 ξ2.

In the following Subsection, we examine if each of the three dominance relations satisfies

or violates some well-known properties of fuzzy variables.

4.3.2 Some properties of dominance relations

Let us recall six properties of dominance relations introduced by Wang and Kerre [39].

Let S be the set of independent trapezoidal fuzzy variables, A and A′ two finite subsets of S
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and ≽M a method of comparison of two elements of S (dominance relation on S). We denote

by ∼M and ≽M its indifference and strict components. Let us introduce some well-known

properties of ≽M .

Definition 4.3.1. (Wang and Kerre [39])

1. A1) ∀A ∈ A, A ≽M A.

2. A2) ∀(A,B) ∈ A2, If A ≽M B and B ≽M A, then A ∼ B.

3. A3) ∀(A,B,C) ∈ A3, A ≽M B and B ≽M C ⇒ A ≽M C.

4. A4) ∀(A,B) ∈ A2, inf supp(A) > sup supp(B) ⇒ A ≽M B.

Stronger version: A′
4) ∀(A,B) ∈ A2, inf supp(A) > sup supp(B) ⇒ A ≻M B.

5. A5) Let A,B ∈ A ∩A′. A ≽M B on A ⇔ A ≽M B on A′.

6. A6) Let A,B ∈ A such that A+ C,B + C be elements of A.

If A ≽M B, then A+ C ≽M B + C.

A′
6) Let A,B ∈ A such that A+ C,B + C be elements of A with C ̸= ∅.

If A ≻M B, then A+ C ≻M B + C.

The following result consists on checking the properties given above when ≽M∈ {≽α,τ ,≽1

,≽2}.

Proposition 4.3.2. 1) ∀α ∈ N∗, ∀τ ∈ R, ≽α,τ satisfies A1, A2, A3, A4 and A5 and it violates

A6 and A′
6.

2) ≽1 satisfies A1, A2, A3, A4, A5, A6 and A′
6.

3) ≽2 satisfies A1, A2, A3, A4, A5, A6 and A′
6.
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Then, we summarize those results in the following table. Notice that given a line, Y (Yes)

in a column indicates that the dominance relation in that line satisfies the property in the

column and N (No) means that the fuzzy dominance violates it.

Dominances and properties A1 A2 A3 A4 A′
4 A5 A6 A′

6

≽1 Y Y Y Y Y Y Y Y
≽2 Y Y Y Y Y Y Y Y
≽α,τ Y Y Y Y Y Y N N

After introducing and analyzing the two approaches for comparing fuzzy variables and

thereby portfolios of trapezoidal fuzzy variables, we apply the obtained results by solving the

question of selection of the best portfolio of fuzzy variables in Finance.
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Application in Finance

In this Chapter, we apply theoretical results for each of the two approaches developed in

the two preceded chapters to solve a portfolio optimization problem in Finance. We display

numerical results and make some comparisons.

5.1 Main question

Let us consider an investor who likes to invest his capital in n securities in the proportion

x1, x2,..., xn such that ∀i ∈ {1, 2, ..., n}, xi ∈ [0, 1] and
∑n

i=1 xi = 1. It is well-known that

an investment of a part xi of the capital in the ith security generates a return denoted by

xiξi which is not currently known. As we raised earlier in the Introduction, we assume that

the unknown future returns are fuzzy variables instead of random variables. In other words,

making up such investment consists on constituting a portfolio ((xi, ξi))1≤i≤n where the n

fuzzy variables x1ξ1, ..., xnξn are future returns of the n securities and the fuzzy variable

ξ = ξ1x1 + ξ2x2 + ... + ξnxn is the total future return or the portfolio future return. In fact,

ξi is given by (p′i+di−pi)
pi

where pi is the closing price of the ith security at present, p′i is the

estimated closing price in the next year and di is the estimated dividends during the coming

year. It is clear that p′i and di are unknown at present. If they are estimated as fuzzy variables,

then ξi is a fuzzy variable.
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The main question becomes the determination of best portfolios in the case where the

future returns of securities are fuzzy variables in a credibility space. To study this question,

first scholars (Huang [11], Li et al.[16]) proposed models based on parameters (three first mo-

ments and the first semi-moment) of fuzzy variables such as expected value (mean), variance,

semi-variance and skewness.

In the following, we complement those models by proposing new ones that take into account

the fourth moment or the second semi-moment. In addition, we propose a new approach based

on first dominance relation on fuzzy variables inducing the core of the set of portfolios made

up of non dominated portfolios.

5.2 Portfolio selection with fuzzy return: optimization models
based on parameters of future return

5.2.1 New models and relationships with previous ones

Our models (the main one and its four variants) are based on expected return, variance,

semi-variance, skewness, kurtosis and semi-kurtosis of a portfolio. Our main model has semi-

kurtosis as objective function and expected return, variance and skewness as constraints. To

define such constraints, we set the minimal expected return, the minimal skewness and the

maximal risk (variance) denoted by α, γ and β respectively. We assune that investor has to

select portfolio that maximizes its odd moments and minimizes its even moments or semi-

moments. we deduce the following mean-variance-skewness-semi-kurtosis model.
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

minimize KS [x1ξ1 + x2ξ2 + ...+ xnξn]
subject to
E[x1ξ1 + x2ξ2 + ...+ xnξn] ≥ α
V [x1ξ1 + x2ξ2 + ...+ xnξn] ≤ β
S[x1ξ1 + x2ξ2 + ...+ xnξn] ≥ γ
x1 + x2 + ...+ xn = 1
xi ≥ 0, i = 1, 2, ..., n

(5.1)

where KS , E, V and S designed the semi-kurtosis, the mean, the variance and the skewness

operators respectively.

The first constraint of this model ensures that the expected return is no less than the given

target value α, the second one assures that risk does not exceed the given level β the investor

can bear, the third one assures that the skewness is no less than the given target value γ.

The last two constraints stipulate that all the capital will be invested in n securities and

short-selling is not allowed.

From model (5.1), Corollary 3.3.1 and Proposition 3.3.1, we obtain the following deterministic

programm.

Theorem 5.2.1. Let (ξi = (ai, bi, ci))i=1,2,...,n be a family of n independent triangular fuzzy

variables and f a function such that f(x1, x2, ..., xn) = 1
10

∑n
i=1 xi(bi−ai)

[(
∑n

i=1 xi(ei − ai))
5 +

4∑n
i=1 xi(bi−di)

(
∑n

i=1 xi(bi − ei))
5min(0,

∑n
i=1 xi(bi − ei))].

Then model (5.1) becomes the following deterministic program:

min f(x1, x2, ..., xn)
subject to∑n

i=1 xi(ai + 2bi + ci) ≥ 4α

11(
∑i=n

i=1 xi(ci − ai))
2|
∑i=n

i=1 xi(2bi − ai − ci)|+
2(8

∑i=n
i=1 xi(ci − ai) + 3|

∑i=n
i=1 xi(2bi − ai − ci)|)((

∑i=n
i=1 xi(ci − bi))

2+

(
∑i=n

i=1 xi(bi − ai))
2) ≤ 192β(

∑i=n
i=1 xi(ci − ai) + |

∑i=n
i=1 xi(2bi − ai − ci)|)

(
∑n

i=1 xi(ci − ai))
2
∑n

i=1 xi(ci − 2bi + ai) ≥ 32γ
x1 + x2 + ...+ xn = 1
xi ≥ 0, i = 1, 2, ..., n

.
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The other variants of model (5.1) can be deduced from the previous model by changing the

objective function either by expected value, semi-variance, skewness or kurtosis. Therefore,

we have the following four variants of the main model and deterministic program.

1. The first variant of model (5.1) minimizes risk (variance) when the expected return and

the skewness are both no less than the given target values α and γ respectively and the

semi-kurtosis is no more than the given target value θ. If one cancels the constraints

on skewness and semi-kurtosis in that variant, then it degenerates to the mean-variance

model proposed earlier by Huang ([11]).

2. The second variant of model (5.1) maximizes the expected return when the skewness

is no less than the given target value γ and, the variance and the semi-kurtosis are no

more than β and θ respectively.

3. The third variant of model (5.1) maximizes the skewness when the expected return is

not less than α and, the variance and the semi-kurtosis are no more than the given target

values β and θ respectively. If we cancel the second constraint on the semi-kurtosis in

that variant, then it degenerates to the mean-variance-skewness model proposed by Li

([16]).

4. The fourth variant of model (5.1), introduced by Sadefo et al. ([29]), is the multi-

objective nonlinear programming which minimizes the variance and the semi-kurtosis

and maximizes the expected value and the skewness when the different target values are

unknown.

In the following Subsection, we display numerical examples on the two new models,

namely the mean-variance-skewness-kurtosis model and the mean-variance-skewness-semi-
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kurtosis model, and we compare obtained portfolios with those obtained by Huang ([11])

and Li et al. ([16]).

5.2.2 Numerical implementation of two new models and comparison of
results

The data, we consider in this Section, are introduced and used by Huang ([11]) for the mean-

semi-variance model and, used by Li et al. ([16]) for the mean-variance-skewness model. Those

data are seven triangular security returns as presented in Table 1 below.

Security i Fuzzy return Security i Fuzzy return
1 ξ1 = (−0.3, 1.8, 2.3) 5 ξ5 = (−0.7, 2.4, 2.7)

2 ξ2 = (−0.4, 2.0, 2.2) 6 ξ6 = (−0.8, 2.5, 3.0)

3 ξ3 = (−0.5, 1.9, 2.7) 7 ξ7 = (−0.6, 1.8, 3.0)

4 ξ4 = (−0.6, 2.2, 2.8)

Table 1: Fuzzy returns of 7 securities (units per stock).

For instance, the return of the first security is described by the fuzzy variable ξ1 = (−0.3, 1.8, 2.3)

which represents about 1.8 units per stock.

To apply our the two new models, we use the following threshold values proposed by Li et al.

([16]): α = 1.6, β = 0.8 and γ = −0.6823. In general, it is important to notice that γ must

be at the most equal to −0.6823. Since the returns are asymmetric, the investor may em-

ploy either semi-variance or variance, either kurtosis or semi-kurtosis to determine an optimal

portfolio. Thus, we consider the following four models:

1. the first one is the mean-semi-variance model from Huang ([11]):
minimize V S [x1ξ1 + x2ξ2 + · · ·+ x7ξ7]

subject to
E[x1ξ1 + x2ξ2 + · · ·+ x7ξ7] ≥ α
x1 + x2 + · · ·+ x7 = 1
xi ≥ 0, i = 1, 2, . . . , 7

(5.2)
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2. the second one is the mean-variance-skewness model from Li ([16]):

maximize S[x1ξ1 + x2ξ2 + ...+ x7ξ7]
subject to
E[x1ξ1 + x2ξ2 + ...+ x7ξ7] ≥ α
V [x1ξ1 + x2ξ2 + ...+ x7ξ7] ≤ β
x1 + x2 + ...+ x7 = 1
xi ≥ 0, i = 1, 2, ..., 7

(5.3)

3. the two following models of Sadefo et al. ([29]): the mean-variance-skewness-kurtosis

model and the mean-variance-skewness-semi-kurtosis model

minimize K[x1ξ1 + x2ξ2 + ...+ x7ξ7]
subject to
E[x1ξ1 + x2ξ2 + ...+ x7ξ7] ≥ α
V [x1ξ1 + x2ξ2 + ...+ x7ξ7] ≤ β
S[x1ξ1 + x2ξ2 + ...+ x7ξ7] ≥ γ
x1 + x2 + ...+ x7 = 1
xi ≥ 0, i = 1, 2, ..., 7

(5.4)

and 

minimize KS [x1ξ1 + x2ξ2 + ...+ x7ξ7]
subject to
E[x1ξ1 + x2ξ2 + ...+ x7ξ7] ≥ α
V [x1ξ1 + x2ξ2 + ...+ x7ξ7] ≤ β
S[x1ξ1 + x2ξ2 + ...+ x7ξ7] ≥ γ
x1 + x2 + ...+ x7 = 1
xi ≥ 0, i = 1, 2, ..., 7

(5.5)

where K is the kurtosis operator.

We use Matlab to solve those four models and we obtain portfolios presented in Table 2.
Security i 1 2 3 4 5 6 7

Huang’s model (5.2) 00.00% 47.06% 00.00% 35.28% 17.66% 00.00% 00.00%
Li et al.’s model (5.3) 20.00% 00.00% 00.00% 80.00% 00.00% 00.00% 00.00%

Sadefo et al.’s model (5.4) 20.04% 00.00% 00.00% 79.89% 00.00% 00.07% 00.00%
Sadefo et al.’s model (5.5) 20.00% 00.00% 00.00% 80.00% 00.00% 00.00% 00.00%

Table 2: Optimal selection from each model.

Let us explain the obtained investment’s proportions by illustrating with line 4 of Table 2

which stipulates that: if one intends to invest 10000 units, he will invest 2004 units of the
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security 1, 7989 units of the security 4, 7 units of the security 6 and nothing elsewhere.

The computation of parameters of portfolios of the previous table are summarized in the

following table.
Mean Variance Semi-variance Skewness Kurtosis Semi-kurtosis

Huang’s model (5.2) 1.60 0.7235 0.6124 -0.7543 1.7972 1.7415
Li et al.’s model (5.3) 1.60 0.7019 0.6141 -0.6823 1.7291 1.6872

Sadefo et al.’s model (5.4) 1.60 0.7018 0.6140 -0.6823 1.7290 1.6873
Sadefo et al.’s model (5.5) 1.60 0.7019 0.6141 -0.6823 1.7291 1.6872

Table 3 : Comparison of the four first moments of different optimal portfolios.

We can make the following observations:

• When we consider semi-kurtosis (KS) as an objective function, Li et al.’s model (5.3)

and Sadefo et al’s model (5.5) give the same optimal portfolio (according to lines 3 and

5 of Table 2).

Therefore, the latter confirms and enhances results obtained by the first one. Those

models allow to obtain a portfolio with the highest skewness (−0.6823) and the lowest

semi-kurtosis (1.6872) (see lines 3 and 5 of Table 3) which are the optimal values of the

objective functions of the two models respectively.

• When we consider kurtosis (K) as an objective function, Sadefo et al’s model (5.4)

provides the lowest variance (0.7018), the highest skewness (−0.623) and the lowest

kurtosis (1.729) (see line 4 of Table 3).

In that case, model (5.4) proposes an optimal portfolio different from the three other

models (see Table 2).
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• The histogram of Figure 5.1 illustrates parameters of the four total returns (combina-

tions of the seven returns) obtained by different authors as described in Table 3.

Let us explain why Sadefo et al’s model (5.5) with the semi-kurtosis and Li et al.’s model

(5.3) coincide (as stipulated in the previous first observation).

Remark 5.2.1. The main reason why the two models coincide (generate the same

optimal portfolio) in our numerical examples with the seven fuzzy variables is: each

of the seven variables ξ = (ai, bi, ci) have a large spread on their left, that is, ∀i ∈

{1, 2, ..., 7}, ci − bi < bi − ai, and thereby a small “good" part (right of the bi). On one

hand, the skewness assures the spread of the distribution on the left side (so that one

can be able to say at what degree the distribution is concentrated on the left) and on the

other hand, the semi-kurtosis allows to avoid penalizing the “good part" (“positive part")

when applying the model. Therefore by adding the semi-kurtosis to Li et al.’s model (5.3)

we obtain the same optimal portfolio from our seven variables.

Figure 5.1: Comparison of different models.

TASSAK DEFFO CHRISTIAN PhD. Thesis



Application in Finance 83

1. Now, if we replace the first fuzzy variable ξ1 = (−0.3, 1.8, 2.3) by the new fuzzy variable

ξ8 = (−0.1, 0.0, 2.0) (its “positive part" is greater than the “negative part"), then with

the seven fuzzy variables from ξ2 to ξ8, lines 3 and 5 of the two previous tables become

respectively:

Security i 2 3 4 5 6 7 8
Li et al.’s model (5.3) 00.00% 00.00% 33.00% 67.00% 00.00% 00.00% 00.00%

Sadefo et al.’s model (5.5) 00.00% 00.00% 36.00% 64.00% 00.00% 00.00% 00.00%

Table 4: New optimal portfolios.

Mean Variance Semi-variance Skewness Semi-kurtosis
Li et al.’s model (5.3) 1.60 0.7213 0.6361 -0.6954 1.7931

Sadefo et al.’s model (5.5) 1.60 0.7164 0.6323 -0.6860 1.7702

Table 5: Parameters of new optimal portfolios.

By comparing these new tables and the previous one, semi-kurtosis used in Sadefo et

al.’s model (5.5) displays an optimal portfolio better than the one given by Li et al.’s

model (5.3). In other words, by adding semi-kurtosis on Li et al.’s model, we improve

the optimal portfolio with the same mean, the less variance, the less semi-variance, the

greater skewness and the less semi-kurtosis.

In the following Section, we introduce the notion of core of the set of portfolios of a finite

number of assets with respect to the first order dominance. We implement a part of the core

on the example of seven assets of Table 1 to determine optimal portfolios as non dominated

portfolios with respect to that dominance.
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5.3 Core of portfolios: Definitions, First Properties and imple-
mentation

5.3.1 Core of a finite family of assets: Definition and non-emptiness

Let us consider the family A = (ξ)1≤i≤n of n assets where returns are described by trapezoidal

fuzzy numbers. For example, for n = 7, we have the seven assets where returns are described

by triangular fuzzy numbers of Table 1.

A portfolio return ξ associated with A is a convex linear combination of the n assets returns

defined by ξ =
∑n

i=1 xiξi where xi represents the proportion of capital invested in asset i. The

set of portfolios associated with A is P = {ξ =
∑n

i=1 xiξi, xi ∈ [0, 1],
∑n

i=1 xi = 1 and ξi ∈ A}.

A main question is to determine non dominated portfolios by means of a dominance relation.

Based on Game Theory terminology, we will determine the core CR(P ) of (P,R) where R is

a dominance on P .

First, let us observe that according to Proposition 4.3.1 of Chapter 4, all portfolios which are

not dominated through ≽2 or ≽α,τ are not dominated through ≽1 too, that means, the set

of non dominated portfolios through ≽1 contains the two other sets. More formally, we have:{
C≽2(P ) ⊆ C≽1(P )
C≽α,τ (P ) ⊆ C≽1(P )

.

In the following, we will determine the core C≽1(P ) defined by:

C≽1(P ) = {ξ ∈ P, ∀η ∈ P \ {ξ}, η �1 ξ}. (5.6)

By using the fact that ≽1 is not a complete relation on P , we can express the core as a union

of the following two sets:

C≽1(P ) = {ξ ∈ P, ∀η ∈ P, ξ ̸= η, η �1 ξ and ξ �1 η} ∪ {ξ ∈ P, ∀η ∈ P, ξ ≽1 η} = Λ ∪ Γ (5.7)
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where

Γ(P ) = {ξ ∈ P, ∀η ∈ P, ξ ≽1 η} (5.8)

is the set of best portfolios of P and Λ(P ) = {ξ ∈ P, ∀η ∈ P, ξ ̸= η, η �1 ξ and ξ �1 η} is the

set of incomparable portfolios of P.

The following result establishes that the core of portfolios is non-empty.

Proposition 5.3.1. Let us consider the family A = (ξ)1≤i≤n of n trapezoidal fuzzy variables

and P = {ξ =
∑n

i=1 xiξi, xi ∈ [0, 1],
∑n

i=1 xi = 1 and ξi ∈ A}.

C≽1(P ) ̸= ∅. (5.9)

Proof : Let us set: ∀i ∈ {1, ..., n}, ξi = (ai, bi, ci, di) and a = max1≤i≤n ai, b = max1≤i≤n bi,

c = max1≤i≤n ci, d = max1≤i≤n di.

There exists j ∈ {1, ..., n} such that ξj has at least one value among a, b, c, d (without loss

of generality, we assume that the only maximum value is a). It is obvious that ξj is gener-

ated by the vector y = (0, 0, ..., 1, 0, ..., 0) where 1 is the jth component and in that case we

have: ξj =
∑n

i=1 yiξi = (a, bj , cj , dj). Therefore, for x = (x1, x2, ..., xj , ..., xn) with xj ̸= 1,∑n
i=1 xiai < a and (

∑n
i=1 xiai,

∑n
i=1 xibi,

∑n
i=1 xici,

∑n
i=1 xidi) �1 ξj and ξj ∈ C≽1(P ).

The proof is obtained. 2.

Let us display necessary and sufficient conditions for the belonging of a portfolio to the

core.

Remark 5.3.1. Let us consider the family x = (xi)1≤i≤n such that
∑n

i=1 xi = 1 and ∀i ∈

{1, ..., n}, xi ≥ 0, P is the set of portfolios of trapezoidal fuzzy assets ξi = (ai, bi, ci, di), ∀i ∈
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{1, ..., n}. Let us set:

Tx = {(yi)1≤i≤n/
n∑

i=1

yi = 1, ∀i ∈ {1, ..., n}, yi ≥ 0 and


∑n

i=1 yiai >
∑n

i=1 xiai∑n
i=1 yibi >

∑n
i=1 xibi∑n

i=1 yici >
∑n

i=1 xici∑n
i=1 yidi >

∑n
i=1 xidi

}. (5.10)

We have:
n∑

i=1

xiξi ∈ C≽1(P ) if and only if Tx = ∅. (5.11)

The following result establishes that two comparable portfolios of two incomparable assets

are equivalent.

Proposition 5.3.2. Let ξ1 = (a1, b1, c1, d1) and ξ2 = (a2, b2, c2, d2) be two incomparable

trapezoidal fuzzy variables by means of ≽1, and G the set of convex linear combinations of ξ1

and ξ2.

If two portfolios of G are comparable by means of ≽1, then they are equivalent.

Proof : Let x1ξ1 + x2ξ2 and y1ξ1 + y2ξ2 be two comparable portfolios of G with positive

reals numbers x1, x2, y1, y2 such that x1 + x2 = 1 and y1 + y2 = 1.

Without loss of generality, we assume that a1 ≥ a2 and b1 ≤ b2 (ξ1 and ξ2 are incomparable).

x1ξ1 + x2ξ2 ≽1 y1ξ1 + y2ξ2 ⇔


x1a1 + x2a2 ≥ y1a1 + y2a2
x1b1 + x2b2 ≥ y1b1 + y2b2
x1c1 + x2c2 ≥ y1c1 + y2c2
x1d1 + x2d2 ≥ y1d1 + y2d2

.

We have:

x1a1+x2a2 ≥ y1a1+y2a2 ⇔ x1a1+(1−x1)a2 ≥ y1a1+(1−y1)a2 ⇔ x1(a1−a2) ≥ y1(a1−a2).

In the same way, we obtain: x1b1+x2b2 ≥ y1b1+y2b2 ⇔ x1(b1−b2) ≥ y1(b1−b2). We consider

two cases:

- If a1 ̸= a2 and b1 ̸= b2 (without loss of generality, we assume that a1 > a2 and b1 < b2),

then x1(a1 − a2) ≥ y1(a1 − a2) ⇒ x1 ≥ y1 and x1(b1 − b2) ≥ y1(b1 − b2) ⇒ x1 ≤ y1. Thus, we
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obtain x1 = y1 which implies that x2 = y2. So, x1ξ1 + x2ξ2 ∼≽1 y1ξ1 + y2ξ2.

- If a1 = a2 or b1 = b2, we use a similar way and the inequalities x1c1 + x2c2 ≥ y1c1 + y2c2,

x1d1 + x2d2 ≥ y1d1 + y2d2 to get the result. 2

In the following, we implement the set Γ(P ) of best portfolios contained in the core.

5.3.2 Numerical implementation of the set of best portfolios of finite family
of assets

For the determination of Γ(P ), we introduce the following notations. For (xi)1≤i≤n, (yi)1≤i≤n

such that xi, yi ∈ [0, 1] and
∑n

i=1 xi =
∑n

i=1 yi = 1 and for all i ∈ {1, ..., n}, ξi = (ai, bi, ci),

we have:

ξ = (f(x1, ..., xn), g(x1, ..., xn), h(x1, ..., xn)) and η = (f(y1, ..., yn), g(y1, ..., yn), h(y1, ..., yn))

where f(x1, ..., xn) =
∑n

i=1 xiai, g(x1, ..., xn) =
∑n

i=1 xibi and h(x1, ..., xn) =
∑n

i=1 xici.

Based on characterization of ≽1 and those notations, (5.8) becomes:

Γ(P ) = {
n∑

i=1

xiξi, ,∀(yi)1≤i≤n,


f(x1, ..., xn) ≥ f(y1, ..., yn)
g(x1, ..., xn) ≥ g(y1, ..., yn)
h(x1, ..., xn) ≥ h(y1, ..., yn)∑n

i=1 xi = 1,
∑n

i=1 yi = 1
xi ∈ [0, 1], yi ∈ [0, 1], ∀i ∈ {1, ..., n}

}. (5.12)

Thereby, Γ(P ) is determined by the following optimization program:
max f(x1, ..., xn)
max g(x1, ..., xn)
maxh(x1, ..., xn)∑n

i=1 xi = 1
xi ∈ [0, 1]∀i ∈ {1, ..., n}

. (5.13)

In the following, we implement the previous program for the usual family A = (ξi)1≤i≤7

of seven assets with returns described in Table 1 of the previous Section.
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In that case, the set of portfolios becomes P = {ξ = (−0.3x1 − 0.4x2 − 0.5x3 − 0.6x4 −

0.7x5 − 0.8x6 − 0.6x7, 1.8x1 + 2x2 + 1.9x3 + 2.2x4 + 2.4x5 + 2.5x6 + 1.8x7, 2.3x1 + 2.2x2 +

2.7x3 + 2.8x4 + 2.7x5 + 3x6 + 3x7) where ∀i ∈ {1, ..., 7}, xi ∈ [0, 1] and
∑7

i=1 xi = 1}.

The optimization program which determines Γ becomes:

maximize − 0.3x1 − 0.4x2 − 0.5x3 − 0.6x4 − 0.7x5 − 0.8x6 − 0.6x7
maximize 1.8x1 + 2x2 + 1.9x3 + 2.2x4 + 2.4x5 + 2.5x6 + 1.8x7
maximize 2.3x1 + 2.2x2 + 2.7x3 + 2.8x4 + 2.7x5 + 3x6 + 3x7
subject to
x1 + x2 + ...+ x7 = 1
xi ≥ 0, i = 1, ..., 7.

(5.14)

By solving (5.14) using Matlab, we obtain the following three elements of Γ: ξ, ξ′, ξ′′,

chosen among many others which are presented in the three last lines of following table with

optimal portfolios of Table 2.

Security i 1 2 3 4 5 6 7
Huang’s model (5.2) 00.00% 47.06% 00.00% 35.28% 17.66% 00.00% 00.00%
Li et al.’s model (5.3) 20.00% 00.00% 00.00% 80.00% 00.00% 00.00% 00.00%

Sadefo et al.’s model (5.4) 20.04% 00.00% 00.00% 79.89% 00.00% 00.07% 00.00%
Sadefo et al.’s model (5.5) 20.00% 00.00% 00.00% 80.00% 00.00% 00.00% 00.00%

Best portfolio ξ 14.77% 35.01% 32.28% 21.7% 16.42% 20.17% 08.2%
Best portfolio ξ′ 39.66% 09.2% 01.47% 01.28% 18.83% 25.82% 03.76%
Best portfolio ξ′′ 41.72% 05.55% 01.10% 00.86% 17.29% 31.47% 02.02%

Table 6: Optimal selection from models and best portfolios.

We can analyze the obtained best portfolios in the core in the way that a rational investor

who intends to invest in the assets described by A must:

- diversify the capital on different assets (since values of xi in each of the three portfolios of

the core are non null)

- invest more on assets ξ1, ξ2, ξ5 and ξ6 (at least 17% of the capital) and less on assets ξ3, ξ4

and ξ7 (at most 8% of the capital).
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Finally, this investor can choose one of the three portfolios ξ, ξ′, ξ′′ as his shared capital.

Optimal portfolios obtained from optimization models and from the core can be viewed

as triangular fuzzy variables in the following table.

Optimal portfolio Triangular fuzzy variable
Huang’s model (5.2) (−0.5235; 2.1412; 2.5)

Li et al.’s model (5.3) (−0.54; 2.12; 2.7)

Sadefo et al.’s model (5.4) (−0.54002; 2.12005; 2.6999)

Sadefo et al.’s model (5.5) (−0.54; 2.12; 2.7)

Best portfolio ξ (−0.5393; 2.1221; 2.5537)

Best portfolio ξ′ (−0.5317; 2.1191; 2.5859)

Best portfolio ξ′′ (−0.5429; 2.1399; 2.607)

Table 7 : Optimal portfolios from models and best portfolios viewed as triangular fuzzy vari-

ables.

We observe that portfolios of Table 7 obtained from different models are non dominated each

other with respect to relation ≽1 according to Theorem 4.2.1. It is easy to check that, by

implementing (5.11), the three portfolios belong to the core C≽1(P ) contains all the portfolios

of Table 7.

The following table presents some parameters (mean, variance, skewness, kurtosis, semi-

variance and semi-kurtosis) of portfolios of Table 7 (the three best portfolios and those of

Table 3).

Portfolio Mean Variance Skewness Kurtosis Semi-variance Semi-kurtosis
Huang’s model [11] 1.6 0.7235 -0.7543 1.7972 0.6124 1.7415
Li et al.’s model [16] 1.6 0.7019 -0.6823 1.7291 0.6141 1.6872

Sadefo et al.’s model [29] 1.6 0.7018 -0.6823 1.7290 0.6140 1.6873
Sadefo et al.’s model [29] 1.6 0.7019 -0.6823 1.7291 0.6141 1.6872

Best portfolio ξ 1.5605 0.6973 -0.6666 1.7033 0.5832 1.5489
Best portfolio ξ′ 1.5712 0.69 -0.6634 1.6668 0.5863 1.5585
Best portfolio ξ′′ 1.5849 0.7029 -0.687 1.7277 0.5994 1.6299

Table 8 : Comparison of four first moments of different optimal and best portfolios.
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From Table 8, we can make the following analysis: except the mean, the two new best

portfolios ξ and ξ′ have better parameters (variance, skewness, kurtosis, semi-variance and

semi-kurtosis) than those of portfolios obtained from quantitative approach whereas the third

best portfolio ξ′′ has better semi-variance and semi-kurtosis. The mean of the three best port-

folios is less than those of the four optimal portfolios by the fact that the latter (models with

parameters) were implemented with the target value of the mean equals to 1.6 (that was the

minimal mean required by the investor). We notice that portfolios obtained from the set of

best portfolios are suitable to get the shared capital of risk averse investors. Thereby, a risk

averse investor who intends to invest on the seven assets can choose between the two best

portfolios ξ and ξ′ (see lines 6 and 7 of Table 2 or Table 1).

We can conclude that some main advantages of the approach based on the core (with best

portfolios) are the following:

- it proposes more than one way of sharing a capital in different assets;

- the proposed results do not depend on targets values required to mean, variance, skewness

and kurtosis. It means that, each investor can choose a portfolio according to his preference

(maximum benefit, minimum risk);

- it contains all optimal portfolios obtained from models.
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Finally, we illustrate these results by the following histogram:

Figure 5.2: Comparison of characteristic values of optimal portfolios total returns.
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CONCLUSION

In this thesis, we choose credibility measure to develop tools on fuzzy variables and

apply some of them to improve portfolio optimization.

We define some new concepts as moments, semi-moments and partial moments of fuzzy

variables and characterize them for trapezoidal fuzzy variables. Those concepts extend the

first three moments of a fuzzy variable introduced and studied earlier by Liu [20], Huang[11],

Li et al. [16]. We establish some of their useful properties and we analyze the particular

case of kurtosis and semi-kurtosis (fourth moment and second semi-moment). Those results

provide a new framework in statistics on fuzzy variables. Some applications of the obtained

theoretical results enable us to describe the mean-variance-skewness-kurtosis and the mean-

variance-skewness-semi-kurtosis portfolio optimization models. This quantitative approach for

portfolio selection in fuzzy case improve the previous ones existing in the literature.

Furthermore, we introduce the mean risk dominance on fuzzy variables. That complements

the two dominance relations existing in the literature, namely the first and second order dom-

inance relations. We characterize these three dominance relations and establish that each of

the three dominance relations satisfies many well-known properties of comparison tools of

fuzzy variables. We justify that the first order dominance is stronger than the two others and
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the second order dominance is stronger than the mean risk dominance where the downside

risk is the expected loss. The characterization of the second order dominance allows us to

introduce and characterize two types of crossing points between two fuzzy variables. This

result complements the literature on comparison of fuzzy variables. The first order domi-

nance of that qualitative approach was applied in portfolio selection in order to introduce the

set of non dominated portfolios, that is, the core of the set of portfolios. We establish the

non-emptiness of the core. We implement a part of the core which is the set of best portfo-

lios and we observe that the core contains optimal portfolios provided by deterministic models.

We implement, with Matlab, the proposed models for each of the two approaches in an

example of the set of portfolios which components are seven assets introduced by Huang [11]

used by Li et al.[16]. Numerical results justify that some portfolios proposed by dominance

models are better than those proposed by quantitative models with targets value.

A next research topic is the theoretical determination of cores through respectively the

second order dominance and the mean-risk dominance relations. These new cores are subsets

of the core studied in this thesis. This open question leads us to the characterization of the

minimal subset of the core of portfolios according to the first order dominance containing

optimal portfolios obtained from deterministic models. Moreover, we intend to introduce a

new poverty index based on fuzzy lower partial moment in order to evaluate an individual’s

poverty level in a population where individuals’ incomes are unknown or imprecise.
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Appendix

The Appendix is organized in two main parts:

1. The first part gives more details about the Fuzzy Lower Partial Moment.

2. The second part presents two scientific publications whose results are provided by this

thesis.
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Fuzzy Lower Partial moment and
dominance relations
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Some examples of Fuzzy Lower Partial Moment

Let us calculate the Fuzzy Lower Partial Moment (FLPM) of trapezoidal and triangular fuzzy

variables.

Example 1:

1. The FLPM of trapezoidal fuzzy variable ξ = (a, b, c, d) is:

FLPMα,τ [ξ] =



0, if τ < a
(τ−a)α+1

2(α+1)(b−a) , if a ≤ τ < b
[(τ−a)α+1−(τ−b)α+1]

2(α+1)(b−a) , if b ≤ τ < c
[(τ−a)α+1−(τ−b)α+1]

2(α+1)(b−a) + (τ−c)α+1

2(α+1)(d−c) , if c ≤ τ < d
[(τ−a)α+1−(τ−b)α+1]

2(α+1)(b−a) + [(τ−c)α+1−(τ−d)α+1]
2(α+1)(d−c) , if τ ≥ d

. (5.15)

2. The FLPM of triangular fuzzy variable ξ = (a, b, d) is:

FLPMα,τ [ξ] =


0 if τ < a
(τ−a)α+1

2(α+1)(b−a) , if a ≤ τ < b
[(τ−a)α+1−(τ−b)α+1]

2(α+1)(b−a) + (τ−b)α+1

2(α+1)(d−b) , if b ≤ τ < d
[(τ−a)α+1−(τ−b)α+1]

2(α+1)(b−a) + [(τ−b)α+1−(τ−d)α+1]
2(α+1)(d−b) , if τ ≥ d

. (5.16)

Remark 1:

From Example 1, we can deduce that:

1. Let ξp = (γa(x), γb(x), γc(x), γd(x)) where γa(x) =
∑n

i=1 xiai, γb(x) =
∑n

i=1 xibi, γc(x) =∑n
i=1 xici, γd(x) =

∑n
i=1 xidi, be a trapezoidal fuzzy return of a portfolio of n trapezoidal

returns (ai, bi, ci, di)i=1,2,...,n. Then the Fuzzy Lower Partial Moment of the portfolio re-

turn ξp is given by:

FLPMα,τ [ξ] =



0 if τ < γa(x)
(τ−γa(x))α+1

2(n+1)(γb(x)−γa(x))
, if γa(x) ≤ τ < γb(x)

[(τ−γa(x))α+1−(τ−γb(x))
α+1]

2(α+1)(γb(x)−γa(x))
, if γb(x) ≤ τ < γc(x)

[(τ−γa(x))α+1−(τ−γb(x))
α+1]

2(α+1)(γb(x)−γa(x))
+ (τ−γc(x))α+1

2(α+1)(γd(x)−γc(x))
, if γc(x) ≤ τ < γd(x)

[(τ−γa(x))α+1−(τ−γb(x))
α+1]

2(α+1)(γb(x)−γa(x))
+ [(τ−γc(x))α+1−(τ−γd(x))

α+1]
2(α+1)(γd(x)−γc(x))

, if τ ≥ γd(x)

(5.17)
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where γz(x) =
∑n

i=1 xizi for z = a, b, c, d ∈ R with a < b < c < d.

2. When τ = E[ξ], we can deduce that: (i) FLPM2,τ [ξ] is the semi-variance of the portfolio

return ξ and (ii) FLPM4,τ [ξ] is the semi-kurtosis of the portfolio return ξ.

Some results on Fuzzy Lower Partial Moment

The following result determines the credibility distribution function Φ of a fuzzy variable ξ by

the derivatives of its FLPM when ξ has a lower bounded support. More precisely, it establishes

that we can determine the credibility distribution Φ(τ) only by the FLPMα,τ with α ∈ N∗.

Proposition 1:

The credibility distribution function Φ of a fuzzy variable ξ with lower bounded support

satisfies the following relation:

dα

dτα
FLPMα,τ = α! Φ(τ), that is, Φ(τ) =

1

α!

dα

dτα
FLPMα,τ (5.18)

Proof : Let Φ be the credibility distribution function of fuzzy variable ξ with lower bounded

support. We have:

dα

dτα
FLPMα,τ =

dα

dτα
[

∫ τ

−∞
(τ − u)αdΦ(u)]

=

∫ τ

−∞

dα

dτα
[(τ − u)αdΦ(u)].

It is easy to check that ∀α ∈ N∗, dα

dτα (τ − u)α = α! and finally, we have:

dα

dτα
FLPMα,τ =

∫ τ

−∞
α!dΦ(u) = α!

∫ τ

−∞
dΦ(u) = α![Φ(τ)− lim

u→−∞
Φ(u)]

= α![Φ(τ)− 0] = α!Φ(τ).

Hence the result. 2
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The following result determines necessary and sufficient conditions on a FLPM under

which the density function ϕ of ξ satisfying a particular inequality, belongs to exponential

family.

Proposition 2:

Let ϕγ be the credibility density function of a nonnegative fuzzy variable ξ satisfying the

following condition:

d

dγ
ϕγ(u) ≥ ϕγ(u)(u+D′(γ)), ∀u ∈ (0,∞) (5.19)

where D′(γ) is the derivative of D(·) with respect to γ.

ϕγ belongs to exponential family, that means,

ϕγ(u) = eγ u+K(u)+D(γ), u ∈ (0,∞), γ > 0, (5.20)

where K(·) is an arbitrary function, if and only if, its FLPMα,τ satisfy a recurrence relationship

FLPMα+1,τ = (τ +D
′
(γ))FLPMα,τ −

d

dγ
FLPMα,τ , (5.21)

.

Proof : (⇒) Assume that the credibility density function ϕγ is defined by: ϕγ(u) = eγ u+K(u)+D(γ)

where u ∈ (0,∞), γ > 0, K and D two arbitrary functions.

By computing the derivative of ϕγ given by relation (5.20) with respect to γ, one can easily

check that ϕγ satisfies relation (5.19).

Let us prove that FLPMα+1,τ = (τ +D
′
(γ))FLPMα,τ − d

dγFLPMα,τ .
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We have:

d

dγ
FLPMα,τ =

d

dγ
[

∫ τ

0
(τ − u)αeγ u+K(u)+D(γ)du]

=

∫ τ

0
(τ − u)α

d

dγ
eγ u+K(u)+D(γ)du

=

∫ τ

0
(τ − u)α(u+D′(γ))eγ u+K(u)+D(α)du

=

∫ τ

0
u(τ − u)αeαu+K(u)+D(γ)du+

∫ τ

0
D′(γ)(τ − u)αeγ u+K(u)+D(γ)du

=

∫ τ

0
(u− τ + τ)(τ − u)αeγ u+K(u)+D(γ)du+D′(γ)FLPMα,τ

= −
∫ τ

0
(τ − u)α+1eγ u+K(u)+D(γ)du+ τ

∫ τ

0
(τ − u)αeγ u+K(u)+D(γ)du+D′(γ)FLPMα,τ

= −FLPMα+1,τ + (τ +D′(γ))FLPMα,τ .

Hence the result.

(⇐) Now we prove the sufficient condition.

By means of relation (4.2), relation (5.21) can be expressed as follows:∫ τ
0 (τ − u)α+1ϕγ(u) du = (τ + D′(γ))

∫ τ
0 (τ − u)αϕγ(u) du − d

dγ

∫ τ
0 (τ − u)α+1ϕγ(u) du which

implies that:

∫ τ

0
[(τ − u)αϕ(u)(−u−D′(γ)) +

d

dγ
((τ − u)αϕγ(u))] du = 0 (5.22)

By using the fact that ϕγ satisfies relation (5.19), relation (5.22) traduces the nullity of the

integration of a positive function.

Thus, we obtain:

d

dγ
((τ − u)αϕγ(u)) = (τ − u)αϕγ(u)(u+D′(γ)) (5.23)

Finally, by integrating each side of relation (5.23) with respect to γ, we obtain:

(τ − u)αϕγ(u) = keγu+D(γ), k > 0, which leads to:
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ϕγ(u) = eγu+D(γ)+K(u) with K(u) = ln( k
((τ−u)α)), u ∈]0; τ [.

It suffices to consider the function ϕγ defined as:

ϕγ(u) = eγu+D(γ)+K(u) with K(u) = ln |( k
((τ−u)α) |, u ∈ (0;+∞) \ {τ} and K(τ) = 0. 2

Some proofs on crossing points

To establish Proposition 4.2.2, we need the following Lemma.

Lemma 1:

Let r0 and ϵ be two reals numbers with ϵ > 0. We have:

1. ∀s ∈ (0, ϵ),

{
µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
r0 − s, r0 + s ∈ [ai ∨ aj , bi ∧ bj ]

⇒ Φi(r0 − s) < Φj(r0 −

s),Φi(r0 + s) > Φj(r0 + s).

2. ∀s ∈ (0, ϵ),

{
µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
r0 − s, r0 + s ∈ [ci ∨ cj , di ∧ dj ]

⇒ Φi(r0 − s) > Φj(r0 −

s),Φi(r0 + s) < Φj(r0 + s).

3. ∀r ∈ R, (r ∈ [bi ∨ bj , ci ∧ cj ]) ⇒ Φi(r) = Φj(r).

Proof of Lemma 1: Let us recall that Φ is given by (2.5).

1) Let be a real number s such that 0 < s < ϵ, µi(r0 − s) < µj(r − s), µi(r0 + s) > µj(r0 + s)

and r0 − s, r0 + s ∈ [ai ∨ aj , bi ∧ bj ]. We have:

µi(r0 − s) < µj(r0 − s) ⇒ Φi(r0 − s) < Φj(r0 − s) (with Φi(r0 − s) = 1
2µi(r0 − s) and

Φj(r0 − s) = 1
2µj(r0 − s)) and

µi(r0 + s) > µj(r0 + s) ⇒ Φi(r0 + s) > Φj(r0 + s) (with Φi(r0 + s) = 1
2µi(r0 + s) and

Φj(r0 + s) = 1
2µj(r0 + s)).

2) Let be a real number s such that 0 < s < ϵ, µi(r0 − s) < µj(r0 − s), µi(r0 + s) > µj(r0 + s)
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and r0 − s, r0 + s ∈ [ci ∨ cj , di ∧ dj ]. We have:

µi(r0 − s) < µj(r0 − s) ⇒ Φi(r0 − s) > Φj(r0 − s) (with Φi(r0 − s) = 1 − 1
2µi(r0 − s) and

Φj(r0 − s) = 1− 1
2µj(r0 − s)) and

µi(r0 + s) > µj(r0 + s) ⇒ Φi(r0 + s) < Φj(r0 + s) (with Φi(r0 + s) = 1 − 1
2µi(r0 + s) and

Φj(r0 + s) = 1− 1
2µj(r0 + s)).

3) If r ∈ [bi ∨ bj , ci ∧ cj ], then Φi(r) = Φj(r) =
1
2 . 2

Proof of Proposition 4.2.2: 1) Let us consider ϵ ∈ R+
∗ , r0 ∈ R and s a real number such that

0 < s < ϵ and µi(r0−s) < µj(r0−s) , µi(r0+s) > µj(r0+s), with r0−s, r0+s ∈ [ai∨aj , bi∧bj ].

According to Lemma 1, we have Φi(r0 − s) < Φj(r0 − s) and Φi(r0 + s) > Φj(r0 + s) and by

Definition 4.2.4, we can conclude that r0 is a crossing point of type II.

We prove the converse case in the same manner.

2) We use the same method as in 1.

3) Let us prove that ci is a crossing point of type I.

[bi, ci] ⊆ [bj , cj ] ⇒ [bi ∨ bj , ci ∧ cj ] = [bi, ci] and by Lemma 1 and Definition 4.2.3, we have:

bi = min{t/[t, ci)isI.C}.

Now, let us find ϵ0 > 0 such that ∀s : 0 < s < ϵ0,Φi(bi − s) < Φj(bi − s) and Φi(ci + s) >

Φj(ci + s).

i) If bi ̸= bj and ci ̸= cj

Then we set ϵ0 = (bi − bj) ∧ (cj − ci) and we easily check that ϵ0 > 0 according to the fact

that [bi, ci] ⊂ [bj , cj ] and bi ≠ bj , ci ̸= cj . We have two cases:

1st case: bi − bj < cj − ci

We have ϵ0 = bi − bj , and bi − ϵ0 = bj , ci + ϵ0 = ci + bi − bj .

We obtain: Φi(bi − s) < Φi(bi) (with Φi(bi) =
1
2) because bi − s < bi and Φi increases; on the
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other hand, by the fact that 0 < s < ϵ0, and Φj increases, we have: Φj(bi− s) > Φj(bi− ϵ0) =

Φj(bj) =
1
2 .

Furthermore, Φi(ci + s) > Φi(ci) (with Φi(ci) =
1
2) because Φi increases and

Φj(ci + s) < Φj(cj) =
1
2 because ci + s < ci + ϵ0 < ci + cj − ci = cj and Φj increases.

2nd case: cj − ci < bi − bj

We have ϵ0 = cj − ci, and ci + ϵ0 = cj , bi − ϵ0 = bi − cj + ci.

We obtain Φi(bi − s) − Φj(bi − s) < 0 because: Φi(bi − s) < Φi(bi) (with Φi(bi) = 1
2) and

bi − ϵ0 − bj = bi − bj − (cj − ci) > 0, that is bi − ϵ0 > bj , so Φj(bi − s) > Φj(bi − ϵ0) > Φj(bj)

(with Φj(bj) =
1
2) as Φj increases and bi − ϵ0 > bj .

Furthermore, Φi(ci+s)−Φj(ci+s) > 0 ; indeed, ci+s < ci+ϵ0 = cj , so Φj(ci+s) < Φj(cj) =
1
2 .

On the other hand Φi increases and Φi(ci + s) > Φi(ci) (with Φi(ci) =
1
2).

ii) If bi = bj and ci ̸= cj

Then ϵ0 = cj − ci and we easily conclude as in i).

iii) If ci = cj and bi ̸= bj

Then ϵ0 = bi − bj and we easily conclude as in i).

iv) If ci = cj and bi = bj .

Then we take ϵ0 = (bj − aj) ∧ (dj − cj).

It is easy to check that for all s such that 0 < s < ϵ0, we have: bj−s ∈]aj , bi[ and cj+s ∈]ci, dj [.

(ci = cj , bi = bj) ⇒ [bj , cj ] = [bi, ci]; thus the support of ξi is included in the support of ξj

and their kernels coincide that means µj and µi coincide only in [bj , cj ], and this justifies the

fact that ∀s ∈]aj , bi[, µj(s) > µi(s) and ∀s ∈]ci, dj [, µi(s) < µj(s).

Furthermore, ∀s ∈ [aj , bi[,Φj(s) > Φi(s) by the fact that µj(s) > µi(s) and ∀s ∈ [ci, dj [,Φj(s) <

Φi(s) by the fact that µi(s) < µj(s); these last inequalities lead us to Φi(cj + s) > Φj(cj +
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s),Φi(bj − s) < Φj(bj + s).

4) By taking ϵ0 = min(bi − bj , cj − bi), we can easily check that ∀s such that: 0 < s < ϵ0,

Φi(ci − s) < Φj(ci − s),Φi(ci + s) > Φj(ci + s).

5) By taking ϵ0 = min(bj − bi, ci − bj , ) we can easily check that ∀s such that: 0 < s < ϵ0,

Φj(cj − s) < Φi(cj − s),Φj(cj + s) > Φi(cj + s).

6) By taking ϵ0 = min(ai − aj , dj − di), we can easily check that ∀s such that: 0 < s < ϵ0,

Φj(cj − s) > Φi(cj − s),Φj(cj + s) < Φi(cj + s). 2

Proof of the characterization of the second order dominance re-
lation

Without loss of generality, we assume that between ξ1 and ξ2, ξ1 is the one that could domi-

nates. In other words, the curve of Φ1 starts below.

1) Necessity of Theorem 4.2.2.

According to the definition of ≻2, we have: ∀t ∈ R,
∫ t
−∞[Φ2(r) − Φ1(r)]dr ≥ 0 and ∃t0 ∈

R,
∫ t0
−∞[Φ2(r)− Φ1(r)]dr > 0.

(i) We have, according to the first assumption:

(∀t ∈ R,
∫ t
−∞[Φ2(r)− Φ1(r)]dr ≥ 0) ⇒ ∀i ∈ {1, 2, ..., k},

∫ t0i
−∞[Φ2(r)− Φ1(r)]dr ≥ 0.

(ii) Furthermore, (∀t ∈ R,
∫ t
−∞[Φ2(r) − Φ1(r)]dr ≥ 0) ⇒

∫ +∞
−∞ [Φ2(r) − Φ1(r)]dr ≥ 0, that

means,
∫ +∞
−∞ [Φ2(r)− Φ1(r)]dr > 0 or

∫ +∞
−∞ [Φ2(r)− Φ1(r)]dr = 0.

- In the first case, where
∫ +∞
−∞ [Φ2(r)− Φ1(r)]dr > 0, we immediately obtain the result.

- In the second case, where
∫ +∞
−∞ [Φ2(r)−Φ1(r)]dr = 0, we justify that ∃t0h ∈ {t01, ..., t0k},

∫ t0h
−∞[Φ2(r)−

Φ1(r)]dr > 0.

Let us assume that ∀s ∈ {t01, ..., t0k},
∫ s
−∞[Φ2(r)−Φ1(r)]dr ≤ 0 and establish a contradiction.
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According to the first assumption, we obtain in this second case: ∀s ∈ {t01, ..., t0k},
∫ s
−∞[Φ2(r)−

Φ1(r)]dr = 0.

As
∫ +∞
−∞ [Φ2(r)−Φ1(r)]dr = 0, we have ∀s ∈ {t01, ..., t0k},

∫ s
−∞[Φ2(r)−Φ1(r)]dr+

∫ +∞
s [Φ2(r)−

Φ1(r)]dr = 0, that is,

∫ +∞

s
[Φ2(r)− Φ1(r)]dr = 0, ∀s ∈ {t01, ..., t0k} (5.24)

Finally, to obtain a contradiction with respect to the second assumption, we prove that

∀t ∈ R,
∫ t
−∞[Φ2(r)− Φ1(r)]dr = 0.

∗) If t < t01 where t01 is the first crossing point, then
∫ t
−∞[Φ2(r) − Φ1(r)]dr = 0 because∫ t01

−∞[Φ2(r) − Φ1(r)]dr = 0, and the sign of the quantity Φ2(r) − Φ1(r) remains unchanged

until the first crossing point t01.

∗) If t0i ≤ t ≤ t0j where t0i and t0i are two consecutive crossing points such that t0i < t0j , then∫ t
−∞[Φ2(r) − Φ1(r)]dr = 0 because

∫ t0j
−∞[Φ2(r) − Φ1(r)]dr = 0, and the sign of the quantity

Φ2(r)− Φ1(r) remains unchanged between the two crossing points t0i and t0j .

∗) If t > t0k where t0k is the last crossing point, we have:

According to (5.24),
∫ +∞
t0k

[Φ2(r)− Φ1(r)]dr = 0, and consequently,
∫ t
t0k

[Φ2(r)− Φ1(r)]dr = 0

by the fact that the sign of the quantity Φ2(r) − Φ1(r) remains unchanged after the last

crossing point. Thus,
∫ t0k
−∞[Φ2(r) − Φ1(r)]dr = 0 and

∫ t
t0k

[Φ2(r) − Φ1(r)]dr = 0, imply that∫ t
−∞[Φ2(r)− Φ1(r)]dr = 0.

Hence, the contradiction is obtained by the fact that ∀t ∈ R,
∫ t
−∞[Φ2(r)− Φ1(r)]dr = 0.

2) Sufficiency of Theorem 4.2.2.

From the assumptions of the the theorem, we have ∀i ∈ {1, 2, ..., k},
∫ t0i
−∞[Φ2(r)−Φ1(r)]dr ≥ 0,

that means, the area balance sign condition for ≻2 is fulfilled at all crossing points.
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Since t01 corresponds to the first crossing point, we obtain
∫ t01
−∞[Φ2(r) − Φ1(r)]dr ≥ 0 and

∀t ∈]−∞, t01],
∫ t
−∞[Φ2(r)−Φ1(r)]dr ≥ 0, because t01 is the first crossing point and we have

supposed that the curve of Φ1 starts below. So the curve of Φ1 should have stay below (or

coincides in some intervals of coincidence) all the way from −∞ to t01.

Let us analyze the condition in the interval ]t01, t02]. Since t02 corresponds to the second

crossing point, it is clear from the definition of crossing point that, Φ2(r) ≥ Φ1(r), ∀r ∈

]−∞, t01] and Φ2(r) ≤ Φ1(r),∀r ∈]t01, t01]. We can write: ∀t ∈]t01, t02],
∫ t
−∞[Φ2(r)−Φ1(r)]dr =∫ t02

−∞[Φ2(r)−Φ1(r)]dr−
∫ t02
t01

[Φ2(r)−Φ1(r)]dr. Since (Φ2(r) ≤ Φ1(r)], ∀r ∈]t01, t02] ⇒
∫ t02
t01

[Φ2(r)−

Φ1(r)]dr ≤ 0) and
∫ t02
−∞[Φ2(r) − Φ1(r)]dr ≥ 0 from the assumptions, we have:

∫ t
−∞[Φ2(r) −

Φ1(r)]dr ≥
∫ t02
−∞[Φ2(r)− Φ1(r)]dr ≥ 0.

We can say that the fulfillment of the condition at t01 and t02 involves the fulfillment at all t,

t ∈]t01, t02]. It follows inductively that for finite k, the fulfillment of the sign condition at all

t0i, (t0i ∈ {t01, t02, ..., t0k}) implies the fulfillment at all t, t ∈]−∞, t0k].

Now, we prove that the fulfillment of the sign condition at t0k and
∫ +∞
−∞ [Φ2(r)−Φ1(r)]dr ≥ 0,

will imply the fulfillment at all t, t ∈]t0k,+∞[.

Let us assume (by considering k as an odd number) that Φ2(r) ≥ Φ1(r), ∀r ∈]t0(k−1), t0k]

and Φ2(r) ≤ Φ1(r),∀r ∈]t0k,+∞[ ( where t0k is the last crossing point). We have: ∀t ∈ t ∈

]t0k,+∞[,∫ t
−∞[Φ2(r) − Φ1(r)]dr =

∫ +∞
−∞ [Φ2(r) − Φ1(r)]dr −

∫ +∞
t [Φ2(r) − Φ1(r)]dr. Since (Φ2(r) ≤

Φ1(r), ∀r ∈]t0k,+∞[⇒
∫ +∞
t [Φ2(r) − Φ1(r)]dr ≤ 0) and

∫ +∞
−∞ [Φ2(r) − Φ1(r)]dr ≥ 0 from the

assumptions, we have:
∫ t
−∞[Φ2(r)− Φ1(r)]dr ≥

∫ +∞
−∞ [Φ2(r)− Φ1(r)]dr ≥ 0.

Therefore, if ∀i ∈ {1, 2, ..., k},
∫ t0i
−∞[Φ2(r)−Φ1(r)]dr ≥ 0 and

∫ +∞
−∞ [Φ2(r)−Φ1(r)]dr ≥ 0, then∫ t

−∞[Φ2(r) − Φ1(r)]dr ≥ 0, ∀t ∈] − ∞,+∞[. This result and the condition of fulfillment as
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strict inequality at some t0h ∈ {t01, ..., t0k} or for the integral from −∞ to +∞ as stated in

the theorem, implies ≻2. The proof can be done in the same manner when k is even. This

completes the proof for sufficiency and the proof of the theorem. 2

Proofs of dominance relations properties

The proofs of some results of Proposition 4.3.2 require the following lemma:

Lemma 2:

Let ξ1, ξ2 and θ be three independent trapezoidal fuzzy variables. Φ1 , Φ2, Φ′
1 and Φ′

2 are

respectively the credibility distributions functions of fuzzy variables ξ1, ξ2, ξ1 + θ and ξ2 + θ.

Then we have:

• (∃r0 ∈ R,Φ1(r0) = Φ2(r0)) ⇔ (∃t0 ∈ R,Φ′
1(t0) = Φ′

2(t0)).

• For all crossing point v ∈ R between Φ1 and Φ2, ∃uv ∈ R, crossing point between Φ′
1

and Φ′
2 such that:

∫ v
−∞[Φ1(r)− Φ2(r)] dr =

∫ uv

−∞[Φ′
1(r)− Φ′

2(r)] dr.

•
∫ +∞
−∞ [Φ1(r)− Φ2(r)] dr =

∫ +∞
−∞ [Φ′

1(r)− Φ′
2(r)] dr.

Figure 5.3: A particular position of two fuzzy variables.
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Interpretation:

According to Lemma 2, there exists a crossing point between Φ1 and Φ2 if and only if there

exists a crossing point between Φ′
1 and Φ′

2 and the area between two distributions functions

keep unchanged by translating them.

Proof of Lemma 2: Let us consider the assumptions of the lemma.

We set: ξ1 = (a, b, c, d), ξ2 = (a′, b′, c′, d′) and θ = (a′′, b′′, c′′, d′′).

Without loss of generality, we suppose in all this proof that a < a′ < b′ < b < c′ < c < d′ < d

(see Figure 5.3). The other cases can be proved in the same way.

1) Let us recall that ξ1 + θ = (a+ a′′, b+ b′′, c+ c′′, d+ d′′) and ξ2 + θ = (a′ + a′′, b′ + b′′, c′ +

c′′, d′ + d′′).

We have: Φ1(r) = Φ2(r) ⇔ ( r−a
b−a = r−a′

b′−a′ or r ∈ [b, c′]) ⇔ (r = r0 = a′(b−a)−a(b′−a′)
(b−a)−(b′−a′) or

r ∈ [b, c′]) (see Figure 5.3 with r0 = v1). Furthermore, we have:

i) First, r−(a+a′′)
(b+b′′)−(a+a′′) =

r−(a′+a′′)
(b′+b′′)−(a′+a′′) ⇔ r = t0 =

(a′+a′′)[(b+b′′)−(a+a′′)]−(a+a′′)[(b′+b′′)−(a′+a′′]
(b−a)−(b′−a′) ,

that is Φ′
1(t0) = Φ′

2(t0). t0 exists if and only if r0 exists and t0 ∈ [a′ + a′′, b′ + b′′] if and only

if r0 ∈ [a′, b′].

ii) Secondly, we have: r0 ∈ [b, c′] ⇔ t0 ∈ [b+ b′′, c′ + c′′], according to the expressions of ξ1 + θ

and ξ2 + θ.

2) Let v ∈ R be a crossing point between Φ1 and Φ2.

v satisfies Φ1(v) = Φ2(v), thus, according to 1), ∃uv ∈ R such that Φ′
1(uv) = Φ′

2(uv). By the

assumptions a < a′ < b′ < b < c′ < c < d′ < d, there exists two crossing points between Φ1

and Φ2: v1 ∈ [a′, b′] (type II) and v2 = c′ (type I). (see Figure 5.3).

According to 1), we set:

i) uv1 = (a′+a′′)[(b+b′′)−(a+a′′)]−(a+a′′)[(b′+b′′)−(a′+a′′]
[b−a]−[b′−a′] and we consider the real intervals [a′, b′]
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and [a′ + a′′, b′ + b′′] with v1 ∈ [a′, b′] and uv1 ∈ [a′ + a′′, b′ + b′′].

We have ∀r ∈ [a′, b′]: Φ1(r)− Φ2(r) =
r(a−b+b′−a′)−a(b′−a′)+a′(b−a)

(b−a)(b′−a′) and,

∀r ∈ [a′ + a′′, b′ + b′′],

Φ′
1(r)− Φ′

2(r) =
r(a−b+b′−a′)−(a+a′′)[(b′+b′′)−(a′+a′′)]+(a′+a′′)[(b+b′′)−(a+a′′)]

[(b+b′′)−(a+a′′)][(b′+b′′)−(a′+a′′)] .

The sign of Φ1(r)−Φ2(r) is the opposite sign of A = a−b+b′−a′

(b−a)(b′−a′) before v1 and the same sign

of A after v1.

The sign of Φ′
1(r)−Φ′

2(r) is the opposite sign of B = a−b+b′−a′

[(b+b′′)−(a+a′′)][(b′+b′′)−(a′+a′′)] before uv1

and the same sign of B after uv1 .

By the fact that A and B have the same sign, we conclude that:

(∀r ≤ v1,Φ1(r) ≤ Φ2(r)) ⇔ (∀r ≤ uv1 ,Φ
′
1(r) ≤ Φ′

2(r)). That is, uv1 is a crossing point of type

II between Φ′
1 and Φ′

2.

ii) uv2 = c′ + c′′ and we check that uv2 is a crossing point of type I between Φ′
1 and Φ′

2 by

considering the interval of coincidence [b+ b′′, c′ + c′′].

On the other hand, computations display that:∫ v1
−∞[Φ1(r)− Φ2(r)] dr =

∫ uv1
−∞[Φ′

1(r)− Φ′
2(r)] dr = (a′−a)2

4(b−a−b′+q′) and∫ v2
−∞[Φ1(r)− Φ2(r)] dr =

∫ uv2
−∞[Φ′

1(r)− Φ′
2(r)] dr = a′−a+b′−b

4 .

3) Finally, computations display that:∫ +∞
−∞ [Φ1(r)− Φ2(r)] dr =

∫ +∞
−∞ [Φ′

1(r)− Φ′
2(r)] dr = a′−a+b′−b+c′−c+d′−d

4 .

By the previous results of items 1), 2) and 3), we obtain results of the lemma. 2

Proof of Proposition 4.3.2:

We consider, ξ = (a, b, c, d), η = (a′, b′, c′, d′) and θ = (a′′, b′′, c′′, d′′) be three elements of A

with respective credibility distributions functions Φ1, Φ2, Φ3. Let us suppose that ξ + η =

TASSAK DEFFO CHRISTIAN PhD. Thesis



109

(a+ a′′, b+ b′′, c+ c′′, d+ d′′), η + θ = (a′ + a′′, b′ + b′′, c′ + c′′, d′ + d′′) are two elements of A

and that Φ′
1, Φ′

2 are their respective credibility distributions functions.

1. Mean-risk dominance FLPMα,τ , α ∈ N∗, τ ∈ R:

A1) We have:
{

E[ξ] ≥ E[ξ]
FLPMα,τ [ξ] ≤ FLPMα,τ [ξ]

. Therefore, ξ ≽α,τ ξ.

A2) Let us assume that ξ ≽α,τ η and η ≽α,τ ξ.

We have:
{

E[ξ] ≥ E[η]
FLPMα,τ [ξ] ≤ FLPMα,τ [η]

and
{

E[η] ≥ E[ξ]
FLPMα,τ [η] ≤ FLPMα,τ [ξ]

, that leads

to
{

E[ξ] = E[η]
FLPMα,τ [ξ] = FLPMα,τ [η]

. Thus, ξ ∼α,τ η.

A3) Let us assume that ξ ≽α,τ η and η ≽α,τ θ.

We have:
{

E[ξ] ≥ E[η]
FLPMα,τ [ξ] ≤ FLPMα,τ [η]

and
{

E[η] ≥ E[θ]
FLPMα,τ [η] ≤ FLPMα,τ [θ]

; by the

transitivity of inequalities, that leads to
{

E[ξ] ≥ E[θ]
FLPMα,τ [ξ] ≤ FLPMα,τ [θ]

.

Hence, ξ ≽α,τ θ.

A4) Let us assume that inf supp(ξ) > sup supp(η), that is, a > d′. Necessarily, we have:

a > a′, b > b′, c > c′ and d > d′. By the fact that, E[ξ] = a+b+c+d
4 and E[η] = a′+b′+c′+d′

4 ,

we have E[ξ] ≥ E[θ].

On the other hand, we have: FLPMα,τ [ξ] =
∫ τ
−∞(τ − u)α−1Φ1(u)du and FLPMα,τ [η] =∫ τ

−∞(τ − u)α−1Φ2(u)du. By the fact that a > a′, b > b′, c > c′ and d > d′, we

have Φ1(r) ≤ Φ2(r), ∀r ∈ R (according to theorem 7). That leads to FLPMα,τ [ξ] ≤

FLPMα,τ [η]. As E[ξ] ≥ E[η] and FLPMα,τ [ξ] ≤ FLPMα,τ [η], we conclude that ξ ≽α,τ η.

A′
4) The proof is similar to the one of A4.

A5) The proof is justified by the fact that, the comparison between ξ and η following

≽α,τ depends only on the parameters of these two fuzzy variables (mean, fuzzy lower

partial moment) and not on the other variables.
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A6) Let us justify by a counterexample that this property is not satisfied by the domi-

nance relation ≽α,τ η.

Let us consider the trapezoidal fuzzy variables ξ1 = (1, 2, 8, 9), ξ2 = (2, 3, 3.5, 4) and

ξ0 = (9, 10, 11, 12).

We set: ξ′1 = ξ1 + ξ0 = (10, 12, 19, 21), ξ′2 = ξ2 + ξ0 = (11, 13, 14.5, 16), α = 2 and

τ = 10.5.

If Φ1,Φ2,Φ
′
1,Φ

′
2 are respectively the credibility distribution functions of fuzzy variables

ξ1, ξ2, ξ
′
1, ξ

′
2, then we have:

Φ1(x) =



0 if x < 1
x− 1

2
if 1 ≤ x < 2

1
2 if 2 ≤ x < 8
x− 7

2
if 1 ≤ x < 2

1 if x ≥ 9

, Φ2(x) =



0 if x < 2
x− 2

2
if 2 ≤ x < 3

1
2 if 3 ≤ x < 3.5
x− 3 if 3.5 ≤ x < 4
1 if x ≥ 4

,

Φ′
1(x) =



0 if x < 10
x− 10

4
if 10 ≤ x < 12

1
2 if 12 ≤ x < 19
x− 17

4
if 19 ≤ x < 21

1 if x ≥ 21

, Φ′
2(x) =



0 if x < 11
x− 11

4
if 11 ≤ x < 13

1
2 if 13 ≤ x < 14.5
x− 13

3
if 14.5 ≤ x < 16

1 if x ≥ 16

.

Computations display that: E[ξ1] = 5, E[ξ2] = 3.125, that is E[ξ1] ≥ E[ξ2] and∫ 10.5
−∞ [Φ1(x)− Φ2(x)](10.5− x) dx ≃ −6.13 that is FLPMα,τ [ξ1] ≤ FLPMα,τ [ξ2]. There-

fore, ξ1 ≽2,10.5 ξ2.

We also obtain: E[ξ′1] = 15.5, E[ξ′2] = 13.625, that is E[ξ′1] ≥ E[ξ′2] and
∫ 10.5
−∞ [Φ′

1(x) −

Φ′
2(x)](10.5−x) dx ≃ 0.005 that is FLPMα,τ [ξ

′
1] ≥ FLPMα,τ [ξ

′
2]. Therefore, ξ′1 �2,10.5 ξ

′
2.

Finally, we have: ξ1 ≽2,10.5 ξ2 and ξ′1 �2,10.5 ξ
′
2, that means that the property A6 is not

satisfied by the dominance relation ≽α,τ η.

A′
6) The previous counterexample indicates that property A′

6 is not satisfied by the

dominance relation ≽α,τ η .
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2. First order dominance ≽1:

A1) We have: a ≥ a, b ≥ b, c ≥ c and d ≥ d. So, ξ ≽ ξ.

A2) Let us assume that ξ ≽1 η and η ≽ 11ξ.

We have:

ξ ≽1 η ⇒ (a ≥ a′, b ≥ b′, c ≥ c′, d ≥ d′) and η ≽1 ξ ⇒ (a′ ≥ a, b′ ≥ b, c′ ≥ c, d′ ≥ d). We

obtain: a = a′, b = b′, c = c′ and d = d′. That is, ξ ∼1 η.

A3) Let us assume that ξ ≽1 η and η ≽1 θ.

We have:

ξ ≽1 η ⇒ (a ≥ a′, b ≥ b′, c ≥ c′, d ≥ d′) and η ≽1 θ ⇒ (a′ ≥ a′′, b′ ≥ b′′, c′ ≥ c′′, d′ ≥ d′′).

By using the transitivity of inequalities, it follows that: a ≥ a′′, b ≥ b′′, c ≥ c′′ and

d ≥ d′′. That is, ξ ≽1 θ.

A4) Let us assume that inf supp(ξ) > sup supp(η), that is, a > d′. Necessarily, we have:

a > a′, b > b′, c > c′ and d > d′. That is, ξ ≽1 η. A′
4) The proof is similar to the one of

A4.

A5) The proof is justified by the fact that, the comparison between ξ and η following ≽1

depends only on the parameters of these two fuzzy variables (a, b, c, d, a′, b′, c′, d′) and

not on the other variables.

A6) Let us assume that ξ ≽1 η.

We have: a ≥ a′, b ≥ b′, c ≥ c′, d ≥ d′. Those inequalities imply that: a+ a′′ ≥ a′ + a′′,

b+ b′′ ≥ b′ + b′′, c+ c′′ ≥ c′ + c′′, d+ d′′ ≥ d′ + d′′. Thus, ξ + θ ≽1 η + θ.

A′
6) The proof is similar to the one of A6.

3. Second order dominance ≽2:
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A1) We have: ∀t ∈ R,
∫ t
−∞[Φ1(r)− Φ1(r)] dr ≥ 0. Therefore, ξ ≽2 ξ.

A2) Let us assume that ξ ≽2 η and η ≽2 ξ.

We have:

ξ ≽2 η ⇒ ∀t ∈ R,
∫ t
−∞[Φ2(r) − Φ1(r)] dr ≥ 0 and η ≽2 ξ ⇒ ∀t ∈ R,

∫ t
−∞[Φ1(r) −

Φ2(r)] dr ≥ 0.

We obtain by those two inequalities: ∀t ∈ R,
∫ t
−∞[Φ1(r)−Φ2(r)] dr = 0. That is, ξ ∼2 η.

A3) Let us assume that ξ ≽2 η and η ≽2 θ.

We have:

ξ ≽2 η ⇒ ∀t ∈ R,
∫ t
−∞[Φ2(r) − Φ1(r)] dr ≥ 0 and η ≽2 θ ⇒ ∀t ∈ R,

∫ t
−∞[Φ3(r) −

Φ2(r)] dr ≥ 0.

We obtain by the transitivity of inequalities: ∀t ∈ R,
∫ t
−∞[Φ3(r) − Φ1(r)] dr ≥ 0. That

is, ξ ≽2 θ.

A4) Let us assume that inf supp(ξ) > sup supp(η), that is, a > d′. Necessarily, we have:

a > a′, b > b′, c > c′ and d > d′. Those inequalities imply that: Φ1(r) ≤ Φ2(r), ∀r ∈ R

(according to Theorem 7). That leads to ∀t ∈ R,
∫ t
−∞[Φ2(r)−Φ1(r)] dr ≥ 0. This means,

ξ ≥ η.

A5) The proof is justified by the fact that, the comparison between ξ and η following

≽2 depends only on parameters of these two fuzzy variables (credibility distribution

function) and not on parameters of other variables.

A6) Let us assume that ξ ≽2 η.

By the characterization of ≽2, we have:

For all crossing point v ∈ R, between Φ and Φ′,
∫ v
−∞[Φ2(r) − Φ1(r)] dr ≥ 0 and∫ +∞

−∞ [Φ2(r)− Φ1(r)] dr ≥ 0.
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According to Lemma 2: ∀uv ∈ R, crossing point between Φ′
1 and Φ′

2,
∫ v
−∞[Φ2(r) −

Φ1(r)] dr =
∫ uv

−∞[Φ′
2(r) − Φ′

1(r)] dr ≥ 0 and
∫ +∞
−∞ [Φ2(r) − Φ1(r)] dr =

∫ +∞
−∞ [Φ′

2(r) −

Φ′
1(r)] dr ≥ 0. Thus, ξ + θ ≽2 η + θ.

A′
6) The proof is similar to the one of A6. 2
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