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♣ Abstract ♣

Mosquitoes represent a major threat to public health. Constants efforts are being made

to develop or improve control strategies in the framework of control vectors. Control vectors

aims to maintain mosquitoes at a low levels that do not represent risk for health. Planning

of efficient control strategies requires in-depth knowledge of the mosquito’s biology and

ecology, as well as good understanding of the processes governing the dynamics of the

population in time and space. In malaria endemic regions, dispersal of mosquitoes from

one location to another for survival and reproduction is a fundamental biological process

that operates at multiple temporal and spatial scales. This dispersal behaviour is an

important factor that causes uneven distribution of malaria vectors causing heterogeneous

transmission. In published literature, most models that addressed mosquito dynamics

rely on temporal modelling in which spatial dynamics and movements of mosquito are

not taken into account. My investigations in this thesis deals with spatial distribution of

anopheles mosquito. I develop spatio-temporal models that consider mosquito dispersal,

spatial dynamics, environmental heterogeneity and age structure of the mosquitoes, which

are needed for designing, planning, and management of the control strategies. In the

first, I develop a spatio-temporal model of mosquito dynamics using discrete patches

as a representation of space. I analyze and simulate the spreading of mosquitoes on a

complex metapopulation, that is, network of population connected by migratory flows. The

theoretical study of this model is done using the theory of monotone dynamical systems.

This study allow to identify threshold values that ensure an effective control of mosquitoes.

Secondly, using an alternative approach to discrete-space model developed previously, I

develop an advection-reaction-diffusion model in order to take into account the mosquito

dispersal and spatial heterogeneity of their resources. The model incorporates female

mosquitoes of oviposition’s cycle, which provides a framework to study the life style of the

adult mosquito. I carry out a qualitative analysis that highlights some biological thresholds

that summarize the dynamics of the systems. In addition, for these models, meaningful

numerical schemes are developed through nonstandard finite difference methods. The aim

is to illustrate the theoretical part and investigate the effect of heterogeneous distribution

of resources used by mosquitoes. Results reveal that due to dispersal, the distribution of

mosquitoes highly depends on the distribution of hosts and breeding sites.

Keywords : Anopheles mosquito ; Dispersal ; Metapopulation ; Advection-Reaction-

Diffusion Equation ; Spatial heterogeneity ; Dynamical Systems ; Threshold analysis.
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♣ Résumé ♣

Les moustiques représentent une menace majeure pour la santé publique. Des

efforts constants sont faits pour développer ou améliorer les stratégies de contrôle des

moustiques. Le contrôle des moustiques vise à maintenir la densité des moustiques à des

niveaux bas ne représentant aucun danger pour la santé. La planification des stratégies

de contrôle efficaces exigent une bonne connaissance de la biologie du moustique et

une bonne compréhension du processus gouvernant la dynamique de la population

dans le temps et l’espace. Dans les régions où la malaria est endémique, la dispersion

des moustiques d’un endroit à l’autre, à la recherche de ressources pour leur survie

et leur reproduction, est un processus biologique fondamental fonctionnant à l’échelle

temporelle et spatiale. Ce comportement de dispersion est un important facteur qui cause

une distribution inégale des moustiques et une transmission hétérogène du paludisme.

Dans cette thèse j’étudie la distribution spatiale des moustiques en développant des

modèles mathématiques qui prennent en compte la dispersion, la dynamique spatiale,

l’hétérogénéité environnementale et la structure d’âge des moustiques, lesquels sont

nécessaires pour la conception, la planification et la gestion des stratégies de contrôle.

Premièrement, je développe un modèle spatio-temporel de la dynamique des moustiques

en utilisant des patches discrets comme représentation de l’espace. J’analyse et simule

la propagation des moustiques sur un réseau de noeuds de population relié par des

flux migratoires. L’étude théorique de ce modèle est faite à l’aide de la théorie des

systèmes dynamiques monotones. Cette étude permet d’identifier des valeurs seuils

qui assurent un contrôle efficace des moustiques. Ensuite, je développe un modèle de

réaction-advection-diffusion afin de prendre en compte la dispersion des moustiques et

l’hétérogénéité spatiale de leurs ressources. Le modèle incorpore les moustiques femelles

du cycle de reproduction. J’effectue une analyse qualitative qui met en évidence des

seuils écologiques résumant la dynamique des systèmes. De plus, pour ces modèles, des

méthodes numériques appropriées ont été construites dans le but d’illustrer les parties

théoriques et d’explorer les effets de la distribution hétérogène des ressources utilisées

par les moustiques. Les résultats révèlent qu’à cause de la dispersion, la répartition des

moustiques dépend fortement de la répartition des hôtes et des sites de reproduction.

Mots Clés : Moustique Anopheles ; Dispersion ; Métapopulation ; Equation d’Advection-

Reaction-Diffusion ; Hétérogénéité Spatiale ; Systèmes Dynamiques.
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♣ General introduction ♣

General overview
Malaria is a vector-borne disease transmitted by anopheles mosquitoes. The disease

is transmitted between humans through bites of infectious mosquitoes. It is estimated that

more than 3 billion people live in malarious areas and most of them live in sub-Saharan

Africa [151]. Most individuals in this region are infected by Plasmodium Falciparum parasite

which is the most prevalent and prominent malaria parasite in sub-Sahara Africa [51]. This

parasite is not only associated with severe malaria but is also life threatening, causing high

morbidity and mortality rates in the region. The World Health Organization [151] estimates

that in 2010, more than 200 million malaria cases occurred worldwide [151]. Of the 660.000

malaria deaths that occurred in 2010 around the world, 91% were in Africa and 86% were

children under the age of five years [151]. Despite the growing international pressure and

efforts to provide treatment, to develop vaccines, and implement vector control, malaria

continues to remain a major problem worldwide. Due to this trend, it is unlikely that the set

goals for reducing the global burden of malaria will be achieved. Therefore, countries where

malaria is prevalent need examine in depth the vectors that are responsible for transmitting

the disease, and the type of behaviour, and dynamics these vectors follow. There is also

a need to understand in detail the natural cause of the continuous transmission, and to

design more realistic control strategies for vector management at local level.

Malaria control is multi-faceted and a more integrated approach towards malaria control

in sub-Saharan Africa may have a greater impact in reducing malaria morbidity and

mortality. However, with the increase of human populations, rural to urban migration,

urbanization and environmental degradation, there has been an increase in suitable

mosquito ponds and a modified ecosystem giving the vector an even greater opportunity

to adopt its efficiently in disease transmission. There is a need therefore for more research

focusing on improving our understanding of malaria vector population ecology, reducing

human vector contact and disease transmission. Vector control has been the means of

eradication of malaria in numerous regions of the world, and has dramatically reduced

its incidence in some countries. The vector remains the key link in the transmission of

malaria, and hence, warrants research and control effort in areas where the disease is still
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a public health problem. Historically, success in combating malaria has been attributed to

mosquito control, a strategy which has largely failed due to various reasons including the

development of insecticide resistance, economic limitations and gaps in the basic biological

knowledge of these vectors [95]. For any vector control effort to achieve a reduction in

malaria transmission, it is important for control programme staff to have access to adequate

information on the local malaria vector ecology, distribution, transmission patterns and

the factors affecting transmission in order to design interventions suitable to the area

corresponding considered.

Modelling provide interesting tools for experts to validate or improve vector control

strategies with a minimal number of field experiments that can be very difficult to conduct

and expensive. Most models of malaria transmission and control explain relationships

between the number of mosquitoes and malaria transmission in humans while assuming

enclosed systems of mosquitoes in which spatial dynamics and movements are not taken

into account. These models have limited ability to assess and quantify the distribution

of risks and interventions at local scales. Therefore, in order to overcome this limitation,

mathematical models that consider the interaction between dispersal behaviour, population

dynamics, environmental heterogeneity, and age structures of the mosquito are needed for

designing, planning, and management of the control strategies at local scales.

Several studies have demonstrated that remote sensing and geographical information

systems (GIS) are powerful tools for understanding mosquito distribution [62, 63, 121] and

are suitable for understanding the link between seasonal variations and environmental

factors to malaria transmission indicators at large spatial scales. However, these tools

remain reliable only at global spatial scales. At local scales, mathematical models provide

an alternative way of assessing and quantifying the distribution of risks or assessing

interventions. They can also explain the complex dynamics of local populations and

dispersal patterns exhibited by mosquitoes. They are also useful tools for capturing spatial

characteristics for assisting decisions on mosquito surveillance and malaria prevention

[76]. In these models, groups or spatially distributed populations can be linked together

across a set of spatial locations.

The concept of modelling mosquito dispersal was highlighted a century ago by Ronald

Ross (Ross, 1905). In his model, Ross described distribution of the mosquitoes by distance

covered and concluded that mosquitoes movement follows a "centripetal law of random

wandering" in which the number of dispersing mosquitoes is high in the vicinity and low

far away from their original location. This law is conserved even in situations where the

distribution of resources such as hosts and breeding sites is heterogeneous. Although

Ross’s idea of modelling mosquito dispersal is an important aspect for improving scientific

experiments (Ross, 1905), modelling studies has rarely considered it. Other mathematical

models of Ronald Ross (Ross, 1915), have long been used to explain relationships between

the number of mosquitoes and malaria transmission in humans.
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Several mathematical models including different factors have been proposed to un-

derstand the distribution of mosquito population and have been used to implement or

improve vector managements [46, 105, 104, 131, 15, 2, 48, 1, 108]. The model studied

by Anguelov, Esteva and Thomé [2, 46, 131] incorporated sterile insects to assess the

effectiveness of the sterile insect technique (SIT) for vector management. The model

proposed by Ngwa et al. [105, 104] incorporated human-vector interaction to observe how

this interaction could drive mosquito dynamics. The models developed by Abdelrazec and

Okuneye [1, 108] incorporated temperature and rainfall in order to assess their effects on

mosquitoes abundance. However, these models have always assumed closed systems

of mosquitoes in which spatial dynamics and movement are not taken into account. This

assumption has enabled many intuitive analyses but has considerable consequences

on implementing better strategies for control and evaluation of control interventions in

field settings. Some authors have focused on the distribution of mosquitoes including

mosquito dispersal. In Lutambi et al. [83], Nourridine et al. [106] and Yakob et al. [154],

spatial aspect of mosquito have been modelled in terms of migration between patches in

a hypothetical landscape. Likewise, models of spatial dynamics using PDEs have given

sufficient conditions to mosquitoes to persist and spread [70, 126, 158, 132, 161]. These

modelling studies indicate the need for more explicit models that include vital components

of ecological interactions. In response to this need, mathematical models that consider the

interaction between dispersal behaviour, population dynamics, environmental heterogene-

ity, and age distribution of the mosquito are needed for the designing, the planning, and

the management of the control strategies at local scales.

Aim and objectives
This thesis aims at providing a mathematical framework to understand the spatial

distribution of mosquitoes, which could help to the development and/or improvement of

mosquito control strategies. This mathematical framework comprises mathematical models

coupled with an appropriate theoretical analysis and thresholding, with adequate schemes

for numerical solutions. It is developed in order to address challenges related to what,

when and how questions regarding control interventions. The primary objective is to

develop spatial mathematical models that capture mosquito dispersal to achieve a broader

understanding of mosquito foraging behaviour and its interactions with environmental

heterogeneity. To this end, we use two formalisms to capture mosquito dispersal, namely,

(1) discrete-space continuous-time approach based on ordinary differential equations and

(2) continuous-space continuous-time approach based on partial differential equations.

To address the first objective, we develop a spatial model based on biological and

ecological knowledge of mosquitoes. We use a new approach recently introduced to deal

with the spread of diseases in ensembles of (local) populations with a complex spatial
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arrangement and connected by migration. Such sets of connected populations living in

a patchy environment are called metapopulations in ecology. The reaction and diffusion

processes modelling the spread of mosquitoes are considered as a two-step process.

First, inside each network node, the reaction takes place under the assumption of a

homogenous conserving the total number of mosquitoes. In particular, in each node, an

individual mosquito is in one of the states of mosquito life cycle. Second, the diffusion

term include the outflow of mosquitoes from their current nodes and the inflow of migratory

mosquitoes from the nearest nodes. This objective is addressed in chapter 2 of this thesis.

The second objective of this thesis is addressed by constructing an advection-reaction-

diffusion model for the dynamics of mosquitoes. To account for specific behaviours, the

population is divided into appropriate compartments. We develop a spatial framework that

captures mosquito dispersal behaviour in a heterogeneous environment as factors that

affect the distribution of mosquitoes in a spatial environment. From modelling perspective,

a general functional form of eggs oviposition rate is used including the Verhlust-Pearl

logistic, the Hassell and the Maynard-Smith-Slatkin functions. In this work is presented

in chapter 3, the dynamics of mosquito population as described on the one hand by a

temporal compartmental model which is extended into spatio-temporal model on the other

hand.

Outline
In chapter 1 we provide a non exhaustive literature review of mathematical models that

concern mosquito population. The goal of this literature review is to properly compare our

modelling assumptions as well as our modelling framework with already published models

enabling to better discuss the improvements either from modelling or from a mathematical

analysis point of view.

In chapter 2, following the classical ordinary differential equation (ODE) modelling

framework ([2]), we build and analyse a new mathematical model, which considers the

spreading of anopheles mosquito on a complex metapopulation, that is, networks of

populations connected by migratory flows which configurations are described in terms of

connectivity distribution of nodes (patches) and the conditional probabilities of connections

between nodes. The model incorporates age distribution in form of the aquatic and adult

stages of the mosquito life cycle and further divides the adult mosquito population into

three stages. The metapopulation setting developed in this part, use a recent approach

based on statistical mechanics. The spatial characteristics of the model are based on

discretisation of space into discrete patches. These patches are assumed to be connected

by migration of mosquitoes which move between patches as they search for oviposition

sites and blood meals. Local dispersal is modeled by assuming that dispersing adults move

from their current locations enter nearest neighboring locations and long-range dispersal
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is achieved through repeated movements. The model is based on ordinary differential

equations and is replicated across a landscape, a multi-patch system that represents a

two-dimensional space. The model is applied to examine the significance of larval habitat

connectivity and mosquito dispersal in a homogeneous and a heterogeneous landscapes

on the persistence of mosquitoes populations. More precisely, we construct corresponding

metapopulation model and perform their qualitative and quantitative analyzes.

In chapter 3, we derive a more general mathematical model for the population dynamics

of anopheles mosquitoes that feeds on human blood but breeds outside of the human body

at a distinct spatial location, the breeding site away from the human habitat. We develop

models that incorporate both intrinsic dynamics and spatial variation of mosquitoes, taking

into consideration the dynamics of the human-vector interaction. We will start with a

temporal model that allows a general description of the mosquito’s growth. This initial

model captures the mosquito oviposition cycle as well as its main behavior (which could

be useful when one considers chemical or biological control tools, such as SIT or GMM).

Moreover, we consider a more general function for egg oviposition rate. Next, we will

extend the obtained temporal model to a PDE system by adding both advection and

diffusion terms that reflect mosquito’s mobility. We study the global well-posedness and

the asymptotic behavior of the solutions of this PDE model. Finally, we assess the impact

of mosquito dispersal, heterogeneous distribution of mosquito resources (hosts), and other

parameters on the spatial distribution, dynamics and persistence of mosquito populations.

Finally, we summarize, discuss and conclude the modeling work presented in the thesis,

and suggests directions for future studies.
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Vectors, theirs distributions and mathematical
modeling

1.1 Vectors of malaria and their distribution

1.1.1 Vectors of malaria

Mosquito-borne diseases are found in many countries in the world and constitute a

major cause of human mortality (morbidity). Mosquitoes transmit some of the world’s most

relevant parasitic diseases and belong mainly to three genera : Anopheles, Culex and

Aedes. Tropical diseases such as malaria, yellow fever, lymphatic filariasis, dengue fever,

the West Nile Virus (WNV), Zika virus and other arboviruses are transmitted by mosquitoes.

Of these, malaria is the most common and important, transmitted through the bite of a

female anopheles mosquito, leading to the infection of humans with either one or more

protozoan parasites such as Plasmodium falciparum, P. ovale, P. malariae and P. vivax.

The life cycle of mosquitoes involves aquatic (egg, larva, pupa) and adult stages (see

Figure 1.1). The first stage is the egg stage, where eggs are laid on standing water by adult

females. The development process of eggs is temperature dependent and eggs are likely

to survive low temperatures. The second stage is the larval stage. In this stage, larvae

progress through several stages of growth. Their survival depends on climatic conditions

and relies very much on standing water providing food in form of organic matters. After

the second stage, larvae develop into pupae, the third aquatic stage. It is from this stage

mosquitoes emerge as adults. In the fourth stage, emerging adult mosquitoes fly in space.

Male and female adults mate rapidly after emerging from the last aquatic stage. The

lifespan of males usually is shorter than that of females. After insemination, females

disperse to seek a host, possibly resulting in long distance movements and a risk of host

defence response. After a blood meal, females mostly remain in a sheltered place during

the few days needed for the eggs to mature. Then, females seek for an oviposition site,

which may result again in long distance and risky movements. Depending on the species,

different sites may be used, from aquatic environments to humid places.
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Figure 1.1: An illustration of the mosquito life cycle (P. Ezanno et al. [48])

1.1.2 Distribution of anopheles mosquitoes

Approximately 400 species of anopheles mosquitoes have been identified [95, 133]

and out of these, 60 to 80 species have been implicated in malaria transmission, but

only 40 are of major importance [147, 95]. In sub-saharan Africa, members of the An.

gambiae complex and An. funestus complex are the most efficient vectors of P. falciparum

malaria, which is the most important parasite [95]. The importance of each species in

malaria transmission however varies from one region to another, as does their geographical

distribution.

Mosquito distribution differs in time and space due to seasonal variations and environ-

mental heterogeneity. In areas with favorable environmental factors such as temperature,

rainfall and humidity, malaria transmission distribution is highly related to the mosquito

abundance. In parts where temperature is not a limiting factor, malaria transmission is

highly seasonal. Global maps on the distribution of malaria vectors highlight the present

spatial variability of mosquito species across different regions (see for example Figure

1.2). In Africa, for example, An. gambiae, An. arabiensis and An. funestus are prevalent

vectors that are responsible for malaria transmission. In Asia and other regions, multi-

ple species co-exists. These differences in species across regions are mainly due to

differences in climatic and environmental conditions. These conditions are critical for

sustaining the production of resources needed by mosquitoes for survival and reproduction.

Since mosquitoes need a variety of resources to survive and reproduce, the distribution of

these resources in space affects their distribution and rate of dispersal [121]. This effect

contributes to variation in local densities [16, 76, 97, 122], human exposure to vectors, and
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Figure 1.2: A global map of dominant malaria vector species (Sinka et al.[121])

our ability to control disease transmission.

1.1.3 Mosquito dispersal

The planning of future malaria vector control interventions requires information on the

vector population, such as vector dispersal and survival. This information is important not

only as determinants of the epidemiology of malaria but also for operational malaria vector

control activities [71]. The dispersal of mosquito vectors-to find mates, nectar sources,

resting sites, oviposition sites, and blood meals-underlies the spatial distribution of vectors,

and plays a major role in shaping population structure [120]. Mosquito survivorship and

dispersal ability are also critical for understanding malaria transmission risk [18].

Mosquito dispersal is the movement of mosquitoes from one location to another.

Mosquito dispersal is a fundamental biological process that operates at multiple tem-

poral and spatial scales, making it an important factor that causes uneven distribution

of malaria vectors in local settings. Dispersal may lead to temporary extinction in local

settings without driving the population of the whole region to extinction and this is achieved

if the population in one or more locations goes to zero. Re-colonization is also possible

and can be achieved subsequently through dispersal from other locations.

Studies indicate that the existence of olfactory, visual, and thermal cues play an

important role in modifying mosquito flying behaviour [9, 127]. Several experiments have

been performed to understand mosquito dispersal [54, 55, 56] and factors such as those
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shown in Figure (1.1.3) affect mosquito dispersal at local level. Experiments from capture-

Figure 1.3: Factors affecting dispersal

mark-recapture methods have shown that mosquito dispersal distance is short and variable

if driven by search for food, sheltering, and egg laying [120]. These short distances consist

in few hundred meters although longer lasting flights of 1 km may be necessary if hosts and

oviposition sites are widely separated. The searching strategy may depend on whether

mosquitoes rely on information from neighboring areas or from places that are far apart

from their present locations. The later can be incrementally achieved by movements

made to neighboring locations. The dispersal can be random or unidirectional if facilitated

by environmental factors such as wind [120]. Sometimes, long dispersal is likely to be

facilitated by human travel.

Dispersal is also affected by vector control interventions. Interventions such as source

reduction or environmental management create distances between breeding sites, affecting

their spatial distribution. Several studies have shown that there is an association between

distance to potential mosquito breeding sites and the variability in the Anopheline density

[16] and that availability of hosts and the distribution of larval habitats has an influence on

malaria vector abundance [76, 97, 122]. Some interventions divert mosquitoes without

killing them (e.g. cream, lotion, soap, and gel, insect proofing of houses, sprays, coils, and

local herbs) [98, 115, 118] resulting into local dispersal; others change mosquito densities

(e.g. insecticide treated bed-nets) by reducing mosquito population and hence change

patterns of mosquito variations among different places. This relationship has a potential

effect on the spatial distribution of mosquitoes, and thus of malaria morbidity and mortality.

Mosquito dispersal is directly linked to the population density of mosquitoes, and is the

driving force of heterogeneous transmission in local settings. Dispersal and its interaction
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with other factors such as population density, interventions, and transmission is complex

and has several implications in public health. The effect of dispersal on interventions is

two fold. Interventions may appear less effective when evaluated because of mosquito

movement between areas under interventions and those not under interventions [71] or

may appear beneficial due to the community effects catalyzed by dispersal. The interaction

between a heterogeneous environment and movement behaviour of malaria vectors is

challenging, requiring different techniques to fight the disease.

1.2 Modelling population dynamics

Population dynamics is the study of the variations in a population size, its structure

and/or its distribution with respect to changes in various factors such as time, space,

temperature and other environmental factors. The aim of population dynamics is to identify

the factors responsible for the growth or decline of a population. Further, it provides a

better understanding of the underlying processes that explain how a population interacts

with its surrounding environment, for instance, how individuals react to di.erent stimuli.

The study of population dynamics has a wide range of useful applications. Studying the

spread of a disease, for instance, helps to identify the best periods of intervention to

reduce epidemiological risks [34, 172]. In mosquito management, the understanding of the

mosquito population dynamics allows to develop appropriate control methods to maintain

the population at a low risk level [163]. Population dynamics is also a powerful tool to

predict biological invasions [113], by modelling its spreading for instance, and evaluate

ecological risks.

Population dynamics can be studied following empirical or theoretical approaches.

On the one hand, empirical study of population dynamics is based on observation data

obtained via experimentation. A descriptive analysis can be carried out to describe the

variations observed in a population in the setting of the experiment. Observation data

are useful to establish the behaviour of the population, however, it is typically inherent to

the experimental setting and provides very limited information on the general dynamics

of a population. On the other hand, theoretical study of population dynamics allows to

test various biological hypothesis difficult to assess with direct observations, in particular

concerning interactions between the population and its environment, through methods of

analysis such as statistical or mathematical modelling. Before going further, I recall what

means a mathematical model.

1.2.1 A brief definition of a "Mathematical Model"

A model is a process through which given specific inputs (e.g. time, spatial location

or temperature), and specific parameters (e.g. growth rate or dispersal rate), provides an
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output which is an approximation of a variable of interest such as the population size. In the

essence, a model is a representation of a reality involving some degree of approximation

[6, 17, 25]). A model may help to explain natural and artificial phenomena. According to

Deutsch et al. [39], other objectives are to test different scenarios and assumptions, to

demonstrate that certain ideas should not or cannot be achieved, or to predict for the future.

However, if all mechanisms and interactions are included, the resulting mathematical

model will have a large number of variables, parameters, constraints leading to complex

systems. Paraphrasing Albert Einstein, models should be as simple as possible, but not

simpler. Therefore, a major challenge in modelling is to identify key parameters of the

physical phenomenon that is to be modelled.

A model is built on biologically/ecologically relevant hypothesis and assumptions to

provide an approximation of the population variable of interest, such as the population

size, given specific inputs and parameter values. Statistical models are constructed using

a specific set of observation data from which the parameter values of the model are

estimated in such a way that the output of the model fits as well as possible to the data.

Thus, statistical models often provide a good match to the data, but the results are limited

by the fact that they are constructed and valid only for the specific setting of the experiment

for which the observation data were obtained. Such a model can be used to identify

correlations between different variables. However, it does not give information on why

such correlations exist. Mathematical models on the other hand, are built on biological and

ecological knowledge of the population dynamics, independently from specific observation

data. Although the output of mathematical models is not as good in fitting observation

data, they offer the possibility to change the settings and simulate various scenarios. This

process allows to gain understanding on the underlying mechanisms that govern the

dynamics of the population.

Formal models1 for dynamical systems, in which the set of assumptions about reality is

expressed in mathematical (mathematical model) or a computer (simulation model) lan-

guage, have turned out to be especially useful. Note that not all mathematical models are

accessible to mathematical analysis but that all of them can be simulated on a computer. If

an analytic solution is available, this may provide a complete characterization of the system

dynamics. Many simulation models cannot be described in a coherent mathematical frame-

work in such a way that they become accessible to an analytical mathematical analysis2.

Those models are to be assessed by means of statistical analysis of large numbers of

simulation runs. The choice of a model approach depends on the characteristics of the

dynamical system itself and on the aspects of the dynamical system that are emphasized
1In contrast to physical models, and pure semantic models, which are mainly used in psychology and

social sciences.
2For example, agent-based models and models in the framework of artificial life research (Deutsch et al.

(2005) [39])
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according to the model’s purpose [13, 39]. Therefore, interdisciplinary approaches are

essential because those who are experts on the structure of the particular application

have to work together with those who are experts on the structure of the mathematical

modelling approaches. This is particularly true for the designing of ecological/biological

systems models, which requires both experimental and mathematical knowledge [39].

In this thesis, I will focus on mathematical models. According to Cobelli et al. [25]

a mathematical model is a representation of reality that is expressed in the form of

mathematical equations. The process of developing a mathematical model is termed

mathematical modeling. Mathematical models are used in many disciplines: natural

sciences (such as physics, biology, ecology, meteorology), engineering (such as computer

science, artificial intelligence), and social sciences (such as economics, psychology,

sociology, political science).

Generally, mathematical modelling is divided into six steps forming a loop as shown

in figure 1.2.1. Step 1 Observation of the physical phenomenon (static/dynamic). Step 2

Formulation of hypotheses (formalisation and writing of the mathematical model). Step

3 Mathematical analysis (theory and results). Step 4 Parameter values specification

Step 5 Numerical simulations and predictions. Step 6 Testing hypotheses formalised

(confirmation/refutation). This last step requires a return to step 1 and possibly the

modification of some hypotheses.

Modelling is a useful tool to improve our understanding on the interactions between

the population and its environment. Through simulations, modelling enables to vary the

parameters and identify the factors of importance in the variation of a population. In

the following, we discuss how heterogeneity in a population can be handled considering

structured population models. Then, we give an overview on models incorporating the

space and time variables, which represent the major interest in this thesis.

1.2.2 Structured population models

Individuals of a population can contribute significantly and differently to the dynamics of

the population depending on different aspects, such as their age, stage of development,

epidemiological state, spatial position, etc. After we will refer to such aspects as structuring

variables. In order to obtain a meaningful model, we structure the population to take into

account the heterogeneity of the individual with respect to the mentioned-above aspects.

If the structuring variable is discrete assuming a finite number of distinct states, then

the model is formulated via a system of equations for which each equation accounts for

the dynamics of the population in each state of the structuring variable. Typically the

different distinct states are referred to compartments, and the resulting model is called a

compartmental model. For example, insects have distinct stages of development, eggs,

larvae, pupae and adults, with specific duration, survival rates, exposure to predation,
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Figure 1.4: An elementary modelling methodology (adapted from Carson and Cobelli

(2001)).

behaviour, displacement ranges, etc.

A compartmental model can be discrete or continuous with respect to the time variable.

In the discrete case, the state of the population is approximated at specific times t0, t1, . . . , tK,

using a relation of the form

Nk+1 = f(Nk), k{0, 1, . . . ,K},

where Nk is the vector of each compartments of the population at time tk and f is a

vector functions which describes the dynamics of each compartment (i.e. demography,

interactions between the compartments, etc.).

When the time-variable is continuous, then the state of the population at time t is

approximated by a continuous and differentiable vector function N(t) ∈ Rn . The resulting

model is a system of ODEs formulated as follows
dN1
dt = φ1(t,N1, . . . ,Nn),
...

dNn
dt = φn(t,N1, . . . ,Nn),

(1.1)

or equivalently
dN(t)

dt
= φ(N(t)),

Ph.D Thesis: Study of the spatial distribution of anopheles mosquitoes 13 M. L. MannManyombe c©UYI 2020



Disease vectors, theirs distributions and mathematical modeling

where φ is a continuous vector function. Each differential equation of (1.1) describes

the temporal growth of a specific (homogeneous) compartment and can be modelled

using standard temporal population models (exponential, logistic, etc.) and functional and

numerical responses.

The model presented in Chapter 3 is of the form of (1.1) and aims at characterizing the

asymptotic behavior of this system for some nonlinear birth functions.

1.2.3 Spatio-temporal models

The growth of a population is strongly correlated to its geographic distribution range

[74]. A spatio-temporal population model is a structured population model that governs the

dynamics a population with respect to changes in time and space. In addition the spatial

component makes possible to model population dynamics with more realism taking into

account interactions between a species and its habitat. Adding spatial information however

makes the model more complex rendering its study more difficult, and simulations more

computationally intensive. Therefore a trade-off between the realism of the model and

the question it is meant to answer must be kept in mind for its conception. A distinction

that can be made among characteristics of spatio-temporal models is on the discrete or

continuous nature of the space variable. In discrete-space models, the space is divided

in separate areas with an index referring to its position, while continuous-space models

use the spatial coordinates of each location. The choice of the model depends on the

population as well as on the aim of the model. We now give some examples of commonly

used models with applications.

1.2.3.1 Metapopulation models

When the space variable is taken into account implicitly, temporal models at specific

locations can be constructed with location-specific parameters and interactions between

them, while in the explicit case, the model incorporates a space variable. This is the

case of metapopulation models, first formulated by R. Levin in 1969, where the space

is discretized in distinct patches with their own specificities on which temporal dynamics

are described [59, 60]. The spatio-temporal model is then a coupling of the temporal

models on each of the patches with interactions between them. Metapopulation models

are discrete in space and continuous in time and are formulated mathematically by ODE

or Difference Equations. Considering the migration of populations from a patch i to a patch

j, i, j = 1, 2, . . . ,n, equation of the population in patch i is given as follows :

dui(t)
dt

= fi(t,ui) −

 n∑
j=1, j,i

m ji

 ui(t) +

n∑
j=1, j,i

mi ju j(t),
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where ui(t) represents the population density at time t in patch i, the parameters m ji and

m ji are the transfer rate from patch i to patch j, i , j. The function f is the reaction term.

Metapopulation models have been used, for example, to study host-parasit interactions

in patchy environments [61]. They have also been used to study the spread of Malaria in a

vector-host population structured according to its infectious state [4, 5]. Another example

of application of metapopulation model is to model the dynamics of disease-transmitting

vectors in a patchy environment [106].

1.2.3.2 Reaction-Advection-Diffusion models

In the prospect of modelling mosquito population dynamics, a particular attention

is given to Reaction-Advection-Diffusion (RAD) models governed by PDEs. These are

deterministic mass-interaction models continuous in time and space, thus they account for

an average behaviour of the population. In RAD models, the diffusion process accounts

for the random dispersal of the individuals of the population, without considering any

sort of stimulus to direct their movements [35, 112]. The advection process accounts for

directional displacements due to a flow, like wind transport, or attractiveness to a point

(feeding site, breeding site, attractive traps...). Finally the reaction process governs the

demography. In addition, in order to account for some heterogeneity within the population,

the individuals can be grouped according to their age class or development stage. In this

case the models becomes a system of coupled RAD equations where the reaction process

also accounts for interactions between the different compartments.

RAD models are continuous in space (x) and time (t) and are formulated in terms of

partial differential equations. The general form of a RAD equation is given as follows :

∂u(t, x)
∂t

= D
∂2u(t, x)
∂x2 − a

∂u(t, x)
∂x

+ f (u(t, x)),

where u(t, x) represents the population density at time t and position x, the parameters D

and a are respectively the diffusion rate and the advection force, and the function f is the

reaction term.

The population RAD models can be derived from random walk processes at the

individual level using Taylor’s expansions. This derivation is detailed in several publications

[10, 107]. Alternatively, it is worth mentioning that the diffusion processes can also be

derived using flux considerations instead of random walk processes [44]. In the latter case,

the derivation is based on the physics conservation law and the Fick’s law of diffusion

which connects fluxes of particles to their gradient [29]. The derivation of models from

individual level to the population level is a challenge of its own as the dynamics of the

individuals are typically more complicated than a simple non-isotropic random walk.

RAD models are particularly useful to study insect dispersal [42, 126, 158, 132] and

biological invasion processes. In addition, dispersal abilities of insects is an essential
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information to plan efficient control of disease vectors and/or prevent biological invasions.

RAD models can be studied analytically to obtain biologically relevant results. For instance,

in some cases, we can obtain equilibrium solutions that describe the spatial distribution

of the organism as time approaches infinity. Such results are very useful to understand

the interaction between spatial heterogeneity and movement, and/or to determine areas

where the organisms are most likely to establish. Some theoretical background useful for

the mathematical study of RAD models is provided in chapter 3 section 3.3.

1.3 Some mathematical models of mosquito dynamics

In this section, we recall some mathematical models developed for mosquito dynamics.

Mosquito models rely on several formalisms that include ordinary differential equations

(ODE), partial differential equations (PDE), stochastic differential equations (SDE), etc.

Generally, the choice of a modelling formalism is motivated by sake of simplicity and/or

realism and/or mathematical tractability.

1.3.1 Mathematical modelling of mosquito dynamics without dispersal

The simplest dynamical population models of mosquitoes and other insect populations

are based on ordinary differential equations (ODEs). These are essentially non-spatial

dynamical systems, in which the dynamical variables represent the sizes or densities

of various sub-populations of the insect species (e.g. eggs, larvae, mature females),

tracked by cohort, with the rates of transition between these sub-populations at each

step time defined by means of dynamical equations. These equations may be extremely

complex, involving many separate biological and physical processes, and are generally

dependent on parameters that represent characteristics of the insects (e.g. oviposition

rate, mortality) and the habitat (e.g. temperature, number and type of available oviposition

sites, predation). The parameters may vary both seasonally and stochastically, though the

population dynamics themselves are otherwise intrinsically deterministic [109]. Several

models using a system of ordinary differential equations (ODEs) have been proposed

to depict and understand mosquito dynamics. In this subsection, we summarize some

well known mosquito models in the literature. Some of them are due to the works in

[46, 105, 104, 131, 15, 2, 48, 1, 108].

1.3.1.1 The L. Esteva et al. (2005) model [46]

Esteva et al. [46] proposed a mathematical model to assess the effectiveness of

the Sterile Insect Technique (SIT) applied to mosquito population. They considered the

following compartments : the immature phase of the insects (A), females before mating (I),

mating fertilized females (F), mating unfertilized females (U), male insects (M) and sterile
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insects (MT). Their model was given by the following system of ODE :

A′ = φ
(
1 − A

C

)
F − (γ + µA)A,

I′ = rγA − βMI
M+MT

−
βTMTI
M+MT

− µII,

F′ =
βMI

M+MT
− µFF,

U′ =
βTMTI
M+MT

− µUU,

M′ = (1 − r)γA − µMM,

M′

T = α − µTMT.

(1.2)

In order to evaluate the effectiveness of the application of both SIT and insecticide to

mosquito population, Thomé et al. [131] used optimal control theory on model (1.7). Their

purpose was to find the minimal effort necessary to reduce the fertile female mosquitoes

considering the cost of insecticide application, the cost of the production of irradiated

mosquitoes and the social cost.

1.3.1.2 The Ngwa et al. (2006, 2010) models [104, 105]

Given that the dynamics of indirectly transmitted infectious diseases of humans is

driven, in the most part, by the human biting rate of the vector and based on the idea that

the mosquito has a human biting habit, Ngwa et al. [104] derived and studied a simple

model for the dynamics of the human malaria vector. One of their objectives was to analyse

carefully the dynamics of the human-vector interaction and how this interaction could drive

the population dynamics of the vector. In their model, the density of the total mosquito

population is divided into three compartments based on the physiological status of the

mosquito, namely : (i) the class U, comprising fertilized, well nourished with blood and

reproducing female vectors ; (ii) the class W, comprising fertilized but non-reproducing

vectors that have left the breeding site and are questing for a blood meal and (iii) the

class V, comprising all previously fertilized females at the breeding site that have just laid

their eggs but are still resting at the breeding site together with all unfertilized females that

are not fed with blood and are not questing for blood but are swarming at the breeding

site. In this case, the vector population dynamics in a uniform environment, that may be

regarded as a single human habitat site and single vector breeding site, is represented by

the following nonlinear system of delay differential equations :
dU
dt = pτHW − (a + µ)U,
dV
dt = aB(U(t − T))U(t − T)e−µeT + aU −

(
µ + bH

H+K

)
V,

dW
dt =

(
bH

H+K

)
V − (µ + τH)W,

(1.3)
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where B(U) is the per capita birth rate per reproducing vector of the type U. The function

B : [0,∞) −→ R, U 7→ B(U) is assumed to be a non-negative strictly monotone decreasing,

continuously-differentiable function. The functional form B(U) = B0

(
1 −

U
L

)
was used there

and is commonly know in the literature as the Verhulst-Pearl logistic. The previous model

(1.3) originally derived in Ngwa et al. [105] subjected to two birth rate functions :

• the Verhulst-Pearl logistic growth B(U) = B0

(
1 −

U
L

)
;

• the Maynard-Smith-Slatkin function B(U) =
B0

1 +
(

U
L

)n , n > 0.

The objectives in Ngwa et al. [105] was to : (1) extend the theoretical results of the model

(1.3) and (2) study the problem of a suitable functional form for the birth rate function in the

population dynamics of mosquitoes.

1.3.1.3 The P. Cailly et al. (2012) model [15]

In order to (1) predict mosquito abundance over several years, (2) identify the main

determinants of mosquito population dynamics and (3) assess mosquito control strategies,

P. Cailly et al. [15] proposed a general model representing all of the steps of the mosquito

life cycle. Ten different stages were considered: 3 aquatic stages (eggs (E), larvae (L),

pupae (P)), 1 emerging adult stage (Aem), 3 nulliparous stages (A1h, A1g, A1o), and 3 parous

stages (A2h, A2g, A2o). Parous females are females that have oviposited at least once, thus

including multiparous females. Adults were subdivided regarding their behaviour during

the gonotrophic cycle (host-seeking (h), transition from engorged to gravid (g), oviposition

site seeking (o)). Their model was based on two systems of ordinary differential equations

(ODE), one for the favorable period, during which mosquitoes are active given by

Ė = γAo(β1A1o + β2A2o) − (µE + fE)E,

L̇ = fEE − (mL(1 + L/κL) + fL)L,

Ṗ = fLL − (mP + fP)P,

Ȧem = fPPσ exp(−µem(1 + P/κP)) − (mA + γAem)Aem,

Ȧ1h = γAemAem − (mA + µr + γAh)A1h,

Ȧ1g = γAhA1h − (mA + fAg)A1g,

Ȧ1o = fAgA1g − (mA + µr + γAo)A1o,

Ȧ2h = γAo(A1o + A2o) − (mA + µr + γAh)A2h,

Ȧ2g = γAhA2h − (mA + fAg)A2g,

Ȧ2o = fAgA2g − (mA + µr + γAo)A2o,

(1.4)
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and one for the unfavorable period, during which diapause occurs given by
Ẋ = −XmX, for X ∈ {L,P,A2h,A2g,A2o},

Ė = −µEE,

Ȧem = −(mdia
A + γAem)Aem,

Ȧ1 = γAemAem −mdia
A A1 with A1 = A1h + A1g + A1o.

(1.5)

Ezanno et al. [48] used and modified the framework proposed by Cailly et al. [15] via the

model (1.4) to identify some principal drivers of mosquito population dynamics.

1.3.1.4 The Anguelov-Dumont-Lubuma (2012) models [2]

Anguelov et al. [2] proposed simple mathematical models in which the first model

governs the dynamics of anopheles mosquito while the second model deals with the

interaction between treated males and wild anopheles. Their purpose was to analyse

the impact of the SIT as a measure for the control of the anopheles mosquito population.

This model was developed according to the life cycle of a mosquito, which consists of

two main stages : aquatic (egg, larvae, pupa) and adult. After emergence from pupa, a

female mosquito needs to mate and get a blood meal before it starts laying eggs. Then,

the classical Anguelov et al. model is given by the following system
Ȧ = ΦF − (γ + µ1 + µ2A)A,

Ẏ = rγA − (β + µY)Y,

Ṁ = (1 − r)γA − µMM,

Ḟ = βY − µFF,

(1.6)

where the population of mosquitoes is divided into the following compartments: population

in aquatic stage A; young female not yet laying eggs Y; fertilized and eggs laying females

F and males M. Note that in this model, the eggs are laid (at a constant rate φ) in the so-

called gonotrophic cycle, which consists of taking blood meal, maturation of the eggs and

oviposition. Here, the population of aquatic stage was restricted by a density dependent

death rate in a different way as in Esteva et al. [46] where this population was restricted by

an carrying capacity beyond which no eggs are laid.

In order to take into account of the interaction between treated males and wild anopheles

and extend the theoretical results in Esteva et al. [46], the authors modified the model (1.6)

and obtained the following SIT model

Ȧ = ΦF − (γ + µ1 + µ2A)A,

Ẏ = rγA − (β + µY)Y,

Ḟ =
βM

M+MT
Y − µFF,

U̇ =
βMT

M+MT
Y − µUU,

Ṁ = (1 − r)γA − µMM,

ṀT = pqψ − µTMT.

(1.7)
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1.3.1.5 The Abdelrazec-Gumel (2017) model [1]

Extending the models of Ngwa et al. [105, 104] by adding the aquatic stages of the

mosquito, in order to assess the effect of temperature and rainfall on mosquito abundance,

Abdelrazec et al. [1] proposed a stage-structured non-autonomous model. Their model

which splits the total mosquito population at time t into mutually exclusive compartments

of eggs (E(t)), larvae (L(t)), pupae (P(t)) and female adult mosquitoes (M(t)), is given by

the following deterministic, non-autonomous system of nonlinear differential equations :
Ė = MB(M) − [FE(T,R) + µE(T,R)]E(t),

L̇ = FEE − [FL(T,R) + µL(T,R) + δLL]L,

Ṗ = FL(T,R)L − [FP(T,R) + µP(T,R)]P,

Ṁ = σFP(T,R)P − µM(T)M,

(1.8)

where T = T(t) and R = R(t) represent temperature and rainfall respectively. The two

following functional forms of B(M) were considered in this study, namely :

• the Verhulst-Pearl logistic growth BL : B(U) = B0

(
1 −

U
L

)
;

• the Maynard-Smith-Slatkin function BS : B(U) =
B0

1 +
(

U
L

)n , n > 0.

1.3.1.6 The Okuneye et al. (2018) model [108]

In order to design a new temperature and rainfall dependent mosquito population model,

Okuneye et al. [108] extended the Abdelrazec et al. [1] model’s by incorporating four

stages for larval development and three different dispersal states (questing for blood meal,

fertilized and resting at breeding site) of female adult mosquitoes. Their model, which

takes into consideration the human-vector interaction, splits the total immature mosquito

population into compartments for eggs (E), four larval stages (Li, i = 1, 2, 3, 4), and

pupae (P). To account for the gonotrophic cycle, the population of adult female anopheles

mosquitoes was sub-divided into compartments for the class of unfertilized female vectors

not questing for blood meal and fertilized female mosquitoes that have laid eggs at the

mosquito breeding site (V), the class of fertilized but not producing, female mosquitoes

questing for blood meal (W), and the class of fertilized, well-nourished with blood, and

reproducing female mosquitoes (U). The Okuneye et al. model is given by the following
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deterministic system of nonlinear differential equations.

dE
dt = ψU(T)

(
1 − U

KU

)
U − (σE(R,T) + µE(T))E,

dL1
dt = σE(R,T)E − [ξ1(R,T) + µL(T) + δL]L1,
dLi
dt = ξ(i−1)(R,T)L(i−1) − [ξi(R,T) + µL(T) + δL]Li, i = 2, 3, 4,
dP
dt = ξ4(R,T)L4 − [σP(R,T) + µP(T)]P,

dV
dt = σP(R,T)P + γUU − ηVH

H+FV − µA(T)V,
dW
dt =

ηVH
H+FV − [τWH + µA(T)]W,

dU
dt = ατWHW − [γU + µA(T)]U,

(1.9)

with L = L1 + L2 + L3 + L4, R = R(t) and T = T(t).

1.3.2 Mathematical modelling of mosquito dynamics with dispersal

The spatial distribution of mosquitoes has shown great potential to affect malaria

transmission intensity. The success of some methods for controlling mosquito population

is based on taking into account of mosquitoes dispersal ([30, 42]). Mathematical models

play an important role in understanding and providing solutions to phenomena which are

difficult to measure in the field, but few models have incorporated dispersal or heterogeneity

when modelling resource availability. Recently, the spatio-temporal dynamics of mosquito

populations have been particularly focused on, either using spatially explicit simulation

models [111, 85, 154, 110], or plume models [30]. Some spatial models have used

discrete-space continuous-time approach based on ordinary differential equations (ODEs)

while another spatial models have used the diffusion approach based on partial differential

equations (PDEs), which considers space as a continuous variable. In this subsection, we

summarize some well know mosquito models in the literature. Some of them are due to

the works in [106, 83, 42, 70, 126, 158, 132, 161].

1.3.2.1 The Nourridine et al. (2011) model [106]

Extending the Ngwa et al. [104] model by including more than one vector-breeding

site and more than one host habitat, Nourridine et al. [106] presented and analyzed a

deterministic model with spatial consideration for a class of human disease-transmitting

vectors. Their goal was to understand how variation in the number of human habitats or

variation in the number of breeding sites enhances or affects the interaction between the

vector habitat or breeding sites and the host habitat dynamics and how this ultimately

affects the dynamics and existence of the vector populations. Their basic model divides

the entire vector population into three compartmental classes representing physiological

status. These classes are: the class of f ed and reproducing vectors returning from human

habitats to vector-breeding sites represented by the variable U ; the class of un f ed and

resting vectors present at vector-breeding sites represented by the variable V ; and the
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class of un f ed vectors questing (or f oraging) for food (blood meal) in human habitats

represented by the variable W. Each class of vectors is again subdivided into subclasses

representing spatial locations. Assuming that there are M human habitats xi, i = 1, · · · ,M

and N vector-breeding sites y j, j = 1, · · · ,N, then the classes of vectors U, V and W are

subdivided into subclasses Ui, V j and Wi, i = 1, · · · ,M, j = 1, · · · ,N, respectively, where

Ui’s represents fed vectors returning from location xi, Wi’s represent unfed vectors foraging

for food at location xi and V j’s are unfed and resting vectors resting at the vector-breeding

site y j. Let the density of human population at habitat xi be Hi(t), then the Nourridine et

al. model was given by the following discrete-space-continuous-time mathematical model

(metapopulation model) :

dHi(t)
dt = Ci −

M∑
j=1, j,i

wi jHi(t) +
M∑

j=1, j,i
w jiH j(t) − µHiHi(t), i = 1, · · · ,M;

dV j(t)
dt =

M∑
i=1

ai jλ(Ui(t − T))Ui(t − T)e−µeT −

(
µV j +

M∑
i=1

bi j

)
V j(t)

+
M∑

i=1
ai jUi(t), j = 1, · · · ,N;

dWi(t)
dt =

N∑
j=1

b jiV j(t) − (τi + µWi)Wi(t), i = 1, · · · ,M;

dUi(t)
dt = pτiWi(t) −

(
µUi +

N∑
j=1

ai j

)
Ui(t), i = 1, · · · ,M,

(1.10)

where λ : [0,∞)→ R is a suitable birth rate function for the vectors of type U.

1.3.2.2 The Lutambi et al. (2013) model [83]

Lutambi et al. [83] developed and simulated a discrete-space-continuous-time mathe-

matical model to estimate mosquito dispersal distances and to evaluate the effect of spatial

repellents as a vector control strategy. On the one hand, they have developed the following

system of differential equations to describe mosquito dynamics without movement :

dE
dt = bρAoAo − (µE + ρE)E,
dL
dt = ρEE − (µL1 + µL2L + ρL)L,
dP
dt = ρLL − (µP + ρP)P,

dAh
dt = ρPP + ρAoAo − (µAh + ρAh)Ah,

dAr
dt = ρAhAh − (µAr + ρAr)Ar,

dAo
dt = ρArAr − (µAo + ρAo)Ao,

(1.11)

which consider six compartments of the mosquito life cycle : eggs (E), larvae (L), pupal

(P), host seeking adults (Ah), resting adults (Ar) and oviposition site seeking adults (Ao).

On the other hand, by considering a set of discrete patches and allowing to host seeking

and oviposition site searching mosquitoes to move between patches, the model (1.11) was

extended in a metapopulation model which incorporate dispersal processes. Then, they
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combined the system of equations (1.11) for patch (i, j) and the movement terms

dX(i, j)

dt
=

 ∑
ξ′∈N(i, j)

βH
ξ′/(i, j)Xξ′

 −
 ∑
ξ′∈N(i, j)

βH
(i, j)/ξ′X(i, j)

 , X ≡ Ah,Ao

to form the following system of equations :

dE(i, j)

dt = b(i, j)ψB
(i, j)ρAo(i, j)Ao(i, j) − (µE(i, j) + ρE(i, j))E(i, j),

dL(i, j)

dt = ρE(i, j)E(i, j) − (µL1(i, j) + µL2(i, j)L(i, j) + ρL(i, j))L(i, j),
dP(i, j)

dt = ρL(i, j)L(i, j) − (µP(i, j) + ρP(i, j))P(i, j),
dAh(i, j)

dt = ρP(i, j)P(i, j) + ψB
(i, j)ρAo(i, j)Ao(i, j) − (µAh(i, j) + ψH

(i, j)ρAh(i, j))Ah(i, j)

−

( ∑
ξ′∈N(i, j)

βH
(i, j)/ξ′

)
Ah(i, j) +

( ∑
ξ′∈N(i, j)

βH
ξ′/(i, j)Ahξ′

)
,

dAr(i, j)

dt = ψH
(i, j)ρAh(i, j)Ah(i, j) − (µAr(i, j) + ρAr(i, j))Ar(i, j),

dAo(i, j)

dt = ρAr(i, j)Ar(i, j) − (µAo(i, j) + ψB
(i, j)ρAo(i, j))Ao(i, j)

−

( ∑
ξ′∈N(i, j)

βH
(i, j)/ξ′

)
Ao(i, j) +

( ∑
ξ′∈N(i, j)

βH
ξ′/(i, j)Aoξ′

)
.

(1.12)

1.3.2.3 The Dufourd-Dumont (2013) model [42]

Dufourd et al. [42] developed a mathematical model to simulate the spread of mosquito

aedes albopictus taking into account the environment parameters such as wind, tempera-

ture and landscape. Their purpose was to investigate the use of sterile insect technique

(SIT) which introduces a large number of sterile insects in the environment. Their model,

combining ordinary differential equations (ODEs) for the mosquito population and partial

differential equation (PDE) for the dispersion of the population, is given by the following

system :

∂uA
∂t = NEgg

(
1 − uA

K

)
1bub(x, t) − (ηA + MA)uA,

∂uY
∂t = ∇(D∇uY) + V∇uY − (MY + βY)uY + rηAuA,
∂u f

∂t = ∇(D∇u f ) + V∇u f − ∇(∇C f (x)u f ) − (M f + µ f r1 f )u f + ub f 1bub + βY

(
uM+λs fsuMs

uM+uMs

)
uY,

∂ur
∂t = ∇(D∇ur) + V∇ur − (M f + µrb)ur + µ f r1 f u f ,
∂ub
∂t = ∇(D∇ub) + V∇ub − ∇(∇Cb(x)ub) − (M f + µb f 1b)ub + urbur,
∂uM
∂t = ∇(D∇uM) + V∇uM − ∇(∇C f (x)uM) − ∇(∇Cb(x)uM) −MmuM + (1 − r)ηAuA,

∂uMs
∂t = ∇(D∇uMs) + V∇uMs − ∇(∇C f (x)uMs) − ∇(∇Cb(x)uMs) −MmsuMs,

uA(x, 0) = uA0(x), x ∈ Ω,

uX(x, 0) = 0, x ∈ Ω with X ∈ {Y, f , b,M,Ms},

(−D∇uX + VuX) · nin = 0, ∀x ∈ ∂Ωin, and t > 0, with X ∈ {Y, f , b,M,Ms},

∇uX · nout = 0, ∀x ∈ ∂Ωout, and t > 0, with X ∈ {Y, f , b,M,Ms}.
(1.13)

In this model, seven different compartments were considered : the aquatic stage (uA),

the immature females (uY), the matures females (u f ,ur,ub), the wild males (uM) and the
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sterilized males (uMs). This system was numerically studied using the splitting operator

approach in order to test different vector control scenarios. However, it is very difficult to

analytically study this system. Therefore, some simplifications are needed to investigate

the asymptotic behavior and the threshold-type dynamics of this system.

1.3.2.4 The Jiang et al. (2014) model [70]

Jiang et al. [70] considered a system of partial differential equations that describes

the interaction of sterile and fertile species undergoing the sterile insect release method

(SIRM). Their goal was to derive sufficient conditions for success of the SIRM. The authors

considered an SIRM model given by the following system of reaction-diffusion equations :
ut = d1∆u + u

(
a1u
u+n − a2

)
− 2δu(u + n), x ∈ Ω,

nt = d2∆n + r − a2n − 2δu(u + n) x ∈ Ω,
∂u
∂ν

∣∣∣∣
∂Ω

= ∂n
∂ν

∣∣∣∣
∂Ω

= 0, t > 0,

u(x, 0) = u0(x) > 0, n(x, 0) = n0(x) ≥ 0, x ∈ Ω,

(1.14)

where u(t, x) and n(t, x) denote the densities of fertile and sterile females respectively. ∂
∂ν is

the derivative along the outward normal direction.

1.3.2.5 The Takahashi et al. (2005) [126], Yamashita et al. (2017) [158], Tian et al. (2017)

[132] and Zhang et al. (2017) [161] models

Takahashi et al. [126] proposed and studied mathematical model mosquito population

dispersal by wing and wind. In their attempt to simplify, they considered only two sub-

populations of the mosquito : the winged form or matured females (M) and the aquatic

forms (eggs, larvae and pupae) denoted by A. The following model was formulated : ∂
∂tM(x, t) = ∂2

∂x2 M(x, t) − ν ∂
∂xM(x, t) +

γ
k A(x, t)(1 −M(x, t)) − µ1M(x, t),

∂
∂tA(x, t) = k(1 − A(x, t))M(x, t) − (µ2 + γ)A(x, t).

(1.15)

This model takes into account the vital aspects of spatial dispersal of the mosquito and,

through PDE modelling which was numerically studied, they derived travelling wave

solutions for their differential equations.

In the Takahashi et al. model, both invasion along the flow and against the flow

scenarios were observed. However, only the first one was studied in details. Yamashita et

al. [158] complemented and performed this work (through a rigorous analysis of the model

(1.15)) by proving that the invasion against the flow solution also possesses a travelling

wave profile.

Since mosquito invasion is an asymptotic process, the habitation of mosquitoes will

change with time. In order to describe the dynamics of habitation, Tian et al. [132] assumed

that the habitation has a moving free boundary and from model (1.15), they formulated the
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free boundary problem as follows :

Mt = DMxx − νMx + γA
(
1 − M

k1

)
− µ1M, t > 0, 0 < x < h(t),

M(t, x) = 0, t > 0, x ≥ h(t),

At = r
(
1 − A

k2

)
M − (µ2 + γ)A, t > 0, x > 0,

Mx(t, 0) = 0, Ax(t, 0) = 0, t > 0,

M(t, h(t)) = 0, h′(t) = −µMx(t, h(t)), t > 0,

h(0) = h0, M(0, x) = M0(x), x ∈ [0, h0],

A(0, x) = A0(x), x ∈ [0,∞),

(1.16)

where M(t, x) is the spatial density of the winged mosquitoes at time t and space location

x and A(t, x) is the density of the aquatic mosquitoes.

Considering the spatial heterogeneity, based on model (1.16) in order to extend some

theoretical results from the above studies, Zhang et al. [161] proposed the following

reaction-diffusion-advection problem with free boundaries x = g(t) and x = h(t) to describe

the spatial dispersal dynamics of mosquitoes :

Mt = DMxx − νMx + γ(x)A
(
1 − M

k1

)
− µ1(x)M, t > 0, g(t) < x < h(t),

At = r(x)
(
1 − A

k2

)
M − (µ2(x) + γ(x))A, t > 0, g(t) < x < h(t),

M(t, x) = A(t, x) = 0, t > 0, x = g(t) or x = h(t),

g(0) = −h0, g′(t) = −µMx(t, g(t)), t > 0,

h(0) = h0, h′(t) = −µMx(t, h(t)), t > 0,

M(0, x) = M0(x), A(0, x) = A0(x), −h0 ≤ x ≤ h0.

(1.17)

1.4 Conclusion

Altogether, there exists a very large variety of mathematical models designed to study

mosquito dynamics. The modelling formalism considered by mosquito modelers included

several aspects which are in agreement or not with field observations. The agreement

may be also restricted to specific contexts. Moreover, even when a common mechanism

of mosquito life cycle is taken into account by different authors, it remains the question of

how they translated it in their model ? For example, for mosquito dispersal two modelling

frameworks are found, namely, discrete-space continuous-time and continuous-space

continuous-time formalisms. Of course, a modelling option has a cost. For example, a

non-spatial model using a system of ODEs can lead to a gain in mathematical tractability

of the model but also not capture all insights into behavior. Conversely, spatial models

using a system of PDEs leads to a gain of realism but it is not always possible to carry

out a deep mathematical analysis of such models due to lack of tools. In fact, using

diffusion approach, many authors limited their studies to simulations and never investigated

qualitative properties of the system. However the mathematical analysis is nevertheless the
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essential part of mathematical modeling. Other formalism using discrete-space continuous-

time framework has been proposed in [106, 83]. Although these models consider some

formalisms to model mosquito dispersal, it is possible to investigate the spatial dynamics of

mosquitoes using statistical mechanics of complex networks. Moreover, another formalism

using diffusion approach has been proposed in [126, 42, 70, 158, 132, 161]. However,

some of them do not take into account all stages of mosquito life cycle while another of

them limited their studies to simulations. The aim of my work is to propose and study new

spatio-temporal models for mosquito population using two different approaches (continuous

and discrete) which incorporate heterogeneity.

1.5 Hypothesis and description of models
In this thesis, we are particularly interested in the spatial dynamics of anopheles

mosquitoes. In order to provide a mathematical and modelling framework for the spatial

distribution of diseases vectors, we use two different approaches to develop mathematical

models that capture mosquito dispersal processes, namely, discrete-space and continuous-

space approaches. In the first approach, we use discrete patches as a representation of

space to obtain a metapopulation model (see chapter 2), while in the second approach, we

use continuous-space model to obtain an advection-reaction-diffusion model (see chapter

3). These models are different from each other and they are presented below.

1.5.1 A metapopulation model for the population dynamics of anopheles
mosquito

We make use of an approach based on statistical mechanics which could allow us

to identify other breeding-feeding site characteristics and better explain abundance of

mosquitoes. We consider the spread of anopheles mosquitoes on complex metapopu-

lations, i.e. networks of populations connected by migratory flows which configurations

are described in terms of the conditional probabilities of connections between nodes (see

Figure 1.5).

Each nodes of the network represent potential breeding and feeding sites of mosquitoes,

around which there are human hosts habitations. The methodology and objectives of this

part are : (1) to design a complex network extension of the seminal model in [2] and (2) to

analyze and simulate the metapopulation model for the dynamics of anopheles mosquito

obtained. The system has four compartments : population in aquatic stage A; young

female not yet laying eggs Y; fertilized and eggs laying females F and males M. Using

Figure 2.2, we have been able to list some key assumptions of the metapopulation model

as follows :

(A1) The architecture of the network of patches is mathematically encoded by means of

the connectivity distribution p(k), where p(k) is the probability that a randomly chosen
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Figure 1.5: A general n-patches network for the population dynamics of anopheles mosquito

between n feeding-breeding sites.

patch has degree k. The degree or connectivity of a patch is the number of links

connected to this patch.

(A2) The probability Pk of leaving a patch with degree k is given by

Pk = k
∑

k′
P(k′|k)Dkk′ ,

where P(k′|k) is the conditional probability that any given edge departing from a node

of degree k is pointing to a node of degree k′ [27].

In this network, we assume that the degree of the nodes at the end of any given link

are independent. In this case, we have

P(k′|k) = k′p(k′)/〈k〉 with 〈k〉 =
∑

k

kp(k).

(A3) The diffusion rate that mosquito move from a node with degree k to another node

with degree k′ is given by

Dkk′ =
Diψ(dkk′)

k
e−λ(Hk−Hk′ ),

where Di is the constant migration rate, dkk′ is the cartesian distance between nodes

of degree k and k′, Hk is the proportion of hosts in patch of degree k and ψ(dkk′)

the distance function. In the case were all patches have similar characteristics, the

dispersal parameter is the same for all patches and the diffusion rate is simply equal

to Dkk′ = Di
k .

Following the aforementioned assumptions, the equations governing the spatio-temporal
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evolution of anopheles mosquito are given by the system below :

ρ̇A,k = ΦρF,k − (γ + µ1 + µ2ρA,k)ρA,k,

ρ̇Y,k = rγρA,k − (β + µY)ρY,k − PkρY,k + k
∑
k′

P(k′|k)Dk′kρY,k′ ,

ρ̇M,k = (1 − r)γρA,k − µMρM,k − PkρM,k + k
∑
k′

P(k′|k)Dk′kρM,k′ ,

ρ̇F,k = βρY,k − µFρF,k − PkρF,k + k
∑
k′

P(k′|k)Dk′kρF,k′ .

(1.18)

System (1.18) consists of three main components. The first component is the continuous-

time model that describe the mosquito dynamics. The second component involves the

inclusion of the spatial characteristics where the space is discretized into discrete locations

to form a patches network. The third component involves the inclusion of the dispersal of

adult mosquitoes, which move from one patch to another creating connections between

patches. System (1.18) is fully studied in Chapter 2 in the form of the published paper M.

L. Mann Manyombe et al. [88]. The advantage of the above discrete-space model is that

one can easily assess diseases vector control strategies. Nevertheless, this approach con-

strains the modeled mosquito movements to follow a limit set of trajectories. To overcome

this limitation, we use the continuous-space approach.

1.5.2 A spatio-temporal model for the population ecology of anopheles
mosquito

In this part, as an alternative approach to our discrete-space model, we use a par-

tial differential equations (PDE) model for mosquito dispersal. We develop models that

incorporate both intrinsic dynamics and spatial variation of mosquitoes, taking into consid-

eration the dynamics of the human-vector interaction. We modify some seminal models

[1, 2, 68, 126, 132, 158] by taking into account all stages in the gonotrophic cycle (questing,

resting and breeding females). The aquatic stage is reduced to one compartment (A), gath-

ering eggs, larvae and pupae. The adult stage is divided into five compartments including

four for females and one for males as follows: immature females (Y), feeding/questing

females (Q), resting females (U), breeding females (W) (or more precisely "egg laying

females") and males (M). Using Figure 1.6, we list some key assumptions of the model as

follows :

(A4) In the current model, we use a general form of the eggs oviposition function, denoted

by B(W). The growth function B(W) depend on the environmental carrying capacity

of female adult mosquitoes, which can be related to the availability of breeding sites.

In Table 1.1, we have gathered typical examples of function B(W), which are used in

the literature.

(A5) Based on the idea that the mosquito has a human biting habit and since the mating

in the most time takes place near the feeding sites [67], questing females success-

fully obtain blood meals and become resting females at rate αϕH, where H is the
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Figure 1.6: Anopheles mosquito simplified life cycle. The dashed arrow indicates the

mating between male and immature female mosquitoes.

Table 1.1: Examples of oviposition function B(W) used in the literature.
Names B(W) Sources

Malthus (BM) Negg [2, 28]

Verhulst-Pearl logistic (BL) Negg

(
1 − W

L

)
, W < L [1, 12, 28, 105]

Maynard-Smith-Slatkin (BS) Negg

1+( W
L )n , n > 0 [1, 12, 28, 105]

Hassell (BH) Negg

(1+ W
L )n , n > 0 [12]

human population density. After rest, the vector moves to a convenient breeding

site. We assume that the breeding females that enter to questing class depend on

the proportion of human bH
H+K , since breeding females breed outside of the human

body at a distinct spatial location, the breeding site away from the human habitat and

mosquitoes can adapt their host choice in case of a lower availability of human hosts
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[86].

(A6) Based on the mosquito ability to move [42, 45, 73, 83], we have the following

additional assumptions :

– We add advection terms or drift terms, denoted by εZ
∂Z
∂x

, Z = Q,W, since

mosquitoes stimulated by attractants (hosts, breeding sites) move preferably in

certain directions.

– We add diffusion terms denoted by DZ
∂2Z
∂x2 , Z = Y,Q,W, since mosquitoes not

submitted to stimuli, move randomly in any direction ;

– The number of hosts is allowed to differ across the domain introducing het-

erogeneity. Thus, we assume that the population density of humans H(x) is

location-dependent.

Thus, following the aforementioned assumptions, the equations governing the temporal

evolution of mosquitoes are given by the system below :

Ȧ = B(W)W − [γ + µ1 + µ2A]A,

Ẏ = rγA − [µY + β]Y,

Ṁ = (1 − r)γA − µMM,

Q̇ = βY +
bH

H + K
W − [αϕH + µQ]Q,

U̇ = αϕHQ − [a + µU]U,

Ẇ = aU −
[

bH
H + K

+ µW

]
W,

(1.19)
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The temporal model (1.19) is then extended into an advection-reaction-diffusion model

given by the following system :

∂A
∂t

= B(W(t, x))W(t, x) − [γ + µ1 + µ2A(t, x)]A(t, x),

∂Y
∂t

= DY
∂2Y
∂x2 + rγA(t, x) − [µY + β]Y(t, x),

∂M
∂t

= DM
∂2M
∂x2 − εM

∂M
∂x

+ (1 − r)γA(t, x) − µMM(t, x),

∂Q
∂t

= DQ
∂2Q
∂x2 − εQ

∂Q
∂x

+ βY(t, x) +
bH(x)

H(x) + K(x)
W(t, x) − [αϕH(x) + µQ]Q(t, x),

∂U
∂t

= αϕH(x)Q(t, x) − [a + µU]U(t, x),

∂W
∂t

= DW
∂2W
∂x2 − εW

∂W
∂x

+ aU(t, x) −
[

bH(x)
H(x) + K(x)

+ µW

]
W(t, x),

(1.20)

Here A(t, x), Y(t, x), Q(t, x), U(t, x) and W(t, x) measure the density of mosquitoes at

location x and time t. Attractiveness is represented via an advection term taking into

account blood meals, breeding sites, wind, etc. We aims to : (1) extend some stability

results of the previous works [1, 108], (2) study the global well-posedness and asymptotic

behavior of the solution of system (1.20) and (3) assess the impact of host heterogeneity on

the spatial distribution of mosquito population in a given region. Systems (1.19) and (1.20)

are fully studied in Chapter 3 in the form of the publisher paper M. L. Mann Manyombe et

al. (2019)[89].
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A metapopulation model for the population
dynamics of anopheles mosquito

A more robust assessment of malaria control will come from a better understanding of

the distribution and connectivity of breeding and blood feeding sites. Spatial heterogeneity

of mosquito resources, such as hosts and breeding sites, affects mosquito dispersal

behavior. The main purpose of this chapter is to develop a reaction-diffusion type model to

describe the spatial evolution of the anopheles mosquito on a complex metapopulation.

The novelty in our work is to make use of an approach based on statistical mechanics of

complex networks, that is, networks of populations connected by migratory flows whose

configurations are described in terms of connectivity distribution of nodes (patches) and the

conditional probabilities of connections between nodes. We examine the impacts of vector

dispersal on the persistence and extinction of a mosquito population in both homogeneous

and heterogeneous landscapes. For uncorrelated networks in a homogeneous landscape,

we derive an explicit formula of the basic offspring number. Using the theory of monotone

operators, we obtain sufficient conditions for the global asymptotic stability of equilibria.

Precisely, the value one of the basic offspring number is a forward bifurcation for the

dynamics of the anopheles mosquito, with the trivial (mosquito-free) equilibrium point

being globally asymptotically stable (GAS) when the basic offspring number is less than

one, and one stable nontrivial (mosquito-persistent) equilibrium point being born with

well determined basins of attraction when the basic offspring number is greater than

one. Theoretical results are numerically supported and the impact of the migration of

mosquitoes are discussed through global sensitivity analysis and numerical simulations.

All the content of this chapter is based on the published paper of Mann Manyombe et al.

(2017) [88].

2.1 Introduction

For long, vector-borne diseases among all infectious diseases of human beings, have
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constituted a major cause of human mortality and morbidity. Even with the recent advances

in biomedical sciences, vector-borne diseases still seriously threaten world health. For

example, according to the latest WHO estimates, released in December 2015, there were

214 million cases of malaria in 2015 and 438000 deaths [148]. It is well known that the

malaria parasite is transmitted from human-to-human through the anopheles mosquito

bites, and that the transmission cycle is essentially driven by the human biting habit of

the mosquito [52]. Now, the female anopheles mosquito bites a human being for the sole

purpose of harvesting blood that she needs for the development of her eggs. The malaria

parasite has exploited the mosquito’s life style by adapting its life cycle so that part of it is

in the human being and the other part in the mosquito. By so doing, the mosquito can then

propagate the parasite from human to human. Transmission of most indirectly transmitted

diseases of human being follows the same pattern. The vector (in most cases an insect)

interacts with a human being, and depending on the disease status of both organisms, will

either infect or be infected. Thus, understanding the population dynamics of mosquitoes,

and relationship between mosquitoes and the environment is fundamental to the study of

the epidemiology of mosquito-borne diseases. Mosquito abundance is a key determining

factor that affects the persistence or resurgence of mosquito-borne diseases in a given

region [146]. Hence, it is crucial to study the dynamics of mosquitoes, and devise effective

and realistic methods for controlling mosquito population in communities.

The spatial distribution of anopheles vectors has shown great potential to affect malaria

transmission intensity [146]. Therefore, a better understanding of the distribution, produc-

tivity and connectivity of anopheles breeding sites in order to determine their influence on

anopheles distribution could be very useful in malaria control. Several theoretical studies

of malaria vector dynamics have emphasized the importance of considering individual

larval habitats, but few have addressed the effects of interactions between larval habitat

connectivity [146, 154].

Mathematical models play an important role in understanding and providing solutions

to natural phenomena which are difficult to measure in the field, and some models have

incorporated dispersal or heterogeneity when modeling mosquito population [83, 42, 78].

Spatial models usually used the diffusion approach, which considers space as a continuous

variable. Although partial differential equations (PDEs) are a good and classical way of

modelling such dispersal [42, 139], their analysis is usually limited and does not incorporate

the various factors that affect migrations. However, discrete approaches offer a better and

simpler way of modeling heterogeneity [83, 5]. Thus, in areas where resources can be

located in patches, mosquito dispersal is more suitably modeled by using a metapopulation

approach, in which the population is subdivided into discrete patches. Then, in each patch,

the population is subdivided into compartments corresponding to different status. This

leads to a multi-patch, multi-compartment system.

Talking about the metapopulation setting, a recent approach based on the formalism
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used in statistical mechanics of complex networks is presented in [103, 26, 27, 119]. Under

this approach, the structure of the spatial network of patches is encapsulated by means

of the connectivity (degree) distribution p(k) defined as the probability that a randomly

chosen patch has connectivity k. Note that the degree or connectivity of a patch (node)

is the number of links connected to that node (i.e., the number its neighbors). Recent

works have shown that it is possible to investigate the dynamics of epidemic spread using

statistical mechanics on configuration model networks [11, 114, 137, 138, 140]. Most of the

above-mentioned investigations [119, 114, 137, 140] mainly considered epidemic models

on networks with no degree correlation (i.e., uncorrelated networks). In such networks,

a patch which is only constrained by degree distribution (and hence by the number of

neighbors it has), can point to any patch from a pool of the network. However, few recent

works [11, 138] have taken into account the degree correlation in complex networks and

have conducted comparison studies on the prediction of disease evolution on correlated

networks.

Many other works have focused on a metapopulation approach to model the mosquito

population [154, 83]. In their work in [154], the authors presented a stochastic network

model not governed by a dynamical system and did not consider all main stages of the

mosquito life cycle to analyze the significance of the productivity of breeding sites. The

work in [83] considered a set of discrete hexagonal patches to investigated the effects of

mosquito dispersal on its dynamics.

In this work, we intend to fill in some of the gaps mentioned above in order to better take

into account the heterogeneity in the connectivity of the nodes of network. To fulfill our goal,

we make use of an approach based on statistical mechanics which could allow us to identify

other breeding site characteristics which could best explain the distribution and abundance

of mosquitoes. The methodology and objectives of this paper are (1) to design a complex

network extension of the seminal model in [2], (2) to analyze and simulate a mathematical

model for the spatio-temporal dynamics of anopheles mosquito using the alternative

approach based on a statistical mechanics. This extension is inspired by the works

[154, 83, 26, 27, 119] and some references therein. We consider the spread of anopheles

mosquitoes on complex metapopulations, i.e., networks of populations connected by

migratory flows whose configurations are described in terms of the conditional probabilities

of connections between nodes. Note that nodes of the network represent potential breeding

and feeding sites of mosquitoes, around which are human hosts habitations.

From the modelling perspective, the model proposed in this manuscript is a substantial

extension of the basic model in [2] by incorporating the dispersal of mosquitoes. It

also extends and enriches the work in [154, 83] by considering: (i) all the stages of

the mosquito life cycle and (ii) heterogeneity in the connectivity of patches. From the

theoretical and numerical perspectives, we examine the significance of larval habitat

connectivity and mosquito dispersal in a homogeneous and a heterogeneous landscapes
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on the persistence of mosquitoes populations. More precisely, we construct corresponding

metapopulation models and perform their qualitative and quantitative analyzes. Specifically,

for the mathematical tractability, uncorrelated networks in a homogeneous landscape are

considered and the following investigations are highlighted:

• The bifurcation/threshold parameter (basic offspring number) is explicitly computed.

• The sensitivity analysis of the threshold parameter, the model variables with respect

to model parameters is given.

• A simple and digestive proof based on the Hethcote-Thieme fixed point theorem [65],

of a unique nontrivial equilibrium point is provided.

• Contrary to the few existing works where, Lyapunov-LaSalle techniques are usu-

ally used, the monotone operator theory [124] is the main ingredient here for the

establishment of global asymptotic stability of both trivial and nontrivial equilibrium

points.

Moreover for both homogeneous and heterogeneous landscapes, the effects of disper-

sal/migration and patch heterogeneity on the mosquito population are numerically in-

vestigated. Finally, the comparison of metapopulation models in homogeneous and

heterogeneous landscapes are presented through numerical simulations. The rest of the

paper is organized as follows. After the presentation of the basic model without mosquito

dispersal in Section 2, we formulate metapopulation models for both homogeneous and

heterogeneous landscapes in Section 3. Their qualitative and quantitative analyzes are

further presented. Theoretical results and the role of dispersal, patch connectivities and

migration are investigated through numerical simulations in Section 4. The summary of

the main results of our work and its possible extensions conclude the paper in Section 5.

2.1.1 Mosquito dynamics in a single patch without dispersal

We consider the classical Anguelov-Dumont-Lubuma model [2]:
Ȧ = ΦF − (γ + µ1 + µ2A)A,

Ẏ = rγA − (β + µY)Y,

Ṁ = (1 − r)γA − µMM,

Ḟ = βY − µFF.

(2.1)

This model was developed according to the following biological and entomological facts

recalled hereafter. The life cycle of mosquitos consists of two main stages: aquatic (egg,

larva, pupa) and adult. After its emergence from pupa, a female mosquito needs to mate

and get a blood meal before it starts laying eggs. Depending on the condition, this takes

about a week. Then, every 4-5 days she will take a blood meal and lay 100-150 eggs at
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different places (10-15 per place). Mathematically, the population of mosquitoes is then

divided into the following compartments: population in aquatic stage A; young female not

yet laying eggs Y; fertilized and eggs laying females F and males M. This description was

depicted in [2] by the flowchart in Fig. 2.1.

Figure 2.1: Wild mosquito flow chart.

Note that the first equation of system (2.1) can be combined as logistic population

with harvesting. A female needs to mate successfully only once. The eggs are laid in the

so-called gonotrophic cycle, which consists of taking blood meal, maturation of the eggs

and oviposition. Before a female begins to lay eggs, two essential events need to take

place, mating and taking a blood meal, occurring in varying order.

A female mosquito is considered to be in the Y-compartment since its emergence from

pupa until her gonotrophic cycle has began, that is the time needed to mate and take the

first blood meal, which takes typically 3-4 days. The death rate during that period reflects

essentially only death from predators and adverse climatic conditions. Therefore, it is

generally lower than the death rate for the F-compartment. Typically, the male mosquitoes

are (depending on the temperature) about half or 40 percent of the total population.

In the model, the fraction of the emerging female mosquitoes is denoted by r, with (1− r)

being the fraction of emerging male mosquitoes. A male mosquito can mate practically

through all its life. Since a female needs one successful mating, there is an overabundance

of males. Therefore, in general, it is reasonable to assume that the waiting time for

mating does not depend on the number of males (M) in the sense that, if M is increased

further this rate remains the same. For the model, this means that the transfer rate β from

compartment Y to compartment F is independent of M. Mathematically, this means that

the third equation of system (2.1) can be decoupled from the system. Sometimes β is

referred to as "mating rate", which, as explained above, can be abetted misleading and

does not define clearly the boundary between compartments Y and F. The model under

derivation clearly fixed boundary at the beginning of the first gonotrophic cycle of female,

that is immediately after the mating and first blood meal. Then, the rate (per day) of laying

eggs in the breeding sites is φF, where φ is the average amount of eggs laid per fertilized

female per day. In the model, the size of the population is restricted by a density dependent
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Table 2.1: Numerical values for the parameters of system (2.1) [2].

Parameter Description Value

r Fraction of the emerging female mosquitoes (per day) 0.5

γ Maturation rate from larvae to adult (per day) 0.1

β Transfer rate from the compartment Y to F (per day) 0.25

1/µM Average lifespan of male mosquitoes (in days) 7

1/µF Average lifespan of female mosquitoes (in days) 10

1/µY Average lifespan of adult female mosquitoes (in days) 20

Φ Number of eggs at each deposit per capita (per day) variable

µ1 Mortality rate of the aquatic stage (per day) 0.25

µ2 Density mortality rate of the aquatic stage (per day) 10−5

death rate similar to [21, 22]. However, the density dependent death rate is used only for

the aquatic stage. The reason is that in a typical environment the size of the mosquito

population is also restricted mainly by the available breeding sites. In [46], the size of the

population is also restricted only in the aquatic stages but in a different way by an explicit

carrying capacity beyond which no egg is laid. In equation (2.1), the parameters µ1 and

µ2 denote the density independent and the density dependent death rates of the aquatic

stage, respectively. In all equations of model (2.1), µ with respective index refers to the

death rate for the specific compartment (which is density independent).

The parameter values of model (2.1) used for simulations are given in Table 2.1 and

the analytical results for this model can be found in [2]. However, for an easier readability

of our work, we recall without proof the main results. System (2.1) has two equilibria: the

trivial equilibrium Q0 = (0, 0, 0, 0) and the nontrivial equilibrium Q∗ = (A∗,Y∗,F∗,M∗)T where

A∗, Y∗, F∗ and M∗ are defined as follows:

A∗ =
(γ + µ1)(R0 − 1)

µ2
, Y∗ =

rγ(γ + µ1)(R0 − 1)
µ2(β + µY)

,

F∗ =
βrγ(γ + µ1)(R0 − 1)

µFµ2(β + µY)
and M∗ =

(1 − r)γ(γ + µ1)(R0 − 1)
µ2µM

,
(2.2)

where R0 is given by

R0 =
rγβΦ

(γ + µ1)(β + µY)µF
. (2.3)

The nontrivial equilibrium Q∗ has a biological meaning if and only if R0 ≥ 1. The threshold

quantity R0 is the basic offspring number for the population of anopheles mosquitoes in

a single patch model [2]. It is the average number of the newly anopheles mosquitoes

generated by a single fertilized and eggs laying female anopheles mosquito during her life

when she is introduced into a population of male anopheles mosquitoes in the absence of

any given intervention strategies.
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The following result summarizes the asymptotic behavior of model (2.1) as shown in

[2].

Theorem 2.1.1. System (2.1) is a dissipative dynamical system in Ω = R4
+ = {(S,Y,F,M) ∈

R4 / S,Y,F,M ≥ 0}. Moreover,

(i) If R0 ≤ 1, then the trivial (mosquito-free) equilibrium Q0 is globally asymptotically

stable on Ω.

(ii) If R0 > 1, then the system has two equilibria Q0 and Q∗ on Ω where Q∗(the mosquito-

persistent equilibrium) is stable with basin of attraction Ω \ {(A,Y,M,F) ∈ R4
+, A =

Y = F = 0} and Q0 is unstable with the nonnegative M-axis being a stable manifold.

2.2 Metapopulation models in complex networks

2.2.1 A generic reaction-diffusion model in a complex network

Herein, we extend model (2.1) to incorporate the diffusion/migration process. Mosquitoes

disperse while searching for hosts or breeding sites [154]. We consider the dynamical

evolution of the population of anopheles mosquitoes in heterogeneous metapopulation.

The model consists of n patches. We recall that these patches represent breeding-feeding

sites around which are potential human habitats and between which mosquitoes move

creating links between these nodes. A given fraction of adult mosquitoes searching

for hosts and a fraction of adult mosquitoes searching for breeding sites leave their

current patches of residence, while the remaining fraction is motionless. We assume

that the architecture of the network of patches (nodes) where local populations live is

mathematically encoded by means of the connectivity (degree) distribution p(k). Typically,

p(k) is defined as the probability that a randomly chosen path has degree k. We recall

that the degree or connectivity of a patch is the number of links connected to that patch.

At any given time, in each patch, an individual mosquito is in one of the following states:

population in aquatic stage (ρA,k), young female not yet laying eggs (ρY,k), fertilized and

eggs laying females (ρF,k), male mosquitoes (ρM,k). The total variable population size in

patches of degree k at time t is given by ρk(t) = ρA,k(t) + ρY,k(t) + ρF,k(t) + ρM,k(t). Note

again that, we focus in this part on the migration of mosquitoes from patch to patch (that is

the case of connected patches). A reasonable assumption is that, mosquitoes in aquatic

phase can not move out of their residence patch, while those in adult phase can migrate.

In Fig. 2.2, we give an example of a n-patches network: each patch here is breeding-

feeding site. Without loss of generality, we suppose that in each patch, the population

dynamics of anopheles mosquitoes is governed by the basic system (2.1). Mosquitoes

move from a patch with degree k to another with degree k′ with a diffusion rate Dkk′ that
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Figure 2.2: A general n-patches network for the population dynamics of anopheles

mosquito between n feeding-breeding sites.

depends on the degrees of the origin and destination patches. The probability Pk of leaving

a patch with degree k is then given by

Pk = k
∑

k′
P(k′|k)Dkk′ , (2.4)

where P(k′|k) is the conditional probability that any given edge departing from a node of

degree k is pointing to a node of degree k′ [27].

Under this generic type of diffusion, the equations governing the spatio-temporal

evolution of anopheles mosquitoes are giving by the system below :

ρ̇A,k = ΦρF,k − (γ + µ1 + µ2ρA,k)ρA,k,

ρ̇Y,k = rγρA,k − (β + µY)ρY,k − PkρY,k + k
∑
k′

P(k′|k)Dk′kρY,k′ ,

ρ̇M,k = (1 − r)γρA,k − µMρM,k − PkρM,k + k
∑
k′

P(k′|k)Dk′kρM,k′ ,

ρ̇F,k = βρY,k − µFρF,k − PkρF,k + k
∑
k′

P(k′|k)Dk′kρF,k′ .

(2.5)

As in classical reaction-diffusion processes, system (2.5) expresses the time variation

of the subpopulations of mosquitoes in aquatic phase, young female not yet laying eggs,

fertilized and eggs laying females and males mosquitoes as the sum of two independent

contributions: reaction and diffusion. In particular, the diffusion term includes the outflow

of mosquitoes (diffusing particles) from patches of degree k and the inflow of migratory

mosquitoes from the nearest patches of degree k′. In general, with n different patches of

corresponding degrees k1, k2, ..., kn in the network, Eq. (2.5) is a 4 × n system of differential

equations. The solutions of system (2.5) remain nonnegative in R4n
+ because the out

movement always stops when the corresponding patch is emptied. This latter assertion is

mathematically established in the following result.

Theorem 2.2.1. If system (2.5) with initial condition in R4n
+ has a solution, then the latter

solution remains in R4n
+ (i.e. nonnegative) for all times.
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Proof: It suffices to show that system (2.5) can written in the following form:

Ẋ =M(X)X, (2.6)

whereM(X) is a 4n × 4n cooperative (Metzler) matrix, and X a 4n column matrix to be

determined below. To this end, system (2.5) rewrites:

ρ̇A,ki = ΦρF,ki − (γ + µ1 + µ2ρA,ki)ρA,ki ,

ρ̇Y,ki = rγρA,ki − (β + µY)ρY,ki − PkiρY,ki + ki

n∑
j=1

P(k j|ki)Dk jkiρY,k j ,

ρ̇M,ki = (1 − r)γρA,ki − µMρM,ki − PkiρM,ki + ki

n∑
j=1

P(k j|ki)Dk jkiρM,k j i = {1, 2, ...,n},

ρ̇F,ki = βρY,ki − µFρF,ki − PkiρF,ki + ki

n∑
j=1

P(k j|ki)Dk jkiρF,k j .

(2.7)

Now, let
XA = (ρA,k1 , ρA,k2 , . . . , ρA,kn)T, XY = (ρY,k1 , ρY,k2 , . . . , ρY,kn)T,

XM = (ρM,k1 , ρM,k2 , . . . , ρM,kn)T, XF = (ρF,k1 , ρF,k2 , . . . , ρF,kn)T,

Q1 = diag(Pk1 , · · · ,Pkn), Q2 =
(
kiP

(
k j|ki

)
Dk jki

)
(i, j)
, MA = −(γ + µ1)In − µ2diag(XA),

MY = −(β + µY + Q1)In + Q2, MM = −(µM + Q1)In + Q2 MF = −(µF + Q1)In + Q2,

and

M(X) =


MA On On ΦIn

rγIn MY On On

(1 − r)γIn On MM On

On βIn On MF

 ,
where In and On denote the n × n identity and null matrices, respectively. Since the entries

of Q1 and Q2 are nonnegative, it is straightforward that MA, MY, MM, MF are Metzler

matrices, so isM(X). Finally, let

X = (XA, XY, XM, XF)T ,

then model (2.7) becomes

Ẋ =M(X)X.

This achieves the proof. �

In the following subsections we study special cases of system (2.5) depending on the

type of diffusion processes by considering diffusion rates that are inherent to the traffic

characteristics of each node. Typically there are two distinguishable landscapes with

different features which must retain our attention.
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2.2.2 The metapopulation model in a homogeneous landscape

A landscape is homogeneous when all its patches have similar characteristics. Thus,

in such landscapes, it is reasonable to assume that the mosquitoes have the same

dispersal/diffusion rate between patches. The mosquitoes searching for breeding sites to

lay their eggs are attracted by the availability of breeding sites [97]. Therefore they move

randomly in any breeding sites to lay their eggs. Mosquitoes can detect host odor, but

it is unclear whether they have the learning capacity they would need to enable them to

return to particular hosts or breeding sites [83, 72]. In the case where all patches have

similar characteristics (i.e. homogeneous landscape), the mosquitoes disperse equally

between the patches and the dispersal parameter is the same for all patches. In this case,

the diffusion rate along any given link of a node with degree k is simply equal to

Dkk′ =
Di

k
, i = Y,M,F. (2.8)

For the sake of brevity, we consider strictly positive diffusion rates DY,DF,DM > 0. Thus,

assuming that distance has no bearing on the probability of mosquito flying between

breeding sites and, using the fact that
∑
k

P(k|k′) = 1, the dynamics of free-flying mosquitoes

in a patch of degree k is

ρ̇A,k = ΦρF,k − (γ + µ1 + µ2ρA,k)ρA,k,

ρ̇Y,k = rγρA,k − (β + µY)ρY,k −DYρY,k + kDY
∑
k′

P(k′|k)
ρY,k′

k′
,

ρ̇M,k = (1 − r)γρA,k − µMρM,k −DMρM,k + kDM
∑
k′

P(k′|k)
ρM,k′

k′
,

ρ̇F,k = βρY,k − µFρF,k −DFρF,k + kDF
∑
k′

P(k′|k)
ρF,k′

k′
,

(2.9)

Note that, since the number of links emanating from nodes of degree k to nodes of degree

k′ must be equal to the number of links emanating from nodes of degree k′ to nodes of

degree k in non-directed graphs, we have the following relationship between p(k) and P(k′|k)

[11]:

kP(k′|k)p(k) = k′P(k|k′)p(k′). (2.10)

For networks with a connectivity pattern defined by a set of conditional probabilities P(k′|k),

we define the elements of the connectivity matrix C as

Ckk′ =
k
k′

P(k′|k). (2.11)

Note that these elements are the average number of mosquitoes that patches of degree k

receive from neighboring patches of degree k′ assuming that one mosquito leaves each

of these patches by choosing at random one of the k′ connections [119]. On the other

hand, for those degrees k that are not present in the network, one must have P(k′|k) = 0,

∀k′. Hereafter in this paper, when talking about degrees, we implicitly mean those degrees
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that are present in the network. Furthermore, the case where all patches have the same

connectivity is excluded from our consideration because, under the present approach, the

model equations reduce to those of a single patch model.

In order to obtain further analytical results about the metapopulation dynamics of

anopheles mosquitoes, we need to be precise about the form of P(k′|k). As in most network

models, the easiest and usual assumption is to restrict ourselves to uncorrelated networks.

(a) Uncorrelated networks

In these networks, the degrees of the nodes at the end of any given link are independent.

In other words, there is no degree-degree correlation between the connected nodes.

Therefore, we have

P(k′|k) = k′p(k′)/〈k〉, (2.12)

which corresponds to the degree distribution of nodes (patches) that arrive at by following

a randomly chosen link [103]. Using Eqs. (2.10), (2.11), (2.12),
∑
k

P(k|k′) = 1 and change

the order of summations in system (2.7), one obtains the following equations for the time

evolution of anopheles mosquitoes in metapopulations described by uncorrelated networks:

ρ̇A,k = ΦρF,k − (γ + µ1 + µ2ρA,k)ρA,k,

ρ̇Y,k = rγρA,k − (β + µY)ρY,k −DY

(
ρY,k −

k
〈k〉
ρY

)
,

ρ̇M,k = (1 − r)γρA,k − µMρM,k −DM

(
ρM,k −

k
〈k〉
ρM

)
,

ρ̇F,k = βρY,k − µFρF,k −DF

(
ρF,k −

k
〈k〉
ρF

)
,

(2.13)

where

〈k〉 =
∑

k

kp(k) and ρ j(t) =
∑

k

p(k)ρ j,k, j = A,Y,M,F.

〈k〉 is defined as the average network degree. ρA, ρY, ρF and ρM, represent the average

number of population in aquatic stage, young females and eggs laying females, and

population of males mosquitoes in each patch at time t, respectively. In this case, the

diffusion term is simply given by the difference between the outflow of young females not

yet laying eggs (DYρY,k), fertilized and eggs laying females (DFρF,k) and male mosquitoes

(DMρM,k) in patches of connectivity k and the total inflow of young females not yet laying

eggs (DYρY/〈k〉), fertilized and eggs laying females (DFρF/〈k〉) and male mosquitoes

(DMρM/〈k〉) in patches of connectivity k, respectively; across all their k connections, which

is k times the average flow of mosquitoes across a connection in the network. Note that this

average flow across a connection does not depend on the degree k of the considered patch

because we have assumed that the architecture of the metapopulation is described by an

uncorrelated network. In these network configurations, the elements of the connectivity
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matrix C are simply

Ckk′ =
kp(k′)
〈k〉

. (2.14)

Clearly, C is a rank-one matrix and the vector v, whose components vk = k, is its eigenvector

corresponding to its unique non-zero eigenvalue 1. Thus, if there are (as assumed above)

n different patches in the network, then the eigenvalues of the said connectivity matrix are

λ = 0 (with algebraic multiplicity n − 1) and λ = 1 (which is a simple eigenvalue). This latter

remark will be used to prove the stability of equilibria of the model. For the way forward,

we first "vectorialize" system (2.13), using the following set of vectors as formerly defined:

XA = (ρA,k1 , ρA,k2 , . . . , ρA,kn)T, XY = (ρY,k1 , ρY,k2 , . . . , ρY,kn)T,

XM = (ρM,k1 , ρM,k2 , . . . , ρM,kn)T, XF = (ρF,k1 , ρF,k2 , . . . , ρF,kn)T.

Remind that, if X ∈ Rn is a vector, diag(X) denotes the n× n diagonal matrix whose entries

are given by the respective components of X. With these notations, system (2.13) becomes
ẊA = f1(X) = ΦXF −

[
γ + µ1 + µ2diag(XA)

]
XA,

ẊY = f2(X) = rγXA −
[
β + µY + DY

]
XY + DYCXY,

ẊM = f3(X) = (1 − r)γXA −
[
µM + DM

]
XM + DMCXM,

ẊF = f4(X) = βXY −
[
µF + DF

]
XF + DFCXF,

(2.15)

where C is the connectivity matrix defined in Eq. (2.14).

Notice that, in the case where the parameters Φ, γ, β, µ1, µ2, µY, µM and µF are not the

same for all patches, they are replaced in system (2.15) by nonnegative diagonal blocs

matrices and this does not change the fundamental structure of the system.

(b) Basic offspring number

System (2.15) has a trivial (mosquito-free) equilibrium P0 = (0, 0, 0, 0) with 0 standing

for the zero vector of dimension n when there is no fertilized and eggs laying females in

each patch. We calculate the basic offspring number, R(m)
0 (where the subscript "m" stands

for "metapopulation" and simply differentiate it with the single patch basic offspring number

R0), using the next generation approach developed in [40]. Let

F =


ΦXF

0

0

 and V =


γXA + (µ1 + µ2diag(XA))XA

−rγXA + (µY + β)XY + DYXY −DYCXY

−βXY + µFXF + DFXF −DFCXF

 .
The Jacobian matrices of F andV at the trivial equilibrium P0 are

F =

 F11 F12

F21 F22

 and V =


(γ + µ1)In 0 0

−rγIn (β + µY + DY −DYC)In 0

0 −βIn (µF + DF −DFC)In

 ,
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where

F11 = 0, F12 =
[
0, Φ

]
, F21 =

00
 and F22 =

0 0

0 0

 .
To compute V−1, denote

V =

V1 V2

V3 V4

 , where V1 = (γ + µ1)In, V2 =
[
0 0

]
, V3 =

−rγIn

0


and

V4 =

(β + µY + DY −DYC)In 0

−βIn (µF + DF)In −DFC

 .
We emphasize that, since V is a M-matrix and −V is stable, V−1

≥ 0. Let the inverse matrix

of V be written in the following form:

V−1 =

W11 W12

W21 W22

 ,
where W11 and W22 are square matrices of dimension (2n × 2n) and (n × n), respectively.

With this in mind, one has

FV−1 =

A B

0 0

 ,
where A = F12 W21 and B = F12 W22. Then following [40], the basic offspring number R(m)

0

is defined as the spectral radius of the next generation matrix, FV−1. Precisely,

R
(m)
0 = ρ(FV−1) = ρ (F12 W21) . (2.16)

To obtain an explicit expression of the basic offspring number, we only need to compute

W21. The following lemma is instrumental :

Lemma 2.2.1. Let N be a square block matrix of the following form:

N =

N1 N2

N3 N4

 ,
where N1 and N4 are square matrices.

If N1 and D = N4 −N3N−1
1 N2 are invertible, then the inverse matrix of N is given by

N−1 =

N−1
1 + N−1

1 N2D−1N3N−1
1 −N−1

1 N2D−1

−D−1N3N−1
1 D−1

 .
Proof. Note that the matrix N can be written as

N =

N1 N2

N3 N4

 =

N1 0

N3 I


I N−1

1 N2

0 D

 .
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Then, one can deduce that

N−1 =

I N−1
1 N2

0 D


−1 N1 0

N3 I


−1

=

I −N−1
1 N2 D−1

0 D−1


 N−1

1 0

−N3N−1
1 I

 ,
=

N−1
1 + N−1

1 N2D−1N3N−1
1 −N−1

1 N2D−1

−D−1N3N−1
1 D−1

 .
This ends the proof. �

Notice that V defined above has the same form as N defined in Lemma 2.2.1 ( with:

N1 = V1, N2 = V2, N3 = V3 and N4 = V4). Moreover, it is easy to check that V satisfies all

the assumptions in Lemma 2.2.1. Thus, applying Lemma 2.2.1, V−1 is given by

V−1 =

 V−1
1 0

−V−1
4 V3V−1

1 V−1
4

 ,
from which one can extract W21 = −V−1

4 V3V−1
1 . Thus, computing W21 amounts to compute

V−1
4 since V3 is given and V−1

1 is obvious. Notice also that V4 has the same form as N in

Lemma 2.2.1 (with N1 = (β+µY+DY−DYC)In, N2 = 0, N3 = −βIn and N4 = (µF+DF)In−DF C).

Hence, another application of Lemma 2.2.1 yields

V−1
4 =

 N−1
1 0

−N−1
4 N3N−1

1 N−1
4

 .
From the above expressions, it appears that to obtain an explicit expressions of V−1

4 , we

need to compute the inverse matrices of N−1
1 and N−1

4 . These shall be done using another

instrumental lemma, stated below.

Lemma 2.2.2. Let G = U + K W Z be an n × n invertible matrix. Assume the matrices U,

W and W−1 + Z U−1 K are invertible. Then the inverse matrix of G is given by

G−1 = U−1
−U−1 K [W−1 + Z U−1 K]−1 Z U−1. (2.17)

Proof. It suffices to verified that GG−1 = In. Indeed, one has

GG−1 = UU−1
− K

[
W−1 + ZU−1X

]−1
ZU−1 + KWZU−1

− KWZU−1K
[
W−1 + ZU−1K

]−1
ZU−1,

= In − K
[[

W−1 + ZU−1K
]−1

+ W −WZU−1K
[
W−1 + ZU−1K

]−1
]

ZU−1,

= In − KW
[
W−1

[
W−1 + ZU−1K

]−1
− In + ZU−1K

[
W−1 + ZU−1K

]−1
]

ZU−1,

= In − KW
[[

W−1 + ZU−1K
] [

W−1 + ZU−1K
]−1
− In

]
ZU−1,

= In − KW(In − In)ZU−1,

= In.

This concludes the proof. �
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Now, we can explicitly calculate N−1
1 and N−1

4 . We shall use recursively Lemma 2.2.2

and the fact that Cm = C,∀m ∈N∗.

Note that N4 = (µF + DF)In −DFC has the form of the matrix G with

U = (µF + DF)In, K = (k1, ..., kn)T, W = In and

Z =
−DF

〈k〉
(P(k1), ...,P(kn)) .

With this in mind and using Lemma 2.2.2, it is straightforward that

N−1
4 =

In

(µF + DF)
−

In

(µF + DF)


k1
...

kn


[
In −

DF

µF + DF

]−1

×
−DF

〈k〉(µF + DF)
(P(k1), ...,P(k2)),

=
In

(µF + DF)
+

In

(µF + DF)
DFC
µF

=
1

(µF + DF)

[
In +

DF

µF
C
]
.

Now, let us compute N1 = (β + µY + DY −DYC)In. One can also observe that N1 has the

form of G in Lemma 2.2.2, with

U = (β + µY + DY)In, K = (k1, ..., kn)T, W = In and

Z =
−DY

〈k〉
(P(k1), ...,P(kn)) .

Thus, another application of Lemma 2.2.2 yields

N−1
1 =

1
(β + µY + DY)

[
In +

DY

β + µY
C
]
.

Using the expressions of N−1
1 and N−1

4 , one has

N−1
4 N3N−1

1 =
−β

(µF + DF)(β + µY + DY)

(
In +

DYC
β + µY

+
DFC
µF

+
DFDYC
µF(β + µY)

)
.

Thus,

F12W21 =
rβγΦ

(γ + µ1)(µF + DF)(β + µY + DY)

[
In +

DYC
β + µY

+
DF

µF
C +

DFDY

µF(β + µY)
C
]
.

The basic offspring number is therefore

R
(m)
0 = ρ(F12W21),

= ρ [Γ(a0In + (b0 + c0 + d0)C)] ,
(2.18)

where

a0 = 1, b0 =
DY

β + µY
, c0 =

DF

µF
, d0 =

DFDY

µF(β + µY)
and Γ =

rβγΦ

(γ + µ1)(µF + DF)(β + µY + DY)
.
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Since the rank of C is one and λ = 1 is its unique non-zero and positive eigenvalue, the

largest eigenvalue of the matrix Γ[a0In + (b0 + c0 + d0)C) is Γ(a0 + b0 + c0 + d0) > 0. Thus, R(m)
0

for system (2.13) is

R
(m)
0 =

rβγΦ

(γ + µ1)(µF + DF)(β + µY + DY)

[
1 +

DY

β + µY
+

DF

µF
+

DFDY

µF(β + µY)

]
. (2.19)

Remark 2.2.1. The relevance of the above techniques (Lemma 2.2.1 and Lemma 2.2.2)

used to compute R(m)
0 lies in that it enables us to obtain an explicit formula of the basic

offspring number for a complex metapopulation model. More importantly, it gives an

easy interpretable expression of the basic offspring number. In metapopulation settings,

this kind of result is quite rare (or does not exist at all). It is worth pointing out that,

this achievement has been probably made possible thanks to the "statistical" modelling

approach used in this work.

(c) Sensitivity analysis

We carried out sensitivity analysis to determine the model robustness to parameter

values [87, 90]. This amounts to single out the most influential parameters on R(m)
0

and mosquito subpopulation dynamics. A Latin Hypercube Sampling (LHS) scheme

[90] samples 1000 values for each input parameter using a uniform distribution over the

range of biologically realistic values, listed in Table 2.3 with descriptions and references

given in Table 2.1 and Table 2.2. Using system (2.15), 1000 model simulations are

performed by randomly pairing sampled values for all LHS parameters. Outcome measures

are calculated for each run : the basic offspring number (R(m)
0 ), the average number of

population in aquatic stage (ρA), young females (ρY) and fertilized females (ρF) for a

network of five patches. Partial Rank Correlation Coefficients (PRCC) and corresponding

p-values are computed. An output is assumed sensitive to an input if the corresponding

PRCC is less than −0.50 or greater than +0.50, and the corresponding p-values is less

than 5%.

Parameter Range Parameter Range Parameter Range

r [0.49 , 0.51] µ2 [10−6 , 10−4] µF [0.05 , 0.2]

γ [0.05 , 0.2] β [0.05 , 0.35] DY [10−2 , 1]

Φ [0.5 , 50] µY [0.01 , 0.2] DM [10−2 , 1]

µ1 [0.1 , 0.5] µM [0.05 , 0.2] DF [10−2 , 1]

Table 2.2: Parameter value ranges of model (2.15) used as input for the LHS method.

Table 2.3 suggests that parameter Φ has the highest influence on the offspring number

R
(m)
0 , following in decreasing order by the parameters µF, µ1, γ, µY and β. One can also

observe that, for the values of ρA, ρY and ρF, the parameters with more influence are DY,
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Parameter R
(m)
0 ρA ρY ρF

r 0.0831 0.0003 0.0325 0.0593

γ 0.6617 0.3648 0.2364 0.4401

Φ 0.9281 0.4003 0.5414 0.5079

µ1 -0.7047 −0.0565 −0.0123 −0.0520

µ2 −− −0.3327 −0.4112 −0.3789

β 0.5329 0.2586 0.2033 0.1317

µY -0.5770 −0.2008 −0.1530 −0.1389

µM −− 0.0874 −0.0066 −0.1577

µF -0.7959 −0.3169 −0.2749 −0.1873

DY 0.0136 0.9103 0.8641 0.8411

DM −− −0.0237 0.0283 0.0231

DF 0.0402 -0.9058 -0.8712 -0.8547

Table 2.3: PRCCs between R(m)
0 , ρA, ρY, ρF and each parameter: The (?)’s indicate the most

influential parameters. Precisely, (?) indicates a parameter whose sensitivity level (in

absolute value) is between 0.5 and 0.65. The (??) indicates a parameter whose sensitivity

level (in absolute value) is between 0.66 and 0.8. The (???) indicates a parameter whose

sensitivity level (in absolute value) is above 0.84.

DF and Φ. This suggests that the migration of female mosquitoes between the patches

may play a dominant role on the persistence of the mosquito’s population.

(d) Global stability of the trivial (mosquito-free) equilibrium point

Using Theorem 2 in [40], the following result is straightforward.

Lemma 2.2.3. The trivial (mosquito-free) equilibrium point P0 of system (2.15) is locally

asymptotically stable whenever R(m)
0 < 1, and unstable if R(m)

0 > 1.

Biologically speaking, Lemma 3.2.1 implies that mosquitoes can be eliminated in all

breeding sites (when R(m)
0 < 1) if the initial sizes of the population of anopheles mosquitoes

are in the basin of attraction of the trivial equilibrium point P0.

System (2.15) can be written in the form Ẋ = f (X), where X = (XA,XY,XM,XF)T and

f (X) = ( f1(X), f2(X), f3(X), f4(X))T. It is straightforward that system (2.15) is cooperative

on Ω = R4n
+ because the jacobian matrix of (2.15) is a Metzler matrix. Furthermore, f is

continuous on Ω and the vector field defined by f is directed inwards on the border ∂Ω of

Ω. Thus, Theorems 2, 5 and 6 in [2] can be applied to extend the local result in Lemma

3.2.1 to a global one on Ω as follows:
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Theorem 2.2.2. System (2.15) defines a dissipative dynamical system on Ω = R4n
+ .

Moreover, if R(m)
0 ≤ 1 then the trivial (mosquito-free) equilibrium point P0 is globally

asymptotically stable on Ω.

Proof. It hinges basically on the monotone properties of model (2.15). The inequalities

4R(m)
0 kip(ki) + 4Γ

n∑
j=1, j,i

k jp(k j)

〈k〉
<
γ + µ1 + µ2ρA,ki

γ + µ1
, i = 1, 2, · · · ,n, (2.20)

hold for all sufficiently large XA. Let m = (m1,m2, · · · ,mn) > 0 and let XAm be so large that

in addition to (2.20) the following inequalities also hold :

XAm ≥ m, (2.21)

XFm :=
(γ + µ1 + µ2diag(XAm))XAm

2Φ
≥ m, (2.22)

XYm :=
(µFIn + DFIn −DFC)XFm

2β
≥ m, (2.23)

XMm :=
2(1 − r)γ
µM + DM

[
In +

DM

µM
C
]

XAm ≥ m. (2.24)

Let bm = (XAm ,XYm ,XFm ,XMm)T. Then, one has

f1(bm) = −ΦXFm < 0; f3(bm) = −(1 − r)γXAm < 0; f4(bm) = −βXYm < 0;

f2(bm) = rγ
[
In −

(N−1
1 )−1(N−1

4 )−1[γ + µ1 + µ2diag(XAm)]
4βΦrγ

]
XAm ,

= rγ
[
In −

(a0In + (b0 + c0 + d0)C)−1

4Γ

[γ + µ1 + µ2diag(XAm)]
γ + µ1

]
XAm ,

< 0 if 4Γ(a0In + (b0 + c0 + d0)C) <
γ + µ1 + µ2diag(XAm)

γ + µ1
,

i.e.

f2(bm) < 0 if

4R(m)
0 kip(ki) + 4Γ

n∑
j=1, j,i

k jp(k j)

〈k〉
<
γ + µ1 + µ2ρA,ki

γ + µ1
, i = 1, 2, · · · ,n.

So, f (bm) = ( f1(bm), f2(bm), f3(bm), f4(bm))T < 0. Applying Theorem 6 in [2] with a = 0 and

b = bm, we obtain that (2.15) defines a dynamical system on [0, bm]. However, bm can be

selected larger than any X ∈ R4n
+ . Thus, (2.15) defines a dynamical system on Ω = R4n

+ . The

only equilibrium point in Ω is the trivial equilibrium P0. It follows from Theorem 6 in [2]

that P0 is globally asymptotically stable on [0, bm] for any m > 0, and therefore is globally

asymptotically stable on Ω = R4n
+ . � �
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(e) Nontrivial (mosquito-persistent) equilibrium point and its stability

In this paragraph, we begin by showing that system (2.15) has a unique nontrivial

equilibrium point when R(m)
0 > 1. To achieve our goal, we reformulate the problem in terms

of fixed point problem and use Theorem 2.1 in [65] for the existence and uniqueness of a

positive fixed point of a multi-variable function. To be self contained, Theorem 2.1 in [65] is

recalled hereafter.

Theorem 2.2.3 ([65], Theorem 2.1). Let F(x) be a continuous, monotone non-decreasing,

strictly sublinear, bounded function which maps the non-negative orthant Rn
+ into itself.

Let F(0) = 0 and F′(0) exists and be irreducible. Then F(x) does not have a nontrivial fixed

point on the boundary of Rn
+. Moreover, F(x) has a positive fixed point iff ρ(F′(0)) > 1. If

there is a positive fixed point, then it is unique.

An equilibrium point P∗ = (X∗A,X
∗

Y,X
∗

M,X
∗

F) for system (2.15) satisfies the following

system of equations 
ΦX∗F −

[
γ + µ1 + µ2diag(X∗A)

]
X∗A = 0,

rγX∗A −
[
(β + µY) + DY

]
X∗Y + DYCX∗Y = 0,

(1 − r)γX∗A −
[
µM + DM

]
X∗M + DMCX∗M = 0,

βX∗Y −
[
µF + DF

]
X∗F + DFCX∗F = 0.

(2.25)

Solving (2.25) yields

X∗F =
[γ + µ1 + µ2diag(X∗A)]X∗A

Φ
,

X∗Y =
(µFIn + DFIn −DFC)[γ + µ1 + µ2diag(X∗A)]X∗A

βΦ
, (2.26)

X∗M =
(1 − r)γ
µM + DM

[
In +

DM

µM
C
]

X∗A.

Replacing (2.26) in the second equation of system (2.25), one obtain

rγ
[
In −

N1N4[γ + µ1 + µ2diag(X∗A)]
βΦrγ

]
X∗A = 0.

Hence, the existence of the nontrivial equilibrium point is reformulated as the following

fixed point problem: Find a unique positive X∗A, such that X∗A = F(X∗A), where

F(X∗A) = rβγΦ
[
γ + µ1 + µ2diag(X∗A)

]−1
N−1

4 N−1
1 X∗A.

Notice that F is a continuous, bounded function that maps Rn
+ into itself and it is infinitely

differentiable.

Let us prove that F is strictly sublinear in Rn
+ i.e. F(νX∗A) > νF(X∗A), for any X∗A ∈ R

n
+ with

X∗A > 0, and ν ∈ (0, 1). Direct, but lengthly calculations give

νF(X∗A)[F(νX∗A)]−1 = diag
(
γ + µ1 + νµ2ρA,k1

γ + µ1 + µ2ρA,k1

, · · · ,
γ + µ1 + νµ2ρA,kn

γ + µ1 + µ2ρA,kn

)
.
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Since ν ∈ (0, 1), we have

γ + µ1 + νµ2ρA,ki

γ + µ1 + µ2ρA,ki

< 1, i = 1, 2, · · · ,n.

Thus, νF(X∗A)[F(νX∗A)]−1 < In i.e. νF(X∗A) < F(νX∗A). Hence, F is strictly sublinear.

One can easily check that the off-diagonal elements ai, j (i , j) of the matrix F′(X∗A) is

ai j =
Γ(b0 + c0 + d0)kip(k j)
〈k〉(γ + µ1 + µ2ρA,ki)

> 0, ∀i , j ∈ {1, 2, · · · ,n}.

Thus, F is a monotone non-decreasing function. We have also that F(0) = 0 and F′(0) =

Γ(a0In + (b0 + c0C + d0)C). Therefore ρ(F′(0)) = R(m)
0 > 1 iff R(m)

0 > 1. Thanks to the graph

theory and the irreducibility of the matrix C, F′(0) is irreducible because its associated

graph is strongly connected. Thus, we have established the following theorem :

Theorem 2.2.4. If R(m)
0 ≤ 1, the only equilibrium point of the system is the trivial

equilibrium P0. If R(m)
0 > 1 there also exists a unique nontrivial (mosquito-persistent)

equilibrium point P∗ in int(Ω).

By Lemma 3.2.1, the trivial equilibrium point P0 is unstable whenever R(m)
0 > 1. We

terminate this section by proving the following result which establishes the global stability

of the nontrivial equilibrium.

Theorem 2.2.5. If R(m)
0 > 1, the nontrivial (mosquito-persistent) equilibrium P∗ of the

system (2.15) is GAS on Ω.

Proof. Since R(m)
0 > 1, the inequalities

γ + µ1 + µ2ρA,ki

γ + µ1
<

R
(m)
0 kip(ki) + Γ

n∑
j=1, j,i

k jp(k j)√
R

(m)
0 〈k〉

, i = 1, 2, · · · ,n, (2.27)

hold for all sufficiently small values XA. Let ε = (ε1, ε2, · · · , εn) > 0 and let XAε be so small

that in addition to (2.27) the following inequalities also hold :

XAε ≤ ε, (2.28)

XFε :=

4
√
R

(m)
0 (γ + µ1 + µ2diag(XAε))XAε

Φ
≤ ε, (2.29)

XYε :=

4
√
R

(m)
0 (µFIn + DFIn −DFC)XFε

β
≤ ε, (2.30)

XMε :=
(1 − r)γ

4
√
R

(m)
0 (µM + DM)

[
In +

DM

µM
C
]

XAε ≤ ε. (2.31)
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Let aε = (XAε ,XYε ,XFε ,XMε)T. Then, one has

f1(aε) =

1 −
1

4
√
R

(m)
0

ΦXFε > 0; f3(aε) =
(
√
R

(m)
0 − 1)(1 − r)γ√
R

(m)
0

XAε > 0;

f4(aε) =

1 −
1

4
√
R

(m)
0

 βXYε > 0;

f2(aε) = rγ

In −

√
R

(m)
0 (N−1

1 )−1(N−1
4 )−1[γ + µ1 + µ2diag(XAm)]

βΦrγ

 XAm ,

= rγ

In −

√
R

(m)
0 (a0In + b0InC + c0InC + d0InC)−1

Γ

[γ + µ1 + µ2diag(XAm)]
γ + µ1

 XAm

> 0 if
Γ(a0In + b0InC + c0InC + d0InC)√

R
(m)
0

>
γ + µ1 + µ2diag(XAm)

γ + µ1
,

i.e.

f2(aε) > 0 if
γ + µ1 + µ2ρA,ki

γ + µ1
<

R
(m)
0 kip(ki) + Γ

n∑
j=1, j,i

k jp(k j)√
R

(m)
0 〈k〉

, i = 1, 2, · · · ,n.

Thus, f (aε) = ( f1(aε), f2(aε), f3(aε), f4(aε))T > 0. Applying once again Theorem 6 in [2]

(with a = aε and b = bm), we obtain that the nontrivial equilibrium point P∗ is globally

asymptotically stable on [aε, bm]. Since aε can be selected to be smaller than any X > 0 and

bm can be selected to be larger than any X > 0, we obtain that P∗ is asymptotically stable on

Ω = R4n
+ with basin of attraction being at least the interior of Ω. �

2.2.3 The metapopulation model in a heterogeneous landscape

Differences in the distribution of resources create heterogeneity on the network, since

patches may have different degrees of attractiveness to mosquitoes. According to [83]

we describe how heterogeneity and differences in patch attractiveness to mosquitoes

during movement is incorporated. Here, each patch represent a potential breeding-feeding

site. The number of hosts is allowed to differ between patches across the local network,

introducing heterogeneity. Heterogeneity of breeding sites is incorporated here by taking

different values for parameter µ2 in each patch. In this case, the carrying capacities of

breeding sites would be different.
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Let H be the total population of hosts in the network and Hk the population of hosts in

patches of degree k. The proportion of hosts in patches of degree k is

Hk =
Hk

H
, with

∑
k

Hk = 1. (2.32)

Mosquitoes are attracted by odors released by hosts, this leads to mosquitoes being

less likely to leave the patch if their current patch is a home with many hosts and more

likely to move out of the patch if there are few hosts [72, 100]. As in [83], we mimic this

phenomenon by using a decreasing exponential function to model the movement rate. We

assume that heterogeneity of hosts also influence the males dispersal because females

go to the hosts for blood-meal and males go to meet females [24]. Note that immature

females are not subjected to the attraction of hosts, they diffuse randomly in any direction.

We also incorporate the spatial proximity of patches by using a decreasing linear function,

since mosquitoes have a limited mobility. Hence, we can define the diffusion rate along

any given link of a patch of degree k to a patch of degree k′ as

Dkk′ =
DYψ(dkk′)

k
and Dkk′ =

Diψ(dkk′)
k

e−λ(Hk−Hk′ ), i = M,F, (2.33)

where λ is a constant parameter for the decay function, dkk′ =
√

(xk − xk′)2 + (yk − yk′)2 is

the cartesian distance between a node of degree k and a node of degree k′; ψ the distance

function defined as

ψ(dkk′) =


dmax − dkk′

dmax
if dkk′ < dmax,

0 else,
(2.34)

with dmax the maximal mobility distance.

Thus, the equations governing the spatio-temporal evolution of anopheles mosquitoes

in this case for a n-patches in an uncorrelated network are giving by the system below:

ρ̇A,k = ΦkρF,k − (γk + µ1k + µ2kρA,k)ρA,k,

ρ̇Y,k = rγkρA,k − (βk + µYk)ρY,k −
DY

〈k〉

∑
k′

k′p(k′)ψ(dkk′)

ρY,k +
kDY

〈k〉

∑
k′

p(k′)ψ(dkk′)ρY,k′ ,

ρ̇M,k = (1 − r)γkρA,k − µMkρM,k −
DM

〈k〉

∑
k′

e−λ(Hk−Hk′)k′p(k′)ψ(dkk′)

ρM,k

+
kDM

〈k〉

∑
k′

e−λ(Hk′−Hk)p(k′)ψ(dkk′)ρM,k′ ,

ρ̇F,k = βkρY,k − µFkρF,k −
DF

〈k〉

∑
k′

e−λ(Hk−Hk′)k′p(k′)ψ(dkk′)

ρF,k

+
kDF

〈k〉

∑
k′

e−λ(Hk′−Hk)p(k′)ψ(dkk′)ρF,k′ ,

(2.35)

From Theorem 2.2.1 above, one can easily see that (2.35) is a dynamical system in R4n
+ .

A patch of degree k is at a mosquito-free equilibrium point if ρA,k = ρY,k = ρM,k = ρF,k = 0.
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However, given the complexity of the equations, we do not perform further theoretical

analysis for model (2.35). We shall rather focus on numerical analysis in the next section.

2.3 Numerical simulations

To illustrate the various theoretical results of the previous sections, we consider a

metapopulation network with five patches and the following connectivities: k1 = 2; k2 = 3;

k3 = 4; k4 = 1 and k5 = 2 (see Figure 2.3). Since we do not know what trajectories

Figure 2.3: An example of a network with five patches.

mosquitoes adopt in reality, we use strategies such as Levy-flight (which are comprised

of random sequences of movement-segments with lengths l drawn from a probability

distribution function having a power-law tail p(l) ∼ l−µ where 1 < µ ≤ 3) to optimize foraging

efficiency [116]. Thus, we consider an architecture network given by the distribution

p(k) ∼ k−3 [27, 119].

Models (2.15) and (2.35) are both simulated by using data from recent works. These

data are summarized in Table 2.1. As far as mosquito dispersal is concerned, some

studies have shown that daily flights range from 200 to 400 m, where the maximum distance

recorded is 661 m [95]. We run all simulations with the following initial conditions: the total

number mosquitoes in aquatic stages is 1500, 1000 young mosquitoes are females not yet

laying eggs, 1000 are males, while 1250 are fertilized and eggs laying females. They are

evenly distributed across the network.
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2.3.1 General dynamics

In this subsection, we numerically illustrate the asymptomatic behavior of model (2.15).

For that, we consider a network of metapopulation with five patches. The dynamics of all

compartments are very similar to each other. Hence, only the graphs of mosquitoes at the

aquatic stage and total flying mosquito population (that is, Y + M + F) are presented here.
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Figure 2.4: Simulation results showing the GAS of the trivial equilibrium P0 for the basic

model when Φ = 0.5, DY = DM = DF = 0.1 and R(m)
0 ≤ 1. All other parameters are as in

Table 2.1.

Figure 2.4 presents the trajectories of model (2.15) for all patches when Φ = 0.5,

DY = DM = DF = 0.1 and the basic offspring number R(m)
0 is less than one (R(m)

0 = 0.6531).

From this figure, we can see that the mosquito populations die out in all patches. Thus, the

trajectories converge to the trivial equilibrium as shown in Theorem 2.2.2.

Figure 2.5 plots the trajectories of system (2.15) when Φ = 10, DY = DM = DF = 0.1 and

the basic offspring number R(m)
0 is greater than one (R(m)

0 = 13.0612). This illustrates the

fact that the mosquitoes are always present in all patches and the trajectories converge to

the nontrivial equilibrium as established in Theorem 2.2.5.

2.3.2 Impact of dispersal on population dynamics

To evaluate the impact of dispersal on population dynamics, we carry out in Figure 2.6

numerical simulations (when Φ = 10) on system (2.15) both without and with dispersal. This

figure shows that persistence of mosquito population is more important in the presence of

dispersal than in the case without dispersal, especially in high-degree patches.
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Figure 2.5: Simulation results showing the GAS of the nontrivial equilibrium P∗ when

Φ = 10, DY = DM = DF = 0.1 and R(m)
0 > 1. All other parameters are as in Table 2.1.
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Figure 2.6: Trajectories plots of model (2.15) without dispersal (left) and with dispersal

(right) when Φ = 10: the total mosquito population increases as the diffusion coefficients

increase.

2.3.3 Impact of the heterogeneous connectivity of patches on popula-

tion dynamics

To investigate the significance of heterogeneous connectivity of patches on vector

population dynamics, system (2.15) is simulated in Figure 2.7 with variable degrees of

patches.

Figure 2.7 illustrates the fact that, with the same diffusion coefficients (DM = DY =

DF), the total mosquito population increases as the connectivity of the patch increases.

This suggests that the heterogeneous connectivity of patches play an important role on

vector population dynamics. This heterogeneity may come from the daily productivity and
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Figure 2.7: Mosquito population in patches of degree k = 1, 2, ..., 10, when Φ = 10 and

DM = DY = DF = 0.1: the total mosquito population increases as the patch connectivity

increases.

destruction of some breeding sites, since small pools of water are continually destroyed

and reformed [154].

2.3.4 Impact of migration and heterogeneity on mosquito spread

In this section, numerical simulations are carried out to investigate the role of disper-

sal/diffusion and heterogeneity on mosquito spread. Models (2.15) and (2.35) are both

simulated with different values of Φ in each patch. In order to observe more effects of

the migration on the dynamics of model (2.15) and (2.35), we consider the hypothetical

scenario where the mosquito-persistent equilibrium is GAS in the patch of minimal degree

(patch 4) and unstable in the other patches (patch 1, 2, 3, 5). Model (2.35) is simulated with

Hk1 = 0.6, Hk2 = 0.07, Hk3 = 0.06, Hk4 = 0.03, Hk5 = 0.24, dmax = 661 m and λ = 0.5. Let R(i)
0 ,

i = 1, 2, 3, 4, 5, denotes the basic offspring number for the local population of anopheles

mosquito in patch i as defined in (2.3). Choose Φ1 = Φ2 = Φ3 = Φ5 = 0.5, Φ4 = 10 so that

R
(1)
0 = R(2)

0 = R(3)
0 = R(5)

0 = 0.5714 < 1 and R(4)
0 = 11.4286 > 1. It is observed from Figure 2.8

that, in the absence of migration/diffusion (i.e. DM = DY = DF = 0), the mosquito-persistent

equilibrium point is unstable in patches 1, 2, 3, 5 and stable in the fourth patch, as expected.

Figures 2.9-2.12 present the mosquito spread from an mosquito-persistent patch

(patch 4) to mosquito-free patches (patches 1, 2, 3, 5) under different scenario when

DM = DY = DF = 0.1.

Observing these latter figures, one can see that in the presence of dispersal, mosquitoes

moving out of an mosquito-persistent patch (patch 4) migrate into the mosquito-free patches
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Figure 2.8: Simulation results of systems (2.15) and (2.35) showing the mosquito population

in mosquito-free patches (left) and mosquito-persistent patch (right) in absence of migration.
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Figure 2.9: Simulation result showing the mosquito spread from mosquito-persistent

patch (right) to mosquito-free patches (left) in a homogeneous landscape (Eq. 2.15) with

DM = DY = DF = 0.1 and all other parameters are as in Table 2.1. R(i)
0 < 1, i = 1, 2, 3, 5 and

R
(4)
0 > 1.

(patches 1, 2, 3, 5). This illustrates the fact that mosquito dispersal could lead to a larger

presence of mosquitoes in all patches and, shows the important effects of dispersal and

connectivity of patches on population spread. However, this diffusion varies according to

the type of landscape.

(a) Dispersal in a homogeneous landscape

Figure 2.9 presents the trajectories of the mosquito spread from mosquito-persistent

patch (right) to mosquito-free patches (left) in a homogeneous landscape (Eq. (2.15)).
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Figure 2.10: Simulation results showing the mosquito spread from mosquito-persistent

patch (right) to mosquito-free patches (left) in a heterogeneous landscape (heterogeneity of

hosts and homogeneity of breeding sites) with ψ(dkk′) = 1, ∀k, k′, DM = DY = DF = 0.1 and

all other parameters are as in Table 2.1. R(i)
0 < 1, i = 1, 2, 3, 5 and R(4)

0 > 1.
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Figure 2.11: Simulation results showing the mosquito spread from mosquito-persistent

patch (right) to non mosquito-persistent patches (left) in a heterogeneous landscape

(heterogeneity of hosts and homogeneity of breeding sites) with ψ(dkk′) as in (2.34),

DM = DY = DF = 0.1 and all other parameters are as in Table 2.1. R(i)
0 < 1, i = 1, 2, 3, 5 and

R
(4)
0 > 1.

We observe in this case that mosquitoes coming from mosquito-persistent patch (patch

4) migrate more to the high-degree patches (see patches 3 and 2) and equitably to the

patches with equal degree (see patches 1 and 5).

(b) Dispersal in a heterogeneous landscape

Figure 2.10 gives numerical solutions of model (2.35), depicting the mosquito spread

from mosquito-persistent patch (right) to non mosquito-persistent patches (left) in a het-

erogeneous landscape (heterogeneity of hosts and homogeneity of breeding sites), when
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Figure 2.12: Simulation result showing the mosquito spread from mosquito-persistent

patch (right) to non mosquito-persistent patches (left) in a heterogeneous landscape

(heterogeneous hosts and breeding sites) with ψ(dkk′) = 1, ∀k, k′, µ21 = 10−4, µ22 = 10−3,

µ23 = 10−2, µ24 = 10−5, µ25 = 10−5 and DM = DY = DF = 0.1 DM = DY = DF = 0.1. R(i)
0 < 1,

i = 1, 2, 3, 5 and R(4)
0 > 1.
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Figure 2.13: Simulation result showing the mosquito spread from mosquito-persistent patch

(right) to non mosquito-persistent patches (left) (heterogeneity of hosts and homogeneity

of breeding sites) with ψ(dkk′) as in (2.34), when distances between patches 1, 2, 3, 5 are

large.

distance has no effect on mosquito flights (i.e. ψ(dkk′) = 1, ∀k, k′). Even though a great

number of mosquitoes moves into the patches of high degree, the dispersal becomes more

important in the patches with more hosts.

Figure 2.11 simulates the solutions of model (2.35) and displays the mosquito spread

from mosquito-persistent patch (right) to non mosquito-persistent patches (left) in a het-

erogeneous landscape (heterogeneity of hosts and homogeneity of breeding sites), when

distance affects mosquito dispersal (i.e. ψ(dkk′) as in (2.34), with dk3k4 = 300 m, dk5k1 = 370
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m, dk3k1 = 361 m, dk3k2 = 361 m, dk3k5 = 400 m, dk2k5 = 380 m). As in the latter Figure

2.10, similar result is observed, with the difference in that the mosquito dispersal from

mosquito-persistent patch (patch 4) to mosquito-free patches (patches 1, 2, 3 and 5) is

less important in this case.

Figure 2.12 presents the simulation results of model (2.35), showing the mosquito

spread from mosquito-persistent patch (right) to mosquito-free patches (left) in a heteroge-

neous landscape (heterogeneity of hosts and breeding sites), with µ21 = 10−4, µ22 = 10−3,

µ23 = 10−2, µ24 = 10−5, µ25 = 10−5 and ψ(dkk′) = 1, ∀k, k′. From this figure, it is noticeable

that heterogeneity of hosts and breeding sites greatly influences the mosquito dispersal

and their spatial distribution. This suggests that the heterogeneous connectivity of patches

and heterogeneous distribution of hosts and breeding sites may play an important role on

the spatial distribution of mosquitoes.

Figure 2.13 simulates model (2.35) and shows that the mosquito spread from mosquito-

persistent patch (right) to mosquito-free patches (left) in a heterogeneous landscape

(heterogeneity of hosts and homogeneity of breeding sites), with ψ(dkk′) as in (2.34) when

patches are highly distanced from each other and close to the maximal distance dmax

between nodes (dk3k4 = 500 m, dk5k1 = 510 m, dk3k1 = 589 m, dk3k2 = 539 m, dk3k5 = 400

m, dk2k5 = 539 m). From this figure, one observes that mosquito migration rate to distant

patches is very low. This is coherent with the known preference of the mosquito dispersal:

indeed, according to [45] the dispersal of adult mosquitoes can be classified into long-

range and short-range dispersals. Long-range dispersal is often unintentional and aided

by wind or human transport while short-range dispersal is often intentional. Furthermore,

Figure 2.13 shows that the availability and abundance of sites have a strong influence

on the distance that individual adult female mosquitoes need to fly in order to lay their

eggs, since spatial distance between patches is large when breeding sites are eliminated

from neighborhoods of hosts or are not available in most patches. Similar findings were

obtained in [22]. Thus, more efforts to reduce breeding sites in close proximity to houses

(mechanical control) is needed and can be very efficient as a vector control strategy.

Our simulations results in homogeneous landscape (Eq. 2.15) and heterogeneous

landscape (Eq. 2.35) reveal that the heterogeneous connectivity of patches plays an

important role on the spatial distribution of mosquito population. Simulations in a homo-

geneous landscape indicate that there is a linear relationship between connectivity of

patches and mosquitoes distribution (see Figures 2.6 and 2.9). However, when there are

heterogeneities in the network (hosts, distances), this linear relationship is perturbed and

induces a strong influence on spatial distribution and population dynamics of mosquitoes

(see Figures 2.10-2.13).
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2.4 Conclusion and perspectives

In this paper, we have developed a reaction-diffusion type model to describe the spatial

evolution of the anopheles mosquito in heterogeneous complex metapopulations and

assess the influences of larvae habitats (breeding-feeding sites) connectivity and vector

on the spatial distribution and populations dynamics of mosquitoes. We have focused

on the migration of mosquitoes from one patch to another in both homogeneous and

heterogeneous landscapes. The spatial configuration was given by the degree p(k) and

the conditional probabilities P(k′/k).

For uncorrelated networks in a homogeneous landscape, we have derived an explicit

formula for the basic offspring number, R(m)
0 , which has been proven to be a sharp threshold

parameter for our model. The most influential parameter on the expression for R(m)
0 is the

number of eggs at each deposit Φ. Using the theory of monotone operators, we have

established the global stability of equilibrium points. Precisely, we have shown that the

mosquito-free equilibrium is GAS whenever R(m)
0 ≤ 1 and unstable otherwise. In the case

where R(m)
0 > 1, we have shown that there exists a unique mosquito-persistent equilibrium,

which is GAS.

For uncorrelated networks in a heterogeneous landscape, we have only carried out

numerical studies. Comparing our simulation results in Figures 2.6 - 2.12, we have

concluded that numerous factors considered in our models play important roles in spatial

distribution of mosquitoes and could lead to a larger amount of mosquitoes. Further, our

sensitivity analysis results have revealed that an efficient strategy to reduce the amount

of mosquitoes in all patches could be to control the production of eggs (by mechanical

control for example) and minimize the migration of female mosquitoes.

To summarize our contributions in few words, the methodology and results we have

obtained are as follows:

• From the modelling perspective, we have extended to a complex network of patches the

single patch models in [154, 2] by incorporating the dispersal of mosquitoes and patch

connectivity.

• From the theoretical and numerical perspectives, we have examined the impacts of

larval habitat connectivity and mosquito dispersal in a homogeneous and a heterogeneous

landscapes on the persistence of mosquitoes populations.

• From the qualitative and quantitative aspects for uncorrelated networks have obtained

the following analytical results:

1. The bifurcation/threshold parameter (basic offspring number) has been explicitly

computed.

2. The sensitivity analysis of the threshold parameter has been performed.
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3. A simple and digestive proof based on Hethcote-Thieme fixed point theorem [65], of

a unique mosquito-persistent equilibrium has been provided.

4. Contrary to the few existing works where, Lyapunov-LaSalle techniques are usually

used, the monotone operator approach [124] has been the main ingredient here,

for the establishment of the global asymptotic stability of both mosquito-free and

mosquito-persistent equilibria.

The advantage of the above discrete-space model is that one can easily assess

diseases vector control strategies, because the discrete space enables easy representation

of interventions that cover sets houses or villages. Nevertheless, this approach constrain

the modeled mosquito movements to follow a limit set of trajectories. As immediate

possible extension of this work, we use the continuous-space approach to capture mosquito

dispersal.
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Mathematical analysis of a spatio-temporal
model for the population ecology of
anopheles mosquito

In this chapter, I propose a novel model for the population dynamics of mosquitoes by

considering the dispersal states of female mosquitoes of oviposition’s cycle and spatial

variations. From the modelling perspective, a general functional form of eggs oviposition

rate is used including the Malthusian, the Verhlust-Pearl logistic, the Hassell and the

Maynard-Smith-Slatkin functions. From the theoretical and numerical perspectives, the

study is done in two steps using the more realistic birth Maynard-Smith-Slatkin function.

Firstly, we consider an ordinary differential equations model and show that the mosquito-

free equilibrium (MFE) is globally asymptotically stable whenever the basic offspring

number of the ODE model is less than unity. Using a fluctuation argument, we prove

that the unique mosquito-persistent equilibrium (MPE) is globally attractive, whenever

the basic offspring number of the ODE model exceeds the unity. Moreover, the temporal

model undergoes a Hopf bifurcation in the absence of density-dependent mortality in the

aquatic stage of mosquitoes. Secondly, the temporal model is extended into an advection-

reaction-diffusion model in order to account for the movement of mosquitoes and their

spatial source of heterogeneity. We establish the uniform persistence and the existence of

at least one positive steady state whenever the spatial basic offspring number of the PDE

model is greater than unity. Finally, for the case study of malaria vector agent (Anopheles

mosquito), we construct a nonstandard finite difference scheme which is dynamically

consistent with the features of the continuous model to illustrate our results, including the

spatial heterogeneity of mosquito resources.

3.1 Introduction

Among all infectious diseases of humans, vector-borne diseases (VBDs) constitute a

major cause of human mortality and morbidity. They account for 17% of the estimated

global burden of all infectious diseases [149, 150]. Mosquitoes are the best known vectors
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of such diseases. They are responsible for many diseases throughout the world such as

malaria, yellow fever, chikungunya, west Nile virus, dengue fever, Zika virus and other

arboviruses [3, 101]. These diseases are transmitted from human-to-human through

effective mosquito bites. The transmission cycle is essentially driven by the human bite

habit of the mosquito [104]. Typically, the vector interacts with a human being. Then

depending on the disease status of both organisms, they will either infect or be infected.

Due to the significant burden caused by mosquitoes on human health, specifically as

reflected through the persistence and/or resurgence of vector-borne diseases, mosquitoes

have become a target of medical, veterinary and conservation research since the nine-

teenth century [108]. In order to devise effective control and realistic control methods, it is

crucial and essential to study the mosquitoes population dynamics, their interaction with

their biotope and subsequently the epidemiology of mosquito-borne diseases [88, 146].

Like many other insect species, mosquitoes can move and disperse in any direction

for various reasons such as searching for resource availability. At local scales (i.e. from

100 m to 1 km), mosquito behavior and ecology play an important role in determining

the distribution of transmission [83]. The spatial distribution of the anopheles has shown

great potential to affect malaria transmission intensity [146, 162]. The success and optimal

impact of methods for controlling mosquito population (e.g. sterile insect technique (SIT),

genetically modified mosquitoes (GMM) or mechanical control) are based on a good

knowledge of the biology and the behavior of mosquitoes, as well as on an accurate

modelling of their dispersal. Thus, to achieve a high level of effectiveness in reducing the

mosquito population, control interventions should consider mosquito location and its ability

to move.

In view of the challenge and high costs to conduct field experiments, mathematical

modeling add value to validate and improve vector control strategies. Mathematical models

have proven to be useful in gaining insights into the interactive dynamics and control of

mosquito populations [1, 2, 14, 46, 104, 105, 108], as well as into the influence of mosquito

mobility and dispersal [30, 42, 41, 68, 83, 88, 126, 132, 158].

Partial differential equations (PDEs) constitute a classical setting to model real-life situa-

tions such as dispersal [145, 162, 163]. For linear PDEs, the theory and the corresponding

constructive treatment by numerical methods are well developed (see for instance the

famous books [31, 32, 33, 34]). However, the complexity of biological processes and

particularly the strong nonlinearity in the transmission dynamics of diseases in time and

space lead to mathematical challenging nonlinear PDEs, which include advection-reaction-

diffusion equations and cross-diffusion equations [102, 125]. It is therefore not surprising

that the authors could identify only very few PDEs models on mosquito population dy-

namics that have investigated the well-posedness and the asymptotic behavior of the

solutions [41, 42, 68, 126, 132, 158]. A metapopulation setting has been used in [83, 88]

for anopheles mosquito population dynamics as an intermediate approach between tem-
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poral and spatio-temporal modeling. To explore the temporal and spatial dispersal of

the mosquitoes, the authors in [68, 126, 132, 158] proposed advection-reaction-diffusion

models where the mosquito population is divided into two stages: aquatic and adult female

stages. These studies gave sufficient conditions for mosquitoes to persist and spread

or to vanish. However, the oviposition/gonotrophic cycle has been recognized as an

important feature that may determine population levels, distribution and biting behavior of

mosquitoes. Thus, it is necessary to take into account all stages in the gonotrophic cycle

(questing, resting and breeding females) for the adult female mosquitoes in order to get

insights into the behavior and dynamics of mosquitoes. The ultimate purpose of this paper

is to extend works in [68, 126, 132, 158], as well as the temporal models in [1, 2, 108]

into an advection-reaction-diffusion system in which spatial heterogeneity is taken into

consideration explicitly.

We develop models that incorporate both intrinsic dynamics and spatial variation of

mosquitoes, taking into consideration the dynamics of the human-vector interaction. We

will start with a temporal model that allows a general description of the mosquito’s growth.

This initial model captures the mosquito oviposition cycle as well as its main behavior

(which could be useful when one considers chemical or biological control tools, such as

SIT or GMM). Moreover, unlike the works in [2, 42, 88], where a constant generating rate

was used for the population in the aquatic stage, we consider a more general function for

egg oviposition rate. Next, we will extend the obtained temporal model to a PDE system

by adding both advection and diffusion terms that reflect the mosquito’s mobility. We

study the global well-posedness and the asymptotic behavior of the solutions of this PDE

model. Finally, we assess the impact of mosquito dispersal, heterogeneous distribution of

mosquito resources (hosts), and other parameters on the spatial distribution, dynamics

and persistence of mosquito populations. As mentioned earlier, the nonlinearity of the ODE

model and its extended PDE counterpart results in challenging mathematical equations.

This necessitates the use of a variety of techniques, methods and approaches includ-

ing Lyapunov-Lasalle techniques, monotone dynamical systems approach, semigroup

applications, fluctuation method and spectral theory approach.

The paper is organized as follows. In Section 3.2, we present a compartmental temporal

model, which is analyzed quantitatively (e.g. existence/uniqueness of positive solutions,

existence of equilibria points, etc...) and qualitatively (e.g. global stability of equilib-

ria, existence of Hopf bifurcation). In Section 3.3, we extend the temporal model to an

advection-reaction-diffusion system of equations, the global well-posedness, the asymp-

totic behavior and the threshold-type dynamics of which are investigated. In Subsection

3.3.4, a case study is handled, namely malaria which is the world’s most devastating para-

sitic infectious disease caused by anopheles mosquitoes as vector agents. We develop a

nonstandard finite difference (NFSD) scheme, which is dynamically consistent with the

continuous model as illustrated by numerical simulations in which parameters relevant
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to the population biology of adult female anopheles mosquitoes are used. Concluding

remarks that show how our findings fit in the literature and a brief discussion are provided

in Section 3.4.

3.2 Temporal model

3.2.1 Model formulation

It is well known that there are two main stages in the development of mosquitoes

represented by the aquatic and the adult stages. The aquatic stage, reduced to one

compartment (A), gathers eggs, larvae and pupae [2, 42]. The adult stage is divided

into five compartments including four for females and one for males as follows: immature

females (Y), feeding/questing females (Q), resting females (U), breeding females (W) (or

more precisely "egg laying females") and males (M). We assume that there is no sex

differences for mosquitoes in the aquatic stage. Moreover, after emergence, mosquitoes

are distributed between the immature female and the male compartments. We denote by r

the sex ratio of emerging females. According to [37], r can be set to 1
2 in the case when the

number of emerging females and males are balanced. We further assume that, a female

mates only once with a male during her lifespan. After mating, immature females start

their gonotrophic cycle by entering the feeding female compartment [7]. The gonotrophic

cycle starts with a blood meal and ends with the first laid egg [7]. Then, after blood meals,

females progress to the resting compartment, allowing egg maturation. Afterward, they

pass into the breeding compartment, seeking for a breeding site to deposit eggs. Once

eggs are deposited, these females start a new gonotrophic cycle. The eggs laid by the

breeding females supply the aquatic stage. Note that unlike female mosquitoes where four

sub-compartments are considered due to their involvement in the gonotrophic cycle, we

only consider one compartment for the males.

At time t, and following [28, 105], we assume that the population in the aquatic stage is

generated from breeding females by a decreasing, continuously differentiable and positive

function which is a general form of the eggs oviposition. The population in the aquatic

stage is decreased by maturation to adult mosquitoes (at the rate γ), density-independent

mortality (at the rate µ1), and density-dependent mortality (at the rate µ2). After mating

with males, immature females exit breeding sites and arrive at the human resource where

they become feeding/questing females Q. The number of matings that occur per unit of

time is β (mating rate). Actually, β can be regarded as the product of the likelihood of a

mating producing eggs, the (fixed) proportion of the population that is female, the likelihood

that an appropriate place can be found so that, when the eggs are laid they will certainly

hatch. Also, when the number of males is large, we expect that immature females will have
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no difficulty finding a mate [2, 42]. Thus, immature females become feeding females at

rate β. Resting females die at rate µU. At the human habitat, questing females interact

with humans by mass action contact, during which they can either survive to reproduce or

get killed [104, 105]. Questing females that feed successfully become resting females at

rate αϕH, where ϕ is the biting rate of questing females, α (α ∈ [0, 1]) is the probability of

successfully taking a blood meal, and H is a parameter representing the density of human

habitats. Questing females die at rate µQ. Once settled, resting females become breeding

females at rate a. The compartment of breeding females is affected by a mortality rate

µW. After laying eggs, breeding females will begin to search blood meals and we assume

that they are attracted to humans and enter the questing class at rate bH
H+K , where H

H+K

represents the proportion of resting females that take human blood as opposed to those

that feed on other animals [52, 105, 108]. K is a positive constant representing a constant

alternative food source for the site, and b is a positive constant representing the rate at

which breeding females leave the site to restart their gonotrophic cycle.

The above mentioned biological and entomological descriptions lead to the following de-

terministic and autonomous system of nonlinear differential equations whose flow diagram,

state variables and parameters are given in Figure 3.1 and in Table 3.2, respectively:

Ȧ = B(W)W − [γ + µ1 + µ2A]A,

Ẏ = rγA − [µY + β]Y,

Ṁ = (1 − r)γA − µMM,

Q̇ = βY +
bH

H + K
W − [αϕH + µQ]Q,

U̇ = αϕHQ − [a + µU]U,

Ẇ = aU −
[

bH
H + K

+ µW

]
W,

(3.1)

In this study, B(W) is the general form of the eggs oviposition function. It is assumed that

function B(W) is strictly non-negative, continuously-differentiable and satisfies the following

conditions:
• B(0) = Negg,

• B′(W) ≤ 0, ∀W ≥ 0,

• B(W)W is monotone or bounded by NeggL,

(3.2)

where, Negg is the average number of eggs laid per fertilized female per day, and L > 0 is

the environmental carrying capacity of fertilized females.
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Let Rode
0 denote the basic offspring number of model (3.1) and F

Rode
0

the function given by

F
Rode

0
(s) = ν1R

ode
0 B

(
ν1R

ode
0

Negg
s
)
−Negg(ν1 + µ2s), ∀ s ≥ 0, (3.3)

where ν1 is defined below in (3.5). We further assume that the general egg oviposition

function B is such that

F
Rode

0
(0)F

Rode
0

(+∞) < 0, when Rode
0 > 1. (3.4)

In Table 3.1, we have gathered typical examples of function B(W), which are used in the

literature.

Table 3.1: Examples of oviposition function B(W) used in the literature which satisfy

(3.2)-(3.4).
Names B(W) B(0) Sources

Malthus (BM) Negg Negg [2, 28]

Verhulst-Pearl logistic (BL) Negg

(
1 − W

L

)
, W < L Negg [1, 12, 28, 105]

Maynard-Smith-Slatkin (BS) Negg

1+( W
L )n , n > 0 Negg [1, 12, 28, 105]

Hassell (BH) Negg

(1+ W
L )n , n > 0 Negg [12]

Figure 3.1: Anopheles mosquito simplified life cycle. The dashed arrow indicates the

mating between male and immature female mosquitoes.

We point out that the model (3.1) extends some of the existing models in many re-

spects. Unlike [1, 2, 88], it incorporates the gonotrophic cycle of adult female mosquito
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Table 3.2: Description of state variables and parameters of model (3.1).

Variables Description

A Population in the aquatic stage (eggs, larvae, pupae).

Y Population of immature females not yet laying eggs.

M Population of males.

Q Population of feeding females.

U Population of resting females.

W Population of breeding females.

Parameters Description

r Fraction of the emerging female mosquitoes.

γ Rate of emerging mosquitoes from the aquatic stage.

Negg Number of eggs at each deposit per capita.

L Environmental carrying capacity of female adult mosquitoes.

β Transfer rate (mating rate) from the compartment Y to Q

µ2 Density-dependent mortality rate in the aquatic stage.

µ1 Mortality rate in the aquatic stage.

µM Mortality rate of male mosquitoes.

µY Mortality rate of immature females.

µQ Mortality rate of questing females.

µU Mortality rate of resting females.

µW Mortality rate of breeding females.

ϕ Biting rate of feeding females.

α Probability of successfully taking a blood meal.

H Constant population density of humans at human resource sites.

K Constant alternative of blood meal for vectors.

b Rate at which breeding females leave the site to restart their gonotrophic cycle.

a Rate at which resting females become breeding females.

population. It further extends the model in [1, 2, 88, 108] by incorporating the more general

egg oviposition function (a new birth rate function for modeling mosquito oviposition is

proposed).

Remark 3.2.1. From the ecological point of view, it is well known that the Maynard-

Smith-Slatkin oviposition function is more suitable to model the mosquito oviposition

rate, compared to the Malthus and Verhulst-Pearl logistic functions [1, 105]. Therefore, the

latter function will be our focus throughout the theoretical and numerical investigations in

this work, with one of the main target of solving the opened problem in [1, 108] regarding

the global asymptotic stability of the MPE. However, our results can readily apply to the
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Hassell oviposition function [12], whereas, for Malthus and Verhulst-Pearl functions, we

refer the reader to [1, 2, 104, 105].

3.2.2 Basic properties

In this section, the basic properties of model (3.1) are explored. Model (3.1) takes the

matrix form Ẋ = A(X)X, where X(t) = (A(t),Y(t),M(t),Q(t),U(t),W(t))T,

A(X) =



−[ν1 + µ2A] 0 0 0 0 B(W)

rγ −ν2 0 0 0 0

(1 − r)γ 0 −µM 0 0 0

0 β 0 −ν3 0 b1

0 0 0 αϕ1 −ν4 0

0 0 0 0 a −ν5


,

and

ν1 = γ + µ1, ν2 = µY + β, ϕ1 = ϕH, ν3 = αϕ1 + µQ, b1 =
bH

H + K
, ν4 = a + µU, ν5 = µW + b1.

(3.5)

Since all the parameters are positive, the right-hand side of system (3.1)-(3.2) is locally

Lipschitz continuous, there exists a local solution. Furthermore, for all X ∈ R6
+, A(X) is a

Metzler matrix. Thus, the analysis of the model can be carried out in the following invariant

region

Γ =
{
(A,Y,M,Q,U,W) ∈ R6 : A(t),Y(t),M(t),Q(t),U(t),W(t) ≥ 0

}
.

The invariance of Γ implies that all solutions of (3.1) with non-negative initial data remain

non-negative for all t ≥ 0. To be more precise, one has the following result.

Theorem 3.2.1. Denote µv = min
{
µ1, µY, µM, µQ, µU, µW

}
. Then the model (3.1) is a

dynamical system in the region

ΓL =

{
(A,Y,M,Q,U,W) ∈ Γ : V(t) ≤

NeggL
µv

}
.

Proof. Define the total mosquito population

V(t) = A(t) + Y(t) + M(t) + Q(t) + U(t) + W(t).

Add all the terms on the right-hand side of (3.1). Then, it follows that

V̇(t) ≤ B(W)W − µvV(t). (3.6)

Using assumption (3.2), one has B(W)W ≤ NeggL, which yields

V̇(t) ≤ NeggL − µvV(t).
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Thus,

lim
t→∞

sup(A(t) + Y(t) + M(t) + Q(t) + U(t) + W(t)) ≤
NeggL
µv

.

We conclude that every solution of (3.1) is bounded and consequently, the initial value

problem associated with system (3.1) has a unique solution defined for all t > 0. �

Theorem 3.2.1 implies that system (3.1) is mathematically and ecologically well-posed.

3.2.3 The MFE and basic offspring number Rode
0

Model (3.1) has a trivial equilibrium or mosquito-free equilibrium (MFE)T0 = (0, 0, 0, 0, 0, 0),

which is obtained by setting the right-hand side of (3.1) to zero. Following [40], the next

generation approach is used to calculate the basic offspring number Rode
0 . Let

F =



B(W)W

0

0

0

0


and V =



(ν1 + µ2A)A

−rγA + ν2Y

−βY − b1W + ν3Q

−αϕ1Q + ν4U

−aU + ν5W


,

be the vector of new generated mosquitoes and the vector of transfers between compart-

ments, respectively. The Jacobian matrices of F andV at the MFE T0 are

F =



0 0 0 0 Negg

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and V =



ν1 0 0 0 0

−rγ ν2 0 0 0

0 −β ν3 0 −b1

0 0 −αϕ1 ν4 0

0 0 0 −a ν5


.

Thanks to [40], the associated basic offspring number Rode
0 of (3.1) is the spectral radius of

the next generation matrix FV−1. That is

R
ode
0 =

Neggrγβαϕ1a
ν1ν2m1

, (3.7)

where, for notational convenience, we have set

m1 = aαϕ1µW + ν5

[
αϕ1µU + µQν4

]
; m2 = ν1ν2m1

(
1 −

1
Rode

0

)
. (3.8)

Remark 3.2.2. The threshold quantity Rode
0 measures the average expected number of new

adult female offsprings produced by a single female mosquito during its lifespan. It can

be ecologically interpreted as the product of the fraction of mosquitoes in aquatic stage

that survived to become immature female mosquitoes
(Neggrγ

ν1

)
, the fraction of immature

females that survived and start their gonotrophic cycle by entering the questing female

compartment
(
β
ν2

)
, and the fraction of fertilized adult females that survived and completed

their gonotrophic cycle
(
αϕ1a
m1

)
.
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Following Theorem 2 in [40], one has:

Lemma 3.2.1. The trivial equilibrium or MFE T0 of system (3.1) is locally asymptotically

stable (LAS) whenever Rode
0 < 1, and unstable otherwise.

Ecologically speaking, Lemma 3.2.1 implies that mosquitoes can be eliminated if the

initial sizes of the population of anopheles mosquitoes are in the basin of attraction of the

MFE T0. Thus, the mosquito population can be effectively controlled if Rode
0 < 1. To ensure

that the effective control of the mosquito population is independent of the initial size of the

mosquito population, a global asymptotic stability result must be established for the trivial

equilibrium.

Theorem 3.2.2. The MFE T0 of system (3.1) is globally asymptotically stable (GAS) in Γ,

whenever Rode
0 ≤ 1.

Proof. Thanks to the boundedness of solutions, we use the reduction theorem by Vidyasagar

[135]. Denote y(t) = (A(t),Y(t),Q(t),U(t),W(t))T and z(t) = M(t). Then system (3.1) takes

the form 
dy
dt

= f (y),
dz
dt

= g(y, z).
(3.9)

Let us first show that the equilibrium 05 = (0, 0, 0, 0, 0) is GAS for the subsystem dy
dt = f (y).

Consider the Lyapunov function

V0(y) =
1
ν1

[
rγA + ν1Y

]
+

ν2

βαϕ1

[
αϕ1Q + ν3U

]
+
ν2ν3ν4

aβαϕ1
W.

It is obvious that V0(0) = 0, and V0(y) > 0, for all y > 0. Moreover,

V̇0(y) =
1
ν1

[
rγȦ + ν1Ẏ

]
+

ν2

βαϕ1

[
αϕ1Q̇ + ν3U̇

]
+
ν2ν3ν4

aβαϕ1
Ẇ,

=
1
ν1

[
rγB(W)W − ν1ν2Y − rγµ2A2] +

ν2

βαϕ1

[
αϕ1βY + b1αϕ1W − ν3ν4U

]
+
ν2ν3ν4

aβαϕ1
[aU − ν5W] ,

=

[
rγ
ν1

B(W)W + ν2b1
β −

ν2ν3ν4ν5

aβαϕ1

]
W −

rγµ2

ν1
A2,

= −
rγNegg

ν1R
ode
0

[
1 −
R

ode
0

Negg
B(W)

]
W −

rγµ2

ν1
A2.

Since, max
W

B(W) ≤ Negg and Rode
0 ≤ 1, we have

R
ode
0

Negg
B(W) < 1. Hence, V̇(y) ≤ 0. On the

other hand, letH be the largest invariant set such thatH ⊂ {(A,Y,Q,U,W) ∈ R5
+/V̇0(y) = 0}.

ThenH = {05}. Thus, by the LaSalle Invariance Principle, we deduce that 05 is GAS in R5
+

for system
dy
dt

= f (y). Finally, using the fact 0 is GAS in R+ for system
dz
dt

= g(05, z), we

conclude that T0 is GAS in Γ. This completes the proof. �
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3.2.4 The non-trivial equilibrium or MPE

(a) Existence and uniqueness

The existence and stability of a MPE of the system (3.1) are addressed. Let such a

MPE be denoted by T ∗ = (A∗,Y∗,M∗,Q∗,U∗,W∗)T. Then A∗,Y∗,M∗,Q∗,U∗,W∗ are
Y∗ =

rγ
ν2

A∗, M∗ =
(1 − r)γ
µM

A∗, Q∗ =
ν1ν4ν5R

ode
0

aNeggαϕ1
A∗,

U∗ =
ν1ν5R

ode
0

aNegg
A∗, W∗ =

ν1R
ode
0

Negg
A∗,

(3.10)

where A∗ is a positive solution of the equation F
Rode

0
(A∗) = 0, where the function F

Rode
0

is given

in Eq. (3.3). Notice that F
Rode

0
(0) = ν1Negg(Rode

0 − 1) > 0 whenever Rode
0 > 1, F

Rode
0

(+∞) = −∞,

and F
Rode

0
is continuous and strictly decreasing on interval ]0; +∞[. Thus, by the intermediate

value theorem, F
Rode

0
vanishes exactly once in ]0; +∞[. This proves the existence and

uniqueness of a positive A∗ when Rode
0 > 1. Replacing the value of A∗ in (3.10) yields the

existence and uniqueness of T ∗. This result is summarized as follows.

Theorem 3.2.3. Model (3.1) has a unique MPE T ∗ whenever Rode
0 > 1. Moreover, for the

special case BS and in the absence of density dependent mortality (i.e. µ2 = 0), the unique

solution of F
Rode

0
(A∗) = 0 is explicitly given by

A∗ =
NeggL

ν1R
ode
0

(
R

ode
0 − 1

)1
n . (3.11)

Remark 3.2.3. Similar to [75], it can be easily proved that: (1)-the GAS of T0 given in

Theorem 3.2.2, (2-) the instability of T0 shown in Lemma 3.2.1, (3)-the existence of a unique

MPE T ∗ established by Theorem 3.2.3 whenever Rode
0 > 1 and (4)-the fact that T0 ∈ ∂Γ,

imply the uniform persistence of system (3.1).

(b) Local stability and existence of Hopf bifurcation for the special case where µ2 = 0

Theorem 3.2.4. Consider model (3.1), with µ2 = 0. Then, there exists two thresholds n∗0
and n∗∗0 such that:

(i)-The MPE T ∗ is LAS in Γ \ {T0}whenever Rode
0 > 1 and 1 < n < min{n∗0,n

∗∗

0 }.

(ii)-The system (3.1) undergoes a Hopf bifurcation whenever n crosses the critical value n∗∗0 .

Proof. This will be done in two steps. In the first, we prove the local asymptotic stability.

The second is devoted to the proof of the existence of Hopf bifurcation.

Step 1: The LAS of T ∗ is explored using the properties of Bézout matrices. To that end,

let us recall the following instrumental results.
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Lemma 3.2.2 (Theorem 2.6,[64]). Let A be a n×n complex matrix, and let Ek be the sum of

all the principal minors of A of order k, k ∈ 〈n〉 = {1, 2, ....,n}. Let Ω(A) be the n× n Hurwitz

matrix of A and assume that Ω(A) is real. Then A is stable if and only if all the leading

principal minors of Ω(A) are positive.

Definition 3.2.1 (Definition 2.7,[64]). Let a(x) and b(x) be two polynomials with real

coefficients of degree n and m (n ≥ m), respectively. The Bézoutiant defined by a(x) and

b(x) is the bilinear form
a(x)b(y) − a(y)b(x)

x − y
=

n−1∑
i,k=0

bi,kxiyk.

The symmetric matrix (bi,k)n−1
0 associated with this bilinear form is called the Bézout matrix

and is denoted by Ba,b.

Lemma 3.2.3 (Theorem 2.8,[64]). Let f (x) = xn
− anxn−1

− · · · − a1 be a polynomial with real

coefficients, and let an+1 = −1. Define the polynomials

h(u) = −a1 − a3u − · · · , and g(u) = −a2 − a4u − · · · .

The polynomial f (x) is negative stable if and only if the Bézout matrix Bh,g is positive

definite and ai < 0 for all i ∈ 〈n〉.

Lemma 3.2.4 (Sylvester’s Criterion,[50]). A real, symmetric matrix is positive definite if

and only if all its principal minors are positive.

We consider the model (3.1) in the absence of density-dependent mortality in aquatic

stage (i.e. µ2 = 0). Evaluating the Jacobian matrix at T ∗ gives

J(T ∗) =



−ν1 0 0 0 0 B(W∗) + W∗
dB(W∗)

dW
rγ −ν2 0 0 0 0

(1 − r)γ 0 −µM 0 0 0

0 β 0 −ν3 0 b1

0 0 0 αϕ1 −ν4 0

0 0 0 0 a −ν5


.

The eigenvalues of J(T ∗) are the roots of the polynomial

P(λ) = (λ + µM)
[
λ5 + b4λ

4 + b3λ
3 + b2λ

2 + b1λ + b0

]
, (3.12)

where 

b4 = ν5 + ν4 + ν3 + ν2 + ν1,

b3 = ν5(ν4 + ν3 + ν2 + ν1) + ν4(ν3 + ν2 + ν1) + ν3(ν2 + ν1) + ν2ν1,

b2 = m1 + ν5ν4(ν1 + ν2) + ν5ν3(ν1 + ν2) + ν5ν2ν1 + ν4ν3(ν1 + ν2)

+ν4ν2ν1 + ν3ν2ν1,

b1 = m1(ν1 + ν2) + ν5ν4ν2ν1 + ν5ν3ν2ν1 + ν4ν3ν2ν1,

b0 = ν1ν2m1 − aαϕ1rβγ
[
B(W∗) + W∗

dB(W∗)
dW

]
.

(3.13)
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Now, define

h(u) = b0 + b2u + b4u2 and g(u) = b1 + b3u + u2.

It follows from Definition 3.2.1 that the corresponding Bézout matrix Bh,g(P) of P(λ) given

by (3.12) is

Bh,g(P) =

 b0,0 b0,1

b0,1 b1,1

 ,
where b0,0 = b2b1 − b3b0, b0,1 = b4b1 − b0 and b1,1 = b4b3 − b2.

Since Bh,g(P) is symmetric, it suffices by Theorem 3.2.4, to show that the kth leading principal

minor ∆k of Bh,g(P), is positive. Since Rode
0 > 1, we have b0 = nν1ν2m1

(
1 −

1
Rode

0

)
= nm2 > 0.

The first leading principal minor of Bh,g(P), ∆1 = b0,0 = b2b1 − b3b0, is positive whenever

n < n∗0, where n∗0 =
b2b1

b3m2
.

The second leading principal minor of Bh,g(P),

∆2 = b1,1b0,0 − b2
0,1 = b1,1b2b1 − (b4b1)2 + m2(2b1b4 − b1,1b3)n −m2

2n2,

is positive whenever

n < n∗∗0 , where n∗∗0 =
b1,1

√
b2

3 − 4b1 + 2b1b4 − b1,1b3

2m2
> 0.

We conclude by choosing the integer n such that 1 < n < min{n∗0,n
∗∗

0 }.

Step 2: Consider the model (3.1) with Rode
0 > 1. A Hopf bifurcation can occur when the

Jacobian matrixJ(T ∗) of (3.1), evaluated at T ∗, has a pair of purely imaginary eigenvalues.

Note that when the rank of the Bézout matrix Bh,g(P) is reduced by exactly one, then the

characteristic polynomial P has a pair of purely imaginary eigenvalues [113]. Thus to

prove the existence of Hopf bifurcation, it suffices to verify the transversality condition

[23].

Let n = n∗∗0 be a bifurcation parameter. Let’s fix all other parameters of model (3.1).

Then, by Theorem 3.2.4, ∆1 > 0. Hence, ∆2(n) = 0 if and only if n = n∗∗0 . Moreover,

d∆2(n)
dn

∣∣∣∣
n=n∗∗0

= −m2b1,1

√
b2

3 − 4b1 < 0.

�

Remark 3.2.4. One should note that, the stability analysis of the temporal model (3.1)

subject to the newly considered Hassell oviposition function BH, as well as the stability

results with respect of the existing works are summarized in Table 3.3. Note that, RL0 , n∗1,

n∗∗1 b0, b1, ..., b4 and b1,1 are computed similarly to the proof Theorem 3.2.4 above such that:

(i) For B(W) given by BL, b0 = ν1ν2m1(Rode
0 −1) > 0 and RL0 = 1+

b1,1

√
b2

3 − 4b1 + 2b1b4 − b1,1b3

2ν1ν2m1
.
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(ii) For B(W) given by BH, b0 = nν1ν2m1

1 −
1

(Rode
0 ) 1

n

 > 0. Thus, n1∗ = min{n∗1,n
∗∗

1 }where

n∗1 and n∗∗1 are the positive roots of the equations ∆1(n) = 0 and ∆2(n) = 0, respectively.

Theorem 3.2.4 is numerically illustrated by Figure 3.2. The LAS of T ∗ is depicted in

Figure 3.2(A) and shows that, without competition in the aquatic stage (i.e. µ2 = 0), the

mosquito population will persist as long as Rode
0 > 1 and 1 < n < min{n∗0,n

∗∗

0 }. On the other

hand, the Hopf bifurcation shown by Figure 3.2(B) proves that, sustained oscillations are

possible when µ2 = 0. Moreover, Figure 3.2(B) suggests that, if competition is negligible in

the aquatic stage (i.e. µ2 = 0), the solutions of model (3.1) converge to a periodic solution,

whenever n > n∗∗0 . This is in agreement with the studies in [1, 105, 108].
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Figure 3.2: (A) LAS of T ∗ for model (3.1) with µ2 = 0, n = 10 and Negg = 25 (so that

R
ode
0 = 13.9399 > 1 and n∗∗0 = 12.4606).

(B) Hopf bifurcation in model (3.1) around of the MPE T ∗ with µ2 = 0, n = 13 and Negg = 25

(so that Rode
0 = 13.9399 > 1 and n∗∗0 = 12.4606). All other parameters are as in Table 3.4.

(c) Global stability

We explore the global asymptotic property of the MPE T ∗ of model (3.1) with density

dependent mortality in the aquatic stage (i.e. µ2 > 0).

Theorem 3.2.5. Consider the system (3.1) subject to the Maynard-Smith-Slatkin oviposi-

tion function with n = 1. Then, the MPE T ∗ is GAS in Γ \ {T0}whenever Rode
0 > 1.

The proof of Theorem 3.2.5 can be cheaply done thanks to the monotone (cooperative)

properties of system (3.1). It can also be proven by Lyapunov-LaSalle techniques, with

the construction of a suitable Lyapunov function of Goh-Volterra type. The latter proof is

provided below.
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Proof. Suppose Rode
0 > 1 in system (3.1). Let us first show that the equilibrium T ∗ =

(A∗,Y∗,Q∗,U∗,W∗)T is globally asymptotically stable for system
dx
dt

= f (x). To this end,

consider the non-linear Lyapunov function of Goh-Volterra type as follows (see also proof

of Theorem 4.3 in [87])

V1(x) = a1(A−A∗ ln A) + a2(Y−Y∗ ln Y) + a3(Q−Q∗ ln Q) + a4(U−U∗ ln U) + a5(W−W∗ ln W),

where,

a1 =
rγβaαϕ1Negg

ν1ν2ν3ν4B(W∗)Rode
0

, a2 =
βaαϕ1

ν2ν3ν4
, a3 =

aαϕ1

ν3ν4
, a4 =

a
ν4
, and a5 = 1.

At the steady state T ∗, the following relations hold:

B(W∗)W∗ = (ν1 + µ2A∗)A∗ = ν1R0
B(W∗)
Negg

A∗, ν3Q∗ = βY∗ + b1W∗,

rγA∗ = ν2Y∗, αϕ1Q∗ = ν4U∗ and aU∗ = ν5W∗.

(3.14)

The time derivative of V1(x) is

V̇1(x) = a1

(
1 −

A∗

A

)
Ȧ + a2

(
1 −

Y∗

Y

)
Ẏ + a3

(
1 −

Q∗

Q

)
Q̇ + a4

(
1 −

U∗

U

)
U̇ + a5

(
1 −

W∗

W

)
Ẇ,

= a1

[
B(W)W − (ν1 + µ2A)A −

B(W)WA∗

A
+ (ν1 + µ2A)A∗

]
+ a2

[
rγA − ν2Y

−
rγAY∗

Y
+ ν2Y∗

]
+ a3

[
βY + b1W − ν3Q −

βYQ∗

Q
− b1

WQ∗

Q
+ ν3Q∗

]
(3.15)

+a4

[
αϕ1Q − ν4U −

αϕ1QU∗

U
+ ν4U∗

]
+ a5

[
aU − ν5W −

aUW∗

W
+ ν5W∗

]
.

Using (3.14), Eq. (3.15) becomes

V̇1(x) = a1µ2A∗A
(
2 −

A
A∗
−

A∗

A

)
+ a1B(W∗)W∗ + a2ν2Y∗ + a3ν3Q∗ + a4ν4U∗ + a5ν5W∗

−a1
B(W)WA∗

A
− a2

rγAY∗

Y
− a3

βYQ∗

Q
− a3b1

WQ∗

Q
− a4

αϕ1QU∗

U
− a5

aUW∗

W
,

and the relations

a1B(W∗)W∗ = a2ν2Y∗ = a3βY∗ = a2rγA∗ ; a5ν5W∗ = a2rγA∗ + a3b1W∗

a3ν3Q∗ = a4ν4U∗ = a4αϕ1Q∗ = a5aU∗ = a2rγA∗ + a3b1W∗

(3.16)
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are satisfied. Substituting the expressions in Eq. (3.16) yields

V̇1(x) = a1µ2A∗A
(
2 −

A
A∗
−

A∗

A

)
+ 6a2rγA∗ + 3a3b1W∗

− a2rγA∗
(

B(W)WA∗

B(W∗)W∗A

+
AY∗

A∗Y
+

YQ∗

Y∗Q
+

QU∗

Q∗U
+

UW∗

U∗W
+

B(W∗)
B(W)

)
− a3b1W∗

(
WQ∗

W∗Q
+

QU∗

Q∗U
+

UW∗

U∗W

)
+a2rγA∗

(
B(W∗)
B(W)

− 1
)

+

(
ν3ν4ν5 − b1αϕ1a

ν3ν4

) (
B(W)
B(W∗)

− 1
)

W

= a1µ2A∗A
(
2 −

A
A∗
−

A∗

A

)
+ a2rγA∗

(
6 −

B(W)WA∗

B(W∗)W∗A
−

AY∗

A∗Y
−

YQ∗

Y∗Q

−
QU∗

Q∗U
−

UW∗

U∗W
−

B(W∗)
B(W)

)
+ a3b1W∗

(
3 −

WQ∗

W∗Q
−

QU∗

Q∗U
−

UW∗

U∗W

)
+a2rγA∗

(
B(W)
B(W∗)

− 1
) (

W
W∗
−

B(W∗)
B(W)

)
. (3.17)

In Eq. (3.17), the terms between the brackets are Volterra-type functions. These functions

are positive definite. For B(W) with n = 1, we have

B(W)
B(W∗)

− 1 =
W∗
−W

L + W
and

W
W∗
−

B(W∗)
B(W)

=
(W −W∗)L
W∗(L + W∗)

.

Hence, (
B(W)
B(W∗)

− 1
) (

W
W∗
−

B(W∗)
B(W)

)
= −

(W∗
−W)2L

W∗(L + W)(L + W∗)
< 0.

Thus, using the arithmetic-geometric means inequality, it follows that V̇1 ≤ 0. The proof

follows by the conclusion in the proof of Theorem 3.2.2 as well. �

Unfortunately, for the case n > 1, none of these latter theories can easily apply. This

owing to high nonlinearity, the system (3.1) is neither cooperative, nor amenable for

Lyapunov-LaSalle techniques. Alternatively, to prove the global attractivity of T ∗ when

n > 1, we shall adopt a generic approach (which can also apply for n = 1) based on

a fluctuation argument [77, 80, 82, 152]. We shall construct two monotone convergent

sequences such that one is the upper bound and the other the lower bound of the constant

solution T ∗. Moreover, the constructed sequences must share the same limit.

Before the implementation of the above mentioned approach, let us give some useful

preliminaries.

For two vectors a, b ∈ R5, we write: a ≥ b if ai ≥ bi ; a > b if a ≥ b and a , b and a � b if

ai > bi.

Let y = (A,Y,Q,U,W)T = (y1, y2, y3, y4, y5)T
∈ R5

+, g ≥ 0 be any nonnegative quantity and

F(y, g) =



gW − (ν1 + µ2A)A

rγA − ν2Y

βY + b1W − ν3Q

αϕ1Q − ν4U

aU − ν5W


.
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Consider the system
dy
dt

= F(y, g). (3.18)

One can easily verify that the function F satisfies the following conditions:

(1) F is cooperative on R5
+ and DF(y, g) is irreducible for every y ∈ R5

+;

(2) F(0, g) = 0 and Fi(y, g) ≥ 0 for all y ∈ R5
+ with yi = 0, i = 1, 2, . . . , 5;

(3) F is strictly sublinear on R5
+.

Thus, thanks to [159] (Corollary 3.2), the following result holds.

Lemma 3.2.5. Consider the system (3.18). Denote s(DF(0, g)) = s(F′y(0, g)) = max{Reλ :

det(λI5 −DF(0, g)) = 0}, the stability modulus of the matrix DF(0, g). Then,

(i) If s(DF(0, g)) ≤ 0, then y = 0 is GAS in R5
+.

(ii) If s(DF(0, g)) > 0, then dy
dt = F(y, g) admits a unique positive equilibrium y∗(g) which

is GAS in R5
+ \ {0}.

To stress the dependence of T ∗ on the oviposition function B(W), we denote T ∗ =

T
∗(B(W∗)).

Remark 3.2.5. In the case when s(DF(0, g)) > 0, the positive equilibrium y∗(g) is an

increasing function of g, that is g1 > g2 implies y∗(g1)� y∗(g2). Indeed, by the comparison

principle, we prove that y∗(g1) ≥ y∗(g2), and use condition (1) above to conclude (since F

is strongly monotone [124]) that y∗(g1)� y∗(g2). Furthermore, by setting g = B(0) = Negg,

Theorem 3.2.5 with B(W) replaced by B(0) = Negg and item (ii) of Lemma 3.2.5 imply that,

for Rode
0 > 1 (or equivalently, s(DF(0,B(0))) > 0), there is a MPE y∗(B(0)) = T ∗(B(0)) which is

GAS for the system dy
dt = F(y,B(0)).

Denote

x(1) = T ∗(B(0)) = y∗(B(0)) =
(
x(1)

1 , x
(1)
2 , x

(1)
3 , x

(1)
4 , x

(1)
5

)T
.

Using Eq. (3.10), the fifth coordinate of x(1) is

x(1)
5 = W∗(B(0)) =

R
ode
0

Negg

ν2
1

µ2

(
R

ode
0 − 1

)
.

Clearly x(1) is the MPE of system (3.1) when B(W) is replaced by B(0) = Negg.

The following result proves the global attractivity of T ∗ when n > 1 and Rode
0 > 1.

Theorem 3.2.6. Suppose Rode
0 > 1 and s(DF(0,B(x(1)

5 ))) > 0. Then the MPE T ∗ of system

(3.1) for B(W) with n > 1 is globally attractive.
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Proof. We prove this theorem by implementing the fluctuation method in two steps as

mentioned earlier in the introduction section.

Step 1 : Construction of two monotone sequences {z(m)
}
∞

m=1 and {x(m)
}
∞

m=1.

If y ∈ R5
+ be any solution of system (3.1). Since dA

dt ≤ B(0)W − (ν1 + µ2A)A, then system (3.1)

is bounded from above by the cooperative system

dỹ
dt

= F(ỹ,B(0)), where ỹ = y = (A,Y,Q,U,W)T.

It follows from the global stability of T ∗(B(0)) and the comparison principle that, for any

ε = (ε1, ε2, ε3, ε4, ε5)T
� 0, there exists a t1 > 0 such that

y(t) ≤ T ∗(B(0)) + ε = x(1) + ε, ∀t > t1.

Since s(DF(0,B(x(1)
5 ))) > 0, we can choose ε small enough such that s(DF(0,B(x(1)

5 + ε5))) > 0.

It follows from Lemma 3.2.5 that there exists a unique positive equilibrium

y∗(B(x(1)
5 + ε5)) = T ∗(B(x(1)

5 + ε5)) for
dȳ
dt

= F(ȳ,B(x(1)
5 + ε5)),

with ȳ = y = (A,Y,Q,U,W)T, which is globally asymptotically stable in R5
+ \ {0}. Denote

z(1) = T ∗(B(x(1)
5 + ε5)), and z(1)

5 = W∗(B(x(1)
5 + ε5)) the fifth coordinate of z(1).

Since W(t) ≤ x(1)
5 + ε5, ∀t > t1, we have

B(W(t)) ≥ B(x(1)
5 + ε5) for t > t1.

Hence,
dA
dt
≥ B(x(1)

5 + ε5)W − (ν1 + µ2A)A, ∀t > t1.

Therefore, the system (3.1) is bounded from below by cooperative system

dȳ
dt

= F(ȳ,B(x(1)
5 + ε5)), ∀t > t1.

Thus, the global stability of z(1) = T ∗(B(x(1)
5 + ε5)) and the comparison principle imply that

for any ε > 0, with z(1)
− ε� 0, there exists t2 > t1 such that y(t) ≥ z(1)

− ε, ∀t > t2.

Using Remark 3.2.5, we have z(1)
� x(1).

Iterating this process, we construct two vectors

x(2) = T ∗(B(z(1)
5 − ε5)) and z(2) = T ∗(B(x(2)

5 + ε5)) with x(2)
5 = W∗(B(z(1)

5 − ε5)),

and subsequently find t3 > t2 such that y(t) ≤ x(2) + ε, ∀t > t3 and t4 > t3 such that

y(t) ≥ z(2)
− ε, ∀t > t4. Hence,

z(2)
− ε ≤ y(t) ≤ x(2) + ε, ∀t > t4.
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Furthermore, the relationship z(1)
� z(2)

� x(2)
� x(1) is verified. Indeed,

since B(z(1)
5 − ε5) < B(0), we have x(2) = T ∗(B(z(1)

5 − ε5))� T ∗(B(0)) = x(1).

Similarly, since B(x(2)
5 + ε5) > B(x(1)

5 + ε5), we have

z(2) = T ∗(B(x(2)
5 + ε5))� T ∗(B(x(1)

5 + ε5)) = z(1).

Since B(z(1)
5 − ε5) > B(x(1)

5 + ε5), we have

x(2) = T ∗(B(z(1)
5 − ε5))� T ∗(B(x(1)

5 + ε5)) = z(1).

Hence, B(x(2)
5 + ε5) < B(z(1)

5 − ε5), and consequently,

z(2) = T ∗(B(x(2)
5 + ε5))� T ∗(B(z(1)

5 − ε5)) = x(2).

Therefore, z(1)
� z(2)

� x(2)
� x(1).

Repeating the above arguments, we get two monotone sequences of vectors {z(m)
}
∞

m=1

and {x(m)
}
∞

m=1 such that

0� z(1)
� z(2)

� · · · � z(m)
� x(m)

� · · · � x(2)
� x(1),

with F(z(m),B(x(m)
5 + ε5)) = 0 and F(x(m),B(z(m)

5 − ε5)) = 0, ∀m ≥ 2. Moreover, there exists

t2m > 0 such that

z(m)
− ε ≤ y(t) ≤ x(m) + ε,∀t > t2m.

Hence, there exist two positive vectors X∗ and Z∗ with X ≥ Z such that

lim
m→∞

z(m) = Z∗ and lim
m→∞

x(m) = X∗.

Furthermore, Z∗ ≤ T ∗ ≤ X∗.

Step 2 : Passage to the limit.

For any y0 , 0, the omega limit set w(y0) ∈ [Z∗,X∗] because the ordered interval [Z∗,X∗] is

positively invariant.

• If Z∗ = X∗, then we have proved that Z∗ = X∗ = T ∗ and T ∗ is globally attractive.

• If Z∗ , X∗, that is Z∗ < X∗, then it is easy to see that Z∗ � X∗. Moreover, by the

uniform persistence in Remark 3.2.3, there exists η > 0 such that w(y0) ∈ [Z∗,X∗] with

Z∗5 + η ≤ w5(y0) ≤ X∗5 − η, where w5(y0) is the fifth coordinate of w(y0). By repeating the

previous process, we can construct two vectors Z∗(1) and X∗(1) such that for any nonzero

point y0,

Z∗ � Z∗
(1)
� T

∗
� X∗

(1)
� X∗ and w(y0) ∈ [Z∗

(1)
,X∗

(1)
].

• If Z∗(1)
= X∗(1) then Z∗(1)

= X∗(1)
= T ∗ and T ∗ is globally attractive.

• If not, Z∗(1)
< X∗(1) , then Z∗(1)

� X∗(1) . Repeating the procedure, we can construct two

sequences Z∗(m) and X∗(m) such that

Z∗
(1)
� Z∗

(2)
� · · · � Z∗

(m−1)
� Z∗

(m)
≤ T

∗
≤ X∗

(m)
� X∗

(m−1)
� X∗

(m−2)
� · · · � X∗

(2)
� X∗

(1)
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and

lim
m→∞

Z∗
(m)

= lim
m→∞

X∗
(m)

= T ∗,

which implies that the omega limit set of every nonzero point y isT ∗ and thusT ∗ is globally

attractive. �

Ecologically speaking, Theorem 3.2.5 and Theorem 3.2.6 imply that, mosquitoes

will persist in the community whenever the associated conditions for the global stabil-

ity/attractivity of T ∗ hold. These theorems are numerically supported by simulating the

model (3.1) using; n = 1 for Figure 3.3(a) and n = 13 for Figure 3.3(b). Figure 3.3(b) show

that, in the presence of density dependent mortality in the aquatic stage (i.e. µ2 , 0),

the solutions of model (3.1) converge to T ∗ even if the conditions of Theorem 3.2.4 are

satisfied. This suggests that, the phenomenon of Hopf bifurcation can be ruled out in the

system by addicting a positive density dependent mortality rate µ2 > 0 in the aquatic stage

of the mosquitoes.

In Table 3.3 below, we summarize the long run behavior of the solutions of the ODE

model (3.1) subject to either of the four egg oviposition functions given in Table 3.1. The

expressions of RL0 and n1∗ are specified in Remark 3.2.4.

Table 3.3: Stability properties of the model (3.1). † denotes a result established exclusively

in this paper.
B(W) n and µ2 R

ode
0 T0 T

∗ Stable limit cycle Source

BM µ2 ≥ 0 R
ode
0 ≤ 1 GAS No No [2, 88]

µ2 > 0 R
ode
0 > 1 Unstable GAS No [2, 88]

BL µ2 ≥ 0 R
ode
0 ≤ 1 GAS No No [108]

µ2 = 0 1 < Rode
0 ≤ R

L

0 Unstable LAS No [108]

µ2 = 0 R
ode
0 > RL0 Unstable Unstable Yes [108]

µ2 > 0 R
ode
0 > 1 Unstable GAS No †

BS n > 0, µ2 ≥ 0 R
ode
0 ≤ 1 GAS No No †

1 < n < n∗∗0 , µ2 = 0 R
ode
0 > 1 Unstable LAS No †

n > n∗∗0 ,µ2 = 0 R
ode
0 > 1 Unstable Unstable Yes †

n > 0, µ2 > 0 R
ode
0 > 1 Unstable GAS No †

BH n > 0, µ2 ≥ 0 R
ode
0 ≤ 1 GAS No No †

1 < n < n1∗, µ2 = 0 R
ode
0 > 1 Unstable LAS No †

n > n1∗, µ2 = 0 R
ode
0 > 1 Unstable Unstable Yes †

n > 0, µ2 > 0 R
ode
0 > 1 Unstable GAS No †
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Figure 3.3: GAS of the MPE T ∗ for model (3.1). µ2 = 0.0004, Negg = 25 and all other

parameters are as in Table 3.4 (so that Rode
0 = 13.9399 > 1): (a) n = 1. (b) n = 13.

3.2.5 Sensitivity analysis

We carried out sensitivity analysis to determine the model robustness to parameter

values [8, 88]. This is a tool to identify the most influential parameters in determining

mosquito dynamics. A latin hypercupe Sampling (LHS) scheme [90] samples 1000 values

for each input parameter using a uniform distribution over the range of ecologically realistic

values is given in Figures 3.4 and 3.5 with descriptions and references given in Table

3.4. Using the system of differential equations that describe (3.1) for B(W) with n = 1,

5000 model simulations are performed by randomly pairing sampled values for all LHS

parameters. Partial Rank Correlation Coefficients (PRCC) and corresponding p-values

between Rode
0 and each parameter are computed. An output is assumed sensitive to

an input if the corresponding PRCC is less than −0.50 or greater than +0.50, and the

corresponding p-value is less than 5%.

From Figure 3.4 and Figure 3.5, we can identify five parameters that strongly influence

the population dynamics and dispersal of the mosquito, namely the natural mortality rate

of immature females (µY), the natural mortality rate of the aquatic stage (µ1), the natural

mortality rate of breeding females (µW), the transfer rate (β) (also referred to as mating

rate), the maturation rate (γ) and the deposit rate of eggs by females (Negg). Thus, from

this sensitivity analysis, the following suggestions are made:

(i) The mechanical control (such as removal of stagnant waters) could be an effective

control measure against the growing of mosquitoes because the value of Negg and

the population size of mosquitoes are minimized;
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Table 3.4: Values and ranges of the parameters of the model (3.1).

Parameters Baseline Value Range Source

r 0.5

γ 0.8/day 0.5 − 0.89 [38]

Negg 50/day 10 − 100 [38, 108]

L 40000 50 − 3 × 106 [108]

β 0.2/day 0.05 − 0.35

µ2 0.04/ml 0.02 − 0.06 [108]

µ1 0.51/day 0.28 − 0.76 [38]

µM 0.14/day 0.02 − 0.2 [2, 88]

µY 0.05/day 0.01 − 0.2 [2, 88]

µQ 0.18/day 0.125 − 0.233 [20]

µU 0.0043/day 0.0034 − 0.01 [20]

µW 0.41/day 0.41 − 0.56 [20]

ϕ1 16 12 − 20 [104]

α 0.86 0.75 − 0.95 [104]

b1 0.8/day 0.46 − 0.92 [104, 105]

a 0.43 0.30 − 0.56 [20]
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Figure 3.4: Sensitivity analysis between Rode
0 and each parameter.

(ii) The use of larvicides and removal of mosquito breeding sites seem to be important

control measures against the mosquitoes because they increase in the value of µ1

and reduce the value of γ;

(iii) The use of insecticides is potentially another good control tool against mosquito
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Figure 3.5: Sensitivity analysis between Y, Q, U, W and each parameter.

population because it helps increasing the values of µY and µW;

(iv) The use of sterile insect technique (SIT) and genetically modified mosquitoes (GMM)

may play an important role in minimizing the size of mosquito population by reducing

the transfer rate (β) and maturation rate (γ).

3.3 Spatio-temporal model

3.3.1 Modeling framework

In order to assess the influence of mobility on the spread of mosquitoes, we extend

model (3.1) by taking into account the spatial component. In this new setting, we give addi-

tional assumptions based on the mosquito ability to move, knowing that the mosquitoes in

the aquatic stage often live in closed habitats such as unattended water containers. There-

fore, it is reasonable to assume that resting females mosquitoes, as well as mosquitoes in

the aquatic stage do not move. The remaining classes of adult mosquitoes disperse while

searching for hosts for blood meals or breeding sites for reproduction [154]. The move-

ments of adult mosquitoes can be classified into long-range and short-range dispersals.

Long-range dispersal is often unintentional and aided by wind or human transport while

short-range dispersal is often intentional and can be divided into non-oriented flights or

oriented flights towards sites [45]. Mosquitoes follow odors and carbon dioxide carried by
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the wind, which gives their main direction of migration [53]. Therefore, we add advection or

drift terms to account for the fact that, when mosquitoes are stimulated by attractants (e.g.

wind, hosts, breeding sites), they move preferably in certain directions [30, 42]. We use εM,

εQ and εW to denote the constant velocity fluxes (migration coefficients) of males, questing

females and breeding females, respectively. When mosquitoes are not submitted to stimuli,

it is possible to assume that they move randomly in any direction [35, 42]. For simplicity, to

describe the random movement of mosquitoes, we use diffusion to model it according to

Fick’s law. We denote DY, DM, DQ and DW the diffusion coefficients for immature females,

males, questing females and breeding females, respectively.

To make it simple, we concentrate on one dimensional spatial habitat Ω = (0, l), l > 0

and assume that the mosquitoes are confined in that line segment all the time. The number

of hosts is allowed to differ across Ω, introducing heterogeneity. Thus, the population

density of humans H(x) is location-dependent, implying that the parameters ϕ1(x), b1(x),

ν3(x) and ν5(x) are location-dependent as well.

According to the above description, we propose the following spatio-temporal model

∂A
∂t

= B(W(t, x))W(t, x) − [ν1 + µ2A(t, x)]A(t, x),

∂Y
∂t

= DY
∂2Y
∂x2 + rγA(t, x) − ν2Y(t, x),

∂Q
∂t

= DQ
∂2Q
∂x2 − εQ

∂Q
∂x

+ βY(t, x) + b1(x)W(t, x) − ν3(x)Q(t, x),

∂U
∂t

= αϕ1(x)Q(t, x) − ν4U(t, x),

∂W
∂t

= DW
∂2W
∂x2 − εW

∂W
∂x

+ aU(t, x) − ν5(x)W(t, x),

(3.19)

Here A(t, x), Y(t, x), Q(t, x), U(t, x) and W(t, x) measure the density of mosquitoes at

location x and time t. Note that the equation for the density of male mosquitoes M(t, x) is

∂M
∂t

= DM
∂2M
∂x2 − εM

∂M
∂x

+ (1 − r)γA(t, x) − µMM(t, x). (3.20)

We discard Eq. (3.20) from system (3.19) because the unknown M(t, x) can be determined

if A(t) is known. Indeed, once A(t) is found, (3.20) is a scalar advection-diffusion-reaction

equation. Thereafter, it is well known that, along the characteristics x → x − tεM, is

transformed into a scalar reaction-diffusion equation that can be solved in a classical

manner [79]. System (3.19) is appended with the initial conditions A(0, x) = φ1(x), Y(0, x) = φ2(x), Q(0, x) = φ3(x),

U(0, x) = φ4(x), W(0, x) = φ5(x), x ∈ Ω,
(3.21)
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the Neumann boundary conditions

∂Y
∂x

(t, 0) =
∂Y
∂x

(t, l) = 0, (3.22)

and the Robin boundary conditions

DZ
∂Z
∂x

(t, 0) − εZZ(t, 0) =
∂Z
∂x

(t, l) = 0, Z = Q,W, (3.23)

where each φi (i = 1, 2, 3, 4, 5) is assumed to be nonnegative and continuous in the space

variable x.

3.3.2 Existence of positive solutions

The aim here is to give the preliminary results for the well-posedness of system (3.19)-

(3.23). These results include the existence of the unique maximal bounded semiflow

associated with (3.19)-(3.23).

Let u(t, x) = (A(t, x),Y(t, x),Q(t, x),U(t, x),W(t, x)) = (u1(t, x),u2(t, x),u3(t, x),u4(t, x),u5(t, x))

denote a solution for (3.19) corresponding to the initial condition φ = (φ1, φ2, φ3, φ4, φ5).

Let X := C(Ω,R5) =
∏5

i=1 Xi, Xi := C(Ω,R), i = 1, ..., 5 be the Banach space of R5-

valued functions continuous in x ∈ Ω equipped with the usual sup norm ‖u‖X =
∑5

i=1 ‖ui‖Xi ,

X+ := C(Ω,R5
+) =

∏5
i=1 X+

i , where X+
i := C(Ω,R+) the positive cone of Xi.

Denote by I the identity operator on Xi. Let Ti(t) : Xi −→ Xi, t ≥ 0, i = 2, 3, 5,

be the semigroups associated with the operators DY∂2
xx − ν2I, DQ∂2

xx − εQ∂x − ν3(·)I and

DW∂2
xx−εW∂x−ν5(·)I, respectively, subject to the Neumann and Robin boundaries conditions.

It follows from [124] that Ti(t), i = 2, 3, 5 is compact. Moreover, according to Definition A.1.5

in Appendix and thanks to Corollary 7.2.3 in [124], Ti(t), i = 2, 3, 5 is strongly positive. We

also define

(T1(t)φ1)(x) = e−ν1tφ1(x) and (T4(t)φ4)(x) = e−ν4tφ4(x),

for any φi ∈ Xi, i = 1, 4, t ≥ 0. Then,

T(t) = (T1(t),T2(t),T3(t),T4(t),T5(t)) : X −→ X, ∀t ≥ 0 (3.24)

defines a C0-semigroup (see e.g. [134]).

Define F = (F1,F2,F3,F4,F5) : X+
−→ X by

F(φ)(x) :=



B(φ5)φ5 − µ2φ2
1

rγφ1

βφ2 + b1(x)φ5

αϕ1(x)φ3

aφ4


, ∀x ∈ Ω and φ = (φ1, φ2, φ3, φ4, φ5) ∈ X+. (3.25)

Then, system (3.19)-(3.23) can be rewritten as the following integral equation

u(t) := T(t)φ +

∫ t

0
T(t − s)F(u(s))ds, (3.26)
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whose solution is called mild solution (see Definition A.1.4). The following result guaranties

the local well-posedness of (3.19)-(3.23) on X+.

Theorem 3.3.1. For all φ ∈ X+, the system (3.19)-(3.23) has a unique mild solution

u(t, ·, φ) := (u1(t, ·),u2(t, ·),u3(t, ·),u4(t, ·),u5(t, ·)) on the interval of existence [0, σφ) with

u(0, ·, φ) = φ, where σφ ≤ ∞. Furthermore for t ∈ [0, σφ), u(t, ·, φ) ∈ X+ and u(t, ·, φ) is a

classical solution of (3.19)-(3.23).

Proof. By Corollary 4 in [91] and Theorem 7.3.1 in [124], it suffices to show that for any

φ ∈ X+,

lim
h→0+

dist(φ + hF(φ),X+) = 0. (3.27)

Let b̃1 = min
x∈Ω
{b1(x)} and ϕ̃1 = min

x∈Ω
{ϕ1(x)}. Then for any φ ∈ X+ and h ≥ 0, we have

φ + hF(φ) =



φ1 + h[B(φ5)φ5 − µ2φ2
1]

φ2 + hrγφ1

φ3 + h[βφ2 + b1(x)φ5]

φ4 + hαϕ1(x)φ3

φ5 + haφ4


≥



φ1[1 − hµ2φ1]

φ2 + hrγφ1

φ3 + h[βφ2 + b̃1φ5]

φ4 + hαϕ̃1φ3

φ5 + haφ4


.

The above inequalities imply that (3.27) holds, this complete the proof. �

In order to state and establish the global well-posedness result for (3.19)-(3.23), the

following result, established in [156], which extends Lemma 1 in [82] in the presence of

advection, is instrumental.

Lemma 3.3.1 ([156], Proposition 1). Consider in a spatial domain with x ∈ Ω, the following

scalar reaction-advection-diffusion equation
∂tw(t, x) = D∂2

xxw(t, x) − ε∂xw(t, x) + g(x) − λw(t, x), t > 0,

D∂xw(t, x) − εw(t, x) = 0, x ∈ ∂Ω, t > 0,

w(0, x) = ψ(x), x ∈ Ω,

(3.28)

where D > 0, λ > 0, ε ≥ 0, and g(x) > 0 is a continuous function. Then, for all ψ ∈ C(Ω,R+),

there exists a unique positive steady state w∗ which is globally attractive in C(Ω,R).

Moreover, in the case ε = 0 and g(x) ≡ g, it holds that w∗ =
g
λ

.

Now we are in a position to show that solutions of the system (3.19)-(3.23) exist globally

for t ∈ [0,∞) in X+.

Theorem 3.3.2. For any φ ∈ X+, system (3.19)-(3.23) admits a unique solution u(t, x, φ)

defined on [0,∞) with u(0, ·, φ) = φ and a semiflow Φt := Φ(t) : X+
−→ X+ is generated by

(3.19)-(3.23) which is defined by

Φ(t)φ = u(t, ·, φ), t ≥ 0. (3.29)

Furthermore Φt := Φ(t) : X+
−→ X+ is point dissipative.
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Proof. For any φ ∈ X+, we denote by u(t, x, φ) the unique solution of system (3.19)-(3.23)

satisfying u(0, x) = u0(x) = φ(x) with the maximal interval of existence [0, σ) for some σ > 0.

By Theorem 3.3.1, we have u. (t, x, φ) ≥ 0. Having in mind that B(W)W is bounded above by

NeggL, it comes that

∂tA(t, x) ≤ NeggL − ν1A, ∀t ≥ 0, x ∈ Ω.

This implies that there exists t1 = t1(φ) > 0 such that A(t, x) ≤
NeggL
ν1

, ∀t ≥ t1, x ∈ Ω.

Next, from Eq. (3.19), one has

∂tY(t, x) ≤ DY∂
2
xxY + rγM0 − ν2Y, ∀t ≥ t1.

The comparison principle (see [49] or [125], Theorem 10.1) and Lemma 3.3.1 with D = DY,

ε = 0, g(x) = rγM0, λ = ν2, imply that there exists t2 = t2(φ) > t1 > 0 large enough so that

Y(t, x) ≤
rγM0

ν2
:= M1, ∀t ≥ t2, x ∈ Ω.

Let V := Q + U + W, then from (3.19) we have

∂tV(t, x) ≤ D0∂
2
xxV − ε0∂xV + βM1 − µ0V, ∀t > t2,

where D0 = max{DQ,DW}, ε0 = min{εQ, εW} and µ0 = min{µQ, µU, µW}. Another application

of the comparison principle and Lemma 3.3.1 with ε = ε0 > 0, D = D0, g(x) = βM1, λ = µ0,

yields t3 = t3(φ) > t2 > 0 large enough so that

Q(t, x) + U(t, x) + W(t, x) ≤
βM1

µ0
:= M2, ∀t ≥ t3, x ∈ Ω.

Hence, the solutions of (3.19)-(3.23) are ultimately bounded with respect to the maximum

norm. Therefore, the latter results, combined with the local existence in Theorem 3.3.1,

yields the global existence of the solution u(t, x, φ) in [0,∞). It follows that the solution

semiflow Φt is point dissipative. �

Since the first and the fourth equation in (3.19) have no diffusion term, the solution map

Φt is no compact. In order to overcome this problem, we introduce the Kuratowski measure

κ (see [36]), which is defined by

κ(B) := inf{r1 : B has a finite cover of diameter < r1}, (3.30)

for any bounded set B. We set κ(B) = ∞ whenever B is unbounded. It is easy to see that

B is precompact (i.e. B is compact) if and only if κ(B) = 0. Then the solution map Φt has

some partial compactness in the following sense.

Lemma 3.3.2. Φt is κ-contracting in the sense that

lim
t→∞

κ(Φ(t)B) = 0 for any bounded B ⊂ X+.
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Proof. For convenience, we let u := (Y,Q,W), v := (A,U), D = diag(DY,DQ,DW),

ε = diag(0, εQ, εW) and define

m(t, x,u,v) =


rγA − ν2Y

βY + b1(x)W − ν3(x)Q

aU − ν5(x)W

 and g(t, x,u,v) =

 B(W)W − (ν1 + µ2A)A

αϕ1(x)Q − ν4U

 .
Then system (3.19)-(3.23) can be rewritten as

∂u
∂t

= D
∂2u
∂x2 − ε

∂u
∂x

+ m(t, x,u,v),

∂v
∂t

= g(t, x,u,v), x ∈ Ω, t > 0,

D
∂u
∂x

(t, 0) − εu(t, 0) =
∂u
∂x

(t, l) = 0

u(0, x) = φ, v(0, x) = ψ.

Then, for any (u,v) ∈ X+, we have

xT
M(u,v)x ≤ −r1xTx, ∀x ∈ R2, (3.31)

where

M(u,v) =
∂g(t, x,u,v)

∂v
=

 −ν1 − 2µ2A 0

0 −ν4

 and r1 = min{ν1; ν4}.

Let B be a given bounded subset in X+. We first show that Φt is asymptotically compact on

B in the sense that for any sequences ϕn ∈ B and tn →∞, there exist subsequences ϕnk and

tnk → ∞ such that Φtnk
(ϕnk) converges in X+ as k → ∞. Note that the family of functions

{Φtn(ϕn)(x)}n≥1 is uniformly bounded on Ω for all n ≥ 1. In view of the Arzela-Ascoli

Theorem, it suffices to prove that {Φtn(ϕn)(x)}n≥1 is equicontinuous in x ∈ Ω for all n ≥ 1.

Let (un(t, x),vn(t, x)) = Φt(ϕn)(x), ∀ϕn ∈ X+, t ≥ 0, x ∈ Ω. For simplicity, we define

un(t, x) := un(t + tn, x) and vn(t, x) := vn(t + tn, x), ∀t ≥ −tn, x ∈ Ω.

Clearly, (un(0, x),vn(0, x)) = Φtn(ϕn)(x), ∀n ≥ 1, x ∈ Ω. Note that un(t, x) and vn(t, x) are

uniformly bounded, ∀n ≥ 1, x ∈ Ω, t ≥ 0.

By a direct computation, we see that for all t ≥ −tn, x, y ∈ Ω, there holds

∂
∂t

[
(vn(t, x) − vn(t, y))T

· (vn(t, x) − vn(t, y))
]

= 2(vn(t, x) − vn(t, y))T
·
∂
∂t

(vn(t, x) − vn(t, y))

= 2(vn(t, x) − vn(t, y))T
·

[
g(t + tn, x,un(t, x),vn(t, x))

−g(t + tn, y,un(t, y),vn(t, y))
]
. (3.32)
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Moreover,[
g(t + tn, x,un(t, x),vn(t, x)) − g(t + tn, y,un(t, y),vn(t, y))

]
=

[
g(t + tn, x,un(t, x),vn(t, x)) − g(t + tn, x,un(t, x),vn(t, y))

]
+
[
g(t + tn, x,un(t, x),vn(t, y)) − g(t + tn, y,un(t, y),vn(t, y))

]
=

[∫ 1

0

∂g(t + tn, x,un(t, x),vn(t, x) + η(vn(t, x) − vn(t, y))
∂v

dη
]
· [(vn(t, x) − vn(t, y))]

+
[
g(t + tn, x,un(t, x),vn(t, y)) − g(t + tn, y,un(t, y),vn(t, y))

]
.

(3.33)

Set

Hn(t, x, y) := ‖g(t + tn, x,un(t, x),vn(t, y)) − g(t + tn, y,un(t, y),vn(t, y))‖.

It then follows from (3.31), (3.32) and (3.33) that there exists a real number N > 0 such

that
∂
∂t
‖vn(t, x) − vn(t, y)‖2 ≤ −2r1‖vn(t, x) − vn(t, y)‖2 + NHn(t, x, y), (3.34)

for all t ≥ −tn, x, y ∈ Ω.

By the constant variation formula and the comparison argument, we obtain

‖vn(t, x) − vn(t, y)‖2 ≤ e−2r1(t−s)
‖vn(s, x) − vn(s, y)‖2 + N

∫ t

s
e−2r1(t−θ)Hn(θ, x, y)dθ, (3.35)

for all t ≥ s ≥ −tn. Letting t = 0 and s = −tn in (3.35), we further have

‖vn(0, x) − vn(0, y)‖2 ≤ e−2r1tn‖vn(−tn, x) − vn(−tn, y)‖2 + N
∫ 0

−tn

e2r1θHn(θ, x, y)dθ,

and hence,

‖vn(tn, x) − vn(tn, y)‖2 ≤ e−2r1tn‖vn(0, x) − vn(0, y)‖2 + N
∫ 0

−tn

e2r1θHn(θ, x, y)dθ, (3.36)

for all n ≥ 1, x, y ∈ Ω.

Note that (un(0, x),vn(0, x)) = ϕn and ϕn ∈ B, for all n ≥ 1 and x ∈ Ω, and that

{un(tn, x)}n≥1 is equicontinuous on Ω for all n ≥ 1. Thus, it suffices to prove that {vn(tn, x)}n≥1

is equicontinuous on Ω for all n ≥ 1 in the sense that for any ε > 0, there exists δ > 0 such

that

‖vn(tn, x) − vn(tn, y)‖ < ε, ∀n ≥ 1, ∀x, y ∈ Ω with |x − y| < δ.

Suppose, by contradiction, that there exist an ε0 > 0, nk →∞, xk, yk ∈ Ω with |xk − yk| < 1
k

such that ‖vnk(tnk , xk) − vnk(tnk , yk)‖ ≥ ε0, ∀k ≥ 1. Letting x = xk, y = yk and n = nk in (3.36),

we then obtain

ε2
0 ≤ lim

k→∞
sup ‖vnk(tnk , xk) − vnk(tnk , yk)‖2 ≤ N · lim

k→∞
sup

∫ 0

−tnk

e2r1θHnk(θ, xk, yk)dθ. (3.37)
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Note that for each θ ≤ 0, there exists a large integer n0 > 0 such that the sequence

of functions {un(θ, x) = un(θ + tn, x)}n≥n0 is equicontinuous on Ω, and that g(t, x,u,v) is

uniformly continuous in (t, x,u,v) ∈ [0,∞) ×Ω ×H , whereH is any given compact subset

of R5
+. Since lim

k→∞
‖unk(θ, xk) − unk(θ, yk)‖ = 0, it follows that for any given θ ≤ 0, we have

lim
k→∞

Hnk(θ, xk, yk) = 0. Using Fatou’s lemma in (3.37), we then obtain

ε2
0 ≤ N ·

∫ 0

−∞

e2r1θ lim
k→∞

sup Hnk(θ, xk, yk)dθ = 0,

a contradiction. Consequently, Φt is asymptotically compact on B.

Now we consider the omega limit set of B for the Poincaré map Φt on X+, which is

defined as

ω(B) = {ϕ ∈ X+ : lim
k→∞

Φtnk
(ϕk) = ϕ for some sequences ϕk ∈ B and nk →∞}.

From what we proved for Φt, we easily see that Φtn , ∀n ≥ 0 is asymptotically compact on B

in the sense that for any sequences ϕk ∈ B and nk →∞, there exists subsequences, which

we label as ϕk and nk →∞, such that Φtnk
(ϕk) converges in X as k→∞. It then follows that

ω(B) is a nonempty, compact and invariant set for Φt in X+, and ω(B) attracts B. In view of

Lemma 2.1 (b) in [84], we have

κ(Φ(t)B) ≤ κ(ω(B)) + δ(Φ(t)B, ω(B)) = δ(Φ(t)B, ω(B))→ 0 as t→∞.

This completes the proof. �

Now we are ready to show that solutions of system (3.19) converge to a compact

attractor in X+.

Theorem 3.3.3. Φ(t) admits a connected global attractor on X+.

Proof. By Theorem 3.3.2 and Lemma 3.3.2, it follows that Φ(t) is point dissipative and

κ-contracting on X+. From the proof of Theorem 3.3.2, we also know that the positive

orbits of bounded subsets of X+ for Φ(t) are uniformly bounded. By Theorem 2.6 in [84],

Φ(t) has a global attractor that attracts every bounded set in X+. �

3.3.3 Threshold dynamics of model (3.19)

In order to define the basic offspring ratio Rpde
0 for system (3.19)-(3.23), we first observe

that system (3.19) has a spatially homogeneous trivial equilibrium T0 = (0, 0, 0, 0, 0). Note

that, while a huge number of works deals with the threshold dynamics for ODE models,

very few such studies are devoted to PDE models. This is probably due to the fact that

the concept of basic reproduction number has just recently been extended to PDE models

such as reaction-diffusion and reaction-convection-diffusion epidemic models with mixed

boundary conditions [129, 141, 142, 144]. The definition of Rpde
0 in this work follows the
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approach developed in [129]. That is, Rpde
0 = r(L) is the spectral radius of the operator

L := −GS−1, where

S = diag
(
− ν1,DY∂

2
xx − ν2,DQ∂

2
xx − εQ∂x − ν3(.),−ν4,DW∂

2
xx − εW∂x − ν5(.)

)
,

being the infinitesimal generator of the semigroup T(t) defined in Eq. (3.24) and G defined

by

G(x) =



0 0 0 0 Negg

rγ 0 0 0 0

0 β 0 0 b1(x)

0 0 αϕ1(x) 0 0

0 0 0 a 0


,

such that, for all ψ ∈ X, and x ∈ Ω,

L(ψ)(x) = (−GS−1ψ)(x) = G(x)(−S−1ψ)(x) = G(x)
∫
∞

0
T(t)(ψ(x))dt.

Let us recall some important results on which our proof will heavily rely.

Lemma 3.3.3 ([129], Theorem 3.12). Let Ψ be the generator of a C0-semigroup P on an

ordered Banach space X with a normal and generating cone X+. Then Ψ is resolvent-positive

if and only if P is a positive semigroup i.e. P(t)X+
⊂ X+, ∀t ≥ 0.

Lemma 3.3.4 ([129], Theorem 3.5). Let Ψ be a resolvent-positive operator in X, s(Ψ) < 0

and Θ = Φ + Ψ be a positive perturbation of Ψ. If Θ is resolvent-positive, then s(Θ) has the

same sign as r(−ΦΨ−1) − 1.

The result below establishes the global attractivity of T0.

Theorem 3.3.4. Consider the model (3.19)-(3.23). Then, the spatially homogeneous trivial

equilibrium T0 is globally attractive whenever Rpde
0 < 1.

Proof. Linearizing system (3.19)-(3.23) around T0, we obtain the linear cooperative system

∂A
∂t = NeggW(t, x) − ν1A(t, x),
∂Y
∂t = DY

∂2Y
∂x2 + rγA(t, x) − ν2Y(t, x),

∂Q
∂t = DQ

∂2Q
∂x2 − εQ

∂Q
∂x + βY(t, x) + b1(x)W(t, x) − ν3(x)Q(t, x),

∂U
∂t = αϕ1(x)Q(t, x) − ν4U(t, x),
∂W
∂t = DW

∂2W
∂x2 − εW

∂W
∂x + aU(t, x) − ν5(x)W(t, x),

∂xY(t, 0) = ∂xY(t, l) = 0,

DZ∂xZ(t, 0) − εZZ(t, 0) = ∂xZ(t, l) = 0, Z = Q,W.

(3.38)
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Substituting (A,Y,Q,U,W) = (eλtψ1(x), eλtψ2(x), eλtψ3(x), eλtψ4(x), eλtψ5(x)) in (3.38), with

λ ∈ C, yields the eigenvalue problem

λψ1 = Neggψ5 − ν1ψ1,

λψ2 = DY∂2
xxψ2 + rγψ1 − ν2ψ2,

λψ3 = DQ∂2
xxψ3 − εQ∂xψ3 + βψ2 + b1(x)ψ5 − ν3(x)ψ3,

λψ4 = αϕ1(x)ψ3 − ν4ψ4,

λψ5 = DW∂2
xxψ5 − εW∂xψ5 + aψ4 − ν5(x)ψ5,

∂xψ2(t, 0) = ∂xψ2(t, l) = 0,

DZ∂xψi(t, 0) − εZψi(t, 0) = ∂xψi(t, l) = 0, i = 3, 5, Z = Q,W.

(3.39)

The right-hand side of first five equations of eigenvalue problem (3.39) takes the form

Θψ := (S +G)ψ, where, ψ = (ψ1, ψ2, ..., ψ5)T. (3.40)

Note that G is a positive and cooperative. Thanks to the graph theory, G is also irreducible.

Moreover, S and G are both generators of positive C0-semigroups. Hence, by Lemma 3.3.3,

S and G are both resolvent-positive (see Definition A.1.6 in Appendix A). Following the

arguments in [124] or [157], one can prove that the spectral bound s(S) of S is negative. In

fact, let us consider the system ∂tZ = DZ∂2
xxZ − εZ∂xZ,

DZ∂xZ(t, 0) − εZZ(t, 0) = ∂xZ(t, l) = 0, Z = Q,W.
(3.41)

The substitution of P = eλtζ(x) in (3.41) gives λζ(x) = D∂2
xxζ − ε∂xζ.

DZ∂xζ(t, 0) − εZζ(t, 0) = ∂xζ(t,L1) = 0, Z = Q,W.
(3.42)

The asymptotic behavior of solutions to (3.41) is determined by that of the eigenvalue

problem (3.42). Theorem 7.6.1 in [124] and Remark ?? imply that the eigenvalue problem

(3.42) has a real principal eigenvalue λ0 and a corresponding eigenvector ζ0(x) > 0 for all

x ∈ Ω. We claim that λ0 < 0. Indeed, if Q1(ζ) := DZ∂2
xxζ − εZ∂xζ denotes the differential

operator on the right hand side of (3.42), then integration by parts yields

λ0

∫
Ω
|ζ0(x)|2dx =

∫
Ω

(Q1(ζ0))(x)ζ0(x)dx

=
∫ l

0
[DZ∂2

xxζ0 − εZ∂xζ0]ζ0(x)dx,

= −
εZ
2 [ζ2

0(0) + ζ2
0(l)] −DZ

∫ l

0
|∂xζ0(x)|2dx < 0.

Since ζ0(x) > 0 for all x ∈ Ω, we have λ0 < 0.

One can prove that an eigenvalue ofQ1, is also an eigenvalue of ∂tZ = DZ∂2
xxZ− εZ∂xZ−

νi(x)Z, with i = 3, 5. Indeed, the operator Q1,i = DZ∂2
xx − εZ∂x − νi(x) is a sum of Q1 and the
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linear operator Mi defined by: Mi(Z)(x) = −νi(x)Z, with νi(x) > 0. Thus, using Theorem

7.6.1 in [124], there exists a real principal eigenvalue λ∗ and an associated eigenfunction

ζ∗ > 0 such that

λ∗ζ∗ = DZ∂
2
xxζ
∗
− εZ∂xζ

∗
− νi(x)ζ∗ or (λ∗ + νi(x))ζ∗ = DZ∂

2
xxζ
∗
− εZ∂xζ

∗. (3.43)

Since the eigenvalue problem (3.42) has eigenvalues λn, n ≥ 0, then the eigenvalues of

(3.43) are λn − νi(x), n ≥ 0. Hence, λ∗ = λ0 − νi(x) < 0 because λ0 < 0, νi(x) > 0. Therefore,

s(S) < 0. It follows from Lemma 3.3.4 that the spectral bound s(Θ) of Θ = S +G, has the

same sign as r(−GS−1) − 1 = R
pde
0 − 1. That is, Rpde

0 − 1 and the principal eigenvalue of Θ,

λ = λ(T0), have same sign. Since Rpde
0 < 1, we have λ(T0) < 0 and lim

ε→0
λ(T0 + ε) = λ(T0) < 0.

Thus, there is an ε0 > 0 such that λε0 = λ(T0 + ε0) < 0. Fixing ε0 > 0, and using the fact that

A is nonnegative gives the existence of t0 such that for all t ≥ t0, x ∈ Ω, A(t, x) ≥ ε0. Thus,

from (3.2), we have ∂tA ≤ NeggW − (ν1 + µ2ε0)A, ∀t ≥ t0, x ∈ Ω. Finally, we consider the

linear system. 

∂v1
∂t = Neggv5 − (ν1 + µ2ε0)v1,
∂v2
∂t = DY

∂2v2
∂x2 + rγv1 − ν2v2,

∂v3
∂t = DQ

∂2v3
∂x2 − εQ

∂v3
∂x + βv2 + b1v5 − ν̃3v3,

∂v4
∂t = αϕ1v3 − ν4v4,
∂v5
∂t = DW

∂2v5
∂x2 − εW

∂v5
∂x + av4 − ν̃5v5,

(3.44)

where b1 = max
x∈Ω

b1(x), ϕ1 = max
x∈Ω

ϕ1(x), ν̃3 = min
x∈Ω

ν3(x) and ν̃5 = min
x∈Ω

ν5(x).

Notice that system (3.44) controls system (3.19) from above. Moreover, similar argu-

ments as in Theorem 2.2 in [130] yield the following result.

Lemma 3.3.5. The problem (3.44) has a principal eigenvalue λε0 with a positive eigen-

function ψ0, and λε0 has the same sign as λ0.

Since λ0 < 0, we have λε0 < 0 and system (3.44) admits a positive solution

v(t, x) = eλε0 (t−t0)ψ0(x), t ≥ t0.

For any φ ∈ X+, there exists some η > 0 sufficiently large such that

u(t, ·, φ) ≤ ηv(t, ·), t ≥ t0.

Since the reaction term F+ of system (3.44) is cooperative, we conclude by the comparison

principle (see Theorem 7.3.4 in [124]) that,(
A(t, x, φ),Y(t, x, φ),Q(t, x, φ),U(t, x, φ),W(t, x, φ)

)T
≤ ηeλε0 (t−t0)ψ0(x), ∀t ≥ t0.

Hence, lim
t→∞

(
A(t, x, φ),Y(t, x, φ),Q(t, x, φ),U(t, x, φ),W(t, x, φ)

)T
= 0, uniformly for x ∈ Ω.

This achieves the proof of Theorem 3.3.4. �
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The ecologically implication of Theorem 3.3.4 is that the mosquito population can be

effectively controlled (or eliminated) in a given bounded region as long as the associated

spatial offspring number Rpde
0 , can be brought (and kept) to a value less than or equal to

unity.

In order to prove the uniform persistence of the mosquito population, we need to show

that T0 is a weak repeller. That is:

Lemma 3.3.6. If Rpde
0 > 1, then there exists δ > 0 such that for any φ ∈ X+ with φi(0) . 0,

i = 1, 2, 3, 4, 5, the solution u(t, ·, φ) of system (3.19)-(3.23) satisfies

lim
t→∞

sup ‖u(t, ·, φ) − T0‖X ≥ δ. (3.45)

Proof. Since Rpde
0 > 1, by the proof of Theorem 3.3.4, the principal eigenvalue λ(T0) of

Θ = S + G, is positive. Assume, by contradiction that there exists some φ ∈ X+ with

φi(0) . 0, i = 1, 2, 3, 4, 5 such that for every δ > 0, lim
t→∞

sup ‖u(t, ·, φ) − T0‖X < δ. Then, there

exists t1 = t1(φ) > 0 sufficiently large such that A(t, x) ≤ δ and W(t, x) ≤ δ, ∀t ≥ t1, x ∈ Ω.

Since B′(W) ≤ 0 for all W ≥ 0, it follows that B(W) ≥ B(δ). Hence, we have

∂tA(t, x) ≥ B(δ)W(t, x) − (ν1 + µ2δ)A(t, x),∀t ≥ t1, x ∈ Ω.

Consider the following linear system.

∂w1
∂t = B(δ)w5 − (ν1 + µ2δ)w1,
∂w2
∂t = DY

∂2w2
∂x2 + rγw1 − ν2w2,

∂w3
∂t = DQ

∂2w3
∂x2 − εQ

∂w3
∂x + βw2 + b̃1w5 − ν3w3,

∂w4
∂t = αϕ̃1w3 − ν4w4,
∂w5
∂t = DW

∂2w5
∂x2 − εW

∂w5
∂x + aw4 − ν5w5,

(3.46)

where b̃1 = min
x∈Ω

b1(x), ϕ̃1 = min
x∈Ω

ϕ1(x), ν3 = max
x∈Ω

ν3(x) and ν5 = max
x∈Ω

ν5(x).

It is straightforward that (3.46) controls system (3.19) from below. Another application

of Lemma 3.3.5, yields a principal eigenvalue λδ of (3.46) associated with a strongly positive

eigenvector w0(x). Moreover, λδ and λ(T0) have the same sign. Thus, system (3.46) has

a positive solution w(t, x) = eλδ(t−t1)w0(x), t ≥ t1, x ∈ Ω. For any φ ∈ X+ with φi(0) . 0,

i = 1, 2, 3, 4, 5, it follows from the parabolic maximum principle that

A(t, x) > 0, Y(t, x) > 0, Q(t, x) > 0, U(t, x) > 0, W(t, x) > 0, ∀t > 0, x ∈ Ω. (3.47)

Therefore, we can choose a sufficiently small number η0 > 0 such that(
A(t1, x, φ),Y(t1, x, φ),Q(t1, x, φ),U(t1, x, φ),W(t1, x, φ)

)
≥ η0w0(x).

Since the reaction term F− of system (3.46) is cooperative, another application of the

comparison principle [124] lead us to(
A(t, x, φ),Y(t, x, φ),Q(t, x, φ),U(t, x, φ),W(t, x, φ)

)
≥ η0eλδ(t−t1)w0(x), ∀t ≥ t1, x ∈ Ω.
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Therefore, sinceλδ > 0, one hasη0eλδ(t−t1)w0(x)→∞ as t→∞. This implies (A,Y,Q,U,W)(t, x, φ)

is unbounded, which is a contradiction, and the proof of Lemma 3.3.6 is achieved. �

We are now in a position to state and prove the uniform persistence result, which

indicates that Rpde
0 is a threshold for mosquito persistence.

Theorem 3.3.5. If Rpde
0 > 1, then there exists δ1 > 0 such that any nonnegative solution

u(t, x, φ) of (3.19)-(3.23) with φi(0) . 0 satisfies

lim
t→∞

inf ui(t, x, φ) ≥ δ1, ∀i = 1, 2, 3, 4, 5, (3.48)

uniformly for all x ∈ Ω.

Proof. For Rpde
0 > 1, we use the persistence theory developed in [123]. To that end, set

D0 := {φ = (φ1, φ2, φ3, φ4, φ5) ∈ X+ : φi(0) . 0}.

Clearly, we have

∂D0 := X+
\D0 = {φ ∈ X+ : φ1(0) ≡ 0 or φ2(0) ≡ 0 or φ3(0) ≡ 0 or φ4(0) ≡ 0 or φ5(0) ≡ 0},

and Φt(D0) ⊂ D0, ∀t ≥ 0. If φ ∈ D0, then, from (3.47), one has u(t, x, φ)� 0, ∀x ∈ Ω, t > 0.

Define

K∂ := {φ ∈ ∂D0 : Φt(φ) ∈ ∂D0, ∀t ≥ 0},

and let ω(φ) be the ω-limit set of the positive orbit γ+(φ) := {Φt(φ)}t≥0.

We claim that ⋃
φ∈K∂

ω(φ) = {T0}.

Indeed, for any given φ ∈ K∂, we have Φt(φ) ∈ ∂D0, ∀t ≥ 0. Thus, for every t ≥ 0, either

A(t, φ) ≡ 0 or Y(t, φ) ≡ 0 or Q(t, φ) ≡ 0 or U(t, φ) ≡ 0 or W(t, φ) ≡ 0. In the case where

A(t, φ) ≡ 0, we see from the first equation of (3.19) that lim
t→∞

W(t, x) = 0 uniformly for

x ∈ Ω. From the second, third and fourth equations in (3.19), and thanks to the theory of

asymptotically autonomous semiflows [128], we have; lim
t→∞

Y(t, x) = 0, lim
t→∞

Q(t, x) = 0 and

lim
t→∞

U(t, x) = 0 uniformly for x ∈ Ω. If Y(t, φ) ≡ 0, ∀t ≥ 0, the second equation in (3.19)

yields lim
t→∞

A(t, x) = 0 uniformly for x ∈ Ω. Similar arguments show that lim
t→∞

W(t, x) = 0,

lim
t→∞

Q(t, x) = 0 and lim
t→∞

U(t, x) = 0 uniformly for x ∈ Ω. Similar arguments and conclusions

hold for the cases where Q(t, φ) ≡ 0, U(t, φ) ≡ 0 and W(t, φ) ≡ 0. Therefore, in either case,

the ω-limit set of γ+(φ) for φ ∈ K∂ is {T0}. Hence the claim.

Now, we define the function p : X+
−→ R+ by

p(φ) = min
{

min
x∈Ω

φi(x), i = 1, 2, 3, 4, 5
}
.
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It is straightforward that p−1((0,∞)) ⊂ D0. Suppose p(φ) = 0 and φ ∈ D0. Then we have

φi(·) . 0, i = 1, 2, 3, 4, 5. By (3.47), one has min
{

min
x∈Ω

u(t, x, φ)
}
> 0, ∀t > 0, which implies

that p(Φt(φ)) > 0, ∀t > 0. Thus, p is a generalized distance function for the semiflow

Φt : X+
−→ X+ (see [123]). Note that, by the above claim, any positive orbit of Φ(t)

in K∂ converges to T0. In view of Lemma 3.3.6, we conclude that {T0} is an isolated

invariant set in X+, and that Ws(T0) ∩D0 = ∅, where Ws(T0) is the stable manifold of

T0. Therefore, making use of Theorem 3.3.2, we conclude that there exists δ1 > 0 such

that min{p(ψ) : ψ ∈ ω(φ)} > δ1 for any φ ∈ D0. This implies that lim
t→∞

inf ui(t, x, φ) ≥ δ1,

∀φ ∈ D0. �

3.3.4 Numerical simulations: case study of anopheles mosquitoes, the

malaria vector agent

This section deals with numerical simulations for system (3.19). Our main objective here,

is to investigate through numerical simulations, the impacts of dispersal and heterogeneity

on the dynamics and persistence of mosquitoes, as well as illustrating some of our

theoretical results. To make it simple, we concentrate on one dimensional domain Ω.

Model (3.19) is simulated by using data from recent works, who are summarized in Table

3.4. We choose DY = DQ = DW = DM = 0.04 m2/s and εQ = εW = 0.1 m/s. To describe

the spatial heterogeneity, we assume that the hosts are unevenly distributed. In order to

capture the fact that, the more people leave villages and farms to cities, the faster the

distribution of human density changes, and the more the urbanization have impact on

mosquito distribution [73, 82], we choose the location-dependent parameters as follows:

ϕ1(x) = 16(1 + p cos(2x)), b1(x) = 0.8(1 + p cos(2x)),

where, p ∈ [0, 1] is the magnitude of host’s heterogeneity. Note that when p = 0, hu-

mans distribute evenly in space (homogeneity in human’s distribution). With this set of

parameters, the spatial average of ϕ1(x) and b1(x) remain 16 and 0.8, respectively.

(a) A nonstandard numerical scheme for the system (3.19)-(3.23)

In this subsection, we consider the full discretisation of model (3.19)-(3.23). This is

achieved by the nonstandard finite difference (NSFD) approach, which has shown great

potential in providing reliable numerical schemes that replicate the dynamics of continuous

models in Mathematical Biology [93, 94, 57]. The construction in the papers [19, 96] is

appropriate for the case under consideration.

Let dt > 0 and dx > 0 be the time and space step-size respectively. We denote by

un
j , an approximation of u(t, x) at the grid point tn = ndt and x j = jdx, for n = 1, 2, . . .,

j = 1, 2, . . . ,Ne. The challenge in the approximation of the model equations (3.19)-(3.20)
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arises from the fact that it consists of three types of equations. These are: (1) ordinary

system of differential equations (i.e. (3.19)1, (3.19)4) ; (2) reaction-diffusion equation (i.e.

(3.19)2) ; (3) advection-reaction-diffusion equations (i.e. (3.19)3, (3.19)5 and (3.20)). The

ODE equations (3.19)1 and (3.19)4 are approximated by

An+1
j − An

j

ρ(dt)
= B(Wn

j )Wn
j − [ν1 + µ2An

j ]A
n+1
j ,

Un+1
j −Un

j

ρ(dt)
= αϕ1(x j)Qn

j−1 − ν4Un+1
j ,

(3.49)

where the complex denominator function ρ is given by

ρ(dt) =
1 − e−p0dt

p0
, with p0 = max{ν1, ν2, ν3, ν4, ν5, µM}.

The reaction-diffusion equation (3.19)2 is approximated by

Yn+1
j − Yn

j

ρ(dt)
= DY

Yn+1
j+1 − 2Yn+1

j + Yn+1
j−1

dx2 + rγAn+1
j − ν2Yn+1

j . (3.50)

For the advection-reaction-diffusion equations, we assume for simplicity that the advection

coefficients are the same i.e. ε0 = εQ = εW = εM. We impose the functional relation

dx = ε0dt between the step sizes. Then the advection-reaction-diffusion equations (3.19)3,

(3.19)5 and (3.20) are approximated by

Qn+1
j −Qn

j−1

ρ(dt)
= DQ

Qn+1
j+1 − 2Qn+1

j + Qn+1
j−1

dx2 + βYn+1
j + b1(x j)Wn

j−1 − ν3(x j)Qn
j−1,

Wn+1
j −Wn

j−1

ρ(dt)
= DW

Wn+1
j+1 − 2Wn+1

j + Wn+1
j−1

dx2 + aUn+1
j − ν5(x j)Wn

j−1,

Mn+1
j −Mn

j−1

ρ(dt)
= DM

Mn+1
j+1 − 2Mn+1

j + Mn+1
j−1

dx2 + (1 − r)γAn+1
j − µMMn+1

j .

(3.51)

It should be noted that the left hand side of (3.51) is a discretisation of the continuous

advection term. Indeed,

∂Z
∂t

+ ε0
∂Z
∂x
≈

Zn+1
j − Zn

j

ρ(dt)
+ ε0

Zn
j − Zn

j−1

ε0ρ

(
dx
ε0

) where Z = Q,W,M.

Grouping (3.49)-(3.51), we obtain the following NSFD scheme which by construction pre-
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serves the conservation laws associated with the continuous model:

An+1
j − An

j

ρ(dt)
= B(Wn

j )Wn
j − [ν1 + µ2An

j ]A
n+1
j ,

Yn+1
j − Yn

j

ρ(dt)
= DY

Yn+1
j+1 − 2Yn+1

j + Yn+1
j−1

dx2 + rγAn+1
j − ν2Yn+1

j ,

Qn+1
j −Qn

j−1

ρ(dt)
= DQ

Qn+1
j+1 − 2Qn+1

j + Qn+1
j−1

dx2 + βYn+1
j + b1(x j)Wn

j−1 − ν3(x j)Qn
j−1,

Un+1
j −Un

j

ρ(dt)
= αϕ1(x j)Qn

j−1 − ν4Un+1
j ,

Wn+1
j −Wn

j−1

ρ(dt)
= DW

Wn+1
j+1 − 2Wn+1

j + Wn+1
j−1

dx2 + aUn+1
j − ν5(x j)Wn

j−1,

Mn+1
j −Mn

j−1

ρ(dt)
= DM

Mn+1
j+1 − 2Mn+1

j + Mn+1
j−1

dx2 + (1 − r)γAn+1
j − µMMn+1

j .

(3.52)

However, for computational purposes, it is preferable to work with the NSFD scheme (3.52)

in the Gauss-Seidel-type and sequential order (3.49), (3.50) and (3.51) which leads to an

explicit scheme as explained below. It is clear from (3.49) that

An+1
j =

An
j + ρ(dt)B(Wn

j )Wn
j

1 + ρ(dt)[ν1 + µ2An
j ]

and Un+1
j =

Un
j + ρ(dt)αϕ1(x j)Qn

j−1

1 + ρ(dt)ν4
.

Eq. (3.50) is equivalent to

−DY
ρ(dt)
dx2 Yn+1

j+1 +

(
1 + ρ(dt)ν2 + 2DY

ρ(dt)
dx2

)
Yn+1

j −DY
ρ(dt)
dx2 Yn+1

j−1 = Yn
j + ρ(dt)rγAn+1

j . (3.53)

This takes the equivalent vector form

M1Yn+1 = N1,n
≥ 0,

where the matrixM1, in which boundary values are incorporated, is an M-matrix because

it is strictly diagonally dominant and has positive diagonal entries. Thus,

Yn+1 =M−1
1 N1,n.

The first equation in (3.51) is equivalent to

−DQ
ρ(dt)
dx2 Qn+1

j+1 +

(
1 + 2DQ

ρ(dt)
dx2

)
Qn+1

j −DQ
ρ(dt)
dx2 Qn+1

j−1 = Qn
j−1 + ρ(dt)βYn+1

j + ρ(dt)b1(x j)Wn
j−1

−ρ(dt)ν3(x j)Qn
j−1.

Ph.D Thesis: Study of the spatial distribution of anopheles mosquitoes 101 M. L. MannManyombe c©UYI 2020



A spatio-temporal model for the population ecology of anopheles mosquito

This takes the equivalent vector form

M2Qn+1 = N2,n,

where as in the previous caseM2 is an M-matrix. Note that the vector N2,n is nonnegative

because 1 − ρ(dt)ν3(x j) ≥ 0 by the choice of ρ(dt). Thus,

Qn+1 =M−1
2 N2,n.

In a similar manner, one obtains that the second and last equations in (3.51) have the

equivalent vector form

M3Wn+1 = N3,n
≥ 0, M4Mn+1 = N4,n

≥ 0,

so that

Wn+1 =M−1
3 N3,n and Mn+1 =M−1

4 N4,n.

At this stage, a comment is made in order to explain how the boundary values are actually

incorporated in the matrices Mk (k = 1, 2, 3, 4). To illustrate the process for the matrixM1,

put j = 0 and j = Ne in Eq. (3.53). From the known data
∂Y
∂x

(tn+1, 0) and
∂Y
∂x

(tn+1, l), we can

use the approximations

∂Y
∂x

(tn+1, 0) '
Yn+1

1 − Yn+1
−1

2dx
and

∂Y
∂x

(tn+1, l) '
Yn+1

Ne+1 − Yn+1
Ne

dx
.

We can then take

Yn+1
−1 = Yn+1

1 − 2dx
∂Y
∂x

(tn+1, 0) and Yn+1
Ne+1 = Yn+1

Ne
+ dx

∂Y
∂x

(tn+1, l).

We then replace Yn+1
−1 an Yn+1

Ne+1 with these expressions in the scheme (3.53).

(b) General dynamics

The long run behavior of system (3.19) is simulated using Ω = [0, 10]. Figures 3.6

and 3.8 show the numerical plots of the female mosquito compartments Y(t, x), Q(t, x),

U(t, x) and W(t, x), with the initial conditions A(0, x) = 500 − cos(2x), Y(0, x) = 75 − sin(2x),

Q(0, x) = 50 − cos(2x), U(0, x) = 50 − cos(2x) and W(0, x) = 75 − cos(2x).

Figure 3.6 depicts the solutions of model (3.19) when p = 0 (i.e. with homogeneity in

hosts’ distribution) while, Figures 3.7, 3.8, 3.9 and 3.10 show the solutions of model (3.19)

in a landscape with heterogeneity in hosts distribution (p > 0). These figures illustrate the

persistence of mosquito population as established in Theorem 3.3.5. Although mosquito

population persists, its distribution in the domain is not the same. Figure 3.6 show that

spatial distribution of mosquitoes is homogeneous in the domain when the hosts density

is too, while Figure 3.7 show a drastic change in the spatial distribution of mosquitoes in

gonotrophic cycle when the hosts density is heterogeneous.
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Figure 3.6: Distribution of mature females in a domain with homogeneous distribution of

humans (p = 0). n = 1 and all other parameters as in Table 3.4

Figure 3.7: Distribution of mature females in a domain with heterogeneous distribution of

humans (p = 0.5). n = 1 and all other parameters as in Table 3.4

(c) Impact of spatial heterogeneity on mosquito spread

To investigate the spatial heterogeneity effect on the mosquito dynamics, we take the

variation of human distribution.

Figures 3.8, 3.9 and 3.10 show the influence of the spatial heterogeneity of hosts on the

dynamics of female mosquitoes. From these figures, one observe that spatial distribution

of females in gonotrophic cycle is strongly influenced by the hosts density. Moreover, when
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Figure 3.8: Distribution of mature females in a domain with heterogeneous distribution of

humans (p = 0.5). n = 1 and all other parameters as in Table 3.4
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Figure 3.9: Distribution of mature females in a domain with heterogeneous distribution of

humans (p = 0.8). n = 1 and all other parameters as in Table 3.4.

p increases from 0 to 1, an increase on the heterogeneity is observed in spatial distribution

of female mosquitoes. Note that, the larger the value of p, the higher the heterogeneity of

spatial density of hosts. It follows that the population distribution is strongly dependent on

the distribution of hosts. Thus, we can conclude that urbanization strongly influence the
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Figure 3.10: Distribution of mature females in a domain with heterogeneous distribution

of humans (p = 1). n = 1 and all other parameters as in Table 3.4.

mosquito dynamics, and therefore increases or decreases malaria risk depending on the

range of the remaining model parameters.

Altogether, the above plotted figures show that landscape really play an important role

in the dispersal of mosquitoes. From a practical point of view, it may be useful to know

how mosquitoes are distributed on a domain, in order to determine where they are likely to

gather, before conducting vector control. Our simulations show that, when we consider a

homogeneous distribution of hosts, the distribution of mature females is homogeneous on

the domain (see Figure 3.6). But, when we consider a heterogeneous distribution of hosts,

we observe a drastic change in the distribution (see Figures 3.8-3.10). This indicates that

there exists a linear relationship between hosts density and mosquitoes distribution when

there is homogeneity (i.e. p = 0). However, when there is heterogeneity (i.e. p > 0), this

relationship is perturbed and induces a strong influence on spatial distribution.

3.4 Conclusion and discussion

In this paper, we have assessed the impact of dispersal and the spatial heterogeneity on

the distribution of mosquito population. To achieve our goal, we have described the spatial

evolution of anopheles mosquito by developing a temporal model subject to a general form

of the oviposition function and extended it to a spatio-temporal one. Our models have

been rigorously analyzed using, among others, the more realistic Maynard-Smith-Slatkin

oviposition function. However, our results remain valid even if the latter oviposition function
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is replaced by any function drawn from Table 3.1, including the Hassell function which

was considered for the first time in this work. Our models have been investigated in many

aspects.

From the modelling point of view, we have extended some recent ODE models [1,

2, 87, 108] by: (a) incorporating the gonotrophic cycle (Q, U and W) of adult female

mosquitoes and considering a general egg oviposition function ; (b) taking into account

the mating behavior and human-vector interaction ; (c) including a spatial component in

order to taking into account movement of vectors and spatial heterogeneity of mosquito

resources. Moreover, our PDE model have extended some recent dispersal models

[68, 126, 132, 158] by incorporating the gonotrophic cycle of adult female mosquitoes, by

considering a general egg oviposition function and by including the spatial heterogeneity

of mosquito resources.

From the theoretical perspective, due to the high nonlinearity of the ODE model and

its extended PDE counterpart, we made use of a variety techniques and approaches,

including and not limited to: Lyapunov-Lasalle techniques, monotone dynamical systems

approach, semigroup application and spectral theory approach. The main results read as

follows:

• For the temporal model (3.1), we have derived the basic offspring number Rode
0 , and

through a sensitivity analysis, we have realized that, the natural mortality rate of

immature females µY, the mating rate β and the deposit rate of eggs by females

Negg are the top three more influential parameters on the dynamics of mosquito

population. The trivial equilibrium of the temporal model is GAS whenever Rode
0 is

less than unity. In the case where Rode
0 exceeds unity, there exists a unique non-trivial

equilibrium, which is GAS for n = 1 and globally attractive for n > 1. When there is no

density-dependent mortality in the aquatic stage (i.e. µ2 = 0), the model exhibits the

Hopf bifurcation phenomenon. These results hold for the Verhlust-Pearl logistic and

Hassell oviposition functions. For the remaining four oviposition functions in Table 3.1,

we have summarized the long run behavior of the solutions of their corresponding

ODE model (3.1) in in Table 3.3.

• For the spatio-temporal model (3.19), we have given the formula for the basic offspring

ratio Rpde
0 for the PDE model. On the one hand, we have shown that spatio-temporal

model has a spatially homogeneous trivial equilibrium, which is globally attractive

whenever Rpde
0 is less than unity. On the other hand, the persistence theory have

been used to show that, the mosquito population persists whenever the Rpde
0 exceeds

unity.

From the computational aspect, we have used ODE45 in Matlab and perform numerical

simulations of the ODE model to illustrate our theoretical results. Precisely, the Hopf

bifurcation occurrence and GAS of the MPE have been illustrated, sensitivity analysis for
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R
ode
0 and sensitivity indices have been calculated. In the presence of density-dependent

mortality in the aquatic stage (i.e. µ2 > 0), we have extended the global stability results for

the ODE models in [1, 108] by establishing the global attractivity of the MPE whenever the

basic offspring number is above unity. Though, it is still challenging to theoretically prove

the local asymptotic stability of the non-trivial equilibrium of the model (3.1) in the presence

of density-dependent mortality in the aquatic stage; alternatively, numerical simulations

were used to conjecture it (Figure 3.3). Together with the latter conjecture, our global

attractivity result conjecture the global asymptotical stability of the MPE of the model (3.1)

in presence of the density-dependent mortality in the aquatic stage whenever Rode
0 exceeds

unity.

Unlike the temporel model (3.1), where a standard numerical scheme (i.e., Runge-

Kutta of order 4) has been used, for spatio-temporal PDE model, we have constructed a

dynamical consistent (with respect to the positivity and boundeness) nonstandard differ-

ence scheme, using the Maynard-Smith-Slatkin oviposition function and the parameters

associated with the anopheles species to show that the spatial heterogeneity of mosquito

resources (humans) strongly influences the spatial distribution of adult female mosquitoes

(Figures 3.6-3.10).

As far as future investigations are concerned, we are planning to perform a sensitivity

analysis and tackle the existence of travelling fronts for the spatial model. On the one

hand, it is well known that seasonality and climatic changes, such as temperature, rainfall,

affect the life-cycle of mosquitoes. Thus, a possible extension of this manuscript, on which

we are already working, is to incorporate these latter features in our models in order to

assess the impact of temperature and rainfall on the abundance of mosquitoes. On the

other hand, the comparison with real experiments in order to validate, modified or adapt

the models is another challenge we intend to face in the near future. To better reflect the

details of spatial variation, an equally challenging problem will be to consider the situation

where the diffusion and convection coefficients, as well as other parameters depend on a

two dimensional spatial variable.
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The interaction between a heterogeneous environment and ecological behavior of

malaria vectors requires novel modeling approaches that can investigate these complex

relationships. Much of knowledge on the mosquito can be obtained via field observations,

typically collected via trapping, that are usually costly and time consuming and provide

information in the specific setting of the experiment. In order to gain understanding on

the biological processes observed in the field in a more generic manner and test various

hypothesis, mathematical modelling is a very useful tool. This thesis contributes to this

investigation by developing mathematical models for local mosquito dispersal to understand

vector ecological behaviors, distribution of mosquitoes, and their interactions with malaria

vector control interventions. These models set up a framework for use in understanding,

assessing, and evaluating the malaria intervention programs. We developed and studied

several mathematical models either discrete-space or continuous-space, models that were

simulated and applied to explain some properties of heterogeneity, and to answer specific

questions concerning the spatial distribution of mosquitoes. In this work continuous and

discrete space modelling are addressed. This research work encompasses two parts and

each of them has its peculiar features.

Models studied and contributions
In the first part (chapter 2), the model developed was a reaction-diffusion type model

to describe the spatial evolution of the anopheles mosquito using statistical mechanics of

complex networks i.e. networks of populations connected by migratory flows whose con-

figurations are described in terms of the conditional probabilities of connections between

nodes. This model categorizes the life of a mosquito into four compartments, namely,

population in aquatic stage, young female not yet laying eggs, fertilized and eggs laying

females and males. It consists of three main components. The first component is the

continuous time model based on ordinary differential equations that describe the mosquito

dynamics. This dynamics is driven by the birth, the mortality and, the development rates

from one compartment to another. The second component of this metapopulation model

involves the inclusion of the spatial characteristics. The space is discretized into discrete

locations (patches) to form a patches network. Each nodes of the network represent

108



General conclusion and perspectives

potential breeding and feeding sites of mosquitoes, around which there are human hosts

habitations. The third component of the model is modeling dispersal of adult mosquitoes

which move from one patch to another in search of hosts and breeding sites, creating

connectivity between these patches. The model incorporates two key features : spatial

heterogeneity and mosquito dispersal. The spatial heterogeneity was included on the one

hand by different connectivities of the patches, and on the other hand by allowing hosts

and breeding sites (resources) to differ between patches across the network. Mosquito

dispersal was modelled on the formalism used in statistical mechanics where dispersal of

adult mosquitoes searching for hosts or breeding sites depend on the degrees of the origin

and destination patches, and conditional probability that any given edge departing from a

patch is pointing to another patch. Here, dispersal of mosquitoes from one patch to other

patch is also affected by hosts density and distance between patches. The theoretical

study of this model was done using the theory of monotone dynamical systems recalled in

appendix. This study allowed to identify threshold values that ensure an effective control of

the population. The model has several contributions to science and to public health. The

coupling of the compartments of each mosquito stage and the spatial network patches

of the model makes it comprehensive but simple model that explicitly captures mosquito

behavioural and ecological features that are often neglected. From mathematical point

of view, the dispersal model was analyzed further to gain mathematical insight. The

computation of the basic offspring number for the whole domain help to understand the

effects of dispersal on the overall total population of mosquitoes and its implication on the

maintaining disease risk. Our results reveal that the connectivity of breeding-feeding sites

strongly influence the spatial distribution of mosquitoes. The advantage of the metapopula-

tion model (discrete space) developed in this work is that one can easily assess vector

control strategies, because the discrete space enables easy representation of interventions

that cover sets of house holds or villages. The metapopulation model, together with field

data, can be used to determine areas of high transmission within local settings, evaluate

the community effect of interventions, and assist to develop possible and efficient vector

control strategies, which can optimize the allocation of scarce resources.

In the second part (chapter 3), an alternative approach to metapopulation model

was developed using PDEs for mosquito dispersal. Some seminal models was modified

by taking account all stages in the gonotrophic cycle (questing, resting and breeding

female). We have presented here a framework for studying the dynamics of the mosquito

populations by interpreting its life cycle. The model developed in this part categorize

the life of a mosquito into six stages, namely, aquatic stage, young females, males,

questing females, resting females and breeding females. A general form of the eggs

oviposition function was used and the dynamics of the human-vector interactions was took

into account based on the idea that mosquito has a human biting rate. The last three

compartments of the model (questing females, resting females and breeding females)
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provide an opportunity to study the life style of the adult mosquito and assess the impact

of urbanization process on the distribution of the mosquitoes. They also offer direct

opportunity to assess the impact of interventions specifically targeting a certain state to

reduces contacts between mosquitoes and human hosts. Mosquito dispersal was modelled

using PDEs where advection and diffusion terms was added. The diffusion term accounts

for random movements of mosquitoes when they are not responding to any stimulus, while

advection term governs the attraction of the mosquitoes towards breeding-feeding sites.

To describe the spatial heterogeneity, urbanization process was used to capture the fact

that hosts was unevenly distributed in the domain. A deep theoretical study of this model

was carried out using a variety techniques and approaches including : Lyapunov-LaSalle

techniques, monotone dynamical systems theory, fluctuation method and spectral theory

approach. On the one hand, we have used several approaches to prove global stability of

equilibria and for some nonlinear birth functions, we have characterized the asymptotic

behavior of our model. Our results on stability study show that, in absence of density-

dependent mortality, Hopf bifurcation phenomenon can occur at the mosquito-persistent

equilibrium while in the presence of density-dependent mortality, the mosquito-persistent

equilibrium is always asymptotically stable. In the other hand, a special emphasis of this

part was the role played by the spatial component and variation of human distribution on

mosquitoes distribution. Our study indicates that there is a relationship between hosts

density and mosquitoes distribution, and this relationship has far-reaching effects on

spatial distribution of mosquitoes. Through numerical simulations, this work suggests

that spatial variation of human distribution strongly influences the spatial distribution of

adult female mosquitoes. When the index describing urbanization process, varies from

zero to one, the distribution of females in the gonotrophic cycle is strongly disturbed.

This shows that urbanization may increase or decrease malaria risk in regions where

this disease is endemic. With regard to control measure, a probably efficient strategy

for the containment of anopheles mosquito could be the mitigation of human-mosquito

contact. It is well known that so far that a sustainable and efficient method of reducing this

human-mosquito contact remains the use of mosquito bed nets, and it should be noted

that, the consideration of such measure alongside with the spatial effects (as in this work)

on mosquito population dynamics will bring further interesting and challenging modelling

and mathematical questions.

Throughout this thesis, the importance of models that incorporate dispersal and envi-

ronmental heterogeneity was shown. Crucial to assessing disease transmission spatial

variations, this work shows that alongside patterns of heterogeneity, mosquito dispersal

should be considered when designing intervention strategies. Spatially-explicit dispersal

models integrated with environmental heterogeneity allow predictions to capture ecological

behaviour of mosquitoes, the main source of variations in malaria risk at local spatial

scales. These predictions vary in space but provide more information than predictions of
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models that assume enclosed systems without taking into account the underlying hetero-

geneity of the landscape. Such predictions can assist not only in determining risk areas

for targeted control, but also in determining optimal strategies for deploying interventions

to assist achieving malaria elimination goals. The findings concerning different impacts

of heterogeneity have important implications for the development of control strategies. In

addition, the models can be used to explore the implications of the resulting multiplicity

of combinations of different environments with intervention strategies in understanding

malaria epidemiology and control. The knowledge gained from the models allow informed

decisions on designing the most effective intervention strategies in the area. At local level,

transmission appears to be shaped by the availability of resources (Smith et al., 2004

[122]) because mosquitoes movement between places is often related to the distribution

of resources. Thus, routine movement play a key role in spread diseases at local spatial

scales. This finding has important implications for malaria prevention, challenging the

appropriateness of current approaches to vector control. The argument is that assessment

of current approaches and sampling methods used in vector control should consider vector

dispersal. This will lead to improvements in preventing transmission.

Based on the results, the models will stimulate dialogue and future modelling directions

in response to the results generated by this study and field research for valuable resource

management and rational decisions about strategies for local malaria control. Mathematical

analysis is an essential tool for assessing the true impact of each parameter and to provide

evidence for interventions that aim at reducing mosquito abundance. The translation of the

knowledge gained from models to the field will improve our understanding of ecological

processes such as dispersal and interactions among populations. The models developed

in this thesis and the results emerging from its application are essential for implementation

of better malaria vector control programs. Together with field data, these models could help

determine better ways of spatially distributing interventions in local settings to optimize the

allocation of scarce resources available especially when country economies do not allow

high coverage levels.

Future work
The models developed in this thesis have some limitations but also are capable of

accommodating further extensions which could improve its performance qualities to enable

further investigations.

The development times of each stage of the mosquito, particularly the aquatic stages

highly dependent on the environmental conditions. Since the model structured the mosquito

into its life stages, incorporating environmental and seasonal effects such as rainfall,

temperature is possible (Abdelrazec et al. (2017) [1] ; Depinay et al. (2004) [38] ;

Mordecai et al. (2013) [99] ; Okuneye et al. (2018) [108]). These environment-dependent
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parameters include the mosquito recruitment or birth rate, the mosquito mortality rates,

and the development rates. The seasonal effects could be modelled by making some

of these parameters periodic functions of time. However, these environmental effects

have implications on the analytical results of the model. Analyzing periodical models with

changes in the mosquito population reproductive number and steady states is complex but

could provide more information on the spatial distribution of mosquitoes over time and its

implications on the distribution of vector control interventions. Thus, a possible extension

of this thesis is to incorporate the seasonality and climate changes in our spatial models in

order to assess the impact of temperature and rainfall on the abundance of mosquitoes.

To better reflect the details of spatial variation, an equally challenging problem will be to

consider the situation where the diffusion and convection coefficients, as well as other

parameters depend on a two dimensional spatial variable.

The control of diseases vector is a matter of main environmental and health concern.

Control programs of mosquitoes aim at developing control strategies in order to maintain

the mosquito population at a low-impact level while satisfying environmentally respectful

requirements. In this context, more and more attention is given to specific methods such

as mechanical control, biological control, involving SIT control, and/or behavioral methods.

Thus, since we take into account the male dispersal, another possible extension would be

to incorporate a compartment of sterile males insects in our models, in order to assess

the impact of Sterile Insect Technique (SIT) control. The classical SIT consists of mass

releases of males sterilized by ionizing radiation. The released sterile males transfer

their sterile sperms to wild females, which results in a progressive decay of the targeted

population.

In the field, the models could be validated by applying it to an area which is endemic to

malaria. Using data from mark-recapture studies, parameter values specific to particular

locations could be used as input values in the model, and simulations of the effects of host

and breeding sites distribution on the distribution of mosquitoes could be made with and

without interventions. The present work gives a mathematical framework to model the

spatial dynamics of the mosquitoes. Although the models presented here can be made

more realistic by adding complexity, their relative simplicity allowed to carry out theoretical

mathematical studies and simulations providing biologically relevant and applicable results

useful for the development of mosquito control tool satisfying the requirements of control

programs.
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Mathematical tools

A.1 General setting for the models

The models presented in chapter 2 and 3 are dynamical systems. A dynamical system

describes the evolution in time of the different states of a system. The set of states is

often referred to as the phase space and it can be of different nature depending on the

formulation of the problem. For instance, the phase space of a dynamical system defined

via an ODE representing the evolution of a population size can be a subset of R. When

the population is divided into compartments, then its dynamics are governed by a system

of ODEs, and then, the states of its dynamical system are vectors of Rn giving the size of

each compartment. The states of a dynamical system can also be functions or vector of

functions. When we deal with spatio-temporal models governed by PDEs (resp. systems of

PDEs), then the phase space of the corresponding dynamical system becomes the space

of R-valued functions (resp. Rn-valued functions). Dynamical systems can be categorized

according to the nature of its parameter (time), its phase space and its evolution rule. The

time as well as the phase space can be continuous or discrete. Further, the evolution

rule can be deterministic or stochastic. When the evolution rule is deterministic, it takes

each state of the system to a unique subsequent state, which is not the case when the

evolution rule is stochastic. The models presented in chapters 2 and 3 describe continuous

deterministic dynamical systems, thus we only focus on this case. In more precise terms

the definition of dynamical system is given as follows [66] :

Definition A.1.1. Let D be a topological space. A dynamical system is a C1 map

ϕ : R+ ×D → D such that ϕt ≡ ϕ(t, ·) : D→D satisfies the following properties :

(i) ϕ0 = Id,

(ii) ϕt+s = ϕt ◦ ϕs, ∀t, s ≥ 0.

The operator ϕ is called a semigroup or semiflow operator, since from (i) and (ii), it

follows that {ϕt, t ≥ 0} is a semigroup with respect to composition.
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The models presented in chapter 2 and 3 are formulated via ODEs and PDEs. In all

cases, the model can be formulated in the following operator form
du
dt

= Ψu(t) + F(t,u), t > 0,

u(0) = u0,
(A.1)

where u(t) ∈ Rn when the model is given as a system of ODEs and where u is a mapping

u : [0,∞)→ X, X being a functional space, when the model is formulated by PDEs. Then,

we have that u(t) = ϕt(u0) is a solution of (A.1).

In the following we recall some useful definitions.

Definition A.1.2 (pg 1, 4, [134]). Let X be a Banach space. A family (T(t))t≥0 of bounded

linear operators such that T(t) : X→ X for all t ≥ 0, is a strongly continuous semigroup of

bounded linear operators if the following conditions hold:

(i) T(0) = idX ;

(ii) T(t + s) = T(t)T(s), ∀t, s ≥ 0 ;

(iii) ∀x ∈ X, t 7−→ T(t)x is continuous at 0.

A strongly continuous semigroup of bounded linear operators on X will be called a

C0-semigroup.

Definition A.1.3 (pg 1, [134]). The linear operator Ψ defined by

Ψx = lim
t→0+

T(t)x − x
t

, for x ∈ D(Ψ),

is called the infinitesimal generator of the semigroup (T(t))t≥0, where

D(Ψ) =

{
x ∈ X : lim

t→0+

T(t)x − T(0)x
t − 0

exists
}
,

is called the domain of Ψ.

Definition A.1.4 (pg 105, [134]). Let u : [0,T] −→ X be a function.

(i) The function u ∈ C([0,T],X) given by

u(t) = T(t)u0 +

t∫
0

T(t − s)F(s,u(s))ds, 0 ≤ t ≤ T,

with x ∈ X and F ∈ L1([0,T]; X) is called mild solution of (A.1) on [0,T].

(ii) u is a classical solution of (A.1) if u is continuous on [0,T] and u(t) ∈ D(A), for

0 < t ≤ T satisfies (A.1).
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Definition A.1.5. Let X be an ordered Banach with positive cone X+ such that int(X+) , ∅.

A linear operator A on X is said to be positive if A(X+) ⊂ X+, strongly positive if

A(X+
\ {0}) ⊂ int(X+).

Definition A.1.6. For a closed linear operator Θ : D(Θ) −→ X, λ ∈ C is a resolvent value

of Θ if λI − Θ has a bounded inverse operator that is defined on the entire X. The set

of resolvent values of Θ is called the resolvent set of Θ and is denoted by ρ(Θ). The

set σ(Θ) := C \ ρ(Θ) is called the spectrum of Θ. A closed operator Θ in X is called

resolvent-positive if the resolvent set of Θ, ρ(Θ) contains a ray (η,∞) and (λI −Θ)−1 is a

positive operator ∀λ > η.

Definition A.1.7. A linear operator Φ : Y 7−→ X, defined on a linear subspace Y of X,

is called positive if Φ(x) ∈ X+, ∀x ∈ Y ∩ X+ and Φ is not the zero operator. If Ψ is a

resolvent-positive operator and Φ : D(Ψ) 7→ X is a positive linear operator, then Θ = Ψ + Φ

is called a positive perturbation of Ψ.

We recall the spectral radius r(Θ) of a square matrix Θ is defined by

r(Θ) := sup{|λ| : λ ∈ σ(Θ)},

where σ(Θ) is the spectrum of Θ. Its spectral bound s(Θ) := sup{Reλ : λ ∈ σ(Θ)}.

In many cases, it is not possible to find an explicit formulation for a solution to such

problems. In order to study PDE or ODE problems, we typically investigate the well-

posedness of the problem. A problem is said to be well-posed (in the sense of Hadamard)

when it satisfies the following conditions: (i) there exists a solution to the problem ; (ii) this

solution is unique ; (iii) the solution depends continuously on the data of the problem.

In sections A.2 and A.3, we give some mathematical background in the appropriate

settings to show that the problems describe well-posed dynamical systems. For the model

of chapter 2, we consider the setting of monotone dynamical systems. For the advection-

diffusion model presented in chapter 3 formulated by PDEs, we consider the setting of

the dissipative dynamical systems in order to give global behavior of the system. In the

following, we recall some fundamental results which will be used in our further analysis.

A.2 Dissipative dynamical systems

We present concepts of limit sets and attractors and some fundamental theorems such

as the LaSalle invariance principle, the asymptotic fixed point theorem, and the global

attractor theorems.
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A.2.1 Limits sets and global attractors

Let X be a complete metric space with metric d and Φ : X −→ X a continuous map. For

a nonempty invariant set M (i.e. Φ(M) = M), the set

Ws(M) = {x ∈ X : lim
n→∞

d(Φn(x),M) = 0}

is called the stable set of M. The omega limit set of x is defined in the usual way as

ω(x) = {y ∈ X : Φnk(x)→ y, for some nk →∞}.

Thanks to Lemma 2.1.2 in [58], If the positive orbit of x, γ+(x) = {Φn(x) n ≥ 0} is precompact

(i.e., it is contained in a compact set), then ω(x) is nonempty, compact, and invariant.

Let x∗ ∈ X be a fixed point of Φ (i.e. Φ(x∗) = x∗). Recall that x∗ is said to be stable

for Φ if for each ε > 0 there exists δ > 0 such that for any x ∈ X with d(x, x∗) < δ, we

have d(Φn(x), x∗) < ε, ∀n ≥ 0. The following simple observation is useful in proving the

convergence of a precompact positive orbit to a fixed point.

Lemma A.2.1 (Lemma 1.1.1 in [160]). Let x∗ be a stable fixed point and γ+(x) a precompact

positive orbit for Φ : X→ X. If x∗ ∈ ω(x), then ω(x) = {x∗}.

Definition A.2.1. Let G be a closed subset of X. A continuous function V : G→ R is said

to be a Liapunov function on G of the map Φ : G→ G, if V̇(x) = V(Φ(x)) − V(x) ≤ 0 for all

x ∈ G.

Theorem A.2.1 (Theorem 1.1.1 in [160] (LaSalle Invariance Principle)). Assume that

V is a Liapunov function on G of Φ, and that γ+(x) is a precompact orbit of Φ and

γ+(x) ⊂ G. Then ω(x) ⊂M∩V−1(c) for some c = c(x), where M is the largest invariant set in

E := {x ∈ G : V̇(x) = 0}, and V−1(c) := {x ∈ G : V(x) = c}.

Recall that a set U in X is said to be a neighborhood of another set V provided that V

is contained in the interior int(U) of U. For any subsets A,B ⊂ X and any ε > 0, we define

d(x,A) := inf
y∈A

d(x, y), δ(B,A) := sup
x∈B

d(x,A).

The Kuratowski measure of noncompactness, κ, is defined by

κ(B) := inf{r : B has a finite cover of diameter < r},

for any bounded set B of X. We set κ(B) = ∞ whenever B is unbounded. The following

lemma is straightforward.

Lemma A.2.2 (Lemma 1.1.2. in [160]). The following statements are valid :

(i) Let I ⊂ [0,∞) be unbounded, and {At}t∈I be a nonincreasing family of nonempty

closed subsets (i.e., t ≤ s implies As ⊂ At). Assume that κ(At) → 0 as t → ∞. Then

A∞ =
⋂
t≥0

At is nonempty and compact, and δ(At,A∞)→ 0 as t→∞.
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(ii) For each A ⊂ X and B ⊂ X, we have κ(B) ≤ κ(A) + δ(B,A).

For a subset B ⊂ X, let

γ+(B) :=
⋃
m≥0

Φm(B) and ω(B) :=
⋂
n≥0

⋃
m≥n

Φm(B),

be the positive orbit of B for Φ and the omega limit set of B, respectively. A subset A ⊂ X is

positively invariant for Φ if Φ(A) ⊂ A. We say that a subset A ⊂ X attracts a subset B ⊂ X

for Φ if lim
n→∞

δ(Φn(B),A) = 0. It is easy to see that B is precompact (i.e. B is compact) if

and only if κ(B) = 0. A continuous mapping Φ : X→ X is said to be compact (completely

continuous) if Φ maps any bounded set to a precompact set in X.

The theory of attractors is based on the following fundamental result.

Lemma A.2.3 (Lemma 1.1.3. in [160]). Let B be a subset of X and assume that there exist

a compact subset C of X which attracts B for Φ. Then ω(B) is nonempty, compact, invariant

for Φ and attracts B.

Definition A.2.2. A continuous mapping Φ : X→ X is said to be

(i) point (compact, bounded) dissipative if there is a bounded set B0 in X such that B0

attracts each point (compact set, bounded set) in X ;

(ii) κ-contracting if lim
n→∞

κ(Φn(B)) = 0 for any bounded set B ⊂ X ;

(iii) asymptotically smooth if for any nonempty closed bounded set B ⊂ X for which

Φ(B) ⊂ B, there is a compact set J ⊂ B such that J attracts B.

Remark A.2.1. By Lemma A.2.2, it follows that Φ : X → X is asymptotically smooth if

and only if lim
n→∞

κ(Φn(B)) = 0 for any nonempty closed bounded subset B ⊂ X for which

Φ(B) ⊂ B. This implies that any κ-contracting map is asymptotically smooth.

Definition A.2.3. A nonempty, compact and invariant set A ⊂ X is said to be

(i) an attractor for Φ if A attracts some open neighborhood of itself ;

(ii) a global attractor for Φ if A is an attractor that attracts every point in X ;

(iii) a strong global attractor for Φ if A attracts every bounded subset of X.

The following result gives the existence of a global attractor for Φ.

Theorem A.2.2 (Theorem 1.1.2 in [160] ( Global attractors)). Let Φ : X→ X be a continuous

map. Assume that

(a) Φ is point dissipative and asymptotically smooth ;

(b) positive orbits of compact subsets of X for Φ are bounded.

Then Φ has a global attractor A ⊂ X. Moreover, if a subset B of X admits the property that

γ+(Φk(B)) is bounded for some k ≥ 0, then A attracts B for Φ.
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A.2.2 Uniform persistence

Uniform persistence is an important concept in population dynamics, since it charac-

terizes the long-term survival of some or all interacting species in an ecosystem. Looked

at abstractly, it is the notion that a closed subset of the state space is repelling for the

dynamics on the complementary set, and then it gives a uniform estimate for omega limit

sets, which sometimes is essential to obtain a more detailed global dynamics.

Let Φ : X→ X be a continuous map and X0 ⊂ X an open set. Define

∂X0 := X \ X0, and M∂ := {x ∈ ∂X0 : Φn(x) ∈ ∂X0, n ≥ 0},

which may be empty. Note that ∂X0 need not be the boundary of X0 as the notation

suggests. This peculiar notation has become standard in persistence theory. We assume

that every positive orbit of Φ is precompact.

Definition A.2.4. Let A ⊂ X be a nonempty invariant set. We call A internally chain

transitive if the following stronger condition holds : For any a, b ∈ A and any ε > 0, there is

a finite sequence x1, · · · , xm in A with x1 = a, xm = b such that d(Φ(xi), xi+1) < ε, 1 ≤ i ≤ m− 1.

The sequence {x1, · · · , xm} is called an ε-chain in A connecting a and b.

The following result give an example of internally chain transitive sets.

Lemma A.2.4 (Lemma 1.2.1 in [160]). Let Φ : X → X be a continuous map. Then the

omega limit set of any precompact positive orbit is internally chain transitive.

Definition A.2.5. A lower semicontinuous function p : X → R+ is called a generalized

distance function for Φ : X→ X if for every x ∈ (X0∩p−1(0))∪p−1(0,∞), we have p(Φn(x)) > 0,

∀n ≥ 1.

Theorem A.2.3 (Theorem 1.3.2. in [160]). Let p be a generalized distance function for

continuous map Φ : X→ X. Assume that

(P1): Φ has a global attractor A ;

(P2): There exists a finite sequence M = {M1, . . . ,Mk} of disjoint, compact,and isolated

invariant sets in ∂X0 with the following properties :

(a) ∪x∈M∂
ω(x) ⊂ ∪k

i=1Mi ;

(b) no subset of M forms a cycle in ∂X0 ;

(c) Mi is isolated in X ;

(d) Ws(Mi) ∩ p−1(0,∞) = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact chain transitive set L with L 1Mi for all

1 ≤ 1 ≤ k, we have min
x∈L

p(x) > δ.
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Definition A.2.6. A function Φ : X→ X is said to be uniformly persistent with respect to

(X0, ∂X0) if there exists η > 0 such that

lim
n→∞

inf d(Φn(x), ∂X0) ≥ η for all x ∈ X0.

If "inf" in this inequality is replaced with "sup", then Φ is said to be weakly uniformly

persistent with respect to (X0, ∂X0).

Definition A.2.7. Let p be a generalized distance function for a continuous map Φ : X→ X.

Then Φ is said to be uniformly persistent with respect to (X0, ∂X0, p) if there exists η > 0

such that

lim
n→∞

inf p(Φn(x)) ≥ η for all x ∈ X0.

By Definition A.2.5, it is easy to see that for every x ∈ X0, either p(x) > 0 or p(Φ(x)) > 0.

Note that ω(x) = ω(Φ(x)). Thus, Ws(Mi) ∩ p−1(0,∞) = ∅ implies ω(x) 1 Mi, ∀x ∈ X0. By

Lemma A.2.4 and Theorem A.2.3, we have the following result.

Theorem A.2.4. Let p be a generalized distance function for a continuous map Φ : X→ X.

Assume that (P1) and (P2) hold. Then, Φ is said to be uniformly persistent with respect to

(X0, ∂X0, p).

A.3 Dynamical systems defined by a system of ODEs

The model presented in 2 and the first model presented in 3 are temporal and governed

by systems of ODEs representing the evolution in time of a compartmented mosquito

population. Thus, the state of the system at time t is a real vector x(t) representing the

population densities in the respective compartments at time t. Hence, we consider a

dynamical system defined via a system of ODEs on a subset of Rn as discussed below.

Let D ⊂ Rn, we consider the autonomous system of ODEs
dx
dt

= f (x),

x(0) = x0 ∈ D,
(A.2)

where f : D −→ Rn.

We recall here some of the fundamental theory following mostly [66].

Theorem A.3.1 ([66], Theorem 1, pg.162.). Let D ⊂ Rn be an open, f : D −→ Rn a C1

map and x0 ∈ R
n. Then there is some a > 0 and a unique solution x : [−a, a] −→ D of the

differential equation (A.2).

Theorem A.3.2 ([66], Theorem, pg.171.). LetD ⊂ Rn be an open, f : D −→ Rn a C1 map.

Let x(t) be a solution on a maximal open interval J = (α, β), β < ∞. Then, given any compact

set K ⊂ D, there is some t ∈ (α, β) such that x(t) < K.
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In other words, Theorem A.3.2 says that if x(t) cannot be extended to a larger interval

than (α, β), then it leaves any compact set. As a consequence, as t tends to β, x(t) either

tends to the boundary of D or |x(t)| tends to ∞.

If for every x0 ∈ D, the system (A.2) has a unique solution x(t) on [0,∞), then (A.2)

defines a dynamical system D in terms of Definition A.1.1. In this case, the operator ϕt is

given by ϕt(x0) = x(t), t ≥ 0. Then, f defines a vector field satisfying : f (x) =
dϕt(x)

dt

∣∣∣∣
t=0

.

The continuity of ϕt on x0 is shown in Theorem 2, pg. in [66]. The global existence

required above is obtained typically by using the concept of invariant set.

Definition A.3.1 (Invariant set). A subset K of D is called (positively) invariant set of

(A.2) if for every x0 ∈ K, any solution of (A.2) of the form x : [0, β] −→ D is such that

x(t) ∈ K, ∀t ∈ [0, β].

Proposition A.3.1 (Global existence, [66], Proposition, pg.172). Let K be a compact

invariant subset of the open set D ⊂ Rn and let f : D −→ Rn a C1 map. Then for every

y0 ∈ K, there exists a unique solution y : [0, β] −→ D, y(0) = y0, and y(t) ∈ K, ∀t ≥ 0.

A.3.1 Asymptotic properties

The asymptotic properties describe the behaviour of a dynamical system when time

tends to infinity. We denote by O+
x , x ∈ D, the forward orbits or trajectories of the dynamical

system on D described by the semiflow ϕ, i.e. the set of states that followed from an initial

given state x,

O
+
x ≡

{
ϕt(x) : t ≥ 0

}
.

A point x ∈ D such that O+
x = {x} is called an equilibrium. We denote by E the set of

all equilibria of the system. If there is a T > 0 such that ϕt+T(x) = ϕt(x), ∀t ≥ 0, then

O
+
x ≡

{
ϕt(x) : 0 ≤ t ≤ T

}
and ϕt(x) is called a T-periodic solution.

We define the ω-limit set of x ∈ D by

ω(x) =
⋂
t≥0

⋃
s≥t

ϕs(x).

For a dynamical system defined via (A.2), a point x∗ is an equilibrium if and only if f (x∗) = 0.

Definition A.3.2. An equilibrium x∗ of a semiflow ϕ is stable if for every neighborhood

N of x∗, there is a neighborhood M ⊂ N such that if x ∈M, then ϕt(x) ∈ N, ∀t ≥ 0.

Definition A.3.3. An equilibrium x∗ of a semiflow ϕ is asymptotically stable if it is stable

and there is neighborhood N of x∗, such that every point in N approaches x∗ as t→∞.

In other words, an equilibrium is stable the orbits that start "near" an equilibrium stay

"nearby". More strongly, an equilibrium is asymptotically stable if in addition the orbits that

start "near" an equilibrium converge to the equilibrium.
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To obtain stability properties of an equilibrium, we use the Jacobian matrix D f (x∗) of

the vector field f at x∗. Indeed, by the well-known theorem of Hartman and Grobman, the

solutions of (A.2) in a neighborhood of an equilibrium x∗ behave topologically equivalently

to the solutions of the linear system

dy
dt

= D f (x∗)y, (A.3)

around 0. Techniques for solving linear systems can be applied to solve (A.3). In particular,

properties of the equilibrium x∗ are obtain by investigating the sign of the real parts of the

eigenvalues of the matrix D f (x∗).

Definition A.3.4. A equilibrium x∗ of a C1 vector field f is hyperbolic if none of the

eigenvalues of D f (x∗) have zero real parts.

Assume that x∗ is a hyperbolic equilibrium, we have the following properties :

Proposition A.3.2. 1. If all the eigenvalues of D f (x∗) have negative real parts then x∗

stable.

2. If some of the eigenvalues of D f (x∗) have positive real parts then x∗ is unstable.

Definition A.3.5. Let x∗ be an asymptotically stable equilibrium. The basin of attraction

of x∗ is the union of all the solution curves of (A.2) that tend towards x∗ as t→∞.

A common method to study the global stability of dynamical systems is to show the

existence of a Lyapunov function :

Definition A.3.6. Let x∗ be an equilibrium of the dynamical system defined via (A.2) on

D. If there is a neighborhood U of x∗ and a function L ∈ C1(U,R)

(i) L(x∗) = 0,

(ii) L(x) > 0, for x , x∗,

(iii) ∇L(x) · f (x) ≤ 0, x ∈ U,

then L is called a Lyapunov function. Further, if ∇L(x) · f (x) < 0, x ∈ U \ {x∗}, then L is called

a strict Lyapunov function for x∗.

The expression in (iii) is often called the Lyapunov derivative since for every solution

x(t) of (A.2) we have

dL(x(t))
dt

= ∇L(x(t)) ·
dx
dt

= ∇L(x(t)) · f (x(t)).

Theorem A.3.3. Let x∗ be an equilibrium of a dynamical system defined via (A.2).

(i) If there exists a Lyapunov function in a neighborhood U of x∗, then x∗ is stable.
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(ii) If there exists a strict Lyapunov function in a neighborhood U of x∗, then x∗ is

asymptotically stable with basin of attraction containing U.

There are some alternative tools to prove stability and attractiveness of equilibria

without using Lyapunov-LaSalle techniques. Monotone dynamical systems approach can

be used to prove stability of equilibria and provide a method for characterizing the basins

of attraction.

A.3.2 Monotone dynamical systems

A monotone dynamical system is just a dynamical system on an ordered metric space

which has the property that ordered initial states lead to ordered subsequent states [124].

A particularity of monotone dynamical systems is that they behave in a very "orderly" way.

A semiflow ϕ is said to be monotone if it satisfies

ϕt(x) ≤ ϕt(y), whenever x ≤ y and t ≥ 0. (A.4)

Further, ϕ is said to be Strongly Order Preserving (SOP) if it is monotone and if x < y,

there exist open subsets U, V ⊂ D with x ∈ U, y ∈ V and t0 > 0 such that

ϕt0(x̃) ≤ ϕt0(ỹ), ∀x̃ ∈ U, ∀ỹ ∈ V.

In particular, the monotonicity of ϕ implies that ϕtU ≤ ϕtV, ∀t ≥ t0.

We introduce the notion of quasi-convergence which gives an essential property of

monotone dynamical systems. A point x ∈ D is quasi-convergent if ω(x) ⊂ E. We denote

by Q the set of all quasi-convergent points. A point x ∈ D is convergent if ω(x) consists of

a single point of E. We denote by C the set of all convergent points. In other words,

x ∈ Q ⇔ ω(x) ⊂ E and x ∈ C ⇔ ω(x) = x∗ ∈ E.

If E consists of disjoint equilibria, then Q = C.

Theorem A.3.4 (Convergence criterion, [124], Theorem 2.1, pg. 3). Let ϕT(x) ≥ x for some

T ≥ 0. Then ω(x) is a T-periodic orbit. If ϕt(x) ≥ x for t belonging to a non-empty open

subset of R+
\{0}, then ϕt(x)→ p ∈ E as t→∞. In particular, if ϕ is SOP and ϕT(x) > x for

some T > 0, then ϕt(x)→ p ∈ E as t→∞.

As a consequence of Theorem A.3.4, a monotone dynamical system cannot have

an attracting periodic orbit since a periodic orbit O is attractive if there is an open set U

containing O such that ω(x) = O, ∀x ∈ U.

If x ∈ D, we say that x can be approximated from below (resp. above) in D if there is a

sequence {xn} in D such that xn < xn+1 < x (resp. xn > xn+1 > x) for n ≥ 1 and xn → x as

n→∞.
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Theorem A.3.5 ([124], Theorem 4.3, pg. 9). Suppose that each point of D can be

approximated either from above or from below inD. If ϕ is SOP, then

D = IntQ ∪ IntC.

In particular, IntQ is dense inD.

Theorem A.3.5 shows that the property of quasi-convergence is generic for SOP

dynamical systems in the sense that the set Q of all quasi-convergent points contains an

open and dense subset of D. The power of this property is further demonstrated in the

particular case of E being a singleton as stated in the next theorem.

Theorem A.3.6 (Global stability, [124], Theorem 3.1, pg. 18). Suppose that D contains

exactly one equilibrium x∗ and that every point ofD\{x∗} can be approximated from above

and from below inD. Then, ω(x) = x∗, ∀x ∈ D.

Let (A.2) define a dynamical system on D ⊂ Rn. We consider the usual partial order

on Rn, that is, for x, y ∈ Rn, we have x ≤ y if x − y ∈ Rn
+, or equivalently x ≤ y ⇔ xi ≤ yi,

∀i = 1, 2, . . . ,n. In addition, we use the following inequalities

x < y ⇔ x ≤ y, x , y.

x� y ⇔ xi < yi, i = 1, . . . ,n.

It is common that the systems describing population dynamics are coupled via feed-

backs between the compartments. For instance, for a system of the type (A.2), for

i = 1, 2, . . . ,n,

• if fi is monotone increasing with respect to x j for i , j, then x j is said to have a

positive feedback on xi ;

• if fi is monotone decreasing with respect to x j for i , j, then x j is said to have a

negative feedback on xi.

Definition A.3.7. System (A.2) is said to be cooperative if for every i, j ∈ {1, . . . ,n} such

that i , j, x j has a positive feedback on xi.

Theorem A.3.7. If f is differentiable on D, then the system (A.2) is cooperative if and

only if
∂ fi(x)
∂x j

≥ 0, i , j, x ∈ D.

In the other words, if f is differentiable on D, the system is cooperative if the jacobian
d f (t,x)

dx is a Metzler matrix for every t ∈ [0,∞) and x ∈ D. Let us recall that a matrix is called

Metzler if its non-diagonal entries are nonnegative. This condition on f is sometimes called

quasimonotonicity with respect to x. The next theorem characterizes monotone solutions

of cooperative systems.
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Theorem A.3.8 ([124], Proposition 3.2.1, pg. 34). Let system (A.2) be cooperative. If a ∈ D

is such that f (a) ≥ 0 (resp. f (a) ≤ 0), then the solution x(a, t) is monotone increasing (resp.

decreasing) function of t ∈ [0,Ta).

Theorem A.3.9 ([136], Theorem II, pg.12). Let (A.2) be a cooperative system and let

x(x0, t) be a solution of (A.2) on [0,T). If y(t) is a differentiable function on [0,T) satisfying
dy
dt ≤ f (y), y(0) ≤ x0, then y(t) ≤ x(x0, t), t ∈ [0,T).

Theorem A.3.10 ([124], Theorem 3.1.1, pg. 32). Let (A.2) be a cooperative system and

a, b ∈ D. If a ≤ b and x(a, t) and x(b, t) are defined for t > 0, then x(a, t) ≤ x(b, t).

Definition A.3.8. A system of the form (A.2) is called irreducible if its Jacobian d f
dx is an

irreducible matrix for every x ∈ D.

Theorem A.3.11 (Kamke’s theorem, [136]). Let the system (A.2) be cooperative. Then for

every a, b ∈ D,

a ≤ b⇒ x(a, t) ≤ x(b, t), t ∈ [0,min{Ta,Tb}).

Theorem A.3.11 equivalently means that the evolution semi-group operator ϕt : Dt →D

defined by ϕt(a) = x(a, t) is monotone increasing on its domain Dt = {a ∈ D Ta > t} for

every t > 0. For cooperative irreducible systems, the Kamke’s theorem admits a stronger

form as stated below.

Theorem A.3.12 ([124], Theorem 4.1.1, pg. 56). If the system (A.2) is cooperative and

irreducible, then for every a, b ∈ D

a < b⇒ x(a, t)� x(b, t), t ∈ [0,min{Ta,Tb}).

The combined application of the monotonicity of the evolution operator ϕt given in

Theorems A.3.11 and A.3.12, and the monotonicity of the solutions given in Theorem A.3.8

is an efficient tool for studying asymptotic stability of equilibria of monotone dynamical

systems. As usual, we call an equilibrium asymptotically stable if it is both stable and

attractive. An asymptotically stable equilibrium is called globally asymptotically stable if the

basin of attraction is the whole domain D. Basins of attraction are often represented as

n-dimensional intervals : given a, b ∈ Rn with a ≤ b,

[a, b] = {x ∈ Rn : a ≤ x ≤ b}.

The following results establish the global asymptotic stability of the equilibria using Theo-

rems A.3.11, A.3.12 and A.3.8, which is a consequence of Theorem A.3.6.

Theorem A.3.13. Let a, b ∈ D be such that a < b, [a, b] ⊆ D and f (b) ≤ 0 ≤ f (a). Then

system (A.2) defines a (positive) dynamical system on [a, b]. Moreover, if [a, b] contains a

unique equilibrium p, then p is globally asymptotically stable on [a, b].
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A.4 Dynamical systems defined by a system of PDEs

In the model of chapter 3, we consider the spatio-temporal variations of abundance

of mosquitoes governed by reaction-advection-diffusion equations (RAD). The density of

mosquitoes is denoted u(t, x) and defined on a time-space ΩT = [0,T] ×Ω, where T ∈ R+

and Ω is a domain in R with a piecewise smooth boundary Γ = ∂Ω. The RAD equation

can be written in the general form :

∂u
∂t

+ Lu = F(x,u(t, x)), in ΩT, u(0, x) = u0(x), (A.5)

with

Lu = −

n∑
i, j=1

∂
∂x j

(
Di j

∂u
∂xi

)
+

n∑
i=1

vi
∂u
∂xi
.

Further, to complete the formulation of the problem, we provide information on the

dynamics at the boundary Γ of the domain. We can distinguish two main types of boundary

conditions :

• Homogeneous Dirichlet : If we consider a domain out of which individuals cannot

survive, then we have u(t, x) = 0, x ∈ Γ, ∀t ∈ [0,T].

• Homogeneous Neumann : If we consider an isolated domain with no movement of

individuals in and out of the domain, then we have
∂
∂ν

u(t, x) = 0, x ∈ Γ, ∀t ∈ [0,T],

where ν denotes the outward normal vector to Γ.

• Robin : α(x)u(t, x) + δ
∂
∂ν

u(t, x) = 0, x ∈ Γ, ∀t ∈ [0,T]. The Robin boundary condition

is a combination of Dirichlet and Neumann, where the flux at the boundary depends

on the density of u at the boundary.

In this thesis, we consider homogeneous Neumann and Robin conditions. Given problem

(A.5), a solution is expected to lie in the space of real-valued functions of class C1 with

respect to t and C2 with respect to x, and it is referred to as a classical solution.

A.4.1 The maximum principle and the comparison principle

Maximum principle plays a central role in the theory of parabolic partial differential

equations. It provide a useful tool to study properties of elliptic and parabolic equations

[47, 124]. This principle states that the maximum of a solution is achieved on the boundary

of the domain where it is defined. Assume that the operator L has the non-divergent form:

Lu = −

n∑
i, j=1

Di j
∂2u
∂xix j

+

n∑
i=1

vi
∂u
∂xi
,

where the coefficients Di j and vi are continuous. We also assume that Di j = D ji. Denote

ΩT = [0,T] ×Ω and ΩT its closure.
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Theorem A.4.1 ((Strong maximum principle)[47], Theorem 11, section 7.1 ). Assume that

u ∈ C2(ΩT) ∩ C(ΩT).

(i) If

ut + Lu ≤ 0 in ΩT,

and u attains its maximum over ΩT at a point (t0, x0) ∈ ΩT, then u is constant on Ωt0 .

(ii) If

ut + Lu ≥ 0 in ΩT,

and u attains its minimum over ΩT at a point (t0, x0) ∈ ΩT, then u is constant on Ωt0 .

Now, suppose that (A.5) has a classical solution. Let Λ be a nonempty, closed, convex

subset of Rn. Let v+(t, x) and v−(t, x) be continuous on [0,T)×Ω, continuously differentiable

on (0,T) ×Ω and twice continuously differentiable in x ∈ Ω for t > 0. Furthermore, assume

that

v−(t, x) ≤ v+(t, x) and v−(t, x), v+(t, x) ∈ Λ, [0,T) ×Ω.

Let F± : Ω ×Λ→ Rn be two functions satisfying

∂F±i
∂u j

(x,u) ≥ 0, (x,u) ∈ Ω ×Λ, i , j.

When this holds, we say that F±i is cooperative. In the literature of partial differential

equations it is more commun to refer to this condition as the quasimonotone condition.

Finally, assume that v± satisfy the differential inequalities

∂v+

∂t
≥ Lv+ + F+(x, v+), t > 0, x ∈ Ω

αv+ + δ
∂v+

∂ν
≥ 0, t > 0, x ∈ ∂Ω

(A.6)

and
∂v−

∂t
≤ Lv− + F+(x, v−), t > 0, x ∈ Ω

αv− + δ
∂v−

∂ν
≤ 0, t > 0, x ∈ ∂Ω

(A.7)

The function v+ is called a super − solution and v− is called a sub − solution in the literature

of partial differential equations. The next result is a fundamental comparison technique.

Theorem A.4.2 ([124], Theorem 7.3.4). Suppose that v± satisfy (A.6)-(A.7) and F± are

cooperative. Suppose further that

F−(x,u) ≤ F(x,u) ≤ F+(x,u), (x,u) ∈ Ω ×Λ

and

v−(x, 0) ≤ u0(x) ≤ v+(x, 0), x ∈ Ω.

Then the unique solution of (A.5) exists on [0, σ) where σ > T and

v−(t, x) ≤ u(t, x) ≤ v+(t, x), (t, x) ∈ [0,T) ×Ω.
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a b s t r a c t 

A more robust assessment of malaria control will come from a better understanding of the 

distribution and connectivity of breeding and blood feeding sites. Spatial heterogeneity of 

mosquito resources, such as hosts and breeding sites, affects mosquito dispersal behav- 

ior. This paper analyzes and simulates the spreading of anopheles mosquito on a complex 

metapopulation, that is, networks of populations connected by migratory flows whose con- 

figurations are described in terms of connectivity distribution of nodes (patches) and the 

conditional probabilities of connections between nodes. We examine the impacts of vector 

dispersal on the persistence and extinction of a mosquito population in both homogeneous 

and heterogeneous landscapes. For uncorrelated networks in a homogeneous landscape, we 

derive an explicit formula of the basic offspring number R 

(m ) 
0 

. Using the theory of mono- 

tone operators, we obtain sufficient conditions for the global asymptotic stability of equi- 

libria. Precisely, the value 1 of the basic offspring number is a forward bifurcation for the 

dynamics of anopheles mosquito, with the trivial (mosquito-free) equilibrium point being 

globally asymptotically stable (GAS) when R 

(m ) 
0 

≤ 1 , and one stable nontrivial (mosquito- 

persistent) equilibrium point being born with well determined basins of attraction when 

R 

(m ) 
0 

> 1 . Theoretical results are numerically supported and the impact of the migration of 

mosquitoes are discussed through global sensitivity analysis and numerical simulations. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

For many centuries, vector-borne diseases among all infectious diseases of human beings, have constituted a major cause 

of human mortality and morbidity. Even with the recent advances in the biomedical sciences, vector-borne diseases still 

seriously threaten world health. For example, according to the latest WHO estimates, released in December 2015, there 

were 214 million cases of malaria in 2015 and 438,0 0 0 deaths [1] . It is well known that the malaria parasite is transmitted 

from human-to-human through the anopheles mosquito bites, and that the transmission cycle is essentially driven by the 

human biting habit of the mosquito [2] . Now, the female anopheles mosquito bites a human being for the sole purpose 

of harvesting blood that she needs for the development of her eggs. The malaria parasite has exploited the mosquito’s life 
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style by adapting its life cycle so that part of it is in the human being and the other part in the mosquito. By so doing, the 

mosquito can then propagate the parasite from human to human. Transmission of most indirectly transmitted diseases of 

human being follows the same pattern. The vector (in most cases an insect) interacts with a human being, and depending 

on the disease status of both organisms, will either infect or be infected. Thus, understanding the population dynamics of 

mosquitoes, and relationship between mosquitoes and the environment is fundamental to the study of the epidemiology 

of mosquito-borne diseases. Mosquito abundance is a key determining factor that affects the persistence or resurgence of 

mosquito-borne diseases in a given region [3] . Hence, it is crucial to study the dynamics of mosquitoes, and devise effective 

and realistic methods for controlling mosquito population in communities. 

The spatial distribution of anopheles vectors has shown great potential to affect malaria transmission intensity [3] . There- 

fore, a better understanding of the distribution, productivity and connectivity of anopheles breeding sites in order to deter- 

mine their influence on anopheles distribution could be very useful in malaria control. Several theoretical studies of malaria 

vector dynamics have emphasized the importance of considering individual larval habitats, but few have addressed the ef- 

fects of interactions between larval habitat connectivity [3,4] . 

Mathematical models play an important role in understanding and providing solutions to natural phenomena which are 

difficult to measure in the field, and some models have incorporated dispersal or heterogeneity when modeling mosquito 

population [5–7] . Spatial models usually used the diffusion approach, which considers space as a continuous variable. Al- 

though partial differential equations (PDEs) are a good and classical way of modeling such dispersal [6,8] , their analysis is 

usually limited and do not incorporate the various factors that affect migrations. However, discrete approaches offer a bet- 

ter and simpler way of modeling heterogeneity [5,9] . Thus, in areas where resources can be located in patches, mosquito 

dispersal is more suitably modeled by using a metapopulation approach, in which the population is subdivided into discrete 

patches. Then, in each patch, the population is subdivided into compartments corresponding to different status. This leads 

to a multi-patch, multi-compartment system. 

Talking about the metapopulation setting, a recent approach based on the formalism used in statistical mechanics of 

complex networks is presented in [10–13] . Under this approach, the structure of the spatial network of patches is encapsu- 

lated by means of the connectivity (degree) distribution p ( k ) defined as the probability that a randomly chosen patch has 

connectivity k . Note that the degree or connectivity of a patch (node) is the number of links connected to that node (i.e., the 

number its neighbors). Recent works have shown that it is possible to investigate the dynamics of epidemic spread using 

statistical mechanics on configuration model networks [14–18] . Most of above-mentioned investigations [13,15,16,18] mainly 

considered epidemic models on networks with no degree correlation (i.e., uncorrelated networks). In such networks, a patch 

which is only constrained by degree distribution (and hence by the number of neighbors it has), can point to any patch from 

a pool of the network. However, few recent works [14,17] have taken into account the degree correlation in complex net- 

works and have conducted comparison studies on the prediction of disease evolution on correlated networks. 

Many other works have focused on a metapopulation approach to model the mosquito population [4,5] . In their work in 

[4] , the authors presented a stochastic network model not governed by a dynamical system and did not consider all main 

stages of the mosquito life cycle to analyze the significance of the productivity of breeding sites. The work in [5] considered 

a set of discrete hexagonal patches to investigated the effects of mosquito dispersal on its dynamics. 

In this work, we intend to fill some of the gaps mentioned above in order to better take into account the heterogeneity 

in the connectivity of the nodes of network. To fulfill our goal, we make use of an approach based on statistical mechanics 

which could allow us identifying other breeding site characteristics which could best explain the distribution and abundance 

of mosquitoes. The methodology and objectives of this paper are to design a complex network extension of the seminal 

model in [19] , analyze and simulate a mathematical model for the spatio-temporal dynamics of anopheles mosquito using 

the alternative approach based on a statistical mechanics. This extension is inspired by the works [4,5,11–13] and some ref- 

erences therein. We consider the spread of anopheles mosquitoes on complex metapopulations, i.e., networks of populations 

connected by migratory flows whose configurations are described in terms of the conditional probabilities of connections 

between nodes. Note that nodes of the network represent potential breeding and feeding sites of mosquitoes, around which 

are human hosts habitations. 

From the modeling perspective, the model proposed in this manuscript is a substantial extension of the basic model 

in [19] by incorporating the dispersal of mosquitoes. It also extends and enriches the work in [4,5] by considering: (i) all 

the stages of the mosquito life cycle and (ii) heterogeneity in the connectivity of patches. From the theoretical and nu- 

merical perspectives, we examine the significance of larval habitat connectivity and mosquito dispersal in a homogeneous 

and a heterogeneous landscapes on the persistence of mosquitoes populations. More precisely, we construct corresponding 

metapopulation models and perform their qualitative and quantitative analyzes. Specifically, for the mathematical tractabil- 

ity, uncorrelated networks in a homogeneous landscape are considered and the following investigations are highlighted: 

• The bifurcation/threshold parameter (basic offspring number) is explicitly computed. 
• The sensitivity analysis of the threshold parameter, the model variables with respect to model parameters is given. 
• A simple and digestive proof based on the Hethcote–Thieme fixed point theorem [20] , of a unique nontrivial equilibrium 

point is provided. 
• Contrary to the few existing works where, Lyapunov–LaSalle techniques are usually used, the monotone operator the- 

ory [21] is the main ingredient here for the establishment of global asymptotic stability of both trivial and nontrivial 

equilibrium points. 
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Fig. 1. Wild mosquito flow chart. 

Moreover for both homogeneous and heterogeneous landscapes, the effects of dispersal/migration and patch heterogene- 

ity on the mosquito population are numerically investigated. Finally, the comparison of metapopulation models in homo- 

geneous and heterogeneous landscapes are presented through numerical simulations. The rest of the paper is organized as 

follows. After the presentation of the basic model without mosquito dispersal in Section 2 , we formulate metapopulation 

models for both homogeneous and heterogeneous landscapes in Section 3 . Their qualitative and quantitative analyses are 

further presented. Theoretical results and the role of dispersal, patch connectivities and migration are investigated through 

numerical simulations in Section 4 . The summary of the main results of our work and its possible extensions conclude the 

paper in Section 5 . 

2. The basic model in a single patch: mosquito dynamics without dispersal 

We consider the classical Anguelov–Dumont–Lubuma model [19] : ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ A = �F − (γ + μ1 + μ2 A ) A, 

˙ Y = rγ A − (β + μY ) Y, 

˙ M = (1 − r) γ A − μM 

M, 

˙ F = βY − μF F . 

(2.1) 

This model was developed according to the following biological and entomological facts recalled hereafter. The life cycle of 

mosquitos consists of two main stages: aquatic (egg, larva, pupa) and adult. After emergence from pupa, a female mosquito 

needs to mate and get a blood meal before it starts laying eggs. Depending on the condition, this takes about a week. Then, 

every 4–5 days she will take a blood meal and lay 100–150 eggs at different places (10–15 per place). Mathematically, the 

population of mosquitoes is then divided into the following compartments: population in aquatic stage A ; young female not 

yet laying eggs Y ; fertilized and eggs laying females F and males M . This description was depicted in [19] by the flowchart 

in Fig. 1 . 

Note that the first equation of system (2.1) can be combined as logistic population with harvesting. A female needs 

to mate successfully only once. The eggs are laid in the so-called gonotrophic cycle, which consists of taking blood meal, 

maturation of the eggs and oviposition. Before a female begins to lay eggs, two essential events need to take place, mating 

and taking a blood meal, occurring in varying order. 

A female mosquito is considered to be in the Y -compartment since its emergence from pupa until her gonotrophic cycle 

has began, that is the time needed to mate and take the first blood meal, which takes typically 3–4 days. The death rate 

during that period reflects essentially only death from predators and adverse climatic conditions. Therefore, it is generally 

lower than the death rate for the F -compartment. Typically, the male mosquitoes are (depending on the temperature) about 

half or 40% of the total population. 

In the model, the fraction of the emerging female mosquitoes is denoted by r , with (1 − r) being the fraction of emerging 

male mosquitoes. A male mosquito can mate practically through all its life. Since a female needs one successful mating, there 

is an overabundance of males. Therefore, in general, it is reasonable to assume that the waiting time for mating does not 

depend on the number of males ( M ) in the sense that, if M is increased further this rate remains the same. For the model, 

this means that the transfer rate β from compartment Y to compartment F is independent of M . Mathematically, this means 

that the third equation of system (2.1) can be decoupled from the system. Sometimes β is referred to as “mating rate”, 

which, as explained above, can be abetted misleading and does not defined well the boundary between compartments Y 

and F . The model under derivation clearly fixed boundary at the beginning of the first gonotrophic cycle of female, which is 

immediately after the mating and first blood meal. Then, the rate (per day) of laying eggs in the breeding sites is φF , where 

φ is the average amount of eggs laid per fertilized female per day. In the model, the size of the population is restricted by 

a density dependent death rate similar to [22,23] . However, the density dependent death rate is used only for the aquatic 

stage. The reason is that in a typical environment the size of the mosquito population is also restricted mainly by the 

available breeding sites. In [24] , the size of the population is also restricted only in the aquatic stages but in a different way 
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Table 1 

Numerical values for the parameters of system (2.1) [19] . 

Parameter Description Value 

r Fraction of the emerging female mosquitoes (per day) 0.5 

γ nontrivial Maturation rate from larvae to adult (per day) 0.1 

β Transfer rate from the compartment Y to F (per day) 0.25 

1/ μM Average lifespan of male mosquitoes (in days) 7 

1/ μF Average lifespan of female mosquitoes (in days) 10 

1/ μY Average lifespan of adult female mosquitoes (in days) 20 

� Number of eggs at each deposit per capita (per day) Variable 

μ1 Mortality rate of the aquatic stage (per day) 0.25 

μ2 Density mortality rate of the aquatic stage (per day) 10 −5 

by an explicit carrying capacity beyond which no egg is laid. In equation (2.1) , the parameters μ1 and μ2 denote the density 

independent and the density dependent death rates of the aquatic stage, respectively. In all equations of model (2.1) , μ with 

respective index refers to the death rate for the specific compartment (which is density independent). 

The parameter values of model (2.1) used for simulations are given in Table 1 and the analytical results for this model 

can be found in [19] . However, for the easier readability of our work, we recall without proof the main results. 

System (2.1) has two equilibria: the trivial equilibrium Q 0 = (0 , 0 , 0 , 0) and the nontrivial equilibrium Q 

∗ = 

(A 

∗, Y ∗, F ∗, M 

∗) T where A 

∗, Y ∗, F ∗ and M 

∗ are defined as follows: 

A 

∗ = 

(γ + μ1 )(R 0 − 1) 

μ2 

, Y ∗ = 

rγ (γ + μ1 )(R 0 − 1) 

μ2 (β + μY ) 
, 

F ∗ = 

βrγ (γ + μ1 )(R 0 − 1) 

μF μ2 (β + μY ) 
and M 

∗ = 

(1 − r) γ (γ + μ1 )(R 0 − 1) 

μ2 μM 

, (2.2) 

where R 0 is given by 

R 0 = 

rγβ�

(γ + μ1 )(β + μY ) μF 

. (2.3) 

The nontrivial equilibrium Q 

∗ has a biological meaning if and only if R 0 ≥ 1 . The threshold quantity R 0 is the basic offspring 

number for the population of anopheles mosquitoes in a single patch model [19] . It is the average number of the newly 

anopheles mosquitoes generated by a single fertilized and eggs laying female anopheles mosquito during her life when she 

is introduced into a population of male anopheles mosquitoes in the absence of any given intervention strategies. 

The following result summarizes the asymptotic behavior of model (2.1) as shown in [19] . 

Theorem 2.1. System (2.1) is a dissipative dynamical system in � = R 

4 + = { (S, Y, F , M) ∈ R 

4 / S, Y, F , M ≥ 0 } . Moreover, 

(i) If R 0 ≤ 1 , then the trivial (mosquito-free) equilibrium Q 0 is globally asymptotically stable on �. 

(ii) If R 0 > 1 , then the system has two equilibria Q 0 and Q 

∗ on � where Q 

∗(the mosquito-persistent equilibrium) is stable 

with basin of attraction � \ { (A, Y, M, F ) ∈ R 

4 + , A = Y = F = 0 } and Q 0 is unstable with the nonnegative M-axis being a 

stable manifold. 

3. Metapopulation models in complex networks 

3.1. A generic reaction–diffusion model in a complex network 

Herein, we extend model (2.1) to incorporate the diffusion/migration process. Mosquitoes disperse while searching for 

hosts or breeding sites [4] . We consider the dynamical evolution of the population of anopheles mosquitoes in hetero- 

geneous metapopulation. The model consists of n patches. We recall that these patches represent breeding–feeding sites 

around which are potential human habitats and between which mosquitoes move creating links between these nodes. A 

given fraction of adult mosquitoes searching for hosts and a fraction of adult mosquitoes searching for breeding sites leave 

their current patches of residence, while the remaining fraction is motionless. We assume that the architecture of the net- 

work of patches (nodes) where local populations live is mathematically encoded by means of the connectivity (degree) 

distribution p ( k ). Typically, p ( k ) is defined as the probability that a randomly chosen path has degree k . We recall that the 

degree or connectivity of a patch is the number of links connected to that patch. At any given time, in each patch, an indi- 

vidual mosquito is in one of the following states: population in aquatic stage ( ρA , k ), young female not yet laying eggs ( ρY , k ), 

fertilized and eggs laying females ( ρF , k ), male mosquitoes ( ρM , k ). The total variable population size in patches of degree k 

at time t is given by ρk (t) = ρA,k (t) + ρY,k (t) + ρF,k (t) + ρM,k (t) . Note again that, we focus in this part on the migration 

of mosquitoes from patch to patch (that is the case of connected patches). A reasonable assumption is that, mosquitoes in 

aquatic phase cannot move out of their residence patch, while those in adult phase can migrate. 

In Fig. 2 , we give an example of a n-patches network: each patch here is breeding–feeding site. Without loss of generality, 

we suppose that in each patch, the population dynamics of anopheles mosquitoes is governed by the basic system (2.1) . 
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Fig. 2. A general n -patches network for the population dynamics of anopheles mosquito between n feeding-breeding sites. 

Mosquitoes move from a patch with degree k to another with degree k ′ with a diffusion rate D kk ′ that depends on the 

degrees of the origin and destination patches. The probability P k of leaving a patch with degree k is then given by 

P k = k 
∑ 

k ′ 
P (k ′ | k ) D kk ′ , (3.1) 

where P ( k ′ | k ) is the conditional probability that any given edge departing from a node of degree k is pointing to a node of 

degree k ′ [12] . 

Under this generic type of diffusion, the equations governing the spatio-temporal evolution of anopheles mosquitoes are 

giving by the system below: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ ρA,k = �ρF,k − (γ + μ1 + μ2 ρA,k ) ρA,k , 

˙ ρY,k = rγ ρA,k − (β + μY ) ρY,k − P k ρY,k + k 
∑ 

k ′ P (k ′ | k ) D k ′ k ρY,k ′ , 

˙ ρM,k = (1 − r) γ ρA,k − μM 

ρM,k − P k ρM,k + k 
∑ 

k ′ P (k ′ | k ) D k ′ k ρM,k ′ , 

˙ ρF,k = βρY,k − μF ρF,k − P k ρF,k + k 
∑ 

k ′ P (k ′ | k ) D k ′ k ρF,k ′ . 

(3.2) 

As in classical reaction–diffusion processes, system (3.2) expresses the time variation of the subpopulations of mosquitoes 

in aquatic phase, young female not yet laying eggs, fertilized and eggs laying females and males mosquitoes as the sum of 

two independent contributions: reaction and diffusion. In particular, the diffusion term includes the outflow of mosquitoes 

(diffusing particles) from patches of degree k and the inflow of migratory mosquitoes from the nearest patches of degree 

k ′ . In general, with n different patches of corresponding degrees k 1 , k 2 , . . . , k n in the network, Eq. (3.2) is a 4 × n system 

of differential equations. The solutions of system (3.2) remain nonnegative in R 

4 n + because the out movement always stops 

when the corresponding patch is emptied. This latter assertion is mathematically established in the following result. 

Theorem 3.1. If system (3.2) with initial condition in R 

4 n + has a solution, then the latter solution remains in R 

4 n + (i.e. nonnegative) 

for all times. 

Proof. It suffices to show that system (3.2) can written in the following form: 

˙ X = M (X ) X, (3.3) 

where M (X ) is a 4 n × 4 n cooperative (Metzler) matrix, and X a 4 n column matrix to be determined below. To this end, 

system (3.2) rewrites: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ ρA,k i 
= �ρF,k i 

− (γ + μ1 + μ2 ρA,k i 
) ρA,k i 

, 

˙ ρY,k i 
= rγ ρA,k i 

− (β + μY ) ρY,k i 
− P k i ρY,k i 

+ k i 
∑ n 

j=1 P (k j | k i ) D k j k i 
ρY,k j 

, 

˙ ρM,k i 
= (1 − r) γ ρA,k i 

− μM 

ρM,k i 
− P k i ρM,k i 

+ k i 
∑ n 

j=1 P (k j | k i ) D k j k i 
ρM,k j 

i = { 1 , 2 , . . . , n } , 
˙ ρF,k i 

= βρY,k i 
− μF ρF,k i 

− P k i ρF,k i 
+ k i 

∑ n 
j=1 P (k j | k i ) D k j k i 

ρF,k j 
. 

(3.4) 
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Now, let 

X A = (ρA,k 1 , ρA,k 2 , . . . , ρA,k n ) 
T , X Y = (ρY,k 1 , ρY,k 2 , . . . , ρY,k n ) 

T , 

X M 

= (ρM,k 1 , ρM,k 2 , . . . , ρM,k n ) 
T , X F = (ρF,k 1 , ρF,k 2 , . . . , ρF,k n ) 

T , 

Q 1 = diag (P k 1 , · · · , P k n ) , Q 2 = 

(
k i P 
(
k j | k i 

)
D k j k i 

)
(i, j) 

, M A = −(γ + μ1 ) I n − μ2 diag (X A ) , 

M Y = −(β + μY + Q 1 ) I n + Q 2 , M M 

= −(μM 

+ Q 1 ) I n + Q 2 M F = −(μF + Q 1 ) I n + Q 2 , 

and 

M (X ) = 

⎛ 

⎜ ⎝ 

M A O n O n �I n 
rγ I n M Y O n O n 

(1 − r) γ I n O n M M 

O n 

O n βI n O n M F 

⎞ 

⎟ ⎠ 

, 

where I n and O n denote the n × n identity and null matrices, respectively. Since the entries of Q 1 and Q 2 are nonnegative, 

it is straightforward that M A , M Y , M M 

, M F are Metzler matrices, so is M (X ) . Finally, let 

X = ( X A , X Y , X M 

, X F ) 
T 
, 

then model (3.4) becomes 

˙ X = M (X ) X. 

This achieves the proof. �

In the following subsections we study special cases of system (3.2) depending on the type of diffusion processes by 

considering diffusion rates that are inherent to the traffic characteristics of each node. Typically there are two distinguishable 

landscapes with different features which must retain our attention. 

3.2. The metapopulation model in a homogeneous landscape 

A landscape is homogeneous when all its patches have similar characteristics. Thus, in such landscapes, it is reason- 

able to assume that the mosquitoes have the same dispersal/diffusion rate between patches. The mosquitoes searching for 

breeding sites to lay their eggs are attracted by the availability of breeding sites [25] . Therefore they move randomly in any 

breeding sites to lay their eggs. Mosquitoes can detect host odor, but it is unclear whether they have the learning capacity 

they would need to enable them to return to particular hosts or breeding sites [5,26] . In the case where all patches have 

similar characteristics (i.e. homogeneous landscape), the mosquitoes disperse equally between the patches and the dispersal 

parameter is the same for all patches. In this case, the diffusion rate along any given link of a node with degree k is simply 

equal to 

D kk ′ = 

D i 

k 
, i = Y, M, F . (3.5) 

For the sake of brevity, we consider strictly positive diffusion rates D Y , D F , D M 

> 0. Thus, assuming that distance has no 

bearing on the probability of mosquito flying between breeding sites and, using the fact that 
∑ 

k P (k | k ′ ) = 1 , the dynamics 

of free-flying mosquitoes in a patch of degree k is ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ ρA,k = �ρF,k − (γ + μ1 + μ2 ρA,k ) ρA,k , 

˙ ρY,k = rγ ρA,k − (β + μY ) ρY,k − D Y ρY,k + kD Y 

∑ 

k ′ P (k ′ | k ) ρY,k ′ 
k ′ , 

˙ ρM,k = (1 − r) γ ρA,k − μM 

ρM,k − D M 

ρM,k + kD M 

∑ 

k ′ P (k ′ | k ) ρM,k ′ 
k ′ , 

˙ ρF,k = βρY,k − μF ρF,k − D F ρF,k + kD F 

∑ 

k ′ P (k ′ | k ) ρF,k ′ 
k ′ , 

(3.6) 

Note that, since the number of links emanating from nodes of degree k to nodes of degree k ′ must be equal to the number 

of links emanating from nodes of degree k ′ to nodes of degree k in non-directed graphs, we have the following relationship 

between p ( k ) and P ( k ′ | k ) [14] : 

kP (k ′ | k ) p(k ) = k ′ P (k | k ′ ) p(k ′ ) . (3.7) 

For networks with a connectivity pattern defined by a set of conditional probabilities P ( k ′ | k ), we define the elements of the 

connectivity matrix C as 

C kk ′ = 

k 

k ′ P (k ′ | k ) . (3.8) 

Note that these elements are the average number of mosquitoes that patches of degree k receive from neighboring patches 

of degree k ′ assuming that one mosquito leaves each of these patches by choosing at random one of the k ′ connections [13] . 

On the other hand, for those degrees k that are not present in the network, one must have P (k ′ | k ) = 0 , ∀ k ′ . Hereafter in 
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this paper, when talking about degrees, we implicitly mean those degrees that are present in the network. Furthermore, the 

case where all patches have the same connectivity is excluded from our consideration because, under the present approach, 

the model equations reduce to those of a single patch model. 

In order to obtain further analytical results about the metapopulation dynamics of anopheles mosquitoes, we need to be 

precise about the form of P ( k ′ | k ). As in most network models, the easiest and usual assumption is to restrict ourselves to 

uncorrelated networks. 

3.2.1. Uncorrelated networks 

In these networks, the degrees of the nodes at the end of any given link are independent. In other words, there is no 

degree-degree correlation between the connected nodes. Therefore, we have 

P (k ′ | k ) = k ′ p(k ′ ) / 〈 k 〉 , (3.9) 

which corresponds to the degree distribution of nodes (patches) that arrive at by following a randomly chosen link [10] . Us- 

ing Eqs. (3.7) –(3.9) , 
∑ 

k P (k | k ′ ) = 1 and change the order of summations in system (3.4) , one obtains the following equations 

for the time evolution of anopheles mosquitoes in metapopulations described by uncorrelated networks: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ ρA,k = �ρF,k − (γ + μ1 + μ2 ρA,k ) ρA,k , 

˙ ρY,k = rγ ρA,k − (β + μY ) ρY,k − D Y 

(
ρY,k − k 

〈 k 〉 ρY 

)
, 

˙ ρM,k = (1 − r) γ ρA,k − μM 

ρM,k − D M 

(
ρM,k − k 

〈 k 〉 ρM 

)
, 

˙ ρF,k = βρY,k − μF ρF,k − D F 

(
ρF,k − k 

〈 k 〉 ρF 

)
, 

(3.10) 

where 

〈 k 〉 = 

∑ 

k 

kp(k ) and ρ j (t) = 

∑ 

k 

p(k ) ρ j,k , j = A, Y, M, F . 

〈 k 〉 is defined as the average network degree. ρA , ρY , ρF and ρM 

, represent the average number of population in aquatic 

stage, young females and eggs laying females, and population of males mosquitoes in each patch at time t , respectively. 

In this case, the diffusion term is simply given by the difference between the outflow of young females not yet laying 

eggs ( D Y ρY , k ), fertilized and eggs laying females ( D F ρF , k ) and male mosquitoes ( D M 

ρM , k ) in patches of connectivity k and 

the total inflow of young females not yet laying eggs ( D Y ρY / 〈 k 〉 ), fertilized and eggs laying females ( D F ρF / 〈 k 〉 ) and male 

mosquitoes ( D M 

ρM 

/ 〈 k 〉 ) in patches of connectivity k , respectively; across all their k connections, which is k times the average 

flow of mosquitoes across a connection in the network. Note that this average flow across a connection does not depend on 

the degree k of the considered patch because we have assumed that the architecture of the metapopulation is described by 

an uncorrelated network. In these network configurations, the elements of the connectivity matrix C are simply 

C kk ′ = 

kp(k ′ ) 
〈 k 〉 . (3.11) 

Clearly, C is a rank-one matrix and the vector v , whose components v k = k, is its eigenvector corresponding to its unique 

non-zero eigenvalue 1. Thus, if there are (as assumed above) n different patches in the network, then the eigenvalues of the 

said connectivity matrix are λ = 0 (with algebraic multiplicity n − 1 ) and λ = 1 (which is a simple eigenvalue). This latter 

remark will be used to prove the stability of equilibria of the model. For the way forward, we first “vectorialize” system 

(3.10) , using the following set of vectors as formerly defined: 

X A = (ρA,k 1 , ρA,k 2 , . . . , ρA,k n ) 
T , X Y = (ρY,k 1 , ρY,k 2 , . . . , ρY,k n ) 

T , 

X M 

= (ρM,k 1 , ρM,k 2 , . . . , ρM,k n ) 
T , X F = (ρF,k 1 , ρF,k 2 , . . . , ρF,k n ) 

T . 

Remind that, if X ∈ R 

n is a vector, diag( X ) denotes the n × n diagonal matrix whose entries are given by the respective 

components of X . With these notations, system (3.10) becomes ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ X A = f 1 (X ) = �X F − [ γ + μ1 + μ2 diag (X A ) ] X A , 

˙ X Y = f 2 (X ) = rγ X A − [ β + μY + D Y ] X Y + D Y CX Y , 

˙ X M 

= f 3 (X ) = (1 − r) γ X A − [ μM 

+ D M 

] X M 

+ D M 

CX M 

, 

˙ X F = f 4 (X ) = βX Y − [ μF + D F ] X F + D F CX F , 

(3.12) 

where C is the connectivity matrix defined in Eq. (3.11) . 

Notice that, in the case where the parameters �, γ , β , μ1 , μ2 , μY , μM 

and μF are not the same for all patches, they are 

replaced in system (3.12) by nonnegative diagonal blocs matrices and this does not change the fundamental structure of the 

system. 
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(a) Basic offspring number 

System (3.12) has a trivial (mosquito-free) equilibrium P 0 = ( 0 , 0 , 0 , 0 ) with 0 standing for the zero vector of dimension 

n when there is no fertilized and eggs laying females in each patch. We calculate the basic offspring number, R 

(m ) 
0 

(where 

the subscript “m” stands for “metapopulation” and simply differentiate it with the single patch basic offspring number R 0 ), 

using the next generation approach developed in [27] . Let 

F = 

( 

�X F 

0 

0 

) 

and V = 

⎛ 

⎝ 

γ X A + (μ1 + μ2 diag (X A )) X A 

−rγ X A + (μY + β) X Y + D Y X Y − D Y CX Y 

−βX Y + μF X F + D F X F − D F CX F 

⎞ 

⎠ . 

The Jacobian matrices of F and V at the trivial equilibrium P 0 are 

F = 

[
F 11 F 12 

F 21 F 22 

]
and V = 

[ 

(γ + μ1 ) I n 0 0 

−rγ I n (β + μY + D Y − D Y C) I n 0 

0 −βI n (μF + D F − D F C) I n 

] 

, 

where 

F 11 = 0 , F 12 = 

[
0 , �

]
, F 21 = 

[
0 

0 

]
and F 22 = 

[
0 0 

0 0 

]
. 

To compute V −1 , denote 

V = 

[
V 1 V 2 

V 3 V 4 

]
, where V 1 = (γ + μ1 ) I n , V 2 = 

[
0 0 

]
, V 3 = 

[
−rγ I n 

0 

]
and 

V 4 = 

[
(β + μY + D Y − D Y C) I n 0 

−βI n (μF + D F ) I n − D F C 

]
. 

We emphasize that, since V is a M-matrix and −V is stable, V −1 ≥ 0 . Let the inverse matrix of V be written in the following 

form: 

V 

−1 = 

[
W 11 W 12 

W 21 W 22 

]
, 

where W 11 and W 22 are square matrices of dimension (2 n × 2 n ) and ( n × n ), respectively. With this in mind, one has 

F V 

−1 = 

[
A B 

0 0 

]
, 

where A = F 12 W 21 and B = F 12 W 22 . Then following [27] , the basic offspring number R 

(m ) 
0 

is defined as the spectral radius 

of the next generation matrix, F V −1 . Precisely, 

R 

(m ) 
0 

= ρ(F V 

−1 ) = ρ( F 12 W 21 ) . (3.13) 

To obtain an explicit expression of the basic offspring number, we only need to compute W 21 . The following lemma demon- 

strated in Appendix A , is instrumental: 

Lemma 3.2. Let N be a square block matrix of the following form: 

N = 

[
N 1 N 2 

N 3 N 4 

]
, 

where N 1 and N 4 are square matrices. 

If N 1 and D = N 4 − N 3 N 

−1 
1 

N 2 are invertible, then the inverse matrix of N is given by 

N 

−1 = 

[
N 

−1 
1 

+ N 

−1 
1 

N 2 D 

−1 N 3 N 

−1 
1 

−N 

−1 
1 

N 2 D 

−1 

−D 

−1 N 3 N 

−1 
1 

D 

−1 

]
. 

Notice that V defined above has the same form as N defined in Lemma 3.2 (with: N 1 = V 1 , N 2 = V 2 , N 3 = V 3 and N 4 = V 4 ). 

Moreover, it is easy to check that V satisfies all the assumptions in Lemma 3.2 . Thus, applying Lemma 3.2 , V −1 is given by 

V 

−1 = 

[
V 

−1 
1 

0 

−V 

−1 
4 

V 3 V 

−1 
1 

V 

−1 
4 

]
, 
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from which one can extract W 21 = −V −1 
4 

V 3 V 
−1 
1 

. Thus, computing W 21 amounts to compute V −1 
4 

since V 3 is given and V −1 
1 

is obvious. Notice also that V 4 has the same form as N in Lemma 3.2 (with N 1 = (β + μY + D Y − D Y C) I n , N 2 = 0 , N 3 = −βI n 
and N 4 = (μF + D F ) I n − D F C). Hence, another application of Lemma 3.2 yields 

V 

−1 
4 = 

[
N 

−1 
1 

0 

−N 

−1 
4 

N 3 N 

−1 
1 

N 

−1 
4 

]
. 

From the above expressions, it appears that to obtain an explicit expressions of V −1 
4 

, we need to compute the inverse 

matrices of N 

−1 
1 

and N 

−1 
4 

. These shall be done using another instrumental lemma, stated below and proved in Appendix B . 

Lemma 3.3. Let G = U + K W Z be an n × n invertible matrix. Assume the matrices U , W and W 

−1 + Z U 

−1 K are invertible. Then 

the inverse matrix of G is given by 

G 

−1 = U 

−1 − U 

−1 K [ W 

−1 + Z U 

−1 K] −1 Z U 

−1 . (3.14) 

Now, we can explicitly calculate N 

−1 
1 

and N 

−1 
4 

. We shall use recursively Lemma 3.3 and the fact that C m = C, ∀ m ∈ N 

∗. 

Note that N 4 = (μF + D F ) I n − D F C has the form of the matrix G with 

U = (μF + D F ) I n , K = (k 1 , . . . , k n ) 
T , W = I n and 

Z = 

−D F 

〈 k 〉 ( P (k 1 ) , . . . , P (k n ) ) . 

With this in mind and using Lemma 3.3 , it is straightforward that 

N 

−1 
4 = 

I n 

(μF + D F ) 
− I n 

(μF + D F ) 

⎛ 

⎝ 

k 1 
. . . 

k n 

⎞ 

⎠ 

[ 
I n − D F 

μF + D F 

] −1 

× −D F 

〈 k 〉 (μF + D F ) 
(P (k 1 ) , . . . , P (k 2 )) , 

= 

I n 

(μF + D F ) 
+ 

I n 

(μF + D F ) 

D F C 

μF 

= 

1 

(μF + D F ) 

[ 
I n + 

D F 

μF 

C 

] 
. 

Now, let us compute N 1 = (β + μY + D Y − D Y C) I n . One can also observe that N 1 has the form of G in Lemma 3.3 , with 

U = (β + μY + D Y ) I n , K = (k 1 , . . . , k n ) 
T , W = I n and 

Z = 

−D Y 

〈 k 〉 ( P (k 1 ) , . . . , P (k n ) ) . 

Thus, another application of Lemma 3.3 yields 

N 

−1 
1 = 

1 

(β + μY + D Y ) 

[ 
I n + 

D Y 

β + μY 

C 

] 
. 

Using the expressions of N 

−1 
1 

and N 

−1 
4 

, one has 

N 

−1 
4 N 3 N 

−1 
1 = 

−β

(μF + D F )(β + μY + D Y ) 

(
I n + 

D Y C 

β + μY 

+ 

D F C 

μF 

+ 

D F D Y C 

μF (β + μY ) 

)
. 

Thus, 

F 12 W 21 = 

rβγ�

(γ + μ1 )(μF + D F )(β + μY + D Y ) 

[ 
I n + 

D Y C 

β + μY 

+ 

D F 

μF 

C + 

D F D Y 

μF (β + μY ) 
C 

] 
. 

The basic offspring number is therefore 

R 

(m ) 
0 

= ρ(F 12 W 21 ) , 

= ρ[ 	(a 0 I n + (b 0 + c 0 + d 0 ) C) ] , (3.15) 

where 

a 0 = 1 , b 0 = 

D Y 

β + μY 

, c 0 = 

D F 

μF 

, d 0 = 

D F D Y 

μF (β + μY ) 
and 	 = 

rβγ�

(γ + μ1 )(μF + D F )(β + μY + D Y ) 
. 

Since the rank of C is one and λ = 1 is its unique non-zero and positive eigenvalue, the largest eigenvalue of the matrix 

	[ a 0 I n + (b 0 + c 0 + d 0 ) C) is 	(a 0 + b 0 + c 0 + d 0 ) > 0 . Thus, R 

(m ) 
0 

for system (3.10) is 

R 

(m ) 
0 

= 

rβγ�

(γ + μ1 )(μF + D F )(β + μY + D Y ) 

[ 
1 + 

D Y 

β + μY 

+ 

D F 

μF 

+ 

D F D Y 

μF (β + μY ) 

] 
. (3.16) 
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Table 2 

Parameter value ranges of model (3.12) used as input for the LHS method. 

Parameter Range Parameter Range Parameter Range 

r [0 . 49 , 0 . 51] μ2 [10 −6 , 10 −4 ] μF [0 . 05 , 0 . 2] 

γ [0 . 05 , 0 . 2] β [0 . 05 , 0 . 35] D Y [10 −2 , 1] 

� [0 . 5 , 50] μY [0 . 01 , 0 . 2] D M [10 −2 , 1] 

μ1 [0 . 1 , 0 . 5] μM [0 . 05 , 0 . 2] D F [10 −2 , 1] 

Table 3 

PRCCs between R 

(m ) 
0 

, ρA , ρY , ρF and each parameter. 

Parameter R 

(m ) 
0 

ρA ρY ρF 

r 0.0831 0.0 0 03 0.0325 0.0593 

γ 0 . 6617 ∗∗ 0.3648 0.2364 0.4401 

� 0 . 9281 ∗∗∗ 0.4003 0 . 5414 ∗ 0 . 5079 ∗

μ1 −0 . 7047 ∗∗ −0 . 0565 −0 . 0123 −0 . 0520 

μ2 – −0 . 3327 −0 . 4112 −0 . 3789 

β 0 . 5329 ∗ 0.2586 0.2033 0.1317 

μY −0 . 5770 ∗ −0 . 2008 −0 . 1530 −0 . 1389 

μM – 0.0874 −0 . 0066 −0 . 1577 

μF −0 . 7959 ∗∗ −0 . 3169 −0 . 2749 −0 . 1873 

D Y 0.0136 0 . 9103 ∗∗∗ 0 . 8641 ∗∗∗ 0 . 8411 ∗∗∗

D M – −0 . 0237 0.0283 0.0231 

D F 0.0402 −0 . 9058 ∗∗∗ −0 . 8712 ∗∗∗ −0 . 8547 ∗∗∗

The ( 
 )’s indicate the most influential parameters. Precisely, ( 
 ) indicates a parameter 

whose sensitivity level (in absolute value) is between 0.5 and 0.65. The ( 

 ) indicates 

a parameter whose sensitivity level (in absolute value) is between 0.66 and 0.8. The 

( 


 ) indicates a parameter whose sensitivity level (in absolute value) is above 0.84. 

Remark 3.4. The relevance of the above techniques ( Lemmas 3.2 and 3.3 ) used to compute R 

(m ) 
0 

lies in that it enables us to 

obtain an explicit formula of the basic offspring number for a complex metapopulation model. More importantly, it gives an 

easy interpretable expression of the basic offspring number. In metapopulation settings, this kind of result is quite rare (or 

does not exist at all). It is worth pointing out that, this achievement have been probably made possible due the “statistical”

modeling approach used in this work. 

(b) Sensitivity analysis 

We carried out sensitivity analysis to determine the model robustness to parameter values [28,29] . This amounts to 

single out the most influential parameters on R 

(m ) 
0 

and mosquito subpopulation dynamics. A Latin Hypercube Sampling 

(LHS) scheme [29] samples 10 0 0 values for each input parameter using a uniform distribution over the range of biologically 

realistic values, listed in Table 3 with descriptions and references given in Tables 1 and 2 . Using system (3.12) , 10 0 0 model 

simulations are performed by randomly pairing sampled values for all LHS parameters. Outcome measures are calculated 

for each run : the basic offspring number ( R 

(m ) 
0 

), the average number of population in aquatic stage ( ρA ), young females 

( ρY ) and fertilized females ( ρF ) for a network of five patches. Partial Rank Correlation Coefficients (PRCC) and corresponding 

p -Values are computed. An output is assumed sensitive to an input if the corresponding PRCC is less than −0 . 50 or greater 

than +0 . 50 , and the corresponding p -Value is less than 5%. 

Table 3 suggests that parameter � has the highest influence on the offspring number R 

(m ) 
0 

, following in decreasing order 

by the parameters μF , μ1 , γ , μY and β . One can also observe that, for the values of ρA , ρY and ρF , the parameters with 

more influence are D Y , D F and �. This suggests that the migration of female mosquitoes between the patches may play a 

dominant role on the persistence of the mosquito’s population. 

(c) Global stability of the trivial (mosquito-free) equilibrium point. 

Using Theorem 2 in [27] , the following result is straightforward. 

Lemma 3.5. The trivial (mosquito-free) equilibrium point P 0 of system (3.12) is locally asymptotically stable whenever R 

(m ) 
0 

< 1 , 

and unstable if R 

(m ) 
0 

> 1 . 

Biologically speaking, Lemma 3.5 implies that mosquitoes can be eliminated in all breeding sites (when R 

(m ) 
0 

< 1 ) if the 

initial sizes of the population of anopheles mosquitoes are in the basin of attraction of the trivial equilibrium point P 0 . 

System (3.12) can be written in the form 

˙ X = f (X ) , where X = (X A , X Y , X M 

, X F ) 
T and f (X ) = ( f 1 (X ) , f 2 (X ) , f 3 (X ) , f 4 (X )) T . 

It is straightforward that system (3.12) is cooperative on � = R 

4 n + because the Jacobian matrix of (3.12) is a Metzler matrix. 

Furthermore, f is continuous on � and the vector field defined by f is directed inwards on the border ∂� of �. Thus, 

Theorems 2, 5 and 6 in [19] can be applied to extend the local result in Lemma 3.5 to a global one on � as follows: 

Theorem 3.6. System (3.12) defines a dissipative dynamical system on � = R 

4 n + . Moreover, if R 

(m ) 
0 

≤ 1 then the trivial (mosquito- 

free) equilibrium point P 0 is globally asymptotically stable on �. 



M.L. Mann Manyombe et al. / Applied Mathematics and Computation 307 (2017) 71–91 81 

Proof. It hinges basically on the monotone properties of model (3.12) . The inequalities 

4 R 

(m ) 
0 

k i p(k i ) + 4	
∑ n 

j =1 , j 
 = i k j p(k j ) 

〈 k 〉 < 

γ + μ1 + μ2 ρA,k i 

γ + μ1 

, i = 1 , 2 , . . . , n, (3.17) 

hold for all sufficiently large X A . Let m = (m 1 , m 2 , . . . , m n ) > 0 and let X A m be so large that in addition to (3.17) the following 

inequalities also hold: 

X A m ≥ m, (3.18) 

X F m := 

(γ + μ1 + μ2 diag (X A m )) X A m 

2�
≥ m, (3.19) 

X Y m := 

(μF I n + D F I n − D F C) X F m 

2 β
≥ m, (3.20) 

X M m 
:= 

2(1 − r) γ

μM 

+ D M 

[ 
I n + 

D M 

μM 

C 

] 
X A m ≥ m. (3.21) 

Let b m 

= (X A m , X Y m , X F m , X M m 
) T . Then, one has 

f 1 (b m 

) = −�X F m < 0 ; f 3 (b m 

) = −(1 − r) γ X A m < 0 ; f 4 (b m 

) = −βX Y m < 0 ;

f 2 (b m 

) = r γ

[
I n −

(N 

−1 
1 

) −1 (N 

−1 
4 

) −1 [ γ + μ1 + μ2 diag (X A m )] 

4 β�r γ

]
X A m , 

= rγ

[
I n − (a 0 I n + (b 0 + c 0 + d 0 ) C) −1 

4	

[ γ + μ1 + μ2 diag (X A m )] 

γ + μ1 

]
X A m , 

< 0 if 4	(a 0 I n + (b 0 + c 0 + d 0 ) C) < 

γ + μ1 + μ2 diag (X A m ) 

γ + μ1 

, 

i.e. 

f 2 (b m 

) < 0 if 
4 R 

(m ) 
0 

k i p(k i ) + 4	
∑ n 

j =1 , j 
 = i k j p(k j ) 

〈 k 〉 < 

γ + μ1 + μ2 ρA,k i 

γ + μ1 

, i = 1 , 2 , . . . , n. 

So, f (b m 

) = ( f 1 (b m 

) , f 2 (b m 

) , f 3 (b m 

) , f 4 (b m 

)) T < 0 . Applying Theorem 6 in [19] with a = 0 and b = b m 

, we obtain that 

(3.12) defines a dynamical system on [0, b m 

]. However, b m 

can be selected larger than any X ∈ R 

4 n + . Thus, (3.12) defines 

a dynamical system on � = R 

4 n + . The only equilibrium point in � is the trivial equilibrium P 0 . It follows from Theorem 6 

in [19] that P 0 is globally asymptotically stable on [0, b m 

] for any m > 0, and therefore is globally asymptotically stable on 

� = R 

4 n + . �

(d) Nontrivial (mosquito-persistent) equilibrium point and its stability 

In this paragraph, we begin by showing that system (3.12) has a unique nontrivial equilibrium point when R 

(m ) 
0 

> 1 . To 

achieve our goal, we reformulate the problem in terms of fixed point problem and use Theorem 2.1 in [20] for the existence 

and uniqueness of a positive fixed point of a multi-variable function. To be self contained, Theorem 2.1 in [20] is recalled 

hereafter. 

Theorem 3.7 ( [20] , Theorem 2.1) . Let F ( x ) be a continuous, monotone non-decreasing, strictly sublinear, bounded function which 

maps the non-negative orthant R 

n + into itself. Let F (0) = 0 and F ′ (0) exists and be irreducible. Then F ( x ) does not have a nontrivial 

fixed point on the boundary of R 

n + . Moreover, F ( x ) has a positive fixed point iff ρ( F ′ (0)) > 1 . If there is a positive fixed point, then 

it is unique. 

An equilibrium point P 

∗ = (X ∗
A 
, X ∗Y , X 

∗
M 

, X ∗F ) for system (3.12) satisfies the following system of equations: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

�X 

∗
F −

[
γ + μ1 + μ2 diag (X 

∗
A ) 
]
X 

∗
A = 0 , 

rγ X 

∗
A − [ (β + μY ) + D Y ] X 

∗
Y + D Y CX 

∗
Y = 0 , 

(1 − r) γ X 

∗
A − [ μM 

+ D M 

] X 

∗
M 

+ D M 

CX 

∗
M 

= 0 , 

βX 

∗
Y − [ μF + D F ] X 

∗
F + D F CX 

∗
F = 0 . 

(3.22) 
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Solving (3.22) yields 

X 

∗
F = 

[ γ + μ1 + μ2 diag (X 

∗
A )] X 

∗
A 

�
, 

X 

∗
Y = 

(μF I n + D F I n − D F C)[ γ + μ1 + μ2 diag (X 

∗
A )] X 

∗
A 

β�
, 

X 

∗
M 

= 

(1 − r) γ

μM 

+ D M 

[ 
I n + 

D M 

μM 

C 

] 
X 

∗
A . (3.23) 

Replacing (3.23) in the second equation of system (3.22) , one obtain 

r γ

[
I n −

N 1 N 4 [ γ + μ1 + μ2 diag (X 

∗
A )] 

β�r γ

]
X 

∗
A = 0 . 

Hence, the existence of the nontrivial equilibrium point is reformulated as the following fixed point problem: Find a unique 

positive X ∗
A 
, such that X ∗

A 
= F (X ∗

A 
) , where 

F (X 

∗
A ) = rβγ�[ γ + μ1 + μ2 diag (X 

∗
A ) ] 

−1 
N 

−1 
4 N 

−1 
1 X 

∗
A . 

Notice that F is a continuous, bounded function that maps R 

n + into itself and it is infinitely differentiable. 

Let us prove that F is strictly sublinear in R 

n + i.e. F (νX ∗
A 
) > νF (X ∗

A 
) , for any X ∗

A 
∈ R 

n + with X ∗
A 

> 0 , and ν ∈ (0, 1). Direct, 

but lengthy calculations give 

νF (X 

∗
A )[ F (νX 

∗
A )] −1 = diag 

(
γ + μ1 + νμ2 ρA,k 1 

γ + μ1 + μ2 ρA,k 1 

, . . . , 
γ + μ1 + νμ2 ρA,k n 

γ + μ1 + μ2 ρA,k n 

)
. 

Since ν ∈ (0, 1), we have 

γ + μ1 + νμ2 ρA,k i 

γ + μ1 + μ2 ρA,k i 

< 1 , i = 1 , 2 , . . . , n. 

Thus, νF (X ∗
A 
)[ F (νX ∗

A 
)] −1 < I n i.e. νF (X ∗

A 
) < F (νX ∗

A 
) . Hence, F is strictly sublinear. 

One can easily check that the off-diagonal elements a i , j ( i 
 = j ) of the matrix F ′ (X ∗
A 
) are 

a i j = 

	(b 0 + c 0 + d 0 ) k i p(k j ) 

〈 k 〉 (γ + μ1 + μ2 ρA,k i 
) 

> 0 , ∀ i 
 = j ∈ { 1 , 2 , . . . , n } . 

Thus, F is a monotone non-decreasing function. We have also that F (0) = 0 and F ′ (0) = 	(a 0 I n + (b 0 + c 0 C + d 0 ) C) . Therefore 

ρ(F ′ (0)) = R 

(m ) 
0 

> 1 iff R 

(m ) 
0 

> 1 . Thanks to the graph theory and the irreducibility of the matrix C , F ′ (0) is irreducible 

because its associated graph is strongly connected. Thus, we have established the following theorem: 

Theorem 3.8. If R 

(m ) 
0 

≤ 1 , the only equilibrium point of the system is the trivial equilibrium P 0 . If R 

(m ) 
0 

> 1 there also exists a 

unique nontrivial (mosquito-persistent) equilibrium point P 

∗ in int( �) . 

By Lemma 3.5 , the trivial equilibrium point P 0 is unstable whenever R 

(m ) 
0 

> 1 . We terminate this section by proving the 

following result which establishes the global stability of the nontrivial equilibrium. 

Theorem 3.9. If R 

(m ) 
0 

> 1 , the nontrivial (mosquito-persistent) equilibrium P 

∗ of the system (3.12) is GAS on �. 

Proof. Since R 

(m ) 
0 

> 1 , the inequalities 

γ + μ1 + μ2 ρA,k i 

γ + μ1 

< 

R 

(m ) 
0 

k i p(k i ) + 	
∑ n 

j =1 , j 
 = i k j p(k j ) √ 

R 

(m ) 
0 

〈 k 〉 
, i = 1 , 2 , . . . , n, (3.24) 

hold for all sufficiently small values X A . Let ε = (ε 1 , ε 2 , . . . , ε n ) > 0 and let X A ε be so small that in addition to (3.24) the 

following inequalities also hold: 

X A ε ≤ ε, (3.25) 

X F ε := 

4 

√ 

R 

(m ) 
0 

(γ + μ1 + μ2 diag (X A ε )) X A ε 

�
≤ ε, (3.26) 

X Y ε := 

4 

√ 

R 

(m ) 
0 

(μF I n + D F I n − D F C) X F ε 

β
≤ ε, (3.27) 



M.L. Mann Manyombe et al. / Applied Mathematics and Computation 307 (2017) 71–91 83 

X M ε 
:= 

(1 − r) γ

4 

√ 

R 

(m ) 
0 

(μM 

+ D M 

) 

[ 
I n + 

D M 

μM 

C 

] 
X A ε ≤ ε. (3.28) 

Let a ε = (X A ε , X Y ε , X F ε , X M ε ) 
T . Then, one has 

f 1 (a ε ) = 

⎛ 

⎝ 1 − 1 

4 

√ 

R 

(m ) 
0 

⎞ 

⎠ �X F ε > 0 ; f 3 (a ε ) = 

(√ 

R 

(m ) 
0 

− 1 

)
(1 − r) γ√ 

R 

(m ) 
0 

X A ε > 0 ;

f 4 (a ε ) = 

⎛ 

⎝ 1 − 1 

4 

√ 

R 

(m ) 
0 

⎞ 

⎠ βX Y ε > 0 ;

f 2 (a ε ) = r γ

⎡ 

⎣ I n −

√ 

R 

(m ) 
0 

(N 

−1 
1 

) −1 (N 

−1 
4 

) −1 [ γ + μ1 + μ2 diag (X A m )] 

β�r γ

⎤ 

⎦ X A m , 

= rγ

⎡ 

⎣ I n −

√ 

R 

(m ) 
0 

(a 0 I n + b 0 I n C + c 0 I n C + d 0 I n C) −1 

	

[ γ + μ1 + μ2 diag (X A m )] 

γ + μ1 

⎤ 

⎦ X A m 

> 0 if 
	(a 0 I n + b 0 I n C + c 0 I n C + d 0 I n C) √ 

R 

(m ) 
0 

> 

γ + μ1 + μ2 diag (X A m ) 

γ + μ1 

, 

i.e. 

f 2 (a ε ) > 0 if 
γ + μ1 + μ2 ρA,k i 

γ + μ1 

< 

R 

(m ) 
0 

k i p(k i ) + 	
∑ n 

j =1 , j 
 = i k j p(k j ) √ 

R 

(m ) 
0 

〈 k 〉 
, i = 1 , 2 , . . . , n. 

Thus, f (a ε ) = ( f 1 (a ε ) , f 2 (a ε ) , f 3 (a ε ) , f 4 (a ε )) T > 0 . Applying once again Theorem 6 in [19] (with a = a ε and b = b m 

), we ob- 

tain that the nontrivial equilibrium point P 

∗ is globally asymptotically stable on [ a ε , b m 

]. Since a ε can be selected to be 

smaller than any X > 0 and b m 

can be selected to be larger than any X > 0, we obtain that P 

∗ is asymptotically stable on 

� = R 

4 n + with basin of attraction being at least the interior of �. �

3.3. The metapopulation model in a heterogeneous landscape 

Differences in the distribution of resources create heterogeneity on the network, since patches may have different degrees 

of attractiveness to mosquitoes. According to [5] we describe how heterogeneity and differences in patch attractiveness to 

mosquitoes during movement is incorporated. Here, each patch represent a potential breeding–feeding site. The number of 

hosts is allowed to differ between patches across the local network, introducing heterogeneity. Heterogeneity of breeding 

sites is incorporated here by taking different values for parameter μ2 in each patch. In this case, the carrying capacities of 

breeding sites would be different. 

Let H be the total population of hosts in the network and H k the population of hosts in patches of degree k . The propor- 

tion of hosts in patches of degree k is 

H k = 

H k 

H 

, with 

∑ 

k 

H k = 1 . (3.29) 

Mosquitoes are attracted to odors released by hosts, this leads to mosquitoes being less likely to leave the patch if their 

current patch is a home to many hosts and more likely to move out of the patch if there are few hosts [26,30] . As in 

[5] , we mimic this phenomenon by using a decreasing exponential function to model the movement rate. We assume that 

heterogeneity of hosts also influence the males dispersal because females go to the hosts for blood-meal and males go to 

meet females [31] . Note that immature females are not subjected to the attraction of hosts, they diffuse randomly in any 

direction. We also incorporate the spatial proximity of patches by using a decreasing linear function, since mosquitoes have 

a limited mobility. Hence, we can define the diffusion rate along any given link of a patch of degree k to a patch of degree 

k ′ as 

D kk ′ = 

D Y ψ(d kk ′ ) 

k 
and D kk ′ = 

D i ψ(d kk ′ ) 

k 
e −λ( H k −H k ′ ) , i = M, F , (3.30) 
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Fig. 3. An example of a network with five patches. 

where λ is a constant parameter for the decay function, d kk ′ = 

√ 

(x k − x k ′ ) 2 + (y k − y k ′ ) 2 is the Cartesian distance between 

a node of degree k and a node of degree k ′ ; ψ the distance function defined as 

ψ(d kk ′ ) = 

{ 

d max − d kk ′ 

d max 
if d kk ′ < d max , 

0 else , 
(3.31) 

with d max the maximal mobility distance. 

Thus, the equations governing the spatio-temporal evolution of anopheles mosquitoes in this case for a n-patches in an 

uncorrelated network are giving by the system below: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ρA,k = �k ρF,k − (γk + μ1 k + μ2 k ρA,k ) ρA,k , 

˙ ρY,k = rγk ρA,k − (βk + μY k ) ρY,k −
D Y 

〈 k 〉 
(∑ 

k ′ k 
′ p(k ′ ) ψ(d kk ′ ) 

)
ρY,k + 

kD Y 

〈 k 〉 
∑ 

k ′ p(k ′ ) ψ(d kk ′ ) ρY,k ′ , 

˙ ρM,k = (1 − r) γk ρA,k − μM k 
ρM,k −

D M 

〈 k 〉 
(∑ 

k ′ e 
−λ( H k −H k ′ ) k ′ p(k ′ ) ψ(d kk ′ ) 

)
ρM,k 

+ 

kD M 

〈 k 〉 
∑ 

k ′ e 
−λ( H k ′ −H k ) p(k ′ ) ψ(d kk ′ ) ρM,k ′ , 

˙ ρF,k = βk ρY,k − μF k ρF,k −
D F 

〈 k 〉 
(∑ 

k ′ e 
−λ( H k −H k ′ ) k ′ p(k ′ ) ψ(d kk ′ ) 

)
ρF,k 

+ 

kD F 

〈 k 〉 
∑ 

k ′ e 
−λ( H k ′ −H k ) p(k ′ ) ψ(d kk ′ ) ρF,k ′ , 

(3.32) 

From Theorem 3.1 above, one can easily see that (3.32) is a dynamical system in R 

4 n + . A patch of degree k is at a 

mosquito-free equilibrium point if ρA,k = ρY,k = ρM,k = ρF,k = 0 . However, given the complexity of the equations, we do not 

perform further theoretical analysis for model (3.32) . We shall rather focus on numerical analysis in the next section. 

4. Numerical simulations 

To illustrate the various theoretical results of the previous sections, we consider a metapopulation network with five 

patches and the following connectivities: k 1 = 2 ; k 2 = 3 ; k 3 = 4 ; k 4 = 1 and k 5 = 2 (see Fig. 3 ). Since we do not know what 

trajectories mosquitoes adopt in reality, we use strategies such as Levy-flight (which are comprised of random sequences 

of movement-segments with lengths l drawn from a probability distribution function having a power-law tail p(l) ∼ l −μ

where 1 < μ ≤ 3) to optimize foraging efficiency [32] . Thus, we consider an architecture network given by the distribution 

p(k ) ∼ k −3 [12,13] . 

Models (3.12) and (3.32) are both simulated by using data from recent works. These data are summarized in Table 1 . 

As far as mosquito dispersal is concerned, some studies have shown that daily flights range from 200 to 400 m, where the 

maximum distance recorded is 661 m [33] . We run all simulations with the following initial conditions: the total number 
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Fig. 4. Simulation results showing the GAS of the trivial equilibrium P 0 for the basic model when � = 0 . 5 , D Y = D M = D F = 0 . 1 and R 

(m ) 
0 

≤ 1 . All other 

parameters are as in Table 1 . 

Fig. 5. Simulation results showing the GAS of the nontrivial equilibrium P ∗ when � = 10 , D Y = D M = D F = 0 . 1 and R 

(m ) 
0 

> 1 . All other parameters are as 

in Table 1 . 

mosquitoes in aquatic stages is 1500, 1000 young mosquitoes are females not yet laying eggs, 10 0 0 are males, while 1250 

are fertilized and eggs laying females. They are evenly distributed across the network. 

4.1. General dynamics 

In this subsection, we numerically illustrate the asymptomatic behavior of model (3.12) . For that, we consider a network 

of metapopulation with five patches. The dynamics of all compartments are very similar to each other. Hence, only the 

graphs of mosquitoes at the aquatic stage and total flying mosquito population (that is, Y + M + F ) are presented here. Fig. 4 

presents the trajectories of model (3.12) for all patches when � = 0 . 5 , D Y = D M 

= D F = 0 . 1 and the basic offspring number 

R 

(m ) 
0 

is less than one ( R 

(m ) 
0 

= 0 . 6531 ). From this figure, we can see that the mosquito populations die out in all patches. 

Thus, the trajectories converge to the trivial equilibrium as shown in Theorem 3.6 . 

Fig. 5 plots the trajectories of system (3.12) when � = 10 , D Y = D M 

= D F = 0 . 1 and the basic offspring number R 

(m ) 
0 

is 

greater than one ( R 

(m ) 
0 

= 13 . 0612 ). This illustrates the fact that the mosquitoes are always present in all patches and the 

trajectories converge to the nontrivial equilibrium as established in Theorem 3.9 . 

4.2. Impact of dispersal on population dynamics 

To evaluate the impact of dispersal on population dynamics, we carry out in Fig. 6 numerical simulations (when � = 

10 ) on system (3.12) both without and with dispersal. This figure shows that persistence of mosquito population is more 

important in the presence of dispersal than in the case without dispersal, especially in high-degree patches. 
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Fig. 6. Trajectories plots of model (3.12) without dispersal (left) and with dispersal (right) when � = 10 : the total mosquito population increases as the 

diffusion coefficients increase. 

Fig. 7. Mosquito population in patches of degree k = 1 , 2 , . . . , 10 , when � = 10 and D M = D Y = D F = 0 . 1 : the total mosquito population increases as the 

patch connectivity increases. 

4.3. Impact of the heterogeneous connectivity of patches on population dynamics 

To investigate the significance of heterogeneous connectivity of patches on vector population dynamics, system (3.12) is 

simulated in Fig. 7 with variable degree of patches. Fig. 7 illustrates the fact that, with the same diffusion coefficients 

( D M 

= D Y = D F ), the total mosquito population increases as the connectivity of the patch increases. This suggests that the 

heterogeneous connectivity of patches play an important role on vector population dynamics. This heterogeneity may come 

from the daily productivity and destruction of some breeding sites, since small pools of water are continually destroyed and 

reformed [4] . 

4.4. Impact of migration and heterogeneity on mosquito spread 

In this section, numerical simulations are carried out to investigate the role of dispersal/diffusion and heterogeneity on 

mosquito spread. Models (3.12) and (3.32) are both simulated with different values of � in each patch. In order to observe 

more effects of the migration on the dynamics of models (3.12) and (3.32) , we consider the hypothetical scenario where 

the mosquito-persistent equilibrium is GAS in the patch of minimal degree (patch 4) and unstable in the other patches 

(patch 1, 2, 3, 5). Model (3.32) is simulated with H k 1 
= 0 . 6 , H k 2 

= 0 . 07 , H k 3 
= 0 . 06 , H k 4 

= 0 . 03 , H k 5 
= 0 . 24 , d max = 661 m 

and λ = 0 . 5 . Let R 

(i ) 
0 

, i = 1 , 2 , 3 , 4 , 5 , denotes the basic offspring number for the local population of anopheles mosquito 

in patch i as defined in (2.3) . Choose �1 = �2 = �3 = �5 = 0 . 5 , �4 = 10 so that R 

(1) 
0 

= R 

(2) 
0 

= R 

(3) 
0 

= R 

(5) 
0 

= 0 . 5714 < 1 
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Fig. 8. Simulation results of systems (3.12) and (3.32) showing the mosquito population in mosquito-free patches (left) and mosquito-persistent patch 

(right) in absence of migration. R 

(i ) 
0 

< 1 , i = 1 , 2 , 3 , 5 and R 

(4) 
0 

> 1 . All other parameters are as in Table 1 . 

Fig. 9. Simulation result showing the mosquito spread from mosquito-persistent patch (right) to mosquito-free patches (left) in a homogeneous landscape 

( Eq. (3.12) ) with D M = D Y = D F = 0 . 1 and all other parameters are as in Table 1 . R 

(i ) 
0 

< 1 , i = 1 , 2 , 3 , 5 and R 

(4) 
0 

> 1 . 

and R 

(4) 
0 

= 11 . 4286 > 1 . It is observed from Fig. 8 that, in the absence of migration/diffusion (i.e. D M 

= D Y = D F = 0 ), the 

mosquito-persistent equilibrium point is unstable in patches 1, 2, 3, 5 and stable in the fourth patch, as expected. 

Figs. 9–12 present the mosquito spread from an mosquito-persistent patch (patch 4) to mosquito-free patches (patches 

1, 2, 3, 5) under different scenario when D M 

= D Y = D F = 0 . 1 . 

Observing these latter figures, one can see that in the presence of dispersal, mosquitoes moving out of an mosquito- 

persistent patch (patch 4) migrate into the mosquito-free patches (patches 1, 2, 3, 5). This illustrates the fact that mosquito 

dispersal could lead to a larger presence of mosquitoes in all patches and, shows the important effects of dispersal and 

connectivity of patches on population spread. However, this diffusion varies according to the type of landscape. 

4.4.1. Dispersal in a homogeneous landscape 

Fig. 9 presents the trajectories of the mosquito spread from mosquito-persistent patch (right) to mosquito-free patches 

(left) in a homogeneous landscape ( Eq. (3.12) ). We observe in this case that mosquitoes coming from mosquito-persistent 

patch (patch 4) migrate more to the high-degree patches (see patches 3 and 2) and equitably to the patches with equal 

degree (see patches 1 and 5). 

4.4.2. Dispersal in a heterogeneous landscape 

Fig. 10 gives numerical solutions of model (3.32) , depicting the mosquito spread from mosquito-persistent patch (right) 

to non mosquito-persistent patches (left) in a heterogeneous landscape (heterogeneity of hosts and homogeneity of breeding 
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Fig. 10. Simulation results showing the mosquito spread from mosquito-persistent patch (right) to mosquito-free patches (left) in a heterogeneous land- 

scape (heterogeneity of hosts and homogeneity of breeding sites) with ψ(d kk ′ ) = 1 , ∀ k , k ′ , D M = D Y = D F = 0 . 1 and all other parameters are as in Table 1 . 

R 

(i ) 
0 

< 1 , i = 1 , 2 , 3 , 5 and R 

(4) 
0 

> 1 . 

Fig. 11. Simulation results showing the mosquito spread from mosquito-persistent patch (right) to non mosquito-persistent patches (left) in a heteroge- 

neous landscape (heterogeneity of hosts and homogeneity of breeding sites) with ψ(d kk ′ ) as in (3.31) , D M = D Y = D F = 0 . 1 and all other parameters are as 

in Table 1 . R 

(i ) 
0 

< 1 , i = 1 , 2 , 3 , 5 and R 

(4) 
0 

> 1 . 

Fig. 12. Simulation result showing the mosquito spread from mosquito-persistent patch (right) to non mosquito-persistent patches (left) in a heterogeneous 

landscape (heterogeneous hosts and breeding sites) with ψ(d kk ′ ) = 1 , ∀ k , k ′ , μ21 = 10 −4 , μ22 = 10 −3 , μ23 = 10 −2 , μ24 = 10 −5 , μ25 = 10 −5 and D M = D Y = 

D F = 0 . 1 D M = D Y = D F = 0 . 1 . R 

(i ) 
0 

< 1 , i = 1 , 2 , 3 , 5 and R 

(4) 
0 

> 1 . 
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Fig. 13. Simulation result showing the mosquito spread from mosquito-persistent patch (right) to non mosquito-persistent patches (left) (heterogeneity of 

hosts and homogeneity of breeding sites) with ψ(d kk ′ ) as in (3.31) , when distances between patches 1, 2, 3, 5 are large. 

sites), when distance has no effect on mosquito flights (i.e. ψ(d kk ′ ) = 1 , ∀ k , k ′ ). Even though a great number of mosquitoes 

moves into the patches of high degree, the dispersal becomes more important in the patches with more hosts. 

Fig. 11 simulates the solutions of model (3.32) and displays the mosquito spread from mosquito-persistent patch (right) 

to non mosquito-persistent patches (left) in a heterogeneous landscape (heterogeneity of hosts and homogeneity of breeding 

sites), when distance affects mosquito dispersal (i.e. ψ(d kk ′ ) as in (3.31) , with d k 3 k 4 = 300 m, d k 5 k 1 = 370 m, d k 3 k 1 = 361 m, 

d k 3 k 2 = 361 m, d k 3 k 5 = 400 m, d k 2 k 5 = 380 m). As in the latter Fig. 10 , similar result is observed, with the difference in that 

the mosquito dispersal from mosquito-persistent patch (patch 4) to mosquito-free patches (patches 1, 2, 3 and 5) is less 

important in this case. 

Fig. 12 presents the simulation results of model (3.32) , showing the mosquito spread from mosquito-persistent patch 

(right) to mosquito-free patches (left) in a heterogeneous landscape (heterogeneity of hosts and breeding sites), with 

μ21 = 10 −4 , μ22 = 10 −3 , μ23 = 10 −2 , μ24 = 10 −5 , μ25 = 10 −5 and ψ(d kk ′ ) = 1 , ∀ k , k ′ . From this figure, it is noticeable that 

heterogeneity of hosts and breeding sites greatly influences the mosquito dispersal and their spatial distribution. This sug- 

gests that the heterogeneous connectivity of patches and heterogeneous distribution of hosts and breeding sites may play 

an important role on the spatial distribution of mosquitoes. 

Fig. 13 simulates model (3.32) and shows that the mosquito spread from mosquito-persistent patch (right) to mosquito- 

free patches (left) in a heterogeneous landscape (heterogeneity of hosts and homogeneity of breeding sites), with ψ(d kk ′ ) 
as in (3.31) when patches are highly distanced from each other and close to the maximal distance d max between nodes 

( d k 3 k 4 = 500 m, d k 5 k 1 = 510 m, d k 3 k 1 = 589 m, d k 3 k 2 = 539 m, d k 3 k 5 = 400 m, d k 2 k 5 = 539 m). From this figure, one observe 

that mosquito migration rate to distant patches is very low. This is coherent with the known preference of the mosquito 

dispersal: indeed, according to [34] the dispersal of adult mosquitoes can be classified into long-range and short-range 

dispersals. Long-range dispersal is often unintentional and aided by wind or human transport while short-range dispersal 

is often intentional. Furthermore, Fig. 13 shows that the availability and abundance of sites have a strong influence on 

the distance that individual adult female mosquitoes need to fly in order to lay their eggs, since spatial distance between 

patches is large when breeding sites are eliminated from neighborhoods of hosts or are not available in most patches. Similar 

findings were obtained in [23] . Thus, more effort s to reduce breeding sites in close proximity to houses (mechanical control) 

is needed and can be very efficient as a vector control strategy. 

Our simulations results in homogeneous landscape ( Eq. (3.12) ) and heterogeneous landscape ( Eq. (3.32) ) reveal that the 

heterogeneous connectivity of patches plays an important role on the spatial distribution of mosquito population. Sim- 

ulations in a homogeneous landscape indicate that there is a linear relationship between connectivity of patches and 

mosquitoes distribution (see Figs. 6 and 9 ). However, when there are heterogeneities in the network (hosts, distances), 

this linear relationship is perturbed and induces a strong influence on spatial distribution and population dynamics of 

mosquitoes (see Figs. 10–13 ). 

5. Conclusion and perspectives 

In this paper, we have developed a reaction–diffusion type model to describe the spatial evolution of anopheles mosquito 

in heterogeneous complex metapopulations and assess the influences of larvae habitats (breeding–feeding sites) connectiv- 

ity and vector on the spatial distribution and populations dynamics of mosquitoes. We have focused on the migration of 
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mosquitoes from one patch to another in both homogeneous and heterogeneous landscapes. The spatial configuration was 

given by the degree p ( k ) and the conditional probabilities P ( k ′ / k ). 
For uncorrelated networks in a homogeneous landscape, we have derived an explicit formula for the basic offspring num- 

ber, R 

(m ) 
0 

, which has been proven to be a sharp threshold parameter for our model. The most influential parameter on the 

expression for R 

(m ) 
0 

is the number of eggs at each deposit �. Using the theory of monotone operators, we have established 

the global stability of equilibrium points. Precisely, we have shown that the mosquito-free equilibrium is GAS whenever 

R 

(m ) 
0 

≤ 1 and unstable otherwise. In the case where R 

(m ) 
0 

> 1 , we have shown that there exists a unique mosquito-persistent 

equilibrium, which is GAS. 

For uncorrelated networks in a heterogeneous landscape, we have only carried out numerical studies. Comparing our 

simulation results in Figs. 6–12 , we have concluded that numerous factors considered in our models play important roles in 

spatial distribution of mosquitoes and could lead to a larger amount of mosquitoes. Further, our sensitivity analysis results 

have revealed that an efficient strategy to reduce the amount of mosquitoes in all patches could be to control the production 

of eggs (by mechanical control for example) and minimize the migration of female mosquitoes. 

To summarize our contributions in few words, the methodology and results we have obtained are as follows: 

• From the modeling perspective, we have extended to a complex network of patches the single patch models in [4,19] by 

incorporating the dispersal of mosquitoes and patch connectivity. 
• From the theoretical and numerical perspectives, we have examined the impacts of larval habitat connectivity and 

mosquito dispersal in a homogeneous and a heterogeneous landscapes on the persistence of mosquitoes populations. 
• From the qualitative and quantitative aspects for uncorrelated networks have obtained the following analytical results: 

1. The bifurcation/threshold parameter (basic offspring number) has been explicitly computed. 

2. The sensitivity analysis of the threshold parameter has been performed. 

3. A simple and digestive proof based on Hethcote–Thieme fixed point theorem [20] , of a unique mosquito-persistent 

equilibrium has been provided. 

4. Contrary to the few existing works where, Lyapunov–LaSalle techniques are usually used, the monotone operator 

approach [21] has been the main ingredient here, for the establishment of the global asymptotic stability of both 

mosquito-free and mosquito-persistent equilibria. 

An immediate possible extension of this work we are already working on is to consider correlated networks with pre- 

cise configuration/distribution of patches (i.e., some assortative or assortative networks) and investigate if the techniques 

used here could be applied to obtain similar theoretical/analytical results. Moreover, since we take into account the male 

dispersal, another extension of this work could be to consider the Sterile Insect Technique (SIT) in our model by releasing 

sterilized male mosquitoes near of high-degree patches. We hope our model could be used to develop other possible and 

efficient vector control strategies, which can optimize the allocation of scarce resources. 
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Appendix A. Proof of Lemma 3.2 

Note that the matrix N can be written as 

N = 

[
N 1 N 2 

N 3 N 4 

]
= 

[
N 1 0 

N 3 I 

][
I N 

−1 
1 

N 2 

0 D 

]
. 

Then, one can deduce that 

N 

−1 = 

[
I N 

−1 
1 

N 2 

0 D 

]−1 [
N 1 0 

N 3 I 

]−1 

= 

[
I −N 

−1 
1 

N 2 D 

−1 

0 D 

−1 

][
N 

−1 
1 

0 

−N 3 N 

−1 
1 

I 

]
, 

= 

[
N 

−1 
1 

+ N 

−1 
1 

N 2 D 

−1 N 3 N 

−1 
1 

−N 

−1 
1 

N 2 D 

−1 

−D 

−1 N 3 N 

−1 
1 

D 

−1 

]
. 

This ends the proof. �
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Appendix B. Proof of Lemma 3.3 

It suffices to verified that GG 

−1 = I n . Indeed, one has 

GG 

−1 = U U 

−1 − K 

[
W 

−1 + ZU 

−1 X 

]−1 
ZU 

−1 + KW ZU 

−1 

− K W ZU 

−1 K 

[
W 

−1 + ZU 

−1 K 

]−1 
ZU 

−1 , 

= I n − K 

[ [
W 

−1 + ZU 

−1 K 

]−1 + W − W ZU 

−1 K 

[
W 

−1 + ZU 

−1 K 

]−1 
] 

ZU 

−1 , 

= I n − KW 

[ 
W 

−1 
[
W 

−1 + ZU 

−1 K 

]−1 − I n + ZU 

−1 K 

[
W 

−1 + ZU 

−1 K 

]−1 
] 

ZU 

−1 , 

= I n − KW 

[ [
W 

−1 + ZU 

−1 K 

][
W 

−1 + ZU 

−1 K 

]−1 − I n 

] 
ZU 

−1 , 

= I n − KW (I n − I n ) ZU 

−1 , 

= I n . 

This concludes the proof. �
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We propose a novel model for the population dynamics of mosquitoes by con-
sidering the dispersal states of female mosquitoes of oviposition's cycle and
spatial variations. From the modeling perspective, a general functional form
of eggs oviposition rate is used including the Malthusian, the Verhlust-Pearl
logistic, the Hassell, and the Maynard-Smith-Slatkin functions. From the the-
oretical and numerical perspectives, the study is done in two steps using the
more realistic birth Maynard-Smith-Slatkin function. First, we consider an ordi-
nary differential equations model and show that the mosquito-free equilibrium
(MFE) is globally asymptotically stable, whenever the basic offspring number
ode

0 is less than unity. Using a fluctuation argument, we prove that the unique
mosquito-persistent equilibrium (MPE) is globally attractive, whenever ode

0
exceeds the unity. Moreover, the temporal model undergoes a Hopf bifurcation
in the absence of density-dependent mortality in the aquatic stage of mosquitoes.
Second, the temporal model is extended into an advection-reaction-diffusion
model in order to account for the movement of mosquitoes and their spatial
source of heterogeneity. We establish the uniform persistence and the existence
of at least one positive steady state whenever the spatial basic offspring num-
ber pde

0 is greater than unity. Finally, for the case study of malaria vector agent
(Anopheles mosquito), we construct a nonstandard finite difference scheme that
is dynamically consistent with the features of the continuous model to illustrate
our results, including the spatial heterogeneity of mosquito resources.
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1 INTRODUCTION

Among all infectious diseases of humans, vector-borne diseases (VBDs) constitute a major cause of human mortality
and morbidity. They account for 17% of the estimated global burden of all infectious diseases.1,2 Mosquitoes are the best
known vectors of such diseases. They are responsible for many diseases throughout the world, such as malaria, yellow
fever, chikungunya, west Nile virus, dengue fever, Zika virus, and other arboviruses.3,4 These diseases are transmitted

Math Meth Appl Sci. 2020;1–32. wileyonlinelibrary.com/journal/mma © 2020 John Wiley & Sons, Ltd. 1
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from human to human through effective mosquito bite. The transmission cycle is essentially driven by the human bite
habit of the mosquito.5 Typically, the vector interacts with a human being. Then depending on the disease status of both
organisms, they will either infect or be infected. Due to the significant burden caused by mosquitoes on human health,
specifically as reflected through the persistence and/or resurgence of vector-borne diseases, mosquitoes have become a
target of medical, veterinary, and conservation research since the nineteenth century.6 In order to devise effective control
and realistic control methods, it is crucial and essential to study the mosquitoes population dynamics, their interaction
with their biotope, and subsequently the epidemiology of mosquito-borne diseases.7,8 Like many other insect species,
mosquitoes can move and disperse in any direction for various reasons such as searching for resource availability. At local
scales (ie from 100 m to 1 km), mosquito behavior and ecology play an important role in determining the distribution of
transmission.9 The spatial distribution of anopheles has shown great potential to affect malaria transmission intensity.8,10

The success and optimal impact of methods for controlling mosquito population (eg sterile insect technique [SIT], geneti-
cally modified mosquitoes [GMM] or mechanical control) are based on a good knowledge of the biology and the behavior
of mosquitoes, as well as on an accurate modeling of their dispersal. Thus, to achieve a high level of effectiveness in reduc-
ing the mosquito population, control interventions should consider mosquito location and its ability to move. In view of
the challenge and high costs to conduct field experiments, mathematical modeling adds value to validate and improve
vector control strategies. Mathematical models have proven to be useful in gaining insights into the interactive dynamics11

and control of mosquito populations,5,6,12-16 as well as into the influence of mosquito mobility and dispersal.7,9,17-23 Partial
differential equations (PDEs) constitute a classical setting to model real-life situations such as dispersal.10,24,25 For linear
PDEs, the theory and the corresponding constructive treatment by numerical methods are well developed (see for instance
the famous books26-32). However, the complexity of biological processes and particularly the strong nonlinearity in the
transmission dynamics of diseases in time and space lead to mathematical challenging nonlinear PDEs, which include
advection-reaction-diffusion equations and cross-diffusion equations.33,34 It is therefore not surprising that the authors
could identify only very few PDEs models on mosquito population dynamics that have investigated the well-posedness
and the asymptotic behavior of the solutions.18-23 A metapopulation setting has been used in7,9 for anopheles mosquito
population dynamics as an intermediate approach between temporal and spatio-temporal modeling. To explore the tem-
poral and spatial dispersal of the mosquitoes, the authors in20-23 proposed advection-reaction-diffusion models where the
mosquito population is divided into two stages: aquatic and adult female stages. These studies gave sufficient conditions
for mosquitoes to persist and spread or to vanish. However, the oviposition/gonotrophic cycle has been recognized as an
important feature that may determine population levels, distribution, and biting behavior of mosquitoes. Thus, it is neces-
sary to take into account all stages in the gonotrophic cycle (questing, resting, and breeding females) for the adult female
mosquitoes in order to get insights into the behavior and dynamics of mosquitoes. The ultimate purpose of this paper is to
extend the works,20-23 as well as the temporal models in6,12,13 into an advection-reaction-diffusion system in which spatial
heterogeneity is taken into consideration explicitly. Heterogeneity in the behaviour of anopheles mosquitoes is present
in all malaria endemic regions. Some species of mosquito prefer human blood (anthropophilic), while others prefer ani-
mal blood (zoophilic). Another species, depending on the geographical region, have both anthropophilic and zoophilic
tendencies.35 However, different factors can influence the behaviour of the anopheles mosquitoes. For example, host avail-
ability plays an important factor in the final host choice of the vector. Thus, anopheles mosquitoes can adapt their host
choice in case of a lower availability of human hosts.35 So, given that the dynamics of indirectly transmitted infectious
diseases of humans is driven, in the most part, by the human biting rate of the vector, it is necessary to understand the
dynamics of populations for those disease vectors themselves by carefully analyzing the dynamics of the human-vector
interaction and how this interaction drives the population dynamics of the vector. Hence, similar to the models in,5,6,16

we derive a more general mathematical model for the population dynamics of anopheles mosquitoes that feed on human
blood but breed outside the human body at a distinct spatial location, far away from the human habitats. We develop mod-
els that incorporate both intrinsic dynamics and spatial variation of mosquitoes, taking into consideration the dynamics
of the human-vector interaction. We will start with a temporal model that allows a general description of the mosquito's
growth. This initial model captures the mosquito oviposition cycle as well as its main behavior (which could be use-
ful when one considers chemical or biological control tools, such as SIT or GMM). Moreover, unlike the works in,7,13,18

where a constant generating rate was used for the population in the aquatic stage, we consider a more general function
for egg oviposition rate. Next, we will extend the obtained temporal model to a PDE system by adding both advection and
diffusion terms that reflect mosquito's mobility. We study the global well-posedness and the asymptotic behavior of the
solutions of this PDE model. Finally, we assess the impact of mosquito dispersal, heterogeneous distribution of mosquito
resources (hosts), and other parameters on the spatial distribution, dynamics, and persistence of mosquito populations.
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As mentioned earlier, the nonlinearity of the ordinary differential equation (ODE) model and its extended PDE counter-
part results in challenging mathematical equations. This necessitates, on the one hand, the use of a variety of techniques,
methods, and approaches including Lyapunov-Lasalle techniques, monotone dynamical systems approach, semigroup
applications, fluctuation method, and spectral theory approach. On the other hand, reliable numerical methods being
of paramount importance for the type of complex models investigated in this work, we have constructed nonstandard
finite difference schemes, which to our knowledge have never been studied for malaria models in the framework of par-
tial differential equations. The paper is organized as follows. In Section 2, we present a compartmental temporal model,
which is analyzed quantitatively (eg existence/uniqueness of positive solutions, existence of equilibria points, etc.) and
qualitatively (eg global stability of equilibria and existence of Hopf bifurcation). In Section 3, we extend the temporal
model to an advection-reaction-diffusion system of equations, the global well-posedness, the asymptotic behavior, and the
threshold-type dynamics of which are investigated. In Subsection 3.4, a case study is handled, namely malaria which is the
world's most devastating parasitic infectious disease caused by anopheles mosquitoes as vector agents. We develop a non-
standard finite difference (NFSD) scheme, which is dynamically consistent with the continuous model as illustrated by
numerical simulations in which parameters relevant to the population biology of adult female anopheles mosquitoes are
used. Concluding remarks that show how our findings fit in the literature and a brief discussion are provided in Section 4.

2 TEMPORAL MODEL

2.1 Model formulation
It is well known that there are two main stages in the development of mosquitoes represented by the aquatic and the adult
stages. The aquatic stage, reduced to one compartment (A), gathers eggs, larvae, and pupae.13,18 The adult stage is divided
into five compartments including four for females and one for males as follows: immature females (Y), feeding/questing
females (Q), resting females (U), breeding females (W) (or more precisely “egg laying females”), and males (M). We assume
that there is no sex differences for mosquitoes in the aquatic stage. Moreover, after emergence, mosquitoes are distributed
between the immature female and the male compartments. We denote by r the sex ratio of emerging females. According
to,36 r can be set to 1

2
in the case when the number of emerging females and males is balanced. We further assume that

a female mates only once with a male during her lifespan. After mating, immature females start their gonotrophic cycle
by entering the feeding female compartment.37 The gonotrophic cycle starts with a blood meal and ends with the first
laid egg.37 Then, after blood meals, females progress to the resting compartment, allowing egg maturation. Afterward,
they pass into the breeding compartment, seeking for a breeding site to deposit eggs. Once eggs are deposited, these
females start a new gonotrophic cycle. The eggs laid by the breeding females supply the aquatic stage. Note that unlike
female mosquitoes where four subcompartments are considered due to their involvement in the gonotrophic cycle, we
only consider one compartment for the males.

At time t, and following,16,38 we assume that the population in the aquatic stage is generated from breeding females by a
decreasing, continuously differentiable and positive function that is a general form of the eggs oviposition. The population
in the aquatic stage is decreased by maturation to adult mosquitoes (at the rate Γ), density-independent mortality (at
the rate 𝜇1), and density-dependent mortality (at the rate 𝜇2). After emergence, immature females (Y) need successful
mating. The number of matings that occur per unit of time is 𝛽 (mating rate). Actually, 𝛽 can be regarded as the product
of the likelihood of a mating producing eggs, the (fixed) proportion of the population that is female, the likelihood that
an appropriate place can be found so that, when the eggs are laid, they will certainly hatch. Also, when the number of
males is large, we expect that immature females will have no difficulty finding a mate.13,18 Thus, after mating with males,
immature females exit breeding sites and arrive at the human habitats where they become feeding/questing females Q
at rate 𝛽. At the human habitat, questing females interact with humans by mass action contact, during which they can
either survive to reproduce or get killed.5,16 Questing females that feed successfully become resting females at rate 𝛼𝜑H,
where 𝜑 is the biting rate of questing females, 𝛼 (𝛼 ∈ [0, 1]) is the probability of successfully taking a blood meal, and H
is a parameter representing the density of human habitats. Questing females die at rate 𝜇Q. Once settled, resting females
become breeding females at rate a and die at rate 𝜇U. The compartment of breeding females is affected by a mortality rate
𝜇W. After laying eggs, breeding females (W) from the breeding site can make visits to humans at human habitat sites in
search for a blood meal at rate b > 0, which also represents the rate at which breeding females leave the site to restart their
gonotrophic cycle. We assume here that the decision to visit a particular human is influenced solely by the presence of
a human at the human habitat site. Therefore, from the breeding site, breeding females are actually attracted to humans
and enter in the questing class at rate bH

H+K
, where H

H+K
represents the proportion of humans that are visited by breeding
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FIGURE 1 Anopheles mosquito simplified life
cycle. The dashed arrow indicates the mating
between male and immature female mosquitoes

vectors.6,16,39 K is a positive constant representing a constant alternative food source for the site. Thus, b H
H+K

W is the
density of breeding females, which after laying eggs are attracted by human hosts. The above-mentioned biological and
entomological descriptions lead to the following deterministic and autonomous system of nonlinear differential equations
whose flow diagram, state variables, and parameters are given in Figure 1 and in Table 1, respectively:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
A = B(W)W − [Γ + 𝜇1 + 𝜇2A]A,
.

Y = rΓA − [𝜇Y + 𝛽]Y ,

.
M = (1 − r)ΓA − 𝜇MM,

.
Q = 𝛽Y + bH

H+K
W − [𝛼𝜑H + 𝜇Q]Q,

.
U = 𝛼𝜑HQ − [a + 𝜇U]U,

.
W = aU −

[
bH

H+K
+ 𝜇W

]
W .

(1)

In this study, B(W) is the general form of the eggs oviposition function. It is assumed that function B(W) is strictly
nonnegative, continuously differentiable, and satisfies the following conditions:

• B(0) = Negg,

• B′(W) ≤ 0, ∀W ≥ 0,
• B(W)W is monotone or bounded by NeggL,

(2)

where, Negg is the average number of eggs laid per fertilized female per day, and L > 0 is the environmental carrying
capacity of fertilized females. Let ode

0 denotes the basic offspring number of model (1) and Fode
0

the function given by

Fode
0
(s) = 𝜈1ode

0 B

(
𝜈1ode

0

Negg
s

)
− Negg(𝜈1 + 𝜇2s), ∀ s ≥ 0, (3)

where 𝜈1 is defined below in (5). We further assume that the general egg oviposition function B is such that

Fode
0
(0)Fode

0
(+∞) < 0, when ode

0 > 1. (4)

In Table 2, we have gathered typical examples of function B(W), which are used in the literature.
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TABLE 1 Examples of oviposition function B(W) used in the literature which satisfy (2)-(4)

Names B(W) B(0) Fode
0
(0) Fode

0
(+∞) Sources

Malthus (BM) Negg Negg 𝜈1Negg
(ode

0 − 1
)

−∞ 13,38

Verhulst-Pearl logistic (BL) Negg

(
1 − W

L

)
, W < L Negg 𝜈1Negg

(ode
0 − 1

)
−∞ 12,16,38,40

Maynard-Smith-Slatkin (BS)
Negg

1+
(

W
L

)n , n > 0 Negg 𝜈1Negg
(ode

0 − 1
)

−∞ 12,16,38,40

Hassell (BH)
Negg(

1+ W
L

)n , n > 0 Negg 𝜈1Negg
(ode

0 − 1
)

−∞ 40

Variables Description
A Population in the aquatic stage (eggs, larvae, pupae).
Y Population of immature females not yet laying eggs.
M Population of males.
Q Population of feeding females.
U Population of resting females.
W Population of breeding females.

Parameters Description
r Fraction of the emerging female mosquitoes.
Γ Rate of emerging mosquitoes from the aquatic stage.
Negg Number of eggs at each deposit per capita.
L Environmental carrying capacity of female adult mosquitoes.
𝛽 Transfer rate (mating rate) from the compartment Y to Q
𝜇2 Density-dependent mortality rate in the aquatic stage.
𝜇1 Mortality rate in the aquatic stage.
𝜇M Mortality rate of male mosquitoes.
𝜇Y Mortality rate of immature females.
𝜇Q Mortality rate of questing females.
𝜇U Mortality rate of resting females.
𝜇W Mortality rate of breeding females.
𝜑 Biting rate of feeding females.
𝛼 Probability of successfully taking a blood meal.
H Constant population density of humans at human resource sites.
K Constant alternative of blood meal for vectors.
b Rate at which breeding females leave the site to restart their gonotrophic cycle.
a Rate at which resting females become breeding females.

TABLE 2 Description of state
variables and parameters of model (1)

We point out that the model (1) extends some of the existing models in many respects. Unlike,7,12,13 it incorporates
the gonotrophic cycle of adult female mosquito population. It further extends the model in6,7,12,13 by incorporating the
more general egg oviposition function (a new birth rate function for modeling mosquito oviposition is proposed). More-
over, due to gonotrophic cycle, more particularly to the equation of questing females (Q), our model is different from
stage-structured models in.11,41

Remark 1. From the ecological point of view, it is well known that the Maynard-Smith-Slatkin oviposition func-
tion is more suitable to model the mosquito oviposition rate, compared with the Malthus and Verhulst-Pearl logistic
functions.12,16 Therefore, the latter function will be our focus throughout the theoretical and numerical investigations
in this work, with one of the main target of solving the opened problem in6,12 regarding the global asymptotic stabil-
ity of the MPE. However, our results can readily apply to the Hassell oviposition function,40 whereas for Malthus and
Verhulst-Pearl functions, we refer the reader to.5,12,13,16
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2.2 Basic properties
In this section, the basic properties of model (1) are explored. Model (1) takes the matrix form

.
X = (X)X , where X(t) =

(A(t),Y(t),M(t),Q(t),U(t),W(t))T,

(X) =

⎛⎜⎜⎜⎜⎜⎝

−[𝜈1 + 𝜇2A] 0 0 0 0 B(W)
rΓ −𝜈2 0 0 0 0

(1 − r)Γ 0 −𝜇M 0 0 0
0 𝛽 0 −𝜈3 0 b1
0 0 0 𝛼𝜑1 −𝜈4 0
0 0 0 0 a −𝜈5

⎞⎟⎟⎟⎟⎟⎠
,

and
𝜈1 = Γ + 𝜇1, 𝜈2 = 𝜇Y + 𝛽, 𝜑1 = 𝜑H, 𝜈3 = 𝛼𝜑1 + 𝜇Q, b1 = bH

H + K
, 𝜈4 = a + 𝜇U , 𝜈5 = 𝜇W + b1. (5)

Since all the parameters are positive, the right-hand side of system (1)-(2) is locally Lipschitz continuous; there exists a
local solution. To show that solutions that start in R6

+ stay in R6
+ in forward time as long as they exist, we use Theorem 3.2

in11 since for all X ∈ R6
+, B(X)X ≤ Negg||X||. Then, for each X(0) = X0 ∈ R6

+, there exists a unique solution X ∶ R6
+ → R6

+
with X(0) = X0. Thus, the analysis of the model can be carried out in the following invariant region

Γ =
{
(A,Y ,M,Q,U,W) ∈ R6 ∶ A(t),Y (t),M(t),Q(t),U(t),W(t) ≥ 0

}
.

The invariance of Γ implies that all solutions of (1) with nonnegative initial data remain nonnegative for all t ≥ 0. To be
more precise, one has the following result.

Theorem 1. Denote 𝜇v = min
{
𝜇1, 𝜇Y , 𝜇M , 𝜇Q, 𝜇U , 𝜇W

}
. Then the model (1) is a dynamical system in the region

ΓL =
{
(A,Y ,M,Q,U,W) ∈ Γ ∶ V(t) ≤ NeggL

𝜇v

}
.

Proof. Define the total mosquito population

V(t) = A(t) + Y (t) + M(t) + Q(t) + U(t) + W(t).

Add all the terms on the right-hand side of (1). Then, it follows that

.
V(t) ≤ B(W)W − 𝜇vV(t). (6)

Using assumption (2), one has B(W)W ≤ NeggL, which yields

.
V(t) ≤ NeggL − 𝜇vV(t).

Thus,

lim
t→∞

sup(A(t) + Y (t) + M(t) + Q(t) + U(t) + W(t)) ≤ NeggL
𝜇v

.

We conclude that every solution of (1) is bounded, and consequently, the initial value problem associated with system
(1) has a unique solution defined for all t > 0.

Theorem 1 implies that system (1) is mathematically and ecologically well-posed.

2.3 The MFE and basic offspring number ode
0

Model (1) has a trivial equilibrium or mosquito-free equilibrium (MFE) 0 = (0, 0, 0, 0, 0, 0), which is obtained by setting
the right-hand side of (1) to zero. Thanks to the next generation approach,42 the associated basic offspring number ode

0
of (1) is given by

ode
0 =

NeggrΓ𝛽𝛼𝜑1a
𝜈1𝜈2m1

, (7)
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where for notational convenience, we have set

m1 = a𝛼𝜑1𝜇W + 𝜈5
[
𝛼𝜑1𝜇U + 𝜇Q𝜈4

]
; m2 = 𝜈1𝜈2m1

(
1 − 1

ode
0

)
. (8)

Remark 2. The threshold quantity ode
0 measures the average expected number of new adult female offsprings pro-

duced by a single female mosquito during its lifespan. It can be ecologically interpreted as the product of the fraction
of mosquitoes in aquatic stage that survived to become immature female mosquitoes

(
NeggrΓ
𝜈1

)
, the fraction of imma-

ture females that survived and start their gonotrophic cycle by entering the questing female compartment
(

𝛽

𝜈2

)
, and

the fraction of fertilized adult females that survived and completed their gonotrophic cycle
(

𝛼𝜑1a
m1

)
.

Following Theorem 2 in,42 one has:

Lemma 1. The trivial equilibrium or MFE 0 of system (1) is locally asymptotically stable (LAS), whenever ode
0 < 1,

and unstable otherwise.

Ecologically speaking, Lemma 1 implies that mosquitoes can be eliminated if the initial sizes of the population of
anopheles mosquitoes are in the basin of attraction of the MFE 0. Thus, the mosquito population can be effectively
controlled if ode

0 < 1. To ensure that the effective control of the mosquito population is independent of the initial size of
the mosquito population, a global asymptotic stability result must be established for the trivial equilibrium.

Theorem 2. The MFE 0 of system (1) is globally asymptotically stable (GAS) in Γ, whenever ode
0 ≤ 1.

Proof. Thanks to the boundedness of solutions, we use the reduction theorem by Vidyasagar.43 Denote y(t) =
(A(t),Y(t),Q(t),U(t),W(t))T and z(t) = M(t). Then system (1) takes the form

{
d𝑦
dt

= 𝑓 (𝑦),
dz
dt

= g(𝑦, z).
(9)

Let us first show that the equilibrium 05 = (0, 0, 0, 0, 0) is GAS for the subsystem d𝑦
dt

= 𝑓 (𝑦). Consider the Lyapunov
function

V0(𝑦) =
1
𝜈1

[rΓA + 𝜈1Y ] + 𝜈2

𝛽𝛼𝜑1
[𝛼𝜑1Q + 𝜈3U] + 𝜈2𝜈3𝜈4

a𝛽𝛼𝜑1
W .

It is obvious that V0(0) = 0, and V0(y) > 0, for all y > 0. Moreover,

.
V 0(𝑦) = 1

𝜈1

[
rΓ

.
A + 𝜈1

.
Y
]
+ 𝜈2

𝛽𝛼𝜑1

[
𝛼𝜑1

.
Q + 𝜈3

.
U
]
+ 𝜈2𝜈3𝜈4

a𝛽𝛼𝜑1

.
W ,

= 1
𝜈1

[
rΓB(W)W − 𝜈1𝜈2Y − rΓ𝜇2A2] + 𝜈2

𝛽𝛼𝜑1

[
𝛼𝜑1𝛽Y + b1𝛼𝜑1W − 𝜈3𝜈4U

]
+ 𝜈2𝜈3𝜈4

a𝛽𝛼𝜑1
[aU − 𝜈5W] ,

=
[

rΓ
𝜈1

B(W)W + 𝜈2b1
𝛽

− 𝜈2𝜈3𝜈4𝜈5

a𝛽𝛼𝜑1

]
W − rΓ𝜇2

𝜈1
A2,

= − rΓNegg

𝜈1ode
0

[
1 − ode

0
Negg

B(W)
]

W − rΓ𝜇2
𝜈1

A2.

Since, max
W

B(W) ≤ Negg and ode
0 ≤ 1, we have ode

0
Negg

B(W) < 1. Hence,
.

V(𝑦) ≤ 0. On the other hand, let  be the largest

invariant set such that  ⊂ {(A,Y ,Q,U,W) ∈ R5
+∕

.
V 0(𝑦) = 0}. Then  = {05}. Thus, by the LaSalle Invariance

Principle, we deduce that 05 is GAS in R5
+ for system d𝑦

dt
= 𝑓 (𝑦). Finally, using the fact 0 is GAS in R+ for system

dz
dt

= g(05, z), we conclude that 0 is GAS in Γ. This completes the proof.



8 MANN MANYOMBE ET AL.

2.4 The non-trivial equilibrium or MPE
2.4.1 Existence and uniqueness
The existence and stability of an MPE of the system (1) are addressed. Let such a MPE be denoted by  ∗ =
(A∗,Y∗,M∗,Q∗,U∗,W∗)T . Then A*,Y*,M*,Q*,U*,W* are

⎧⎪⎨⎪⎩
Y∗ = rΓ

𝜈2
A∗, M∗ = (1−r)Γ

𝜇M
A∗, Q∗ = 𝜈1𝜈4𝜈5ode

0
aNegg𝛼𝜑1

A∗,

U∗ = 𝜈1𝜈5ode
0

aNegg
A∗, W∗ = 𝜈1ode

0
Negg

A∗,

(10)

where A* is a positive solution of the equation Fode
0
(A∗) = 0, where the function Fode

0
is given in Equation (3). Notice that

Fode
0
(0) = 𝜈1Negg(ode

0 − 1) > 0 whenever ode
0 > 1, Fode

0
(+∞) = −∞, and Fode

0
is continuous and strictly decreasing on

interval ]0; +∞[. Thus, by the intermediate value theorem, Fode
0

vanishes exactly once in ]0; +∞[. This proves the existence
and uniqueness of a positive A* when ode

0 > 1. Replacing the value of A* in (10) yields the existence and uniqueness of
 ∗. This result is summarized as follows.

Theorem 3. Model (1) has a unique MPE  ∗ whenever ode
0 > 1. Moreover, for the special case BS and in the absence

of density dependent mortality (ie 𝜇2 = 0), the unique solution of Fode
0
(A∗) = 0 is explicitly given by

A∗ =
NeggL
𝜈1ode

0

(ode
0 − 1

) 1
n . (11)

Remark 3. Similar to,44 it can be easily proved that (a) the GAS of 0 given in Theorem 2, (b) the instability of 0 shown
in Lemma 1, (c) the existence of a unique MPE  ∗ established by Theorem 3 whenever ode

0 > 1, and (d) the fact that
0 ∈ 𝜕Γ imply the persistence of system (1).

2.4.2 Local stability and existence of Hopf bifurcation for the special case where 𝜇2 = 0
Theorem 4. Consider model (1) subject to the Maynard-Smith-Slatkin oviposition function (BS) with 𝜇2 = 0. Then,
there exists two thresholds n∗

0 and n∗∗
0 such that

1. The MPE  ∗ is LAS in Γ ⧵ {0} whenever ode
0 > 1 and 1 < n < min{n∗

0,n∗∗
0 }.

2. The system (1) undergoes a Hopf bifurcation whenever n crosses the critical value n∗∗
0 .

The proof of Theorem 4 is provided in Appendix B, where the values of n∗
0 and n∗∗

0 are specified. Theorem 4 is numerically
illustrated by Figure 2. The LAS of  ∗ is depicted in Figure 2A and shows that, without competition in the aquatic stage
(ie 𝜇2 = 0), the mosquito population will persist as long as ode

0 > 1 and 1 < n < min{n∗
0,n∗∗

0 }. On the other hand, the
Hopf bifurcation shown by Figure 2B proves that sustained oscillations are possible when 𝜇2 = 0. Moreover, Figure 2B
suggests that, if competition is negligible in the aquatic stage (ie 𝜇2 = 0), the solutions of model (1) converge to a periodic
solution, whenever n > n∗∗

0 . This is in agreement with the studies in.6,12,16

2.4.3 Global stability
We explore the global asymptotic property of the MPE  ∗ of model (1) with density dependent mortality in the aquatic
stage (ie 𝜇2 > 0).

Theorem 5. Consider the system (1) subject to the Maynard-Smith-Slatkin oviposition function (BS) with n = 1. Then,
the MPE  ∗ is GAS in Γ ⧵ {0} whenever ode

0 > 1.

The proof of Theorem 5 can be cheaply done, thanks to the monotone (cooperative) properties of system (1). It can
also be proven by Lyapunov-LaSalle techniques, with the construction of a suitable Lyapunov function of Goh-Volterra
type. The latter proof is provided in Appendix C. Unfortunately, for the case n > 1, none of these latter theories can easily
apply. This is because, due to high nonlinearity, the system (1) is neither cooperative nor amenable for Lyapunov-LaSalle
techniques. Alternatively, to prove the global attractivity of  ∗ when n > 1, we shall adopt a generic approach (which
can also apply for n = 1) based on a fluctuation argument.41,45-47 We shall construct two monotone convergent sequences
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FIGURE 2 (A) Locally asymptotically stable (LAS) of  ∗ for model (1) with 𝜇2 = 0, n = 10, and Negg = 25 (so that ode
0 = 13.9399 > 1 and

n∗∗
0 = 12.4606). (B) Hopf bifurcation in model (1) around of the mosquito-persistent equilibrium (MPE)  ∗ with 𝜇2 = 0, n = 13, and Negg = 25

(so that ode
0 = 13.9399 > 1 and n∗∗

0 = 12.4606). All other parameters are as in Table 4 [Colour figure can be viewed at wileyonlinelibrary.com]

such that one is the upper bound and the other is the lower bound of the constant solution  ∗. Moreover, the constructed
sequences must share the same limit. Before the implementation of the above-mentioned approach, let us give some
useful preliminaries. For two vectors a, b ∈ R5, we write: a ≥ b if ai ≥ bi ; a > b if a ≥ b and a ≠ b and a ≫ b if ai > bi.
Let 𝑦 = (A,Y ,Q,U,W)T = (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5)T ∈ R5

+, g ≥ 0 be any nonnegative quantity and

F(𝑦, g) =

⎛⎜⎜⎜⎜⎝
gW − (𝜈1 + 𝜇2A)A
rΓA − 𝜈2Y
𝛽Y + b1W − 𝜈3Q
𝛼𝜑1Q − 𝜈4U
aU − 𝜈5W

⎞⎟⎟⎟⎟⎠
.

Consider the system
d𝑦
dt

= F(𝑦, g). (12)

One can easily verify that the function F satisfies the following conditions:

1. F is cooperative on R5
+ and DF(y, g) is irreducible for every 𝑦 ∈ R5

+;
2. F(0, g) = 0 and Fi(y, g) ≥ 0 for all 𝑦 ∈ R5

+ with yi = 0, i = 1, 2, … , 5;
3. F is strictly sublinear on R5

+.

Thus, thanks to48 (Corollary 3.2), the following result holds.

Lemma 2. Consider the system (12). Denote s(DF(0, g)) = s(F′
𝑦(0, g)) = max{Re𝜆 ∶ det(𝜆I5 − DF(0, g)) = 0}, the

stability modulus of the matrix DF(0, g). Then,

1. If s(DF(0, g)) ≤ 0, then y = 0 is GAS in R5
+.

2. If s(DF(0, g)) > 0, then d𝑦
dt

= F(𝑦, g) admits a unique positive equilibrium y*(g) which is GAS in R5
+ ⧵ {0}.

To stress the dependence of  ∗ on the oviposition function B(W), we denote  ∗ =  ∗(B(W∗)).

Remark 4. In the case when s(DF(0, g)) > 0, the positive equilibrium y*(g) is an increasing function of g, that is g1 > g2
implies y*(g1) ≫ y*(g2). Indeed, by the comparison principle, we prove that y*(g1) ≥ y*(g2) and use condition (1)
above to conclude (since F is strongly monotone49) that y*(g1) ≫ y*(g2). Furthermore, by setting g = B(0) = Negg,
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Theorem 5 with B(W) replaced by B(0) = Negg and item (2) of Lemma 2 imply that, for ode
0 > 1 (or equivalently,

s(DF(0,B(0))) > 0), there is a MPE 𝑦∗(B(0)) =  ∗(B(0)) which is GAS for the system d𝑦
dt

= F(𝑦,B(0)).

Denote

x(1) =  ∗(B(0)) = 𝑦∗(B(0)) =
(

x(1)1 , x(1)2 , x(1)3 , x(1)4 , x(1)5

)T
.

Using Equation (10), the fifth coordinate of x(1) is

x(1)5 = W∗(B(0)) =
ode

0

Negg

𝜈2
1

𝜇2

(ode
0 − 1

)
.

Clearly, x(1) is the MPE of system (1) when B(W) is replaced by B(0) = Negg.
The following result proves the global attractivity of  ∗ when n > 1 and ode

0 > 1.

Theorem 6. Suppose ode
0 > 1 and s(DF(0,B(x(1)5 ))) > 0, then the MPE  ∗ of system (1) for B(W) with n>1 is globally

attractive.

Proof. We prove this theorem by implementing the fluctuation method in two steps as mentioned earlier in the
Introduction section.

Step 1 : Construction of two monotone sequences{z(m)}∞m=1 and{x(m)}∞m=1. If 𝑦 ∈ R5
+ be any solution of system

(1). Since dA
dt

≤ B(0)W −(𝜈1+𝜇2A)A, then system (1) is bounded from above by the cooperative system d�̃�
dt

= F(�̃�,B(0)),
where �̃� = 𝑦 = (A,Y ,Q,U,W)T . It follows from the global stability of  ∗(B(0)) and the comparison principle that,
for any 𝜖 = (𝜖1, 𝜖2, 𝜖3, 𝜖4, 𝜖5)T ≫ 0, there exists a t1 > 0 such that 𝑦(t) ≤  ∗(B(0)) + 𝜖 = x(1) + 𝜖, ∀t > t1. Since
s(DF(0,B(x(1)5 ))) > 0, we can choose 𝜖 small enough such that s(DF(0,B(x(1)5 + 𝜖5))) > 0. It follows from Lemma 2
that there exists a unique positive equilibrium 𝑦∗(B(x(1)5 + 𝜖5)) =  ∗(B(x(1)5 + 𝜖5)) for d�̄�

dt
= F(�̄�,B(x(1)5 + 𝜖5)), with

�̄� = 𝑦 = (A,Y ,Q,U,W)T , which is globally asymptotically stable in R5
+ ⧵ {0}. Denote z(1) =  ∗(B(x(1)5 + 𝜖5)), and

z(1)5 = W∗(B(x(1)5 +𝜖5)) the fifth coordinate of z(1). Since W(t) ≤ x(1)5 +𝜖5, ∀t > t1, we have B(W(t)) ≥ B(x(1)5 +𝜖5) for t > t1.
Hence, dA

dt
≥ B(x(1)5 + 𝜖5)W − (𝜈1 + 𝜇2A)A, ∀t > t1. Therefore, the system (1) is bounded from below by cooperative

system d�̄�
dt

= F(�̄�,B(x(1)5 + 𝜖5)), ∀t > t1. Thus, the global stability of z(1) =  ∗(B(x(1)5 + 𝜖5)) and the comparison principle
imply that for any 𝜖 > 0, with z(1) − 𝜖 ≫ 0, there exists t2 > t1 such that y(t) ≥ z(1) − 𝜖, ∀t > t2. Using Remark 4,
we have z(1) ≪ x(1). Iterating this process, we construct two vectors x(2) =  ∗(B(z(1)5 − 𝜖5)) and z(2) =  ∗(B(x(2)5 + 𝜖5))
with x(2)5 = W∗(B(z(1)5 − 𝜖5)) and subsequently find t3 > t2 such that y(t) ≤ x(2) + 𝜖, ∀t > t3 and t4 > t3 such that
y(t) ≥ z(2) − 𝜖, ∀t > t4. Hence, z(2) − 𝜖 ≤ y(t) ≤ x(2) + 𝜖, ∀t > t4. Furthermore, the relationship z(1) ≪ z(2) ≪ x(2) ≪ x(1)

is verified. Indeed, since B(z(1)5 − 𝜖5) < B(0), we have x(2) =  ∗(B(z(1)5 − 𝜖5)) ≪  ∗(B(0)) = x(1). Similarly, since
B(x(2)5 + 𝜖5) > B(x(1)5 + 𝜖5), we have z(2) =  ∗(B(x(2)5 + 𝜖5)) ≫  ∗(B(x(1)5 + 𝜖5)) = z(1). Since B(z(1)5 − 𝜖5) > B(x(1)5 + 𝜖5),
we have x(2) =  ∗(B(z(1)5 − 𝜖5)) ≫  ∗(B(x(1)5 + 𝜖5)) = z(1). Hence, B(x(2)5 + 𝜖5) < B(z(1)5 − 𝜖5), and consequently,
z(2) =  ∗(B(x(2)5 + 𝜖5)) ≪  ∗(B(z(1)5 − 𝜖5)) = x(2). Therefore, z(1) ≪ z(2) ≪ x(2) ≪ x(1). Repeating the above arguments,
we get two monotone sequences of vectors {z(m)}∞m=1 and {x(m)}∞m=1 such that 0 ≪ z(1) ≪ z(2) ≪ … ≪ z(m) ≪ x(m) ≪

… ≪ x(2) ≪ x(1), with F(z(m),B(x(m)
5 + 𝜖5)) = 0 and F(x(m),B(z(m)

5 − 𝜖5)) = 0, ∀m ≥ 2. Moreover, there exists t2m > 0
such that

z(m) − 𝜖 ≤ 𝑦(t) ≤ x(m) + 𝜖,∀t > t2m.

Hence, there exist two positive vectors X* and Z* with X ≥ Z such that lim
m→∞

z(m) = Z∗ and lim
m→∞

x(m) = X∗. Furthermore,
Z∗ ≤  ∗ ≤ X∗.

Step 2 : Passage to the limit. For any y0 ≠ 0, the omega limit set w(y0) ∈ [Z*,X*] because the ordered interval
[Z*,X*] is positively invariant. If Z* = X*, then we have proved that Z∗ = X∗ =  ∗ and  ∗ is globally attractive.
If Z* ≠ X*, that is Z* < X*, then it is easy to see that Z* ≪ X*. Moreover, by the persistence in Remark 3, there
exists 𝜂 > 0 such that w(y0) ∈ [Z*,X*] with Z∗

5 + 𝜂 ≤ w5(𝑦0) ≤ X∗
5 − 𝜂, where w5(y0) is the fifth coordinate of w(y0).

By repeating the previous process, we can construct two vectors Z∗(1) and X∗(1) such that for any nonzero point y0,
Z∗ ≪ Z∗(1) ≪  ∗ ≪ X∗(1) ≪ X∗ and w(𝑦0) ∈ [Z∗(1) ,X∗(1) ]. If Z∗(1) = X∗(1) , then Z∗(1) = X∗(1) =  ∗, and  ∗ is globally
attractive. If not, Z∗(1) < X∗(1) , then Z∗(1) ≪ X∗(1) . Repeating the procedure, we can construct two sequences Z∗(m) and
X∗(m) such that Z∗(1) ≪ Z∗(2) ≪ … ≪ Z∗(m−1)

≪ Z∗(m) ≤  ∗ ≤ X∗(m)
≪ X∗(m−1)

≪ X∗(m−2)
≪ … ≪ X∗(2) ≪ X∗(1) and
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FIGURE 3 Globally asymptotically stable (GAS) of the mosquito-persistent equilibrium (MPE)  ∗ for model (1). 𝜇2 = 0.0004, Negg = 25 and
all other parameters are as in Table 4 (so that ode

0 = 13.9399 > 1): (A) n = 1. (B) n = 13 [Colour figure can be viewed at wileyonlinelibrary.com]

lim
m→∞

Z∗(m) = lim
m→∞

X∗(m) =  ∗, which implies that the omega limit set of every nonzero point y is  ∗, and thus,  ∗ is
globally attractive.

Ecologically speaking, Theorems 5 and 6 imply that mosquitoes will persist in the community whenever the associated
conditions for the global stability/attractivity of  ∗ hold. These theorems are numerically supported by simulating the
model (1) using n = 1 for Figure 3A and n = 13 for Figure 3B. Figure 3B show that, in the presence of density dependent
mortality in the aquatic stage (ie 𝜇2 ≠ 0), the solutions of model (1) converge to  ∗ even if the conditions of Theorem 4
are satisfied. This suggests that the phenomenon of Hopf bifurcation can be ruled out in the system by addicting a positive
density dependent mortality rate 𝜇2 > 0 in the aquatic stage of the mosquitoes.

In Table 3 below, we summarize the long run behavior of the solutions of the ODE model (1) subject to either of the
four egg oviposition functions given in Table 2. The expressions of ′

 and n1* are specified in Appendix B.

2.5 Sensitivity analysis
We carried out sensitivity analysis to determine the model robustness to parameter values. This is a tool to identify the
most influential parameters in determining mosquito dynamics. A latin hypercupe Sampling (LHS) scheme50 samples
1000 values for each input parameter using a distribution over the range of ecologically realistic values is given in Figures 4

B(W) n and 𝜇2 ode
0 0  ∗ Stable limit cycle Source

BM 𝜇2 ≥ 0 ode
0 ≤ 1 GAS No No 7,13

𝜇2 > 0 ode
0 > 1 Unstable GAS No 7,13

BL 𝜇2 ≥ 0 ode
0 ≤ 1 GAS No No 6

𝜇2 = 0 1 < ode
0 ≤ 

0 Unstable LAS No 6

𝜇2 = 0 ode
0 > 

0 Unstable Unstable Yes 6

𝜇2 > 0 ode
0 > 1 Unstable GAS No †

BS n > 0, 𝜇2 ≥ 0 ode
0 ≤ 1 GAS No No †

1 < n < n∗∗
0 , 𝜇2 = 0 ode

0 > 1 Unstable LAS No †
n > n∗∗

0 , 𝜇2 = 0 ode
0 > 1 Unstable Unstable Yes †

n > 0, 𝜇2 > 0 ode
0 > 1 Unstable GAS No †

BH n > 0, 𝜇2 ≥ 0 ode
0 ≤ 1 GAS No No †

1 < n < n1*, 𝜇2 = 0 ode
0 > 1 Unstable LAS No †

n > n1*, 𝜇2 = 0 ode
0 > 1 Unstable Unstable Yes †

n > 0, 𝜇2 > 0 ode
0 > 1 Unstable GAS No †

Abbreviations: GAS, globally asymptotically stable; LAS, locally asymptotically stable.

TABLE 3 Stability properties
of the model (1). † denotes a
result established exclusively in
this paper
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FIGURE 4 Sensitivity analysis between ode
0 and each parameter [Colour figure can be viewed at wileyonlinelibrary.com]

and 5 with descriptions and references given in Table 4. Using the system of differential equations that describe (1) for
oviposition function BS with n= 1, 5000 model simulations are performed by randomly pairing sampled values for all LHS
parameters. Partial Rank Correlation Coefficients (PRCC) and corresponding P-values between ode

0 and each parameter
are computed. An output is assumed sensitive to an input if the corresponding PRCC is less than −0.50 or greater than
+0.50, and the corresponding P-value is less than 5%.

From Figures 4 and 5, we can identify five parameters that strongly influence the population dynamics and dispersal
of the mosquito, namely the natural mortality rate of immature females (𝜇Y), the natural mortality rate of the aquatic
stage (𝜇1), the natural mortality rate of breeding females (𝜇W), the transfer rate (𝛽) (also referred to as mating rate), the
maturation rate (Γ), and the deposit rate of eggs by females (Negg). Thus, from this sensitivity analysis, the following
suggestions are made:

1. The mechanical control (such as removal of stagnant waters) could be an effective control measure against the growing
of mosquitoes because the value of Negg and the population size of mosquitoes are minimized;

2. The use of larvicides and removal of mosquito breeding sites seem to be important control measures against the
mosquitoes because they increase in the value of 𝜇1 and reduce the value of Γ;

TABLE 4 Values and ranges of the parameters of the model (1) Parameters Baseline Value Range Source
r 0.5
Γ 0.8/day 0.5 − 0.89 51

Negg 50/day 10 − 100 6,51

L 40000 50 − 3 × 106 6

𝛽 0.2/day 0.05 − 0.35
𝜇2 0.04/ml 0.02 − 0.06 6

𝜇1 0.51/day 0.28 − 0.76 51

𝜇M 0.14/day 0.02 − 0.2 7,13

𝜇Y 0.05/day 0.01 − 0.2 7,13

𝜇Q 0.18/day 0.125 − 0.233 52

𝜇U 0.0043/day 0.0034 − 0.01 52

𝜇W 0.41/day 0.41 − 0.56 52

𝜑1 16 12 − 20 5

𝛼 0.86 0.75 − 0.95 5

b1 0.8/day 0.46 − 0.92 5,16

a 0.43 0.30 − 0.56 52
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FIGURE 5 Sensitivity analysis between Y , Q, U, W , and each parameter [Colour figure can be viewed at wileyonlinelibrary.com]

3. The use of insecticides is potentially another good control tool against mosquito population because it helps increasing
the values of 𝜇Y and 𝜇W;

4. The use of sterile insect technique (SIT) and genetically modified mosquitoes (GMM) may play an important role in
minimizing the size of mosquito population by reducing the transfer rate (𝛽) and maturation rate (Γ).

3 SPATIO-TEMPORAL MODEL

3.1 Modeling framework
In order to assess the influence of mobility on the spread of mosquitoes, we extend model (1) by taking into account
the spatial component. In this new setting, we give additional assumptions based on the mosquito ability to move,
knowing that the mosquitoes in the aquatic stage often live in closed habitats such as unattended water containers.
Therefore, it is reasonable to assume that resting females mosquitoes, as well as mosquitoes in the aquatic stage, do not
move. The remaining classes of adult mosquitoes disperse while searching for hosts for blood meals or breeding sites
for reproduction.53 The movements of adult mosquitoes can be classified into long-range and short-range dispersals.
Long-range dispersal is often unintentional and aided by wind or human transport, while short-range dispersal is often
intentional and can be divided into non-oriented flights or oriented flights towards sites.54 Mosquitoes follow odors and
carbon dioxide carried by the wind, which give their main direction of migration.55 Therefore, we add advection or drift
terms to account for the fact that, when mosquitoes are stimulated by attractants (eg wind, hosts, and breeding sites), they
move preferably in certain directions.17,18 We use 𝜀M, 𝜀Q, and 𝜀W to denote the constant velocity fluxes (migration coeffi-
cients) of males, questing females, and breeding females, respectively. When mosquitoes are not submitted to stimuli, it
is possible to assume that they move randomly in any direction.18,56 For simplicity, to describe the random movement of
mosquitoes, we use diffusion to model it according to Fick's law. We denote DY, DM, DQ, and DW the diffusion coefficients
for immature females, males, questing females, and breeding females, respectively. To make it simple, we concentrate on
one dimensional spatial habitat Ω = (0, l), l > 0 and assume that the mosquitoes are confined in that line segment all
the time. The number of hosts is allowed to differ across Ω, introducing heterogeneity. Thus, the population density of
humans H(x) is location-dependent, implying that the parameters 𝜑1(x), b1(x), 𝜈3(x) and 𝜈5(x) are location-dependent as
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well. According to the above description, we propose the following spatio-temporal model

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕A
𝜕t

= B(W(t, x))W(t, x) − [𝜈1 + 𝜇2A(t, x)]A(t, x),

𝜕Y
𝜕t

= DY
𝜕2Y
𝜕x2 + rΓA(t, x) − 𝜈2Y (t, x),

𝜕Q
𝜕t

= DQ
𝜕2Q
𝜕x2 − 𝜀Q

𝜕Q
𝜕x

+ 𝛽Y (t, x) + b1(x)W(t, x) − 𝜈3(x)Q(t, x),

𝜕U
𝜕t

= 𝛼𝜑1(x)Q(t, x) − 𝜈4U(t, x),

𝜕W
𝜕t

= DW
𝜕2W
𝜕x2 − 𝜀W

𝜕W
𝜕x

+ aU(t, x) − 𝜈5(x)W(t, x),

(13)

Here, A(t, x), Y(t, x), Q(t, x), U(t, x), and W(t, x) measure the density of mosquitoes at location x and time t. Note that the
equation for the density of male mosquitoes M(t, x) is

𝜕M
𝜕t

= DM
𝜕2M
𝜕x2 − 𝜀M

𝜕M
𝜕x

+ (1 − r)ΓA(t, x) − 𝜇MM(t, x). (14)

We discard Equation (14) from system (13) because the unknown M(t, x) can be determined if A(t) is known. Indeed,
once A(t) is found, (14) is a scalar advection-diffusion-reaction equation. Thereafter, it is well known that, along the
characteristics x → x − t𝜀M, is transformed into a scalar reaction-diffusion equation that can be solved in a classical
manner.57 System (13) is appended with the initial conditions{

A(0, x) = 𝜙1(x), Y (0, x) = 𝜙2(x), Q(0, x) = 𝜙3(x),
U(0, x) = 𝜙4(x), W(0, x) = 𝜙5(x), x ∈ Ω, (15)

the Neumann boundary conditions
𝜕Y
𝜕x

(t, 0) = 𝜕Y
𝜕x

(t, l) = 0, (16)

and the Robin boundary conditions

DZ
𝜕Z
𝜕x

(t, 0) − 𝜀ZZ(t, 0) = 𝜕Z
𝜕x

(t, l) = 0, Z = Q,W , (17)

where each 𝜙i (i = 1, 2, 3, 4, 5) is assumed to be nonnegative and continuous in the space variable x.

3.2 Existence of positive solutions
The aim here is to give the preliminary results for the well-posedness of system (13)-(17). These results
include the existence of the unique maximal bounded semiflow associated with (13)-(17). Let u(t, x) =
(A(t, x),Y(t, x),Q(t, x),U(t, x),W(t, x)) = (u1(t, x),u2(t, x),u3(t, x),u4(t, x),u5(t, x)) denote a solution for (13) corresponding
to the initial condition 𝜙 = (𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5). Let X ∶= (Ω,R5) =

∏5
i=1 Xi, Xi ∶= (Ω,R), i = 1, ..., 5 be the

Banach space of R5-valued functions continuous in x ∈ Ω equipped with the usual sup norm ||u||X =
∑5

i=1 ||ui||Xi ,
X+ ∶= (Ω,R5

+) =
∏5

i=1 X+
i , where X+

i ∶= (Ω,R+) the positive cone of Xi. Denote by I the identity operator on Xi. Let
Ti(t) ∶ Xi → Xi, t ≥ 0, i = 1, … , 5 be the semigroups associated with the operators −𝜈1I, DY𝜕

2
xx −𝜈2I, DQ𝜕

2
xx −𝜀Q𝜕x −𝜈3(·)I,

−𝜈4I and DW𝜕2
xx − 𝜀W𝜕x − 𝜈5(·)I, respectively, subject to the Neumann boundary condition. Let i ∶ D(i) → Xi be the

infinitesimal generator of the analytic semigroup of bounded linear operator Ti. Then,

T(t) = (T1(t),T2(t),T3(t),T4(t),T5(t)) ∶ X → X (18)

is a semigroup generated by the operator  ∶= (1,2,3,4,5) defined on D() ∶= ∏5
i=1 D(i). It follows from49 that

T(t) is compact. Moreover, thanks to Corollary 7.2.3 in,49 T(t) is strongly positive. Define F = (F1,F2,F3,F4,F5) ∶ Ω×R5
+ →
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R5 by

F(x,u(t, x)) ∶=

⎛⎜⎜⎜⎜⎝
B(u5)u5 − 𝜇2u2

1
rΓu1

𝛽u2 + b1(x)u5
𝛼𝜑1(x)u3

au4

⎞⎟⎟⎟⎟⎠
, ∀x ∈ Ω. (19)

Then, system (13)-(17) takes the abstract functional differential form{ du
dt

= u + F(u), t > 0
u(0, x) = u0(x) = 𝜙(x) ∈ X .

(20)

It is well known29 that system (20) is equivalent to the integral equation

u(t) ∶= T(t)𝜙 + ∫
t

0
T(t − s)F(u(s, x))ds, (21)

whose solution is called mild solution (see pg. 10558). Thanks to49 (see Theorem 7.3.1, Corollary 7.3.2, and pg. 121), the
following result insures the local well-posedness of (13)-(17).

Theorem 7. For all 𝜙 ∈ X+, the system (13)-(17) admits a unique mild solution on the interval of existence [0, 𝜎),
where 𝜎 = 𝜎(𝜙). The solution (A,Y,Q,U,W) remains nonnegative for all t ∈ [0, 𝜎). Moreover, if 𝜎 < ∞, then||(A,Y,Q,U,W)||X → ∞ as t → 𝜎 from below.

Proof. By (15)-(17), we have𝜙 ∈ X+. Since the functions B(W) are positive, it is clear that (19) satisfies the assumptions
in Corollary 7.3.2 in,49 which complete the proof.

The following result establishes the global well-posedness result for (13)-(17).

Theorem 8. For any 𝜙 ∈ X+, system (13)-(17) admits a unique solution u(t, x, 𝜙) defined on [0,∞)×Ω, and the solution
semiflow 𝛷t ∶ X+ → X+ has a global compact attractor.

Proof. For any 𝜙 ∈ X+, we denote by u(t, x, 𝜙) the unique solution of system (13)-(17) satisfying u(0, x) = u0(x) = 𝜙(x)
with the maximal interval of existence [0, 𝜎) for some 𝜎 > 0. By Theorem 7, we have u(t, x, 𝜙) ≥ 0. Having in mind
that B(W)W is bounded above by NeggL, it comes that

𝜕tA(t, x) ≤ NeggL − 𝜈1A, ∀t ≥ 0, x ∈ Ω.

This implies that there exists t1 = t1(𝜙) > 0 such that A(t, x) ≤ NeggL
𝜈1

, ∀t ≥ t1, x ∈ Ω.
Next, from Equation (13), one has

𝜕tY (t, x) ≤ DY𝜕
2
xxY + rΓM0 − 𝜈2Y , ∀t ≥ t1.

The comparison principle (see59 or34, Theorem 10.1) and Proposition 1 in60, with D = DY , 𝜀 = 0, g(x) = rΓM0, 𝜆 = 𝜈2,
imply that there exists t2 = t2(𝜙) > t1 > 0 large enough so that

Y (t, x) ≤ rΓM0

𝜈2
∶= M1, ∀t ≥ t2, x ∈ Ω.

Let V ∶= Q + U + W, then from (13), we have

𝜕tV(t, x) ≤ D0𝜕
2
xxV − 𝜀0𝜕xV + 𝛽M1 − 𝜇0V , ∀t > t2,

where D0 = max{DQ,DW}, 𝜀0 = min{𝜀Q, 𝜀W} and 𝜇0 = min{𝜇Q, 𝜇U , 𝜇W}. Another application of the comparison
principle and Proposition 1 in60, with 𝜀 = 𝜀0 > 0, D = D0, g(x) = 𝛽M1, 𝜆 = 𝜇0, yields t3 = t3(𝜙) > t2 > 0 large enough
so that

Q(t, x) + U(t, x) + W(t, x) ≤ 𝛽M1

𝜇0
∶= M2, ∀t ≥ t3, x ∈ Ω.

Hence, the solutions of (13)-(17) are ultimately bounded with respect to the maximum norm. Therefore, the latter
results, combined with the local existence in Theorem 7, yield the global existence of the solution u(t, x, 𝜙) in [0,∞).
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It follows that the solution semiflow 𝛷t is point dissipative. Noticing that F is locally Lipschitz in ([0, l],X+) and that
T(t) is analytic, compact and strongly continuous (see pg. 1, 4 in58), one concludes that 𝛷t is compact for any t > 0.
Thus, thanks to Theorem 3.4.8 in61, 𝛷t has a global compact attractor.

3.3 Threshold dynamics of model (13)
In order to define the basic offspring ratio pde

0 for system (13)-(17), we first observe that system (13) has a spatially
homogeneous trivial equilibrium 0 = (0, 0, 0, 0, 0). Note that, while a huge number of works deals with the threshold
dynamics for ODE models, very few such studies are devoted to PDE models. This is probably due to the fact that the
concept of basic reproduction number has just recently been extended to PDE models such as reaction-diffusion and
reaction-convection-diffusion epidemic models with mixed boundary conditions.62-65 The definition of pde

0 in this work
follows the approach developed in.62 That is, pde

0 = r() is the spectral radius of the operator  ∶= −−1, where

 = diag(−𝜈1,DY𝜕
2
xx − 𝜈2,DQ𝜕

2
xx − 𝜀Q𝜕x − 𝜈3(.),−𝜈4,DW𝜕2

xx − 𝜀W𝜕x − 𝜈5(.)),

being the infinitesimal generator of the semigroup T(t) defined in Equation (18) and  defined by

(x) =
⎛⎜⎜⎜⎜⎝

0 0 0 0 Negg
rΓ 0 0 0 0
0 𝛽 0 0 b1(x)
0 0 𝛼𝜑1(x) 0 0
0 0 0 a 0

⎞⎟⎟⎟⎟⎠
,

such that, for all 𝜓 ∈ X, and x ∈ Ω,

(𝜓)(x) = (−−1𝜓)(x) = (x)(−−1𝜓)(x) = (x)∫
∞

0
T(t)(𝜓(x))dt.

As above defined, the basic offspring number,pde
0 also depends on spatial parameters, which could permit the assessment

of spatial control strategies. However, its analytical determination is very difficult in general. Therefore, pde
0 can be

numerically evaluated by using, for example, the method described in.64

In what follows, we show that pde
0 is a threshold that determines dynamics of model (13). The result below establishes

the global attractivity of 0.

Theorem 9. Consider the model (13)-(17). Then, the spatially homogeneous trivial equilibrium 0 is globally attractive
whenever pde

0 < 1.

Proof. Linearizing system (13)-(17) around 0, we obtain the linear cooperative system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕A
𝜕t

= NeggW(t, x) − 𝜈1A(t, x),
𝜕Y
𝜕t

= DY
𝜕2Y
𝜕x2 + rΓA(t, x) − 𝜈2Y (t, x),

𝜕Q
𝜕t

= DQ
𝜕2Q
𝜕x2 − 𝜀Q

𝜕Q
𝜕x

+ 𝛽Y (t, x) + b1(x)W(t, x) − 𝜈3(x)Q(t, x),
𝜕U
𝜕t

= 𝛼𝜑1(x)Q(t, x) − 𝜈4U(t, x),
𝜕W
𝜕t

= DW
𝜕2W
𝜕x2 − 𝜀W

𝜕W
𝜕x

+ aU(t, x) − 𝜈5(x)W(t, x),
𝜕xY (t, 0) = 𝜕xY (t, l) = 0,
DZ𝜕xZ(t, 0) − 𝜀ZZ(t, 0) = 𝜕xZ(t, l) = 0, Z = Q,W .

(22)

Substituting (A,Y,Q,U,W) = (e𝜆t𝜓1(x), e𝜆t𝜓2(x), e𝜆t𝜓3(x), e𝜆t𝜓4(x), e𝜆t𝜓5(x)) in (22), with 𝜆 ∈ C, yields the
eigenvalue problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆𝜓1 = Negg𝜓5 − 𝜈1𝜓1,
𝜆𝜓2 = DY𝜕

2
xx𝜓2 + rΓ𝜓1 − 𝜈2𝜓2,

𝜆𝜓3 = DQ𝜕
2
xx𝜓3 − 𝜀Q𝜕x𝜓3 + 𝛽𝜓2 + b1(x)𝜓5 − 𝜈3(x)𝜓3,

𝜆𝜓4 = 𝛼𝜑1(x)𝜓3 − 𝜈4𝜓4,
𝜆𝜓5 = DW𝜕2

xx𝜓5 − 𝜀W𝜕x𝜓5 + a𝜓4 − 𝜈5(x)𝜓5,
𝜕x𝜓2(t, 0) = 𝜕x𝜓2(t, l) = 0,
DZ𝜕x𝜓i(t, 0) − 𝜀Z𝜓i(t, 0) = 𝜕x𝜓i(t, l) = 0, i = 3, 5, Z = Q,W .

(23)
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The right-hand side of first five equations of eigenvalue problem (23) takes the form

Θ𝜓 ∶= ( + )𝜓, where, 𝜓 = (𝜓1, 𝜓2, ..., 𝜓5)T . (24)

Note that  is a positive and cooperative. Thanks to the graph theory,  is also irreducible. Moreover,  and 
are both generators of positive C0-semigroups. Hence, by Theorem 3.12 in,62 and  are both resolvent-positive (see
Definition 3.1 in66). Following the arguments in49 or,66 one can prove that the spectral bound s() of  is negative. In
fact, let us consider the system {

𝜕tZ = DZ𝜕
2
xxZ − 𝜀Z𝜕xZ,

DZ𝜕xZ(t, 0) − 𝜀ZZ(t, 0) = 𝜕xZ(t, l) = 0, Z = Q,W .
(25)

The substitution of P = e𝜆t𝜁 (x) in (25) gives{
𝜆𝜁 (x) = D𝜕2

xx𝜁 − 𝜀𝜕x𝜁.
DZ𝜕x𝜁 (t, 0) − 𝜀Z𝜁 (t, 0) = 𝜕x𝜁 (t,L1) = 0, Z = Q,W .

(26)

The asymptotic behavior of solutions to (25) is determined by that of the eigenvalue problem (26). Theorem 7.6.1 in49

implies that the eigenvalue problem (26) has a real principal eigenvalue 𝜆0 and a corresponding eigenvector 𝜁0(x) > 0
for all x ∈ Ω. We claim that 𝜆0 < 0. Indeed, if 1(𝜁 ) ∶= DZ𝜕

2
xx𝜁 − 𝜀Z𝜕x𝜁 denotes the differential operator on the right

hand side of (26), then integration by parts yields

𝜆0∫Ω|𝜁0(x)|2dx = ∫Ω(1(𝜁0))(x)𝜁0(x)dx

= ∫ l
0 [DZ𝜕

2
xx𝜁0 − 𝜀Z𝜕x𝜁0]𝜁0(x)dx,

= − 𝜀Z
2
[𝜁2

0 (0) + 𝜁2
0 (l)] − DZ ∫ l

0 |𝜕x𝜁0(x)|2dx < 0.

Since 𝜁0(x) > 0 for all x ∈ Ω, we have 𝜆0 < 0. One can prove that an eigenvalue of 1 is also an eigenvalue of
𝜕tZ = DZ𝜕

2
xxZ − 𝜀Z𝜕xZ − 𝜈i(x)Z, with i = 3, 5. Indeed, the operator 1,i = DZ𝜕

2
xx − 𝜀Z𝜕x − 𝜈i(x) is a sum of 1 and the

linear operator Mi defined by Mi(Z)(x) = −𝜈i(x)Z, with 𝜈i(x) > 0. Thus, using Theorem 7.6.1 in,49 there exists a real
principal eigenvalue 𝜆* and an associated eigenfunction 𝜁 * > 0 such that

𝜆∗𝜁∗ = DZ𝜕
2
xx𝜁

∗ − 𝜀Z𝜕x𝜁
∗ − 𝜈i(x)𝜁∗ or (𝜆∗ + 𝜈i(x))𝜁∗ = DZ𝜕

2
xx𝜁

∗ − 𝜀Z𝜕x𝜁
∗. (27)

Since the eigenvalue problem (26) has eigenvalues 𝜆n, n ≥ 0, then the eigenvalues of (27) are 𝜆n − 𝜈i(x), n ≥ 0.
Hence, 𝜆* = 𝜆0 − 𝜈i(x) < 0 because 𝜆0 < 0, 𝜈i(x) > 0. Therefore, s() < 0. It follows from Theorem 3.5 in62 that the
spectral bound, s(𝛩) of Θ =  + , has the same sign as r(−−1) − 1 = pde

0 − 1. That is, pde
0 − 1 and the principal

eigenvalue of 𝛩, 𝜆 = 𝜆(0), have same sign. Since pde
0 < 1, we have 𝜆(0) < 0 and lim

𝜖→0
𝜆(0 + 𝜖) = 𝜆(0) < 0. Thus,

there is an 𝜖0 > 0 such that 𝜆𝜖0 = 𝜆(0 + 𝜖0) < 0. Fixing 𝜖0 > 0, and using the fact that A is nonnegative, gives the
existence of t0 such that for all t ≥ t0, x ∈ Ω, A(t, x) ≥ 𝜖0. Thus, from (2), we have 𝜕tA ≤ NeggW − (𝜈1 + 𝜇2𝜖0)A,
∀t ≥ t0, x ∈ Ω. Finally, we consider the linear system.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕v1
𝜕t

= Neggv5 − (𝜈1 + 𝜇2𝜖0)v1,
𝜕v2
𝜕t

= DY
𝜕2v2
𝜕x2 + rΓv1 − 𝜈2v2,

𝜕v3

𝜕t
= DQ

𝜕2v3

𝜕x2 − 𝜀Q
𝜕v3

𝜕x
+ 𝛽v2 + b1v5 − �̃�3v3,

𝜕v4
𝜕t

= 𝛼𝜑1v3 − 𝜈4v4,
𝜕v5

𝜕t
= DW

𝜕2v5

𝜕x2 − 𝜀W
𝜕v5

𝜕x
+ av4 − �̃�5v5,

(28)

where b1 = max
x∈Ω

b1(x), 𝜑1 = max
x∈Ω

𝜑1(x), �̃�3 = min
x∈Ω

𝜈3(x) and �̃�5 = min
x∈Ω

𝜈5(x). Notice that system (28) controls system (13)

from above. Moreover, similar arguments as in Theorem 2.2 in67 yield the following result.

Lemma 3. The problem (28) has a principal eigenvalue 𝜆𝜖0 with a positive eigenfunction 𝜓0, and 𝜆𝜖0 has the same sign
as 𝜆0.
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Since 𝜆0 < 0, we have 𝜆𝜖0 < 0, and system (28) admits a positive solution

v(t, x) = e𝜆𝜖0 (t−t0)𝜓0(x), t ≥ t0.

For any 𝜙 ∈ X+, there exists some 𝜂 > 0 sufficiently large such that

u(t, ·, 𝜙) ≤ 𝜂v(t, ·), t ≥ t0.

Since the reaction term F+ of system (28) is cooperative, we conclude by the comparison principle (see Theorem 7.3.4
in49) that

(A(t, x, 𝜙),Y (t, x, 𝜙),Q(t, x, 𝜙),U(t, x, 𝜙),W(t, x, 𝜙))T ≤ 𝜂e𝜆𝜖0 (t−t0)𝜓0(x), ∀t ≥ t0.

Hence, lim
t→∞

(A(t, x, 𝜙),Y (t, x, 𝜙),Q(t, x, 𝜙),U(t, x, 𝜙),W(t, x, 𝜙))T = 0 uniformly for x ∈ Ω. This achieves the proof of
Theorem 9.

The ecologically implication of Theorem 9 is that the mosquito population can be effectively controlled (or eliminated)
in a given bounded region as long as the associated spatial offspring number pde

0 can be brought (and kept) to a value
less than or equal to unity. In order to prove the uniform persistence of the mosquito population, we need to show that 0
is a weak repeller. That is,

Lemma 4. If pde
0 > 1, then there exists 𝛿 > 0 such that for any 𝜙 ∈ X+ with 𝜙i(0) ≢ 0, i = 1, 2, 3, 4, 5, the solution

u(t, ·, 𝜙) of system (13)-(17) satisfies
lim
t→∞

sup ||u(t, ·, 𝜙) − 0||X ≥ 𝛿. (29)

Proof. Since pde
0 > 1, by the proof of Theorem 9, the principal eigenvalue 𝜆(0) of Θ =  +  is positive. Assume, by

contradiction that there exists some𝜙 ∈ X+ with𝜙i(0) ≢ 0, i = 1, 2, 3, 4, 5 such that for every 𝛿 > 0, lim
t→∞

sup ||u(t, ·, 𝜙)−
0||X < 𝛿. Then, there exists t1 = t1(𝜙) > 0 sufficiently large such that A(t, x) ≤ 𝛿 and W(t, x) ≤ 𝛿, ∀t ≥ t1, x ∈ Ω.
Since B′ (W) ≤ 0 for all W ≥ 0, it follows that B(W) ≥ B(𝛿). Hence, we have

𝜕tA(t, x) ≥ B(𝛿)W(t, x) − (𝜈1 + 𝜇2𝛿)A(t, x),∀t ≥ t1, x ∈ Ω.

Consider the following linear system.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕w1
𝜕t

= B(𝛿)w5 − (𝜈1 + 𝜇2𝛿)w1,
𝜕w2
𝜕t

= DY
𝜕2w2
𝜕x2 + rΓw1 − 𝜈2w2,

𝜕w3

𝜕t
= DQ

𝜕2w3

𝜕x2 − 𝜀Q
𝜕w3

𝜕x
+ 𝛽w2 + b̃1w5 − 𝜈3w3,

𝜕w4
𝜕t

= 𝛼�̃�1w3 − 𝜈4w4,
𝜕w5

𝜕t
= DW

𝜕2w5

𝜕x2 − 𝜀W
𝜕w5

𝜕x
+ aw4 − 𝜈5w5,

(30)

where b̃1 = min
x∈Ω

b1(x), �̃�1 = min
x∈Ω

𝜑1(x), 𝜈3 = max
x∈Ω

𝜈3(x), and 𝜈5 = max
x∈Ω

𝜈5(x). It is straightforward that (30) controls

system (13) from below. Another application of Lemma 3 yields a principal eigenvalue 𝜆𝛿 of (30) associated with
a strongly positive eigenvector w0(x). Moreover, 𝜆𝛿 and 𝜆(0) have the same sign. Thus, system (30) has a positive
solution w(t, x) = e𝜆𝛿 (t−t1)w0(x), t ≥ t1, x ∈ Ω. For any 𝜙 ∈ X+ with 𝜙i(0) ≢ 0, i = 1, 2, 3, 4, 5, it follows from the
parabolic maximum principle that

A(t, x) > 0, Y (t, x) > 0, Q(t, x) > 0, U(t, x) > 0, W(t, x) > 0, ∀t > 0, x ∈ Ω. (31)

Therefore, we can choose a sufficiently small number 𝜂0 > 0 such that

(A(t1, x, 𝜙),Y (t1, x, 𝜙),Q(t1, x, 𝜙),U(t1, x, 𝜙),W(t1, x, 𝜙)) ≥ 𝜂0w0(x).
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Since the reaction term F− of system (30) is cooperative, another application of the comparison principle49 leads us to

(A(t, x, 𝜙),Y (t, x, 𝜙),Q(t, x, 𝜙),U(t, x, 𝜙),W(t, x, 𝜙)) ≥ 𝜂0e𝜆𝛿 (t−t1)w0(x), ∀t ≥ t1, x ∈ Ω.

Therefore, since 𝜆𝛿 > 0, one has 𝜂0e𝜆𝛿 (t−t1)w0(x) → ∞ as t → ∞. This implies (A,Y,Q,U,W)(t, x, 𝜙) is unbounded,
which is a contradiction, and the proof of Lemma 4 is achieved.

We are now in a position to state and prove the uniform persistence result, which indicates that pde
0 is a threshold for

mosquito persistence.

Theorem 10. Ifpde
0 > 1, then there exists 𝛿1 > 0 such that any nonnegative solution u(t, x, 𝜙) of (13)-(17) with𝜙i(0) ≢ 0

satisfies
lim
t→∞

inf ui(t, x, 𝜙) ≥ 𝛿1, ∀i = 1, 2, 3, 4, 5, (32)

uniformly for all x ∈ Ω.

Proof. For pde
0 > 1, we use the persistence theory developed in.68 To that end, set

D0 ∶= {𝜙 = (𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5) ∈ X+ ∶ 𝜙i(0) ≢ 0}.

Clearly, we have

𝜕D0 ∶= X+ ⧵ D0 = {𝜙 ∈ X+ ∶ 𝜙1(0) ≡ 0 or 𝜙2(0) ≡ 0 or 𝜙3(0) ≡ 0 or 𝜙4(0) ≡ 0 or 𝜙5(0) ≡ 0},

and Φt(D0) ⊂ D0, ∀t ≥ 0. If 𝜙 ∈ D0, then, from (31), one has u(t, x, 𝜙) ≫ 0, ∀x ∈ Ω, t > 0. Define

K𝜕 ∶= {𝜙 ∈ 𝜕D0 ∶ Φt(𝜙) ∈ 𝜕D0, ∀t ≥ 0},

and let Ω(𝜙) be the Ω-limit set of the positive orbit Γ+(𝜙) ∶= {Φt(𝜙)}t≥0. We claim that

∪
𝜙∈K𝜕

Ω(𝜙) = {0}.

Indeed, for any given 𝜙 ∈ K𝜕 , we have Φt(𝜙) ∈ 𝜕D0, ∀t ≥ 0. Thus, for every t ≥ 0, either A(t, 𝜙) ≡ 0 or Y(t, 𝜙) ≡ 0
or Q(t, 𝜙) ≡ 0 or U(t, 𝜙) ≡ 0 or W(t, 𝜙) ≡ 0. In the case where A(t, 𝜙) ≡ 0, we see from the first equation of (13) that
lim
t→∞

W(t, x) = 0 uniformly for x ∈ Ω. From the second, third, and fourth equations in (13), and thanks to the theory
of asymptotically autonomous semiflows,69 we have lim

t→∞
Y (t, x) = 0, lim

t→∞
Q(t, x) = 0, and lim

t→∞
U(t, x) = 0 uniformly

for x ∈ Ω. If Y(t, 𝜙) ≡ 0, ∀t ≥ 0, the second equation in (13) yields lim
t→∞

A(t, x) = 0 uniformly for x ∈ Ω. Similar

arguments show that lim
t→∞

W(t, x) = 0, lim
t→∞

Q(t, x) = 0, and lim
t→∞

U(t, x) = 0 uniformly for x ∈ Ω. Similar arguments and
conclusions hold for the cases where Q(t, 𝜙) ≡ 0, U(t, 𝜙) ≡ 0, and W(t, 𝜙) ≡ 0. Therefore, in either case, the Ω-limit
set of Γ+(𝜙) for 𝜙 ∈ K𝜕 is {0}. Hence the claim. Now, we define the function p ∶ X+ → R+ by

p(𝜙) = min
{
min
x∈Ω

𝜙i(x), i = 1, 2, 3, 4, 5
}

.

It is straightforward that p−1((0,∞)) ⊂ D0. Suppose p(𝜙) = 0 and 𝜙 ∈ D0, then we have 𝜙i(·) ≢ 0, i = 1, 2, 3, 4, 5.

By (31), one has min
{
min
x∈Ω

u(t, x, 𝜙)
}

> 0, ∀t > 0, which implies that p(𝛷t(𝜙)) > 0, ∀t > 0. Thus, p is a generalized

distance function for the semiflow 𝛷t ∶ X+ → X+ (see68). Note that, by the above claim, any positive orbit of 𝛷(t) in K𝜕

converges to 0. In view of Lemma 4, we conclude that {0} is an isolated invariant set in X+ and that W s(0)∩D0 = ∅,
where W s(0) is the stable manifold of 0. Therefore, making use of Theorem 8, we conclude that there exists 𝛿1 > 0
such that min{p(𝜓) ∶ 𝜓 ∈ Ω(𝜙)} > 𝛿1 for any 𝜙 ∈ D0. This implies that lim

t→∞
inf ui(t, x, 𝜙) ≥ 𝛿1, ∀𝜙 ∈ D0.
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3.4 Numerical simulations: case study of anopheles mosquitoes, the malaria vector
agent agent
This section deals with numerical simulations for system (13). Our main objective here is to investigate through numer-
ical simulations, the impacts of dispersal and heterogeneity on the dynamics, and persistence of mosquitoes, as well as
illustrating some of our theoretical results. To make it simple, we concentrate on one dimensional domainΩ. Model (13) is
simulated by using data from recent works, who are summarized in Table 4. We choose DY = DQ = DW = DM = 0.04m2∕s
and 𝜀Q = 𝜀W = 0.1m∕s.18 To describe the spatial heterogeneity, we assume that the hosts are unevenly distributed. In
order to capture the fact that, the more people leave villages and farms to cities, the faster the distribution of human den-
sity changes, and the more the urbanization have impact on mosquito distribution,46,70 we choose the location-dependent
parameters as follows:

𝜑1(x) = 16(1 + p cos(2x)), b1(x) = 0.8(1 + p cos(2x)),
where, p ∈ [0, 1] is the magnitude of host's heterogeneity. Note that when P = 0, humans distribute evenly in space
(homogeneity in human's distribution). With this set of parameters, the spatial average of 𝜑1(x) and b1(x) remain 16 and
0.8, respectively. Since analytical determination of pde

0 is very difficult, we apply the numerical method described in63,64

to compute the basic offspring number pde
0 of model (13).

3.4.1 A nonstandard numerical scheme for the system (13)-(17)
In this subsection, we consider the full discretization of model (13)-(17). This is achieved by the nonstandard finite dif-
ference (NSFD) approach, which has shown great potential in providing reliable numerical schemes that replicate the
dynamics of continuous models in Mathematical Biology.71-73 The construction in the papers74,75 is appropriate for the
case under consideration.

Let dt > 0 and dx > 0 be the time and space step-size, respectively. We denote by un
𝑗
, an approximation of u(t, x)

at the grid point tn = ndt and xj = jdx, for n = 1,2,… , j = 1, 2, … ,Ne. The challenge in the approximation of the
model Equations 13-(14) arises from the fact that it consists of three types of equations. These are (a) ordinary system
of differential equations (ie (13)1, (13)4) ; (b) reaction-diffusion equation (ie (13)2) ; and (c) advection-reaction-diffusion
equations (ie (13)3, (13)5 and (14)). The ODE Equations (13)1 and (13)4 are approximated by

⎧⎪⎨⎪⎩
An+1
𝑗

−An
𝑗

𝜌(dt)
= B(W n

𝑗
)W n

𝑗
− [𝜈1 + 𝜇2An

𝑗
]An+1

𝑗
,

Un+1
𝑗

−Un
𝑗

𝜌(dt)
= 𝛼𝜑1(x𝑗)Qn

𝑗−1 − 𝜈4Un+1
𝑗

,

(33)

where the complex denominator function 𝜌 is given by

𝜌(dt) = 1 − e−p0dt

p0
, with p0 = max{𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5, 𝜇M}.

The reaction-diffusion Equation (13)2 is approximated by

Y n+1
𝑗

− Y n
𝑗

𝜌(dt)
= DY

Y n+1
𝑗+1 − 2Y n+1

𝑗
+ Y n+1

𝑗−1

dx2 + rΓAn+1
𝑗

− 𝜈2Y n+1
𝑗

. (34)

For the advection-reaction-diffusion equations, we assume for simplicity that the advection coefficients are the same
that is 𝜀0 = 𝜀Q = 𝜀W = 𝜀M. We impose the functional relation dx = 𝜀0dt between the step sizes. Then the
advection-reaction-diffusion Equations (13)3, (13)5, and (14) are approximated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Qn+1
𝑗

−Qn
𝑗−1

𝜌(dt)
= DQ

Qn+1
𝑗+1−2Qn+1

𝑗
+Qn+1

𝑗−1

dx2 + 𝛽Y n+1
𝑗

+ b1(x𝑗)W n
𝑗−1 − 𝜈3(x𝑗)Qn

𝑗−1,

W n+1
𝑗

−W n
𝑗−1

𝜌(dt)
= DW

W n+1
𝑗+1 −2W n+1

𝑗
+W n+1

𝑗−1

dx2 + aUn+1
𝑗

− 𝜈5(x𝑗)W n
𝑗−1,

Mn+1
𝑗

−Mn
𝑗−1

𝜌(dt)
= DM

Mn+1
𝑗+1 −2Mn+1

𝑗
+Mn+1

𝑗−1

dx2 + (1 − r)ΓAn+1
𝑗

− 𝜇MMn+1
𝑗

.

(35)
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It should be noted that the left-hand side of (35) is a discretization of the continuous advection term. Indeed,

𝜕Z
𝜕t

+ 𝜀0
𝜕Z
𝜕x

≈
Zn+1
𝑗

− Zn
𝑗

𝜌(dt)
+ 𝜀0

Zn
𝑗
− Zn

𝑗−1

𝜀0𝜌
(

dx
𝜀0

) , where Z = Q,W ,M.

The discrete method (33)-(35) is indeed an NFSD scheme because it is constructed according to Mickens' rule 71,72,75

formalized as follows:

Rule 1: The standard denominator h = dt of the discrete derivatives is replaced by the complex denominator function
𝜌(dt) = (1 − e−p0dt)∕p0 , which satisfies the asymptotic relation 𝜑(dt) = h + (h2).

Rule 2: The nonlinear term 𝜇2A2 is approximated in a nonlocal way. We have A𝑗(tn)A𝑗(tn) ≈ An
𝑗
An+1
𝑗

instead of
A𝑗(tn)A𝑗(tn) ≈ An

𝑗
An
𝑗
.

Grouping (33)-(35), we obtain the following NSFD scheme, which by construction preserves the conservation laws
associated with the continuous model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

An+1
𝑗

−An
𝑗

𝜌(dt)
= B(W n

𝑗
)W n

𝑗
− [𝜈1 + 𝜇2An

𝑗
]An+1

𝑗
,

Y n+1
𝑗

−Y n
𝑗

𝜌(dt)
= DY

Y n+1
𝑗+1 −2Y n+1

𝑗
+Y n+1

𝑗−1

dx2 + rΓAn+1
𝑗

− 𝜈2Y n+1
𝑗

,

Qn+1
𝑗

−Qn
𝑗−1

𝜌(dt)
= DQ

Qn+1
𝑗+1−2Qn+1

𝑗
+Qn+1

𝑗−1

dx2 + 𝛽Y n+1
𝑗

+ b1(x𝑗)W n
𝑗−1 − 𝜈3(x𝑗)Qn

𝑗−1,

Un+1
𝑗

−Un
𝑗

𝜌(dt)
= 𝛼𝜑1(x𝑗)Qn

𝑗−1 − 𝜈4Un+1
𝑗

,

W n+1
𝑗

−W n
𝑗−1

𝜌(dt)
= DW

W n+1
𝑗+1 −2W n+1

𝑗
+W n+1

𝑗−1

dx2 + aUn+1
𝑗

− 𝜈5(x𝑗)W n
𝑗−1,

Mn+1
𝑗

−Mn
𝑗−1

𝜌(dt)
= DM

Mn+1
𝑗+1 −2Mn+1

𝑗
+Mn+1

𝑗−1

dx2 + (1 − r)ΓAn+1
𝑗

− 𝜇MMn+1
𝑗

.

(36)

However, for computational purposes, it is preferable to work with the NSFD scheme (36) in the Gauss-Seidel-type and
sequential order (33), (34), and (35), which leads to an explicit scheme as explained below. It is clear from (33) that

An+1
𝑗

=
An
𝑗
+ 𝜌(dt)B(W n

𝑗
)W n

𝑗

1 + 𝜌(dt)[𝜈1 + 𝜇2An
𝑗
]

and Un+1
𝑗

=
Un

𝑗
+ 𝜌(dt)𝛼𝜑1(x𝑗)Qn

𝑗−1

1 + 𝜌(dt)𝜈4
.

Equation (34) is equivalent to

−DY
𝜌(dt)
dx2 Y n+1

𝑗+1 +
(

1 + 𝜌(dt)𝜈2 + 2DY
𝜌(dt)
dx2

)
Y n+1
𝑗

− DY
𝜌(dt)
dx2 Y n+1

𝑗−1 = Y n
𝑗
+ 𝜌(dt)rΓAn+1

𝑗
. (37)

This takes the equivalent vector form
1Yn+1 = N1,n ≥ 0,

where the matrix1, in which boundary values are incorporated, is an M-matrix because it is strictly diagonally dominant
and has positive diagonal entries. Thus,

Yn+1 = −1
1 N1,n.

The first equation in (35) is equivalent to

−DQ
𝜌(dt)
dx2 Qn+1

𝑗+1 +
(

1 + 2DQ
𝜌(dt)
dx2

)
Qn+1

𝑗
− DQ

𝜌(dt)
dx2 Qn+1

𝑗−1 = Qn
𝑗−1 + 𝜌(dt)𝛽Y n+1

𝑗
+ 𝜌(dt)b1(x𝑗)W n

𝑗−1 − 𝜌(dt)𝜈3(x𝑗)Qn
𝑗−1.

This takes the equivalent vector form
2Qn+1 = N2,n,
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where as in the previous case 2 is an M-matrix. Note that the vector N2,n is nonnegative because 1 − 𝜌(dt)𝜈3(xj) ≥ 0 by
the choice of 𝜌(dt). Thus,

Qn+1 = −1
2 N2,n.

In a similar manner, one obtains that the second and last equations in (35) have the equivalent vector form

3Wn+1 = N3,n ≥ 0, 4Mn+1 = N4,n ≥ 0,

so that
Wn+1 = −1

3 N3,n and Mn+1 = −1
4 N4,n.

At this stage, a comment is in order to explain how the boundary values are actually incorporated in the matrices Mk
(k = 1, 2, 3, 4). To illustrate the process for the matrix 1, put j = 0 and j = Ne in Equation (37). From the known data
𝜕Y
𝜕x
(tn+1, 0) and 𝜕Y

𝜕x
(tn+1, l), we can use the approximations

𝜕Y
𝜕x

(tn+1, 0) ≃
Y n+1

1 − Y n+1
−1

2dx
and 𝜕Y

𝜕x
(tn+1, l) ≃

Y n+1
Ne+1 − Y n+1

Ne

dx
.

We can then take
Y n+1
−1 = Y n+1

1 − 2dx 𝜕Y
𝜕x

(tn+1, 0) and Y n+1
Ne+1 = Y n+1

Ne
+ dx 𝜕Y

𝜕x
(tn+1, l).

We then replace Y n+1
−1 an Y n+1

Ne+1 with these expressions in the scheme (37).

3.4.2 General dynamics
The long run behavior of system (13) is simulated using Ω = [0, 10]. Figures 6 and 8 show the numerical plots of the
female mosquito compartments Y(t, x), Q(t, x), U(t, x) and W(t, x), with the initial conditions A(0, x) = 500 − cos(2x),
Y (0, x) = 75 − sin(2x), Q(0, x) = 50 − cos(2x), U(0, x) = 50 − cos(2x), and W(0, x) = 75 − cos(2x). For the aforementioned
set of parameters, we compute pde

0 = 11.8292 > 1, and Figure 6 illustrates the distribution of mature females as time and
space vary when the distribution of hosts is uniform and pde

0 > 1. Its shows as established in Theorem 10 that mosquito
population persists over time when pde

0 > 1.
Figure 6 depicts the solutions of model (13) when P = 0 (ie with homogeneity in host's distribution), while Figures 7,

8, 9, and 10 show the solutions of model (13) in a landscape with heterogeneity in hosts distribution (P > 0). Although
mosquito population persists over time, its distribution in the domain is not the same. Figure 6 shows that spatial distri-
bution of mosquitoes is homogeneous in the domain when the hosts density is too, while Figure 7 shows a drastic change
in the spatial distribution of mosquitoes in gonotrophic cycle when the hosts density is heterogeneous.

3.4.3 Impact of spatial heterogeneity on mosquito spread
To investigate the spatial heterogeneity effect on the mosquito dynamics, we take the variation of human distribution.

Figures 8, 9, and 10 show the influence of the spatial heterogeneity of hosts on the dynamics of female mosquitoes.
From these figures, one observes that spatial distribution of females in gonotrophic cycle is strongly influenced by the
hosts density. Moreover, when P increases from 0 to 1, an increase on the heterogeneity is observed in spatial distribu-
tion of female mosquitoes. Note that the larger the value of P, the higher the heterogeneity of spatial density of hosts. It
follows that the population distribution is strongly dependent on the distribution of hosts. Thus, we can conclude that
urbanization strongly influences the mosquito dynamics and therefore increases or decreases malaria risk depending on
the range of the remaining model parameters.

Altogether, the above plotted figures show that landscape really play an important role in the dispersal of mosquitoes.
From a practical point of view, it may be useful to know how mosquitoes are distributed on a domain, in order to deter-
mine where they are likely to gather, before conducting vector control. Our simulations show that, when we consider a
homogeneous distribution of hosts, the distribution of mature females is homogeneous on the domain (see Figure 6). But,
when we consider a heterogeneous distribution of hosts, we observe a drastic change in the distribution (see Figures 8-10).
This indicates that there exists a linear relationship between hosts density and mosquitoes distribution when there is
homogeneity (ie P = 0). However, when there is heterogeneity (ie P > 0), this relationship is perturbed and induces a
strong influence on spatial distribution.
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FIGURE 6 Distribution of mature females in a domain with homogeneous distribution of humans (P = 0). n = 1 and all other parameters
as in Table 4. pde

0 = 11.8292 > 1 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Distribution of mature females in a domain with heterogeneous distribution of humans (P = .5). n = 1 and all other parameters
as in Table 4 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Distribution of mature females in a domain with heterogeneous distribution of humans (P = .5). n = 1 and all other parameters
as in Table 4

FIGURE 9 Distribution of mature females in a domain with heterogeneous distribution of humans (P = .8). n = 1 and all other parameters
as in Table 4
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FIGURE 10 Distribution of mature females in a domain with heterogeneous distribution of humans (P = 1). n = 1 and all other
parameters as in Table 4

4 CONCLUSION AND DISCUSSION

In this paper, we have assessed the impact of dispersal and the spatial heterogeneity on the distribution of mosquito
population. To achieve our goal, we have described the spatial evolution of anopheles mosquito by developing a temporal
model subject to a general form of the oviposition function and extended it to a spatio-temporal one. Our models have
been rigorously analyzed using, among others, the more realistic Maynard-Smith-Slatkin oviposition function. However,
our results remain valid even if the latter oviposition function is replaced by any function drawn from Table 2, including
the Hassell function that was considered for the first time in this work. Our models have been investigated in many
aspects. From the modeling point of view, we have extended some recent ODE models6,7,12,13 by (a) incorporating the
gonotrophic cycle (Q, U, and W) of adult female mosquitoes and considering a general egg oviposition function; (b) taking
into account the mating behavior and human-vector interaction; (c) including a spatial component in order to taking into
account movement of vectors and spatial heterogeneity of mosquito resources. Moreover, our PDE model has extended
some recent dispersal models20-23 by incorporating the gonotrophic cycle of adult female mosquitoes, by considering a
general egg oviposition function, and by including the spatial heterogeneity of mosquito resources. From the theoretical
perspective, due to the high nonlinearity of the ODE model and its extended PDE counterpart, we made use of a variety
techniques and approaches, including and not limited to Lyapunov-Lasalle techniques, monotone dynamical systems
approach, semigroup application, and spectral theory approach. The main results read as follows:

• For the temporal model (1), we have derived the basic offspring number ode
0 , and through a sensitivity analysis, we

have realized that the natural mortality rate of immature females 𝜇Y, the mating rate 𝛽, and the deposit rate of eggs
by females Negg are the top three more influential parameters on the dynamics of mosquito population. The trivial
equilibrium of the temporal model is GAS whenever ode

0 is less than unity. In the case where ode
0 exceeds unity, there

exists a unique non-trivial equilibrium, which is GAS for n = 1 and globally attractive for n > 1. When there is no
density-dependent mortality in the aquatic stage (ie 𝜇2 = 0), the model exhibits the Hopf bifurcation phenomenon.
These results hold for the Verhlust-Pearl logistic and Hassell oviposition functions. For the remaining four oviposition
functions in Table 2, we have summarized the long run behavior of the solutions of their corresponding ODE model
(1) in in Table 3.
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• For the spatio-temporal model (13), we have given the formula for the basic offspring ratio pde
0 for the PDE model.

On the one hand, we have shown that spatio-temporal model has a spatially homogeneous trivial equilibrium, which
is globally attractive whenever pde

0 is less than unity. On the other hand, the persistence theory has been used to show
that the mosquito population persists whenever the pde

0 exceeds unity.

From the computational aspect, we have used ODE45 in Matlab and perform numerical simulations of the ODE model
to illustrate our theoretical results. Precisely, the Hopf bifurcation occurrence and GAS of the MPE have been illus-
trated; sensitivity analysis for ode

0 and sensitivity indices have been calculated. In the presence of density-dependent
mortality in the aquatic stage (ie 𝜇2 > 0), we have extended the global stability results for the ODE models in6,12 by
establishing the global attractivity of the MPE whenever the basic offspring number is above unity. Though, it is still
challenging to theoretically prove the local asymptotic stability of the non-trivial equilibrium of the model (1) in the pres-
ence of density-dependent mortality in the aquatic stage; alternatively, numerical simulations were used to conjecture it
(Figure 3). Together with the latter conjecture, our global attractivity result conjectures the global asymptotical stability
of the MPE of the model (1) in presence of the density-dependent mortality in the aquatic stage whenever ode

0 exceeds
unity.

Unlike the temporel model (1), where a standard numerical scheme (ie Runge-Kutta of Order 4) has been used, for
spatio-temporal PDE model, we have constructed a dynamical consistent (with respect to the positivity and boundeness)
nonstandard difference scheme, using the Maynard-Smith-Slatkin oviposition function and the parameters associated
with the anopheles species, to show that the spatial heterogeneity of mosquito resources (humans) strongly influences
the spatial distribution of adult female mosquitoes (Figures 6-10). Since there is no efficient vaccine for malaria, any
sustainable strategy for the fight of malaria must also concentrate effort on the control of mosquito populations, espe-
cially in endemic regions. We have presented here a framework for studying the dynamics of the mosquito populations
by interpreting its life cycle. On the one hand, we have used several approaches to prove global stability of equilibria and
for some nonlinear birth functions; we have characterized the asymptotic behavior of our model. Our results on stabil-
ity study show that, in absence of density-dependent mortality (𝜇2 = 0), Hopf bifurcation phenomenon can occur at the
MPE, while in the presence of density-dependent mortality (𝜇2 > 0), the MPE is always asymptotically stable. On the
other hand, a special emphasis of this paper is the role played by the spatial component and variation of human distri-
bution on mosquitoes distribution. Our study indicates that there is a relationship between hosts density and mosquitoes
distribution, and this relationship has far-reaching the effects on spatial distribution of mosquitoes. Through numerical
simulations, our work suggests that spatial variation of human distribution strongly influences the spatial distribution of
adult female mosquitoes. As shown in Figures 8-10, when the index describing urbanization process (P) varies from 0 to
1, the distribution of females in the gonotrophic cycle is strongly disturbed. This shows that urbanization may increase or
decrease malaria risk in regions where this disease is endemic. With regard to control measure, a probably efficient strat-
egy for the containment of anopheles mosquito could be the mitigation of human-mosquito contact. It is well known that
so far that a sustainable and efficient method of reducing this human-mosquito contact remains the use of mosquito bed
nets, and it should be noted that the consideration of such measure alongside with the spatial effects (as in this paper)
on mosquito population dynamics will bring further interesting and chalenging modeling and mathematical questions.
As far as future investigations are concerned, we are planning to perform a sensitivity analysis and tackle the existence
of traveling fronts for the spatial model. On the one hand, it is well known that seasonality and climatic changes, such
as temperature and rainfall, affect the life cycle of mosquitoes. Thus, a possible extension of this manuscript, on which
we are already working, is to incorporate these latter features in our models in order to assess the impact of temperature
and rainfall on the abundance of mosquitoes. On the other hand, the comparison with real experiments in order to vali-
date, modified, or adapt the models is another challenge we intend to face in the near future. To better reflect the details
of spatial variation, an equally challenging problem will be to consider the situation where the diffusion and convection
coefficients, as well as other parameters depend on a two dimensional spatial variable.
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APPENDIX A: PROOF OF THEOREM 4

Proof. This will be done in two steps. In the first step, we prove the local asymptotic stability. The second step is
devoted to the proof of the existence of Hopf bifurcation.

Step 1: The LAS of  ∗ is explored using the properties of Bézout matrices. To that end, let us recall the following
instrumental results. We consider the model (1) in the absence of density-dependent mortality in aquatic stage (ie
𝜇2 = 0). Evaluating the Jacobian matrix at  ∗ gives

 ( ∗) =

⎛⎜⎜⎜⎜⎜⎝

−𝜈1 0 0 0 0 B(W∗) + W∗ dB(W∗)
dW

rΓ −𝜈2 0 0 0 0
(1 − r)Γ 0 −𝜇M 0 0 0

0 𝛽 0 −𝜈3 0 b1
0 0 0 𝛼𝜑1 −𝜈4 0
0 0 0 0 a −𝜈5

⎞⎟⎟⎟⎟⎟⎠
.

The eigenvalues of  ( ∗) are the roots of the polynomial

P(𝜆) = (𝜆 + 𝜇M)
[
𝜆5 + b4𝜆

4 + b3𝜆
3 + b2𝜆

2 + b1𝜆 + b0
]
, (A1)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩

b4 = 𝜈5 + 𝜈4 + 𝜈3 + 𝜈2 + 𝜈1,
b3 = 𝜈5(𝜈4 + 𝜈3 + 𝜈2 + 𝜈1) + 𝜈4(𝜈3 + 𝜈2 + 𝜈1) + 𝜈3(𝜈2 + 𝜈1) + 𝜈2𝜈1,
b2 = m1 + 𝜈5𝜈4(𝜈1 + 𝜈2) + 𝜈5𝜈3(𝜈1 + 𝜈2) + 𝜈5𝜈2𝜈1 + 𝜈4𝜈3(𝜈1 + 𝜈2)

+𝜈4𝜈2𝜈1 + 𝜈3𝜈2𝜈1,
b1 = m1(𝜈1 + 𝜈2) + 𝜈5𝜈4𝜈2𝜈1 + 𝜈5𝜈3𝜈2𝜈1 + 𝜈4𝜈3𝜈2𝜈1,

b0 = 𝜈1𝜈2m1 − a𝛼𝜑1r𝛽Γ
[

B(W∗) + W∗ dB(W∗)
dW

]
.

(A2)

In order to show that the polynomial P(𝜆) is negative stable, we apply Theorem 2.8 in76 and define

h(u) = b0 + b2u + b4u2 and g(u) = b1 + b3u + u2.
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It follows from Definition 2.7 in76 that the corresponding Bézout matrix Bh,g(P) of P(𝜆) given by (A1) is

Bh,g(P) =
(

b0,0 b0,1
b0,1 b1,1

)
,

where b0,0 = b2b1 − b3b0, b0,1 = b4b1 − b0 and b1,1 = b4b3 − b2. Since Bh,g(P) is symmetric, it suffices by
Sylvester's Criterion77 to show that the kth leading principal minor 𝛥k of Bh,g(P) is positive. Since ode

0 > 1, we have
b0 = n𝜈1𝜈2m1

(
1 − 1

ode
0

)
= nm2 > 0. The first leading principal minor of Bh,g(P), 𝛥1 = b0,0 = b2b1 − b3b0 is positive

whenever

n < n∗
0, where n∗

0 = b2b1

b3m2
.

The second leading principal minor of Bh,g(P),

Δ2 = b1,1b0,0 − b2
0,1 = b1,1b2b1 − (b4b1)2 + m2(2b1b4 − b1,1b3)n − m2

2n2,

is positive whenever

n < n∗∗
0 , where n∗∗

0 =
b1,1

√
b2

3 − 4b1 + 2b1b4 − b1,1b3

2m2
> 0.

We conclude by choosing the integer n such that 1 < n < min{n∗
0,n∗∗

0 }.
Step 2: Consider the model (1) with ode

0 > 1. A Hopf bifurcation can occur when the Jacobian matrix  ( ∗) of
(1), evaluated at  ∗, has a pair of purely imaginary eigenvalues. Note that when the rank of the Bézout matrix Bh,g(P)
is reduced by exactly one, then the characteristic polynomial P has a pair of purely imaginary eigenvalues.78 Thus, to
prove the existence of Hopf bifurcation, it suffices to verify the transversality condition.79 Let n = n0

∗∗ be a bifurcation
parameter. Let us fix all other parameters of model (1). Then, by the Step 1, 𝛥1 > 0. Hence, 𝛥2(n) = 0 if and only if
n = n0

∗∗. Moreover,

dΔ2(n)
dn

||||n=n∗∗
0

= −m2b1,1

√
b2

3 − 4b1 < 0.

One should note that the stability analysis of the temporal model (1) subject to the newly considered Hassell oviposition
function BH and the stability results with respect of the existing works are summarized in Table 3. Note that 

0 , n∗
1, n∗∗

1
b0, b1, ..., b4 and b1,1 are computed similarly to the above proof such that

1. For B(W) given by BL, b0 = 𝜈1𝜈2m1(ode
0 − 1) > 0 and 

0 = 1 +
b1,1

√
b2

3−4b1+2b1b4−b1,1b3

2𝜈1𝜈2m1
.

2. For B(W) given by BH, b0 = n𝜈1𝜈2m1

(
1 − 1

(ode
0 )

1
n

)
> 0. Thus, n1∗ = min{n∗

1,n∗∗
1 } where n∗

1 and n∗∗
1 are the positive

roots of the equations 𝛥1(n) = 0 and 𝛥2(n) = 0, respectively.
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APPENDIX B: PROOF OF THEOREM 5

Proof. Suppose ode
0 > 1 in system (1). Let us first show that the equilibrium  ∗ = (A∗,Y∗,Q∗,U∗,W∗)T is globally

asymptotically stable for system dx
dt

= 𝑓 (x). To this end, consider the nonlinear Lyapunov function of Goh-Volterra
type

V1(x) = a1(A − A∗ ln A) + a2(Y − Y∗ ln Y ) + a3(Q − Q∗ ln Q) + a4(U − U∗ ln U) + a5(W − W∗ ln W),

where
a1 =

rΓ𝛽a𝛼𝜑1Negg

𝜈1𝜈2𝜈3𝜈4B(W∗)ode
0

, a2 = 𝛽a𝛼𝜑1

𝜈2𝜈3𝜈4
, a3 = a𝛼𝜑1

𝜈3𝜈4
, a4 = a

𝜈4
, and a5 = 1.

At the steady state  ∗, the following relations hold

B(W∗)W∗ = (𝜈1 + 𝜇2A∗)A∗ = 𝜈10
B(W∗)

Negg
A∗, 𝜈3Q∗ = 𝛽Y∗ + b1W∗,

rΓA∗ = 𝜈2Y∗, 𝛼𝜑1Q∗ = 𝜈4U∗ and aU∗ = 𝜈5W∗.

(B1)

The time derivative of V1(x) is

.
V 1(x) = a1

(
1 − A∗

A

) .
A + a2

(
1 − Y∗

Y

) .
Y + a3

(
1 − Q∗

Q

)
.

Q + a4

(
1 − U∗

U

) .
U + a5

(
1 − W∗

W

) .
W ,

= a1

[
B(W)W − (𝜈1 + 𝜇2A)A − B(W)WA∗

A
+ (𝜈1 + 𝜇2A)A∗

]
+ a2 [rΓA − 𝜈2Y

− rΓAY∗

Y
+ 𝜈2Y∗

]
+ a3

[
𝛽Y + b1W − 𝜈3Q − 𝛽YQ∗

Q
− b1

WQ∗

Q
+ 𝜈3Q∗

]
+ a4

[
𝛼𝜑1Q − 𝜈4U − 𝛼𝜑1QU∗

U
+ 𝜈4U∗

]
+ a5

[
aU − 𝜈5W − aUW∗

W
+ 𝜈5W∗

]
.

Using (B1), Equation (B2) becomes

.
V 1(x) = a1𝜇2A∗A

(
2 − A

A∗ − A∗

A

)
+ a1B(W∗)W∗ + a2𝜈2Y∗ + a3𝜈3Q∗ + a4𝜈4U∗ + a5𝜈5W∗

− a1
B(W)WA∗

A
− a2

rΓAY∗

Y
− a3

𝛽YQ∗

Q
− a3b1

WQ∗

Q
− a4

𝛼𝜑1QU∗

U
− a5

aUW∗

W
,

(B2)

and the relations
a1B(W∗)W∗ = a2𝜈2Y∗ = a3𝛽Y∗ = a2rΓA∗ ; a5𝜈5W∗ = a2rΓA∗ + a3b1W∗

a3𝜈3Q∗ = a4𝜈4U∗ = a4𝛼𝜑1Q∗ = a5aU∗ = a2rΓA∗ + a3b1W∗
(B3)

are satisfied. Substituting the expressions in Equation (B3) yields

.
V 1(x) = a1𝜇2A∗A

(
2 − A

A∗ − A∗

A

)
+ 6a2rΓA∗ + 3a3b1W∗ − a2rΓA∗

(
B(W)WA∗

B(W∗)W∗A

+AY∗

A∗Y
+ YQ∗

Y∗Q
+ QU∗

Q∗U
+ UW∗

U∗W
+ B(W∗)

B(W)

)
− a3b1W∗

(
WQ∗

W∗Q
+ QU∗

Q∗U
+ UW∗

U∗W

)
+ a2rΓA∗

(
B(W∗)
B(W)

− 1
)
+
(
𝜈3𝜈4𝜈5 − b1𝛼𝜑1a

𝜈3𝜈4

)(
B(W)
B(W∗)

− 1
)

W

= a1𝜇2A∗A
(

2 − A
A∗ − A∗

A

)
+ a2rΓA∗

(
6 − B(W)WA∗

B(W∗)W∗A
− AY∗

A∗Y
− YQ∗

Y∗Q

−QU∗

Q∗U
− UW∗

U∗W
− B(W∗)

B(W)

)
+ a3b1W∗

(
3 − WQ∗

W∗Q
− QU∗

Q∗U
− UW∗

U∗W

)
+ a2rΓA∗

(
B(W)
B(W∗)

− 1
)(

W
W∗ − B(W∗)

B(W)

)
.

(B4)



32 MANN MANYOMBE ET AL.

In Equation (B4), the terms between the brackets are Volterra-type functions. These functions are positive definite.
For B(W) with n = 1, we have

B(W)
B(W∗)

− 1 = W∗ − W
L + W

and W
W∗ − B(W∗)

B(W)
= (W − W∗)L

W∗(L + W∗)
.

Hence, (
B(W)
B(W∗)

− 1
)(

W
W∗ − B(W∗)

B(W)

)
= − (W∗ − W)2L

W∗(L + W)(L + W∗)
< 0.

Thus, using the arithmetic-geometric means inequality, it follows that
.

V 1 ≤ 0. The proof follows by the conclusion in
the proof of Theorem 2 as well.
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