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Abstract 

This thesis analyses the behaviour of rotating and pendulum rod like electromechanical 

arms. The goal ultimate is to design chaotic sieves and mixers. After the schematic 

representation and description of each prototype, the mathematical models are established and 

the appropriate theoretical methods are used to study their dynamical behaviours. The main 

results obtained are expressed in terms of design, modelling and dynamic characterization of 

new electromechanical devices. 

- The first device designed is an electromechanical system which rotates on an arc of a circle 

a rigid arm acting as a particle in a bistable potential due to three appropriately placed 

magnets. This first device is modelled, the analysis of the dynamics subjected to the action 

of a source of sinusoidal voltage and of a voltage source of square form is made. This 

analysis highlights the chaotic behaviour used in the mixing and sieving processes; 

- The second device designed differs from the first by the fact that its movement is framed 

by the symmetrically fixed springs and by the fact that the hysteresis of the inductance is 

taken into account through an inductance-intensity characteristic of the strongly nonlinear. 

Here again the reinforcement of the complexity of the dynamic behaviours is ensured on 

the one hand by the introduction of a bistability created by symmetrically arranged magnets 

and on the other hand by the introduction of a delay generated by feedback from a 

mechatronic device; 

- The third device designed has a pendula behaviour presenting both a translational 

movement through a horizontal rod and a pendulum movement through a second rod. This 

double movement gives the device several different functions in terms of applications. As 

in the case of the first two devices, complexification is ensured by the creation of bistability 

by magnets, the non-linear characteristic of the inductance and the use of a delayed feedback 

force. 

 

Keywords: Electromechanical systems, rotating arm, electric motors, bistable potential, 

hysteretic iron core inductor, delay, chaos.
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Résumé 

Cette thèse analyse le comportement des bras électromécaniques rotatifs et pendulaires. Le 

but ultime est de concevoir des tamis et des mélangeurs chaotiques.  Après la représentation 

schématique et la description de chaque prototype, les modèles mathématiques sont établis et 

les méthodes théoriques appropriées sont utilisées pour étudier leurs comportements 

dynamiques. Les principaux résultats obtenus s’expriment en termes de conception, 

modélisation et caractérisation dynamique de nouveaux dispositifs électromécaniques. 

- Le premier dispositif conçu est un système électromécanique faisant tourner sur un arc de 

cercle un bras rigide se comportant comme une particule dans un potentiel bistable à cause 

de trois aimants placés de manière approprié. Ce premier dispositif est modélisé, l’analyse 

de la dynamique soumis à l’action d’une source de tension sinusoïdale et d’une source de 

tension de forme carré est faite. Cette analyse fait ressortir des comportements chaotiques 

utilisés pour les processus de mixage et de tamisage.  

- Le deuxième dispositif conçu diffère du premier par le fait que le bras est assujetti à deux 

ressorts fixés symétriquement et que l’hystérésis de l’inductance est prise en compte à 

travers une caractéristique inductance-intensité du courant de forme fortement non 

linéaire. Ici   aussi, le renforcement de la complexité des comportements dynamiques est 

assuré d’une part par l’introduction d’une bistabilité créée par des aimants symétriquement 

disposés et d’autre part par l’introduction d’un retard généré par rétroaction à partir d’un 

dispositif mécatronique ;  

- Le troisième dispositif conçu a un comportement pendulaire présentant à la fois un 

mouvement de translation à travers une tige horizontale et un mouvement pendulaire à 

travers une seconde tige. Ce double mouvement confère au dispositif plusieurs fonctions 

différentes en termes d’applications. Comme pour les deux premiers dispositifs, la 

complexification est assurée par la création de la bistabilité par des aimants, la 

caractéristique non linéaire de l’inductance et l’usage d’une force de rétroaction avec 

retard. 

 

Mots clés : Systèmes électromécaniques, bras rotatifs, moteurs électriques, potentielle bistable, 

Inducteur de noyau de fer hystérétique délais, chaos.  
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0- General introduction 

Electromechanical systems (EMS) are made of two mains parts (electrical and 

mechanical), which are coupled together via magnetic, piezoresistive, piezoelectric and 

capacitive couplings [1-10]. If micro-electromechanical systems (MEMS) are now more 

attractive worldwide, macro-electromechanical systems (MaEMS) still have interest since they 

are present in various engineering and domestic equipments [3]. Moreover, their modeling 

equations present some complexities which are interesting and stimulating challenges, both 

mathematically and numerically.  In the majority of these EMS, the mathematical modeling is 

done and, among the state solutions that may appear, chaos and mechanisms of routes to chaos 

have received the greatest attention. In the field of nonlinear dynamics, control problems for 

complex oscillatory EMS have attracted significant interest and a considerable effort has been 

devoted to the study of oscillatory, chaotic states and the route of chaos of some MaEMS 

[3,10,13–20]. For instance, in Ref.13, the authors proposed a feedback control method to 

generate complex behavior in a linear EMS device. They showed that, for appropriate range of 

control parameters, the device exhibits period- nT  and chaos oscillations. Kitio Kwuimy and 

Woafo [21], studied experimentally and numerically a self-sustained macro-electromechanical 

system. They showed that, by tuning some physical parameters, the device exhibits periodic 

oscillations and complex dynamics by using low DC power. 

Amongst the EMS, electromechanical pendulum arms constitute a physical object, 

fascinating physicists and therefore becoming one of the paradigms in the study of physics and 

natural phenomena. It finds uses in varied structural applications. From the technological point 

of view, it is the fundamental elements of an engineering structure and one of the objets that 

have deserved more attention in the modelling of several kinds of phenomena related to 

oscillations. In the framework of manufacturing industries, electromechanical pendulum arm is 

the essential component for the automation of processes [17]. Recently, many investigations 

dealing with the rotating electromechanical arms have been carried out [17,22,23]. For example, 

the study of an electromechanical system consisting of rigid pendulum arms, magnetically 

coupled with electrical circuits by means of electromechanical transducers has been considered 

with the analysis of bifurcation structure and chaos control [17].  Depending on the form of the 

external excitation and the set of the chosen parameters, EMS lead to various interesting 
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phenomena such as frequency entrainment, harmonic, subharmonic, super harmonic 

oscillations, and chaotic behavior [13-19].  

The automation of some hard mechanical work has gadered an increasing interest during 

this last decade [24]. As far as sieve process is concerned, chaotic dynamics is expected to 

ensure a good performance of the device [18,20,25]. Consequently, intense research activities 

are presently conducted for the chaotic dynamics of pendulum arms which are currently the 

standard approach to automatize sieve or mixing processes [22]. To achieve the automation of 

the sieve or mixing processes, some researchers convert the translational movement into 

rotational movement and vice versa via the slider crank mechanism. Another method is to fix 

one arm to a rotary motor and analyze the possibility to have very small amplitude of vibration 

[13,19,22].  

Many methods are used to characterize the chaos behavior in an EMS. Along these lines, 

numerical indicators such as the Lyapunov exponents and bifurcation diagrams are usually used 

to determine the appropriate range of parameters for which the device exhibits period- nT  and 

chaos oscillations [26-31]. Kitio Kwuimy et al [3] used the Lyapunov exponent and bifurcation 

diagram to predict chaos in an electromechanical device constituted by a self-sustained MaEMS 

made up of a Rayleigh–Duffing oscillator actuating a mechanical arm through a magnetic 

coupling. To bring chaos in the EMS dynamic one can use the time delay feedback control 

(TDFC) [30] or the electronic and/or mechanical components which have nonlinear 

characteristics [31]. The limitation is the difficulty in having mechanical components with 

clearly identified nonlinear characteristics. These studies have been guided by the fact that 

chaos is useful and beneficial in some applications such as vibrating sieves [17,22,23], 

industrial mixers [24], industrial shakers [18] and monitoring compaction [20]. In that spirit, 

enhancing the complexity of the rotating electromechanical arm behavior has also attracted the 

attention of various scientists. Zheng-Ming Ge et al. [25], studied a brushless dc motor 

(BLDCM) system and found a very rich dynamics, that was render more complex using an anti-

control scheme. 

Among the EMS, a particular class is that containing asynchronous motor, which is 

encountered in various industrial modern processes. In most of these EMS powered by 

sinusoidal input voltage, chaotic behavior appears for appropriate range of parameters when the 

device consists of electronic and/or mechanical components which have nonlinear 

characteristics [3, 29, 32] such as capacitors with nonlinear charge-voltage characteristics 

[33,34], inductance with nonlinear term in the flux-voltage characteristics [35], and so on. In 

practice, electronic components deliver low power and it is difficult to have mechanical 
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components with clearly identified nonlinear characteristics. Consequently, the chaotification 

technique which consists to introduce nonlinear components in the EMS is limited to low power 

devices (e.g., microelectromechanical systems). In the absence of nonlinear components, one 

sometimes uses anticontrol of chaos methods [29,35-38], and Time Delay Feedback Control 

(TDFC) [25].  These studies have been extended to hydro-turbine system showing nonlinear 

dynamics [40-43].      Research is still in progress to find other ways to induce chaos in EMS, 

particularly in EMS using electric components that can be used to provide high power actuation 

force. Such a problem is considered in this work. 

In this work, we provide another way to generate chaos in the dynamics of 

electromecanical systems consisted of rotating and pendulum arm. This is based on the 

generation of a bistable potential in the electromechanical system and by inducing a 

hysteretic iron-core inductor and delay in the electromechanical systems. The EMS 

proposed in this thesis are inspired by some previous works such as in [13], where Tcheutchoua 

Fossi et al. used feedback control to generate complex phenomenon in a simple 

electromechanical system. By using the power supply feedback control, the authors observed 

that the system exhibits complex dynamical behaviors such as jump phenomenon, Sommerfeld 

effect, period- nT  and chaotic oscillations. In [17], Mogo and Woafo studied a nonlinear 

electromechanical device with a pendulum arm. The authors observed that the system exhibits 

complex dynamical behaviors such as multi-periodic, quasi-periodic, and chaotic responses. In 

this thesis, we provide new designs to chaotify the same device.  

The first device studied in this thesis is an electromechanical system, which consists of a 

mechanical rotating arm activated by a rotary electric motor. Its shaft is fixed mechanically at 

its two ends by two spiral torsion springs put up in anti-parallel manner. The coupling between 

the electrical and mechanical parts is realized through the electromagnetic force due to a 

permanent magnet. One permanent magnet is fixed at the free end of the mechanical arm. In 

the right and in the left of the mechanical arm at equal distances to the equilibrium position, 

there are two other permanent magnets placed on top of a non-ferromagnetic bearer. 

The second device studied in this thesis is an electromechanical system with rotating arm. 

It is made of an electrical circuit driving a mechanical part. The rotating arm is a thin rod on 

which electrical windings are applied. In order to make the electromechanical rotating arm 

oscillations chaotic, one permanent magnet is fixed at the free end of the mechanical arm. In 

the right and in the left sides of the mechanical arm, at equal distances to the equilibrium 
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position, there are two other permanent magnets also fixed somewhere in the whole system. to 

enhance the complexity of the device a mechatronic delay generator is introduce. Purposely 

mechatronic generator is a velocity sensor, such as a tachometer where the measured angular 

velocity is proportional to the output voltage of the meter. 

The third device is an electrodynamic transducer. The mechanical part consists of a 

translational rod activating a pendulum arm. The pendulum arm return to its equilibrium 

position by a spring of stiffness. To make the electromechanical pendulum arm oscillations 

chaotic, one permanent magnet is fixed at the free end of the pendulum arm (the mass of the 

pendulum arm will therefore increase). In the right and in the left sides of the pendulum arm, at 

equal distances to the equilibrium position, there are two other permanent magnets. Then we 

assume that the ferromagnetic core inductance is a function of the current in the electrical 

circuit. 

The present work is therefore divided in three chapters. In chapter one, we focus on 

different types and some utilities of EMS. Brief generalities and definition of nonlinear 

dynamics are given. The attention is particularly focused on the chaotic dynamics and the route 

to chaotic dynamics on MaEMS. We briefly expose few literature reviews on some interesting 

electromechanical systems and some works from our research group; then the derivation of the 

magnetic potential energy. Next, the motivations and challenges are given. In chapter two, we 

focus on the mathematical formalism and numerical methods used to characterize the dynamical 

states of the physical systems studied. The third chapter presents the results and discussions of 

the devices studied in this thesis. Concerning the a bistable rotating electromechanical system, 

we present the system and equation, oscillatory states in the absence of three magnets next, 

dynamics in presence of the magnets are investigated. The Hamiltonian chaos is also analysed. 

According to a bistable rotating electromechanical system with springs, hysteretic iron-core 

inductor and delay, the system and equation are given, dynamics in absence of permanents 

magnets next, dynamics in presence of the magnets are investigated. For the electromechanical 

system with translational and pendulum motion, we present the system and equations, next the 

effect of the bistable potential energy is analyse, the effect of the hysteretic iron-core induction 

on electromechanical device is investigate. Then the effect of delay on electromechanical 

system with bistable potential and hysteretic iron core inductor is also analyse. We end with a 

general conclusion where the main results of the work are summarized and perspectives related 

to our present achievements are sketched. 
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1- Literature review 

1.1. Introduction 

This chapter deals with the literature review on research on electromechanical systems 

with emphasis on those delivering rotating motion. In section 1.2, general information are given 

on electromechanical systems. Section 1.3 concentrates on nonlinear dynamics in some 

electromechanical systems with focus on control and anticontrol of chaos. Recent physical 

models of rotating electromechanical systems are presented in section 1.4. section 1.5 is 

concerned with the derivation of the potential due to the interaction of magnets. In section 1.6, 

we present some results obtained in our research group. This leads to the problems studied in 

this thesis in section 1.7. Section 1.8 concludes the chapter.   

1.2. Types of electromechanical systems 

In newtonian physics, there is a universal law of conservation of energy, which says that: 

energy (usually defined as the ability to perform work) can be neither created nor be destroyed 

however, it can change from one form to another. There are many different forms of energy 

around us such as: electrical, mechanical, electromagnetic, chemical, and thermal to name a 

few. For energy conversion between electrical and mechanical forms, electromechanical 

devices are developed. Depending on their dimensions, they are called Nano (dimension less 

than one cubic micrometer), micro (dimension less than one cubic millimeter), and Macro-

Electromechanical Systems, denoted as NEMS, MEMS and MaEMS respectively. The 

potential of very small machines was appreciated before the technology existed that could make 

them (see, for example, Richard Feynman's famous 1959 lecture: There's Plenty of Room at the 

Bottom).  

CHAPTER 1 
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1.2.1. Microelectromechanical Systems (MEMS) 

Microelectromechanical systems (MEMS), also written as Micro-Electro-Mechanical 

System, is the technology of microscopic devices. It merges at the Nano-scale into 

nanoelectromechanical systems (NEMS) and nanotechnology. MEMS are separate and distinct 

from the hypothetical vision of molecular nanotechnology or molecular electronics. MEMS are 

usually consisted of a central unit that processes data (the microprocessor) and several 

components that interact with the surroundings such as micro-sensors [45]. At these size scales, 

the standard constructs of classical physics are not always sufficient. Because of the large 

surface area to volume ratio of MEMS, surface effects such as electrostatics and wetting 

dominate over volume effects such as inertia or thermal mass. The fabrication of MEMS 

evolved from the process technology in semiconductor fabrication device, i.e. the basic 

techniques are deposition of material layers, patterning by photolithography and etching to 

produce the required shapes [46].  

Some common commercial applications of MEMS include: Inkjet printers, which use 

piezoelectric or thermal bubble ejection to deposit ink on paper. Accelerometers in modern cars 

for a large number of purposes including airbag deployment and electronic stability control. 

Accelerometers and MEMS gyroscopes in remote controlled, or autonomous, helicopters, 

planes and multirotor (also known as drones), used for automatically sensing and balancing 

flying characteristics of roll, pitch and yaw. Accelerometers in consumer electronics devices 

such as game controllers (Nintendo Wii), personal media players / cell phones (Apple iPhone, 

various Nokia mobile phone models, various HTC PDA models) [47] and a number of Digital 

Cameras (various Canon Digital IXUS models). MEMS are also used in PCs to park the hard 

disk head when free-fall is detected, to prevent damage and data loss. MEMS gyroscopes used 

in modern cars and other applications to detect yaw; e.g., to deploy a roll over bar or trigger 

electronic stability control [48] MEMS microphones in portable devices, e.g., mobile phones, 

head sets and laptops. The market for smart microphones includes smartphones, wearable 

devices, smart home and automotive applications [49]. Silicon pressure sensors e.g., car tire 

pressure sensors, and disposable blood pressure sensors. Displays e.g., the digital micro mirror 

device (DMD) chip in a projector based on DLP technology, which has a surface with several 

hundred thousand micro mirrors or single micro-scanning-mirrors also called micro scanners. 

Optical switching technology, which is used for switching technology and alignment for data 

communications. Bio-MEMS applications in medical and health related technologies from Lab-
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On-Chip to Micro Total Analysis (biosensor, chemosensory), or embedded in medical devices 

e.g. stents [50]. Interferometric modulator display (IMOD) applications in consumer electronics 

(primarily displays for mobile devices), used to create interferometric modulation reflective 

display technology as found in Mirasole displays. Fluid acceleration such as for micro cooling. 

Micro-scale energy harvesting including piezoelectric [51] electrostatic and electromagnetic 

micro harvesters. Micro machined ultrasound transducers [52, 53]. 

1.2.2. Nano electromechanical systems (NEMS)  

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and 

mechanical functionality on the nanoscale. NEMS form the logical next miniaturization step 

from so-called microelectromechanical systems (MEMS) devices. There are many potential 

applications of machines at smallest sizes. We have atomic force microscope tips, efficient 

sensors to detect stresses, vibrations, forces at the atomic level, and chemical signals [54], the 

accelerometers, or detectors of chemical substances in the air [55].  Among the expected 

benefits, include greater efficiencies and reduced size, decreased power consumption and lower 

costs of production in electromechanical systems [54]. In 2000, the first very-large-scale 

integration (VLSI), NEMS device was demonstrated by researchers at IBM [56]. Stefan Haan 

[57] has described further devices. In 2007, the International Technical Roadmap for 

Semiconductors (ITRS) [58] contains the NEMS in Memory as a new entry for the Emerging 

Research Devices section. 

Computer simulations have long been important counterparts to experimental studies of 

NEMS devices. Through continuum mechanics and Molecular Dynamics (MD), important 

behaviours of NEMS devices can be predicted via computational modelling before engaging in 

experiments [59-62]. Additionally, combining continuum and MD techniques enables 

engineers to efficiently analyse the stability of NEMS devices without resorting to ultra-fine 

meshes and time-intensive simulations [59]. 

Key hurdles currently preventing the commercial application of many NEMS devices 

include low-yields and high device quality variability.  The focus is currently shifting from 

experimental work towards practical applications and device structures that will implement and 

profit from such novel devices [63]. The next challenge to overcome involves understanding 

all of the properties of these NEMS. In the case where one does not have access to these 

https://en.wikipedia.org/wiki/Microelectromechanical_systems
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miniaturized components and to the devices indispensable for their studies, it will be practically 

impossible to pass to the experimental phase, hence the interest of the study of the MaEMS. 

1.2.3. Macro electromechanical systems (MaEMS)  

If MEMS and NEMS are now more attractive worldwide, MaEMS still have interest since 

they are present in various engineering and domestic equipment’s [64]. MaEMS can also be 

found in areas like: manufacturing, communication, or energy production. Mechanical motion 

is typically converted into electrical energy and vice versa through various transducers 

mechanisms such as piezoelectricity, electromagnetic induction, electrostatic, magnetostrictive 

and biological processes [65].   

Though energy conversion can have place via many converters, the magnetic field is 

practically use as is most suited for practical devices. In these devices, electromechanical 

systems thus consist of an electrical subsystem (electric circuit such as windings), a magnetic 

subsystem (magnetic field), and a mechanical subsystem (mechanically movable parts such as 

a rotor in a rotating electrical machine). Voltages and currents are used to describe the state of 

the electrical subsystem and the basic circuital laws govern it are Ohm's law, Kirchhoff's current 

law (KCL) and Kirchhoff's voltage law (KVL). The state of the mechanical subsystem can be 

described in terms of positions, velocities, accelerations, and is governed by Newton's laws. 

The magnetic subsystem fits between the electrical and mechanical subsystems and acting in 

the energy conversion. When coupled with an electric circuit, the magnetic flux interacting with 

the current in the circuit would produce a force or torque on a mechanically movable part. On 

the other hand, the movement of the moving part will make some variation of the magnetic flux 

linking the electric circuit and induce an electromotive force (EMF) in the circuit.  Two 

categories of MaEMS where mechanical and electrical components are coupled via 

electromagnetic induction are considered in this report.  

The first category treats on energy conversion device, which allows electrical energy to be 

transformed into mechanical energy. Such devices are studied in the literature for instance, in 

[13], the authors use feedback control to induce chaos motion in a rotary motor when its shaft 

is fixed mechanically at its both ends by two spiral torsion springs. J. B. Mogo et al [17] have 

designed a system consists of two permanent magnets which produces a uniform magnetic flux 

normal to the gap, and a coil which is free to move axially within the gap. Such a system can 
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be an electromechanical pendulum whose study has been well analysed in the literature. In 

reference [66], the authors have considered the stiffness of the spring and a self-sustained 

electromechanical transducer. The effects of discontinuity of elasticity and damping of the 

electromechanical transducer have been studied. The analysis when the capacitor is added on 

the electrical part [66-68] has been studied. 

The second category concerned the MaEMS which allows mechanical energy to be 

transformed into electrical energy. The energy shortage is increasingly noticeable due to the 

impressive number of application in the daily live. At home, early man relied on fire for the 

luxuries of light, heat and cooking. Today, at the flick of a switch, a push of a button, we can 

have instant power. The alarm, electric razor, the light in our bedroom, microwaves, toasters, 

sandwich makers, electric jugs, food processors, freezers, televisions, computers, lamps, DVD 

players, play Stations, washing machines, dishwashers and clothes dryers need electricity to 

function. Electricity not only plays a big part in our lives at home, but it is extremely important 

for everything in the world around us. 

1.3. Nonlinear dynamics  

Nonlinear dynamics has its origins in the famous "three body problem" and the attempts, 

at the turn of the century, by the great French mathematician and physicist, Henri Poincaré, to 

calculate the motion of a planet around the sun when under the perturbing influence of a second 

nearby planet or moon. In many cases, as expected, the presence of the third body acted to 

modify the original orbit. However, there were also situations in which the planet moved in a 

highly erratic way, even to the extent of behaving chaotically. To have discovered chaos at the 

heart of an apparently stable solar system came as a considerable surprise. However, further 

exploration of these ideas had to await the development of new mathematical techniques (major 

contributions coming from mathematicians and theoretical physicists in the Soviet Union) and 

the development of high-speed computers capable of displaying their complex solutions 

visually, on a screen, or graphically. 

Today, nonlinear dynamic, of which chaos theory forms an important part, is currently an 

active and fashionable discipline that is having a profound effect on a wide variety of topics in 

the hard sciences. Its combination of novel mathematics and high speed computing, has 

produced new insights into the behaviour of complex systems and reveals surprising results 
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even in the simplest nonlinear models. Recently the chaos theory has found applications in 

economics, ecology, populations dynamics, the health sciences, sociology, financial market, 

optics, power electronics, telecommunications, engineering and so on [70-73]. It was also 

demonstrated that chaotic behaviour appears in all systems presenting some nonlinearities; e.g. 

epidemiology [74-80]. 

Nonlinear problems are of interest to engineers, physicists and mathematicians and many 

other scientists because most systems are inherently nonlinear in nature. In physical sciences, a 

nonlinear system is a system in which the output is not directly proportional to the input [81]. 

Nonlinear systems may appear chaotic or unpredictable. Typically, the behaviour of a nonlinear 

system is described in mathematics by a nonlinear system of equations. It is a set of 

simultaneous equations in which the unknowns (or the unknown functions in the case of 

differential equations) appear as variables of a polynomial of degree higher than one or in the 

argument of a function which is not a polynomial of degree one. In other words, in a nonlinear 

system of equations, the equation(s) to be solved cannot be written as a linear combination of 

the unknown variables or functions that appear in them [82]. It does not matter if nonlinear 

known functions appear in the equations. In particular, a differential equation is linear if it is 

linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the 

other variables appearing in it [83]. 

1.3.1.  Chaos: control and anti-control  

Chaos control refers to the situation where chaotic dynamics is weakened or eliminated 

by appropriate controls, while Anti-control of chaos (or chaotification) means, to make an 

originally non-chaotic dynamical system chaotic, maintained, or enhance the existing chaos of 

a chaotic system when it is healthy and useful. Chaos control and anti-control technologies have 

a major impact on many novel, time and energy-critical applications. Among them, we have 

high-performance circuits and devices (e.g., delta-sigma modulators and power converters), 

liquid mixing, chemical reactions, biological systems (e.g., in the human brain, heart, and 

perceptual processes). We also have secure information processing [84], electro domestic and 

industrial products like shakers, mixers, vibration hammers and various machines for milling, 

impact printing, sewing, washing and soil compacting tamping. This new and challenging 

research and development area has become interdisciplinary, involving systems and control 

engineers, theoretical and experimental physicists, applied mathematicians, physiologists, and 
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above all, circuits and devices specialists. Both control and anti-control of chaos can be 

analysed using chaos and bifurcation theories, and can be implemented by suitable design of 

control and switching circuitries. Chaos refers to one type of complex dynamical behaviours 

that possess some very special features such as being extremely sensitive to tiny variations of 

initial conditions [85], having bounded trajectories in the phase space but with a positive 

maximum Lyapunov exponent. Chaos oftentimes coexists with some other complex dynamical 

phenomena like bifurcations, fractals, and strange attractors. 

Due to its intrinsic dynamical complexity, chaos was once believed to be neither 

controllable nor predictable and therefore, useless. However, recent research advances have 

demonstrated that chaos not only is (long-term) controllable and (short-term) predictable, but 

can also be beneficial to many real-world applications. In fact, control and anti-control of chaos 

have become a rallying point for an important segment overlapping engineering, physics, 

mathematics, and biomedical science. Chaos control refers to the situation where chaotic 

dynamics is weakened or eliminated by appropriate controls, while anti-control of chaos means 

that chaos is created, maintained, or enhanced when it is healthy and useful. Both control and 

anti-control of chaos can be accomplished via some conventional and non-conventional 

methods such as microscopic parameter perturbation, bifurcation monitoring, entropy 

reduction, state pinning, phase delay, and various feedback and adaptive controls [86]. 

1.3.2. Route to chaotic dynamics on MaEMS 

To have chaotic dynamics in the MaEMS dynamics, we can use: feedback control 

method to generate complex behaviour in a linear EMS device [13], the Time Delay Feedback 

Control (TDFC) [87]. One can also use electronic and/or mechanical components with a 

nonlinear characteristics [88] such as: 

 -Spring with nonlinear stiffness: 

2

0 1( )k x k k x  ,                                                                                                                          (1.1) 

0k  is the stiffness for small stretching, x  the elongation and 1k  a coefficient of nonlinearity. 

Electromechanical devices with a nonlinear spring have been studied by Chedjou et al [48, 60], 

Chembo et al [79], and Yamapi et al [77, 80].  
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-Capacitors with nonlinear charge-voltage: A circuit element whose charge ( )q t  and voltage 

( )v t  falls on some fixed (characteristic) curve in the q v  plane represented by the equation 

( , ) 0f q v   at any time t  is called a time-invariant capacitor. If the measure q v  characteristic 

curve is a straight line passing through the origin, then the capacitor is said to be linear and it 

satisfies the voltage-current relation  

dv
i C

dt
 .                                                                                                                                       (1.2) 

Examples are Electrolytic capacitors, polarized and are connected in the circuit observing the 

correct polarity, ceramic capacitors generally used where small capacitances are required in an 

electrical circuit, their capacitances are given in picofarads, tubular capacitors generally marked 

in microfarads. Other capacitors as varactors diode and junction diodes, have the nonlinear 

character [3, 88, 89]. Mogo et al in [90] use a nonlinear capacitor constituted by an ideal 

operational amplifier of reference LF356, four diodes of reference 1N4001, two linear 

condensers 1c  and 2c , one linear resistance 1R  where the nonlinear characteristic of the 

capacitor is a constitutive relation of the form: 

1

0

1 0 1 2

( ) 2 sinh ( )
2

q q
v q v

c I R c

 
  ,                                                                                                         (1.3) 

where 0I the leakage current, and 0v the characteristic voltage. 

-Inductance with nonlinear term in the flux-voltage: The formulas for the calculation of the self-

inductance are given bellow [91]: 

Single layer coil:  

2( )

9 10

rN
L

r l



,                                                                                                                                      (1.4) 

multilayer coil:  

20.8( )

6 9 10

rN
L

r r l


 
,                                                                                                                               (1.5) 

single layer spiral coil: 
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2( )

8 11

rN
L

r l



,                                                                                                                                   (1.6) 

where L  is the self-inductance, N  the total numbers of turns, r  the mean radius, and l  the 

length and the depth of the coil respectively. The magnetic circuit is saturated when the current 

i  flowing into the inductor is greater than the nominal current 0i , (  is the saturated parameter) 

and the flux-current   characteristics can be approximated by a mathematical relation of the 

form [92]: 

0

0 0

tanh
i i

Li
i i


    

      
    

.                                                                                                         (1.7) 

  Electronic components deliver low power, this is a very great difficulty when we carry 

out experimentation. It is also difficult to identify nonlinear characteristics in electronic and/or 

mechanical components. As consequence, the chaotification technique which consists to 

introduce electronic components in the EMS, is limited to low power devices (e.g., 

microelectromechanical systems). 

Research is still in progress to find other ways to induce chaos in EMS, particularly in 

EMS using linear electric and/or mechanic components that can be used to provide high power 

actuation force, this problem is considered in this research work. A very large field of research 

is still in progress, when chaos is generated in EMS. In this work, the generation of the chaotic 

behaviour in EMS is achieved by the introduction of a bistable potential in a device dynamic 

using three permanent magnets in one hand. On the other hand, we also use the nonlinear 

hysteretic iron-core inductor express as [74]:  

2 2

0

1

2

2
1 cosh( )

sN A B N A
L

Nil l

l

 




 
 

   
  
 

,                                                                                            (1.8) 

where 1 ( )
di

sign
dt

  , and 7

0 4 .10  H/mµ    is the air permeability,   and  are two 

parameters which can be determined from the relation between the magnetic induction and the 

magnetic field. The ferromagnetic core inductance L in equation (1.8) is a function of the 

current i  in the electrical circuit. 
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However, the investigation of chaos in motors drive attracted just a few authors in 

literature.  Recently, the investigation of chaos in motor drives has been accelerated. Moreover, 

recent research has shown that chaos dynamics in motor drive can actually be useful under 

certain conditions, and there is interest in utilizing the very nature of chaos. For example, chaos 

is thought to be important in fluid mixing and vibrating sieves.  Thus, a controllable chaotic 

motor drive, namely chaotifying a motor drive, is highly desired for some practical engineering 

system. 

1.4.  Some interesting MaEMS 

The devices that we will present below have been studied in our research group. We 

describe their mode of operation, and present the equations that govern their dynamics while 

specifying the methods used to obtain these equations. 

1.4.1. MaEMS as motor 

Motors is an electromechanical system that refers to a mechanical element coupled to 

electrical circuits via electromechanical transducers. The input transducer takes electrical 

signals from the input circuit and provides mechanical stimuli to the mechanical system. One 

can thus define electric motors as rotating EMS that convert electrical energy into mechanical 

one and are among the most efficient means of producing mechanical vibrations. Electric 

motors are used in various branches of engineering, they are very durable devices and they can 

be found in a huge array of applications.   Electric motors are so ubiquitous that it's hard to 

gather few appliances without finding one that has not an electric motor somewhere. From toys 

to the fans on air-conditioning, heating systems and beyond, electric motors are among the most 

common electrical components in use today. 

Electric motors modelling equations present some complexities which are interesting 

and stimulating challenges both mathematically and numerically. Considerable efforts have 

been devoted to the study of oscillatory and chaotic states of some vibrational EMS [3,13-

19,94]. Many methods are used to characterize the chaos behaviour in an EMS. Along these 

lines, numerical indicators such as the Lyapunov exponents and bifurcation diagrams are 

usually used to determine the appropriate range of parameters for which the device exhibits nT

period-oscillations and chaos oscillations [3]. 
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Nonlinear dynamics of MaEMS have been studied recently [17]. Depending on the form 

of the external excitation and the set of the chosen parameters, electric motors lead to various 

interesting phenomena such as frequency entrainment, harmonic, subharmonic, super harmonic 

oscillations, and chaos [13, 14-19]. These contributions have also shown that nonlinear 

phenomena can have negative interest or useful effects in science and engineering. The negative 

effects are due to the fact that nonlinear phenomena can conduct to a malfunction of systems 

and cut short their live cycle, or drive the systems to a reversal and catastrophe phenomena. 

The complexity of the Electric motors behaviour has attracted the attention of various scientists 

[94]. In fact, its useful interests are their many applications in engineering fields. For instance, 

chaos has been used in the building of better digital filters. To model the structural dynamics in 

such structures as buckling columns and the secure communication [87, 95]. Industrial mixing 

processes [47, 96], chaotic industrial shaking processes [8] and monitoring compaction [47]. 

There are several electromechanical devices that operate in motor mode, we will present only 

a few here. 

1.4.1.1. Rotary motor 

The electric motors also called electric actuators consist of a fixed part called a stator 

and a mobile part called a rotor. The stator core is made up of many thin metal sheets, called 

laminations. Laminations are used to reduce energy losses that would result if a solid core were 

used. The rotor usually has conductors laid into it which carry currents that interact with the 

magnetic field of the stator to generate the forces that turn the shaft. However, some rotors carry 

permanent magnets, and the stator holds the conductors.  

According to whether the excitation current is continuous or alternating, there are two 

main families of electric motors, namely: AC motors and DC motors. Each family is made up 

of a wide variety of actuators depending on their use. Here we will focus only on DC motor. 

1.4.1.2. Direct Current (DC) motors 

By the manner to connect the stator with rotor, one distinguishes: Separately Excited 

Direct Current (SEDC) motor (as for intence Permanent Magnet Direct Current (PMDC) 

motor), Compound-Connected Direct Current (CCDC) motor, Series Connected Direct Current 

(SCDC) motor and Shunt Connected Direct Current (ShCDC) motor. 
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1.4.1.3. Separately Excited Direct Current (SEDC) motor 

The choice of separately excited DC motor is because in addition to its industrial 

applications we can obtain the other from it changing simply the manner to connect the rotor 

with stator. Often used as actuators, SEDC motor is used in trains and for automatic traction 

purposes. The schematic representation of SEDC motor is shown below: 

 

Figure 1 - Schematic representation of SEDC motor [13]. 

aL and aR  are respectively the self-inductance and resistance of the rotor, ( )aU t  is the 

external voltage and ( )ai t the current across the rotor. ( )t is the angular velocity of the rotor 

motion and  f f fk i t    the magnetic inductor flux.  

Using the Kirchhoff's voltage law, the equation of the electrical part is given by the 

following equation [19]: 

( ) ( )a
a a a m a

di
L R i e t u t

dt
   ,                                                                                                           (1.9) 

where, at the left side, the first term is the voltage across the inductor, the second term is the 

ohmic voltage and the third term ( ) ( )m E fe t k t  is the back electromotive force (BEMF) 
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which represents the coupling term between the electrical part and mechanical part of the device 

and Ek  the BEMF constant.  

Using the Newton second law of dynamics for rotating motions and taking into account 

Laplace force, the equation of the mechanical part is obtained as: 

( )

( ) ( ( )) ( )r v f em L

d
t

dt

d
J C t T sign t T t T

dt





 








    


.                                                                                    (1.10) 

where: 

2: .rJ kg m    is the rotor inertia coefficient,  : . .
v

C N m s the viscous friction coefficient,  

 : .fT N m the dry friction torque, ( ) ( )em T aT t k i t  the electromagnetic torque due to the 

Laplace force,  : .
L

T N m  the resistive torque due to external load and Tk the torque constant. 

( )emT t  represents the coupling term between the mechanical part and the electrical part of the 

device. Then, the electromechanical equations of SEDC motor are written as:  

 
 

     

 
      

a
a a a E f a

r v f T f a L

d t
t

dt

di
L R i K t t u t

dt

d t
J C t T sign t K t i T

dt







 








   



     


.                                                     (1.11) 

Replacing the winding stator by a pair of permanent magnets (see Figure 1), the magnetic flux 

stator f
cst   and therefore, the system of equation (1.11) can be expressed as [97]: 
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 
 

   

 
    

a
a a a E a

r v f T a L

d t
t

dt

di
L R i K t u t

dt

d t
J C t T sign t K i T

dt







 








  



    


.                                                                 (1.12) 

This set of equations represent the mathematical modelling of PMDC motors that is the case of 

constant magnetic flux. 

1.4.1.4. Electromechanical pendulum as motor 

The electromechanical pendulum is moved under the action of an external voltage 

source. In this case, we consider that the pendulum is in horizontal position so, the weight of 

the mechanical part will no longer be considered. The electric circuit used to drive the rotating 

arm consists of a resistor R , an inductor L and the external excitation is a voltage u(t) all 

connected in series. The rotating arm is a thin rod of mass m  and length . The rod has a plate 

of length   (with 
1

2
  ), on which n electrical windings are applied. The coupling term 

between the electrical and mechanical part (that is the induced electromotive force taking into 

account the flux of linkage between the rotational displacement   and the magnetic field B ) 

is [17]: 

2
2( )

2

d
e t nB

dt


  .                                                                                                                   (1.13) 

The Laplace force ( nB i ) assumed applied at the centre (
2


) of the plate gives rise to the 

moment 
2 2

2

nB
i


. The displacement applied on the springs during the rotating arm oscillations 

expressed as sin( )
2

  and the displacement between the springs force and the rotational axis (

cos( )
2

 ) give the moment of the force due to the action of the linear springs as 
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2

sin( )cos( )
4

F k   .                                                                                                                       (1.14) 

We assume that the total mass of the conducting wire and the plate bathing in the magnetic field 

can be neglected compared to the rotating arm mass. The rotating arm moves in a viscous 

medium with frictional coefficient 1 . The resulting electromechanical equations that govern 

the system are:  

2
2

2 2 2 2

1

2

( )
2

sin( )cos( ) 0
2 4 2

di d
L Ri nB u t

d dt

d d niB
J k

dt d






  
 




  




    


.                                                       (1.15) 

Where i  is the electric current flowing in the electrical circuit. 

1.4.2.  MaEMS as generator 

Generators are devices that collect energy from the natural and artificial sources and 

convert them into electrical one. Generators require specific environmental conditions; for 

instance, solar cells and piezoelectric generators require sunlight and mechanical vibration 

respectively. An electromechanical generator is a device that converts mechanical energy 

(environmental vibrations) into electrical energy. There are several types of electromechanical 

generator, we will present some. 

1.4.2.1. Electromechanical pendulum as generator 

The device shown in Figure 2 is an electromechanical pendulum in which the stator is 

constituted of two permanent magnets and produce a constant magnetic field. One linear spring 

is fixed on the rod bearing the proof mass. While the unidirectional and horizontal external 

excitation which can be a wind or the motion of a given fluid is applied, the pendulum oscillates 

from left to right size around the vertical position with an angle θ. The motion of the pendulum 

due to the external excitation is converted into electrical energy which can be used to power a 

resistor load, the case where the fixed spring is nonlinear have been well studied in the literature 

[98]. 
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Figure 2 - Schematic diagram of an energy harvester model [98]. 

The inductance of the coil is linear and is given as: 

2 2 2

0
0

rn a b
L

 




 .                                                                                                                  (1.16) 

The expression of the coil resistance: 

( )
2i

c

a b
R n

S



 .                                                                                                                           (1.17) 

Using Kirchhoff’s laws, the equation of the electrical part is given by the following relation: 

( ) ( )i L

di
L R R i e t

dt
   ,                                                                                                                   (1.18) 

where ( )i t  is the current across the electrical coil. In equation (1.15), the first term is the voltage 

across the inductor, the second term is the ohmic voltage and the third term express as. 

 2( ) 0.5
d

e t nBb
dt


 .                                                                                                                       (1.19) 
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Equation (1.19) represents the coupling term between the electrical and mechanical part, LR is 

the load resistance. For the mechanical part, the horizontal displacement applied on the spring 

during the rod oscillations is expressed as: 

0.5 sinz l  .                                                                                                                                        (1.20) 

Using Newton’s second law of dynamics for rotational motion, and taking into account 

the Laplace force, the equation of the mechanical part is given by equation (1.21): 

2 2 2

0 12
sin sin( )cos( ) ( cos( )cos

2 2 4 2

d l l d l nBb
J m g k i l F F t

dt dt

  
          ,             (1.21) 

where J  is the total moment of inertia and m  the total mass of the mechanical structure,   

is the frequency of the environmental vibrations. The resulting electromechanical equations that 

govern the system are:  

2

2 2 2

0 12

( ) 0.5

sin sin( )cos( ) ( cos( )cos
2 2 4 2

i L

di d
L R R i nBb

d dt

d l l d l nBb
J m g k i l F F t

dt dt





  
   


  




       


.           (1.22) 

The next paragraph investigates the design of an energy harvesting device that uses the 

rotating magnetic field to produce the electrical energy from electromagnetic induction.  

1.4.2.2. Rotary wheel 

Figure 3 shows the schematic representation of the rotational wheel system harvester 

that consists of permanent magnets attached to the wheel whose motion is activated by the 

external torque. The energy harvesting system from a rotational wheel require constant or time 

dependent torques. The movement is studied with one dimension in polar axis, noted   which 

is the angle swept by a given radius of the wheel 
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Figure 3 - Schematic representation of the rotational wheel system harvester that consist of permanent 

magnets attached to a wheel. 

Electrical circuit consists of two permanents magnets attached to a wheel. A fixed coil 

with iron core is placed between the permanent magnets of the wheel. The rotational motion of 

the wheel around the coil converts the external stresses into electrical energy which powers a 

resistor load (Figure 3(b)). In fact, a magnetic flux variation induces a voltage at the coil 

terminals and this energy is delivered to the resistive load. The power delivered to the resistive 

load LR , can then be obtained from: 

2

LP UI R I  ,                                                                                                                        (1.23) 

with LR  the load resistance and I the induced current trough the generator. Using Newton's 

second law for rotational movement to the wheel, it is found that the mechanical system is 

described by the following differential equation: 

2

( )l

d d
J C F T t

dt dt

 
   ,                                                                                                           (1.24) 

where, the wheel inertia is defined as: 2J MR  , R  is the radius of the wheel, and C is the 

viscous damping. The torque of Laplace's force is: 

 l cF BIl ,                                                                                                                                     (1.25) 
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cl  is the length of the coil and ( )T t  the external torque due to the ambient force. The magnetic 

flux density B  within the windings is:  

0 cosB B  .                                                                                                                                (1.26) 

0B  is the maximum of the magnetic field delivered by permanent magnets. It is assumed that 

the magnetic circuit can be subjected to the magnetic flux more than its ability. In that case, its 

inductance follows a nonlinear behaviour, and its expression is [95]:  

2

0

0

L=L 1 - tanh
i

i
 

  
  

  

,                                                                                                                                   (1.27) 

 with the linear inductance 

 
2

0 r 0

c

n
L =  S 

l
  ,                                                                                                                                  (1.28) 

  the saturation parameter [68,95], S  the coil section and  l  the total length of the winding. 0i  

is the normalized current, n  is the number of coil turns. According to Kirchhoff’s law for the 

electrical circuit, it is found that the electrical system is described by the follow differential 

equation: 

2

0 L

0

d
L 1 - tanh R  R e(t)=0

dt

i i
i i

i
 

  
     

  

.                                                                             (1.29) 

According to the faraday’s law, the induced voltage across the coil is: 

0

d
e(t) B S n  sin

dt


 ,                                                                                                              (1.30) 

and the internal resistance of the coil is: 

 
f

l
R =

s
in  .                                                                                                                                      (1.31) 

fs is the copper section. The governing equations of the mechanical and electrical parts are 

derived are:  
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2

0 L 0
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d d
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dt dt
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d d
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
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   .                                  (1.32)                        

1.5. Derivation of the magnetic potential energy 

Let’s considered magE  as the magnetic potential energy. To derive this magnetic 

potential energy, let us consider Figure 4. 

 

Figure 4 - Schematic structure for the derivation of the magnetic potential energy. 

The magnets , ,A B C  are identical. The potential energy of the magnet A  in the field 

generated by the magnets B  and C is [99]:  

2

0

3 3

cos 1 1
( ) ( )

2

A
mag BA CA A

BA CA

M
E B B M

r r

 


     ,                                                                      (1.33) 
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where
BAB and 

CAB are respectively the magnetic field creates on magnet A  by magnet B  and 

magnet C . The distance between B  and A  is given in annex. Taking into account these 

distance, one obtains the potential energy:  

2

0

3 3

2 2

1 1 1 1

cos 1 1

2
sin( ) sin( )

2 2
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mag
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q p q p
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         
    

                             (1.34) 

where: 

2 2 2 2 2

1 1( ) ; 2 ( ) ; arctan( )
h

q h s p h s
s

       


                                                 (1.35) 

The interaction force between the magnets can be obtained by taking the gradient of equation 

(1.34) 
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(1.36) 

By taking into account the fact that magnets are at the end (distance ) of the rotating arm, the 

displacement between the magnetic force and the rotational axis ( ) give the moment of the 

magnetic force as: 
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(1.37) 

As summary, the interaction force between the magnets is well a unidirectional force and 

directed by e , otherwise, it might present at a pitch phenomenon.  

1.6. Some essential works carried out on MaEMS in our research 

group 

Nonlinear dynamics of MaEMS have been studied recently [17]. Depending on the form 

of the external excitation and the set of the chosen parameters, electric motors lead to various 

interesting phenomena such as frequency entrainment, harmonic, subharmonic, super harmonic 

oscillations, and chaos [13, 14-19]. The automation of some hard mechanical work using 

electric motors has gadered and increasing interest during this last decade [30]. As far as sieve 

process is concerned, chaotic dynamic is expected to ensure a good performance of the device 

[87-96]. Consequently, intense research activities are actually conducted for the chaos dynamic 

of pendulum arms which are currently the standard approach to automatize sieve or mixing 

process [18]. In order to design a home sieving device and an industrial sieving device, the 

nonlinear dynamics in electromechanical systems with rotating electric motors has been studied 

recently [97]. Their dynamical behaviors show common nonlinear phenomena such as jump, 

period- nT  oscillations, quasi-periodic and chaotic motions. Depending of their parameters 

values, the device can operate either in the regular states or in the chaotic states during its 

functioning. The authors used Intermittent Power Supply Feedback Control (IPSFC) and Field 

Oriented Control (FOC) associate to Time Delay Feedback Control (TDFC) to generate desired 

complex phenomena such as period- nT  oscillations and chaotic motions in the home sieving 
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device and industrial sieving device respectively. These studies are interesting because the 

disorder involve the dispersion of the particles. In [90] the modeling and dynamics of systems 

consisting of rigid and flexible pendulum arms, magnetically coupled with electrical circuits by 

means of electromechanical transducers are considered. The control law is designed following 

an energy-based approach. The forced response of pendula is very rich and complex. 

Bifurcation diagrams show various states of the model: uniperiodicity, period-doubling, 

quasiperiodic, multiperiodicity, as well as chaotic behavior. 

  These contributions have also shown that nonlinear phenomena can have negative interest 

or useful effects in science and engineering. The negative effects are due to the fact that 

nonlinear phenomena can conduct to a malfunction of systems and cut short their live cycle, or 

drive the systems to a reversal and catastrophe phenomena. The complexity of the Electric 

motors behaviour has attracted the attention of various scientists [30]. In fact, its useful interests 

are their many applications in engineering fields. For instance, chaos has been used in the 

building of better digital filters. To model the structural dynamics in such structures as buckling 

columns and the secure communication [87, 95]. Industrial mixing processes [20,96], chaotic 

industrial shaking processes [8] and monitoring compaction [29]. 

1.7. Motivation and challenges 

The investigation of chaotic motors drive both on feedback, and time-delay feedback are 

highly presented in the literature. The EMS constituted by asynchronous motors when they are 

supplied with sinusoidal voltage, exhibit chaotic behaviour for some parameter’s values. Those 

EMS have nonlinear electronic and/or mechanical components such as capacitors with 

nonlinear charge-voltage characteristics and inductance with nonlinear term in the flux-voltage 

characteristics just to name a few. The limitation is that practically, electronics components 

deliver low power and it is difficult to have mechanical components with nonlinear 

characteristics. Since the disorder involve the dispersion of the particles, chaotic motors, are 

highly desired for some practical engineering system. Research is still in progress to find other 

ways to induce chaos in motor drive. 

The purpose of this thesis, is to induce the chaotic dynamics to rotating arm of 

electromechanical robots by inducing a bistable potential in the electromechanical system. 

This is done by considering one permanent magnet fixed at the free end of a mechanical rotating 

arm. In the right and in the left of the equilibrium state of the mechanical rotating arm, there 
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are two other permanent magnets. On the other hand, as the ferromagnetic circuit is made of 

steel or iron sheet, the flux through the iron core is not always constant, but can vary with the 

current, the effects of such behavior on the dynamical behaviors of the device allows us to 

delineate the domains of regular periodic dynamics and that of chaotic dynamics when the 

device parameters change. This is the induction of a hysteretic iron-core inductor within 

the device.  The third method is the use of delay in the electromechanical system in fact, 

the time delay here can be due to an embedded control system that serves as the communication 

system taking a message at the source (tachogenerator) and sending it to the receiver (electrical 

part of the electromechanical rotating arm). 

1.8. Conclusion  

In this chapter, we have presented some important notions and definitions of topics of this 

thesis. We have presented some MaEMS, some applications in electricity are presented. Some 

brief generalities and definition of nonlinear dynamic are given and a particular attention on 

chaotic phenomenon and the route to chaotic dynamic of MaEMS are discussed. We also 

presented some MaEMS coming from the literature and in our research group. It follows that, 

key part of this thesis is: the generation of complex dynamical behaviour using bistable 

potential, hysteretic iron-core inductor and delay in an electromechanical rotating arm 

activated by a rotary motor. We ended the chapter by presenting the motivations and 

challenges. The next chapter presents the methods used in this thesis.
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2- Methodology 

2.1. Introduction 

This chapter deals with the presentation of the analytical and numerical simulations 

methods that will be used to solve the problems of the thesis. Section 2.2 presents the 

mathematical formalisms and the numerical methods used to solve the differential equations as 

well as the hardware and software used. In section 2.3, the computational tools for the 

characterization of the dynamical is given. The conclusion of the chapter appears in section 2.4. 

2.2. Mathematical formalisms and numerical methods 

To solve the Nonlinear Ordinary Differential Equations (NODEs) describing the 

mathematical models of our devices. One uses some mathematical formalisms and numerical 

methods which are presented here. 

2.2.1.  Mathematical formalisms 

Three analytical formalisms are presented. The first is the linear stability analysis which is 

used to analyse the stability of the electromechanical system around its equilibrium points. The 

second shows the principle of harmonic balance used to obtain the analytical solutions of the 

systems (NODEs) that describe the mathematical models of our devices. The third presents the 

Melnikov method for chaos, guarantees that the electromechanical system has a smale 

horseshoe type chaos.  

2.2.1.1. Linear stability analysis of ordinary differential equations 

An important issue in any dynamical system is the investigation of the stability of their 

steady-state solutions or fixed points. To this end let us consider a given set of autonomous 

ODEs of first order, written in the vector form: 

CHAPTER 2 
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( )
( ( ), )

dX t
F X t

dt
                                                                                                                        (2.1) 

Where 1 2( ) ( ( ), ( ), , ( ))nX t x t x t x t is the vector of the n  dynamical variables of the system, a 

set of parameters   and  1 2( , , )nF F F F  is a differentiable vector function. Suppose that 

0X is a steady state. The linear stability analysis is based on analysing the time-dependent 

trajectory of a system slightly perturbed from a steady state 0X . Therefore, the solution ( )X t

can be represented as a sum of the steady state 0X  and a small perturbation ( )X t :  

0( ) ( )X t X X t                                                                                                                  (2.2) 

Inserting (2.2) in (2.1) and linearizing around the steady state 0X  leads to the variational 

equation for the variable ( )X t .  

( )
( ),

d X t
J X t

dt


                                                                                                                        (2.3) 

Where J , the matrix of the partial derivatives is called the Jacobian matrix. The eigenvalues 

of the linear system of the equations (2.3) can be found from the characteristic equation of the 

system:     

det( ) 0I J                                                                                                                                                  (2.4)  

Where, I is the unit matrix and,   are the eigenvalues of the system (2.4) and roots of the 

characteristic equation. The stability of the steady state 0X . Is determined by the eigenvalues 

of the system (2.4), as follows:    

- If the eigenvalues of the Jacobian matrix all have real parts less than zero, then the steady state 

is stable; 

- If at least one of the eigenvalues of the Jacobian matrix has real part greater than zero, then 

the steady state is unstable.  

This mathematical formalism is the basic principle of linear stability analysis for ODEs. It will 

be used in the following chapter to analyze the stability of the equilibrium points of 

electromechanical rotating arms.  

2.2.1.2. Principle of harmonic balance  

      This method is widely used to determine an approximate periodic solution of NODEs) 

submitted to sinusoidal excitations [100,101]. Consider the following differential equation: 

( , , )x x f x x t  ,                                                                                                                         (2.5) 
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where the function ( , , )f x x t  contains explicitly the time t  and we assume that 

( , , ) ( , , )f x x t T f x x t   the harmonic solution of this equation is expressed in the form:  

0 0( )=A sin( )+B cos( )x t t t  ,                                                                                                             (2.6) 

where 2 2

max 0 0=x A B  is the maximal amplitude of oscillations. Replacing equation (2.6) into 

equation (2.5) and equating separately the coefficient of sine and cosine terms, which have the 

same harmonics, one obtains (neglecting harmonics order greater than one) a system of 

algebraic equations which are the amplitude equations. This procedure is the basic principle of 

harmonic balance. It will be used in chapter 3 to obtain the amplitude and frequency response 

curves of the electromechanical devices with rotating arm. 

2.2.1.3. Melnikov criteria for chaos 

A key point with unstable and chaotic engineering system is to derive a mathematical 

condition overlapping the parameters of the system and leading to such phenomenon. Melnikov 

method is one of the best approach for this task. It is an analytic technique, which can be used 

to deduce the presence of chaos in a dynamical system. It helps to define the conditions for the 

existence of the so-called transverse intersection points between unstable separatrice or the 

appearance of the fractality on the basin of attraction. This approach was first used by Holmes 

(1979) to study the chaotic attractor of a periodically driven Duffing oscillator with linear 

stiffness. Frey and Simiu (1993) presented a generalized random Melnikov technique to study 

the effect of noise on near integrable second order dynamical system. We consider the following 

class of systems: 

1

2

2

( , ) ( , , , )

( , )

( , ) ( , , , )

H
x x y g x y t

y

x y

H
y x y g x y t

x

 

 


  




 
   



,                                                                                 (2.7) 

Or, in vector form, 

 ( ) ( , , )q JDH q g q t   ,                                                                                                               (2.8) 

Where, 1 2

0 1
( , ), ( , ), ( , ),

1 0

H H
q x y DH g g g J

x y

  
     

   
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H  is the Hamiltonian and g  is the is a periodic perturbation function.  The unperturbed system 

possesses a hyperbolic fixed point, 0p  connected to itself by a homoclinic orbit 

0 0 0( ) ( ( ), ( )).q t x t y t  The unperturbed system is obtained from (2.8) by setting 0   

( )q JDH q                                                                                                                                  (2.9) 

In the presence of the perturbation, ( , , )g q t  , the orbit is perturbed. When the perturbed and 

the unperturbed manifolds intersect transversally, the geometry of the basin of attraction may 

become fractal, indicating the high sensitivity to initial conditions, thus chaos. Let the Melnikov 

function, which gives a measure of the leading order distance between the stable and unstable 

manifold, can be used to tell when the stable and unstable manifolds intersect transversally be 

defined as :  

0 0( ) ( ( ) ( ( ), ))eM t JDH q t g q t t t t





                                                                  (2.10) 

If 0( )eM t  has simple zeros so that for a given 0 0t  , one has 0( ) 0eM t   with 0

0

( )
0

dH t

dt
  at  

0 0t   (condition for transversal intersection), then the system (2.10) can present fractal basin 

boundaries for motions around the stable equilibrium point. The Melnikov’s formalism will be 

use in chapter 3 to find the condition for the appearance of horseshoe chaos characterized by 

the fractality of the basin of attraction.    

2.2.2. Numerical methods  

It is known that ODEs (Ordinary Differential Equations) do not have exact analytical solutions. 

Therefore, analytical methods used permit only to obtain approximate solutions. One interesting 

technique used to study the systems of ODEs is the computer simulation. Many different 

methods have been proposed and used in an attempt to solve accurately various types of ODEs 

However, there are a handful of methods known and used universally (i.e., Runge-Kutta, 

Adams-Bashforth-Moulton and Backward Differentiation Formulae methods). All these 

discretize the differential system to produce a difference equation or map. The methods obtain 

different maps from the same differential equation, but they have the same aim; that the 

dynamics of the map should correspond closely to the dynamics of the differential equation. 

From the Runge-Kutta family of algorithms come arguably the most well-known and used 

methods for numerical integrations [104, 105]. Thus, we will review briefly two numerical 
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integration methods namely fourth order Runge-Kutta (RK4) for ODEs and DDEs (Delay 

Differential Equations). 

2.2.2.1. Fourth-order Runge-Kutta method for ordinary differential equations  

That methods have been elaborated for the first time in 1894 by Runge and have been 

improved by W. Kutta in 1901. the Runge-Kutta methods are an important family of implicit 

and explicit iterative methods for the approximation of solutions of ODEs. The basics of those 

methods are presented in the course of Numerical Methods courses delivered to Master students 

in physics at University of Yaoundé 1 [106]. They use both the trapezium numerical integration 

and Simpson methods. Those methods are widely used since they are most stables. Consider 

the ordinary first order differential equation: 

( , )
dy

f x y
dx

 ,                                                                                                                          (2.11) 

with 0 0( )y x y  is a vectorial variable. The aim is to find the solutions of equation (2.48) using 

RK4 method, knowing 0( )y x . This method stipulates that:  

1 2 3 4

1
( ) ( ) ( 2 2 )

6
y x h y x L L L L      ,                                                                                        (2.12)

h  is the time step of x . 1L , 2L , 3L  and 4L  are express as follows: 

 1 ( , ( ))L hf x y x ; 1
2

1
( , ( ) )

2 2

L
L hf x h y x   ; 2

3

1
( , ( ) )

2 2

L
L hf x h y x   ; and  

4 3( , ( ) )L hf x h y x L     

This iteration procedure needs the initial value of y, that is when x = x0 and the other values of 

y can be calculated using the relation (2.49). When the differential equation is of second order, 

one put it on the form of a system of first order differential equations written as follows, 

( )

( , , )

dy
z g z

dx

dz
f x y z

dx


 




 


,                                                                                                                       (2.13) 

and the Fourth Order Runge Kutta (RK4) iterations are given by the following relations:  
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1 2 3 4

1 2 3 4

1
( ) ( ) ( 2 2 )

6

1
( ) ( ) ( 2 2 )

6

y x h y x K K K K

z x h z x L L L L


     




      


                                                                                      (2.14) 

where 

 

1 1 2 2
1 2 3

1 2
1 2 3 4 3

4 3 3

1 1
( , , ); ( , , ); ( , , );

2 2 2 2 2 2

( ); ( ); ( ); ( );
2 2

( , , )

K L K L
L hf x y z L hf x h y z L hf x h y z

L L
K hg z K hg z K hg z K hg z L

L hf x h y K z L

        

      

   

.               (2.15) 

Are intermediate coefficients and x  runs for time incrementation.  

We will use this method in chapter 3 to solve numerically the differential equations which 

govern the dynamical behavior of the studied devices. 

2.2.2.2. Fourth-order Runge-Kutta method for delay differential equations 

(DDEs) 

In DDEs, the dynamics at each instant x  depends on the value of the vector y at the same instant 

t, but also on the value of y  at a previous instant t x  , with 0   [107]. If we introduce the 

delayed variable ( )y x   and the n -dimensional vectorial flow: 

1 2( , , , )nG G G G , a DDE should formally read: 

( )
( , ( ), ( ))

dy x
G x y t y x

dx
   with ( ) ( )y x g x  for  ,0x X  ,                                           (2.16) 

Where g is an n -dimensional vectorial function of time 1 2( ) ( ( ), ( ), ( ))ny x y x y x y x  and  

1 2( ) ( ( ), ( ), ( ))ny x y x y x y x         vectorial variables. At the difference, of ODE 

where the initial conditions were given by a discrete and finite set of values, initial conditions 

in DDEs should be indicated (by the mean of a function) for all the values contained into the 

continuous interval  ,0X , so that an infinity of values should be known to characterize the 

system. 
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The RK4 scheme for DDE is given by [83]  

1 2 3 4( 2 2 )
( ) ( )

6

h L L L L
y x h y x

  
    ,                                                                                  (2.17) 

x x h  .                                                                                                                                       (2.18) 

Where,  

1

1
2

2
3

4 3

( , ( , ), ( )),

( , ( , ), ( ) )
2 2

( , ( , ), ( ) )
2 2

( , ( , ), ( ) )

L G x y x y x

hLh
L G x y x y x

hLh
L G x y x y x

L G x h y x y x hL














  



   




  

      ,                                                                                        (2.19)  

where x  runs for time incrementation. 

Differential equations with delay will be solve numerically in chapter 3 using the fourth order 

Runge-Kutta algorithm for delay 

2.2.2.3. Hardware and software 

 During the postgraduate training, we used a Laptop computer running Windows 7 operating 

System and three major softwares: FORTRAN, MATLAB and MAPLE trial version. 

2.3. Computational tools for the characterization of the 

dynamical states of non-linear systems  

The dynamical states of physical systems studied in this work are governed by the systems of 

NODE. According to their parameters values, these physical systems can present various 

dynamical behaviours such as periodic, quasi-periodic and chaotic motions. Dynamical states 

of the nonlinear systems are usually investigated with a number of numerical tools such as the 

time histories diagram, phase portraits diagrams, bifurcation diagrams and Lyapunov exponent. 
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In this section, we give a brief account of the computational techniques which are used for 

characterizing different dynamical states of physical systems studied in this work. 

2.3.1. Time histories diagram and phase portraits 
 

The first approach of the detection of different dynamics states is visual and it is based to the 

computer simulation of NODE. Varying the parameter values of NODE, one observes carefully 

the time histories and phase portraits. The chaotic behaviour is distinguished from others by its 

extreme irregularity.  

 

A phase portrait of a dynamical system is a mathematical space having orthogonal coordinate 

directions which represent each of the variables needed to specify the instantaneous state of the 

system. The state of a particle moving in one dimension is specified by its position and velocity. 

The state of a dynamical system is represented by a point in the phase space. As the system 

evolves in time, it constitutes a trajectory in the phase space. Phase portraits are an invaluable 

tool in studying dynamical systems. They consist of a plot of typical trajectories in the state 

space. This reveals information such as whether an attractor, a limit cycle is present for the 

chosen parameter value. However, the drawback of this computational tool is that it can be hard 

to distinguish the quasi-periodicity and chaos phenomena by using the phase portrait diagram.  

The dynamical behaviors of the devices mathematically represented by ordinary differential 

equations in chapter 3 are illustrated using numerical simulation to present Time historiesand 

phase portraits. 

2.3.2. Bifurcation diagrams 
 

Another approach of the detection of dynamical states is the bifurcation diagram. Bifurcation 

diagram is helpful to understand how the long-term behaviour of a model changes as parameter 

values change. A bifurcation can also be defined as the event in which one of the properties of 

a dynamical system changes qualitatively when a control parameter of the system is varied. 

Points on the diagram that represent change in the behaviour are called bifurcation points 

[94,108]. This diagram is very important for the study of the route to chaos. But the Achilles 

heel of this method is the confusion between the quasi-periodicity and chaos phenomena. We 

can identify various routes to chaos taken by dynamical systems. The most common are: the 
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period doubling route, the quasi-periodic route and intermittency route. The most reliable 

indicator of chaos phenomenon is the maximum one-dimensional Lyapunov exponent.  

2.3.3. Lyapunov exponents 

 

 

Named after Lyapunov, a Russian mathematician, Lyapunov exponents are the widely 

accepted tools for characterizing chaotic and periodic states of a dynamical system. Lyapunov 

exponents describe the rate of divergence or convergence of nearby trajectories on to the 

attractor in different directions in phase space. It gives a measure of the sensitive dependence 

upon initial conditions which is a characteristic of chaotic system. The Lyapunov exponent 

expresses the convergence (when negative) or divergence (when positive) of nearby 

trajectories. Therefore, a state of the system is said to be chaotic if the Lyapunov exponent is 

positive (which corresponds, in the bifurcation diagram, to a cloud of points). The state of the 

system is said to be periodic if the exponent is negative (this corresponds, to a curve lines in the 

bifurcation diagram). The case max 0  corresponds to the quasi-periodic state of the system. 

The maximum one-dimensional Lyapunov exponent is defined as:  

 max

1
lim{( ) ln ( ) }
t

D t
t




 ,                                                               (2.20)  

with  

2 2 2

1 2 3( )D t       ,                                                                                                                 (2.21) 

where D(t) is the distance between neighbouring trajectories. It is computed from the 

variationally equations obtained by perturbing the solutions of equations (2.13) as follows

1 2 3; ;x x y y y y        .                                                                      

2.4. Conclusion 

The objective of this chapter has been to present the mathematical formalisms and 

numerical simulation methods used to study the dynamics of the physical systems proposed in 

this thesis. We started by the presentation of the mathematical formalisms and the numerical 

methods used to solve the differential equations as well as the hardware and software used. 
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Then, an overview on the tools that will be used for characterization of the dynamical states of 

dynamical systems under consideration in the thesis has been given. The next chapter focuses 

on the dynamics of the electromechanical systems with rotating arm considered in this thesis.  
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3- Results and discussions 

3.1. Introduction  

In this chapter, we present and discuss the results of the work done in this thesis. The 

effects of the bistable potential energy, hysteretic iron-core inductor and tachogenerator on the 

behaviours of electromechanical rotating and pendulum arms are studied.  In section 3.2 a 

device consisting of an induction motor activating a rotating rigid arm is designed and 

comprises a bistable potential due to the presence of three permanent magnets. Its mathematical 

equations are established and the numerical results both in the absence and in the presence of 

magnets are compared. The generation of chaotic behavior is achieved using two different 

external excitations: sinewave and square wave. In the presence of magnets, the system presents 

periodic and dissipative chaotic dynamics. Approximating the global potential energy to a 

bistable quartic potential, the Melnikov method is used to derive the conditions for the 

appearance of Hamiltonian chaos. Section 3.3 present a new model of electromechanical system 

with rotating arm having nonlinear hysteretic iron-core inductor. Its mathematical equations are 

established and studied numerically. The generation of the chaotic behavior is achieved using 

two methods: introduction of a bistable potential by adding three permanent magnets in front 

of the rigid arm and the use of a delay generator. In section 3.4 a model of electromechanical 

system with pendulum arm constituted by linear components is analyzed. Its mathematical 

equations are established and studied numerically. The device firstly exhibits periodic 

dynamical behavior. The generation of the chaotic behavior is achieved using three methods. 

The first method is the introduction of a bistable potential by adding three permanent magnets 

in front of the rigid arm. The second method is the use of hysteretic iron-core inductor within 

the system and the third method is  the use of a delay generator. In section 3.5, we end this 

chapter by a conclusion. 

CHAPTER 3 
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3.2. Dynamical behaviour of a bistable rotating electromechanical 

system 

3.2.1. System and equations 

The device shown in Figure 5 is an electromechanical system which consists of a 

mechanical rotating arm activated by a rotor. Its shaft is fixed mechanically at its two ends by 

two spiral torsion springs put up in anti-parallel manner. The coupling between the electrical 

and mechanical parts is realized through the electromagnetic force due to a permanent magnet. 

It creates a Laplace force in the mechanical part and the Lenz electromotive voltage in the 

electrical part. The electrical part of the system consists of a resistor R, an inductor L and a 

voltage source ( )u t , all connected in series. One permanent magnet is fixed at the free end of 

the mechanical arm. In the right and in the left of the mechanical arm at equal distances to the 

equilibrium position, there are two other permanent magnets placed on top of a non-

ferromagnetic bearer.  

 

Figure 5 - Schematic representation of the electromechanical system. 
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Values and dimensions of the parameters of the device are given as follow.  

Parameters  Values Dimensions  

Inductance: L  0.2  H  

Resistance: R  2    

Rotor inertia moment: rJ  24.1  10  2.kg m  

Viscous damping coefficient: vc  30.13 10  . . /N ms rad  

Back electromotive force constant: EK  20.75  10  . /V s rad  

Stiffness coefficient: rc  34 10  . /N m rad  

Torque constant: TK  10.75  10  . /N m A 

Lenght of the mechanical arm  0.5  m  

Magnetic moment AM of the magnet  1.2  2.A m  

Magnets position h  (see Fig.5) 0.02  m  

Distance s of the free end of the arm and middle of the distance 

between the magnets 

0.05 m  

Table 1 - Parameters of the electromechanical system (some of these parameters are indicated 

in Figure 5). 

These values are selected in order to provide to the device the appropriate dynamical states that 

can be beneficial for applications. By adding equation (1.37) to equation (1.12) where magf is 

the interaction force between the magnets, it is found that the system is described by the 

following set of differential equations: 

2

2

( )
( ) ( )

( )

E

r v r mag T

di t d
L Ri t K u t

dt dt

d d
J c c f K i t

dt dt



 



  




    


.                                                                                            (3.1) 

Assuming that the potential U  is the sum of the elastic potential energy and magnetic 

potential energy, one obtains: 

3 3
2

2 2
2 0

1 1 1 1

cos
sin( ) sin( )

2 2 2 2

Ar
Mc

U q p q p
   

    


  
                   
 

.                  (3.2) 
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The first term is the elastic potential energy due to the linear springs and the second term is the 

mechanical potential energy due to the magnets (see section 1.5, chapter 1) [109].  

using the dimensionless variables: 

0 0

, , , e

d i
y x t

d i


 

 
    ,                                                                                                         (3.3) 

where 0i  and 0  are the normalized current and angular displacement. Replacing equations 

(3.3) into (3.1), one obtains the following dimensionless form  
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and with the following rescaling: 
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3.2.2. Oscillatory states in the absence of three magnets  

In the absence of three magnets, the dimensionless equations of the electromechanical 

system are given by equations (3.6). 

2

3 1

sin( )x x y E

y x y y

  

 
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.                                                                                                              (3.6) 

Considering external excitation as a constant source ( ( )u t E ), the equilibria of the new 

system are the solutions of the following algebraic equations 
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.                                                                                                                           (3.7) 

By solving 0; 0; 0x y v   , one finds that equation (3.7) has a unique equilibrium point 

3
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2

( , ,0)
E

E E



 with 2 0  . The characteristic equation of the Jacobian matrix at 1E  is:  
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1 3 2 2(1 ) ( ) 0              ,                                                                                   (3.8) 

where   is the eigenvalue of the system at 1E . Using Routh-Hurwitz criteria, this equation has 

all roots with negative real parts (meaning that 1E  is stable) if and only if the following analytic 

relations are satisfied: 
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.                                                                                                      (3.9) 

Since 0;   1 0;   2 0;   and 3 0  , the equilibrium point 1E  is a stable point for the 

system (3.7). 
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To derive the amplitude of the harmonic oscillatory states ( 0E  ) delivered by equation 

equations (3.6), let us express its solution as: 

0 0

1 1

( )=A sin( )+B cos( )

y( )= A sin( )+B cos( )

x   

  







,                                                                                                       (3.10) 

where 0A , 1A , 0B , 1B  are unknown parameters to be determined. 2 2

max 1 1y A B   represents 

the maximal amplitude of y  and 2 2

max 0 0=x A B  represents the maximal amplitude of x . 

Inserting equation (3.10) into equation (3.6), and equating the sine ( sin( ) ) and cosine (

cos( ) ) terms separately, it comes that the unknown parameters satisfying the following 

expressions: 

 (3.11) 

Considering equation (3.11), we analyse the behaviour of the device given in Figure 5, 

in absence of the three permanent magnets. When the normalized frequency of the external 

excitation   is varied, the results are presented in Figure 6. When   increases from 0 to 2 , 

the response amplitude maxy increases from a minimal value to the higher value 2.3  
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A . These behaviours are usually called resonance phenomenon for the mechanical part and 

anti-resonance for the electrical part. Thus, when the high amplitude is achieved in the 

mechanical part, for a frequency close to1, the amplitude of the electric signal is the lowest. 
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value of the angular displacement and the electrical current increases linearly with the 

magnitude of the external excitation (Figure not presented here).  

 

Figure 6 - Frequency-responses of the maximal angular displacement (a) and maximal electrical 

current (b) and the magnitude of the external excitations (the results from the analytical expression 

(3.10)). With the parameters of Table 1. 

3.2.3.  Dynamics in the presence of the magnets 

In order to induce a new way to yield the system in chaotic state, we will add three 

permanent magnets. One permanent magnet is fixed at the free end of the mechanical arm. In 

the right and in the left of the mechanical arm at equal distance to the equilibrium position, 

there are two other permanent magnets placed on top of a non-ferromagnetic bearer. For a 

certain distance between the permanent magnets, this configuration makes possible to create a 

bistable potential allowing to induce chaotic behaviour in a rotating electromechanical arm. 

(a) (b) 



 

50 
Ph.D in electromechanical systems by TSAPLA FOTSA Rolande  UY1/FS 

The numerical analysis of the total potential energy describes in equation (3.2) is 

analysed here. The first term of equation (3.2) is the elastic potential energy due to the linear 

springs and the second term of the same equation is the magnetic potential energy due to the 

magnets. These potential energies as well as the total potential energy are respectively 

represented in Figures 7 (a), 7 (b) and 7 (c). As it can be seen, the association of the elastic 

potential energy and magnetic potential gives a bistable total potential energy for appropriate 

value of the distance between the magnets.  

 

Figure 7 - Potential energy due to springs (a), potential energy due to magnets (b) and total potential 

energy (c) as function of the angular displacement for some parameters of  table 1. 

The rotating arm presents two stable points located on both sides of an unstable point 

 

In this subsection, the magnitude of the external source and the normalized frequency 

are used as control parameters. The external excitation is a sinusoidal voltage. In order to find 

the range of the amplitude E of the external excitation, for which the device exhibits chaos 

(b) (a) 

(c) 
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dynamics, we have plotted the bifurcation diagram in Figure 8 (a) and its Lyapunov exponent 

in Figure 8 (b) as the function of E . 

 

 

Figure 8 - Bifurcation diagram depicting the global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the amplitude E with the parameters of Table 1 and 

for ϖ=6.0. 

Figure 8 indicates that the behaviour of the device exhibits non-chaotic oscillations for 

 1;3.5E  and chaotic oscillations for  3.75;10E . It can be observed that the corresponding 

Lyapunov exponent plotted in Figure 8(b) converges to a positive value only when

 3.75;10E . This confirms that our device (see Figure 5) can oscillate with a chaotic dynamic 

under certain conditions in presence of the magnets. 

To complement the results presented in Figure 8, time histories and corresponding phase 

portraits are displayed in Figure 9. They are indicating chaotic states and periodic oscillations. 

(a) 

(b) 
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Figure 9 (a) and 9 (c) show 1T-periodic oscillations while Figure 9 (b) and 9 (d) demonstrate 

chaotic oscillations. 

 

Figure 9 - Time histories(a), (b) and phase portraits (c), (d) obtained with the parameters of Figure 8 

and E=2 (a), (c); E=8 (b), (d). 

Similarly, Figure 10 presents the bifurcation diagram and the corresponding variation 

of the Lyapunov exponent when the normalized frequency   is vary. When the normalized 

frequency of the external excitation   increases from the value 1.0  , the electromechanical 

device moves from a periodic state to a chaotic state at 5.6  with some scenarios of 

quasiperiodic and chaotic behaviours. This persists until 7.9  where only periodic 

oscillations continue to be displayed. The periodic orbit exists until 12.0   

(a) (b) 

(c) (d) 
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Figure 10 - Bifurcation diagram depicting global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter ϖ for E=17. With the parameters of 

Table 1. 

Figure 11 shows some typical time histories and phase portraits of the rotating arm 

motion for different values of  . Figure 11 (a) and 11 (c) show periodic 1T oscillations while 

Figure 11 (b) and 11 (d) depict chaotic oscillations. 

(b) 

(a) 
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Figure 11 - Time histories and phase portraits in the (у, ẏ) plane: period-1T oscillations Figure 11 (a) 

and 11 (c) with ϖ=2. Chaotic oscillations Figure 11 (b) and 11 (d) with ϖ=6. Using the parameters of 

Figure 10. 

By using spiral torsion spring, the mechanical rotating arm has the possibility to oscillate 

with an angle reaching 360  or more, depending on the value of the spring constant and the 

input voltage. In the absence of the permanent magnets, the device exhibits periodic oscillations 

when the external source is the sinusoidal input voltage. We observed that in the presence of 

permanent magnets, chaotic behaviour appears for the magnitude of the external excitation

3.5E  . These results are very interesting since depending on the application, one can use the 

chaotic behaviour with small or high value of the angular displacement . In the case where 

chaos is efficient, but with the small values of the magnitude of the external source, one can 

use the external square signal source with the mathematical expression given by equation (3.12) 

express as follow. 

0( ) (sin( ))u t u sign t ,                                                                                                              (3.12) 

 

(a) 
(b) 

(c) (d) 
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where       
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Replacing the sinusoidal input voltage by a square one, and considering the magnitude 

of the external excitation, and the normalized frequency as control parameters, one obtains the 

results presented in Figure 12 and Figure 13. For the square signal, we have non-chaotic 

oscillations for  78.2;1E  and chaotic oscillations for  10;78.2E .   

 

Figure 12 - Bifurcation diagram depicting global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter E. 

Figure 13 presents the bifurcation diagram and the corresponding Lyapunov exponent 

when the normalized frequency  is vary. The following transitions are observed. When the 

normalized frequency  of the external excitation increases from the value 1.0  , the 

(a) 

(b) 
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electromechanical device moves from a periodic state to a chaotic state at 2.35  . This 

persists until 2.65  where only periodic oscillations continue to be displayed. From

5.45  , there is a transition from periodic orbit to a chaotic behaviour with some small 

windows of period-n orbit. It continues to take place until only the periodic dynamical 

behaviour appeared at 8.4   . 

  

Figure 13 - Bifurcation diagram depicting global maxima ϖ of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter ϖ with the parameters of Figure 12. 

We can note that this device presents the same dynamics as well as for the case where 

sinusoidal voltage source is used. But with a square wave signal, chaotic behaviour appears for 

smaller values of the signal amplitude and frequency.  

The chaotic dynamics obtained previously corresponds to the dissipative chaos. Because 

of the bistable nature of the potential energy, one might expect the occurrence of Hamiltonian 

or Melnikov chaos 

(b) 

(a) 



 

57 
Ph.D in electromechanical systems by TSAPLA FOTSA Rolande  UY1/FS 

3.2.4. The Hamiltonian chaos 

The general theory can be found in [80,81]. In the analysis that follows, we will attempt 

to study the conditions for the appearance of the chaos of Melnikov in the device of Figure 5. 

Because of the bistable nature of the potential energy, we can observe the occurrence of 

Hamiltonian or Melnikov chaos. In order to find a mathematical condition for the Melnikov 

chaos, we need to have an approximate form of the bistable potential from which homoclinic 

orbits will be calculated. This is a quite complicated issue here because of the complexity of 

the mathematical expression of the potential energy. However, some crude approximations can 

be made following the curve of the bistable potential given in Figure 7. We thus approximate 

the total potential energy equation (3.2) by the following quadratic expression 

2 4( )
2 4

A B
U      ,                                                                                                                       (3.14) 

Where A and B are positive coefficients. Considering the potential wells of Figure 7, 

and those derived from equation (3.14), one can write the values of the minima as 

0.488
A

B
    . Taking  0.0238144A  and 0.1B  which satisfied 0.488

A

B
 

 Although, there is a quantitative difference between the curve generated by equation 

(3.14) and the potential in Figure 7 (c), equation (3.14) will be used to determine a condition 

for the appearance of the Hamiltonian chaos.  

With the approximate form of the potential energy, the differential equations (3.1) 

becomes  
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.                                                                                             (3.15) 

In order to find the Melnikov chaos in our system, let us assume that the term 
( )di t

L
dt

 

in equation (3.15) is negligible, and then equation (3.15) is reduced to the single equation (3.16) 
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 In the non-dimensional form, equation (3.16) takes the form   

3
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.                     (3.18) 

Equation (3.17) describes the bistable Duffing oscillator. The fixed points )0;1(  and 

)0;1(  are the stable equilibrium points while the fixed point )0;0(  is an unstable equilibrium 

point. Equation (3.17) can be viewed as the Hamiltonian system plus a perturbation consisting 

of: 

1 4 cos( )y     .                                                                                                                              (3.19) 

One can thus use the Melnikov’s formalism to find the condition for the appearance of 

horseshoe chaos [88]. This condition is given by: 

5

2

4 12

2
cosh( )

3 2


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





.                                                                                                                     (3.20) 

The details for the derivation of equation (3.20) can be found in [110]. A system whose 

parameters satisfy condition (3.20) presents a chaotic dynamic in a sense that it will present 

fractality in the basin of attraction.  

To validate our analytical study, we numerically simulated equation (3.17) and observed 

the effects of the control parameters 4  on the appearance of the fractality in the basin of 

attraction. The results are presented in Figure 14, the white and dark regions represent 

respectively the set of initial conditions that result of motions around the equilibrium points and 

motion covering both equilibrium points. One notices that the basin of attraction becomes 
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fractal following the condition defined by equation (3.20). For instance, for 2.5 , the 

fractality appears at 4 10   and 4 5  see (Figure 14 (a) and 14 (b)). We find that the black 

space increases and the fractality disappear when 4 decreases see (Figure 14 (c)). The white 

space even completely disappears for 4 0.02   see (Figure 14 (d)). 

 

Figure 14 - Variation of the fractal structure of the basin of attraction for Ω=2.5 and (a) γ4=10, (b) 

γ4=5, (c) γ4=1, (d) γ4=0.02. Other parameters of Table 1. 

 

3.3. Dynamical behaviour of a bistable rotating electromechanical 

system with spring, hysteretic iron-core inductor and delay  
 

3.3.1. System and equations 

The electromechanical system with rotating arm is presented in Figure 15. It is 

constituted by an electrical circuit which is driving a mechanical part. The rotating arm is a thin 

rod of mass m  and length . The rod has a plate of length   (with
1

2
  ), on which n

(a) (b) 

(c) (d) 

(c) (d) 
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electrical windings are applied. When the electrical circuit is connected to a voltage source, it 

appears a Laplace force in the mechanical part and the Lenz electromotive voltage in the 

electrical part. Two linear and identical springs of stiffness k  are mechanically fixed at the 

middle ( / 2 ) of the thin rod. The rotating arm oscillations are due to the combined action of 

the linear springs and electromagnetic force resulting from two identical and repulsive 

permanent magnets. This electromechanical system has two degrees of freedom: the electrical 

current i  through the electrical circuit and the angular displacement   of the rotating arm. The 

electric circuit used to drive the rotating arm consists of a resistor R , a nonlinear hysteretic iron-

core inductor L and a voltage source ( )u t  all connected in series. 

 

Figure 15 - Electromechanical system with rotating arm. 

The parameters of the electromechanical device shown in Figure 15 are listed in Table 

2. We choose these values to obtain appropriate angular oscillations with limited magnitude 
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Parameters Values Dimensions 

Inductance: L  variable H  

Resistance: R  11   

Mass of the mechanical arm: m  0.15 kg  

stiffness coefficient of the spring: k  0.3  /N m  

Magnetic field intensity: B  22.2 x 10  T  

Lenght of the mechanical arm  0.5  m  

Average length of winding l  0.24  m  

Cross sectional area A of iron core 6176.71 10  
2m  

Number of turn N  for the iron core inductor 1000  1  

Saturation flux density sB  0.13 T  

Number of electric windings on a plate n  600  1  

Frictional coefficient  1  0.01 /Ns m  

Table 2 - Parameters of the electromechanical system 

Applying the Kirchhof laws and the Newton second law of dynamics for rotary motions 

to Figure 15 the electromechanical equations which governed the functioning of the device are 

given by the following expressions: 
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,                                 (3.21) 

Where 21

3
J m  is the total inertia moment of the studied device. We assume that the total 

mass of the conducting wire and the plate bathing in the magnetic field can be neglected 

compared to the rotating arm mass. The rotating arm moves in a viscous medium with frictional 

coefficient 1 . Using the dimensionless variables given in equation (3.3) with the normalized 

current given as:  
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0

l
i

N
 .                                                                                                                                         (3.22) 

Replacing equation (3.3) into equation (3.21) taking in to account equation (3.22), one obtains 

the following system of dimensionless equations for the electromechanical system: 
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,                               (3.23) 
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.           (3.24) 

In order to have the electromechanical rotating arm with chaotic oscillations for small 

values of the control parameters, the previous device is changed into the one of Figure 16 where 

one permanent magnet is fixed at the free end of the mechanical arm. In the right and in the left 

sides of the mechanical arm, at equal distances to the equilibrium position, there are two other 

permanent magnets also fixed somewhere in the whole system. 
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Figure 16 - Electromechanical rotating arm with three permanents magnets. 

The values and dimensions of the new parameters of the device are: 

Parameters Values Dimensions 

Mass of the mechanical arm: m  0.3  kg  

Magnetic moment AM of the magnet 1.2  2.A m  

Magnets position h   (see Figure.16) 0.01 m  

Width d of the magnet 0.01 m  

Distance S of the free end of the arm and middle of the distance 

between the magnets  

0.02  m  

Table 3 - New parameters of the electromechanical system (some of these parameters are 

indicated in Figure 16) 

The dimensionless form of the mathematical model of the device is described using the 

following system: 
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3.3.2. Dynamic in absence of permanent magnets 

In this subsection, we assume that the device designed in Figure 15 exhibits with small angular 

displacement of the rotating arm (e.g., less than10 ), one can have: cos( ) 1; sin( )   

.  As simplifying conditions, let the parameter   (it is one of the parameters appearing in the 

relation between the magnetic induction and the magnetic fields suggested by the authors in 

[44]) be neglected and for the smaller values of x  ( cosh( ) 1x  ). Equation (3.23) takes the 

reduced form 
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.                                                                                                                (3.26) 
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The presence of the sinusoidal input voltage gives rise to oscillatory states that can be 

approximated by the mathematical relations of the form 

0 0

1 1

( )=A sin( )+B cos( )
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,                                                                                                      (3.27) 

where 0 1 0 1A ; ; ;A B B  are unknown parameters to be determined; 2 2

max 1 1y = A B  

represents the maximal amplitude of y  and 2 2

max 0 0x = A B  represents the maximal amplitude 

of x . Substituting (3.27) into (3.26) and next balancing the harmonic terms sin( )  and

cos( ) , we get 
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 .    (3.28) 

Maximal amplitudes maxx and maxy  will be represented in terms of the frequency   in Figure 

17. 

The frequency-responses of the angular displacement and current (calculated from 

equation (3.27) and the numerical simulation of the differential equation (3.26)) are plotted in 

Figure 17, when the normalized frequency  varies. It appears that, when   increases from 0 

to 7 , the response amplitude maxy decreases while the response amplitude maxx increases to its 

maximal amplitude, and decreases from a higher amplitude ( 0.48) to a lower amplitude. 
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Figure 17 - Frequency-responses of the (a) angular displacement (b) electrical current with the 

parameters values of Table 3, for the magnitude of the external excitation E=0.5. (the point (·) for the 

numerical simulation of the differential equation. (3.26) and the lines (-) for the analytical expression 

(3.27). 

Now, we consider large values of the magnitude E. To analyse the dynamical behaviour 

of the device, the Runge-Kutta algorithm is used to solve numerically the dimensional 

differential equation (3.26) and thereafter, the bifurcation diagram and Lyapunov exponent are 

used to find the regions where the system is periodic or chaotic. The bifurcation diagram of 

Figure 18 (a) shows that, the device exhibits period-nT oscillation when  0.01;0.7  . This 

behaviour is confirmed by the Lyapunov exponent (see Figure 18 (b)) which presents a negative 

value when  0.01;0.7  . 

(b) 

 

(a) 
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Figure 18 - Bifurcation diagram depicting global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter ϖ for E=6. With the parameters of 

Table 2. 

Considering the dimensionless magnitude of the external excitation E  as the control 

parameter, Figure 19 (a) shows the bifurcation diagram plotted in terms of the dimensionless 

angular displacement.  

(a) 

(b) 
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Figure 19 - Bifurcation diagram depicting global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter of Figure 18 and for ϖ=0.6. 

As E  increases from 0.5 to 10, the device exhibits period- nT  oscillations. This 

behaviour is confirmed by Figure 19 (b) where its Lyapunov exponent is always negative. 

3.3.3. Inducing chaos using three magnets. 

The aim of this section is to analyse the dynamics of an electromechanical rotating 

system with a nonlinear hysteretic iron-core inductor when three permanent magnets are added 

at the end and in front of the rotating arm. Potential energy is still the equation (3.2). These 

potential energies as well as the total potential energy are respectively represented in Figure 20 

(a), 20 (b) and 20 (c) taking into account the parameters of this new device with permanent 

magnets. The association of the elastic potential energy and mechanical potential due to 

magnets leads to the bistable nature of the total potential energy.  

(a) 

(b) 
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Figure 20 - Elastic potential energy (a), magnetic potential energy (b) and magneto elastic potential 

energy (c) as function of the angular displacement. 

The total potential energy is sinusoidal and equations (3.26) has many periodic 

solutions. However, in an interval of length 2 ,  the rotating arm presents two stable points 

located on both sides of an unstable point Figure 20 (c). When the amplitude of the motion is 

very large, the unstable fixed point disappears, this is an interesting phenomenon. In this case, 

the arm shows a complete rotation. If these rotations are harmful, they should be avoided. Here, 

the external sine wave generator is replaced by a square one. The dimensionless mathematical 

model of the device is described by the following system: 
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(a) (b) 

(c) 



 

70 
Ph.D in electromechanical systems by TSAPLA FOTSA Rolande  UY1/FS 

Figure 21 shows the bifurcation diagram depicting global maxima of the angular 

rotating arm displacement and its corresponding Lyapunov exponent versus the parameter E.  

 

Figure 21 - Bifurcation diagram depicting global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter E obtained for ϖ=0.6.  With the 

parameters of Table 2. 

Figure 22 shows some typical time histories and phase portraits of the rotating arm 

motion for different values of E . Figure 22 (a) and 22 (c) show periodic 1T oscillations while 

Figure 22 (b) and 22 (d) show chaotic oscillations. 

(a) 

(b) 
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Figure 22 - Time histories(a), (b) and phase portraits (c), (d) obtained with the parameters of Figure 

21 and for E=4.0 (a), (c); E=9.0 (b), (d). 

Figure 23 (a) shows the bifurcation diagram of the angular displacement of the rotating 

arm when the normalized frequency  varies. The behaviour of the device shows non-chaotic 

oscillations for  0.2;0.51   and chaotic oscillations for  0.52;0.6  . It can be well 

observed that the corresponding Lyapunov exponent plotted in Figure 23 (b) converges well to 

a positive value only when  0.52;0.6  . Figure 24 shows some typical time histories and 

phase space of the rotating arm motion for different values of . Figure 24 (a) and 24 (b) show 

periodic 1T oscillations while Figure 24 (b) and 24 (d) show chaotic oscillations. 

 

(a) (b) 

(c) (d) 
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Figure 23 - Bifurcation diagram depicting global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter ϖ obtained with E=6. With the 

parameters of Table 2. 

With the dimensionless value of the angular rotating arm displacement 0.2y  , we 

obtain from equation (3.18), the corresponding real value 0.157   rad, which is less than 1  

rad. Comparing with our study, we can conclude that, for the chosen parameters, the rotating 

arm does not exhibit complete rotation. The numerical simulation shows that the set of equation 

(3.29), can lead to complex dynamical behaviours such as nT periodic oscillations and chaotic 

oscillations. It was observed that, without the three permanents magnets, the system shows a 

chaotic behaviour for appropriate range of large values of the normalized frequency and 

magnitude of the external excitation source. When three permanents magnets are added, the 

system shows a chaotic behaviour for appropriate range of small values of the normalized 

frequency and magnitude of the external excitation. The bifurcation diagrams can be obtained 

for other sets of parameters. 

(a) 

(b) 
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Figure 24 - Time histories (a), (b) and phase portraits (c), (d) obtained for ϖ=0.69 (a), (c); ϖ=0.57 

(b), (d). 

In this section, we have showed that, for appropriate range of parameters, chaos can 

arise even for motion without complete rotations with small value of the control parameters. 

This is particularly interesting if the rotating arm is used to mix different liquids and powder. 

The magnitude E  and the normalized frequency  of the external source are used as control 

parameters. We have confirmed our hypothesis by the bifurcation diagram of the angular 

displacement of the rotating arm and the Lyapunov exponent. 

3.3.4. Chaotic dynamics generated from delay 

Dynamical systems occur in a wide variety of physical, chemical, engineering, economics and 

biological systems. There are many examples where delay plays an important role. Some of these 

examples are listed and presented by M. Lakshamanan and D. V. Senthilkumar in [111] and some others 

in ref. [112-114]. The mathematical description of delay dynamical systems will naturally involve the 

(a) (b) 

(c) (d) 
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delay parameter in some specified way. This can be in the form of differential equations with delay [89, 

115-117].  Delay differential equations with multiple delays are represented by an equation with more 

than one positive delays [117-120]. Delay differential equations with time-dependent delay where time-

delays are explicitly dependent on time. Time dependent delays depend on the relative distance between 

the drive and response systems [121-123]. As a specific system parameter, delay can lead to bifurcation, 

oscillation and also to chaotic or non-chaotic behaviour. 

Mechatronic delay generator 

One can investigate another way of generating chaos in the EMS device by using a 

mechatronic delay generator. This can also be seen as the enhancement of complexity of the 

device. Purposely mechatronic generator is a velocity sensor, such as a tachometer where the 

measured angular velocity is proportional to the output voltage. As well as in electricity 

network, the propagation time of signal through the transmission line from a subunit to another 

is an interesting parameter that can strongly influence the dynamical behaviour of the device. 

The time delay here can be due to an embedded control system that serves as the communication 

system taking a message at the source (tachogenerator) and sending it to the receiver (electrical 

part of the electromechanical rotating arm). The internal generated voltage ( )U t  from the 

tachometer is given by [124]: 

( ) ( )iU t t   .                                                                                                                               (3.30) 

This is equivalent to the e.m.f of a DC motor.   is the conversion gain (Volts. second/radians), 

i.e. a specific-fixed value for a given tachogenerator. ( )it  is the input angular speed (for the 

thin rod) and i  the time delay.   

Here we consider the presence of the three permanent magnets, at the free end of the 

thin rod. In presence of delay, one can derive the equations describing the dynamics of the 

electromechanical system as given by the following equations: 
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Effects of delay on the dynamical behaviour 

In this subsection, the EMS device is still driven by a square wave excitation. Figure 25 

(a) shows the bifurcation diagram of the dimensionless angular displacement y when the 

parameter E varies. From this Figure 25, the behaviour of the device shows chaotic oscillations 

for  4;10E  and non-chaotic oscillations for  0.5;3.98E . These behaviours are confirmed 

by the corresponding Lyapunov exponent in Figure 25 (b). For a long delay ( 20i  ), induced 

by the mechatronic generator, chaotic behaviour appears for small value E=4 (compared to the 

case without delay E=5.41) of the magnitude of the external excitation. 

 

Figure 25 - Bifurcation diagram depicting global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter E obtained with the parameters of 

Figure 24 and for ϖ=0.57; ν=0.085; τi=20. 

Similarly, Figure 26 (a) shows the bifurcation diagram of the angular displacement of 

the rotating arm when the normalized frequency  varies. The behaviour of the device shows 

(a) 

(b) 



 

76 
Ph.D in electromechanical systems by TSAPLA FOTSA Rolande  UY1/FS 

non-chaotic oscillations for      0.4;0.56 0.580;0.582 0.59;0.65     and chaotic 

oscillations for    0.570;0.579 0.580;0.591   . It can be well observed that the 

corresponding Lyapunov exponent plotted in Figure 26 (b) converges well to a positive value 

only when    0.570;0.579 0.580;0.591   . For smallest value of the dimensionless 

magnitude of the external excitation 4E  ; the device exhibits chaotic behaviour. 

 

Figure 26 - Bifurcation diagram depicting global maxima of the angular rotating arm displacement 

(a) and the largest Lyapunov exponent (b) versus the parameter ϖ obtained with the parameters of 

Figure 25 and for E=4. 

 

The electromechanical pendulum arm can be use to homogenise different liquid and/or powder.  

The results obtained from Figure 25 and Figure 26 are very interesting since the device can be 

use either in regular or chaotic dynamics. 

 

(a) 

(b) 



 

77 
Ph.D in electromechanical systems by TSAPLA FOTSA Rolande  UY1/FS 

3.4. Analysis of an electromechanical system with translational and 

pendulum motion 

3.4.1. Electromechanical system and equations 

The device is an electrodynamic transducer as shown in Figure1. This transducer is 

constituted by an electrical part and a mechanical part magnetically coupled by a permanent 

magnet. 

 

Figure 27 - Electromechanical device 

 

 The electrical part of the system consists of a resistor R, an inductor L, and an external 

voltage source ( )u t  all connected in series. The ends of this series of dipoles are immerged in 

the coupling magnet and extend in the form of two coils with which certain elements of the 

mechanical part will oscillate. 

The mechanical part consists of a translational rod that activates the pendulum or 

pendulum arm of length  and mass m  see Figure 27. This pendulum arm returned to its 

equilibrium position by a spring of stiffness k , connected by its free end to the rotating arm and 

fixed at the other end (see Figure 27). The center (O) of the pendulum arm being connected to 

the rod  P, perform the same movement parameterized by the abscissa Z . The pendulum arm 

performs a rotational movement of angle   around its vertical position. It suffers viscous 

friction (characterized by the coefficient of viscosity λ). In this study, we assume that 1T , 2T , 3T

, and P  have a negligible mass and the role of 3T  is to transmit the Laplace force to the 

pendulum arm. The relation between the translational displacement Z and the angular 

displacement   is:   
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sin( )
2

Z                                                                                                                               (3.32) 

  In this electromechanical model, all the components have linear characteristics.   

  

The parameters of the electromechanical device shown in Figure 27 are listed in Table 

1. We choose these values to obtain appropriate angular oscillations with limited magnitude 

Parameters Values Dimensions 

Inductance: L  0.05 H  

Resistance: R  2    

Mass of the pendulum arm: m  0.05 
kg  

stiffness coefficient of the spring: k  variable /N m  

Magnetic field intensity: B  1  T  

Length of the pendulum arm  0.8  m  

Average length of winding in magnetic field l  0.5  m  

Frictional coefficient    0.04  /Ns m  

Table 4 - Parameters of the electromechanical system 

   The coupling between the electrical part and the mechanical part generates on the mechanical 

part a Laplace force: 

f il B                                                                                                                                  (3.33) 

where l  is the length of the winding in the magnetic field B of the magnet. il  is orthogonal to  

B  and ( )f f i z , with ( )f i lBi  where z  is the unit vector along the horizontal axis.  

In the electric part, an electromotive induction force is obtained by the Lenz law: 

( )e l B Z                                                                                                                             (3.34) 

Since ( , , )il B Z  is a direct trihedral, ( )e Z lBZ  . 

    To establish the electrical equation governing the dynamics of the system, we use voltage 

Kirchhoff’s law on the electrical part and obtain: 

( )
di

L Ri lBZ u t
dt
                                                                                                                  (3.35) 
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where in the left, the first term is the voltage across the inductor, the second term is the ohmic 

voltage and the third term represents the coupling term between the electrical and mechanical 

parts. The dot over a variable represents a time derivative. 

    To establish the equation governing the dynamics of the mechanical arm, we use the 

Newton’s second law of dynamics for rotational motion taking into account the Laplace force. 

One obtains: 

2 2

2
cos( ) sin cos( )( ) 0

4 2 2 2

d d
J kZ mg lBi

dt dt

 
                                                       (3.36) 

 where 
2

3
J m  is the moment of inertia of the pendulum arm. Considering ( )u t  as a sinusoidal 

voltage in the form 0 sin( )u t ( 0 ,u   being respectively, the amplitude and the frequency, and 

t  the time), then replacing equation (3.32) into equation (3.35) and (3.36), one obtains the 

electromechanical equations which govern the functioning of the device given in Figure 27:  

0

2 2 2

2

( cos( ) ) sin( )
2

sin( )cos( ) sin( ) cos( )( ) 0
4 4 2 2

di d
L Ri lB u t

dt dt

d d mg
J k lBi

dt dt


 

 
    


  




     


,                  (3.37)               

      

Denote: 

2

0
0 02

0 0 0

2 2
2 20 0

1 2 1 2 2 02 2 2

0 0 0 0

; ; ; ; ; ; ; 0.25

; ; ; ; ; 0.1
2 4 4 2 2

e

e e

e e e e

ud d i R
x t y E

d d i L L i

l B lBik mg
i

Li J J J J

 
 

    

 
    

      

       

     

                    (3.38)  

e is the frequency of the electrical part, 0i  is the normalization current of the electrical part 

and 0  is the normalized angular displacement. Taking into account equation (3.38), the 

differential equations (3.37) are reduced to the following set of non-dimensional differential 

equations:   

1 0 0

2 2

2 1 0 0 2 0 2 0

cos( ) sin( )

sin( )cos( ) sin( ) cos( ) 0

x x y y E

y y y y y y x

  

       

   




    

          (3.39)                      

                               

2  is the dissipative coefficient of the mechanical parts. 1 2,   are the electromechanical 

coupling coefficients.  
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The investigation of the dynamical behavior of this device is done considering the frequency 

and the maximal amplitude of the external excitation as control parameters. Figure 28 shows 

some phase portraits for different values of 0E . 

 

Figure 28 - phase portraits obtained with the parameters of Table 4. 0 0.1E  (a), 0 0.5E   (b), 

0 5.0E   (c), 0 10E   (d) and 0.8   

For the small and high values of 0E , one observe 1T periodic oscillations. Similarly, Figure 29 

shows some phase portraits for different values of  .   
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Figure 29 - phase portraits obtained with the parameters of Table 4. 0.2  (a), 0.8   (b), 

1.0   (c), 5.0   (d) and 0 0.5E   

For some different values of  , Figure 29 shows that the device exhibit with periodic 1T 

oscillations.  

Oscillatory states 

     Assuming that the pendulum arm performs small angular displacement, y  is small and the 

following approximations can be considered: 0 0sin( )y y   and 0cos( ) 1y  . Taking into 

account these approximations, equations (3.45) become: 

 

1 0

2

2 0 0 2

sin( )

0

x x y E

y y y x

 

   

   




   

                                                                                         (3.40) 

 

With 2 2 2

0 1 2      

   Equations (9) presents in the absence of the input voltage ( )u t a single stationary point  

( 0, 0, 0
dy

x y
d

   ) which is asymptotically stable. The presence of the sinusoidal input 

voltage gives rise to the oscillatory steady state. 
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     We use the well-known method of harmonic balance to establish the equations 

characterizing the amplitudes of the harmonic oscillations as a function of the frequency  . To 

do this we express x  and y  in the form: 

 

1 2

1 2

( ) ( )

( ) ( )

x a cos t a sin t

y b cos t b sin t

 

 

 


  

                                                                                                     (3.41) 

 

The maximal amplitudes A  and B  of these oscillations are defined by 2 2 2

1 2A a a   and 

2 2 2

1 2B b b  . Replacing equations (3.41) into equations (3.40), and equating the sine ( ( )sin t

) and cosine ( ( )cos t ) terms separately, it comes that the unknown parameters 1a ; 2a ; 1b ; 2b  

satisfies the following expressions:  

 

4 2 2 2 2 4 2 2 2

0 2 0 0 0 0 0 0 2 1 2 1
1

( 2 )E
a

D

                   
   

4 2 2 2 2 2 4 2

2 0 0 2 2 1
2

0 0 0( 2 )E
a

D

              
                                                                (3.42) 

2 2

2 0 0 2 1 2 0
1

( ) E
b

D

        
   

2 2 2

2 0 0 0 2
2

( )E
b

D

        
   

 

with  

6 4 2 2 4 4 4 2 2 2 2 2

0 0 2 2 1 2 1 0 0 2 1

2 2 2 2 2 2 4 2 2 4

0 0 2 1 2 0 0 0 0 2

2 2 2

2 2

D                  

            

       

   
 

 

    We analyze the behavior of A  and B when the normalized frequency of the external 

excitation  is varied and the results are presented in Figure 30.   
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Figure 30 – Frequency-responses of the (a) angular displacement (b) electrical current: curves from 

the harmonic balance approximations (-) and curves from the direct numerical simulations (o) 

with the parameters of Table 4 and E0=0.1     

Figure 30, shows that when the high amplitude is attained in the mechanical part, for the 

frequency close to 0 , the amplitude of the electrical signal is at its lowest value.   

3.4.2.  Effects of the bistable potential energy 

In order to make the electromechanical pendulum arm oscillations chaotic, the previous 

device is changed into the one of Figure 31 where one permanent magnet is fixed at the free 

end of the pendulum arm (the mass of the pendulum arm will therefore increase). In the right 

and in the left sides of the pendulum arm, at equal distances to the equilibrium position, there 

are two other permanent magnets. The electric part is the same as previously. Because of the 

magnet at the end of the rotating arm the mass of the rotating arm increases from 0.05 kg  to 

0.07 kg . 

 

 

(a) (b

) 
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Figure 31 - Electromechanical device with bistable potential 

Equations  

This configuration of additional permanent magnets with spring has been used in [16]. 

The authors demonstrated that, the association of permanent magnets with linear spring leads 

to the bistable nature of the potential energy which can be expressed as: 

 

2 4( )
2 4

a b
U                                                                                                                    (3.43) 

where a  and b  are positive coefficients. The values of the minima are given as 
a

b
    . We 

assume that the magnets are close enough so that even if the angles are small 

 ( 0 0sin( )y y  , 0cos( ) 1y  ), the effect of the bi-stability remains valid. Assuming that the 

parameters of the device present in Figure 3 are chosen as 1.0a   and 50.0b  , the minima 

are 0.141 8radian    .   

Applying voltage Kirchhoff’s law on the electrical part and Newton second law for the 

rotational movement to the pendulum arm, the electromechanical equations that govern the 

functioning of the device shows in Figure 3 are: 

 

0

2 2

02

cos( ) sin( )
2

( )
cos( )( ) 0

4 2

di lB d
L Ri u t

dt dt

d d dU
J y lBi

dt dt d


 

  
 




  




    


                                                         (3.44)                                                                            
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Using the dimensionless variables given in equations (3.38), considering the case of small 

angular displacement ( 0 0sin( )y y  , 0cos( ) 1y  ), equations (3.44) take the following form: 

 

1 0

3

2 2

sin( )x x y E

y y y y x

 

   

   




   

                                                                                          (3.45)  

with,  
2

e

a

J



  and 

2

0

2

e

b

J





   

We remind that despite the angle is small, we have assumed that the magnets are 

disposed so that the effects of the bistable potential are still operating.  

Bifurcation diagram and Lyapunov exponent 

The dynamical behaviors of the system mathematically represented by equations (3.45) 

are illustrated using numerical simulation to present bifurcation diagrams, Lyapunov exponent, 

phase portraits, and time historiess. In this subsection, parameters 0E  and   are chosen as the 

control parameters. 

Analysis with respect to parameter 0E   
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Figure 32 - Bifurcation diagram depicting the global maxima of the angular pendulum arm 

displacement (a) and the largest Lyapunov exponent (b) versus the amplitude    with the 

parameters of table 4, for m=0.07 and ϖ=0.35 

Figure 32 shows that, as the amplitude of the external excitation 0E  varies from 0.0  to 

12.0 , the bifurcation diagram of the angular displacement pendulum arm reveals nT period- 

oscillations behavior for    0 0.0,4.25 10.5,12.0E U . Chaos appears in the electromechanical 

pendulum arm when  0 3.7,8.88E   characterized by the positive values of the Lyapunov 

exponent. For  0 9.65,10.45E  , one observes chaos oscillations with some windows of nT

period-oscillations. This chaotic state is particularly of interest when the electromechanical 

pendulum arm is used for industrial operations such as the mixing of different liquids, chemicals 

or powders. Figure 33 shows some Time histories and corresponding phase portraits. Figure 34 

shows the Poincarré map for the chaotic attractor [125,126]. 

(a) 

(b) 
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Figure 33: Time histories (a), (b) and phase portraits (c), (d) obtained with the parameters of 

Figure 4 and   (a), (c);   (b), (d) 

 

Figure 34 - The Poincarré map of a chaotic state with the parameters of Figure 5 and for 

ϖ=0.35, E0=9.0. 

(c) (d) 

(a) (b) 
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Analysis with respect to parameter   

  In Figure 35 the bifurcation diagram and the corresponding Lyapunov exponent of the 

angular rotating movement when the parameter   varies.  One finds in Figure 35 (a) that, when 

   0.2,0.295 0.524,1U   nT period-oscillations. For  0.3,0.519  , the device shows 

chaotic oscillations with some windows of non-chaotic oscillations. These behaviors are 

confirmed by Figure 35 (b) in which the variation of the Lyapunov exponent is plotted.   

  

 

Figure 35 - Bifurcation diagram depicting global maxima of the angular pendulum arm 

displacement (a) and the largest Lyapunov exponent (b) versus the parameter ϖ with the 

parameters of Figure 32 and for E0=9.0 

3.4.3. Electromechanical device with hysteretic iron-core inductor 

In absence of the permanents magnets 

The electromechanical device with hysteretic iron core is present in Figure 36 Here, the 

previous inductor is replace by the iron-core inductor. 

(a) 

(b) 
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Figure 36 - Electromechanical pendulum arm with hysteretic iron core inductor 

As the ferromagnetic circuit is made of steel or iron sheet, the flux through the iron core 

is not always constant, but can vary with the current. It is therefore interesting to analyze the 

effects of such behavior on the dynamical behaviors of the device to delineate the domains of 

regular periodic dynamics and that of chaotic dynamics when the device parameters change.  

We assume that the ferromagnetic core inductance L in equation (3.44) is a function of 

the current in the electrical circuit [87]: 

2 2

0 0

0
1

2

2
1 cosh( )

s

e e

e

N A B N A
L

Nil l

l

 




 
 
   
  
  

                                                                    (3.46) 

where 1 0 ( )
di

sign
dt

  , 7

0 4 .10  H/mµ   is the air permeability, 0 are constants. N  is the 

number of turns for the iron core inductor, A  is the cross sectional area of the iron core, sB  is 

the saturation flux density, and el  the average length of winding of the iron core.  

 The new parameters are listed in Table 2.   

Parameters Values Dimensions 

Mass of the pendulum arm: m  0.07  kg  

Cross sectional area A of iron core 6176.71 10  
2m  

Number of turn N  for the iron core inductor variable 1  

Saturation flux density sB  0.13 

 

T  

the average length of winding of the iron core el  0.5  m  

Table 5 - Parameters of the electromechanical system 
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The iron core inductor modified only the electrical part of the device which becomes    

2 2
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2 2
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 
 
     
  
  

                           (3.47) 

      Considering the sinewave as the external source, the dimensionless electromechanical 

equations, which govern the functioning of the studied device are written as follows: 
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with  
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                                   (3.49) 

One observed that the frequency of the electrical part changes the value and then all constants 

as well as 2 , 2  0  and   depending on that frequency will also change their values. The 

aim of this sestion is to investigate the effet of the hysteretic iron-core on the studied 

electromechanical device considering the maximal amplitud and the frequence of the external 

excitation.   

In Figure 37, We plot phase portrait of the device considering the same values of the maximal 

external amplitud than the one use in Figure 28 . One observe multiperiodic oscillations in 

Figures 37 (a), (b) and quasiperiodic oscillations in Figure 37 (c), (d). 
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Figure 37 - Phase portraits obtained with the parameters of Table 5. E0=0.1 (a), E0=0.5 (b), 

E0=5.0 (c), E0=10.0 (d) and ϖ=0.8. 

Figure 37 Presents some phaseportraits for the same values of     than the one considering in 

Figure 28 

 

 

Figure 38 - Phase portraits obtained with the parameters of Table 4, Table 5. ϖ=0.2 (a), 

ϖ=0.8(b), ϖ=1.0(c), ϖ=5.0(d) and E0=5.0. 

Compaire to case in absence of the iron-core inductor, the device exhibit with multiperiodic 

oscillations. So the iron core inductor enhence the complexity of the pendulum’s arm vibration. 
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In presence of permanents magnets 

The studied device is the one presented in Figure 39. Here three permanents magnets are added 

to the previous one. 

 

Figure 39 - Electromechanical pendulum arm with hysteretic iron core inductor and bistable 

potential energy. 

 

In presence of the permanents magnets, only the mechanical part change and became the same 

than the one Figure 31 and the electromechanical equations that governing the functioning of 

the device are: 
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                                                 (3.50)  

 

 

The  aim of this section is to find how chaos arises in our device when the parameters 

of the iron core inductor vary. We have focused the attention on the variation of the number N 

of turns.   Figure 40 shows that, as N  varies from 400  to 850 , nT period-oscillations behavior 

exist for    200,380 705,760N U  while chaos appears when    380,504 770,840N U .  
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Figure 40 - Bifurcation diagram depicting global maxima of the angular pendulum arm 

displacement (a) and the largest Lyapunov exponent (b) versus the parameter N obtained with 

the parameters of Table 4, Table 5 and for ϖ=0.35, E0 =9.0. 

3.4.4.  Effect of the delay on electromechanical system  

As it has appeared in the above analysis, chaos has been observed in the electromechanical 

systems when some parameters of the device vary. One can investigate another way of 

generating chaos in the same device by using a mechatronic delay generator. This can also be 

seen as the enhancement of complexity of the device. Purposely mechatronic generator is a 

velocity sensor, such as a tachometer where the measured angular velocity is proportional to 

the output voltage of the meter. The internal generated voltage ( )U t  in a tachometer is given by 

equation (3.36): 

 In presence of delay, the equations describing the dynamics of the electromechanical system 

are the following: 

(a) 

(b) 
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Figure 41 presents the behavior of the device when the delay is considered as control parameter. 

 

Figure 41 - Bifurcation diagram depicting global maxima of the angular pendulum arm 

displacement (a) and the largest Lyapunov exponent (b) versus the parameter τ obtained with 

the parameters of Table 4 and for ϖ=0.8, E0 =0.5. 

 

.   Figure 41 shows that, as 
0  varies from 12  to 15 , nT period-oscillations behavior exist for 

 0 12;13.87   while chaos appears when  0 13.871;15  . To complement the results 

presented in Figure 41, Time histories and corresponding phase portraits are displayed in Figure 

42, they are indicating chaotic states and periodic oscillations. 
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Figure 42 - Phase portraits (a), (b) and Time histories (c), (d) obtained with the parameters of Figure 

41 and τ0=13 (a), (c); τ0=14.5 (b), (d). 

Figure 42 (a) and 9 (c) show 1T-periodic oscillations while Figure 42 (b) and 42 (d) 

demonstrate chaotic oscillations. 

Case with bistable potential energy and hysteretic iron core inductor. 

By a adding three permanents magnets and the hysteretic iron core inductor, this subsection present 

how the device behave when some control parameter vary. The dynamical behaviour of the device is 

mathematically describe by the following set of differential equation (3.52).  

0 0 0

2

3

2 2

2
(1 ) sin( ) ( )

1 cosh( ( ))
x x y E y

x sign x

y y y y x


     



   

 
       

  




    

                               (3.52)  

       Figure 43 (a) shows the bifurcation diagram plotted in terms of the non-dimensional 

angular displacement y as 0  increases. One finds that, when  0 21.5,21.7  the system shows 

nT period-oscillations while chaos appears for  0 21.7,22.5 
 
with some windows of nT

period-oscillations. These behaviors are confirmed by Figure 41 (b) in which the variation of 

the Lyapunov exponent is plotted.  
 

(a) (b) 

(c) (d) 



 

96 
Ph.D in electromechanical systems by TSAPLA FOTSA Rolande  UY1/FS 

 

Figure 43 - Bifurcation diagram depicting global maxima of the angular pendulum arm 

displacement (a) and the largest Lyapunov exponent (b) versus the delay  obtained with the 

parameters of Table 4, Table 5 and for N=780, ϖ=0.35, E0 =7.7, υ=0.25 

3.5. Conclusion  

We have studied the dynamical behaviours of three EMS with rotating arm. Bifurcation 

diagrams and corresponding Lyapunov exponent diagrams have been used to find, in the 

parameters spaces, the domains of periodic and chaotic states. The results obtained are 

interesting since they give the parameters ranges where the device can be used either in the 

regular dynamics or in the chaotic states. For the three EMS with rotating arm, good agreements 

have been found between the results from the analytical treatment and the ones from the 

numerical simulations. Melnikov chaos has been used in the first device to show analytically 

the existence of horseshoes chaos dynamics. 

 

 

(a) 

(b) 
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General conclusion 

This thesis was motivated by the design of three EMS having each a mobil arm actuated 

by an electric circuit for easy domestic and industrial appliances such as vibrating sieve and 

mixer. Thereafter, a theoretical investigation of their dynamical behaviours has been done 

We have first presented a new electromechanical rotating arm with bistable potential 

energy generated by the combined action of a spiral spring and magnets appropriately placed 

in the device. We have studied the dynamical behaviour of the device both in the absence and 

in the presence of the magnets. The device has been seen to generate complex behaviours 

including chaos and angular oscillations with amplitude greater than one turn. In the absence 

of magnets, the device presents a single stable point and exhibit periodic behaviour.  In presence 

of magnets, we numerically show that the association of elastic potential energy and mechanical 

potential energy due to the magnets leads to the bistable nature of the total potential energy. 

This bistablity is responsible for the generation of chaotic dynamics in the electromechanical 

system.  By using square excitation, the device presents chaotic behaviour for smaller values 

(compared to the case of sinusoidal source) of the excitation amplitude and frequency.  It has 

also been shown that the electromechanical system can show Hamiltonian chaos characterized 

by the fractality of the basin of attraction. 

Secondly, we have considered the dynamical behaviour of an electromechanical rotating 

arm with a nonlinear hysteretic iron-core inductor. The results obtained are interesting since for 

the chosen parameters, the device can be used either in the regular dynamics or in the chaotic 

states with rotating angular displacement less than 90 . For small value of the magnitude of the 

external excitation, a good agreement has been found between the results from the analytical 

treatment and the ones from the numerical simulations. The effects of the three permanent 

magnets at the end of the rotating arm have been examined. We numerically show that the 

association of elastic potential energy due to springs and mechanical potential energy due to 

the magnets leads to the bistable nature of the total potential energy. The numerical simulation 

shows that the presence of the magnets leads as in the first device to complex dynamical 

behaviours such as nT periodic oscillations and the system exhibits chaotic behaviour. The 

effects of the delay induced by the mechatronic delay generator were also examined. One 

observed that, by taking into account the delay, the device also exhibits regular and chaotic 
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oscillations. In this case, depending on the chosen parameters, the chaotic behaviour appeared 

for smaller values (compared to the case without delay) of the control parameters (magnitude 

of the external excitation and normalized frequency). 

The dynamics of a pendulum arm actuated by an electromechanical transducer has been 

investigated in the third device. In order to induce chaos dynamics in the system, we also 

introduce a bistable potential by adding three permanents magnets at the end of the pendulum 

arm. The numerical simulation shows that the presence of the additional magnets leads to 

complex dynamical behaviors such as nT periodic oscillations and chaos when the sinewave is 

the input voltage. Secondly, we assume that the magnetic circuit is saturated and found that 

some values of the iron core turns can lead the system to chaotic states.    Thirdly, it has been 

found that a feedback delay signal proportional to the pendulum angular velocity is another 

source of chaos. The generation of chaos when varying some parameters of the 

electromechanical system is interesting as it chaos motion can improve the efficiency of various 

engineering activities such as sieving or sifting processes which need disorder to enhance the 

dispersion of particles. 

These complex behaviours can find applications in engineering, e.g. sieves in which 

chaos motion could enhance the dispersion of particles and avoid stagnation and formation of 

aggregates. The case of chaotic vibration sieve is interesting because sieving or sifting processes 

need disorder to enhance the dispersion of particles. The device can also give some idea on how 

to optimize the operation of home appliances such as those used for mixing various food 

components (flour, eggs, spices, vegetables, fruits, and so on). 

This work has opened interesting perspectives for future investigations: 

 Full automatization of the sieving process so that it could automatically and completely 

take place for any kind of product to sieve. 

 Full automatization of the mixing process so that it could automatically and completely 

take place for any product to mix.  

 Design, model, study and carry out a sieve with many levels  

 The more important for us will be the experimental set-up of the chaotic sieve and 

chaotic mixer device using on one hand the bistable potential, the delay induced by the 

mechatronic delay generator and on the other hand the hysteretic iron-core inductor. 
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Annex- Derivation of the magnetic potential 

energy 
  

Let us note magE  as the potential magnetic energy. To derive this magnetic potential energy, let 

us consider Figure A1. 

 

                              Fig.A1: Schematic structure for the derivation of the magnetic potential 

energy.   

The magnets , ,A B C  are identical. The potential energy of the magnet A  in the field generated 

by the magnets B  and C is given as [26]:  

2

0

3 3

cos 1 1
( ) ( )

2

A
mag BA CA A

BA CA

M
E B B M

r r

 


                                                                                          (A1) 

Where 
BAB and 

CAB are respectively the magnetic field creates on magnet A by magnet B and 

magnet C. The distance between B and A is given by equation (A2) and the distance between 

C give A and A is given by equation (A3): 
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Replacing (A2), (A3), and (A4) into (A1), one obtains:  

2

0

3 3

2 2

1 1 1 1

cos 1 1

2
sin( ) sin( )

2 2

A
mag

M
E

q p q p

 


 

   

 
 
 

  
    

         
    

                                 (A5) 

The interaction force between the magnets can be obtained by taking the gradient of (A5) 
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By taking into account the fact that the magnets are at the end (distance ) of the rotating arm, 

the displacement between the magnetic force and the rotational axis ( ) give the moment of 

the magnetic force as: 
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