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Résumé
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Cette thèse traite de la réponse dynamique des structures soumises aux

charges sismiques. De ce fait, les structures employées pour cette étude sont

les bâtiments. Ces derniers sont considérés comme des poutres porte-à-

faux, encastrées à la base et libres au sommet. L’approche de la théorie de

Timoshenko basée sur les équations différentielles partielles est utilisée pour

modéliser lesdites structures. Un amortisseur magneto-rhéologique (MR)

est employé pour modifier la réponse dynamique du système structurel.

Une analyse théorique d’un bâtiment sous excitation sismique est menée.

Une attention particulière est accordée à la détermination des valeurs pro-

pres de la forme spatiale. Il est observé que la réponse du système structurel

est grandement influencée par la présence d’un dispositif de contrôle fixé à

un point spécifique de la structure. La condition de stabilité du système con-

trôlé est établie grâce au critère de Routh-Hurwitz. Les réponses statistiques

de deux bâtiments connectés soumis à une excitation à séquence répétée

sont décrites. Il est observé que les stratégies Lyapunov et logique floue

adoptées pour prévoir la dynamique de la tension d’alimentation du disposi-

tif magnéto-rhéologique, augmentent la performance du contrôle du sys-

tème structurel. En plus, la condition d’action du dispositif de contrôle est

présentée à chaque mode de vibration.

Mots Clés: Poutre porte-à-faux de Timoshenko , Amortisseur MR, Excita-

tion sismique, Théorie de Lyapunov, Contrôle de logique floue.
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Abstract
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This thesis deals with the dynamic response of structures subjected to seis-

mic loads. As a result, the structures used for this study are buildings. They

are considered cantilever beams, clamped at the base and free at the top. The

Timoshenko theory based on partial differential equations is used to model

these structures. A magneto-rheological (MR) device is used to modify the

dynamic response of the structural system.

A theoretical analysis of a building connected under seismic excitation is

carried out. Particular attention is paid to the determination of eigenvalues

of the spatial form. The response of the structural system is greatly influ-

enced by the presence of a control device attached to a specific point of the

structure. The stability condition of the controlled system is established by

the Routh-Hurwitz criterion. The statistical responses of two interconnected

buildings subjected to the repeated sequence of excitation are described. It is

observed that the adopted Lyapunov and fuzzy logic strategies to foresee the

dynamic of the voltage, increase the performance of the control the struc-

tural system. Moreover, the condition of the action time of the control device

is presented at each mode of vibration.

Keywords: Timoshenko cantilever beam, MR device, Earthquake excita-

tion, Lyapunov theory, Fuzzy logic control.
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In the last decades, environment loads [1] such as strong winds, large waves,

severe earthquakes continue to affect the human comfort and even struc-

tural. Many countries in the World such as Haiti in 2010, Japan in 2011, China

in 2008, 2014 and in 2016, Nepal in 2015, Ecuador in 2016, Italy in 2016.

They triggered the quakes which cause a great deal of human and animal

injuries and death, and left behind a weak economy or heavy financial loss.

The main vulnerable fixed targets which have the problem to withstand of

those disturbances induced the excessive vibration, are always the engineer-

ing structures, such as the residential buildings, roads, railways, earth dams,

nuclear power plants and long-span bridges. They are not the only to be

affected by those natural disasters, other public and private sectors such as

the communication lines, electrical systems can also be affected. The effects

of that natural catastrophe on the structural and electrical sectors clearly

demonstrate that is the one of the most powerful disaster worldwide.

Because of this harm, a great deal of researchers and engineers continues

to multiply the intensive research efforts in civil engineering structures, in

view of giving them the effective means to alter their dynamic response in

order to improve the potential resistance [2]. This should be minimized the

loss of life by preventing the premature collapse of buildings and other men-

tioned structures earlier during earthquake-induced vibration. Since earth-

quakes do not kill and injure people, it is rather falling buildings or other

structures.

As a result, several studies in the field structural control within the experi-

mental framework as well as theory have been well developed to improve the

building performance mitigate [3–11]. In this context, some type of struc-

tural protective systems may be implemented to mitigate the damage effects

of these environmental forces [12]. The mechanism should absorb the in-

put energy and also significantly increase the damping and stability of the

structural system. As an application example, one can note Triton Square of-

fice complex, in Tokyo, Japan [13]. This structural control was put in place in

2001 using two active actuators such as the coupled elements.

In the same view, other mechanical structures such as the outrigger sys-

tem which is consisted of a core wall, external columns, and outriggers was

designed to resist severe earthquake and strong winds[14]. This type of new

structural concept is defined as a novel energy dissipation system which can

mostly be used to protect high rise and tall buildings against the hazard loads,

2



such as severe earthquakes and strong winds [15]. It is important to note that

the performance of this type of system depends on the flexural and shear

stiffness of various core or wall and also of the axial stiffness of the perimeter

columns and their distance from the core.

To investigate the dynamic responses different approaches were employed

to model of structures, specially tall buildings. The large scale deformation

can approximately be described by equivalent homogeneous elastic-continuum,

although structure primarily consist of structural members (column, walls,

floors, etc) separated by void spaces (rooms, doors, windows, etc.)[16]. In

this context, a large number studies devoted the single or multi-degree-of-

freedom approach to model elastic structures [17–19], the elastic flexural de-

formation beam [20–22], the shear-flexural cantilever [23]. Thus, it is impor-

tant to mention that up to now there is a lack of research work in the litera-

ture that takes into account the combination of shear-type deformation and

rotary inertia effects.

The case of interest in thesis is to consider the combination of underly-

ing effects in the dynamic behaviour of structures under earthquake load-

ing. We attempt to solve the following problems:

• Mathematical modelling of structural systems under earthquake- in-

duced vibration.

• Use mathematical and numerical tools to access the behaviour of the

structural system and analyse the influence of the control device.

• Optimization of the control strategy (Find the best location of the con-

trol device leading to good control by guaranteeing the safety and the

stability of structures ).

Thus, the organization of the thesis is structured as follows.

In chapter one, we present a literature review which is based on the gen-

eralities on the beam dynamics of beams, by briefly exposing the boundary

conditions and some different characteristic equations. Afterwards, general-

ities on the vibration control of mechanical structures are given.

Chapter two presents deterministic and probabilistic mathematical mod-

els of earthquake ground motions. Moreover, an algorithm for regenerating

the non-stationary earthquake is presented. The mathematical and numeri-

cal tools used to characterize the dynamic responses of the studied structural

system are also illustrated in this chapter.
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Our results are presented in chapter three. The mathematical model de-

scribing the dynamic behaviour of the structural system equipped of a magneto-

rheological damper under the seismic load is presented. Afterwards, a con-

trol law is defined and used to guider the voltage, with the main aims to at-

tenuate the vibration of the structural system.

We end with a general conclusion where the main results are summarized

and some perspectives mentioned.

.
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CHAPTER 1

LITERATURE REVIEW
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1.1 Introduction

Very important in many engineering applications, beam is used as a struc-

tural element subjected to various static and dynamic loads of localized or

uniform types. One of the most important problems in the vibration the-

ory of beams is their resistance face to dynamic behaviour of environment

loads. Hence, the determination of the natural frequencies and mode shapes

have considerable interest in the aerospace, civil and mechanical engineer-

ing in order to foresee with a better accuracy the dynamic behaviour of sev-

eral structures such as, tall buildings, bridges, helicopter rotor blades, tur-

bine blades, propellers, railway, air-plane wings, satellite. The purpose of

this chapter is to provide background information on different mathemat-

ical modelling of beams and some further details on control mechanisms.

Section 1.2 presents generalities on beam models. In Section 1.3 an overview

of control mechanisms employed in the literature will be presented as well as

the equations describing the dynamic of MR dampers. In section 1.4 more

details on the problems solved in this thesis will be given. Section 1.5 will

conclude the chapter.

1.2 Generalities on beam models

In order to find better means to increase the safety such as bridges, tall

buildings against severe earthquake and strong winds. Many researchers

have adopted different simplified approaches based on the partial differen-

tial, single and multi-degree of freedoms equations to model these struc-

tures. This is due to their complexity, since it is well-known they have a

compactness incorporating the elements of natural discontinuous. Many

works in the literature have considered various engineering structures like

an equivalent continuum beam characterized by either effect, flexural defor-

mation, rotary inertia, shear influence or both. There exist in the literature

four models well-known and used to characterized the dynamic response of

the uniform beam [24]. The four theories are the Euler-Bernoulli, Rayleigh,

shear and Timoshenko.

1.2.1 Euler-Bernoulli beam model

The Bernoulli-Euler model is defined as the context classical theory for vi-

bration of the uniform beam. Although the effects of transverse shear defor-

mation and rotatory inertia effect of the cross section are neglected.

In spite of the correction brought by other models which are also described
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in this thesis. It stays the most used in the literature because it is simple and

provides reasonable engineering approximations for many problems [25–

27]. It predicts the frequencies of flexural vibration of lower modes of thin

beams quite accurately; and becomes inaccurate at higher modes or for deep

beams where the mentioned effects become significant [28].

The mathematical formulation of motion of beam describing the classical

Bernoulli-Euler model is the following form

ρA
∂2 y

∂t 2
+E I

∂4y

∂x4
= 0 (1)

In which,

E I represents the flexural rigidity of the beam, and ρA is the mass per unit

length.

where E denotes the Young’s modulus of elasticity of beam material, A is the

cross-sectional area, I = Ar 2 (r =radius of gyration of the cross section) is

the moment of inertia of the cross-section, ρ is the mass density of the beam

material.

The bending vibration namely, transverse displacement y = y(x, t ) can be

described by two variables depending on axial coordinate along the length

of the beam x and time t .

1.2.2 Rayleigh beam model

The first correction to the classical Euler-Bernoulli beam model was con-

sidered in 1877 by Lord Rayleigh [29]. The contribution takes into consider-

ation of rotational energy of a beam cross-section. Because the rotary iner-

tia which becomes increasingly important for shorter bending wavelengths,

and the the cross section remains perpendicular to the neutral plane.

The equation (1) is rewritten as follows

ρA
∂2 y

∂t 2
+E I

∂4 y

∂x4
−ρI

∂4 y

∂x2∂t 2
= 0. (2)

The last term of this equation (2) denotes the presence of the rotary inertia

effect.

1.2.3 Shear beam Model

In this case, only the effect of the shear is considered in investigation of trans-

verse vibrations of the structural engineering [30].
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The following mathematical formulation describing the behaviour is

ρA
∂2 y

∂t 2
−ks AG

(

∂2 y

∂x2
−
∂θ

∂x

)

= 0 (3)

.ρI
∂2θ

∂t 2
+ks AG

(

∂4 y

∂x
−θ

)

= 0 (4)

We can notice that unlike to the Euler-Bernoulli and Rayleigh model beams,

the shear beam model is characterized by two dependant variables.

By definition an ideal shear beam exhibits no flexural deformations, but de-

forms in shear only[31]. This leads to considering the shear beam in the tech-

nical note[32]
∂θ

∂x
= 0

In the context, the equation (3) can be given as follows

ρA
∂2y

∂t 2
−ks AG

∂2 y

∂x2
= 0 (5)

. (6)

One can notice that the presence of the variable θ due to shear deformation

effect.

1.2.4 Timoshenko beam model

In the 20th century Timoshenko was the pioneer in this field to demon-

strate the importance of shear deformation and rotational inertia effect in

the dynamics of elastic beams [33]. He introduced a shear coefficient to ac-

count for the variation of the shear stress across the cross section [34]. The

Timoshenko theory is also defined as an expansion of that classical Euler-

Bernoulli model, since these two quoted effects are ignored. In other words,

the Timoshenko beam includes of shear deformation in a Rayleigh beam.

The effect of rotation is large when the curvature of the beam is large relative

to its thickness [35]. Two instances where this is true are

(i ) a beam that is short in length relative to its thickness,

(i i ) a long beam vibrating in a higher mode so that the nodal points are

close together

Consequently, the Timoshenko beam model is suitable for describing the

behaviour of short beams, sandwich composite beams, or beams subject

to high-frequency excitation. The quoted effects require that the deforma-

tion of the cross section is now no perpendicular or longer normal to the
8



deformed neutral axis.

Thus, the angle
∂y

∂x
between the beam axis and x axis, also known as the

Figure 1: element of a beam in the deformed and undeformed positions

slope of the centerline of the beam.

The angle θ = θ(x, t ) is defined as the transverse rotation of the beam cross-

section due to the bending moment

∂y

∂x
= θ+γ (7)

The difference of the above equation gives us a measure of the shearing an-

gle.

The shear force is defined by

M =−E I
∂θ

∂x
(8)

and the bending moment by

S = ksG Aγ= ksG A

(

∂y

∂x
−θ

)

(9)

in which ksG A represents the shear rigidity of the beam

where,

G = E
2(1+ν)

is the shear modulus of the beam material.

ks the so-called shear correction coefficient, is depending on the geomet-

ric of the cross section of the beam (For instance, ks = 10(1+ν)
12+11ν

for rectangular

cross sections and ks = 6(1+ν)
7+6ν

for circular ones.) and also of the Poisson’s ratio

ν as discussed in ref [36].

This coefficient is introduced to take into account the fact that the shear
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stress and shear strain are not uniformly distributed over the cross section.

For translation in the direction of OZ , one obtains

∂S

∂x
d x = ρA

∂2 y

∂t 2
d x (10)

.−
∂M

∂x
+Sd x = ρI

∂2θ

∂t 2
d x (11)

The following set of coupled differential equations in terms of the beam dis-

placement y(x, t ) = y and rotation θ(x, t ) = θ of the cross-section is thus ex-

pressed as follows

ρA
∂2 y

∂t 2
= ks AG

(

∂2 y

∂x2
−
∂θ

∂x

)

(12)

.ρI
∂2θ

∂t 2
= ks AG

(

∂y

∂x
−θ

)

+E I
∂2θ

∂x2
(13)

Eliminating θ, we obtain the uncoupled equations of motion in the form

E I
∂4 y

∂x4
+ρA

∂2y

∂t 2
−ρI

(

1+
E

ksG

)

∂4 y

∂x2∂t 2
+

ρ2I

ksG

∂4 y

∂t 4
= 0 (14)

The two first expressions of the Equation (14) represent those defined by

Euler-Bernoulli model.

The third term represents the correction for rotary inertia while the fourth

term represents the shear deformation effect.

The last term represents the joint action of rotary inertia and shear deforma-

tion effects.

One can summarize the four model of beam theories as follows

• Euler-Bernoulli = Bending moment + Lateral deformation

• Rayleigh =Euler-Bernoulli + Rotary inertia

• Shear =Euler-Bernoulli + Shear deformation

• Timoshenko = Rayleigh + Shear deformation

From summary one can observe the difference between Timoshenko model

and other theories. Since the Timoshenko model is an extension of the Euler-

Bernoulli model by combining the shearing force and rotary motion effect.

1.2.5 Boundary conditions of the beam

Conditions along edges of a beam will be illustrated here, in order to reduce

the partial differential forms to a set of ordinary differential equations. To
10



reach to this objective, one needs to employ the boundary conditions. The

ends of the beam is referred to 0 that in other case of boundary conditions

can be defined as the bottom and L as the top of beam.

The boundary conditions can be written as follows:

Free-Free boundary condition: shearing forces and moments are assumed

to be zero at each end of the beam,

∂y

∂x
(0, t )−θ(0, t ) = 0,

∂θ

∂x
(0, t ) = 0 (15)

∂y

∂x
(L, t )−θ(L, t ) = 0, ,

∂θ

∂x
(L, t ) = 0 (16)

clamped at both ends: the rotation of the beam section and traversal dis-

placement are assumed to be zero at each end of the beam.

y(0, t ) = θ(0, t )= 0 (17)

y(L, t ) = θ(L, t )= 0 (18)

Hinged at both ends: the traversal displacement and the bending moment

M at each end of the beam are assumed to be zero

y(0, t ) = 0,
∂θ

∂x
(0, t ) = 0 (19)

y(L, t ) = 0,
∂θ

∂x
(L, t ) = 0 (20)

Cantilever (defined as at clamped end and at free end ). As a result each of

aforementioned boundaries is considered to defined the cantilever condi-

tions

y(0, t ) = θ(0, t ) = 0, at the clamped end (21)

∂y

∂x
(L, t )−θ(L, t ) = 0, and the free (22)

We can note that each configuration of boundary conditions leads to a par-

ticular dynamic of beams.

1.2.6 Characteristic Equations of the beam

The solutions of (12) and (13) can be taken as the product of the two func-

tions therefore expressions are under the form [37]

y(x, t ) =Φ(x)sin(ωn t ) (23)

θ(x, t )=Ψ(x)sin(ωn t ) (24)
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by inserting (24) into (14) and also introducing the following new variables

X =
x

L
, φ=

Φ

L
(25)

we get to the following equation defined as follows

d 4φ

d X 4
+ρω2

nL2

(

1

E
+

1

ksG

)

d 2φ

d X
−
ρAω2

nL4

E I

(

1−
ρr 2ω2

n

ksG

)

φ= 0 (26)

The solution of (26) is under the form.

φ(X ) =C exp(λX ) (27)

in what follows, the following polynomial is obtained after substituting of

(27) into (26)

λ4 +α2ω2
n

(

1+
1

µ

)

λ2 −
(

β2ω2
n −

1

µ
α4ω4

n

)

= 0 (28)

in which

α= L

√

ρ

ksG
, µ=

E

ksG
(29)

The resolution of (28) gives four roots that are defined as follows

λ1 =± jδn , λ2 =±εn (30)

with

δn =
p

2αωn

2

√

√

√

√

(

1+
1

µ

)

+

√

(

1−
1

µ

)2

+
4η2

α2ω2
n

(31)

εn =
p

2αωn

2

√

√

√

√−
(

1+
1

µ

)

+

√

(

1−
1

µ

)2

+
4η2

α2ω2
n

(32)

where η= L

√

ksG A

E I
the following equation in terms of eigenvalues δn and εn is obtained:

(

δ2
n −ε2

n

)

[

η2−
1

µ+1

(

δ2
n −ε2

n

)

]

ε2
nδ

2
n = 0 (33)

The function of the lateral deflection is expressed as

φ(X ) =C1 sin(δn)+C2 cos(δn)+C3 sinh(εn)+C4 cosh(εn) (34)
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thus, the shape function of the rotation ψ is written as follows

ψ(X ) =C5 (C1 sin(δn)−C2 cos(δn))+C6 (C3 sinh(εn)+C4 cosh(εn)) (35)

in which

C5 = δn +
µ

(

δ2
n −ε2

n

)

δn(µ+1)
, C6 = εn +

µ
(

δ2
n −ε2

n

)

εn(µ+1)
(36)

C1, C2, C3 and C4 are coefficients that depend on the following boundary con-

ditions.

Let note in passing that the length of beam varied at 0 to 1. This considera-

tion will automatically modify the obtained form from the boundary condi-

tions.

(a) Cantilever beam
[

(

δ2
n +µε2

n

)2 +
(

ε2
n +µδ2

n

)2
]

cos(δn)cosh(εn)+
(

δ2
n +µε2

n

)

×
(

ε2
n +µδ2

n

)

(

−2+
δ2

n −ε2
n

δnεn

sin(δn)sinh(εn)

)

= 0
(37)

(b) Clamped-clamped beam

2
(

ε5
nδnµ+ (1+µ2)δ3

nε
3
n +εnδ

5
nµ

)

cos(δn)cosh(εn)+
(

ε6
nµ

2 + (−1+2µ)δ2
nε

4
n + (1−2µ)δ4

nε
2
n −δ6

nµ
2
)

×
sin(δn)sinh(εn)−2ε5

nδnµ−2(1+µ2)ε3
nδ

3
n −2εnδ

5
nµ= 0

(38)

(b) Hinged-Hinged beam

(δ2
n +ε2

n)2 sin(δn)sinh(εn) = 0 (39)

One should note that the determination of eigenvalues requires an appropri-

ated algorithm by using of (33).

1.3 Generalities on the vibration control of mechanical struc-

ture

Many structural systems are affected by increasing of the energy from en-

vironmental loads such as the severe earthquakes, strong winds and other

types of dynamic loads. In order to stabilize the structural health, a part

of this energy should be dissipated to avoid the structural damages. In this

sense, the new concepts of control mechanisms have been developed and
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incorporated into structures to absorb the input energy by minimizing ex-

cessive vibration.

1.3.1 Concepts of control mechanisms

Mechanisms for control of structural response can be classified into four

main groups: passive, active, hybrid, and semi-active.

1.3.1.1 Passive control

A passive control system is a mechanism that does not require an exter-

nal power source to operate and has limited ability. Because it is not able to

adapt to structural change [38].

The control device has no sensors, controllers and cannot respond to varia-

tions in the parameters of the object being controlled [39].

The configuration of this structural control system is illustrated in Figure 2.

Excitation Structure Response

PED

Figure 2: Structure with Passive Energy Dissipation [40].

The major advantage of passive control systems is their manner to work

at no operational cost (no consumption of energy) and with minimum re-

quirements on maintenance [41]. As example,

(a) Base isolator systems(Figure 3), also known as seismic base isolation,

defined as one of the most used mechanism of protecting of structures

against the earthquake loadings. These systems are effective in reduc-

ing the inter-story displacements against vibrations transmitted through

the ground, such as seismic vibrations but it is not efficient to resist

wind loading due to the flexibility in the horizontal direction [42].

(b) Tuned mass dampers consisting of components such as mass, springs

and viscous dampers. The effectiveness of these devices is relatively

limited. Because the tuning frequency of the mass damper differs from

the main frequency of the structure, tuned mass damper will have little

effect in reducing the seismic responses[45].

So one can define the Taipei 101 as an example of design and construc-

tion practice in the world. The control system was installed at the top of

the structure (as seen in Figure4).
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Figure 3: Base isolator systems[43, 44]

Figure 4: Taipei 101 in Taiwan.[46]

This structure has been designed to withstand typhoons and frequent earth-

quakes in the Asia Pacific region.

(d ) Viscous Fluid dampers (see Figure5) are commonly used as passive en-

ergy dissipation devices for seismic protection of structures. Such dampers

consist of a hollow cylinder filled with fluid, the fluid typically being sil-

icone based.

(c) Friction dampers as shown in Figure6, exhibit perfect rectangular hys-

teretic behaviour.

(e) Metallic Yied dampers(Figure 7), in this configuration the energy is ab-

sorbed by metallic components. They utilize the hysteretic behaviour

of metals in the inelastic range and can be fabricated from steel, lead or

spherical shape memory alloys.
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Figure 5: Viscous Fluid dampers[47]

Figure 6: Friction damper

Figure 7: Metallic damper

One can also note in passing the interconnected tall buildings by a passive

coupling element was built in the world. The case well-known is Petronas

Towers in Malaysia, also known as the Petronas twin tower as illustrated in
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Figure 8.

Figure 8: Petronas twin towers Malaysia

1.3.1.2 Active control

An active control system is a control mechanism that modified the dy-

namic response of a structure by means of the application of an external

large power source. It is designed to absorb a wide band of frequencies,

and needs high operational cost. The scheme of Active control system is dis-

played in Figure9. This system consists of:

Excitation Structure Response

Control actuators

Controller SensorsSensors

Figure 9: Structure with Active Control.

∗ Sensors located about structure and are used to measure either external

excitation or structural response, or both

∗ Controllers process the measured information by sensors and compute

necessary control forces based on given algorithm.

∗ Actuators are used to produce the required force and usually powered

by external energy sources
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Moreover the injection of the energy can destabilize the structural system.

We can note[40]

(a) Active Variable stiffness,

(b) Active mass dampers,

(c) Active bracing systems.

(d ) Active Tendon systems

As practice example, one can note Triton Square office complex, in Tokyo,

Japan [13]. This structural control executed in 2001 using two active actua-

tors like the coupled element as seen in Figure 10.

Figure 10: Triton square office complex in Japan

1.3.1.3 Semi-active control

Semi active control system combines features of passive and active con-

trol systems without requiring a large power source to change its mechanical

properties.

A semi-active control device is a system therefore physical properties of dis-

sipation can be adjusted in real time but cannot input mechanical energy

into the system being controlled in contrast to active control devices.

The one of particularities of the semi-active devices is its capacity to adapt

its dynamics related to the effects of environmental loadings. The semi ac-

tive control system is displayed in figure 11 Moreover they can also achieve

the majority of the performance of passive and active control systems. Some

examples of these kind devices are

(a) Electroheological dampers (ER) as illustrated in Figure 12: ER contain

dielectric particles suspended that offer resistance when are subjected

to an electric field.
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Excitation Structure Response

Control actuators

Controller SensorsSensors

PED

Figure 11: Structure with Semi Active Control.

Figure 12: Schematic configuration of the ER damper[53]

(b) Magnetorheological dampers (Figure 13b) employ MR fluids to change

its force. This appears when the magnitude of applied magnetic modi-

fies the liquid state.

(c) Continuous variable stiffness.

(d ) Tuned mass dampers

1.3.1.4 Hybrid control

Hybrid control (see Figure 14) implies the combined use of active and pas-

sive control systems.

Advantage with this kind control approach is that the multiple control de-

vices are operating and higher levels of performance may be achievable. For

example, a structure equipped with distributed visco-elastic damping sup-

plemented with active mass damper on the top of the structure [52].

In what follows, some hybrid control systems can be presented[42]

(a) Hybrid base isolation system. This system can be composed of Base

isolation system and active tendon control system, or combined the

Base isolation system + MR fluid dampers.
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(a) A prototype steel frame with MR dampers (b) Schematic of the prototype 20 ton large-scale MR

fluid damper

Figure 13: MR device[51]

Excitation Structure Response

Control actuators

Controller SensorsSensors

PED

Figure 14: Structure with Hybrid Control.

(b) Hybrid damper actuator bracing control. This system can be used the

Hydraulic actuators and passive device.

(c) Hybrid mass damper (HMD). This device is composed of either a com-

bination of a passive TMD (Tuned Mass Damper) and an active control

actuator, or a combination of an AMD (Active mass damper) to a TMD.

Thus Hybrid control systems can alleviate some of the restrictions and limi-

tations that exist when each system is acting alone.

1.3.2 Dynamic modelling of MR dampers

Most of the studies in the literature are based on two kind categories of

devices using controllable fluid-based systems, Electrorheological(ER) and

Magnetorheological (MR) fluids. Despite their different properties, these

ones have useful common features such as fast response time and contin-

uously controlled rheological characteristics [75].

Need a cost high voltage (e.g. 4000 volts) to generate the electric field which

applied to ER fluid changes its apparent viscosity. Moreover the fluids have a
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very limited yield stress and sensitive to temperature.

When a magnetic field is applied to the fluids, particle chains form. As a re-

sult, the fluid becomes a semi-solid, exhibiting Bingham plastic behaviour.

Transition to rheological equilibrium can be achieved in a few milliseconds,

providing devices with high bandwidth.

The MR damper consists of a hydraulic cylinder that contain micrometer-

sized magnetically polarizable particles dispersed in hydrocarbon oil and

can operate at temperatures from −40oC to 150oC with only modest varia-

tions in the yield stress.

Nowadays MR dampers are used for full-scale applications in the world-

wide, due to inherent stability, mechanical simplicity, high-dynamic range,

large temperature operating range, low power requirement, large force ca-

pacity and robust performance. Consequently, different models have been

developed in ref [91] to describe the behaviour of the MR damper. One can

note

• Bingham model, defined by a Coulomb friction element placed in par-

allel with a viscous damper.

• Gamato and Filisko model that is consisted of the Bingham model in

series with a standard model of a linear solid.

• Bouc-Wen model that is extremely versatile and can exhibit a wide vari-

ety of hysteretic behaviour.

Thus, Spencer et al. [91] through the experimental analysis have showed that

all these mentioned models do not describe very-well the reel behaviour of

the MR damper. As a result, authors have proposed a mechanical model

based on the Bouc-Wen hysteresis. From the obtained results, the authors

have concluded that the approach is numerically tractable and effectively

portrays the behaviour of a MR damper. The schematic of the model is shown

in Figure 15.

The equation governing the force predicted by this model is

f = c1 ẏ +k1(x −x0) (40)

where x is the displacement of the damper; x0 is the initial displacement of

spring k1, and k1 is defined as the accumulator stiffness.

and

ẏ =
1

c1 + c0

[

αz + c0ẋ +k0(x − y)
]

(41)
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Figure 15: Modified Bouc-Wen model

where, y is the internal movement of the MR damper. The evolutionary vari-

able z is governed by

ż =−γ|ẋ − ẏ |z|z|n−1 −β(ẋ − ẏ)|z|n + A(ẋ − ẏ) (42)

k0 is the control stiffness at large velocities, c0 and c1 represent viscous damp-

ing coefficients at high and low damper velocities, respectively. α is the evo-

lutionary coefficient. These characteristic parametersγ, β and A can control

the linearity and the smoothness of the transition from the pre-yield to the

post-yield region.

Some parameters of equations (41) and (42) depend on the command volt-

age

α=αa +αbu, c0 = c0a + c0bu, c1 = c1a + c1bu (43)

The dynamics involved in the MR fluid reaching equilibrium are accounted

for through the first order filter [82]

u̇ =−η(u −v) (44)

in which v is the command voltage applied to the current driver.

Despite all that the MR dampers are characterized by the intrinsically non-

linear behaviour which stays a mayor disadvantage. It is raison why the one

of the main challenge is the development of an appropriate control algo-

rithm that can take full advantage of the unique features of the MR damper,

in view of obtaining the optimal input voltage corresponding to the desired

damper force. We have some examples based on Lyapunov stability the-

ory, Decentralized Bang-Bang Control, Clipped-Optimal Control, Fuzzy logic

control, modulated homogeneous friction, Sliding mode, Genetic algorithm

etc.

22



1.4 Problem of the thesis

As mentioned earlier, the semi-active devices have several advantages over

other types. Because they combine the best features of both passives as well

as actives and require a low voltage that changes the physical system proper-

ties. All aforementioned studies on reduction of vibration of buildings only

considered the simple-flexure or shear deformations in neglecting the com-

bination of both rotary inertia and shear effects to model the engineering

structures. The approach displays single and multi-modes by taking into ac-

count the neglected mentioned effects will be used to model the mechanical

structures. Moreover, a magneto-rheological damper will be used as the in-

tegral part of the structural system to attenuate the vibration mode induced

by earthquake action.

1.5 Conclusion

In this chapter, the theories for the vibrating uniform beams were pro-

vided. As a result, the Timoshenko model which takes into account the shear

and rotational effects was adopted to model the employed structures in this

work. The description of concepts of control mechanisms was presented as

well as the equations describing the dynamics of the MR damper. The follow-

ing chapter will be devoted to mathematical models of earthquake ground

motions, analytical and numerical formalism used to solve the problem of

the thesis.
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CHAPTER 2

MATHEMATICAL MODELS OF GROUND

MOTIONS, ANALYTICAL AND NUMERICAL

FORMALISMS
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2.1 Introduction

This chapter deals with the different mathematical modellings of earth-

quake ground and provides the different analytical and numerical methods

that will be used to solve the problem statement of the thesis. Section 2.2

presents the recorded ground motions used in the literation to solve the de-

sign earthquake-resistant problem. In section 2.3, the stochastic method

employed to model the acceleration ground motion. Section 2.4 is devoted

the deterministic approach for generating the nonstationary earthquake. In

Section 2.5 the tool for analytical and numerical methods explored to assess

the dynamic response of the physical system are given. The conclusion of

the chapter appears in section 2.6.

2.2 The recorded ground motions

Earthquakes refer to sudden movements of the soil conducted by a se-

quence of vibrations due to discharge of the strain energy accumulate in the

earth’s crust. Also defined as a natural phenomenon that usually starts at a

depth of loss than 100 Km below the ground [69].

Mainly cause by slip along faults, the energy from an earthquake propa-

gate as body waves and surface waves.

Magnitude of earthquake measures the energy of an earthquake. So, each

earthquake is characterized by a unique release of strain energy. This is cal-

culated from Richter scale. Intensity of earthquake is based on observation

of damaged engineering structures as well as reactions of people. The point

Figure 16: Seismology [85]
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of origin or the point where an earthquake or underground explosion origi-

nates, called the seismic focus or hypocenter, is located with the help of seis-

mograph (as seen in Figure16).

The point on Earth’s surface directly above the hypocenter is called the epi-

centre [70].

The epicentral distance is the distance from the epicenter or epicentre to the

point of interest on the surface of the earth.

Thus, to have other information from earthquake, such as

• peak ground acceleration (PGA)is the maximum amplitude of ground

acceleration.

• peak ground velocity(PGV) is the maximum amplitude of velocity.

• peak ground displacement (PGD) is the maximum respective amplitude

of displacement.

One needs to record seismic waves cause by that earth-shaking phenomenon.

As a result, the device employed by scientists is a seismograph as presented

in Figure17. It is an instrument that records the shaking of the earth’s sur-

face caused by seismic waves, and is to accurately record the motion of the

ground during a quake.

One of the recent case is the earthquake that hit central Italy on 24 August

Figure 17: Seismograph [79]

2016 with its hypocenter at a depth of 4± 1 km. This catastrophic caused

heavy destruction as indicated in Figure 18.

It must stand on Earth’s vibrating surface, and it will therefore vibrate along

with that surface. This means that there is no fixed frame of reference for

making measurements. El Centro earthquake 1940 in the Imperial Valley is
26



Figure 18: Italy-earthquake [50]

an example of recorded ground motion in south eastern Southern California

(see Figure19). In fact, Figures 19a and 19b display the record data from same

place at different component or position of the seismograph.

It is important to note that extension of significant damages of engineer-
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Figure 19: El centro earthquake, 1949 [78]

ing structures caused by earthquake, depends on the nature of the soil. The

precise prediction of seismic events remains elusive and unattainable goal in

spite of these efforts. Many researchers have employed of recorded ground

motion of different sites as the input earthquake ground acceleration to as-

sess of impact of earthquake loads on the structures.

Although consideration of an actual earthquake ground motion record as

the input has the advantage of having occurred in a past earthquake at a cer-
27



tain location, it is certainly insufficient since the future earthquake strong

motion at the site of interest could have completely different characteristics

[81]. As a result, Recent earthquakes have demonstrated the vulnerability of

buildings.

There are two methods used to estimate ground motion in engineering

practice [62].

• Deterministic seismic hazard analysis defined as the first method

• probabilistic seismic hazard analysis, referred to as the second method.

2.3 The Probabilist ground motions

various mathematical models in the literature for estimating the accelera-

tion ground motion, include the soil characteristics at a side.

The modelling of the earthquake excitation require to take into account many

aspects such as the peak ground acceleration, magnitude, intensity, epicen-

tre distance and frequency content. Advantage with the mathematical ap-

proach is that, we can generate many forms of recorded ground motion at

different sites by adjusting on the intensity and frequency content varies with

time. Since the nonstationary earthquakes are focused on these two men-

tioned parameters.

Figure 20 presents different steps to generate of the numerical way a non-

Kanai Tajimi Enveloppe function N earthquake
Nonstationary

earthquake

Clough-Penzei

White noise

Figure 20: Algorithm for regenerating the nonstationary earthquake.

stationary earthquake. Each block is defined as follows

2.3.1 White-noise

Let η(t ) be defined as white noise. It is a random process and described as

Gaussian whether checked the following properties
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a zero mean value

E [η(t )] = 0 (45)

and has an auto-correlation function defined by

R(t1, t2) = E [η(t1)η(t2)] = δ(τ) (46)

where τ= t2− t1, and δ() is the Dirac delta function.

2.3.2 Kanai-Tajimi

The analyse of recorded data from strong ground motion demonstrates that

earthquake power spectra are not independent of frequency [93]. The Kanai-

Tajimi (Kanai 1957; Tajimi 1960) model is well-known and used very widely

in the analysis of engineering structures under earthquake excitation [115].

Thus, the power spectral intensity of the ground acceleration is given by

S(ω) = S0

ω4
g + (2ζgωgω)2

(ω2
g −ω2)2 + (2ζgωgω)2

(47)

In which

ζg and ωg are damping coefficient and frequency. They are defined as filter

parameters which depend on the site soil characteristics. S0 is the constant

spectral intensity.

Figure 21 illustrates different forms of Kanai-Tajimi model for ζg = 0.4,

ωg = 3π rad/s (a) S0 = 0.02 m2/s3, (b)S0 = 0.015 m2/s3.

The site soil is considered as the place where a white noise disturbance is ap-

plied at bedrock and the motion is transmitted to the ground surface through

a soil layer.

The following equations can be used

a(t )=−2ζgωg ẋ −ω2
g x

ẍ +2ζgωg ẋ +ω2
g x = η(t )

(48)

η(t ) is the Gaussian white noise process, as pointed out in Equations (45) and

(46).

This Kanai-Tajimi model has the attractive feature because it is the ability to

simulate ground acceleration in a very simple way. The most serious short-

coming of the original Kanai-Tajimi model is its treatment of earthquakes as

stationary random processes [89].

29



0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06

ω (rad/s) 

S
(ω

)

(a)

0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

ω (rad/s) 

(b)

Figure 21: Kanai-Tajimi model

2.3.3 Clough-Penzien

Despite of the fact that the Kanai-tajimi shows advantage of the simple way

for the simulation of the stationary ground motion but presents a drawback

specially, in low frequency in which the variances of ground velocity and

ground displacement become infinite (ω−>∞). These can be seen from the

relationships between power spectra for ground acceleration, velocity and

displacement.

To remedy to this noticed problem therefore the concept consists to remove

the singularity at ω = 0, Clough and Penzien modified the Kanai-Tajimi for-

mulation by adding an another term.

Hence, the mathematical expression has been rewritten and given as follows

S(ω) = S0

[

ω4
g +4ζ2

gω
2
gω

2

(

ω2
g −ω2

)2 +4ζ2
gω

2ω2
g

]







ω4

(

ω2
f
−ω2

)2

+4ζ2
f
ω2ω2

f






(49)

Figure 22 displays the different forms of Clough-Penzei model for ζg = 0.4,

Table 1: Parameters of the filter soil of Clough-Penzien [84]

Soil ωg (r ad/s) ζg ω f (r ad/s) ζ f

Hard 15.0 0.6 1.5 0.6

Medium 10.0 0.4 1.0 0.6

Soft 5.0 0.2 0.5 0.6
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ωg = 3πr ad /s, S0 = 0.02m2/s3.

where ω f and ζ f are high-pass filter parameters
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Figure 22: Clough-Penzei model

2.3.4 Envelope Functions

The envelope function Env(t) describes the variation of ground motion in-

tensity with time [93]. Various models have extensively been suggested in

the literature to illustrate time-varying intensities.

2.3.4.1 Shinozuka and Sato model

The Shimozuka and Sato model (Figure 23) is based on the difference be-

tween two exponential function given as follows [93]

Env(t) = ce(e−αt −e−βt ) (50)

in which

ce =
1

(

α

β

)

α

β−α −
(

α

β

)

β

β−α

The time at which the envelope function reaches the maximum value, Env(tmax)=
1 is

tmax =
ln

(

β

α

)

β−α
(51)

It can observe from (51) that the time duration depends on the choice of

parameters α and β, and by changing the values of these ones we have of
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Figure 23: Envelope function of Shinozuka and Sato model

different time-modulating functions.

The short duration (α = 0.10,β = 0.20), and the long duration (α = 0.25, β=
0.75). From Figure 23 it is observed that the time at which the envelope func-

tion reaches to 1 really matches with Equation 51.

2.3.4.2 Amin and Ang model

The mathematical expression of Amin and Ang model is generalised by Jen-

nings et al. [87], therefore the equation is

Env(t)=















t 2/4, 0 ≤ t ≤ 2

1.0, 2 < t ≤ 4

exp(−0.268(t −4)), 4 < t ≤ 12

(52)

by taking account of this form, we have the Figure 24 which illustrates the

envelope function of Amin and Ang.

2.3.4.3 Boore model

The mathematical model described by Boore[48] is expressed as follows

Env(t ) = at be−ct H(t ) (53)

where H(t ) is the unit-step function. a is the normalizing factor, and b and c

are the shape parameters.

These conditions yield

b =−ǫ
ln(η)

[1+ǫ(lnǫ−1)]
(54)
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Figure 24: Envelope function of Amin and Ang model

and

c = b/ǫTw (55)

where ǫ and η are constants and Tw is the specified duration. The normaliz-

ing factor a can be chosen in several ways

a = (e/ǫTw )b (56)

gives a maximum amplitude of unity, and

a =
[

(2c)2b+1

Γ(2b +1)

]1/2

results in an envelope with unit squared area.

By taking the values of parameters a = 0.117; b = 1.825; c = 0.277 obtained

by Saragoni and Hart[49]. We have the Figure 25 that shows the Envelope

function of Boore model.

The chosen envelope function depends on the form of observed ground

motions. Since the mentioned function describes the manner in which the

intensity of the stochastic process varies with time.

2.3.5 Excitation Earthquake models

The nonstationary Kanai-Tajimi model has been used by the researchers [89,

94] to produce artificial records of the ground motion time histories. In other

words this one allows to generate the artificial accelerograms with a single

dominant frequency.

The mentioned model only illustrates the stationary random aspect, which
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is not the real nature of the ground excitation because it includes the time-

varying intensity and frequencies [94]

Ẍg =−(−2ζg (t )ωg (t )Ẋ f +ω2
g (t )X f )Env(t ) (57)

Ẍ f +2ζg (t )ωg (t )Ẋ f +ω2
g (t )X f = n1(t ) (58)

where Ẍg is the ground acceleration, X f is the filter response, ωg (t ) is the

time dependent predominant ground, Env(t) is the amplitude envelope func-

tion

2.3.5.1 El Centro 1940 earthquake

The envelope function is given by

Env(t ) = 9.44t 3e−1.17t +3.723 (59)

The content frequency is described by

ωg (t ) = 9.425+59.722(e−0.0625t −e−0.15t ) (60)
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Figure 26: Simulation of El Centro 1940 Earthquake

2.3.5.2 Mexico City 1985 earthquake

The envelope function adapted to this type earthquake is

Env(t ) =















0.3915t +1.45 for 0 ≤ t ≤ 32

13.978−1.073(t −32), for 32 < t ≤ 42.9

2.2823, for t ≥ 42.9

(61)

The content frequency is given

ωg (t ) = 3.456+3.77sin(0.17(t −2)) (62)
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Figure 27: Simulation of the Mexico City 1985 earthquake
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2.3.6 Abbas and Takewaki

The nonstationary ground acceleration Ẍg of n sequences is presented by

Abbas and Takewaki [92]. Authors pointed up, ground acceleration of mul-

tiple sequences could result in more damage to the structure than a single

ordinary event. Because the structure gets damaged in the first sequence,

and additional damage accumulates form secondary sequences before any

repair is possible.

The acceleration expression proposed to take the form of a filtered Gaussian

stationary white noise modulated by a deterministic envelope function of

time, as defined

Ẍg (t ) =











































Env1(t )ẅ1; 0≤ t ≤ T1

0; , T1 < t ≤T1 +T2

Env2(t −T1T2); ẅ2(t ) T1 +T2 ≤ t ≤T1 +T2 +T3

. . .

Envn(t −
n+1
∑

i=1
Ti )ẅn(t );

n+1
∑

i=1
≤ t ≤

n+2
∑

i=1
Ti

(63)

where

e1(t ), e2(t ) . . . en(t ) are the envelope functions associated with the accelera-

tion sequences 1,2. . .n,

ẅ1(t ), ẅ2(t )
. . . ẅn(t ) are stationary random processes.

T1,T2
. . . Tn+2 are the time durations of the acceleration sequences.

The envelope function for the ith sequence is expressed as

Envi (t ) = Ai

(

t −
n
∑

i=1

Ti

)

exp

[

−αi

(

t −
n
∑

i=1

Ti

)]

(64)

where e0i and αi are 2n positive constants that control the intensity and the

non-stationarity trend of the ith acceleration sequence.

The parameters of envelope function are α1 = 0.3, and α2 = 0.35, A1 = 0.8155,

A2 = 0.9514, ωg = 3π rad/s, ηg = 0.4,(the time duration of the sequences is

about 25 s, and 20 s respectively) and the separating time interval between

the sequences is 40 s.

The dimensionless nonstationary ground acceleration for two sequences with

the separating time interval both of them, is shown in Figure 28.
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Figure 28: Sample simulated acceleration sequences.

2.4 The deterministic ground motion

The earthquake load is modelled as a deterministic time history which is

expressed in terms of a Fourier series that is modulated by an enveloping

function [90].

The main difference with section 2.3 is that, the random process does not

employ to generate the earthquake motion. The common characteristic be-

tween the two types of modelling is the non-stationary deterministic func-

tion of time. Since its presence of this one allows to adjust the duration of

ground motion.

Ẍg (t ) = e(t )

N f
∑

i=1

[Ai cos(ωi t )+ sin(ωi t )] (65)

where

Ai ;Bi , are 2N f unknown constants and ωi , i = 1,2, . . . , N f are the frequen-

cies presented in the ground acceleration Ẍg which are selected such that

they span satisfactory the frequency range [0,25]H z.

The function e(t ) = e0(e−αt − e−βt ) represents the enveloping function that

imparts transient nature to the earthquake acceleration. The deterministic

expression does not reflect the real nature of ground motions.

Figure 29 is an example of deterministic ground motion with the values de-

fined as follows

e0 = 2.17; α=−0.13; β=−0.5, A1 = 0.71; ω1 = 11.42; B1 = 0.025; A2 = 0.065; ω2 =
13.56; B2 = 0.055; A3 = .25; ω3 = 14.7; B3 = 0.015; A4 = 0.06; B4 = 0.015; ω4 =
15.15.
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2.5 Analytical and Numerical formalisms

2.5.1 Method of lines

The "method of lines" or "semi-discretisation" is defined as a method for the

approximate solution of parabolic partial differential equations [88].

In this part, we describe an implementation of the method applied to non-

linear parabolic partial differential equations.

∂2u

∂t 2
(x, t )= f

(

t , x,
∂u

∂x
(x, t ),

∂u

∂t
(x, t ),

∂2u

∂x2
(x, t )

)

(66)

Consider for example the below equation given

∂2u

∂t 2
(x, t ) =

∂2u

∂x2
(x, t )+ c1

∂u

∂t
(x, t ) (67)

over 0 ≤ x ≤ 1, t > 0

subject to

• initial conditions

u(x,0) = 0,
∂u

∂t
(x,0) = 0, 0 ≤ x ≤ 1, (68)

• and boundary conditions

u(0, t ) = 0, u(1, t ) = 0, t > 0 (69)
∂u

∂x
(0, t ) = g (x),

∂u

∂x
(1, t ) = 0, t > 0 (70)
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The adopted standard second order finite difference approximations given

as follows

∂u(x, t )

∂x
=

u(i −1, j )−u(i +1, j )

2∆x
, (71)

∂2u(x, t )

∂x2
=

u(i −1, j )−2u(i , j )+u(i +1, j )

(∆x)2
(72)

and
∂u(x, t )

∂t
=

u(i , j −1)−u(i , j +1)

2∆t
(73)

by introducing the new variables, we have

v1(i )= u(i , j ), v2(i )= u(i , j +1), v3(i ) =u(i , j −1) (74)

this yields the expressions defined as follows

∂u(x, t )

∂x
=

v1(i −1)−v1(i +1)

2∆x
, (75)

∂2u(x, t )

∂x2
=

v1(i −1)−2v1(i )+v1(i +1)

(∆x)2
(76)

∂u(x, t )

∂t
=

v3(i )−v2(i )

2∆t
(77)

Equations (75) and (76) are inserted in the relation (67), one gets














d u1

d t
= v0(i )

d v0

d t
=

v1(i −1)−2v1(i )+v1(i +1)

(∆x)2
+ c1

(

v3(i )−v2(i )

2∆t

) (78)

We set ∆x = 1/N , xi = (i −1)∆x and t = j∆t where ∆x and ∆t are the spatial

and temporal steps, i and j are integer variables relative to position and time.

N is the number of discrete points considered along the beam length.

Initial conditions are

v0(i ) = 0, , v1(i ) = 0, v2(i )= v3(i )= 0.0, for i = 1, . . . ,m (79)

The boundary conditions become

v1(1) = 0.0, v1(m) = 0. (80)

v1(2) = v1(0)+2∆xg (x1), v1(m +1) = v1(m −1)+2∆xg (xm) (81)

Equation (78) can be solved using initial and boundary conditions.
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2.5.2 Routh-Hurwitz Stability Criterion

Routh-Hurwitz stability criterion is a method for stability analysis of linear

systems. This approach is a necessary and sufficient condition for the stabil-

ity of a system , since it has bounded output for bounded inputs, if the roots

of its characteristic equation have negative real parts only.

The characteristic equations is given by

f (λ) = a0λ
n +a1λ

n−1 +·· ·+an−1λ+an = 0 (82)

where the coefficients ai are real constants.

The main diagonal of the Hurwitz’s matrix are the form

∆1 = a1, ∆2 =
∣

∣

∣

∣

a1 a0

a3 a2

∣

∣

∣

∣

,

∆3 =

∣

∣

∣

∣

∣

∣

∣

a1 a0 0

a3 a2 a1

a5 a4 a3

∣

∣

∣

∣

∣

∣

∣

, . . . , ∆n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a0 0 . . . 0

a3 a2 a1 . . . 0

a5 a4 a3 . . . 0

.. .. .. . . . ..

0 0 0 . . . an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In general, Hurwitz condition states: all of the roots of the polynomial have

negative real part if the determinant of all Hurwitz matrix are positive. That

is, none of them are zero or negative.

∆1 > 0, ∆2 > 0, . . . , ∆n > 0 (83)

Since, ∆n = an∆n1, the condition ∆n > 0 can be changed by an

n = 2; a1 > 0 and a2 > 0 (84)

n = 3; a1 > 0, a3 > 0 and a1a2 > a3 (85)

n = 4; a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 +a2

1a4 (86)

Thus, conditions checked the system is considered stable.

Numerical formalism can be defined as an approximate solution of prob-

lems occur for instance in physics, chemistry, biology, economics and in

many field of engineering.

The numerical analysis is adopted in the many case to obtain information

about the response dynamics of the physical system. It is impossible to have

analytical solution. The selection of integration algorithms using numerical

approximation depends on of the complexity of problems and the scientific

disciplines.
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2.5.3 Fourth-order Runge-Kutta methods

Runge-kutta algorithm is an integrator method the most well-known. It is

employed to approximate numerical solution the higher order ordinary dif-

ferential equations. This mentioned algorithm is also defined as implicit and

explicit iterative methods. The method can be used within stochastic and de-

terministic differential equation frameworks.

However there are many modified version of the Runge-kutta algorithm within

the deterministic framework as well as stochastic. The new Runge-Kutta (RK)

algorithm described by Kasdin [80] is used for the integration of stochastic

differential equations. This approach improves the accuracy of stochastic

simulations over the traditional approaches.

2.5.3.1 The deterministic version

As above mentioned, the algorithm can also employ within deterministic.

The general deterministic algorithm is given as follows.

Ẋ(t ) = F (X , t ) (87)

The solution of 87 is approximated at time, as described by following set of

equations:

Xk+1(t ) = Xk +a51k1 +a52k2 +a53k3+a54k4 (88)

in which

k1 = hF (Xk , tk) (89)

k2 = hF (Xk +a21k1, tk + c2h) (90)

k3 = hF (Xk +a31k1 +a32k2, tk + c3h) (91)

k4 = hF (Xk +a41k1 +a42k2 +a43k3, tk + c4h) (92)

where h is the time step size. These equations are an order-n RK integrator.

The coefficients c2, c3, c4 and a21, a31, a32, a41, a42, a43, a51, a52, a53, a54 are

constant defined.

2.5.3.2 The stochastic version

Stochastic differential equations (SDE) become an important tool in many

scientific areas due to its application for modelling dynamical systems. The

mathematical expression is given by

Ẋ(t ) = F (X , t )+G (X , t ) w(t ) (93)
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where

w(t ) is a vector of Gaussian.

F (X , t ) and G (X , t ) are the dynamic and input distribution matrix, respec-

tively.

Thus, the Kasdin’s scheme is described as follows

Xk+1(t ) = Xk +a51k1 +a52k2 +a53k3+a54k4 (94)

in which

k1 = hF (Xk , tk)+hG (Xk , tk) w1

k2 = hF
(

Xk +a21k1, tk + c j h
)

+G (Xk +a21k1, tk + c2h) w2

k3 = hF (Xk +a31k1 +a32k2, tk + c3h)+G (Xk +a31k1 +a32k2, tk + c3h) w3

k4 = hF (Xk +a41k1 +a42k2+a43k3, tk + c4h)+
G (Xk +a41k1 +a42k2+a43k3, tk + c4h) w4

c is a constant that can be obtained by

c2 = a21 (95)

c3 = a31 +a32 (96)

c4 = a41 +a42 +a43 (97)

Let us consider a vectorial variable X (t ) = (x1(t ), x2(t ), . . . , xn(t ))

Table 2: Runge-Kutta coefficients fourth-order time-invariant

a32 0.00342761715422 a41 - 2.32428921184321

a42 2.69723745129487 a43 0.29093673271592

a51 0.25001351164789 a52 0.67428574806272

a53 -0.00831795169360 a54 0.08401868181222

• Mean
−
X =

1

n

n
∑

m=1

xm(t ) (98)

• Mean square
−
X 2 =

1

N

m
∑

1

xm(t )2 (99)

2.5.4 Newton-Raphson Method for system of equations

Due to the encountered difficulties for solving the nonlinear system of equa-

tions. Many iterative methods are employed in the literature to remedy to
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this problem. The Newton-Raphson method is defined as an iterative proce-

dure for finding zeros of an equation or the system of nonlinear equations.

To illustrate this principle, the system of equations is defined as follows

{

f (x, y) = 0

g (x, y) = 0
(100)

The functions f (x, y) and g (x, y) are two arbitrary functions

f (x, y) = f (x0, y0)+
∂ f

∂x
(x −x0)+

∂ f

∂y
(y − y0)+o(x, y) (101)

g (x, y) = g (x0, y0)+
∂g

∂x
(x −x0)

∂g

∂y
(y − y0)+o(x, y) (102)

The Jacobian matrix associated with above equations is found as follows

J(x, y) =









∂ f

∂x

∂ f

∂y
∂g

∂x

∂g

∂y









(103)

if d et (J ) 6= 0, the iterative method is written as

Xn+1 = Xn − J−1(Xn)F (Xn) (104)

A convergence criterion for the solution of a system of non-linear equation

could be, for example, the magnitude of the absolute values of the functions

F (Xn) is smaller than a certain tolerance

|F (Xn)| < ǫ (105)

To get the algorithm started, we need to provide two initial values of X (a

vector)

2.5.5 Hardware and Software

During the course of this work, we used a Laptop computer running Win-

dows 7 operating system and three major software’s: Fortran, Matlab and

Maple.

2.5.6 Box-Muller Method

The Box-Muller method will be used for generating standard Gaussian pseudo-

random numbers. It is based on the observation that if U1 and U2 are two

independent U (0,1) uniformly distributed random variables, then G1 and G2
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are defined by [101]

G1 =
√

−2ln(U1)sin(2πU2) (106)

G2 =
√

−2ln(U1)sin(2πU2) (107)

are two independent standard Gaussian random variables

2.5.7 Fuzzy Logic

The Fuzzy Logic tool was introduced in 1965 by Lotfi Zadeh. Known as the

father of fuzzy logic, he was instrumental in making fuzzy logic a major field

of study to complement probability theory.

Defined as a mathematical tool of reasoning that resembles human reason-

ing. By helping to deal with uncertainty in engineering and working on the

levels of possibilities of input to achieve the definite output, the fuzzy logic

offers to a soft computing partnership the important concept of computing

with words [74].

There is a wide variety of application domains of the Fuzzy logic, from

control theory to artificial intelligence. It can be implemented in hardware,

software, or a combination of both and can also be implemented in systems

with various sizes and capabilities ranging from small micro-controllers to

large, networked, workstation-based control systems.

Fuzzy logic Architecture

• Fuzzification Module, it transforms the system inputs, which are crisp

numbers, into fuzzy sets. It splits the input signal into seven steps such

as Negative Large(NL), Negative Medium (NM), Negative Small (NS),

Zeros (ZE), Positive Small (PS), Positive Medium (PM), Positive Large(PL),

as displayed in figure 31b.

• Knowledge Base, this block contains the base section described by IF-

THEN rules and database which defines the membership functions of

the fuzzy sets used in the fuzzy rules.

• Inference Engine, this block performs the crisp inputs into degrees of

matching with linguistic values.

• Defuzzification Module, it transforms the fuzzy set obtained by the in-

ference engine into a crisp value. This mentioned module reduces the

collection of membership function values in to a single sealer quantity.
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The different defuzzification methods are available in the literature. It

is therefore important to select the appropriate defuzzification method

for a particular application. Unfortunately, there is no standard rule

for selecting a particular defuzzification method for an application [76].

Similar to the fuzzification process, the fuzzy output variables are de-

fined using a total of 4 output membership functions: Zero, PS, PM, PL,

as pointed out in Figure 31b.

Fuzzy if-then rules are characterized by appropriate membership functions.

Due to their concise form, fuzzy if-then rules are often employed to capture

the imprecise modes of reasoning that play an essential role in the human

ability to make decisions in an environment of uncertainty and imprecision

[77]

Fuzzification Fuzzy inference N earthquakeDefuzzification

Fuzzy rule base

Figure 30: Fuzzy inference system.
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Figure 31: Input and output membership functions.
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2.6 Conclusion

In this chapter, the different mathematical modellings of earthquake ground

motions based on deterministic and probabilist frameworks were presented.

A simple algorithm of probabilist framework for regenerating the ground

motion, which maintains the nonstationary evolutions of amplitude and fre-

quency content was detailed. Moreover, some envelope functions mentioned

in the literature were enumerated. Afterwards, the mathematical and nu-

merical simulation methods used to solve the equations subject to external

perturbations such as non-stationary random process were also detailed in

this chapter, as well as the hardware and software employed. As further ele-

ment, a brief description was shown to determine Gaussian pseudo-random

numbers. Finally, the Fuzzy Logic tool that allows of stabilizing the response

dynamics of physical system were provided. The next chapter focuses on

results and discussions.
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CHAPTER 3

RESULTS AND DISCUSSIONS
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3.1 Introduction

This chapter is devoted to the results and discussions of the work carried

out in this thesis. It is organized as follows. Section 3.2 deals with the general

mathematical formalism, description of the control of a Timoshenko beam,

and the effect of the control on the dynamics responses. Section 3.3 deals

with the statistical responses of two buildings subjected to the repeated se-

quence of excitation. Section 3.4 deals with the influence of Fuzzy control

device on the statistical response of two interconnected buildings. Section

3.5 is devoted to statistical effects of an outrigger system under seismic exci-

tation. In this sense the description of physical system and dynamic model

formulation are detailed and the performance of the employed control sys-

tem to attenuate the undesirable vibration is obtained. The last section con-

cludes the chapter.

3.2 Dynamics and MR control of vibration of cantilever Tim-

oshenko beam under earthquake loads

Consider a Timoshenko beam of length L, with density ρ. The bending

vibration can be described by two variables dependent on axial coordinate

x and time t , namely, transverse displacement y = y(x, t ) and θ = θ(x, t ), the

transverse rotation of the beam cross-section due to the bending moment.

The governing equations for the vibration of Timoshenko beam thus in-

volve a system of two partial differential equations given by [71, 98–100]

ρI
∂2θ

∂t 2
+α2ρA

∂θ

∂t
= E I

∂2θ

∂x2
+kG A

(

∂y

∂x
−θ

)

(108a)

ρA
∂2 y

∂t 2
+α1ρA

∂y

∂t
= kG A

(

∂2 y

∂x2
−
∂θ

∂x

)

+P (t ) (108b)

Where E is the Young’s modulus of elasticity of beam material, G is the shear

modulus of the beam material, α1 and α2 are the linear viscous damping

coefficients, A is the cross-sectional area of the beam, k is the effective area

coefficient in shear, I is the area moment of inertia and P (t ) is the external

force.

Taking into account the following dimensionless variables:

θ∗ = θ, Y =
y

L
, X =

x

L
, τ=

t

T
, T = L

√

ρ

Gk

α2 =
I

A
α1, λ=α1T, k1 =

E

kG
, k2 =

AL2

I
, P1(τ) =

LP (t )

kG A
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Equations (108a)-(108b) are reduced to the following set of non-dimensional

differential equations

∂2θ∗

∂τ2
+λ

∂θ∗

∂τ
= k1

∂2θ∗

∂X 2
+k2

(

∂Y

∂X
−θ∗

)

(109a)

∂2Y

∂τ2
+λ

∂Y

∂τ
=

(

∂2Y

∂X 2
−
∂θ∗

∂X

)

+P1(τ) (109b)

With the boundary conditions

Y (0,τ) = 0, θ∗(0,τ),
∂θ∗

∂X
(1,τ) = 0,

∂Y

∂X
(1,τ)−θ∗(1,τ) = 0

The two expressions of the equation (109) of motion for a Timoshenko beam

are combined to formulate an equation for transverse deflection Y , in the

form

∂4Y

∂τ4
+2λ

∂3Y

∂τ3
+

(

k2 +λ2
) ∂2Y

∂τ2
− (1+k1)

∂4Y

∂X 2∂τ2
−λ (1+k1)

∂3Y

∂X 2∂τ
+λk2

∂Y

∂τ
+

k1

∂4Y

∂X 4
= k2P1(τ)+λ

.

P1(τ)+
..

P1(τ)

(110)

The equation.(110) is the general equation governing the transversal displace-

ment of the damped Timoshenko beam

3.2.1 Derivation of the modal equation

To deal with the analytical analysis we resort to an assumed mode expan-

sion. Specifically, it is assumed that Y can be written as the finite sums

Y (X ,τ)=
N
∑

n=1

Φn(X )Qn(τ) (111)

Where

Qn(τ) is the unknown function of time at n th mode and Φn(X ) is the solu-

tion of the eigenvalue problem obtained by solving equation (110) without

damping and excitation and Φn(X ) is given by

Φn(X ) = (C1n cos(δn X )+C2n sin(δn X )+C3n sinh(εn X )+C4n cosh(εn X ))

(112)

Where

C1n , C2n , C3n and C4n are obtained as (using the beam boundary conditions)[37]
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C1n =
cos(δn)+

(

ε2
n +µδ2

n

)

(

δ2
n +µε2

n

) cosh(εn)

−
(

sin(δn)+
εn

δn

sinh(εn)

) ; C2n = 1;

C3n =−C1n

(

δn +µ
ε2

n

δn

)

(

εn +µ
δ2

n

εn

)
; C4n =−C2n

The eigenvalues δn and εn of the n t h mode are obtained from (113) and

(114), using an appropriate algorithm

[

(

δ2
n +µε2

n

)2 +
(

µδ2
n +ε2

n

)2
]

cosδn coshεn −
(

δ2
n +µε2

n

)(

µδ2
n +ε2

n

)

(

−2+
δ2

n −ε2
n

δnεn

sinδn sinhεn

)

= 0
(113)

(

δ2
n −ε2

n

)

[

η2 −
1

µ+1

(

δ2
n −ε2

n

)

]

−
(

1+
1

µ

)

δ2
nε

2
n = 0 (114)

With

η=
√

k2

k1
, µ= k1.

Substituting the equation.(111) into (110), multiplying (110) by Φn(X ) the in-

tegration from 0 to 1, for the first mode of vibration (n = 1). We obtain the

following modal equation

....

Q(τ)+R1

...

Q(τ)+R2

..

Q(τ)+R3

.

Q(τ)+R4Q(τ) =R5P1(τ)+R6

.

P 1(τ)+R7

..

P 1(τ) (115)

with

R1 = 2λ, R2 = k2 +λ2 −
b2

b1

(1+k1), R3 = λk2 −λ
b2

b1

(1+k1), R4 =
b3

b1

k1,

R5 =
b4

b1

k2, R6 =
b4

b1

λ, R7 =
b4

b1

and

b1 =
1

∫

0

Φ
2(X )d X ; b2 =

1
∫

0

Φ
′′
(X )Φ(X )d X ;

b3 =
1

∫

0

Φ
′′′′

(X )Φ(X )d X ; b4 =
1

∫

0

Φ(X )d X

The description of the transverse displacement of the mechanical structure

50



can thus be derived by solving the differential equation (115)

3.2.2 Direct numerical simulation of the partial differential equation

To validate the analytical investigation, a direct numerical simulation of

the partial differential equation (109) is explored. The method of lines [88] or

semi-discretization is applied.

We set ∆X = 1/N , τ = j∆τ where ∆X and ∆τ are the spatial and temporal

steps respectively.

i and j are integer variables relative to position and time and N is the num-

ber of discrete points considered along the beam length.

The semi-discretisation form of the equation (109a) is


























dθ∗
i , j

d t
= F1(θ1

i , j )

dθ1
i , j

d t
= F2

(

θ1
i , j ,θ∗

i+1, j ,θi , j ,θ∗
i−1, j , yi+1, j , yi−1, j

)

(116)

and the equation.(109b) is























d Yi , j

d t
= F3(Y 1

i , j
)

d Y 1
i , j

d t
= F4

(

Y 1
i , j ,Yi+1, j ,Yi , j ,Yi−1, j ,θ∗

i+1, j ,θ∗
i−1, j

)

+P1(τ j )

(117)

The boundary conditions are

θ∗
0, j = 0, Y0, j = 0, θ∗

n+1, j = θ∗
n−1, j , Yn+1, j = Yn−1, j +2∆Xθ∗

n, j

The excitation force is taken under the form

P (t )=−ρA
..
ug (t ) (118)

According to [90], the ground acceleration
..
ug (t ) is assumed to be represented

by

..
ug (t ) = e0

(

e−β1t −e−β2t
)

N f
∑

n=1

(An cos(ωn t )+Bn sin(ωnt )) (119)

This model is expressed in terms of a Fourier series that is modulated by an

enveloping function. An and Bn are constants, ωn are selected such that they

span satisfactorily the frequency range (0.2,25)H z. β1 and β2 (β2 > β1 > 0)

are parameters that impart the observed transient trends in the recorded

ground motion. In our study, we assume that An and Bn are known.
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The function P1(τ) can thus be given as

P1(τ) =−e0

(

e−β11τ−e−β22τ
)

N f
∑

n=1

(A1n cos(ω1nτ)+B1n sin(ω1nτ)) (120)

With

A1n =
ρL

kG
An, B1n =

ρL

kG
Bn, β11 =β1T, β22 =β2T, ω1n =ωnT

The geometric and material properties of the beam are defined in Table 3

This leads to δ1 = 1.854172414231125, ε1 = 1.725031549472968.

Table 3: Geometric and material properties

E = 3×1010 Pa G = 1.25×1010 Pa, ρ = 2500 kg m−3 A = 600 m2,

L = 80 m, I = 45×103 m4, ν= 0.2 k = 0.8450704225 α1 = 15 s−1.

(we remind the reader that δ1 and ε1 have been obtained after solving the

system of equations (113) and (114) using Newton Raphson algorithm).

Using the relation between the dimensional and the non-dimensional pa-

rameters which we obtained before, we derive the following dimensionless

values (seen Table 4 ) for the parameters of equation (115)

Setting ourself at a point X = 0.5 of the beam, we display in the Figures 32

Table 4: Dimensionless values

b1 = 1.111690369 b2 = 0.5504788466, b3 = 11.11863853

b4 =−0.8438165466, k1 = 2.84, k2 = 1.066666667,

λ= 0.5837807806, R1 = 1.167561561, R2 = 83.77266973,

R3 = 48.70592206, R4 = 28.40443194, R5 =−64.77134340,

R6 =−0.4431124853, R7 =−0.7590391804, e0 = 1.27,

β11 = 0.00507, β22 = 0.0195, ω11 = 0.45,

ω22 = 0.53, ω33 = 0.60 H z, ω44 = 0.59,

N f = 4, A11 = 1.344×10−5, A22 = 1.231×10−6,

A33 = 4.733×10−6, A44 = 1.136×10−6 B11 = 4.733×10−7,

B22 = 1.041×10−6, B33 = 2.84×10−7, B44 = 2.840×10−7

and 33 respectively, the time history and frequency response curve obtained

using the modal equation and the direct numerical simulation presented

above. It appears that two curves are closed meaning that our analytical in-

vestigation is quantitatively and qualitatively good. Also having a look on the

frequency response curve leads us to the conclusion that the dynamics of the

system exhibits resonance and antiresonance along with subharmonic oscil-

lations.
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Figure 32: Time history response of the relative displacement
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Figure 33: Frequency response curve

3.2.3 Semi-active control of the cantilever Timoshenko beam

The next step is to minimize the dynamic deflection of the structure.

For that aim we define a set up so that the control of the beam is taken to

be a transverse applied force or moment. A suitable way to reduce vibration

in mechanical structures subjected to earthquake excitation is to use a semi

active control technique named magneto rheological dampers [91, 114]. The

ones are devices that are capable of generating the magnitude of forces nec-

essary for full-scale application. Amongst these technics the modified Bouc

Wen model plays a key role. Spencer et al [91] proposed a phenomenological

model base on a Bouc Wen model, by which the dynamic behaviour of MR

damper is described accurately (see Figure 34).
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Figure 34: Modified Bouc-Wen model

The equations governing the force predicted by this model are

fMR(t ) = c1
.
y 1 +K1(y − y0) (121)

.
y1 =

1

(c0 + c1)
{c0

.
y +αz +K0(y − y1)} (122)

.
z = (

.
y − .

y 1)[A −|z|n1(β+γsg n(z)sg n(
.
y − .

y1))] (123)

where

fMR is the force generated by damper, y is the displacement of the damper,

y1 is the internal displacement of the damper; K1 is the accumulator stiffness

; y0 is the initial displacement of the spring K1; z is the evolutionary variable

that describes the hysteretic behaviour of the damper; α is the evolutionary

coefficient; c0 and c1 control the viscous damping at large and low velocities,

respectively.

γ, β, n and A are the shape parameters of the hysteresis loops, K0 represent

the stiffness at large velocity.

Le voltage dependent parameters are modelled by

α=α(u) =αa +αbu, c1 = c1(u) = c1a + c1bu, c0 = c0(u) = c0a + c0bu (124)

The command voltage is accounted for through the first-order filter

.
u =−η(u −v) (125)

Where

v is the voltage applied to the damper and η is a positive number that reflects

the delay time of the damper.

Erkus et al [109] gave the parameters of the model defined above based on
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a prototype model of the MR damper. We define the suitable control pa-

rameters knowing that the objective here is to have the values leading to the

efficiency of the control according to the position of damper on the structure

(see Table 5)

Table 5: Modified MR damper parameters

Parameter Value Parameter Value

A 301 K1(N/m) 5 MF

β( m−2) 363 γ m−2 363

c0a (N .s/m) 2100 MF η(s−1) 190

c0b(N .s/mV ) 350 MF Y0(m) 0

c1a (N .s/m) 28300 MF n1 2

c1b(N .s/mV ) 295000 MF K0(N/m) 46.90 MF

αa(N/m) 14000 MF αb(N/m.V ) 69500 MF

The parameters c1, c0 and α depend the voltage

Figure 35: Simplified model structure under control

3.2.4 Effect of the control on the dynamics responses

The structure under control is shown in Figure 35, where the MR damper

is fixed at a specific point of the cantilever beam, therefore the mathemati-

cal model of structure in presence of the magneto-rheological damper is de-
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scribed by the following equations

∂4Y

∂τ4
+2λ

∂3Y

∂τ3
+

(

k2 +λ2
) ∂2Y

∂τ2
− (1+k1)

∂4Y

∂X 2∂τ2
−λ (1+k1)

∂3Y

∂X 2∂τ
+

λk2

∂Y

∂τ
+k1

∂4Y

∂X 4
+εFMR(τ)δ(X −X1) = k2P1(τ)+λ

.

P1(τ)+
..

P1(τ)

(126)

with

FMR(τ) =
kGT 4 fmr (t )

ρ2I L2

where

FMR(τ) is the dimensionless force exerted by the damper on the structure and

δ(X − X1) is the Dirac delta function which indicates that the concentrated

force is applied at the attachment point, X = X1.

The parameter ε allow here to have general equation, ie for ε = 0, the struc-

ture is uncontrolled and ε= 1, the structure is controlled.

The equations at first mode vibration are

....

Q(τ)+R1

...

Q(τ)+R2

..

Q(τ)+R3

.

Q(τ)+R4Q(τ)+ε1FMR(τ) = R5P1(τ)+R6

.

P 1(τ)+

R7

..

P 1(τ)

(127)

with

FMR = a1

.

Y 1 +a2

(

η2−Y0

)

where Y1 is governed by

.

Y 1 = a3
.
η2 +a4Z +a5(η2 −Y1) (128)

.

Z =
(

.
η2 −

.

Y 1

)[

A −|Z |n1

(

β1 +γ1si g n(Z )si g n(
.
η2 −

.

Y 1)
)]

(129)

.

U =−ξ(U −V ) (130)

with the dimensionless parameters defined by

Z =
z

L
, Y1 =

y1

L
,Y0 =

y0

L
, U =

u

V1

, V =
v

V1

, ε1 =
εΦ(X1)

b1

where V1 is the reference voltage(V1 = 50V ol t ).

η2 =Q(τ)Φ(X1),
.
η2 =

.

Q(τ)Φ(X1), γ1 = γLn1 , β1 =βLn1 , ξ= ηT

56



a1 = a1(U ) =
kGT 3c1

ρ2I L
, a2 =

kGT 4k1

ρ2I L
, a3 = a3(U ) =

c0

c0 + c1

, a4 = a4(U ) =

αT

c0+ c1

, a5 = a5(U ) =
k0T

c0 + c1
with

α=α(U ) =αa +αb1U , c1 = c1(U ) = c1a + c1b1U , c0 = c1(U ) = c0a + c0b1U

αb1 =αbV1, c1b1 = c1bV1, c0b1 = c0bV1

the damper performance of the structure subjected to an earthquake deter-

ministic through the computer simulation is analysed. The different values

of the dimensionless parameters are

β1 = 2323200, γ1 = 2323200, ξ= 7.394556555, Φ(0.2) =−0.1741045662,

Φ(0.25) =−0.2493107942, Φ(0.3) =−0.3349121633,

a1 = (0.7832175921×10−3 + .4082141160 U )MF , a2 = 5.385481475×10−9 MF ,

a3 =
2100+17500 U

30400+14767500 U
, a4 =

546+135525 U

30400+14767500 U
,

a5 =
1.825287907

30400+14767500 U

We have plotted in Figures 36 and 37 the time histories to see the effects

of the voltage and position of the MR damper on the control process.

Figures 36a shows the reduction amplitude of vibration of the structure

at point X1 = 0.2, which indicates the place where the concentrated force

magneto-rheological damper is applied. The dimensionless voltage is U =
0.39.

Figure 36b presents the effects the voltage on the control. We can notice

that when the voltage amplitude is high the amplitude of vibration is more

and more reduced. For example at τ = 240 the amplitude in Figure 36a is

2.012×10−5 and in Figure 36b is 1.448×10−5

From Figures 37a and 37b, we observe that the position of the attachment

point of the damper is an important parameter for the optimization of the

control process.

In fact Figure 37 shows us that the control is more and more efficient as

the contact point between the control and the structure is far from the base.

This means that the best implementation of the control design should locate

the optimal point for the controller action.

3.2.5 Stability of semi-active structural control

One of the consequences when a device is added on a mechanical struc-

tural is that the fixed points position change.
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Figure 36: Time histories: Effects of the input voltage on the amplitude of vibration
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Figure 37: Time histories: effects of the position of contact between the controller and the

structure

Thus instead of reinforcing the stability of the structure, it can destabilize

the system leading to premature destruction of the system. Therefore, it is

important to address the stability condition.

Introducing the new variables

χ1, χ2, χ3, χ4, χ5, χ6 and χ7 such that
.

Q = .
χ1 = χ2,

..

Q = ..
χ1 =

.
χ2 = χ3,

...

Q = ...
χ1 =

..
χ2 =

.
χ3 = χ4, Y1 = χ5, z = χ6 ,

U =χ7
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Equations. (127), (128), (129) and (130) can then be rewritten as follows























































.
χ1 = χ2
.
χ2 = χ3
.
χ3 = χ4
.
χ4 =−R1χ4 −R2χ3 − (R3 +ε1ε2a1a3)χ2 − (R4 +ε1ε2(a1a5 +a2))χ1+

ε1a1a5χ5 −ε1a1a4χ6 +ε1a2Y0
.
χ5 = a3ε2χ2 +a4χ6 +a5(ε2χ1 −χ5)
.
χ6 = (ε2x2 −a3ε2χ2 −a4χ6 −a5(ε2χ1 −χ5))[A −χn1

6 (β1 +γ1µ)]
.
χ7 =−ξ(χ7 −V )

(131)

where

ε2 =Φ(X1); a1 = a1(χ7); a3 = a3(χ7); a4 = a4(χ7); a5 = a5(χ7);

µ= si g n(χ6)si g n(ε2χ2 −
.
χ5)

The general form of the equilibrium point is

P =









χ1 =
ε1a2Y0

R4 +ε1ε2a2

, χ2 = 0, χ3 = 0, χ4 = 0,

χ5 =
ε1ε2a2Y0

R4 +ε1ε2a2

+
a4(V )

a5(V )
χ6, χ6 =χ6, χ7 =V









The characteristic equation is given as follows

Λ
7 +aa1Λ

6 +aa2Λ
5+aa3Λ

4 +aa4Λ
3 +aa5Λ

2 +aa6Λ+aa7 = 0 (132)

In which

aa1 = ξ+R1 +h1(χ6,V ); aa2 = ξR1 +R2 + (ξ+R1)h1(χ6,V )

aa3 = (ξR1 +R2)h1(χ6,V )+h2(V )+ξR2 +R3

aa4 = ξh2(V )+h1(χ6,V )(ξR2 +ε1ε2a1(V ))+R1 +ε1ε2a2 +ξR3 +R3

aa5 = ξε1ε2a2 +h1(χ6,V )(ε1ε2 (a2 +ξa1(V ))+ (R1 +ξR3))+ξR1

aa6 = ξ(R1 +ε1ε2a2)h1(χ6,V ); aa7 = 0

where h1(χ6,V ) =T

(

α(V )g (χ6)+K0

)

c0(V )+ c1(V )
and h2(V ) =

ε1ε2a1(V )c0(V )

c0(V )+ c1(V )
with

g (x6) =
{

A −χn1

6 (β1 +γ1) i f µ> 0

A −χ
n1

6 (β1 −γ1) i f µ< 0
(133)

χ6 is an evolutionary variable that influences the vibration of the structure

59



response. χ6 has a finite ultimate value χ6max , analytically this maximum

can be found from of Equation (129), which leads to [104]

χ6max =
[

A

γ1 +β1

] 1
n1

thus

0 ≤ χ6 ≤
[

A

γ1 +β1

] 1
n1

where n1 is an even number

Assuming that

0 <
A

γ1+β1

< 1

leads us to the following conclusion

0≤ g (χ6)≤ A.

From the Equation (132), we have Λ1 = 0 the solutions are all constant. Since

we are interested in the dynamics response it remains to determine the oth-

ers eigenvalues where the stability depends on the characteristic equation

below

Λ
6 +aa1Λ

5 +aa2Λ
4 +aa3Λ

3 +aa4Λ
2 +aa5Λ+aa6 = 0 (134)

Now, using the Routh-Hurwitz criterion, the equilibrium point P f is stable if

and only if the following analytic relations are satisfied.

aai > 0 (i = 1,2,3,4,5,6)

∆3 > 0

∆5 > 0

(135)

where

∆3 = aa1aa2aa3 −aa2
3 −aa2

1aa4 +aa1aa5,

and

∆5 = aa1aa2aa3aa4aa5 −aa2
3aa4aa5−aa2

1aa2
4aa5−aa1aa2

2aa2
5+

aa2aa3aa2
5 +2aa1aa4aa2

5 −aa3
5 −aa1aa2aa2

3aa6 +aa2
3aa2

6+
aa2

1aa3aa4aa6 +2aa2
1aa2aa5aa6−3aa1aa3aa5aa6 −aa3

1aa2
6

From the relation (135), we deduce that the equilibrium point P f is stable
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when the following condition is satisfied.

χn1

6 <
A

β1 +γ1

+
(c0(V )+ c1(V ))(ξ+R1)

α(V )T (β1 +γ1)
+

K0

α(V )(β1 +γ1)
(136)

The Figure 38 presents region in the control space parameters α, c0 and c1.

Note that, these can be adjusted since they depend on the applied voltage.

As a result, the shaded domains represent the regions of values of men-
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Figure 38: Stability diagram in the space parameters of control for X1 = 0.3 and U = 0.89

tioned parameters, for which the structural control strategy is always stable.

The boundary values of these parameters can be obtained from this Figure,

because allow to have the optimal scale coefficient MF as in Table 5.
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3.3 Quenching of vibration modes on two interconnected build-

ings subjected to seismic loads

In this section; we describe the statistical responses of the two buildings

subjected to the repeated sequence of excitation. The nonstationary random

approach is employed to simulate seismic events.

3.3.1 Description of the system

The structural system is constituted of two cantilever beams B g1 and B g2,

They are subjected to the same disturbance force denoted seismic load. At

a located point of each tall building, is connected a semi-active controller

dubbed MR damper, as illustrated in Figure 39.

This shock absorber generates the variable forces acting on the mechani-

1
y

2
y

..

gu

1
Bg 2

Bg
 MR Damper

2
x

1
x

Figure 39: Simplified model

cal structures to safeguard them against undesirable vibrations. The control

device is equipped of a moving piston head, which is fixed on the structure

B g2, another extremity of this device is embedded on the second structure

B g1, which not only is subjected to earthquake excitation and at the same

time play the rule of support of the controller.

The mathematical modelling

Both buildings under investigation are modelled each like an continuum

cantilever Timoshenko beam, where I1 and I2 are the moments of inertia of

the cross-section ; G1 and G2 are the shear modulus of elasticity, E1 and E2 are
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the Young’s modulus; the mass per unit length are m1 = ρ1 A1 and m2 = ρ2 A2;

ks is the shear coefficient depending on the shape of the cross section of each

beam and function of Young’s modulus; r1 = (I1/A1)2 and r2 = (I2/A2)2 are the

radius of gyration; δ(•) denotes the Dirac function; ca and cb are the mechan-

ical damping coefficients. The subscript 1 and 2 denoted the beams B g1 and

B g2, respectively.

Moreover the vibration amplitude of the structural system are described by

y1 = y(x1, t ) and y2 = y(x2, t ), which depend on axial coordinate x1 and x2

and time, namely the relative transverse displacements.

In considering the Timoshenko model, which is governing by the differential

partial equation. This implies that the equations of motion for both inter-

connected buildings by the magneto rheological damper under the earth-

quake excitation are given [97]

m1

∂2 y1

∂t 2
+ ca

∂y1

∂t
+E1I1

∂4 y1

∂x4
1

−m1r 2
1

(

1+
E

ksG1

)

∂4 y1

∂x2
1∂t 2

=

−m1üg (t )+ fd (t )δ(x1 −x3)

(137a)

m2

∂2 y2

∂t 2
+ cb

∂y2

∂t
+E2I2

∂4 y2

∂x4
2

−m2r 2
2

(

1+
E2

ksG2

)

∂4 y2

∂x2
2∂t 2

=

−m2üg (t )− fd (t )δ(x2 −x3)

(137b)

x3 represents the located point of the MR device on B g1 and B g2.

The nonstationary ground acceleration üg (t ) adopted here, is the form of n

sequences [92]. This random function is assume to take the form of a fil-

tered Gaussian stationary white noise modulated by a deterministic enve-

lope function. This mentioned form describes the real earthquake that has

the time-variation of both the intensity and frequency content. Expression

of this term is defined in section 2.3.6.

The equations governing the force fd generated by the MR damper at the

attachment point x3 is expressed as follows

fd = c1(ẏ − ẏ1(x3, t ))+k1

[

(y2(x3, t )− y1(x3, t ))− y0

]

(138)

y is an internal displacement, governed by

ẏ =
1

c0+ c1

[αz + c0 ẏ2(x3, t )+ c1 ẏ1(x3, t )+k0(y2(x3, t )− y)] (139)

ż =−γ|ẏ2(x3, t )− ẏ |z|z|n−1 −β(ẏ2(x3, t )− ẏ)|z|n +δa(ẏ2(x3, t )− ẏ) (140)
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where

c0 and c1 are the viscous damping at larger velocities and low velocities re-

spectively; k1 is the accumulator stiffness; k0 represents the stiffness at large

velocity; γ, β and δa are the shape parameters of the hysteresis loops.

In equation (139), some parameters depend on the command voltage u are

given by

c0 = c0a + c0bu, c1 = c1a + c1bu and α=αa +αbu (141)

where the command voltage u is accounted for through the first order filter

u̇ = ηp(u −vc ) (142)

vc is the voltage applied to current driver

Introducing the dimensionless variables, these lead to following expressions.

Y1 = y1

L
, Y2 = y1

L
, Z = z, Y = y

L
, τ = t

T
,κ1 = ca T

m1
, κ2 = cb T

m2
, a1 = E1I1T 2

L4m1
, a2 =

E2I2T 2

L4m2
, a3 = r 2

1

L2 , a5 = E1

ksG1
, a4 = r 2

2

L2 , a6 = E2

ksG2
, ÿg (τ) = üg (t)T 2

L
, Fd = fd (t)T 2

m1L2 , µ =
m1

m2
, αb = αT

(c0+c1)
, C0 = c0

c0+c1
, C1 = c1

c0+c1
, K0 = k0T

c0+c1
, cl = c1T

m1L
, , K1 = k1T 2

m1L
, γl =

γL2, δl = δa, βl = βL2, s01 = s0

S0
, Ω = ωT, Ωg = ωg T, T = L

√

ρ

ksG1

, ηT =

ηT, U = u
V1

, Vc =
vc

V1

By considering the above new parameters, multiplying by the different

spatial expression the set of equation (137) and integrating from 0 to 1.

One can obtain the modal forms of above equations as follows

ξ̈i (τ)+ζi
1ξ̇i (τ)+ςi

1ξi (τ) =−σi
1 ÿg (τ)+εi

1Fd (τ) (143a)

χ̈i (τ)+ζi
2χ̇i (τ)+ςi

2χi (τ) =−σi
2 ÿg (τ)−εi

2Fd (τ) (143b)

The dimensionless voltage U is given as

U̇ =−ηT (U −Vc) (144)

Introducing the new variable, this leads us to yield the set of equations that

are now be written as

z̈1(τ)+ζi
1ż1(τ)+ςi

1z1(τ) =−σi
11 ÿg (τ)+εi

11Fd (τ) (145a)

z̈2(τ)+ζi
2ż2(τ)+ςi

2z2(τ) =−σi
22 ÿg (τ)−εi

22Fd (τ) (145b)
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with

Fd (τ) = cl (ż2 − Ẏh − ż1)+K1(z2 − z1 −Y0) (146)

where Y

Ẏh(τ) =−αb Z + (1−C0)ż2 −C1ż1 −K0Yh (147)

and Z is governed by

Ż (τ) = Ẏh

[

δa −|Z |n
(

βl +γl sg n(Ẏh)sg n(Z )
)]

(148)

This made transformation allows us now to rewrite the set of equations (143)

under the form of the state space equation, therefore expression is given as

Ẇ(τ) =ΣW(τ)+Bÿg (τ)+B1Fd (τ) (149)

W =











z1

z2

ż1

ż2











, Σ=















0 0 1 0

0 0 0 1

−ςi
1 0 −ζi

1 0

0 −ςi
2 0 −ζi

2















, B =











0

0

−σi
11

−σi
22











, B1 =











0

0

εi
11

−εi
22











From the above equations, an independence of different modes exhibit by

the mechanical structures.

The geometric and material properties of beams B g1 and B g2 are defined in

Table 6

and these lead to the dimensionless values:T = 0.03, X3 = 0.3

Table 6: Geometric and material properties

E1 = E2 = 2.1×1011 N/m2 A1 = 25×20 m2; ,I1 = 16666.7 m4; I2 = 1250 m4;

L = 80 m, ρ1 = 7850 kg /m3 ρ2 = 7850 kg /m3; ν= 0.3 A1 = 15×10 m2;.

The parameter values listed in Table 8 are those used in Ref.[105]. These

parameters depend on the coefficient MF, also allowing to modify the prop-

erties of the damper, in order to have the parameter values for a large scale

MR damper, enable to control the mechanical structure in the optimal con-

dition.

3.3.2 Numerical results of the controlled mechanical system

With a view to obtain the optimal input voltage corresponding to the desired

damper force, the control algorithm used in semi-active control based on the

Lyapunov stability theory [113] is employed.
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Table 7: Model parameters of the MR damper.

First mode

δ1
1 = 1.86459029946901 ǫ1

1 = 1.79961176980009 ς1
1 = 0.1794505064 ε1

1 =−0.292553544

δ1
2 = 1.87234598422580 ǫ1

2 = 1.85523372531123 ς1
2 = 0.0480761492 ε1

2 =−1.00458791

σ1
1 =−0.7823279832 σ1

2 =−0.7604937075

Second mode

δ2
1 = 4.63405503453255 ǫ2

1 = 3.76159351295218 ς2
1 = 5.597669667 ε2

1 =−0.712027715

δ2
2 = 4.49341259217513 ǫ2

2 = 4.39148518126663 ς2
2 = 2.028598833 ε2

2 =−3.188313916

σ2
1 =−0.2915422860 σ2

2 =−0.2283758422

Third mode

δ3
1 = 7.50656628630713 ǫ3

1 = 5.07068861723638 ς3
1 = 28.38752152 ε3

1 =−0.444999427

δ3
2 = 7.72105209323756 ǫ3

2 = 6.73269253778025 ς3
2 = 13.2367535 ε3

2 =−3.44782732

σ3
1 =−0.08394819892 σ3

2 =−0.05571034952

Table 8: Model parameters of the MR damper.

δa= 301 n1= 2

γ(m−2) =363 ηp (s−1)=190

β(m−2) =363 k1(N/m)=617.31MF

k0(N/m) = 46.90MF y0(m)=0.0

αa(N/m) =14,000MF αb(N/mV )=69,500MF

c0a (N s/m) = 2,100MF c0b(N s/mV )= 350MF

c1a (N s/m)=28,300MF c1b(N s/mV )= 295,000MF

The Lyapunov function, denoted Ly (W) must be a positive function of the

state of the system,W. According to the Lyapunov stability theory, if the rate

of change of lyapunov function, L̇y (W), is negative semi-definite, the origin

is stable. Lyapunov function is chosen of the form

Ly =
1

2
||W||2p (150)

where ||Σ||p=P-norm of the states defined by

||Σ||p =
[

Σ′PLΣ
]1/2

(151)

where PL is real, symmetric, positive definite matrix. PL is found by using

Lyapunov equation.

Σ′PL +PLΣ=−Qp (152)

Qp is a positive definite matrix. The derivative of the Lyapunov function for

a solution of the state-space equation is

L̇y =−
1

2
W′QpW+W′PLB1Fd +W′PLBÿg (153)
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the control law which minimize L̇y is

Vc =Vmax H(−W′PLB1Fd ) (154)

Where

Vmax is the maximum voltage and H(·) is Heaviside step function. When this

function is greater than zero, the voltage (Vc) applied to the damper should

be maximum (Vmax), otherwise, the command voltage is set to zero.

By considering all defined parameters in the dimensionless form of me-

chanical structures, with those of controller, which are associated with an

appropriated algorithm to display in Figures 40a, 40b and 40c.

In what follows, these figures show a considerable reduction of vibration

of the amplitude of buildings B g1 and B g2 at a interconnected point X3 =
0.25 of the MR device. They also show that the MR damper it is a element

that reduces the excessive energy bring by the external disturbances.

To observe the efficiency of MR damper on the structures, root mean square

displacement of each building is presented.

Figures 41a, 41b and 41c display root mean square of B g1 and B g2 con-

trolled and uncontrolled at different modes of vibration and different local-

ized points of the MR device, in order to have the optimal location.

In Figure 41a shows that the good attachment points where the controller

can offer a best performance are Xp = 0.7 and Xp = 0.25 for B g1 and B g2,

respectively.

It is also observed that at the point X3 = 0.25, the controller reduces even

better the vibration than the points X3 = 0.5 and X3 = 0.75 in Figure 41b.

As regards, in Figure 41c at the localized point Xp = 0.5, it is seen that

there is no exist a difference between controlled and uncontrolled cases. This

proves that the controller is not able to reduce the excessive vibrations on the

two buildings. While the located points Xp = 0.25 and Xp = 0.7, the shock ab-

sorber performs a considerable effort to attenuate the vibration.

One can clearly see in these figures illustrating the root mean square for all

the modes show that the optimal position of the dynamic controller on the

buildings is the point Xp = 0.25. In this location, the MR device reduces bet-

ter the excessive vibrations.

By resuming all the mentioned details, one can note that the MR device is

a good candidate that also able to minimize disturbances. As further infor-

mation that one can have from these figures, the time that the controller will

launch to act on the structures, which can be computed through the follow-
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Figure 40: Time history of buildings B g1 and B g2 (third mode), Vmax = 2.0, MF=12090, X3 =
0.25

ing expression given by

ǫ1i =
E [ξ2

i ]1/2
uncontr olled

−E [ξ2
i ]1/2

contr olled

max
(

E [ξ2
i
]1/2

uncontr olled
−E [ξ2

i
]1/2

contr olled

)

ǫ2i =
E [χ2

i
]1/2

uncontr olled
−E [χ2

i
]1/2

contr olled

max
(

E [χ2
i
]1/2

uncontr olled
−E [χ2

i
]1/2

contr olled

)

(155)

The time where the controller begin to attenuate the vibration on buildings

B g1 and B g2 is got if ǫ1i < h1 and ǫ2i <h1, respectively.

For instance at a fixed position X3 = 0.25 with the chosen precision h1 = 10−2,
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Figure 41: Root square response B g1 and B g2, Vmax = 2.0, MF=12090

the time that the MR damper launch to reduce the excessive vibration is, at

the first mode τ = 45.42 for B g1 and τ = 18.48 for B g2, at the second mode

τ= 13.59 for B g1 and τ= 4.2 for B g2, at the third mode τ= 11.49 for B g1 and

τ= 7.05 for B g2.

It should be noted that the employed root mean square displacement ap-

proach also allows to assess the percentage reduction of excessive vibrations

from the external loads by the controller.
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3.4 Fuzzy MR Device Vibration Control of two Cantilever Tim-

oshenko Beams interconnected under Earthquake Exci-

tation

This part of the thesis deals with the nonstationary random response of two

cantilevers structures connected via a MR damper. The cantilever Timo-

shenko beam approach is used to model each of structures. An analytical

procedure is detailed to obtain the modal equations of the set of structural

system.

A Fuzzy logic strategic is used to foresee the appropriate voltage leading to

a good control of earthquake-induced vibrations. Since the applied voltage

to control device is the only parameter that can be adjusted to modify the

control force.

3.4.1 Description of the physical model

The structural system is constituted of the two continuum cantilever struc-

tures (B g1) and (B g2) of different heights. The buildings are subjected to

the same environmental dynamic force in the horizontal direction denoted

ground excitation, which is considered to simulate a seismic motion. At loca-

tion fixed point of each structure; a semi active device dubbed MR damper

(D) is installed, consequently this control device rigidly interconnects the

two buildings between them such manner that they work together, as illus-

trated in Figure 42. The control device is equipped of a moving piston head

Figure 42: The simplified model of the interconnected buildings

fixed on B g1 and another of their extremities is linked on B g2. It also plays

the support rule of this damper which, generates the damping forces acting
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on both mechanical structures in order to safeguard them against undesir-

able vibrations.

Considering the Timoshenko model which is governing by the differential

partial equation, the dynamics of both buildings interconnected by a mag-

neto rheological damper under the earthquake excitation is given as follows[97]

m1

∂2 y1

∂t 2
+ c1

∂y1

∂t
+E1I1

∂4 y1

∂x4
1

−m1r 2
1

(

1+
E1

ksG1

)

∂4 y1

∂x2
1∂t 2

=

−m1üg (t )− fD(t )δ(x1 −xa)

(156a)

m2

∂2 y2

∂t 2
+ c2

∂y2

∂t
+E2I2

∂4 y2

∂x4
2

−m2r 2
2

(

1+
E2

ksG2

)

∂4 y2

∂x2
2∂t 2

=

−m2üg (t )+ fD(t )δ(x2 −xc)

(156b)

In this formulation, the fourth term represents the correction for rotary in-

ertia plus the shear deformation effect. The joint action of rotary inertia and

shear deformation effects are neglected [29].

The above set of equations shows the MR damper is at origin of the connec-

tion of two structures. This means that the two buildings act independently

when they do not connect with the control device. Its presence is to increase

the safety and reliability of buildings, and offering the full advantage to mod-

ify their response dynamics.

To describe the dynamics of the MR device, Spencer et al.[91] have proposed

a phenomenological model which is described as the Bouc Wen modified

version. Based on the obtained results, the authors concluded that the ap-

proach numerically tractable and effectively portrays the behaviour of a MR

damper.

The equations governing force fD generated by the MR damper D , at the at-

tachment points xa, of B g1 and xc of B g2, respectively, can be expressed as

follows

fD = c1(ẏb − ẏ2(xc , t ))+k1

[

(y1(xa, t )− y2(xc , t ))− y0

]

(157)

The internal displacement yb is illustrated

ẏb =
1

c0+ c1

[αi zb + c0 ẏ1(xa, t )+ c1 ẏ2(xc , t )+k0(y1(xa , t )− yb)] (158)

and zb is given by

żb =−γ|ẏ1(xa, t )− ẏ |zb|zb |n−1 + (δa −β|zb|n)(ẏ2(xa, t )− ẏb) (159)

where c0 and c1 are the viscous damping at larger velocities and low veloci-
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ties respectively; k1 is the accumulator stiffness; k0 represents the stiffness at

large velocity; γ, β and δa are the shape parameters of the hysteresis loops

In (158), some parameters depend on the command voltage u1 which are

illustrated as follows

c0 = c0a + c0bu1, c1 = c1a + c1bu1, α=αa1 +αb1u1 (160)

where the command voltage u1 is accounted for through the first order filter

u̇1 = ηp1(u1 −vc1) (161)

vc1 is the maximum applied voltage associated with the saturation of the

magnetic field in the MR damper [9].

Introducing the dimensionless variables, these result in to following expres-

sions.

Y1 = y1

L1
, Y2 = y2

L2
, Zb = zb

L1
, Yb = yb

L2
, τ= t

T
,κ1 = cm T

m1
, a1 = E1I1T 2

L4
1m1

, a2 = E2I2T 2

L4
2m2

,

a3 =
r 2

1

L2
1

, a5 = E1

ksG1
, a4 =

r 2
2

L2
2

, a6 = E2

ksG2
, ÿg (τ) = üg (t)T 2

L1
, µm = m2

m1
, µl = L2

L1
,

αb = αi T

(c0+c1)
, C0 = c0

c0+c1
, C1 = c1

c0+c1
, γl = γi L2

1, δl i = δa,βl =βi L2
1,κ2 = cnT

m2
,

K0 = k0T
c0+c1

, cl = ci T

m1L1
,K1 = k1T 2

m1L1
, T = L1

√

ρ

ksG1
, Ui = ui

V1
, Vc = vc

V1
, ηT = ηpT

By Taking into account the above new parameters, the resulting relation-

ships lead us to the dimensionless mathematical models which are repre-

sented by the below equations

∂2Y1

∂τ2
+κ1

∂Y1

∂τ
+a1

∂4Y1

∂X 4
1

−a3 (1+a5)
∂4Y1

∂X 2
1∂τ

2
=−ÿg (τ)−

FD(τ)δ(X1 −Xa)

(162a)

∂2Y2

∂τ2
+κ2

∂Y2

∂τ
+a2

∂4Y2

∂X 4
2

−a4 (1+a6)
∂4Y2

∂X 2
2∂τ

2
=−

1

µl

ÿg (τ)+

1

(µmµ2
l
)
FD(τ)δ(X2 −Xc)

(162b)

the dimensionless equation of the MR damper force is illustrated as follows

FD(τ) = cl (Ẏb − Ẏ2(Xc ,τ))+K1(Y1(µl Xc ,τ)−µl Y2(Xc ,τ)−Y0) (163)

Yb and Zb are governed by the below equations

Ẏb(τ) =αb Zb +C0Ẏ1(µl Xc ,τ)+C1µl Ẏ2(Xc ,τ)+K0(Y1(µl Xc ,τ)−Yb) (164)
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Żb(τ) =−γl |Ẏ1(µl Xc ,τ)− Ẏb|Zb |Zb|n−1 + (δl −βl |Zb|n)(Ẏ1(µl Xc ,τ)− Ẏb)

(165)

Where,Xa and Xc are the dimensionless variables of xa and xc , which char-

acterize the attachment points of the control device on the building B g1 and

B g2, respectively; V1 is the reference voltage, µl and µm are the length and

mass ratios, respectively.

To reduce the partial differential equations to a set of ordinary differential

equations. The mentioned relative displacements Y1 and Y2 are considered

each one, as the product of a spatial expression multiplied by a function of

time and by considering the above new parameters. We have the following

expressions

Y1(X1, t ) =
nm
∑

j=1

Φ
j

1(X1)ξ j (τ), Y2(X2, t ) =
nm
∑

j=1

Φ
j

2(X2)χ j (τ) (166)

ξ j (τ) and χ j (τ) are the time dependent displacement of B g1 and B g2 for the

j th vibration mode, nm is the total number of modes, Φ
j

1(X1) and Φ
j

2(X1) are

the spatial forms.

By using the mode decomposition of expressions of the equation (166) and

substituting them into the dimensionless form of(156), multiplying by dif-

ferent spatial expressions and performing the integration from 0 to 1; we get

the modal forms of above equations, defined as follows

ξ̈ j (τ)+ζ
j

1ξ̇ j (τ)+ς
j

1ξ j (τ) =−σ j

1 ÿg (τ)−ε
j

3FD(τ) (167a)

χ̈ j (τ)+ζ
j

2χ̇ j (τ)+ς
j

2χ j (τ) =−
1

µl

σ
j

2 ÿg (τ)+
1

µmµ2
l

ε
j

3FD(τ) (167b)

The dimensionless equation of the force generated by the MR device is satis-

fied by the expressions illustrated as follows

FD(τ) = cl

(

ξ̇ jΦ
j

1(µl Xc)− Ẏh − χ̇ jΦ
j

2(Xc)
)

+K1

(

ξ jΦ
j

1(µl Xc)−µlχ jΦ
j

2(Xc)−Y0

)

(168)

where Yh and Zb can be rewritten as

Ẏh(τ) =−αb Zb + (1−C0)ξ̇ jΦ
j

1(µl Xc)−C1µl χ̇ jΦ
j

2(Xc)−K0Yh (169)
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Żb(τ) =−γl |Ẏh|Zb|Zb|n−1 +
(

δa −βl |Zb|n
)

Ẏh (170)

with

Yh = ξ jΦ
j

1(µl Xc)−Yb (171)

The applied voltage to the control device is defined by the dimensionless

expression which is given by

U̇ = ηT (U1 −Vc1) (172)

Equations (167)-(172) describe the time evolution of buildings B g1 and B g2

interconnected at the attachment point by the shock absorber. Afterwards,

it is seen that, the parameter of equations varied at each mode of vibration

and the force generated by MR device depend on its location point on both

buildings. All of these indicated that the optimal connection point of the

controller is necessary.

Table 9: parameter values of B g1 and B g2.

Parameters δ
j
1 ε

j
1 d

j
1 d

j
3 ς

j
1

First 1.8748 1.8729 −0.7350 −0.7336 0.0052

Second 4.6872 4.6582 −1.0315 −1.0191 0.2000

Parameters δ
j
2 ε

j
2 d

j
11 d

j
33 ς

j
2

First 1.8734 1.8629 −0.7397 −0.7316 0.0288

Second 4.6567 4.5031 −1.0918 −1.0224 1.0407

3.4.2 Passive on control

Although the attachment point of the control device can significantly affect

the dynamic response of buildings. It is also important to define the satura-

tion capacity of the damping force produced by the control device. Because

it is always appropriate to enhance the structural safety. For illustrating this

underlying phenomenon in the reasonable context, the passive on control

will be employed.

Thus, Mean and root mean square of the relative transverse displacements

at the first and second modes are displayed through Figures 43 and 44, re-

spectively. The selected control device position Xc = 0.3 for B g2,referring to

position Xa = 0.27 for B g1.

In Figures 43a and 43b, the difference between the controlled and uncon-

trolled amplitudes during the interval time τ ∈ [0,100] is observed. One can

see that the control device has modified the response of structures by adding
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Figure 43: First mode Xc = 0.3, MF= 1000

the mechanical energy into B g1 and B g2 instead of reducing. In this config-

uration, the device does not presently show its capacity to protect the two

buildings at the same time; this can be due to its intrinsic nonlinear charac-

teristic.

To overcome this shortcoming, it will be crucial to associate with device

control an appropriated algorithm that can be dynamically modify its re-

sponse by improving the response of buildings subjected to earthquake. All

these figures are displayed at the dimensionless voltage Vc = 0.4.

It is well-known that the MR damper is characterized by a limited capac-

ity to control the vibration-induced the external excitation. As the control

device can change the properties through the modification of the parameter

MF. The variation of this automatically affects the force generated by the con-

trol device. It will be convenient to have the best MF value leading to good
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Figure 44: Second mode Xc = 0.3,MF= 1000

control and maintaining stable the structural system.

The analyse for finding the optimal mentioned parameter is illustrated in

Figures 45a and 45b at first and second vibration modes, respectively. These

display the peak root mean square displacement versus MF.

Figure 45 shows that the best value of MF guiding to better reduction for

first the two modes is 1000.

In addition, one can notice that beyond of this value, the amplitude vibration

of structures increase significantly, what is a catastrophic consequence for

the buildings. Since the further energy can destabilize the structural system

leading to premature destruction.
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Figure 45: Limit value of the MR damper

As showed earlier by equations (167)-(172) of the influence of the location

control device on the dynamic response of structures.

Figure 45 shows that the location points versus the maximal of Root mean
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square displacement of structures B g1 and B g2 at each vibration mode. It is

important to note the location of the MR damper on the structures B g1 and

B g2 is indicated by the couple of coordinates (Xa, Xc) where Xa =µl Xc , since

the two structures defined in the context of our study do not have the same

length.

Thus, with regard the first mode (Figure 46a), one can clearly see that the

values 0.27, 0.45, 0.63, 0.81 and 0.1, 0.3, 0.5 are best location points of the

control device on B g1 and B g2; respectively. The analyse of these results

leading to define only the two couples (0.27,0.3), (0.45,0.5) as the optimal

positions of the control device. All these positions presented here,are asso-

ciated with maximal root means square displacement (see table 10).

For the case second mode as shown in Figure 46b, there are the values

0.27, 0.45, 0.63 and 0.3, 0.9 defined as the best position of vibration control
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Figure 46: Location point of the MR device

Table 10: Max RMS B g1 and B g2 versus location points.

B g1 B g2

Location points 0.09 0.27 0.45 0.63 0.81 0.1 0.3 0.5 0.7 0.9

First mode
(

×10−4
)

4.88 4.03 3.72 3.73 3.76 2.88 2.65 2.91 3.11 3.19

Second mode
(

×10−5
)

3.36 2.22 2.29 1.54 3.61 2.18 1.82 2.22 2.25 0.91

on B g1 and B g2; respectively. The analyse only gives one couple (0.27,0.3) as

the optimal position.

Note in passing that it is impossible to change the location control device

at each vibration mode. As a consequence from first and second modes, one

can see that the couple (0.27,0.3) appears as the best position adapted for the
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two vibration modes leading to better attenuation excessive vibration with-

out adding mechanical energy to any structure.

3.4.3 Fuzzy Logic Control

Due to the inherent nonlinear nature of the MR damper, the appropriated

control strategies were developed, in order to allow the controller to achieve

high level of performance [86]. The MR damper-based the strategy control

offer the reliability of passive control device but also maintain adaptability

of fully active control systems [110]. In this view, the Fuzzy algorithm will

be adopted to perform the response dynamics of the MR damper during the

control process by guaranteeing the safety and the stability of structures. As

a consequence of underlying fact, it will be necessary to define an algorithm

that allows to avoid the increase of the energy in the structures during the

control process (as observed in Figure 43), since the presence of the supple-

mentary energy can drive at the destabilisation or destruction of the struc-

ture.

It is important to note that the mentioned correction is necessary in order

to adjust the voltage that commands the MR damper.

In what follows, the relative displacement
(

Xr = ξ j −χ j

)

and relative ve-

locity
(

Vr = ξ̇ j − χ̇ j

)

of the two buildings will be used like input variables.

Each of these is divided to a total of seven fuzzy variables, which are de-

fined as NL (Negative Large), NM (Negative Medium), NS (Negative Small),

ZE (Zeros), PS (Positive Small), PM (Positive Medium), PL (Positive Large).

The considered output information is the voltage applied to the MR damper.

The fuzzy variables for this output is separated of 6 membership functions: Z

(Zeros), P ( Small), M ( Medium), L ( Large), VL (Very Large) and EL (Extreme

Large).

The triangular membership functions for input and output variable are

plotted in Figure 47, where the input and output universe are [0,1] and [−1,1],

respectively. Note that the universe of output variables is obtained by nor-

malizing.

Fuzzy control rules employed in this paper to command the voltage are

listed in Table 11.

Figure 48 shows that the time histories of displacements uncontrolled and

controlled of structures B g1 and B g2 at the first and second modes of vibra-

tions. We can clearly see that controller has achieved the performance.

The behaviour of the force generated by MR damper at the first ( Figure 49a)

and second (Figure 49b) modes is illustrated in Figure 49. By focusing much

attention on this figure, it is noticed that the nonstationary random excita-
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Table 11: Fuzzy control rules

Xr / NL NM NS ZE PS PM PL

Vr

NL EL M VL ZE VL S PL

NM L VL L M S VL ZE

NS L L M L EL L S

ZE ZE ZE ZE ZE ZE M L

PS S L M L ZE L EL

PM L EL M S M VL EL

PL L M EL EL L L L
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Figure 48: Time histories of structures B g1 and B g2

tion impose almost the same dynamics to the control device force.

The control input to the MR damper at the first and second modes is pre-

sented in Figure 50. One can observe that, the time response of the applied
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Figure 49: Force generated by the MR damper
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Figure 50: Applied voltage to the MR damper

voltage to the damper have tendency to follow the sequential dynamic of the

ground acceleration.
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3.5 Reduction of vibration on a Cantilever Timoshenko beam

subjected to repeated sequence of excitation with MR Out-

riggers

We deal with the statistical effects of an outrigger system on a cantilever

beam under seismic excitation. The Timoshenko beam approach is used to

model the frame-core tube linked at a point of its length by the damped out-

riggers, therefore are connected vertically to two magneto-rheological (MR)

damper devices.

3.5.1 Description of Physical system and Dynamic model formulation

The physical model represented in Figure 51 is a structural system which is

constituted of a uniform cantilever beam and one outrigger truss. The set of

the system is subjected to the same environmental dynamic force in the hor-

izontal direction denoted ground excitation, which is considered to simulate

a seismic motion. The outriggers and the exterior columns have commonly

a high stiffness. In this context they are assumed to be infinitely rigid. As a

result, the outrigger behaves as a rigid body and is attached at a point a from

the end of the core tube.

In view of increasing the capacity of the dynamic response of the structural

system to resist against the non stationary excitation. Two semi active de-

vices dubbed MR dampers (D) are installed vertically and symmetrically, there-

fore the generated forces are applied to the core tube through the outriggers.

Figure 51: Cantilever beam with MR outriggers

The mass per unit length is m1; I is the moment of inertia of the cross-section
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Figure 52: Cross-section of the core tube

about the neutral axis, E is the Young’s modulus; G is the shear modulus of

elasticity; ra is the radius of gyration. These geometrical characteristic are

assumed constant. The lateral displacement is defined by y(x, t ) = y , which

varies with the coordinate along the beam x and with time t .

The control device fd is generated by a MR damper. The influence of the

perimeter columns on the dynamics of the core is not taken into considera-

tion.

The governing equations describing the dynamics of the cantilever Timo-

shenko beam with one damped outrigger under the earthquake loadings can

be written as

m1

∂2 y

∂t 2
+E I

∂4y

∂x4
−m1r 2

a

(

1+
E

ksG

)

∂4 y

∂x2∂t 2
=−m1ẍg (t )+

∂Ma

∂x
(173)

where the distributed moment generated by the MR dampers is

Ma = 2δ(x −a)r fd (t ) (174)

in which

δ(x −a) denotes the Dirac function, it indicates that the point a is the place

where the damped outriggers is installed.

The distance from the control devices to the centre of the core is denoted r .

The dimensionless quantity ks, is the shear coefficient depending on the ge-

ometric of the cross section of the beam and depend on as well as of the

Poisson’s ratio.

It is assumed that the dimensional ratio of the width on the area to the thick-

ness is very small, reason why the core tube is considered such a beam be-

ing the cross section at the small thickness. This analysis lead us to adopt

that, the expression of the mentioned coefficient associated with the cross-
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section of the core tube is given by [36]

ks =
20(1+ν)

48+39ν
(175)

ν is the Poisson’s ratio coefficient, it is clearly seen that ks depends solely on

the material property.

In what follows, the moment of inertia and area of the cross-section can be

formulated as

A = (b +2h)2 −b2; I =
(b +2h)4

12
−

b4

12

For convenience in the present study, the joint action of rotary inertia and

shear deformation effects is neglected. Thereafter the bending stiffness for

the outriggers is assumed to be infinite [21].

Y = y

L
, τ= t

T
, δa = δ1L, γL = γL,ζa = 2r

L
, ÿg (τ) = T 2

L
ẍg (t );

a1 = E I T 2

mL4 , a2 =
r 2

a

L2 (1+ E
ksG

),C0 = c0

c0+c1
, K0 = k0T

c0+c1
, αb = αT

(c0+c1)L
,

C1 =
c1T

mL
, K1 = k1T 2

mL
, T = L

√

ρ

ksG
, Y0 = y0

L

One gets the modal forms of above equations, that can be expressed as

follows

χ̈ j (τ)+ζ j χ̇ j (τ)+ς jχ j (τ) =−σ j ÿg (τ)−ζaη j Fd (τ) (176)

The dimensionless equation of the force generated by the MR device is satis-

fied by the illustrated expressions as follows

Fd (τ) =C1Ẏ1 +K1(χ j (τ)Φ j (X0)−Y0) (177)

where Yh and Z can be rewritten as

Ẏ1 =αb Z +C0χ̇ j (τ)Φ j (X0)+K0(χ j (τ)Φ j (X0)−Y1) (178)

Ż =−γL|χ̇ j (τ)Φ j (X0)− Ẏ1|Z |Z |n−1+ (δL −βL|Z |n)(χ̇ j (τ)Φ j (X0)− Ẏ1) (179)

The applied voltage to the control device is defined by the dimensionless

expression which is given by

U = ηT (U −V c) (180)

with

ς j =
a1b3

b1 +a2b2

, η j =
Φ

′

j
(X0)

b1 +a2b2

, σ j =
b4

b1 +a2b2
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in which

b1 =
1

∫

0

Φ j (X )2d X , b2 =
1

∫

0

Φ
′′

j (X )Φ j (X )d X ,

b3 =
1

∫

0

Φ
′′′′

j (X )Φ j (X )d X , b4 =
1

∫

0

Φ j (X )d X

Equations (176)-(180) describe the time evolution of the concrete core tube

which is fixed at the point X0 by the damped outriggers. It is useful to ob-

serve that the parameter of the Equation (176) varied at each mode of vibra-

tion and that the force generated by MR device depends on the attachment

point of the damped outriggers on core tube.

All these results indicate that outrigger locations could modify the structural

response at the different mode of the vibration and can provide a better un-

derstanding of the outrigger design.

3.5.2 Semi-active controller

With a view to obtain the optimal input voltage corresponding to the desired

damper force and to assess the performance of control system.

The control algorithm as an effective mean used in semi-active control based

on the Lyapunov stability theory [113] is employed. Because the control de-

vice is not directly controllable an that only applied voltage can be adjusted.

Also the mentioned control algorithm is developed for characterizing ade-

quately the damper’s intrinsic non-linear behaviour [91].

Thus, Lyapunov function, denoted Ly (W) must be a positive function of the

state of the system,W. According to the Lyapunov stability theory, if the rate

of change of lyapunov function, L̇y (W), is negative semi-definite, the origin

is stable. Lyapunov function is chosen of the form

Ly =
1

2
||W||2p (181)

where ||Σ||p=P-norm of the states defined by

||Σ||p =
[

Σ′PLΣ
]1/2

(182)

where PL is real, symmetric, positive definite matrix.PL is found using Lya-

punov equation.

Σ′PL +PLΣ=−Qp (183)
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Qp is a positive definite matrix. The derivative of the Lyapunov function for

a solution of the state-space equation is

L̇y =−
1

2
W′QpW+W′PLB1Fd +W′PLBÿg (184)

The above parameters are defined as follows

W =
[

χ j

χ̇ j

]

, Σ=
[

0 1

−ς j −ζ j

]

, B =
[

0

−σ j

]

, B1 =
[

0

−ζaη j

]

The control law which minimize L̇y

Vc =Vmax H(−W′PLB1Fd ) (185)

Where Vmax is the maximum voltage and H(·) is Heaviside step function.

When this function is greater than zero, the voltage (Vc) applied to the damper

should be maximum (Vmax), otherwise, the command voltage is set to zero.

To investigate efficiency of the simplified model, the building is consid-

ered, such as the concrete core of the geometric 12 m × 12 m with a 0.5 m

thickness, and with the height of 210 m [63], The mass per unit length is

m1 = 62500 Kg /m.

The eigenvalues are obtained through the Newton-Raphson numerical. The

results obtained through this method are illustrated in Table 12. The listed

Table 12: parameters of the structural system.

Paramter First Second Third

δ
j
1 1.873 4.649 7.752

ǫ
j
1 1.860 4.465 6.979

d
j
1 −0.743 −1.127 −1.283

d
j
3 −0.731 −1.023 −0.998

ς
j
1 0.039 1.579 13.918

parameter values in Table 13, are those obtained from the analysis of experi-

mental data and theoretical results by [112].

As it is difficult to have a MR damper with the obtained parameters experi-

mentally, that will lead to the optimal minimization of excessive vibration of

mechanical structures. To avoid this drawback, some parameters in Table 13

depend on MF named the scaled coefficient. The objective here is to mod-

ify the properties of the damper, in view of having the parameter values for

a large scale MR damper, enable to control the mechanical structure. [109].

To assess the optimal position of outriggers on the core tube, the passive-on

strategy of the controller is employed. Thus Figures 53 and 54 display the

peak RMS versus locations of outriggers on the structure.
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Table 13: Model parameters of the MR damper.

Parameter Value Parameter Value

δa 1107.2 n1 2

γ(m−2) 164.0×10000 ηp (s−1) 190

β(m−2) 164.0×10000 k1(N /m) 9.7 MF

k0(N /m) 2 MF y0(m) 0.0

αa (N /m) 46200 MF αb(N /mV ) 41200‘MF

c0a(N s/m) 110000 MF c0b(N s/mV ) 114300 MF

c1a(N s/m) 8359200 MF c1b(N s/mV ) 7482900 MF
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Figure 53: Optimal position of damped outriggers, ζa = 0.762 and MF=1.0
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Figure 54: Optimal position of damped outriggers, ζa = 0.095 and MF=1.0

Figure 53 presents at the first mode, a slight variation between the ampli-

tude at the different position of outriggers on the core tube. We can realize

that the positions 0.7, 0.8 and 0.9 at this quoted mode, are the location points

of damped outriggers where the displacement of the structural system is re-

duced slightly in relation to other positions.

The second mode exhibits only one best position of outriggers on the core
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tube which is 0.9.

It is well-seen that at this point the amplitude of vibration is reduced dra-

matically. As regards the third mode, the optimal positions are 0.6 and 0.9.

In these points the peak amplitude of vibration of the structure are reduced

than other positions. The global analysis of different observations from Fig-

ure 53 lead us to mention that the optimal attachment point of outriggers

benefits for the three modes of vibration is 0.9.

The same observation from Figure 53 is illustrated in Figure 54, That is to

say the point 0.9 stay only the best position of outriggers on the frame core

tube.

Analysing these figures, as can be seen, the point 0.9 is better attachment

point of damped outriggers on the frame-core tube favourable for the three

first modes of vibration. Thus, the variation of the length of each outrigger

do not affect the value of its optimal attachment point on the beam.

As mentioned before, it is not easy to get the best parameters from experi-
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Figure 55: Optimal scale coefficient MF

mental results of the MR damper which incorporated into the structure that

lead to efficient control.

Figure 55 displays the peak RMS versus the scale coefficient MF at the first

three modes of vibration. It is observed that the increasing of this quoted co-

efficient affects the performance of damped outrigger in reducing the seis-

mic response of the structure.

It is important to note that the choice of MF is done such as the control

device cannot increase the mechanical energy in the structural system. In

other words the control device should reinforce the stability of the structure

in order to avoid their premature destruction.

87



0 100 200 300 400 500 600

0

5

10
x 10

−8

τ

χ
1
(τ

)

0 100 200 300 400 500 600
−1

0

1
x 10

−5

τ

χ̈
1
(τ

)

(a) Displacement and acceleration of the outrigger sys-

tem

0 100 200 300 400 500 600

−2

0

2

4
x 10

−4

τ

F
o
r
c
e

0 100 200 300 400 500 600
0

0.5

1

τ

V
o
lt

a
g
e

(b) Control force and applied voltage to MR damper

Figure 56: Time histories at the first mode of the vibration.
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Figure 57: Time histories at the second mode of the vibration.

By taking into account of optimal position of the damped outriggers and

scale coefficient, one results in Figures 56, 57 and 58 which display the time

histories of transverse displacement, acceleration, control force and applied

voltage to MR damper at the first, second and third modes of the vibration

for MF= 9000.

The structural response of the outrigger system at the three first modes of

vibration is shown in Figures 56a, 57a and 58a. One can see that the struc-

tural response shows two sequences of the vibration.
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Figure 58: Time histories at the third mode of the vibration .

The command signal Vc is selected through the control algorithm based

on Lyapunov stability illustrated in Equation (185). The numerical result of

this adopted strategy allows of having Figures 56b, 57b and 58b at the first

second and third modes of vibration.

The observed separating time interval between τ= 170 and τ = 460 indi-

cates that the controller is in passive-off mode. Since in this relaxation time,

the structure did not receive the input produced by earthquake, as a result

the system cease to exhibit the vibration.
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3.6 Conclusion

The present chapter has shown the results obtained in this work. In general,

Timoshenko beam approach was employed to model the dynamical state of

buildings under earthquake loadings. Two approaches of modelling of build-

ings were presented.

The first approach, the joint action of rotary inertia and shear deforma-

tion effects was considered. In this case. In section 3.2, the dynamic re-

sponse of the structure under deterministic earthquake loads was investi-

gated. These ones were expanded in term of a Fourier series, of unknown

coefficients, that is modulated by an enveloping function. The methods of

lines were then used to solve the basic equations using direct numerical sim-

ulation and also to confirm our analytical predictions.

Afterwards, the second approach of modelling of buildings, the joint ac-

tion of rotary inertia and shear deformation effects was neglected. In this

configuration, the dynamic response of buildings under the nonstationary

stochastic ground motion was investigated in section 3.3, section 3.4 and

section 3.5. The action of earthquake excitation on the structural system

were extended in two sequences. The specificities of these two sequences are

the separating time intervals and the frequency contents. The non-stationary

random process were used to simulate the seismic events. It was shown that

the control device is not efficient at all located position on the mechani-

cal structures. To reduce undesirable vibration by increasing the structural

safety, the MR damper was employed. The results obtained through statisti-

cal analysis have shown that the MR damper is a good candidate to suppress

the vibration in a mechanical structure subjected to earthquake loads.
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General Conclusion
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The aim of the present thesis was the study of the dynamics response of tall

buildings excited by the nonstationary ground motion. The control device

was employed to attenuate the excessive vibration, in order to stabilize the

structural health. Because these structures under the disturbances some-

times induced a premature destruction.

Summary of the main results

The first chapter was devoted to the literature review on the generalities on

beam models and on the vibration control of the mechanical structure. By

combining of shear-type deformation and rotary inertia effects, the Timo-

shenko theory beam was presented. Since the mentioned theory combined

all other model detailed in the literature. Furthermore the mathematical

modelling of the magneto-rheological device, combines the best feature by

offering the reliability of passive devices, yet maintaining the versatility and

adaptability of fully active systems was given.

In the second chapter, various mathematical models of the nonstationary

earthquake, the analytical and numerical tools used for development and

analysis were presented. Thus, method of lines defined as a method to ap-

proximate were then used to solve the based equation using direct numeri-

cal simulation. Routh-Hurwitz stability of a system were also detailed. The

algorithm of fourth order Runge-Kutta of deterministic and stochastic ver-

sions described by Kasdin was given in the numerical section. We have also

presented the same section the Newton-Raphon method for solving of equa-

tions. Finally, we have closed this chapter with the presentation well-detailed

of fuzzy logic architecture.

The third chapter, is devoted to the results obtained in the thesis. The ac-

tion of earthquake excitation extended in on the structural system was anal-

ysed. The value of Modified Factor (MF), which can define the maximum

force capacity generated by the control device was obtained. It appears that

for a good choice of parameters of the control device, the structural system

can remain stable by guaranteeing the safety and the stability of structures

without leading to premature destruction. The investigation of the study at

different modes of vibration, was really necessary to obtain the optimal lo-

cation of the MR device on of structures. Since its attachment point fully

influences the response of structures.

In order to reduce, the excessive vibration of structures during the earth-
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quake without adding supplementary mechanical energy, the control algo-

rithm such that the Lyapunov stability theory,in the first case and fuzzy logic

in second step were used as supplementary means to select the suitable volt-

age that operates MR damper. Since the voltage can directly be modified by

the control algorithm during the control process. As a result, it was shown

that, the application of the algorithm control refines dynamically of the MR

damper by improving the control process at different mode of vibration.

Future work

In this thesis, some interesting results were obtained and this work leads to

some prospective works for future investigations. In this sense, it will be in-

teresting to analyse the effects of the time delay of the control device on the

dynamic response of the structural system. It will also be important to ana-

lytically obtained the time when the controller begins to attenuate the vibra-

tion of structures.
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Abstract The problem of minimizing the dynamics
response of a damped cantilever Timoshenko beam
subjected to earthquake excitation is investigated in this
paper. The ground acceleration is expressed in terms
of a Fourier series that is modulated by an envelop-
ing function. The method of lines and modal approach
are developed for analyzing the eigenvalues and the
flexural vibrations. A magneto rheological damper is
proposed to reduce the vibration of the structure. The
device is localized at a specific point of the beam. A
modal shape which characterizes the vibration of the
uncontrolled and controlled system is obtained. The
condition of stability of the controlled system is derived
using the Routh–Hurwitz criterion.
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1 Introduction

In the early of the 20th century, the importance of shear
deformation and rotational inertia effects in the dynam-
ics of elastic beams was first demonstrated by Timo-
shenko [15]. The model is suitable for describing the
behavior of short beams, sandwich composite beams,
or beams subject to high-frequency excitation when
the wavelength approaches the thickness of the beam.
Therefore, much attention has been devoted to their
dynamic behavior under various excitations [4,8,17].
The case of interest in this work is the beam where
one boundary is clamped, while the other is free gen-
erally called cantilever beam subjected to earthquake
loads. The dynamics of mechanical structures under
earthquake excitation has focused the attention of sev-
eral researchers [10,12,13]. Due to the complexity of
earthquake ground excitation, these works are purely
numerical and in some cases experimental and gen-
erally do not take into account the influence of shear
deformation or rotational inertia.

In this paper, the mathematical model of earthquake
loads presented by Abbas et al. [1,2] is the case of
study. He demonstrated that the earthquake loads can
be modeled as a deterministic time history which is
expressed in terms of Fourier series that is modulated
by an enveloping function. With this approach, we were
able to present some analytical manipulations in the
aim of foreseing or predicting some dynamic behaviors
appearing in the structure due to earthquake. In view
of protecting these mechanical structures, a magneto-
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164 B. P. Ndemanou et al.

rheological (MR) damper is used to control the vibra-
tion of the mentioned structure. In fact the MR damper
is a device that is capable of generating forces neces-
sary for control applications. The effectiveness of MR
dampers for seismic protection of base-isolated struc-
tures has been shown in Refs. [5,6,14,16,18].

The organization of the paper will be the following:
In sect. 2, an analytical and numerical solution is pro-
posed to predict the dynamic response of the cantilever
beam under earthquake loads. Section 3 deals with the
application of MR dampers as control design on the
previous mechanical structure, and then comes up with
the condition for which the vibration is reduced along
with the condition of stability of the controlled system.
Section 4 is devoted to the conclusion.

2 General mathematical formalism

Consider a Timoshenko beam of length L , with den-
sity ρ. The bending vibration can be described by two
variables depending on axial coordinate x and time
t , namely, transverse displacement y = y(x, t) and
θ = θ(x, t), the transverse rotation of the beam cross-
section due to the bending moment.

The governing equations for the vibration of Timo-
shenko beam thus involve a system of two partial dif-
ferential equations given by [3,4,8,11]

ρ I
∂2θ

∂t2 + α2ρ A
∂θ

∂t
= E I

∂2θ

∂x2 + kG A

(
∂y

∂x
− θ

)

(1a)

ρ A
∂2 y

∂t2 + α1ρ A
∂y

∂t
= kG A

(
∂2 y

∂x2 − ∂θ

∂x

)
+ P(t),

(1b)

where E is the Young’s modulus of elasticity of beam
material, G is the shear modulus of the beam material,
α1 and α2 are the linear viscous damping coefficients, A
is the cross-sectional area of the beam, k is the effective
area coefficient in shear, I is the area moment of inertia,
and P(t) is the external force.

Taking into account the following dimensionless
variables

θ∗ = θ, Y = y

L
, X = x

L
, τ = t

T
, T = L

√
ρ

Gk

α2 = I

A
α1, λ = α1T, k1 = E

kG
,

k2 = AL2

I
, P1(τ ) = L P(t)

kG A

Eqs.(1a)–(1b) are reduced to these sets of non-dimensi-
onal differential equations

∂2θ∗

∂τ 2 + λ
∂θ∗

∂τ
= k1

∂2θ∗

∂ X2 + k2

(
∂Y

∂ X
− θ∗

)
(2a)

∂2Y

∂τ 2 + λ
∂Y

∂τ
=

(
∂2Y

∂ X2 − ∂θ∗

∂ X

)
+ P1(τ ) (2b)

with the boundary conditions

Y (0, τ ) = 0, θ∗(0, τ ) = 0,

∂θ∗

∂ X
(1, τ ) = 0,

∂Y

∂ X
(1, τ ) − θ∗(1, τ ) = 0

The two expressions of Eq. (2) of motion for a Tim-
oshenko beam are combined to formulate an equation
for transverse deflection Y , in the form

∂4Y

∂τ 4 +2λ
∂3Y

∂τ 3 +
(

k2+λ2
) ∂2Y

∂τ 2 − (1 + k1)
∂4Y

∂ X2∂τ 2

−λ (1 + k1)
∂3Y

∂ X2∂τ
+ λk2

∂Y

∂τ
+ k1

∂4Y

∂ X4

= k2 P1(τ ) + λ
.

P1(τ ) + ..

P1(τ ) (3)

Eq. (3) is the general equation governing the transversal
displacement of the damped Timoshenko beam

2.1 Derivation of the modal equation

To deal with the analytical analysis, we resort to an
assumed mode expansion. Specifically, it is assumed
that Y can be written as the finite sums

Y (X, τ ) =
N∑

n=1

Φn(X)Qn(τ ), (4)

where Qn(τ ) is the unknown function of time at nth
mode and Φn(X) is the solution of the eigenvalue prob-
lem obtained by solving Eqs. (1a) and (1b) without
damping and excitation, and Φn(X) is given by

Φn(X) = (C1n cos(δn X) + C2n sin(δn X)

+C3n sinh(εn X) + C4n cosh(εn X)) , (5)

where
C1n, C2n, C3n , and C4n are obtained as (using the

beam boundary condition) [19]

C1n =
cos(δn) +

(
ε2

n + μδ2
n

)
(
δ2

n + με2
n

) cosh(εn)

−
(

sin(δn) + εn

δn
sinh(εn)

) ; C2n = 1;
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C3n = −C1n

(
δn + μ

ε2
n

δn

)
(

εn + μ
δ2

n

εn

) ; C4n = −C2n

The eigenvalues δn and εn of the nth mode are
obtained from Eq. (6) and (7), using an appropriate
algorithm[(

δ2
n + με2

n

)2 +
(
μδ2

n + ε2
n

)2
]

cos δn cosh εn

−
(
δ2

n + με2
n

) (
μδ2

n + ε2
n

)
(

−2 + δ2
n − ε2

n

δnεn
sin δn sinh εn

)
= 0 (6)

(
δ2

n − ε2
n

) [
η2 − 1

μ + 1

(
δ2

n − ε2
n

)]

−
(

1 + 1

μ

)
δ2

nε2
n = 0 (7)

with

η =
√

k2

k1
, μ = k1.

Substituting Eq.(4) into Eq.(3), multiplying Eq.(3) by
�n(X) and integrating from 0 to 1, for the first mode
of vibration (n = 1), we obtain the following modal
equation

....

Q(τ ) + R1
...

Q(τ ) + R2
..

Q(τ ) + R3
.

Q(τ ) + R4 Q(τ )

= R5 P1(τ ) + R6
.

P1(τ ) + R7
..

P1(τ ) (8)

with

R1 = 2λ, R2 = k2 + λ2 − b2

b1
(1 + k1),

R3 = λk2 − λ
b2

b1
(1 + k1), R4 = b3

b1
k1,

R5 = b4

b1
k2, R6 = b4

b1
λ, R7 = b4

b1

and

b1 =
1∫

0

�2(X)dX; b2 =
1∫

0

�
′′
(X)�(X)dX;

b3 =
1∫

0

�
′′′′

(X)�(X)dX; b4 =
1∫

0

�(X)dX

The description of the transverse displacement of the
mechanical structure can thus be derived by solving the
differential Eq. (8).

2.2 Direct numerical simulation of the partial
differential equation

To validate the analytical investigation, a direct numer-
ical simulation of the partial differential Eq. (2) is
explored. The method of lines [7] or semi-discretization
is applied.

We set 
X = 1/N , τ = j
τ , where 
X and 
τ

are the spatial and temporal steps, respectively, i and j
are integer numbers relative to position and time, and
N is the number of discrete points considered along the
beam length.

The semi-discretization form of Eq. (2a) is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dθ∗
i, j

dt
= F1(θ

1
i, j )

dθ1
i, j

dt
= F2

(
θ1

i, j , θ
∗
i+1, j , θi, j , θ

∗
i−1, j , yi+1, j , yi−1, j

)
(9)

and Eq. (2b) is
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dYi, j

dt
= F3(Y 1

i, j )

dY 1
i, j

dt
= F4

(
Y 1

i, j , Yi+1, j , Yi, j , Yi−1, j ,

θ∗
i+1, j , θ

∗
i−1, j

)
+ P1(τ j ).

(10)

The discretization of the boundary conditions leads to
θ�

0, j = 0, Y0, j = 0, θ�
n+1, j = θ�

n−1, j , Yn+1, j =
Yn−1, j + 2
Xθ�

n, j
The excitation force is taken under the form

P(t) = −ρ A
..
ug(t) (11)

According to [2], the ground acceleration
..
ug(t) is

assumed to be represented by

..
ug(t) = e0

(
e−β1t − e−β2t) N f∑

n=1

(An cos(ωnt)

+Bn sin(ωnt)) (12)

This model is expressed in terms of a Fourier series
that is modulated by an enveloping function. An and
Bn are constants, ωn is selected such that they span sat-
isfactorily the frequency range (0.2, 25)H z. β1 and β2

(β2 > β1 > 0) are parameters that impart the observed
transient trends in the recorded ground motion. In our
study, we assume that An and Bn are known. The func-
tion P1(τ ) can thus be given as
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P1(τ ) = −e0
(
e−β11τ − e−β22τ

) N f∑
n=1

(
A1n cos(ω1nτ)

+ B1n sin(ω1nτ)
)

(13)

with

A1n = ρL

kG
An, B1n = ρL

kG
Bn,

β11 = β1T, β22 = β2T, ω1n = ωnT

The geometric and material properties of the beam
are E = 3 × 1010 Pa, G = 1.25 × 1010 Pa, ρ = 2,500
kgm−3, A =600 m2, k = 0.8450704225, L =80 m,
I = 45 × 103 m4, ν = 0.2, and this leads to
δ1 = 1.854172414231125, ε1 = 1.725031549472968
(we remind the reader that δ1 and ε1 have been obtained
after solving the system of Eqs. (6) and (7) using New-
ton Raphson algorithm). Using the relation between
the dimensional and the non-dimensional parameters
which we obtained before, we derive the following
dimensionless values for the parameters of Eq. (8)

b1 = 1.111690369, b2 = 0.5504788466, b3 =
11.11863853, b4 = −0.8438165466, k1 = 2.84, k2 =
1.066666667, λ = 0.5837807806, R1 =1.167561561,
R2 = 83.77266973, R3 = 48.70592206, R4 =
28.40443194, R5 = −64.77134340, R6 = −0.443112
4853, R7 = −0.7590391804, e0 = 1.27, β11 =
0.00507, β22 = 0.0195, ω11 = 0.45, ω12 =
0.53, ω13 = 0.60 H z, ω14 = 0.59, N f = 4, A11 =
1.344 × 10−5, A12 = 1.231 × 10−6, A13 = 4.733 ×
10−6, A14 = 1.136 × 10−6, B11 = 4.733 ×
10−7, B12 = 1.041×10−6, B13 = 2.84×10−7, B14 =
2.840 × 10−7.

Setting ourself at a point X = 0.5 of the beam, we
display in Figs. 1 and 2, respectively, the time history
and frequency response curve obtained using the modal
equation and the direct numerical simulation presented
above. It appears that the two curves are closed mean-

0.4 0.6 0.8 1
0

2

4
x 10

−6

Ω

A
m

pl
itu

de

Method of lines
Modal equation

Fig. 2 Frequency response curve

ing that our analytical investigation is quantitatively
and qualitatively good. Also having a look on the fre-
quency response curve leads us to the conclusion that
the dynamics of the system exhibits resonance and
antiresonance along with subharmonic oscillations.

3 Semi-active control of the cantilever Timoshenko
beam

3.1 Description of the control model

Since the vibration of the structure is fully predicted
as shown in part 2, the next step is to minimize the
dynamic deflection of the structure. For that aim, we
define a set up so that the control of the beam is taken
to be a transverse applied force or moment. A suit-
able way to reduce vibration in mechanical structures
subjected to earthquake excitation is to use a semi-
active control technique named magneto-rheological
dampers (MR damper) [5,14]. The MR dampers are
devices that are capable of generating the magnitude
of forces necessary for full-scale application. Among
these techniques, the modified Bouc–Wen model plays
a key role. Spencer et al. [14] proposed a phenomeno-
logical model base on a Bouc–Wen model, by which
the dynamic behavior of MR damper is described accu-
rately (see Fig. 3). The equations governing the force
predicted by this model are

fMR(t) = c1
.
y1 + K1(y − y0) (14)

.
y1 = 1

(c0 + c1)
{c0

.
y + αz + K0(y − y1)} (15)

.
z = (

.
y − .

y1)[A − |z|n1(β + γ sgn(z)sgn(
.
y − .

y1))],
(16)

where fMR is the force generated by damper, y is the
displacement of the damper, and y1 is the internal dis-
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Fig. 3 Modified Bouc–Wen model

placement of the damper; K1 is the accumulator stiff-
ness ; y0 is the initial displacement of the spring K1;
z is the evolutionary variable that describes the hys-
teretic behavior of the damper; α is the evolutionary
coefficient; c0 and c1 control the viscous damping at
large and low velocities, respectively; γ , β, n, and A
are the shape parameters of the hysteresis loops, and
K0 represents the stiffness at large velocity.

The voltage-dependent parameters are modeled by

α = α(u) = αa + αbu, c1 = c1(u) = c1a + c1bu,

c0 = c0(u) = c0a + c0bu (17)

The command voltage is accounted for through the
first-order filter
.
u = −η(u − v), (18)

where v is the voltage applied to the damper and η is
a positive number that reflects the delay time of the
damper.

Erkus et al. [6] gave the parameter of the model
defined above based on a prototype model of the MR
damper. We define the suitable control parameters
knowing that the objective here is to have the values
leading to the efficiency of the control according to the
position of damper on the structure (see Table 1).

The parameters c1, c0, and α depend on the voltage.

3.2 Effect of the control on the dynamics responses

The structure under control is shown in Fig. 4, where the
MR damper is fixed at a specific point of the cantilever
beam. Therefore, the mathematical model of structure
in the presence of the magneto-rheological damper is
described by the following equations

Table 1 MR damper parameters

Parameter Value Parameter Value

A 301 K1 (N/m) 5 MF

β (m−2) 363 γ (m−2) 363

c0a (N s/m) 2,100 MF η (s−1) 190

c0b (N s/mV) 350 MF y0 (m) 0

c1a (N s/m) 28,300 MF n1 2

c1b (N s/mV) 295,000 MF K0 (N/m) 46.90 MF

αa (N/m) 14,000 MF αb (N/mV) 69,500 MF

Fig. 4 Simplified model of the structure under control

∂4Y

∂τ 4 +2λ
∂3Y

∂τ 3 +
(

k2+λ2
) ∂2Y

∂τ 2 − (1 + k1)
∂4Y

∂ X2∂τ 2

−λ (1 + k1)
∂3Y

∂ X2∂τ
+ λk2

∂Y

∂τ

+ k1
∂4Y

∂ X4 + εFMR(τ )δ(X − X1)

= k2 P1(τ ) + λ
.

P1(τ ) + ..

P1(τ ) (19)

with

FMR(τ ) = kGT 4 fmr(t)

ρ2 I L2 ,

where FMR(τ ) is the dimensionless force exerted by the
damper on the structure and δ(X−X1) is the Dirac delta
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function which indicates that the concentrated force is
applied at the attachment point, X = X1. The parame-
ter ε allows here to have a general equation, i.e., for
ε = 0, the structure is uncontrolled and for ε = 1, the
structure is controlled.

The equations at first mode vibration are
....

Q(τ ) + R1
...

Q(τ ) + R2
..

Q(τ ) + R3
.

Q(τ ) + R4 Q(τ )

+ε1 FMR(τ ) = R5 P1(τ ) + R6
.

P1(τ ) + R7
..

P1(τ )

(20)

FMR = a1
.

Y 1 + a2 (η2 − Y0) ,

where Y1 is governed by
.

Y 1 = a3
.
η2 + a4 Z + a5(η2 − Y1) (21)

.

Z =
(

.
η2 − .

Y 1

) [
A − |Z |n1

×
(
β1 + γ1sign(Z)sign(

.
η2 − .

Y 1)
)]

(22)
.

U = −ξ(U − V ) (23)

with the dimensionless parameters defined by

Z = z

L
, Y1 = y1

L
, Y0 = y0

L
,

U = u

V1
, V = v

V1
, ε1 = ε�(X1)

b1
,

where V1 is the reference voltage(V1= 50 Volt).

η2 = Q(τ )�(X1),
.
η2 = .

Q(τ )�(X1), γ1 = γ Ln1,

β1 = βLn1 , ξ = ηT

a1 = a1(U ) = kGT 3c1

ρ2 I L
, a2 = kGT 4 K1

ρ2 I L
,

a3 = a3(U ) = c0

c0 + c1
, a4 = a4(U ) = αT

c0 + c1
,

a5 = a5(U ) = K0T

c0 + c1

with

α = α(U )=αa +αb1U, c1 =c1(U )=c1a +c1b1U,

c0 = c1(U ) = c0a + c0b1U

αb1 = αbV1, c1b1 = c1bV1, c0b1 = c0bV1

The damper performance of the structure subjected to
a deterministic earthquake through the computer sim-
ulation is analyzed. The different values of the dimen-
sionless parameters are

β1 = 2323200, γ1 = 2323200, ξ = 7.394556555,
Φ(0.2) = −0.1741045662, Φ(0.25) = −0.24931079
42,Φ(0.3) = −0.3349121633, a1 = (0.7832175921×
10−3 + 0.4082141160 U )MF, a2 = 5.385
481475 × 10−9MF, a3 = 2100+17500 U

30400+14767500 U , a4 =
546+135525 U

30400+14767500 U , a5 = 1.825287907
30400+14767500 U .

We have plotted in Figs. 5 and 6 the time histories
to see the effects of voltage and position of the MR
damper on the control process. Figure 5a shows the
reduction of the amplitude of vibration of the structure
at point X1 = 0.2, which indicates the place where
the concentrated force magneto-rheological damper is
applied. The dimensionless voltage is U = 0.39. Fig-
ure 5b presents the effects the voltage on the control.
We can notice that when the voltage amplitude is high,
the amplitude of vibration is more and more reduced.
For example, at τ = 240, the amplitude in Fig. 5a is
2.012 × 10−5 and in Fig. 5b is 1.448 × 10−5.

From Fig. 6a, b, we observe that the position of the
attachment point of the damper is an important parame-
ter for the optimization of the control process. In fact,
Fig 6 shows us that the control is more and more effi-
cient as the contact point between the control and the
structure is far from the base. This means that the best
implementation of the control design should locate the
optimal point for the controller action.
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Fig. 5 Times histories: effects of the input voltage on the amplitude of vibration
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Fig. 6 Times histories: effect of the position of contact between the controller and the structure

3.3 Stability of semi-active structural control

One of the consequences when a device is added on a
mechanical structure is that the fixed points position
change. Thus, instead of reinforcing the stability of
the structure, it can destabilize the system leading to
premature destruction of the system. Therefore, it is
important to address the stability condition when the
system is perturbed by a control design. For that aim

Introducing the new variables χ1, χ2, χ3, χ4, χ5, χ6,
and χ7 such that

.

Q = .
χ1 = χ2,

..

Q = ..
χ1 = .

χ2 = χ3,
...

Q = ...
χ1 = ..

χ2 = .
χ3 = χ4, Y1 = χ5, Z = χ6 ,

U = χ7

Eqs. (20, 21, 22, and 23) can then be rewritten as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
χ1 = χ2
.
χ2 = χ3
.
χ3 = χ4
.
χ4 = −R1χ4 − R2χ3 − (R3 + ε1ε2a1a3)χ2

−(R4 + ε1ε2(a1a5 + a2))χ1 + ε1a1a5χ5

−ε1a1a4χ6 + ε1a2Y0
.
χ5 = a3ε2χ2 + a4χ6 + a5(ε2χ1 − χ5)
.
χ6 = (ε2x2 − a3ε2χ2 − a4χ6 − a5(ε2χ1 − χ5))

[A − χ
n1
6 (β1 + γ1μ)]

.
χ7 = −ξ(χ7 − V )

(24)

where ε2 = �(X1); a1 = a1(χ7); a3 = a3(χ7);
a4 = a4(χ7); a5 = a5(χ7); μ = sign(χ6)

sign(ε2χ2 − .
χ5)

The general form of the equilibrium point is

Pf =
(

χ1 = ε1a2Y0

R4 + ε1ε2a2
, χ2 = 0, χ3 = 0, χ4 = 0,

χ5 = ε1ε2a2Y0

R4 + ε1ε2a2
+ a4(V )

a5(V )
χ6, χ6 = χ6, χ7 = V

)

The characteristic equation is given as follows

�7 + aa1�
6 + aa2�

5 + aa3�
4

+ aa4�
3 + aa5�

2 + aa6� + aa7 = 0 (25)

In which

aa1 = ξ + R1 + h1(χ6, V );
aa2 = ξ R1 + R2 + (ξ + R1) h1(χ6, V )

aa3 = (ξ R1 + R2)h1(χ6, V ) + h2(V ) + ξ R2 + R3

aa4 = ξh2(V ) + h1(χ6, V ) (ξ R2 + ε1ε2a1(V ))

+R1 + ε1ε2a2 + ξ R3 + R3

aa5 = ξε1ε2a2 + h1(χ6, V )

(ε1ε2 (a2 + ξa1(V )) + (R1 + ξ R3)) + ξ R1

aa6 = ξ(R1 + ε1ε2a2)h1(χ6, V ); aa7 = 0

where h1(χ6, V ) = T (α(V )g(χ6)+K0)
c0(V )+c1(V )

and h2(V ) =
ε1ε2a1(V )c0(V )

c0(V )+c1(V )

with

g(χ6) =
{

A − χ
n1
6 (β1 + γ1) if μ > 0

A − χ
n1
6 (β1 − γ1) if μ < 0

(26)

χ6 is an evolutionary variable that influences the vibra-
tion of the structure response. χ6 has a finite ultimate
value χ6max , analytically this maximum can be found
from Eq. (22), which leads to [9]

χ6max =
[

A

γ1 + β1

] 1
n1

thus 0≤χ6 ≤
[

A

γ1 + β1

] 1
n1

,

(where n1 is an even number).
Assuming that 0 < A

γ1+β1
< 1, leads us to the fol-

lowing conclusion 0 ≤ g(χ6) ≤ A.
From Eq. (25), we have �1 = 0 the solutions are

all constant. Since we are interested in the dynamics
response, its remains to determine the other eigenval-
ues where the stability depends on the characteristic
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Fig. 7 Stability diagram in
the space parameters of
control for X1 = 0.3 and
U = 0.89
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equation below

�6 + aa1�
5 + aa2�

4 + aa3�
3

+aa4�
2 + aa5� + aa6 = 0 (27)

Now, using the Routh–Hurwitz criterion, the equilib-
rium point Pf is stable if and only if the following
analytic relations are satisfied.

aai > 0 (i = 1, 2, 3, 4, 5, 6)


3 > 0


5 > 0, (28)

where


3 = aa1aa2aa3 − aa2
3 − aa2

1aa4 + aa1aa5, and


5 = aa1aa2aa3aa4aa5 − aa2
3aa4aa5 − aa2

1aa2
4aa5

− aa1aa2
2aa2

5 +aa2aa3aa2
5 +2aa1aa4aa2

5 − aa3
5

− aa1aa2aa2
3aa6 + aa2

3aa2
6 + aa2

1aa3aa4aa6

+ 2aa2
1aa2aa5aa6 − 3aa1aa3aa5aa6 − aa3

1aa2
6

From the relation (28), we deduce that the equilibrium
point Pf is stable when the following condition is sat-
isfied.

χ
n1
6 <

A

β1 + γ1
+ (c0(V ) + c1(V ))(ξ + R1)

α(V )T (β1 + γ1)

+ K0

α(V )(β1 + γ1)
(29)

Figure 7 presents the region in the control space para-
meters. The shaded domains represent the regions for
which the structural control strategy is always stable.

4 Conclusion

The dynamics response of a cantilever Timoshenko
beam excited by earthquake loads has been investi-
gated. By considering that the earthquake acceleration
is expanded in term of a Fourier series, of unknown
coefficients, that is modulated by an enveloping func-
tion; we were able to seek for the analytical solution
using modal approach. The methods of lines were then
used to solve the based equation using direct numeri-
cal simulation and also to confirm our analytical pre-
diction. The magneto-rheological fluid damper appears
to be a good candidate to suppress the vibration in
a mechanical structure subjected to earthquake loads.
The mathematical modeling of the structure under con-
trol has been presented along with the condition in the
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space parameters of the system for which the vibration
is reduced. Focusing on the stability, it appears that for
a good choice of control gain parameters, the struc-
tures can remain stable even if the ground acceleration
is high.
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In this  paper,  we  describe  the  statistical  responses  of  two buildings  subjected  to the  repeated  sequence  of
excitation.  The  nonstationary  random  approach  is employed  to simulate  seismic  events.  The  cantilever
Timoshenko  beam  approach  is  used  to model  each  of  buildings  and therefore  are  connected  via a magneto-
rheological  (MR)  damper  device.  The  Lyapunov  approach  is  adopted  to  seek  for a voltage  leading  to  a  good
control. Root  mean  square  value  is considered  to foresee  the  effect  of the control  device  along  with  the
position  on  the  effectiveness  of  the  strategy.  The  starting  times  for which  the  shock  absorber  become
efficient  is  obtained  numerically  and  presented  at each  mode.
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1. Introduction

Nowadays, excitation seismic in relation to those from strong
winds and large waves, stays the one of most powerful and severe
disturbances and has never ceased to create the damages on
the engineering structures. The recent events that hit multiple
countries such as Haiti in 2010, Japan in 2011, China in 2014 and
in 2016, Nepal in 2015, and Equator in 2016, destroying human
lives and leaving behind a weak economy. All of these testified the
devastating look of that disaster. Exciting by those seismic loads,
the mechanical structures such as tall buildings vibrate at the dif-
ferent modes, which can create some damages and to drive these
ones to their destruction. In order to overcome those issues and
strengthen the safety of such structures, many techniques have
been performed by the researchers on that topic to mitigate the
undesirable effects from that disaster [1–3]. The controlling devices
employing these mitigation vibration methods are of varied nature,
passives, actives and semi-actives. These ones, have been employed
to control the seismic response of adjacent buildings. Zhu et al.
[8] used controlled interactions between a primary structure and

∗ Corresponding author at: University of Yaoundé I, Faculty of Science, Department
of  Physics, Cameroon.
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an auxiliary structure to reduce the seismic response of the pri-
mary structure during earthquake excitation. In the same view
[9,12,25,28,31,32] used the passive control strategies to reduce the
dynamic response of adjacent buildings. To increase the perfor-
mance, that is to say to suppress better the induced-vibration on
the same type of mechanical structures [16,21] have employed the
semi-active control approach. The studies on the adjacent buildings
do not only limit within the academic framework, the application
of coupling buildings well-known in the world are Petronas Towers
in Malaysia, also known as the Petronas twin tower and the Triton
square office complex in Japan. These structures are three build-
ings 155, 175, 195 m tall and are coupled by two  35 t active control
actuators for wind and seismic protection [14].

Interest for this semi-active devices, is due by the way  that these
ones combine the best features of both passive as well as actives and
require a low voltage that changes the system’s physical proper-
ties. Christenson et al. [15] examined the effects of relative building
height and coupling link location on the semi-active performance.
Moreover the authors showed that semi-active control is able to
achieve performance similar to the optimal passive control at a
fraction of the required control device force.

Integrating the semi-active nature, the MR damper has the abil-
ity to change its properties to generate the variable force and
require a low power to operate [26]. Considerable attention has
been given to the MR  damper by many authors to control buildings.
Bharti et al. [10] studied the effectiveness of various seismic control
devices for interconnecting two adjacent buildings for earthquake

http://dx.doi.org/10.1016/j.mechrescom.2016.10.001
0093-6413/© 2016 Elsevier Ltd. All rights reserved.
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hazard mitigation. The authors found that the coupled building
control using MR  damper is very effective for seismic response
reduction of both buildings. The effectiveness of that control device
for seismic hazard mitigation of a plan asymmetric building stud-
ied in Ref. [11]. They explained MR  damper-based control systems
are effective in reducing the seismic response reduction varies with
the characteristics of the earthquake ground motion.

All aforementioned studies on reduction of vibration of build-
ings only considered the approach of single or multi-degree of
freedoms and other adopt the simple-flexure or shear deforma-
tions in neglecting the combination of both rotary inertia and shear
effects to model the engineering structures. In additional way of
these studies, the approach displays multi-modes by taking into
account the neglected mentioned effects is adopted in this paper
to model the mechanical structures. Afterwards of that, each build-
ing is considered as an equivalent continuum structure [22,29]
which also takes into account the flexural deformation. The well-
known model that combine the influence of these cited effects is
the Timoshenko beam theory, which is employed in this case to
model the buildings interconnected by a MR  device. Based on the
experimental data from this latter, Spencer et al. [27] proposed
the phenomenological model that was numerically tractable and
effectively portrays the behaviour of a MR  damper. The authors
used a least-squares optimization method to determine appropri-
ate parameters for the analytical model. The illustrated work of
this paper is based on a theoretical study, as it is difficult to have
a MR damper with the obtained parameters experimentally, that
will lead to the minimization of excessive vibration of mechanical
structures. To avoid this drawback, Erkus et al. [17] proposed the
suitable control parameters therefore the objective was to have
the values leading to the efficiency of the control. This procedure
is used in this paper in order to have an optimization control of
buildings under the repeated non-stationary random loads. The
mathematical model of this excitation in the case of this study has
been presented by Abbas and Takewakib [4]. These authors men-
tioned ground acceleration of multiplied sequences could result in
more damage to the structure than a single ordinary event. In this
work, the considered earthquake loads acting on both buildings is
unidirectional.

The objective of this work is to suppress the vibration mode
induced by earthquake excitation on two interconnected buildings
using a magneto-rheological shock absorber.

The organization of the paper will be detailed as follows. Firstly
the mathematical model describing the dynamics behavior of the
structural system equipped of a magneto-rheological under the
repeated seismic load is presented. The nonstationary stochastic
approach is used to characterize the nature of a real earthquake
excitation. Secondly modal equations and the form of the state
space of the mechanical system equipped of the control device are
obtained. Thirdly, using Lyapunov function approach, the control
law is define and used to guider the voltage, with the aims to atten-
uate the vibration is also presented. All these is illustrated through
the numerical approach. Finally, the conclusion is presented.

2. Description of the system

The structural system is constituted of two cantilever beams
(Bg1) and (Bg2), These ones are subjected to the same disturbance
force denoted seismic load. At a located point of each tall building,
is connected a semi-active controller dubbed MR  damper, as illus-
trated in Fig. 1. This shock absorber generates the variable forces
acting on the mechanical structures to safeguard them against
undesirable vibrations. The control device is equipped of a moving
piston head, which is fixed on the structure (Bg2), another extrem-
ity of this device is embedded on the second structure (Bg1), which

Fig. 1. Simplified model.

not only is subjected to earthquake excitation and at the same time
play the rule of support of the controller.

2.1. The mathematical modelling

Both buildings under investigation are modelled each like an
continuum cantilever Timoshenko beam, where I1 and I2 are the
moments of inertia of the cross-section; G1 and G2 are the shear
modulus of elasticity, E1 and E2 are the Young’s modulus; the mass
per unit length are m1 = �1A1 and m2 = �2A2; ks is the shear coef-
ficient depending on the shape of the cross section of each beam
and function of Young’s modulus; r1 = (I1/A1)2 and r2 = (I2/A2)2 are
the radius of gyration; ı(·) denotes the Dirac function; ca and cb
are the mechanical damping coefficients. fd is the MR  damper force
which depend of the relative displacements and velocities of the
structure. The subscript 1 and 2 denoted the beams Bg1  and Bg2,
respectively. Moreover the vibration amplitude of the structural
system are described by y1 = y(x1, t) and y2 = y(x2, t), which depend
on axial coordinate x1 and x2 and time, namely the relative traverse
displacements.

In considering the Timoshenko model, which is governing by
the differential partial equation. This implies that the equations of
motion for both interconnected buildings by the magneto rheolo-
gical damper under the earthquake excitation are given [6]

m1
∂2

y1

∂t2
+ ca

∂y1

∂t
+ E1I1

∂4
y1

∂x4
1

− m1r2
1

(
1 + E

ksG1

)
× ∂4

y1

∂x2
1∂t2

= −m1üg(t) + fd(t)ı(x1 − x3) (1a)

m2
∂2

y2

∂t2
+ cb

∂y2

∂t
+ E2I2

∂4
y2

∂x4
2

− m2r2
2

(
1 + E2

ksG2

)
× ∂4

y2

∂x2
2∂t2

= −m2üg(t) − fd(t)ı(x2 − x3) (1b)

x3 represents the located point of the MR  device on Bg1  and Bg2.
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The nonstationary ground acceleration üg adopted here, is the
form of n sequences [4]. This random function is assume to take
the form of a filtered Gaussian stationary white noise modulated by
a deterministic envelope function. This mentioned form describes
the real earthquake that has the time-variation of both the intensity
and frequency content. Expression of this term is defined as follows

üg(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1(t)ẅ1(t) 0 ≤ t ≤ T1

0 T1 ≤ t ≤
2∑

i=1

Ti

e2

(
t −

2∑
i=1

Ti

)
ẅ2(t)

2∑
i=1

Ti ≤ t ≤
3∑

i=1

Ti

0
3∑

i=1

Ti ≤ t ≤
4∑

i=1

Ti

. . . . . .

en

(
t −

n+1∑
i=1

Ti

)
ẅn(t)

n+1∑
i=1

Ti ≤ t ≤
n+2∑
i=1

Ti

(2)

where e1(t), e2(t), . . .,  en(t) are the envelope function associated
with the acceleration sequences 1, 2, . . .,  n, ẅ1(t), ẅ2(t), . . .ẅn(t)
are stationary random processes and T1, T3, . . .,  Tn+2 are the time
durations of the acceleration sequences and T2, T4, . . .,  Tn+1 are the
time intervals separating these sequences.

The envelope function for the ith sequence is expressed as

ei(t) = e0i

(
t −

n∑
i=1

Ti

)
exp

[
−˛i

(
t −

n∑
i=1

Ti

)]
;

n+1∑
i=1

Ti ≤ t ≤
n+2∑
i=1

Ti (3)

where e0i and ˛i are 2n positive constants that control the intensity
and the non-stationarity trend of the ith acceleration sequence. The
taken spectral density of each sequence is defined by the Kanai
Tajimi model given by

Sẅi
(ω) = s0

ω4
g + (2�gωgω)2

(ω2
g − ω2)

2 + (2�gωgω)2
(4)

where s0 is the intensity of the white noise process at the rock level,
ωg is the dominant frequency of the soil site and �g is the associated
damping ratio of the soil layer.

The equations governing the force fd generated by the MR
damper at the located point x3 is expressed as follows

fd = c1(ẏ − ẏ1(x3, t)) + k1 [(y2(x3, t) − y1(x3, t)) − y0] (5)

y is an internal displacement, governed by

ẏ = 1
c0 + c1

[˛z + c0ẏ2(x3, t) + c1ẏ1(x3, t) + k0(y2(x3, t) − y)] (6)

ż = −� |ẏ2(x3, t) − ẏ|z|z|n−1 − ˇ(ẏ2(x3, t) − ẏ) × |z|n

+ ıa(ẏ2(x3, t) − ẏ) (7)

where c0 and c1 are the viscous damping at larger velocities and
low velocities respectively; k1 is the accumulator stiffness; k0 rep-
resents the stiffness at large velocity; � ,  ̌ and ıa are the shape
parameters of the hysteresis loops.

In Eq. (6), some parameters depend on the command voltage u
are given by

c0 = c0a + c0bu, c1 = c1a + c1bu and  ̨ = ˛a + ˛bu (8)

where the command voltage u is accounted for through the first
order filter

u̇ = �p(u − vc) (9)

vc is the voltage applied to current driver.
Introducing the dimensionless variables, these lead to following

expressions.

Y1 = y1

L
, Y2 = y1

L
, Z = z, Y = y

L
, � = t

T
, 	1 = caT

m1
,

	2 = cbT

m2
, a1 = E1I1T2

L4m1
, a2 = E2I2T2

L4m2
, a3 = r2

1

L2
,

a5 = E1

ksG1
, a4 = r2

2

L2
, a6 = E2

ksG2
, ÿg(�) = üg(t)T2

L

Fd = fd(t)T2

m1L2
, 
 = m1

m2
, ˛b = ˛T

(c0 + c1)
, C0 = c0

c0 + c1
,

C1 = c1

c0 + c1
, K0 = k0T

c0 + c1
, cl = c1T

m1L
, K1 = k1T2

m1L
,

�l = �L2, ıl = ıa, ˇl = ˇL2, s01 = s0

S0
, � = ωT,

�g = ωgT, T = L

√
�

ksG1
, �T = �T, U = u

V1
, Vc = vc

V1

From the relation between variables and dimensionless parame-
ters, the resulting relationships lead us to the below equations,
which are illustrated as follows

∂2
Y1

∂�2
+ 	1

∂Y1

∂�
+ a1

∂4
Y1

∂X4
1

− a3 (1 + a5)
∂4

Y1

∂X2
1 ∂�2

= −ÿg(�) + Fd(�)ı(X1 − X3) (10a)

∂2
Y2

∂�2
+ 	2

∂Y2

∂�
+ a2

∂4
Y2

∂X4
2

− a4 (1 + a6)
∂4

Y2

∂X2
2 ∂�2

= −ÿg(�) − 
Fd(�)ı(X2 − X3) (10b)

The dimensionless form of the magneto rheological damper force
is given by

Fd(�) = cl(Ẏ − Ẏ1(X3, �)) + K1(Y2(X3, �)) − K1(Y1(X3, �) + Y0) (11)

Y and Z are governed by the below equations

Ẏ(�) = ˛bZ + C0Ẏ2(X3, �) + C1Ẏ1(X3, �) + K0(Y2(X3, �) − Y) (12)

Ż(�) = −�l|Ẏ2(X3, �) − Ẏ |Z|Z|n−1 − ˇlẎ2(X3, �) + ˇlẎ × |Z|n

+ ıl(Ẏ2(X3, �) − Ẏ) (13)

The set of equations (10)–(13) is the dimensionless mathemati-
cal model which describe the dynamics behaviour of the structural
system linked by a controller.

2.2. Modal equations

To reduce the partial differential equation to an set of ordinary
differential equations. The general solutions of Y1 and Y2 can be
written as separation variables of �(�) and 
(�), which are the time
dependent functions by the shape functions �1(X1) and �2(X2),
respectively.

Y1 =
nm∑
i=1

�i(�)�i
1(X1), Y2 =

nm∑
i=1


i(�)�i
2(X2) (14)
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nm is the total number of modes. The shape functions are written
as

�i
1(X1) = (di

1 sin(ıi
1X1) + cos(ıi

1X1) − di
3 sinh(�i

1X1) − cosh(�i
1X1));

�i
2(X2) = (di

11 sin(ıi
2X2) + cos(ıi

2X2) − di
33 sinh(�i

2X2) − cosh(�i
2X2))
(15)

the coefficients di
1, di

3, di
11 and di

33 are obtained by using the bound-
ary conditions of the cantilever Timoshenko beam.

The eigenvalues ıi
1, ıi

2, �i
1 and �i

2 have the miscellaneous val-
ues at different modes of vibration. These parameters are obtained
through an appropriate algorithm, for more details see [23].

In what follows, substituting the mode decomposition of equa-
tions (14) into (10), multiplying by the different spatial expression
and integrating from 0 to 1. one obtain the modal forms of above
equations, that are defined as follows

�̈i(�) + �i
1�̇i(�) + ςi

1�i(�) = −�i
1ÿg(�) + εi

1Fd(�) (16a)


̈i(�) + �i
2
̇i(�) + ςi

2
i(�) = −�i
2ÿg(�) − εi

2Fd(�) (16b)

The dimensionless voltage U is given as

U̇ = −�T (U − Vc) (17)

Introducing the new variable, this leads us to yield the set of equa-
tions that are now be written as

z̈1(�) + �i
1ż1(�) + ςi

1z1(�) = −�i
11ÿg(�) + εi

11Fd(�) (18a)

z̈2(�) + �i
2ż2(�) + ςi

2z2(�) = −�i
22ÿg(�) − εi

22Fd(�) (18b)

with

Fd(�) = cl(ż2 − Ẏh − ż1) + K1(z2 − z1 − Y0) (19)

where Y

Ẏh(�) = −˛bZ + (1 − C0)ż2 − C1ż1 − K0Yh (20)

and Z is governed by

Ż(�) = Ẏh

[
ıa − |Z|n

(
ˇl + �lsgn(Ẏh)sgn(Z)

)]
(21)

This made transformation allows us now to rewrite the set of equa-
tions (16) under the form of the state space equation, therefore
expression is given as

Ẇ(�) = �W(�) + Bÿg + B1Fd(�) (22)

W =

⎡
⎢⎣

z1
z2
ż1
ż2

⎤
⎥⎦, � =

⎡
⎢⎣

0 0 1 0
0 0 0 1

−ςi
1 0 −�i

1 0
0 −ςi

2 0 −�i
2

⎤
⎥⎦

B =

⎡
⎢⎣

0
0

−�i
11

−�i
22

⎤
⎥⎦, B1 =

⎡
⎢⎣

0
0

εi
11

−εi
22

⎤
⎥⎦

It is observed on theses equations, an independence of differ-
ent modes exhibit by the mechanical structures. The dimensionless
nonstationary acceleration ground can be expressed as Fig. 2 shows
Kanai Tajimi filter with variation of the shape. This filter allows to
have the stationary acceleration by passing white noise with the
intensities s01 = 0.02 in Fig. 2(a) and 0.015 in Fig. 2(b), for that the
reference intensity is S0 = 1 m2/s3. The used parameters are those
of a medium soil site with �g = 0.04, �g = 0.09� and the number of
acceleration sequences n = 2.

The dimensionless nonstationary ground acceleration for two
sequences with the separating time interval both of them, is
shown in Fig. 3. The associated frequency contents are (0–0.3) and
(0–0.24), respectively. The parameters of the envelope function
are taken as ˛11 = 0.009, ˛12 = 0.0105, e11 = 0.0245 and e12 = 0.0285.
The geometric and material properties of beams Bg1 and Bg2 are

Fig. 2. Power spectral density: (a) 0.02 and (b) 0.15.

Fig. 3. Dimensionless ground acceleration earthquake.

E1 = E2 = 2.1 × 1011 N/m2; A1 = 25 × 20 m2; A1 = 15 × 10 m2; L = 80 m;
I1 = 16666.7 m4; I2 = 1250 m4; �1 = �2 = 7850 kg/m3; � = 0.3 and
these lead to the dimensionless values

ı2 = 1.872345984225808; ı1 = 1.864590299469015;

�1
2 = 1.855233725311230; �1

1 = 1.799611769800091

ς1
1 = 0.1794505064; ς1

2 = 0.04807614922;

T = 0.03 ε1
1 = −0.2925535449; ε1

2 = −1.004587910;

X3 = 0.3 �1
2 = −0.7604937075; �1

1 = −0.7823279832

Second mode

ı2
1 = 4.634055034532558; �2

1 = 3.761593512952180;

ı2
2 = 4.493412592175132; �2

2 = 4.391485181266631;

�2
1 = −0.2915422860; �2

2 = −0.2283758422;

ε2
1 = −0.7120277150; ε2

2 = −3.188313916

ς2
1 = 5.597669667; ς2

2 = 2.028598833;

Third mode
ı3

1 = 7.506566286307134; �3
1 = 5.070688617236388;
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Table  1
Model parameters of the MR damper.

ıa = 301 n1 = 2
�  (m−2) = 363 �p (s−1) = 190

 ̌ (m−2) = 363 k1 (N/m) = 617.31 MF
k0 (N/m) = 46.90 MF  y0 (m)  = 0.0
˛a (N/m) = 14,000 MF  ˛b (N/mV) = 69,500 MF
c0a (Ns/m) = 2100 MF c0b (Ns/mV) = 350 MF
c1a (Ns/m) = 28,300 MF  c1b (Ns/mV) = 295,000 MF

ı3
2 = 7.721052093237568; �3

2 = 6.732692537780257
ς3

1 = 28.38752152; ς3
2 = 13.23675353;

�3
1 = −0.08394819892; �3

2 = −0.05571034952
ε3

1 = −0.4449994270; ε3
2 = −3.447827322

The parameter values, which are listed in Table 1 are those used
in Ref.[23]. It is observed these parameters depend on the coeffi-
cient MF. This one allows to modify the properties of the damper,
in order to have the parameter values for a large scale MR  damper,
enable to control the mechanical structure in the optimal condition.

3. Numerical results of the controlled mechanical system

With a view to obtain the optimal input voltage correspond-
ing to the desired damper force, the control algorithm used in
semi-active control based on the Lyapunov stability theory [20]
is employed. The Lyapunov function, denoted Ly(W)  must be a
positive function of the state of the system,W.  According to the
Lyapunov stability theory, if the rate of change of lyapunov func-
tion, L̇y(W), is negative semi-definite, the origin is stable. Lyapunov
function is chosen of the form

Ly = 1
2

||W||2p (23)

where ||�||p = P-norm of the states defined by

||�||p =
[
�′PL�

]1/2
(24)

where PL is real, symmetric, positive definite matrix. PL is found
using Lyapunov equation.

�′PL + PL� = −Qp (25)

Qp is a positive definite matrix. The derivative of the Lyapunov
function for a solution of the state-space equation is

L̇y = −1
2

W′QpW + W′PLB1Fd + W′PLBÿg (26)

the control law which minimize L̇y

Vc = VmaxH(−W′PLB1Fd) (27)

where Vmax is the maximum voltage and H(·) is Heaviside step
function. When this function is greater than zero, the voltage (Vc)
applied to the damper should be maximum (Vmax), otherwise, the
command voltage is set to zero.

By considering all defined parameter in the dimensionless form
of mechanical structures, with those of controller, which are associ-
ated with an appropriated algorithm to display Figs. 4–6, therefore
each one expresses at a specified mode. In what follows, these fig-
ures show a considerable reduction of vibration of the amplitude
of buildings (Bg1) and (Bg2) at a interconnected point X3 = 0.25 of
the MR  device. These lead us to conclude the MR  damper it is a
element that reduces the excessive energy bring by the external
disturbances. To observe the efficiency of MR  damper on the struc-
tures. Root mean square displacement of each building is presented.
Figs. 7–9 display root mean square of Bg1  and Bg2  controlled and
uncontrolled at different mode of vibration and different located
points of the MR  device, in order to have the optimal location.
In Fig. 7 the good located points where the controller can offer

Fig. 4. Time history of buildings Bg1  and Bg2 (first mode), Vmax = 2.0, MF  = 12090,
X3 = 0.25.

Fig. 5. Time history of buildings Bg1 and Bg2 (second mode), Vmax = 2.0, MF  = 12090,
X3 = 0.25.

Fig. 6. Time history of buildings Bg1 and Bg2 (third mode), Vmax = 2.0, MF  = 12090,
X3 = 0.25.



B.P. Ndemanou et al. / Mechanics Research Communications 78 (2016) 6–12 11

Fig. 7. Root square response Bg1 and Bg2  (first mode), Vmax = 2.0, MF  = 12090.

Fig. 8. Root square response Bg1 and Bg2 (second mode), Vmax = 2.0, MF = 12090.

Fig. 9. Root square response Bg1 and Bg2 (third mode), Vmax = 2.0, MF = 12090.

a best performance are Xp = 0.7 and Xp = 0.25 for Bg1 and Bg2,
respectively. It is observed that at the located point X3 = 0.25, the
controller reduce even better the vibration than the points X3 = 0.5
and X3 = 0.75 in Fig. 8. As regards in Fig. 9, at the located point

Xp = 0.5 it is seen that there is no exist a difference between con-
trolled and uncontrolled cases. This proves that the controller is
not able to reduce the excessive vibrations on the two buildings.
While the located points Xp = 0.25 and Xp = 0.7, one observe that
the shock absorber performs a considerable effort to attenuate the
vibration.

One clearly see in these figures, illustrating the root mean square
for all the modes show that the optimal position of the dynamic
controller on the buildings is the point Xp = 0.25. It is observed in this
location, the MR  device reduce better the excessive vibrations. By
resuming all the mentioned details, one can note that the MR device
is a good candidate that has the capacity to minimize disturbances.
As further information that one can have from these figures, the
time that the controller will launch to act on the structures, which
can be computed through the following expression given by

�1i =
E[�2

i
]
1/2
uncontrolled

− E[�2
i
]
1/2
controlled

max
(

E[�2
i
]
1/2
uncontrolled

− E[�2
i
]
1/2
controlled

)
�2i =

E[
2
i
]
1/2
uncontrolled

− E[
2
i
]
1/2
controlled

max
(

E[
2
i
]
1/2
uncontrolled

− E[
2
i
]
1/2
controlled

) (28)

The time where the controller begin to attenuate the vibra-
tion on buildings Bg1 and Bg2  is got if �1i < h1 and �2i < h1,
respectively.

For instance at a fixed position X3 = 0.25 and the chosen preci-
sion is h1 = 10−2, the time that the MR  damper launch to reduce
the excessive vibration is, at the first mode � = 45.42 for Bg1
and � = 18.48 for Bg2, at the second mode � = 13.59 for Bg1 and
� = 4.2 for Bg2, at the third mode � = 11.49 for Bg1 and � = 7.05
for Bg2.

It should be noted that the employed root mean square
displacement approach also allows to assess the percentage
reduction of excessive vibrations from the external loads by the
controller.

4. Conclusion

The dynamics response of two building excited by the earth-
quake loads has been investigated. The filtered random modulated
by a deterministic enveloping function is considered to describe
the nonstationary stochastic ground motion. Timoshenko Model
which takes into account the shear and rotational effects has been
adopted to model each building. Lyapunov stability theory based on
semi active control has been used to select the suitable voltage that
operate MR  damper. The mean square value has been employed
to observe better the contribution of this controller at the varied
location. It is shown the controller is not efficient at all located posi-
tion on the mechanical structures. It is observed that the analytical
investigation of other modes is really necessary to obtain the opti-
mal  position. In addition to that, the time where the MR  damper
start to act on each building is pointed out through the numerical
simulations.
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Summary

This paper deals with the statistical effects of an outrigger system on a cantilever beam under

seismic excitation. The nonstationary random approach is employed to simulate seismic events.

The Timoshenko beam approach is used to model the frame-core tube linked at a point of its

length by the damped outriggers, therefore are connected vertically two magnetorheological

damper devices. The peak root-mean-square values of displacement responses is employed as a

best measure effective to specify the optimal locations of outriggers according to different vibra-

tion modes. To evaluate the performance of the control system, the control algorithm based on

Lyapunov stability theory is adopted to seek the input voltage leading to the reduction of vibration.

KEYWORDS

Lyapunov stability, MR dampers, nonstationary random, outriggers, peak RMS, Timoshenko beam

1 INTRODUCTION

Since several decades, researchers and engineers do not cease to multiply the intensive research efforts, in view of reinforcing the degree of energy

dissipation of tall buildings to further resist to the energy from the external disturbances. Due to the vulnerability of those structures to environ-

mental dynamic loads, various alternatives in this sense carried out, with a view to increase structural safety in minimizing the damage effects that

could lead to a premature collapse. The configuration of these ones is done such as the dynamic forces are transferred upon one another in such

manner that they work as a group.[1] As the further element, the passive, active, and semiactive devices are inserted into those structures to enhance

control performance by providing energy dissipation. In the same view, another designed way to improve efficiency of tall buildings such as the out-

rigger system, which is consisted of a core wall, external columns, and outriggers, was developed and implemented. Smith and Willford[2] described

that structural system like a new concept for the structural design of high-rise buildings. The authors mentioned that the performance of this type of

system depends on the flexural and shear stiffness of various core or wall and also of the axial stiffness of the perimeter columns and their distance

from the core. In this regard, Tan et al.[3] presented the experimental work on the outrigger damping system. They showed that the damped outrigger

system can achieve a better performance than the outrigger structure in reducing the seismic response of the structure. Asai et al.[4] defined that

new structural concept like a novel energy dissipation system, which can mostly be used to protect high rise and tall buildings against the hazard

loads, such as severe earthquakes and strong winds. Chang et al. [5] has indicated that outrigger system provides additional damping that can reduce

structural response, and that the bending deformation of the building is transformed into shear deformation across dampers placed between the

outrigger and the perimeter column. Park et al.[6] studied an optimal design method for minimizing the volume of the primary structural members.

According to authors, the flexural rigidity of the core wall and the axial rigidity of the external column vary linearly with respect to height. Some

investigations about outrigger damping systems employing the magnetorheological (MR) dampers, which are inserted vertically between the out-

riggers, and the perimeter columns studied by previous studies.[5, 7, 8] The particularities of MR devices are due to its semiactive nature, inherent

stability, mechanical simplicity, large temperature operating range, and require a low voltage to achieve high control performance.[9] In the present

paper, outrigger system will be constituted of a core and outriggers equipped of the two MR dampers installed vertically at the ends, This signifies,

in other words, that the influence of the perimeter columns is neglected. All these illustrated assumptions lead us to have the signifies model.[10, 11]
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To investigate the dynamic responses, the different approaches were employed by the authors to model the outrigger system such as the elastic

flexural deformation beam,[4, 10 – 12] known on the name of the Euler–Bernouilli beam, the shear-flexural cantilever.[13] Thus, it is important to mention

that up to now, there is a lack of research work in the literature that takes into account the combination of shear-type deformation and rotary inertia

effects in the dynamic behaviours in investigating transverse vibration of the structure. As a result, the core tube adopted here is a cantilever beam

in which the influence of the shear deformation and rotary inertia is taken into account in the modelling. Timoshenko[14] was the first to demonstrate

the importance of shear deformation and rotational inertia effect in the dynamics of elastic beams. That model is a mathematical expansion of the

Euler–Bernoulli theory associated with the quoted effects.

In this work, the frame-core tube is considered as a continuum cantilever Timoshenko beam theory characterized by a set of partial differential

equations. As damped element, two MR dampers are installed vertically at the ends of each outrigger, which are fixed at one point of the mentioned

core structure. The whole structure is adopted to mitigate the earthquake sequence response. The main objective is to find the suitable location of

outriggers at the first three modes by varying the distance of these ones from the core, in order to evaluate the effective response of the structural

system. These results are obtained through the passive-on strategy. It is important to note that the employed optimisation principle is very necessary

to minimize the earthquake-induced structural vibration.

2 DESCRIPTION OF PHYSICAL SYSTEM

The physical model represented in Figure 1 is a structural system that is constituted of an uniform cantilever beam and one outrigger truss. The set

of the system is subjected to the same environmental dynamic force in the horizontal direction denoted ground excitation, which is considered to

FIGURE 1 Cantilever beam with magnetorheological (MR) outriggers

FIGURE 2 Cross-section of the core tube



NDEMANOU ET AL. 3 of 10

simulate a seismic motion. The outriggers and the exterior columns have commonly a high stiffness. In this context, they are assumed to be infinitely

rigid. As a result, the outrigger behaves as a rigid body and is located at a point a from the end of the core tube. In view of increasing the capacity of

the dynamic response of the structural system to resist of the better way against the nonstationary excitation, two semiactive devices dubbed MR

dampers (D) are installed vertically and symmetrically; therefore, the generated forces are applied to the core tube through the outriggers.

2.1 Dynamic model formulation

The mass per unit length is m1; I is the moment of inertia of the cross-section about the neutral axis, E is the Young's modulus; G is the shear modulus of

elasticity; ra is the radius of gyration. These geometrical characteristics are assumed constant. Thus, the lateral displacement is defined by y(x, t) = y,

which varies with the coordinate along the beam x and with time t. The control device fd is generated by a MR damper. The influence of the perimeter

columns on the dynamics of the core is not taken into consideration. As a result, the governing equations describing the dynamics of the cantilever

Timoshenko beam with one damped outrigger under the earthquake loadings can be written as

m1
𝜕2y
𝜕t2

+ EI
𝜕4y
𝜕x4

− m1r2
a

(
1 + E

ksG

)
𝜕4y

𝜕x2𝜕t2
= −m1ẍg(t) +

𝜕Ma

𝜕x
, (1)

where the distributed moment generated by the MR dampers is

Ma = 2𝛿(x − a)rfd(t), (2)

in which 𝛿(x − a) denotes the Dirac function. This one indicates that the point a is the place where the damped outriggers is installed. The distance

from the control devices to the centre of the core is denoted r. The dimensionless quantity ks is the shear coefficient depending on the geometric of

the cross section of the beam and depend on as well as of the Poisson's ratio. It is assumed in this paper that the dimensional ratio of the width on the

area to the thickness is very small, reason why the core tube is considered like a beam being the cross section at the small thickness. This analysis

leads us to adopt that, the expression of this mentioned coefficient associated with the cross-section of the core tube is given by Cowper[15]:

ks =
20(1 + 𝜈)
48 + 39𝜈

. (3)

𝜈 is the Poisson's ratio coefficient, it is clearly seen that ks is connected with that coefficient, which its value depends solely on the material property.

In what follows, the moment of inertia and area of the cross-section can be formulated as (Figure 2)

A = (b + 2h)2 − b2; I = (b + 2h)4

12
− b4

12
.

In this formulation in Equation 1, the first two terms correspond to the classical Bernoulli–Euler beam model. The third term represents the cor-

rection for rotary inertia, and the fourth term represents the shear deformation effect.[16] For convenience in the present study, the joint action of

rotary inertia and shear deformation effects is neglected. Thereafter, the bending stiffness for the outriggers is assumed to be infinite.[10]

The mathematical model of the nonstationary ground acceleration ẍg(t) of n sequences proposed by Abbas and Takewakib[17] is adopted in this

paper. According to the authors, ground acceleration of multiplied sequences could result in more damage to the structure than a single ordi-

nary event. This is because the structure gets damaged in the first sequence, and additional damage accumulates from secondary sequence before

any repair is possible. As a result, this random function is assumed to take the form of a filtered Gaussian stationary white noise modulated by a

deterministic envelope function under the sequence form. Expression of this term is defined in Equation 4 as follows:

üg(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e1(t)ẅ1(t) 0 ≤ t ≤ T1

0 T1 ≤ t ≤ 2∑
i=1

Ti

e2(t −
2∑

i=1
Ti)ẅ2(t)

2∑
i=1

Ti ≤ t ≤ 3∑
i=1

Ti

0
3∑

i=1
Ti ≤ t ≤ 4∑

i=1
Ti

… …

en

(
t −

n+1∑
i=1

Ti

)
ẅn(t)

n+1∑
i=1

Ti ≤ t ≤ n+2∑
i=1

Ti

, (4)

where e1(t), e2(t), … , en(t) are the envelope functions associated with the acceleration sequences 1,2, … , n, ẅ1(t), ẅ2(t), … ẅn(t) are stationary

random processes, T1, T3, … , Tn+2 are the time durations of the acceleration sequences, and T2, T4, … , Tn+1 are the time intervals separating these

sequences. Thus, the envelope function for the ith sequence is expressed as

ei(t) = e0i

(
t −

n∑
i=1

Ti

)
exp

[
−𝛼i

(
t −

n∑
i=1

Ti

)]
;

n+1∑
i=1

Ti ≤ t ≤
n+2∑
i=1

Ti, (5)

where e0i and 𝛼i are 2n positive constants that control the intensity and the nonstationarity trend of the ith acceleration sequence.
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The phenomenological model, which is based on Bouc-Wen modified version, proposed by Spencer et al.[18] is adopted here to describe the

dynamic of the control device in order to predict its response. This model can exhibit a wide variety of hysteretic behaviours. To valid their mathe-

matical model, authors have done a comparative approach between these analytical data and those obtained experimental results. The analysis of

that study on the basis of their results have pointed out the approach numerically tractable and effectively portrays the behaviour of the MR damper.

In other words, the proposed mathematical model describes the dynamic behaviour of the MR damper very well. As a result, the equation governing

force fd generated by the control device:

fd(t) = c1ẏ1 + k1(y(a, t) − y0). (6)

The internal displacement y1 is illustrated:

ẏ1 = 1
(c0 + c1)

(𝛼z + c0ẏ(a, t) + k0(y(a, t) − y1)) , (7)

and z is an evolutionary variable given by

ż = −𝛾|ẏ(a, t) − ẏ1|z|z|n−1 + (𝛿1 − 𝛽|z|n)(ẏ(a, t) − ẏ1), (8)

where c0 and c1 are the viscous damping at larger and low velocities, respectively; k1 is the accumulator stiffness; k0 represents the stiffness at large

velocity; 𝛾, 𝛿1 and𝛽 are the shape parameters of the hysteresis loops. Moreover some of these parameters depend on the command voltage u1, which

are given by

c0 = c0a + c0bu1, c1 = c1a + c1bu1, 𝛼 = 𝛼a + 𝛼bu1, (9)

where the command voltage u1 is accounted for through the first order filter:

u̇1 = 𝜂p(u1 − vc). (10)

vc is the maximum applied voltage that is associated with the saturation of the magnetic field in the MR damper, and 𝜂p is a positive number that

reflects the delay time of the MR damper.

Introducing the new parameters, one has the expressions defined as follows:

Y = y
L
, 𝜏 = t

T
, 𝛿a = 𝛿1L, 𝛾L = 𝛾L, 𝜁a = 2r

L
, ÿg(𝜏) =

T2

L
ẍg(t); a1 = EIT2

mL4
, a2 =

r2
a

L2

(
1 + E

ksG

)
,

C0 = c0

c0 + c1
, K0 = k0T

c0 + c1
, 𝛼b = 𝛼T

(c0 + c1)L
,C1 = c1T

mL
,K1 = k1T2

mL
, T = L

√
𝜌

ksG
, Y0 = y0

L
.

The relationship between the parameters leads to new reformulation, which is described by the below equation:

𝜕2Y
𝜕𝜏2

+ a1
𝜕4Y
𝜕X4

+ a2
𝜕4Y

𝜕X2𝜕𝜏2
= −ÿg(𝜏) + 𝜁aFd(𝜏)

𝜕

𝜕X
𝛿(X − X0). (11)

The dimensionless equation of the MR damper force is rewritten as

Fd(𝜏) = C1Ẏ1 + K1(Y(X0, 𝜏) − Y0). (12)

Y1 and Z are governed by the below equations:

Ẏ1 = 𝛼bZ + C0Ẏ(X0, 𝜏) + K0(Y(X0, 𝜏) − Y1), (13)

ż = −𝛾l|Ẏ(X0, 𝜏) − Ẏ1|Z|Z|n−1 + (𝛿l − 𝛽l|Z|n)(Ẏ(X0, 𝜏) − Ẏ1), (14)

where X0 is the location of the damped outriggers. By observing closely the Equations 12, 13, and 14, one can notice that these depend on the quoted

location point. This shows that the outrigger position is an important issue in terms of ensuring the efficiency of lateral displacement control.[6] For

the sake of simplicity, it is necessary to assess the dynamic responses of the structural system through the modal properties.

2.2 Modal equations

To reduce the partial differential equations to a set of ordinary differential equations, in order to assess the dynamic behaviour response of the

structural system. Thus, the general solution of the Equation 11 can be written as separation variables of𝜒(𝜏), which is the time dependent function

and the shape function Φ(X):

Y =
nm∑
j=1

Φj(X)𝜒j(𝜏). (15)



NDEMANOU ET AL. 5 of 10

nm is the total of modes with

Φ(X) =
(

dj
1

sin
(
𝛿

j
1

X
)
+ cos

(
𝛿

j
1

X
)
− dj

3
sinh

(
𝜖

j
1

X
)
− cosh

(
𝜖

j
1

X
))

. (16)

The spatial function is obtained from Equation 11 without the right member. The superscript j represents the jth mode.

The coefficients dj
1

and dj
3

are obtained by using the boundary conditions of the cantilever Timoshenko beam[19, 20]:

dj
1
=

cos
(
𝛿

j
1

)
+

(
𝜖

j2
1
+𝜇1𝛿

j2
1

)
(
𝛿

j2
1
+𝜇1𝜖

j2
1

) cosh
(
𝜖

j
1

)
−
(

sin
(
𝛿

j
1

)
+ 𝜖

j
1

𝛿
j
1

sinh
(
𝜖

j
1

)) , dj
3
= −

⎛⎜⎜⎜⎝
𝛿

j
1
+ 𝜇1

𝜖
j2
1

𝛿
j
1

𝜖
j
1
+ 𝜇1

𝛿
j2
1

𝜖
j
1

⎞⎟⎟⎟⎠ dj
1
.

In which 𝛿
j
1

and 𝜖
j
1

are eigenvalues defined at the jth mode of the vibration. Impossible to adopt an analytical consideration, these quoted eigenvalues

are obtained from Equation 17, by using an numerical appropriate algorithm:

⎧⎪⎪⎨⎪⎪⎩

[(
𝛿

j2
1
+ Γ1𝜖

j2
1

)2

+
(
𝜖

j2
1
+ Γ1𝛿

j2
1

)2
]

cos
(
𝛿

j
1

)
cosh(𝜖j

1
) −

(
𝛿

j2
1
+ Γ1𝜖

j2
1

)(
𝜖

j2
1
+ Γ1𝛿

j2
1

)
×(

−2 +
(
𝛿

j2
1
−𝜖j2

1

)
𝛿

j
1
𝜖

j
1

sin(𝛿j
1
) sinh(𝜖j

1
)
)

= 0(
𝛿

j2
1
− 𝜖

j2
1

)
Γ2

2
−
(

1 + 1

Γ1

)
𝛿

j2
1
𝜖

j2
1
= 0,

(17)

with Γ1 = E
ks G

, Γ2 = L ks GA

EI
.

In what follows, by using the mode decomposition of the illustrated expression in Equation 15 and substituting them into Equation 11, multiplying

by the different spatial expression and performing the integration from 0 to 1, by adding the damping coefficient. One gets the modal forms of above

equations that can be expressed as follows:

𝜒̈j(𝜏) + 𝜁j𝜒̇j(𝜏) + ςj𝜒j(𝜏) = −𝜎j ÿg(𝜏) − 𝜁a𝜂jFd(𝜏). (18)

The dimensionless equation of the force generated by the MR device is satisfied by the illustrated expressions as follows:

Fd(𝜏) = C1Ẏ1 + K1(𝜒j(𝜏)Φj(X0) − Y0), (19)

where Yh and Z can be rewritten as

Ẏ1 = 𝛼bZ + C0𝜒̇j(𝜏)Φj(X0) + K0(𝜒j(𝜏)Φj(X0) − Y1), (20)

ż = −𝛾L|𝜒̇j(𝜏)Φj(X0) − Ẏ1|Z|Z|n−1 + (𝛿L − 𝛽L|Z|n)(𝜒̇j(𝜏)Φj(X0) − Ẏ1). (21)

The applied voltage to the control device is defined by the dimensionless expression which is given by

U = 𝜂T(U − Vc), (22)

with

ςj =
a1b3

b1 + a2b2
, 𝜂j =

Φ′
j
(X0)

b1 + a2b2
, 𝜎j =

b4

b1 + a2b2
,

in which

b1 = ∫
1

0
Φj(X)2dX, b2 = ∫

1

0
Φ′′

j (X)Φj(X)dX, b3 = ∫
1

0
Φ′′′′

j (X)Φj(X)dX, b4 = ∫
1

0
Φj(X)dX.

Equations 18- 22 describe the time evolution of the concrete core tube which is fixed at the point X0 by the damped outriggers. It is useful to observe

that the parameter of the Equation 18 varied at each vibration mode and that the force generated by MR device depends on the attachment point of

the damped outriggers on core tube. All these results indicate that outrigger locations could modify the structural response at the different vibration

mode and can provide a better understanding of the outrigger design.

2.3 Semiactive controller

With a view to obtain the optimal input voltage corresponding to the desired damper force and to assess the performance of control system, the

control algorithm as an effective mean used in semiactive control based on the Lyapunov stability theory [9] is employed. Because the control device

is not directly controllable and that only applied voltage can be adjusted. Also the mentioned control algorithm is developed for characterizing

adequately the damper's intrinsic nonlinear behaviour.[18] Thus, the Lyapunov function denoted Ly(W)must be a positive function of the state of the

system,W. According to the Lyapunov stability theory, if the rate of change of lyapunov function, L̇y(W), is negative semidefinite, the origin is stable.
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Lyapunov function is chosen of the form

Ly = 1
2
||W||2

p , (23)

where ||𝛴||p=P-norm of the states defined by

||Σ||p =
[
Σ′PLΣ

]1∕2
, (24)

where PL is real, symmetric, positive definite matrix.PL is found using Lyapunov equation.

Σ′PL + PLΣ = −Qp (25)

Qp is a positive definite matrix. The derivative of the Lyapunov function for a solution of the state-space equation is

L̇y = −1
2

W′QpW + W′PLB1Fd + W′PLBÿg . (26)

The above parameters are defined as follows:

W =
[
𝜒j

𝜒̇j

]
,Σ =

[
0 1
−ςj −𝜁j

]
, B =

[
0
−𝜎j

]
, B1 =

[
0

−𝜁a𝜂j

]
.

The control law which will minimize L̇y

Vc = VmaxH(−W′PLB1Fd), (27)

where Vmax is the maximum voltage and H(·) is Heaviside step function. When this function is greater than zero, the voltage (Vc) applied to the damper

should be maximum (Vmax), otherwise, the command voltage is set to zero.

3 RESULTS AND DISCUSSIONS

To investigate efficiency of the simplified model, the concrete core is assumed to be 12m×12m with a 0.5m thickness, and with the height of 210m.[5]

The mass per unit length is m1 = 62500Kg∕m. The eigenvalues are obtained from Equation 17 through the Newton–Raphson numerical. These

results obtained through this method are illustrated in Table 1.

The listed parameter values in Table 2 when MF= 1.0 are those obtained from the analysis of experimental data and theoretical results by Jung

et al.[21] As it is difficult to have an MR damper with the obtained parameters experimentally that will lead to the optimal minimization of excessive

vibration of mechanical structures. To avoid this drawback, it is observed from this Table 2 that some parameters depend on MF, named, the modi-

fication factor that allows of multiplying the damping; stiffness and hysteretic constants of the model magnify the damper force. In this regard, the

objective here is to modify the properties of the damper, in view of having the parameter values for a large scale MR damper, enable to control the

mechanical structure.[22]

TABLE 1 Parameters of the structural
system

Parameter First Second Third

𝛿
j
1

1.873 4.649 7.752

𝜖
j
1

1.860 4.465 6.979

dj
1

−0.743 −1.127 −1.283

dj
3

−0.731 −1.023 −0.998

ςj
1

0.039 1.579 13.918

TABLE 2 Model parameters of the magnetorheological damper

Parameter Value Parameter Value

𝛿a 1107.2 n1 2

𝛾(m−2) 164.0 × 104 𝜂p(s−1) 190

𝛽(m−2) 164.0 × 104 k1(N∕m) 9.7 MF

k0(N∕m) 2 MF y0(m) 0.0

𝛼a(N∕m) 46.2 × 103 MF 𝛼b(N∕mV) 41.2 × 103 MF

c0a(Ns∕m) 11 × 104 MF c0b(Ns∕mV) 114.3 × 103 MF

c1a(Ns∕m) 8359.2 × 103 MF c1b(Ns∕mV) 7482.9 × 103 MF
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FIGURE 3 Optimal position of damped outriggers, 𝜁a = 0.762 and MF=1.0

FIGURE 4 Optimal position of damped outriggers, 𝜁a = 0.095 and MF=1.0

To assess the optimal position of outriggers on the core tube, the passive-on strategy of the controller is employed. Thus,

Figures 3 and 4 display the peak RMS versus locations of outriggers on the structure.

Figure 3 presents at the first mode, a slight variation between the amplitude at the different position of outriggers on the core tube. For that,

one can realize that the positions 0.7, 0.8, and 0.9 at this quoted mode are the location points of damped outriggers where the displacement of the

structural system is reduced slightly in relation to other positions. The second mode exhibits only one best position of outriggers on the core tube

which is 0.9. It is well-seen that at this point the vibration amplitude is reduced dramatically. As regards the third mode, the optimal positions are

0.6 and 0.9. In these points, the peak amplitude of the structure are reduced than other positions. The global analysis of different observations from

Figure 3 leads us to mention that the optimal attachment point of outriggers benefits for the three vibration modes is 0.9.

The same observation from Figure 3 is illustrated in Figure 4, that is to say that the point 0.9 stays only the best position of outriggers on the frame

core tube. Analysing these figures, as can be seen, the point 0.9 is better attachment point of damped outriggers on the frame-core tube favourable

for the three first vibration mode. Moreover, the variation of the length of each outrigger does not affect the value of its optimal attachment point

on the beam.

As mentioned before, it is difficult to have the best parameters from experimental results of the MR damper, which incorporated into the structure

leading to efficient control. For that, Figure 5 displays the peak RMS versus the scale coefficient MF at the first three vibration modes. It is observed

from this figure that the increasing of this quoted coefficient affects the performance of damped outrigger in reducing the seismic response of the

structure. It is important to note that the choice of MF is done such as the control device cannot increase the mechanical energy in the structural

system. In other words, the control device should reinforce the stability of the structure in order to avoid their premature destruction.
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FIGURE 5 Optimal scale coefficient MF

FIGURE 6 Time histories at the first vibration mode

FIGURE 7 Time histories at the second vibration mode

By taking into account of optimal position of damped outriggers and scale coefficient, one displays in Figures 6, 7, and 8, the time histories of

traversal displacement, acceleration, control force, and applied voltage to MR damper at the first, second, and third vibration modes for MF= 9,000.

The structural response of the outrigger system at the three first vibration modes is shows in Figures 6(a), 7(a) and 8(a). One can see the structural

response show two sequences of the vibration.

The command signal Vc is selected through the control algorithm based on Lyapunov stability illustrated in Equation 27. The numerical result of

this adopted strategy allows of having Figures 6b, 7b, and 8b at the first, second, and third vibration modes. The observed separating time interval

between 𝜏 = 170 and 𝜏 = 460 indicates that the controller is in passive-off mode. Since in this relaxation time, the structure did not receive the
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FIGURE 8 Time histories at the third vibration mode

input produced by earthquake, as a result, the system cease to exhibit the vibration. All the same, this explains the dynamic behaviour of the control

device because this is depended on the structural response.

4 CONCLUSION

In this present paper, the dynamic response of the outrigger system under the two sequences of the nonstationary stochastic ground motion has

been investigated. The adopted outrigger system is constituted of a core-tube and outriggers employing the MR dampers, which are inserted verti-

cally. Timoshenko beam theory, which takes into account the combination of shear type deformation and rotary inertia effects, has been considered

to model the dynamic behaviours of the outrigger system. The statistical analysis through the peak root mean square displacement of the structural

system has been employed, to evaluate the influence of optimal attachment points of outriggers on the core tube. The obtained results show that

the analytical investigation of other modes is really necessary to seek the optimal position of outriggers. By taking into account of this strategy, it

is observed all position of outriggers can not lead to optimal minimization of the seismic vibration of the structural system. On top of that, the best

scale coefficient MF of the parameter of the MR device leading to the maximum force by maintaining the efficient control has been determined. Lya-

punov stability theory based on semiactive control has been used to select the suitable voltage that operate MR damper. The repeated sequence of

the input voltage response reveals that this strategy has been adequated for the control devices.
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