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"All truths are easy to understand once they are discovered; remains to us to discover

them."
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Abstract

This thesis seeks to study the dynamics of modulated waves in some nonlinear electrical

lines described by nonlinear partial differential equations. Using the Tanuiti reductive method,

the rotating wave approximation and the semi-discrete approximation, it is shown that the ampli-

tude equations which derive from the partial differential equations governing these nonlinear lines

are reduced to nonlinear Schrodinger equation and to the complex Ginzburg-Landau equation.

The analysis of Stuart and Diprima on the linear stability allows to evaluate the modulational in-

stability criteria of a plane wave submitted to a low hit. The accuracy of these analytical studies

is confirmed by the numerical simulations of the propagation equations of different networks.

More precisely, it comes from this work that the second-neighbor couplings add new

maxima of gain; increase the group velocity, and the magnitude of the wave. Therefore, the net-

work becomes more stable to small external perturbations. Concerning the suppression of waves

mixing, the entire network used in this work needs only the half of the total number of additive

linear inductors compared to that found in the literature; the overall bandwidth is wider; the

new coupling type allows the suppression of some mixing of modes without excluding very low

frequencies. It also points out that the nonlinear coupling adds the domains of modulational

instability of each line. Finally, we derive the two-dimensional NLS equation governing the prop-

agation of slowly modulated waves in the network; we find the exact transverse solution of this

NLS equation and the analytical criteria of stability of this solution.

Keywords: Solitons, Modulational instability, Transmission gain, Second neighbors, Sup-

pression of mixing frequencies, Nonlinear coupling, Transverse solution, Criteria of stability.
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Résumé

Dans ce travail, nous étudions la dynamique des ondes modulées dans quelques lignes

électriques non linéaires décrites par des équations aux dérivées partielles non linéaires. En

utilisant la méthode de TANUITI, l’approximation des ondes rotatives et l’approximation des

milieux semi-discrets, nous montrons que les équations d’amplitude dérivant des équations aux

dérivées partielles gouvernant ces lignes électriques sont reduites aux équations non linéaires

de Schrödinger et de Ginzburg-Landau. L’analyse de la stabilité linéaire de Stuart et Diprima

permet d’évaluer le critère d’instabilité modulationnelle ceci dans le but d’observer la propagation

au cours du temps d’une onde plane soumise à une faible perturbation. L’exactitude de ces

études analytiques est confirmée par une simulation numérique des équations de propagation des

différents réseaux.

Plus pécisément, il ressort de ce travail que le couplage des seconds voisins augmentent

le gain de transmission, la vitesse de groupe et par conséquent, le système devient plus stable

aux petites perturbations extérieures. Concernant la suppression du mixage de fréquences, le

modèle utilisé ici a seulement besoin de la moitié d’inductances comparé à celui retrouvé dans

la littérature; la bande passante est également plus grande et la suppression ce fait sans exclure

les basses fréauences. Il ressort aussi de ce travail que le couplage non linéaire augmente les

domaines d’instabilité modulationnelle. Finalement, nous dérivons une équation de Schrödinger

en dimension 2, nous trouvons la solution de cette équation et nous déterminons son critère de

stabilité.

Mots clés: Solitons, Instabilité modulationnelle, Gain de transmission, Second voisins,

Suppression du mixage de fréquences, Couplage non linéaire, Solution transversale, Critère de

stabilité.
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General Introduction

Since the first observation of a soliton by John Scott Russell in 1834, this type of

solitary wave with exceptional stability has fascinated scientists; primarily because of their

spectacular experimental properties and their undeniable elegances, but also due to their

mathematical properties. The mathematical aspect was preferred in most of the references

relating to the literature on solitons. In fact, it leads to beautiful theoretical developments

such as the inverse scattering transform method that solves a nonlinear equation by a

complex series of steps which are all linear. Beyond the mathematical aspects, the physics

of soliton is also interesting and relevant to modern research. Thus, many experiments on

the Bose-Einstein condensation have been done from the nonlinear Schrödinger equation

which is one of the major equations of the theory of solitons. The field of solitons in general

and the field of Telecommunications using solitons in particular have witnessed significant

developments since the word soliton was coined. Most of this growth occurred over the

last decade or so, during which many new kinds of solitons [1, 2] have been identified. A

soliton can be viewed as a result of an instability that leads to a self-induced modulation

of the steady state produced by the interaction between nonlinear and dispersive effects.

To illustrate the above assumptions, some fundamental properties of nonlinear systems

have been confirmed experimentally: the generation of solitary waves, the interaction

between solitons (see [3–10]) and the recurrence phenomenon (see [10–12]). Marquié

et al. [13, 14] have presented a careful and quantitative experimental analysis about

modulational instability and the generation of either envelope or hole solitons, depending

on an appropriate choice of the carrier wave frequency. Modulational instability has been

studied in diverse fields and in nonlinear electrical transmission lines in particular [15–19].

The single LC transmission line adequately describes a great variety of physical

phenomena in certain parameter regimes. To cite just an example, the single electrical

transmission line gives a good description of nonlinear deep water waves. In fact, dis-

tributed electrical transmission lines that consist of a large number of identical sections
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GENERAL INTRODUCTION 2

have been used to experimentally study the propagation of solitons obeying the Korteweg

de Vries (KdV) equation. This equation was originally derived in order to model the

shallow-water wave experiments of John Scott Russel in the 19th century. The results

obtained on studies concerning KdV equation could then be transposed and will be very

useful for either the investigation of nonlinear transmission lines or of other similar physical

problems, such as nonlinear waves in the plasma. The KdV equation has been found nearly

in all branches of physics, especially for shallow-water waves, nonlinear lattice, plasma

physics [20–22]. Recently, many researchers have studied the transverse perturbations

to the one-dimensional KdV equation [24]. The typical ones are the Zakharov-Kuznetsov

(ZK) equation and the Kadomtsev-Petviashvili (KP) equation [23]. The ZK equation has

also been found in many branches of physics, for example in plasma physics [25].

The single electrical transmission line as model fails when considering nonlinear

waves in the long gravity wave region [26,27]. More importantly, there are many physical

phenomena which can be investigated by the use of more than a single electrical transmis-

sion line [28]. Similarly, if the single electrical line shares many phenomena with certain

optical fibres, it can not model the birefringent fibre which allows two modes of prop-

agation [29]. So, Kakutani and co-workers [27, 30] have investigated theoretically and

experimentally the Korteweg-de Vries solitons on a coupled LC transmission line consist-

ing of two nonlinear LC ladder lines connected by identical intermediary capacitors and

have shown that the network admits two different modes (a fast-mode and a slow-mode),

in each direction of wave propagation. These two modes of propagation can combine dur-

ing the transmission. This causes qualitatively different phenomena compared with the

ordinary process of propagation, such as the annihilation. Modes mixing effect is then

undesirable for the nonlinear modulated waves propagation. Separating these two modes

will lead to avoid their simultaneous generation in each line. On the other hand, what

would happen if we couple two transmission lines with second-neighbors ? What would

happen if we couple two identical lines with a nonlinear capacitance ?

The answers to these questions will be the focus of our development. At the same

time, we will study the transverse stability in a network. The present work is organized

as follows:

- In chapter 1, we make a literature review on the soliton, nonlinear electrical

transmission lines and modulational instability;

- The second chapter is devoted to methodology. We present the mathematical
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(the Tanuiti reductive method, the rotating wave approximation) and numerical methods

(the fourth order Runge-Kutta algorithm and other) used to attain our aims;

- The last chapter presents results and discussions. This chapter is divided into

five sections:

• In section one, we study the effect of nonlinear coupling on modulational

instability in nonlinear transmission lines;

• In section two, we study the effect of second-neighbor inductive coupling

on the modulational instability in a coupled line of transmission;

• In section three and four, the suppression of modulated waves mixing in

coupled nonlinear LC transmission lines is presented;

• The last section is based on the transverse stability in the discrete inductance-

capacitance electrical network.

Finally, we end this work with a general conclusion in which we present our main

results. Some recommendations are also made in relation to these results.
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Chapter 1

Literature Review: Generalities on

Soliton, Nonlinear Electrical Lines

and Modulational Instability

Introduction

Considerable interest is being directed to wave motion in nonlinear equations

because of its particular properties in nonlinear physical models. It is well known that most

of the phenomena that arise in mathematical physics and engineering can be described

by nonlinear equations, namely, by spatio-temporal partial differential equations (PDE).

Generally, the solutions of these PDEs are solitons. This chapter will bring out the origin

of soliton and the different kinds of soliton, general informations on the nonlinear electrical

transmission lines and modulational instability.

1.1 Origin of the soliton concept

Over one hundred and seventy nine years ago, while conducting experiments to

determine the most efficient design for canal boats, a young engineer named John Scott

Russell (1808-1882) made a remarkable scientific discovery. As he described it in his

Report on Waves [31]: "I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the

mass of water in the channel which it had put in motion; it accumulated round the prow
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1.1 Origin of the soliton concept 5

of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward

with great velocity, assuming the form of a large solitary elevation, a rounded, smooth

and well-defined heap of water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on horseback, and overtook

it still rolling on at a rate of some eight or nine miles an hour, preserving its original

figure some thirty feet long and a foot to a foot and a half in height. Its height gradually

diminished, and after a chase of one or two miles I lost it in the windings of the channel.

Such, in the month of August 1834, was my first chance interview with that singular

and beautiful phenomenon which I have called "the Wave of Translation". This event

took place on the Union Canal at Hermiston, very close to the Riccarton campus of

Heriot-Watt University, Edinburgh. The soliton is a wave that has an energy localized

in space and that is extremely stable in the presence of disturbances. It generally moves

without changing its form or its characteristics. In the field of hydrodynamics for example,

tsunamis, rogue waves are well known manifestations of solitons. Solitons are caused by

an association of nonlinear and dispersive effects in the propagating medium. The term

dispersive effect refers to a property of certain systems where the speed of the waves varies

according to the frequency. Solitons arise as the solutions of a widespread class of weakly

nonlinear dispersive partial differential equations describing physical systems. Helmholtz

[32] measured the propagation velocity of nerve pulses in 1850. In 1902, Lehmann [33]

found the formation of localized anode spots in long gas-discharge tubes. Nevertheless,

the term "soliton" was originally developed in a different context. These observations

initiated the theoretical work of Rayleigh [34] and Boussinesq [35] around 1870, which

finally led to the approximate description of such waves by Korteweg and de Vries (KdV)

in 1895; this description is known today as the conservative KdV equation [36]. The

KdV equation is one of the prototypes of the theory of solitons because it has remarkable

mathematical properties. Its study allows to understand the basic ideas of the concept

of soliton, but its derivation through hydrodynamic equations in shallow water is a little

tedious. Figure 1.1 shows a device similar to that used by John Scott Russell to study

experimentally the solitary wave. The waves are generated by a piston placed at the

beginning of a channel. J. S Russell was able to verify the following properties:

• An initial excitation, according to its amplitude and its form, produced one, two, or

many solitary waves;

• These waves propagate at a speed greater than the speed of the linear waves c0 =
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Figure 1.1: Schematic evolution of a perturbation of the water surface in a reservoir created

by the movement of a piston in the down or up direction [37].

√
hg, where g denotes the gravity and h the depth of water. This velocity is given by

v = c0(1 + ηA), where η represents the height of the liquid surface above the level of

balance and A is the amplitude of the initial pertubation.

On this background the term "soliton" was coined by Zabusky and Kruskal [38]

in 1965. These authors investigated certain well localised solitary solutions of the KdV

equation and named these objects solitons. Among other things they demonstrated that

solitons exist in 1-dimensional space. Gardner et al. [39] introduced the inverse scatter-

ing technique for solving the KdV equation and proved that this equation is completely

integrable. In 1972, Zakharov and Shabat [40] found another integrable equation and

finally it turned out that the inverse scattering technique can be applied successfully to

a whole class of equations (e.g. the nonlinear Schrödinger and sine-Gordon equations).

From 1965 up to about 1975, a common agreement was reached: to reserve the term soli-

ton to pulse-like solitary solutions of conservative nonlinear partial differential equations

that can be solved by using the inverse scattering technique. At a conference dedicated

to the solitons and for their applications, which took place in Edinburgh in 1982, several

scientists tried to recreate a solitary wave in the famous canal dear to J. S. Russell. It
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1.1 Origin of the soliton concept 7

was a failure as a result of technical problems. This experiment will be possible in 1995,

at the Heriot-Watt University, those researchers have simulated the observations made by

J. S. Russell. Figure 1.2 shows it. On this figure, we can see an example of the solitary

wave.

Figure 1.2: Simulation of the observation of J. S. Russell (Heriot-Watt University, 1995) [41].

1.1.1 The different classes of soliton

There are two types of solitons, namely:

• The non-topological soliton;

• and the topological soliton.

1.1.1.1 The non-topological solitons

A soliton is non-topological when the propagation medium remains in the same

state before and after the wave has passed. These solitons are those observed in hydrody-

namics (although some are also observed in solid mechanics). The non-topological soliton

in a hydrodynamic environment can be described by the KdV equation. Writing the

Euler equations for a fluid which is incompressible and assumed inviscid, the boundary

conditions at the bottom and to the surface, and assuming that the flow is irrotational,

we can obtain the KdV equation, valid in the case of weak nonlinearities (see ref. [37] ):

1

c0

∂η

∂t
+

∂η

∂x
+

3η

2h

∂η

∂x
+

h2

6

∂3η

∂x3
= 0 (1.1)
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where c0 =
√

gh is the speed of propagation of linear waves in the limits of great wave-

lengths, h the depth and η the height of the liquid surface above the level of balance.

Setting X = x− c0t and T = t, it is possible to strike out the second term of eq.(1.1); we

then have:

1

c0

∂η

∂T
+

3η

2h

∂η

∂X
+

h2

6

∂3η

∂X3
= 0 (1.2)

Introducing well chosen dimensionless variables, we obtain eq.(1.2) in its standard form

as follows:

∂ρ

∂τ
+ 6ρ

∂ρ

∂ξ
+

∂3ρ

∂ξ3
= 0 (1.3)

where ρ = η/h, ξ = X/X0 and τ = T/T0; X0 and T0 are constants.

The KdV equation has among others the following spatially localized solutions

ρ = Asech2[

√
A

2
(ξ − 2Aτ)] (A > 0), (1.4)

where A is the amplitude. Returning to original variables in the landmark laboratory, the

solution can be written as follows:

η = η0sech
2[

1

2h

√
3η0

h
(x− c0[1 +

η0

2h
]t)] (1.5)

Plotting this equation, we can easily observe that the width of soliton L =
√

2/A vary

with the amplitude A. The width L decreases when the amplitude A increases and tend

to the infinity when the amplitude tends to zero. This is presented on figure 1.3.

1.1.1.2 The topological solitons

A soliton is topological when the propagation medium is in different states before

and after the passing of the wave. The soliton can be described in this state by the sine-

Gordon (sG) equation. This sG equation derives from a chain of pendulum of mass m

and length l.

∂2θ

∂t2
− c2

0

∂2θ

∂x2
+ ω2

0 sin(θ) = 0 (1.6)

where ω2
0 = mgl

I
is the frequency, c2

0 = Ca2

I
is the velocity and g is the gravity; I is the

moment of inertia, C is the constant of torsion of the spring and a is the distance between
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Figure 1.3: Comparison between two solitons; for the curve in blue, A = 1.0 and for the red

curve, A = 0.5. The width of soliton decreases when A increases and inversely.

the pendulum. As the KdV equation, this equation is completely integrable and admits

exact soliton solutions. A solution of this equation is (see [37]):

θ(x, t)± = 4 arctan[exp(±x− ct

L
)] (1.7)

where L = c0
ω0

√
1− c2

c20
measures the spatial extension of the solution. Figure 1.4 shows

the evolution of Eq.(1.7).
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Figure 1.4: Schematic representation of the solution of the sine-Gordon equation. The left

figure corresponds to kink soliton, while the right figure represents the antikink soliton.
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1.1.2 Collision of two solitons

In addition to maintaining their shape, solitons possess other important properties

[42–44]. First, a taller soliton travels faster than a shorter one. Due to this amplitude-

dependent speed, as shown in Fig. 1.5, a taller soliton originally placed behind a shorter

one catches it up and moves ahead of it after a collision. Another important set of

properties is observed in this collision process. During the collision, the two solitons do

not linearly superpose. In fact, they only interpenetrate and come out with their original

shapes.

Figure 1.5: Collision of two solitons with different amplitudes.

1.1.3 Applications of Solitons

Since the early 1990s, the applications of solitons keep growing.

♣ Telecommunications:

• In 1991, a team transmits solitons on over 14 000 km using a technique of

amplifying signals in an optical fiber.

• In 1998, a team from the Center for Research and Development of France

Telecom combines solitons of different wavelengths to achieve a transmission with a rate

higher than one terabite per second;
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♣ Chemistry:

• In 2000, chemists showed that the electrical conductivity of conductive plastics

is provided by solitons;

• In 2006, solitons were observed in crystals of aluminum supported by a high

temperature due to experiments of scattering with X-rays and neutrons.

♣ Biology:

• The pulse that we take at the wrist can be considered as a soliton. This soliton

results from the balance between nonlinearity from the hydrodynamics of blood flow and

dispersion related to the elasticity of the artery wall.

Currently, one of the main challenges of solitons is in the field of Telecommu-

nications. Solitons are very important in Telecommunications. In a data transmission

system, the transmission medium is the physical path between transmitter and receiver.

The transmission media that are used to convey information can be classified as guided

or unguided. For unguided media, wireless transmission occurs through the atmosphere,

outer space or water. The characteristics and quality of a data transmission are deter-

mined both by the characteristics of the medium and the characteristics of the signal. In

the case of guided media, the medium itself is more important in determining the limita-

tions of transmission. One key property of signals transmitted by antenna is directionality.

In general, signals at lower frequencies are omnidirectional; that is, the signal propagates

in all directions from the antenna. At higher frequencies, it is possible to focus the signal

into a directional beam. A number of design factors relating to the transmission medium

and the signal determine the data rate and distance:

• Bandwidth: All other factors remaining constant, the greater the bandwidth of a

signal, the higher the data rate that can be achieved.

• Transmission impairments: Impairments, such as attenuation, limit the distance.

For guided media, twisted pair generally suffers more impairment than coaxial cable, which

in turn suffers more than optical fiber.

• Interference: Interference from competing signals in overlapping frequency bands

can distort or wipe out a signal. Interference is of particular concern for unguided media

but is also a problem with guided media. For guided media, interference can be caused

by emanations from nearby cables. For example, twisted pairs are often bundled together

and conductors often carry multiple cables. Interference can also be experienced from

unguided transmissions. Proper shielding of a guided medium can minimize this problem.
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1.2 Generalities on nonlinear electrical transmission lines 12

• Number of receivers: A guided medium can be used to construct a point-to-point

link or a shared link with multiple attachments. In this latter case, each attachment

introduces some attenuation and distortion on the line, limiting distance and/or data

rate.

What we can observe is that with guided medium, the transmission is more impor-

tant than the unguided medium. That is one of reasons for which this work focusses only

on the electrical transmission lines. We also use nonlinear electrical lines to model certain

phenomena observed in optical fiber like the two modes of propagation with birefringent

fiber.

1.2 Generalities on nonlinear electrical transmission lines

Several investigations have been performed to improve the first nonlinear and dis-

sipative transmission line built by Hirota and Suzuki [11]; this because electrical trans-

mission lines are very convenient tools to study the fascinating properties of nonlinear

waves [45–49]. Indeed, it has been shown that the equation governing the physics of non-

linear electrical lines can be reduced to a cubic nonlinear Schrödinger equation or a pair

of coupled nonlinear Schrödinger equations, the KdV equation, the complex Ginzburg-

Landau equation or the coupled complex Ginzburg-Landau equations [50,51]. Like every

nonlinear system, a nonlinear transmission line can exhibit an instability that leads to a

self-induced modulation of an input plane wave with the subsequent generation of local-

ized pulses; this phenomenon is known as a Benjamin-Feir modulational instability and

it is responsible for many interesting physical effects such as the formation of envelope

solitons [13].

The NETL is constructed with a normal transmission line which is periodically

loaded with reverse biased diodes. These diodes are extremely nonlinear and are used to

introduce nonlinearities in the basic linear transmission lines. The capacity of this kind

of diode changes with the applied voltageas shown in Fig. 1.6.

A NETL has been explored as frequency multipliers with high frequencies in [52–

54], focusing primarily on high harmonic content. NETLs have three fundamental and

quantifiable characteristics. These are nonlinearity, dispersion and dissipation.
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Figure 1.6: Single nonlinear transmission line. Three unit cells are reproduced.

1.2.1 Dispersion

The dispersion of the NETL results from the structural periodicity of the NETL.

NETLs are characterized by a dispersion relation which is the relation between the angular

frequency shift ω and wave number k. Let us consider as example the unit cell of Fig.

1.6 from where Kirchhoff’s law in weak amplitude regime leads to the following linear

traveling wave equation:

d2Vn

dt2
+

1

LC0

(2Vn − Vn−1 − Vn+1) = 0 (1.8)

where L and C0 are the linear inductance and shunt capacitance at dc bias voltage re-

spectively. This equation can be solved as follows

Vn(t) = V0 exp
[
i(kn− ωt)

]
, (1.9)

where Vn(t) and V0 are the voltage at node n and initial voltage respectively. k and ω are

linked through the following relation

ω2 =
4

LC0

sin2(
k

2
) (1.10)

known as the linear dispersion relation describing low-pass filter character of the network

in the linear regime with upper cut-off frequency:

ω0 =
2√
LC0

(1.11)

At the cut-off frequency, the wave number k is equal to π. Since the phase velocity

vp = ω/k is a function of wave number k, the wave will spread out, or disperse itself

during the propagation. The shape of the wave packet is determined by the dispersion
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coefficient, defined as P = ∂2ω/∂k2 and the propagation velocity of the wave is the group

velocity given by vg = ∂ω/∂k.

1.2.2 Nonlinearity

The nonlinearity of the NETL comes from the nonlinear diodes because their capaci-

tance varies with applied voltage. With the nonlinearity alone, the transmission equation

will be given as follows:

d2Vn

dt2
+ g(Vn, V 2

n , ...) = 0. (1.12)

Thus, g(Vn, V 2
n , ...) is the nonlinear function of voltage Vn. A traveling wave Vn(t) =

V (n− ct), solution of Eq. 1.12 must have an amplitude V0 proportional to the velocity c.

Different points of a wave profile will hence propagate at different velocities, with points of

higher amplitude overtaking points of lower amplitude leading to steepening of the wave

form.

1.2.3 Dissipation

There are two main sources of dissipations in the NETLs. These are diode series

resistance and metallic losses which arise from the geometry and finite conductivity of the

coplanar waveguide. Another source of loss is radiation. Radiation loss is theoretically

studied by Rutledge [55], but this loss mechanism is much less significant in the NETLs

than the other two.

1.2.4 Dispersion and nonlinearity effect on the input signals

The theory of soliton stores the information on some famous equations: the KdV

equation, the nonlinear Schrödinger equation, the sine-Gordon equation, the Boussinesq

equation, and others. This theory provides a fascinating glimpse into studying the non-

linear processes in which the combination of dispersion and nonlinearity together lead to

the appearance of solitons. When loss is present solitons cannot maintain their

shape, but they still maintain spatial localization of energy in a pulse shape

through a unique damping process [56]. In the presence of a nonlinear capacitor

given by C(V ) = C0(1−αV ), the instantaneous capacitance is smaller for higher voltages.

Therefore, the points with higher amplitudes will propagate with faster velocity than the
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1.2 Generalities on nonlinear electrical transmission lines 15

points with low amplitudes due to nonlinearity, as shown in the upper row of Fig. 1.7.

Now, if we take into account the dispersion, the wave will spread out, as shown in the

lower half of Fig. 1.7.

Figure 1.7: Dispersion and nonlinear effects in the NETL.

1.2.5 Generalities on diodes

A diode is a two-terminal device, having two active electrodes, between which

it allows the transfer of current in one direction only. Basically, diodes are used for the

purpose of rectifying waveforms, and can be used within power supplies or within radio

detectors. They can also be used in circuits where one way effect of diode is required.

Most diodes are made from semiconductors such as silicon; however, germanium is also

used sometimes. Several types of diodes are available for use in electronics design. But in

this work, we will focus only on Schottky and Varicap diodes.

1.2.5.1 Schottky diode

These diodes feature lower forward voltage drop as compared to the ordinary

silicon PN junction diodes. The voltage drop may be situated between 0.15 and 0.4 volt

at low current, as compared to the 0.6 volt for a silicon diode. In order to achieve this

performance, these diodes are constructed differently from normal diodes, with metal to

semiconductor contact. Schottky diodes are used in radio frequency (RF) applications,
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1.3 Generalities on the modulational instability 16

rectifier applications and clamping diodes. The advantages of NETLs explored for use

in pulse sharpening require extremely fast diode meeting those requirements. Its unique

properties enable it to be used in a number of applications where other diodes would not

be able to provide the same level of performance.

1.2.5.2 Varicap diode

This type of diode is used in many radio frequency (RF) applications. The diode

has a reverse bias placed upon it and this varies the width of the depletion layer according

to the voltage placed across the diode. In this configuration the varactor or varicap diode

acts like a capacitor with the depletion region being the insulating dielectric and the

capacitor plates formed by the extent of the conduction regions. The capacitance can be

modified by changing the bias on the diode as this will vary the width of the depletion

region which accordingly will change the capacitance.

1.3 Generalities on the modulational instability

Modulation instability (MI) is a universal process that is inherent to most nonlin-

ear wave systems in nature. Because of MI, small amplitude perturbations that originate

from noise on top of a homogeneous wave front grow rapidly under the combined effect of

nonlinearity and dispersion [57,58]. In the fields of nonlinear optics and fluid dynamics,

modulational instability or sideband instability is a phenomenon whereby deviations from

a periodic waveform are reinforced by nonlinearity, leading to the generation of spectral-

sidebands and the eventual breakup of the waveform into a train of pulses [57, 59, 61].

The phenomenon was first discovered and modeled for periodic surface gravity waves

(Stokes waves) on deep water by T. Brooke Benjamin and Jim E. Feir, in 1967 [62].

Therefore, it is also known as the Benjamin-Feir instability. It is a possible mechanism

for the generation of rogue waves [63, 64]. Modulation instability only happens under

certain circumstances. The most important condition is anomalous group velocity dis-

persion, whereby pulses with shorter wavelengths travel with higher group velocity than

pulses with longer wavelength [60, 61]. There is also a threshold power, below which no

instability will be seen [61]. The instability is strongly dependent on the frequency of the

perturbation. At certain frequencies, a perturbation will have little effect, while at other

frequencies, a perturbation will grow exponentially. Random perturbations will generally
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1.3 Generalities on the modulational instability 17

contain a broad range of frequency content, and so will cause the generation of spectral

sidebands which reflect the underlying gain spectrum. The tendency of a perturbing sig-

nal to grow makes modulation instability a form of amplification. Recent theoretical and

experimental work have proved that MI can also occur with partially spatially incoherent

light [65–67]. The implication of this result is that MI can appear in almost any weakly

correlated nonlinear wave system. Figure 1.8 illustrates the modulational instability phe-

nomenon in incoherent waves.

Figure 1.8: Photograph of progressive wave trains illustrating the incoherent wave breaking into

incoherent signals due to instability [68].

Conclusion

In this chapter, we provided the background of the soliton theory and their appli-

cations; we also point out some generalities about nonlinear electrical transmission lines

and on the modulational instability. The pioneer experimental soliton work of J. S. was

also presented. It appears that the combination of dispersion and nonlinearity together

lead to the appearance of solitons. When dispersions and nonlinearities are in the same

order of magnitude, solitary wave will propagate through the network in stable manner.

The nonlinear components studied in this chapter which are usually used to introduce

nonlinearity in the standard NETL are nonlinear diodes. In the next chapter, we will

present the mathematical and numerical way used to obtain our results.
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Chapter 2

Methodology of investigations: The

Analytical and Numerical Methods

Introduction

In order to accomplish our aims, we combine the analytical and numerical meth-

ods. Generally, from the Kirchhoff’s law, it is easy to show that the network is governed

by a discrete ordinary differential equations which is difficult to solve and where solutions

need to be approximated. There are many analytical methods which are used to obtain

these approximated solutions. These analytical methods lead to the discrete nonlinear

Schrödinger equation, the complex Ginzburg-Landau equation and many others. The

numerical methods are used to consolidate the analytical results. In the first part of this

chapter, we will give the generalities on the analytical methods used; the second part will

be devoted to the numerical methods.

2.1 Analytical methods

There is a vast body of literature concerned with finding approximations to wave

equations. Nowadays, there are a number of sophisticated methods at our disposal for

determining approximate equations. We will use in this work the reductive method of

Tanuiti and the rotating wave approximation.
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2.1 Analytical methods 19

2.1.1 The Tanuiti reductive method

The reductive method is based on the multiple-scale approximation in order to

obtain the Nonlinear Schrödinger (NLS) equation, the well-known Ginzburg-Landau (GL)

equation or the extension of the nonlinear Schrödinger equation. Following this method,

the voltage Vn(t) is expanded in power series as follows [69–71]:

Vn(t) =
∑

l,m

εlAl,m exp(imθ(n, t)) + cc (2.1)

where cc denotes the complex conjugate, Al,m is the envelope of waves while exp(imθ(n, t))

is the carrier. The parameter l in Eq. (2.1) is the perturbation range, while m is the order

of frequency which can be created from the fundamental frequency. It has been proved

that Eq. (2.1) contains only three important terms which can be different to zero, leading

this equation to:

Vn(t) = εrA11(x, t)eiθ + ε2r[A20(x, t) + A22(x, t)e2iθ] + c.c. (2.2)

The parameter r in Eq. (2.2) accounts for the nonlinear partial differential equation

that one expects to obtain. If we neglect the dissipative effects and if r = 1, this form of

expansion leads to the usual NLS equation [72]. If r = 1/2 and if we take into account the

dissipative effects like resistances, we obtain the GL equation [73]. While for r = 0, the

extension of the nonlinear Schrödinger equation [69] can be obtained. The parameter A11

proportional to eiθ is the first harmonic term which usually is the input wave. A20 is the

the dc term which is usually introduced by the direct current in the network while terms

proportional to emiθ ,m = 2, .., M respectively, are the second, third, ..., M th harmonic

terms, which characterized the ability of the network to generate harmonics. θ is the

linear phase, given in term of the angular frequency and wave number k by

θ = kn− ωt (2.3)

which characterize the fast local oscillation. To take care of the slow variation in ampli-

tude, we use the slow variables x and τ given by





x = εr(n− vgt)

τ = ε2rt
(2.4)
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The constant vg is the wave velocity associated to the wave packet given by

vg =
dω

dk
. (2.5)

For r = 0, the dispersion relation and the group velocity are obtained by assuming

a sinusoidal wave in which Vn is proportional to eiθ and by neglecting the terms of power

greater than 1. For r = 1, the dispersion relation is obtained from equation eiθ propor-

tional to ε, and vg from equation eiθ proportional to ε2. The evaluation of the potential

at cells n± 1 is given by Eq. (2.6)

Vn±1(t) = εrA11(x±εr, τ)eiθe±ik+ε2rA20(x±εr, τ)+ε2rA22(x±εr, τ)e2iθe±2ik+...+cc (2.6)

Aj(x±εr, τ) is expanded by means of Taylor series expansion method, where all derivatives

of Aj(x, τ) are taken at the expansion point (x, τ). Thus, Aj(x ± εr, τ) can be Taylor

expanded as:

Aj(x± εr, τ) = Aj(x, τ)± εr ∂Aj(x, τ)

∂x
+

ε2r

2

∂2Aj(x, τ)

∂x2
± ... (2.7)

The dispersion relation generally proved that the angular frequency ω belong to interval

]ω0; ωc[, where ω0 is the gap frequency and ωc is the cut-off frequency. For ω0 = 0, the

network is the low-pass filter, while for ω0 6= 0, the network is the band-pass filter, which

in this case is characterized by the absence of A20 in Eq. (2.2) due to the band-pass filter

character of the network which eliminates all the dc terms.

2.1.2 The rotating wave approximation

The rotating wave approximation is an approximation used in atom optics, mag-

netic resonance and in nonlinear electrical lines. The rotating wave approximation (RWA)

[74] was used frequently in papers that appeared in the late eighties and early nineties,

for instance (see [75–79]). Since the solutions are time periodic, they can be expressed

as a Fourier series,

Vn(t) =

p=+∞∑
p=−∞

εrψnp(T )eipωt + c.c. (2.8)

where ψnp are coefficients to be determined, and ω = 2π/T , T being the period of the

motion. The previous ansatz is substituted into the discrete ordinary differential equa-

tion obtained from Kirchhoff’s laws, and one equates coefficients of terms with the same
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frequency pω, p = 0,±1,±2, ... in the resulting equation. In the simplest approximation,

only terms which are resonant with the fundamental frequency eiωt are retained, and terms

with |p| ≥ 2 (namely, e2iωt, e3iωt, e4iωt, ...) are neglected. Thus, taking into account these

considerations Eq. (2.8) simply takes the form

Vn(t) = εrψ11(x, t)eiωt + c.c. (2.9)

In this thesis, we chose r = 1 to obtain the complex Ginzburg-Landau (CGL) equation .

2.2 Numerical methods

Numerical solution of ordinary differential equations is the most important tech-

nique in continuous time dynamics. Since most ordinary differential equations are not

soluble analytically, numerical integration is the only way to obtain information about

the trajectory. Many different methods have been proposed and used in an attempt

to solve accurately various types of ordinary differential equations. However there are a

handful of methods known and used universally (i.e., Runge-Kutta, Adams-Bashforth and

Backward Differentiation Formula methods). All these methods discretize the differential

system to produce a discrete system of equation or map. The methods obtain different

maps from the same differential equation, but they have the same aim; that the dynamics

of the map should correspond closely to the dynamics of the differential equation. In this

work, we use the fourth order Runge-Kutta algorithm.

The fourth order Runge-Kutta is a much more locally accurate method. Suppose

that we have an equation of the form (with U(t0) = U0);

dU

dt
= f(t, U) (2.10)

then if we know Un and set t = (n − 1)h, the value of Un+1 is given by the sequence of

operations

Un+1 = Un +
1

6
(k1 + 2k2 + 2k3 + k4) (2.11)

where k1, k2, k3 and k4 are the coefficients of the fourth order Runge-Kutta given by

the system below
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



k1 = hf(t, Un)

k2 = hf(t + h
2
, Un + k1

2
)

k3 = hf(t + h
2
, Un + k2

2
)

k4 = hf(t + h, Un + k3)

(2.12)

h is the normalized integration time step. This method is very widely favoured as:

• It is easy to use and no equations need to be solved at each stage;

• It is highly accurate for moderate h values;

• It is a one step method i.e. Un+1 only depends on Un;

• It is easy to start and easy to code.

In the special case when f(t, U) = f(t), we have

U(t) =

∫ t

to

f(t)dt + U0 (2.13)

and the task of evaluating this integral accurately is called quadrature. To solve any

differential equation with the fourth order Runge-Kutta algorithm, we need to put it into

the standard form given by Eq. (2.10).

Conclusion

This chapter was devoted to the presentation of analytical and numerical methods

used to model the nonlinear evolution equation governing the network under consideration.

Using the analytical methods, we have shown that it is possible to solve the discrete ordi-

nary differential equations obtained from the Kirchhoff’s law. In the view to consolidate

the analytical results, we use the numerical methods to proof that the results obtained

are valid. In the next chapter, we will present our results together with discussions.
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Chapter 3

Results and Discussions:

Description of the Models, Basic

Properties and Derivation of the

Nonlinear Schrödinger and the

Ginzburg-Landau Equations

Introduction

In the previous chapters, we have given the generalities on the soliton, nonlinear

electrical transmission lines and on modulational instability. We have also pointed out

the different methods used to reach our goals. The mathematical methods were based

on the Tanuiti reductive method and on the rotating wave approximation method. To

confirm the analytical methods and to plot the different curves, we have used the fourth

order Runge-Kutta algorithm. This chapter presents our results. There are a lot of work

on coupled nonlinear electrical lines and in this thesis, we focus on the effect of nonlinear

coupling on modulational instability in a NETLs, the effect of second-neighbor inductive

coupling on the modulational instability in a coupled lines of transmission; we also look

how to suppress mixing waves in a coupled NETLs and finally, we study the transverse

stability.
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3.1 Effect of nonlinear coupling on modulational insta-

bility in coupled nonlinear transmission lines

3.1.1 Model and equations

The model of our study consists of nonlinear network with two identical cou-

pled nonlinear LC transmission lines. Each line contains a finite number of cells which

consist of three elements: a linear inductor of inductance Ls in the series branch, a linear

inductor of inductance Lp and a nonlinear capacitor of capacitance C(Vn) in the shunt

branch. The two lines are connected by an intermediary nonlinear capacitor C(δVn) since

we want to catch the effect of nonlinear coupling, with δVn = Vjn−V3−jn; where j can take

the values 1 or 2, 1 for the first line and 2 for the second line. The network is depicted in

figure 3.1.

Figure 3.1: Network of two identical nonlinear transmission lines coupled by a nonlinear capac-

itance. Three unit cells are reproduced for each line.

The nonlinear charges in the shunt and in the coupling branch, are voltage dependent

and are given by:
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



Q1,n = C01(Vj,n − η1V
2
j,n + δ1V

3
j,n)

Q2,n = C02

[
(Vj,n − V3−j,n)− η2(Vj,n − V3−j,n)2 + δ2(Vj,n − V3−j,n)3

] (3.1)

Hence, due to the presence of the term in η2, the capacitance C(δVn) depends on the way

current is directed in the coupling branch and to write the Kirchhoff’s law for the model,

we must assume one way for the current in this branch.

Thus, if we assume that the current jn in the nth coupling branch goes from Vj,n to V3−j,n,

it follows that for this branch,





Vj,n − V3−j,n =
∫

jn

C(Vj,n−V3−j,n)
dt

jn = dQ2,n

dt

(3.2)

With these equations and using the Kirchhoff’s law in the two coupled lines, one can

obtain the following equation (see Appendix A):





d2Q1,n

dt2
= 1

Ls
(V1,n+1 + V1,n−1 − 2V1,n)− 1

Lp
V1,n − d2Q2,n

dt2

d2Q1,n

dt2
= 1

Ls
(V2,n+1 + V2,n−1 − 2V2,n)− 1

Lp
V2,n + d2Q2,n

dt2

(3.3)

Inserting expressions (3.1) and (3.5.4) yields the following set of two coupled equations

governing waves propagation in the network:

(Vj,n − η1V
2
j,n + δ1V

3
j,n)tt = u2

0(Vj,n+1 + Vj,n−1 − 2Vj,n)− ω2
0Vj,n

−a[(Vj,n − V3−j,n)− (−1)3−jη2(Vj,n − V3−j,n)2

+δ2(Vj,n − V3−j,n)3]tt. (3.4)

In Eq. (3.4), the subscript tt represents the second derivative about the time; the charac-

teristic frequencies of each line, u0 and ω0, and the coupling coefficients a are given by:





u2
0 = 1

LsC01

ω2
0 = 1

LpC01

a = C02

C01

(3.5)
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Due to the presence of the term η2(Vj,n−V3−j,n)2 in equation (3.4), the equation in V3−j,n

is different to that in Vj,n and the following remark can be done: waves propagating in

the two lines are not governed by the same equation at the same moment. The equation

governing waves propagation in each line depends on which direction the current in the

coupling branch is flowing. But since the current might be alternative, the way it is di-

rected may change alternatively and the equation governing waves propagation in each

line also changes alternatively between the two equations of the set (3.4) obtained for

j = 1 and j = 2.

3.1.2 Derivation of the coupled NETLs governing waves propa-

gation in the model

To describe modulated waves in the network, we consider waves with a slow variation

of envelope in time and space with respect to a given carrier with angular frequency ω

and wave vector k. Then, in order to use the reductive perturbation method in the semi-

discrete limit, we introduce the slow-envelope variables x = ε(n− vgt) and τ = ε2t where

ε is a small parameter and vg is a group velocity. Hence, the solution of equation (3.4) is

assumed to have the following general form:

Vj,n(t) = εAj(x, τ)eiθ + ε2[φj(x, τ) + Bj(x, τ)e2iθ] + cc (3.6)

with θ = kn− ωt and "cc" stands for complex conjugate.

Inserting this relation into the equation governing wave propagation, and keeping terms

proportional to (ε, eiθ) yields the following linear dispersion relation:

ω2 = Γ(l)(ω2
0 + 4u2

0 sin2(
k

2
)) (3.7)

where ωmin = ω0

√
Γ(l) and ωmax =

√
Γ(l)(ω2

0 + 4u2
0). Hence, as for the two lines coupled

by a linear capacitor [28], the two lines coupled with nonlinear capacitors exhibits two

modes of propagation of waves i.e. the slow- and the fast-mode. The superscript l stands

for the mode of propagation and

Γ(l) =





1 if l = 1 (fast mode)
1

1+2a
if l = 2 (slow mode)

(3.8)
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Figure 3.2: Dispersion relation depicted for the slow-mode with Lp = 0.220 mH, Ls = 0.220

mH, C0 = 320 pF and a = 2.5. ω3 and ω
′
3 are the roots of the polynomials q(ω) respectively for

the first and the second line while ω+ is the solution of the nonlinear coefficient with the linear

coupling.

This dispersion relation is presented in figure 3.2 for the slow mode.

The terms of order ε2 proportional to eiθ allow to obtain the following relation:

Aj = −(−1)lA3−j (3.9)

Keeping terms of order ε2 proportional to e2iθ, one also obtains the relation:

Bj = −4(η1b
(l)
1 + (−1)(3−j)η2b

(l)
2 )A2

j (3.10)

with





b
(l)
1 = 1

−4ω2+ω2
0+4u2

0 sin2 k

b
(l)
2 = λ(l)

−4(1+2a)ω2+ω2
0+4u2

0 sin2 k

λ(l) = 4(l − 1)

(3.11)

Similarly, the terms of order ε3 proportional to eiθ yield the following uncoupled nonlinear

Schrödinger equations:





i
∂Aj

∂τ
+ P

∂2Aj

∂x2 + Q|Aj|2Aj = 0

i
∂A3−j

∂τ
+ P

∂2A3−j

∂x2 + Q′|A3−j|2A3−j = 0
(3.12)
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where the dispersion and the nonlinear coefficients are respectively given by:





P = − 1
8ω3 (ω

4 − ω2
minω

2
max)

Q = 4η2
1ωΓ(l)(α2 + b

(l)
1 ω2 + α1b

(l)
2 ω2)

Q′ = 4η2
1ωΓ(l)(α2 + b

(l)
1 ω2 + α′1b

(l)
2 ω2)

(3.13)

with





ω
(l)
min

2
= Γ(l)ω2

0

ω
(l)
max

2
= Γ(l)(ω2

0 + 4u2
0)

α1 =
4aη2

2

η2
1

+ η2

η1

α′1 =
4aη2

2

η2
1
− η2

η1

α2 = 3aδ2
η2
1

+ 3δ1
8η2

1

(3.14)

Thus, we have deduced two uncoupled nonlinear Schrödinger equations describing the

evolution of the the envelope of the nonlinear wave traveling in the two nonlinearly cou-

pled transmission lines. We can then point out that the dispersion coefficient P remains

the same as in the case of linear coupling, while the nonlinear coefficient Q is considerably

changed by the nonlinear coupling. This is illustrated by additional terms in Q and Q′. In

addition, the curves of figure 3.3 show the evolution of nonlinear coefficients as function of

wave frequency for both linear and nonlinear coupling. An important remark is that for

the fast-mode, Q and Q′ are identical. They are different only for the slow-mode and for

this reason, further investigations are made just for the slow-mode. We can note from this

figure 3.3 that for a very large range of frequency, the system that is defocusing (Q > 0)

with linear coupling becomes focusing (Q < 0) with the nonlinear coupling. Our attention

will be focussed only on the slow-mode which is related to the coupling. We recall for

memory that the fast-mode remains equal to the case of uncoupled system i.e. a single

line.

Using the preceding expressions of dispersion and nonlinear coefficients, one can ex-

press the gain of instability for the two coupled lines as function of the wave number γ of

the perturbation. For the slowly modulated wave used, this function is given as:





G = 2|Pγ|
√

2Q
P
Φ2

0 − γ2

G′ = 2|Pγ|
√

2Q′
P

Φ2
0 − γ2

(3.15)

Note that the modification of the gain due to nonlinear coupling is induced by the modi-

fication of the nonlinear coefficient Q.
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Figure 3.3: Nonlinear coefficient depicted as function of ω for the slow-mode with the same

parameters as in figure 3.2. Solid line is used for the case of linear coupling that is η2 = δ2 = 0;

dashed line (-) and dotted (.) are used for the coefficient Q′ and Q respectively in the case of

nonlinear coupling that is η2 = 0.21 V −1, δ2 = 0.0197 V −2. In the first zone, the nonlinear

coefficient corresponding to the linear coupling is positive while in the case with the nonlinear

coupling, this coefficient is negative.
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3.1.3 Modulational instability in the model

The NLSEs derived in the preceding section describe the evolution of the amplitude

of waves in the two coupled lines; the equations are different from one line to another

but are not coupled because each equation depends only on the voltage amplitude of

waves moving on the line it describes. Since the equation describing evolution of each line

depends on the way the current is directed, one can conclude that the evolution of the

amplitude of waves moving in each line is alternatively described by two NLSEs given for

cell n on the line j by:





i
∂Aj

∂τ
+ P

∂2Aj

∂x2 + Q|Aj|2Aj = 0 if Vj,n ≥ V3−j,n

i
∂Aj

∂τ
+ P

∂2Aj

∂x2 + Q′|Aj|2Aj = 0 if Vj,n ≤ V3−j,n

(3.16)

It is well known that the Benjamin-Feir modulational instability, exhibited by a dispersive

nonlinear medium, constitute the proof of its capacity to support envelope solitons in

certain domains of propagation. From the first equation of set (3.16), it is easy to show

that a continuous slowly modulated plane wave should be unstable if PQ > 0. This

instability leads to the formation of small wave packets or envelope pulse solitons train,

solution of the NLS equation (3.16) and whose explicit expression is given by:

A(l)(x, τ) = A0sech[
(x− P (l)veτ)

L
(l)
e

]exp[
ive(x− P (l)vcτ)

2
] (3.17)

where ve and vc are respectively the envelope and phase velocities while Le designates

the spatial soliton extension. According to the dispersion relation, the network exhibits

the propagation of the fast-mode envelope soliton for the same frequencies as the network

with linear coupling (see [28]).

For the slow-mode envelope soliton, the sign of the product P with the nonlinear coef-

ficient depends on the direction of the current flow through the coupling branch and then

alternates between the sign of PQ and that of PQ’. In order to study this sign, we rewrite

the nonlinear coefficient Q in the form:

Q = 4Γωη2 q(ω)

(4ω2 − ω2
0 − 4u2

0 sin2(k))(4(1 + 2a)ω2 − ω2
0 − 4u2

0 sin2(k))
(3.18)

with

q(ω) = α2ω
8 − λ1ω

6 + λ2ω
4 − λ3ω

2 + λ4 (3.19)

where for the first NLS equation we have:
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



λ1 = 4α2Γω2
0 + Γ2(1 + 4α1 + 8aα2)u

2
0

λ2 = 6α2Γ
2ω4

0 + Γ2u2
0ω

2
0[2Γ + 8α1Γ + 2α2(3 + 8aΓ)] + 32Γ4aα1u

4
0

λ3 = Γ3ω2
0[4α2ω

4
0 + (Γ + 4α1Γ + 8aΓα2 + 12α2)u

2
0ω

2
0 + 3(1 + 4α1 + 8aα2)Γu4

0]

λ4 = α2Γ
4ω4

0(ω
2
0 + 3u2

0)
2

(3.20)

and for the second NLS equation, the corresponding coefficients are obtained by substi-

tuting α1 by α′1.

Due to the complex nature of the polynomial q(ω), before studying the sign of PQ, we will

substitute the characteristic parameters of the network by their values given in section 4,

except the coupling constant for which the effect will be analyzed.

In this particular case, since u0 = ω0, one can easily obtain for the first NLSE of relation

(3.16):

q(ω) =
197

56
ω8 − 3721

504
ω2

0ω
6 +

737

162
ω4

0ω
4 − 3721

4536
ω6

0ω
2 +

197

4536
ω8

0 (3.21)

and for the second NLSE:

q(ω) =
197

56
ω8 − 1147

168
ω2

0ω
6 +

5147

1512
ω4

0ω
4 − 1147

1512
ω6

0ω
2 +

197

4536
ω8

0 (3.22)

The above expressions show that for each coupling constant a and for each NLSE, several

frequency domains for which PQ > 0, may exist depending on the numerical values of the

following characteristic angular frequencies, ω+, ω−, ω1, ω2, ω3, ω4, ω
′
1, ω

′
2, ω

′
3, ω

′
4 given by:





ω2
± = Γω2

0

√
[3− 2Γ± 2

√
δ]

δ = Γ2 − 3Γ + 5
4

(3.23)

and where the sets (ω1, ω2, ω3, ω4) and (ω′1, ω
′
2, ω

′
3, ω

′
4) are the roots of the polynomials q(ω)

for the first and the second NLSEs respectively, and their values could be find numerically

for each coupling constant a.

To determine the domain of modulational instability as function of both coupling constant

and frequency, we need to introduced a reduced frequency that will be independent of the

coupling constant. We use the reduced frequency because ωmin and ωmax are function of

coupling constant a and are evaluated for each new value of the coupling parameter a.

This reduced frequency is given as:
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ωreduced =
ω − ωmin

ωmax − ωmin

(3.24)

Using numerical values of the quantity mentioned above, domains of modulational insta-

bility are presented in the charts of figure 3.4. This chart presents domains of MI for

the two lines. Fig.3.4a results from the linear capacitor (obtained by taking η2 = 0 and

δ2 = 0) while Fig.3.4b corresponds to the coupling with the nonlinear capacitor. In the

case of nonlinear coupling i.e. η2 = 0.21 V −1, δ2 = 0.0197 V −2, since waves propagation

in each line of the network is alternatively described by two different NLSEs, we may

distinguish four kinds of domains while in the linear coupling case, only two kinds of MI

domains are encountered.

We have set to the blue color the domain for which none of the two NLSEs predict

Figure 3.4: Chart showing the domain of modulational instability as function of coupling con-

stant a and frequency ωreduced for Lp = Ls = 0.220 mH. Colors have the following meaning:

red is associated to the domains for which MI is predicted by the two NLSEs, yellow and cyan

denote the regions for which only one of the two NLSEs predicts MI, and blue is dedicated to

domains with no MI. These charts are depicted for the same parameters as in figure 3.2. (a)

linear coupling i.e. η2 = 0, δ2 = 0; (b) nonlinear coupling for η2 = 0.21 V −1, δ2 = 0.0197 V −2.

MI while the region of MI (i.e. predicted by the two NLSEs) is represented with the red

color. Some regions have an unknown status since the MI is predicted by only one of

the two NLSEs. These latter regions have been marked by two different colors, cyan and

yellow depending on whether the first or the second NLSE predicts MI or not. We remark

that: (i) the ratio 2/5 of the allowed bandwidth is a particular threshold as the coupling

constant varies with no care of the type of the coupling (linear as well as nonlinear); (ii)
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for values of parameter a varying approximately up to 0.5, the MI region is found in the

upper 3/5 allowed bandwidth (independently of the type of coupling); above this value,

the MI only occurs for frequencies less than the reduced frequency threshold 0.4 for the

linear coupling; while the nonlinear coupling induces another critical value of parameter a

around 1.0 for which the MI is still found above the reduced frequency threshold; (iii) as

the threshold line ωreduced = 0.4 separates the space of parameters (a, ω) into two regions

with 3/5 of the entire domain above and only 2/5 below, we can claim that the nonlinear

coupling gives more flexibility to select parameters for MI. Moreover, the frequencies be-

long to the same band both for small and large values of the parameter a.

The coefficients of the nonlinearity δ2 and η2 are characteristics to the nonlinear com-

ponent. During their manufacture, different events such as the assembling of reversed

biased diodes as well as their misuse might induce small changes of the exact values of

δ2 and η2. This suggest that it is important to have a look on the issue of domains of

MI when these parameters are tuned around their known values. In this regard, we have

analyzed the number of domains of MI in one hand as function of the coupling constant a

and of nonlinear coefficient of the reversed biased diode η2. The results are presented in

the chart of figure 3.5. Notice that the stairs visualized are not an artefact due to the size

step of parameters a and η2. In fact, reducing ∆a and ∆η2 for a small region still presents

the same shape. This highlights the sensitivity of the nonlinear parameter. In other

hand, we have analyzed this number of domains of MI as function of the coupling constant

a and nonlinear coefficient δ2. The results are presented in the chart of figure 3.6. It

appears from these charts that for a ∈ [3.5; 7.5] and δ2 ∈ [0.0247; 0.0297], the system is

not predictable because a very slow variation of one parameter cause the change of the

state of the system. White color on figure 3.6 represents the domains where there is no MI.

3.1.4 Numerical experiments

According to the analytical calculations presented in the preceding sections, it is pos-

sible to determine in the spectrum of the coupled NLSEs the frequency range for which

the network support the propagation of envelope solitons. In order to verify the validity of

this prediction, we present in this section the numerical experiments on the propagation

of slowly modulated waves in the network.
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Figure 3.5: Chart showing the number of domain of modulational instability as function of

coupling constant a and nonlinear coefficient of the reversed biased diode η2 for Lp = Ls = 0.220

mH. Where for each couple of values, colors have the following meaning: blue for one domain

of modulational instability (MI), green for two domain of MI, red for tree domain of MI. The

different charts are plotted for the same parameters as in figure 3.2. η1 and δ1 have the same

values used before. The left figure corresponds to the NLSE with nonlinear coefficient Q while the

right figure stands for the NLSE with nonlinear coefficient Q′.

Figure 3.6: With the same parameters as in 3.2, we show the number of domain of modulational

instability as function of coupling constant a and nonlinear coefficient of the reversed biased diode

δ2 for Lp = Ls = 0.220 mH. Where for each couple of values, colors have the following meaning:

blue for one domain of modulational instability (MI), green for two domain of MI, red for tree

domain of MI. The left figure corresponds to the NLSE with nonlinear coefficient Q while the

right figure stands for the NLSE with nonlinear coefficient Q′.

The numerical experiments are carried out on the exact equation (3.4) describing the

propagation of waves in the two identical non linearly coupled electrical transmission lines.

The parameters of the network are chosen to be Ls = Lp = 0.220 mH, C0 = C01 = C02 =
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320 pF and a = 2.5 which insure absence of mixing of slow-and fast-mode envelope soliton.

The characteristic parameters of the reversed biased diode are η = η1 = η2 = 0.21 V −1

and δ = δ1 = δ2 = 0.0197 V −2. The corresponding cut-off frequencies are fc = 547.57 kHz

and f0 = 244.88 kHz for the slow-mode of propagation of linear waves. The fourth-order

Runge-Kutta scheme is used with normalized integration time step ∆t = 2.6533 × 10−3

s. Similarly, the number of cells is variable in order to avoid waves reflection at the end

of the line. This allows us to run the experiments with sufficiently large time.

The input of each line (cell n=0) is supplied by a slowly modulated signal of the form

V0(t) = Vm[1 + m.cos(2πfmt)]cos(2πfpt) (3.25)

where Vm is the amplitude of the unperturbed plane wave (carrier wave) and where

m = 0.01 and fm are the rate and the frequency of modulation, respectively.

The frequency of modulation fm or the wave number of modulation km is given by a value

that will maximize the modulational gain given by (3.15). This means that we may have:

km =
Vm

2

√
Q

P
(3.26)

The experiment is carried out with a frequency fp = 515.63 kHz which corresponds to

the domain where the two lines predict MI. In this case, according to relation (3.26), there

are two different values for the frequency of modulation, i.e. fm = 4.56 kHz obtained

with Q and fm = 5.6 kHz obtained with Q′. We select the minimum of above two values.

Figure 3.7 shows an example of MI developed by the network for a slowly modulated

wave with initial amplitude Vm = 0.6 V .

We note in this figure the double modulation of the wave which can be explained by

the two NLSEs describing the evolution of a slowly modulated wave in the network, each

NLSE giving rise to one frequency of modulation. This could be linked to the so called

phenomenon "bi-envelope" soliton.

For comparison and validation of analytical investigations, we recapitulate the numerical

results obtained from the direct simulation in the following table:

In the view to consolidate the validity of the previous results, we propagate the

solution of the NLS equation to proof that the network can support envelope solitons.

For this purpose, we take as the input voltage the profile of a modulated soliton given by

Eq.(3.17). The results are given on the figure 3.8.
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Figure 3.7: Modulational instability exhibits by the propagation of the slow-mode in the network

in the case where the two NLSEs predict the MI plotted with Lp = 0.220 mH; Ls = 0.220 mH;

C0 = 320 pF; a = 2.5.

Given the example above, the initial solution as provided by equation (3.17), for a

given amplitude, is readjusting during its propagation. This is remarkable on the above

curve since the solitary wave pass through the cell number 7500.

3.1.5 Concluding remarks on nonlinear coupling

The dynamics of modulated waves in a coupled nonlinear LC transmission line

is investigated. We studied the effect of nonlinear coupling on nonlinear electrical trans-

mission lines (NETLs). The elements of the network are associated in a way to avoid

mixing of frequencies. By using the semi-discrete approximation, we derived the coupled
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Domains of IM (slow-mode)

a Analytical predictions (kHz) Numerical results (kHz)

8.0 [217.41 - 323.33] ∪ [324.78 - 325.30] [218.3 - 319.7]

5.0 [270.27 - 394.35] ∪ [397.48 - 404.41] [272.8 - 388.5]

0.8 [412.00 - 460.30] ∪ [670.88 - 787.22] [412.8 - 458.2] ∪ [672.0 - 786.3]

Table 3.1: Frequency values for which there is modulational instability.

nonlinear Schrödinger (CNLS) equations describing the propagation through the network.

Analytical and numerical studies presented a good agreement. We have shown that by

coupling NETLs in this way, the propagation of waves in each line can be alternatively

described by two nonlinear Shrödinger equations according to the direction of the current

flow through the coupling branch. We have also pointed out that the nonlinear coupling

adds the domains of modulational instability (MI) of each line. Finally, we have shown

that a small variation of the nonlinear elements used in the coupling branch can change

significantly the behavior of the network.

One achievement of the present part is the successful derivation of the NLSEs

modeling waves propagation in two nonlinear transmission lines coupled with nonlinear

capacitance. They alternatively describe the dynamics of the waves propagating through

the coupled lines. The fast-mode corresponds to the uncoupled system i.e. for a single

line and the two NLSEs are equivalent; while, the slow-mode imposes the use of the two

NLSEs. The merit of the introduction of a nonlinear coupling capacitance results in (i) the

determination of the threshold line ωreduced = 0.4 independently of the type of coupling;

(ii) the creation of a second equation governing waves propagation in the network; (iii) the

increasing of the percentage of MI in the slow-mode envelope soliton since the MI region

covers the upper 3/5 of the bandwidth instead of 2/5 as in the case of linear coupling

and (iv) the frequencies in (a, ω) space allowing MI belong to the same band (above the

ωreduced threshold) both for small and large values of the parameter a.

The study of the effects of the coupling constant has been attained with the derivation

of different domains of modulational instability. The comparison with the case of linear

coupling has been done. It comes out a rich, complex and very diversified structures

according to the variations of the nonlinear coefficients and parameter a. Therefore, the

sensitivity of these parameters is highlighted.
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Figure 3.8: Signal voltage as function of time at different cells obtained for the same parameters

as in figure 3.7. From left to right, we have the cells number 1, 300, 800, 1500, 4500, 650, 7500,

10000, 12500 and 15000 respectively.

3.2 Effect of second-neighbor inductive coupling on the

modulational instability in a coupled line of trans-

mission

3.2.1 Model and equations of dynamics

We use a nonlinear network with two identical coupled nonlinear LC transmission

lines. Each line contains a finite number of cells and each cell contains a linear inductor

of inductance L1 and L3 in the series branch and a linear inductor of inductance L2 in

parallel with a nonlinear capacitor C(Vjn) (j=1 for the first line and 2 for the second line).

The conductance g1 describes the dissipation in the inductor L1 while g2 accounts for the

dissipation of the inductor L2 in addition to the loss of the nonlinear capacitor C(Vjn).

The second-neighbors are taken into account through the inductance L3. The two lines

are connected by an intermediary linear capacitor C, as shown in Fig. 3.9.

In this network, the nonlinearity is introduced by a varicap diode for which the
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Figure 3.9: Diagram of nonlinear electrical line

capacitance varies with the applied voltage Vjn. Generally, the electric charge of the

varicap diode for the nth cell is given by

Q(Vjn) = C0A ln(1 +
Vjn

A
) (3.27)

where C0 and A are constant capacitance and voltage at the operating point respectively;

the subscript n designates the number of cells in the network. Negative nonlinear resis-

tances are defined with their nonlinear current-voltage characteristics. They are made of

operational amplifiers, transistors, or multipliers. The corresponding conductance is given

by

g2 = α− βVjn (3.28)

where α and β are constant and characterize the linear and nonlinear part of the resistance
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in parallel.

From the Kirchhoff’s laws applied to the circuit of Fig. 3.9, we derive the following

system of nonlinear equations for the voltage Vjn(t), considering the relation (3.27)

(A + Vjn)
d2Vjn

dt2
− (

dVjn

dt
)2 =

U2
0

A
(A + Vjn)2(Vj(n+1) − 2Vjn + Vj(n−1))

+ 2σ1
U0

A
(A + Vjn)2(

d(Vj(n+1) − 2Vjn + Vj(n−1))

dt
)

+
Ω2

0

A
(A + Vjn)2(Vj(n+2) − 2Vjn + Vj(n−2)) +

β

C0A
(A + Vjn)2

dV 2
jn

dt

− 2σ2
U0

A
(A + Vjn)2dVjn

dt
− ω2

0

A
(A + Vjn)2Vjn

− a

A
(A + Vjn)2(

d2Vjn

dt2
− d2V(3−j)n

dt2
) (3.29)

with ω2
0 = 1

L2C0
, U2

0 = 1
L1C0

, a = C
C0

, Ω2
0 = 1

L3C0
, g1

C0
= 2U0σ1,

α
C0

= 2U0σ2

The linear properties of the network can be studied by assuming a sinusoidal wave of

the form

Vjn(t) = Vje
i(kn−ωt) + c.c (3.30)

where k and ω are respectively the wave number and the angular frequency, and " c.c "

stands for a complex conjugated. Using the previous equations (Eq. 3.29 and 3.30) , we

obtain the system below:





(−ω2(1 + a) + 4(U2
0 sin2 k

2
+ Ω2

0 sin2 k) + ω2
0)V1 + aω2V2 = 0

aω2V1 + (−ω2(1 + a) + 4(U2
0 sin2 k

2
+ Ω2

0 sin2 k) + ω2
0)V2 = 0

(3.31)

This system leads to two modes of propagation whose angular frequency ω and wave

number k are described by the dispersion relation of a typical band-pass filter. For the

slow-mode, we have

ω2
1 =

4U2
0 sin2(k

2
) + ω2

0 + 4Ω2
0 sin2(k)

1 + 2a
(3.32)

and for the fast-mode, we have

ω2
2 = 4U2

0 sin2(
k

2
) + ω2

0 + 4Ω2
0 sin2(k) (3.33)
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The dispersion graph is given below (Fig. 3.10). The second-neighbor coupling can

increase the bandwidth of allowed frequencies as shown in Fig.3.10(a) in which a large

difference between the cases with and without second-neighbor coupling appears. The

later case presents a gap between slow-mode and fast-mode bandwidth while the chosen

parameters with second-neighbor coupling shows a crossing domain of slow-mode and

fast-mode bandwidth. This cross-over can induce a mixing of frequencies and then a loss

of signal during the propagation. An appropriate choice of the NETL parameters can

suppress the mixing of these bandwidth as presented on Fig.3.10(b) (see also ref. [28])
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Figure 3.10: Dispersion graph: (dash dot) slow and fast mode without second-neighbor, (solid

line) slow and fast mode with second-neighbor, (dotted) maxima and minima for slow and fast

mode, obtained with (a) L2 = L3 = 0, 100mH; L1 = 0, 310mH;C0 = C = 400pF , (b) L1 = L3 =

0, 310mH; L2 = 0, 100mH; C0 = C = 400pF .

With these dispersion relations, we can determine the group velocity given by

vgl =
∂ωl

∂k
= δ

U2
0 sin(k) + 2Ω2

0 sin(2k)

ωl

(3.34)

δ = 1
1+2a

for the slow-mode and δ = 1 for the fast-mode. l = 1 for the slow-mode and 2

for the fast-mode.

This group velocity increases by including second-order couplings as one can see

in Fig. 3.11. It is important to note that there is an inversion of the sign of vgl. This

negative group velocity occurs on the first brillouin zone k ∈ [arccos(
−U2

0

4Ω2
0
); π] when the
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condition U0 < 2Ω0 is satisfied.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5
x 10

7

k/π

V
g

(a) 

(b) 

(c) 

(d) 

Figure 3.11: Group velocity obtained with L2 = L3 = 0, 100mH;L1 = 0, 310mH;C0 =

C = 400pF . (a)fast-mode with second-neighbor; (b)slow-mode with second-neighbor; (c)fast-mode

without second-neighbor; (d)slow-mode without second-neighbor.

The amplitudes of the signal voltage propagating along the two coupled lines are

linearly dependent and satisfy the relation V2 = λlV1 with

λl = 1 +
1

a
(1− 4U2

0 sin2(k
2
) + ω2

0 + 4Ω2
0 sin2(k)

ω2
l

) (3.35)

To describe modulated waves in the network, we consider waves with slow temporal vari-

ations of the envelope. We look for a solution of Eq. (3.29) in the form

Vjn(t) = εψjn(T )eiωt + εψ∗jn(T )e−iωt (3.36)

where ε is a small parameter and T = ε2t. Inserting this relation into Eq. (3.29) and

collecting solutions of order (εn, eiωt) we have:

i) The cofficient ε proportional to eiωt gives us

[ω2
0 + 2(U2

0 + Ω2
0)− ω2(1 + a)]ψjn = U2

0 (ψj(n+1) + ψj(n−1)) + Ω2
0(ψj(n+2) + ψj(n−2))

− aω2ψ(3−j)n (3.37)

ii)The cofficient ε2 proportional to e0iωt gives us
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2[ω2
0 − (1 + a)ω2]|ψjn|2ψjn = U2

0 (ψ∗j(n+1) − 2ψ∗jn + ψ∗j(n−1))ψ
2
jn

+ Ω2
0(ψ

∗
j(n+2) − 2ψjn + ψ∗j(n−2))ψ

2
jn

+ U2
0 (ψj(n+1) − 2ψjn + ψj(n−1))|ψjn|2

− aω2(ψ∗(3−j)nψ2
n + ψ(3−j)n|ψn|2)

+ Ω2
0(ψ

∗
j(n+2) − 2ψjn + ψ∗j(n−2))|ψjn|2 (3.38)

iii) By setting ψjn = φjne
i(

ω2
0+2(U2

0+Ω2
0)−ω2(1+a)

U2
0

)τ
with τ =

U2
0

2ω
T , the coefficient ε3,proportional

to eiωt leads to

iγφjn + Γφ(3−j)n = iφjn,τ + iηφ(3−j)n,τ + P1(φj(n+1) − 2φjn + φj(n−1))

+ P2(φj(n+2) − 2φjn + φj(n−2)) + Q|φjn|2φjn (3.39)

Relation (3.39) is the CDCGL equations with second-neighbor corresponding to the two

different lines of the network; P1 = P1r + iP1i, P2 = P2r + iP2i, Q = Qr + iQi,γ = γr + iγi,

Γ = Γr +iΓi and η are given in Appendix B. Fig. 3.12 represents the variation of some of

these coefficients in function of k. The uncoupled form of this equation has been proposed

to describe frustrated states in a linear array of vortices [80]. Let us note that the first

study of second-order coupling has been done by Efremidis et al. through the study of

discrete diffraction properties of nonlinear waveguide arrays [81]. Recently, Ndzana et

al. reported on the derivation of the discrete complex Ginzburg-Landau equation with

first and second-neighbor couplings using a nonlinear electrical network [50]. This system

possesses a traveling wave solution that can be unstable under linear perturbations.

3.2.2 Analytical study of modulational instability through the

coupled cubic complex Ginzburg-Landau equations

In this section, we find the conditions under which a uniform wave train moving

along the nonlinear lines will become stable or unstable to a small perturbation. This

instability leads to the formation of envelope pulse solitons, plane wave solution of Eq.

(3.39). We look for plane wave solutions in the form

φjn = Aje
i(νn−$τ), (j = 1, 2) (3.40)
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Figure 3.12: Coefficients of CDCGL equations as a function of the wave number obtained

with σ1 = 0, 00461; L1 = 0.310mH; L2 = L3 = 0.100mH C0 = 400pF ; β = 0, 0197V −2

and σ2 = 0.00015. (a) Imaginary part of the nonlinear coefficient; (b) Real part of the nonlinear

coefficient; (c) Imaginary part of the dispersion coefficient regarding first-neighbor; (d) Imaginary

part of the dispersion coefficient regarding second-neighbor.

Inserting Eq. (3.40) into Eq. (3.39), we obtain the following expression describing

implicitly the characteristics of the continuous-wave solution: the real parts of this relation

is





$(A1 + ηA2) = −2(P1r cos ν + P2r cos 2ν)A1 −Qr|A1|2A1 + ΓrA2

$(ηA1 + A2) = −2(P1r cos ν + P2r cos 2ν)A2 −Qr|A2|2A2 + ΓrA1

(3.41)
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and the imaginary parts of this relation is





2(P1i cos ν + P2i cos 2ν)A1 −Qi|A1|2A1 = ΓiA2

2(P1i cos ν + P2i cos 2ν)A2 −Qi|A2|2A2 + ΓiA1

(3.42)

Now, we consider a small perturbation (Bjn with j = 1, 2)

φjn = (Aj + Bjn)ei(νn−$τ) (3.43)

Bjn is a complex function. Substituting this relation into Eq. (3.39), one obtains a

linearized equation for the perturbations. For the first line, we have:

−iηB2n,τ + B2n(Γ− η$) = iB1n,τ + P1[(B1(n+1) − 2B1n + B1(n−1)) cos(ν)

+ i(B1(n+1) −B1(n−1)) sin(ν)] + P2[(B1(n+2) − 2B1n

+ B1(n−2)) cos(2ν) + i(B1(n+2) −B1(n−2)) sin(2ν)]

+ B1n(Γ− η$)
A2

A1

+ Q|A1|2(B1n + B∗
1n) (3.44)

and for the second line, we have:

−iηB1n,τ + B1n(Γ− η$) = iB2n,τ + P1[(B2(n+1) − 2B2n + B2(n−1)) cos(ν)

+ i(B2(n+1) −B2(n−1)) sin(ν)] + P2[(B2(n+2) − 2B2n

+ B2(n−2)) cos(2ν) + i(B2(n+2) −B2(n−2)) sin(2ν)]

+ B2n(Γ− η$)
A2

A1

+ Q|A1|2(B2n + B∗
2n) (3.45)

We take a general solution in the form

Bnj = bje
i(Kn+Ωτ) + c∗je

−i(Kn+Ω∗τ) (3.46)

where K and Ω are an arbitrary real wave number of the perturbation and the corre-

sponding propagation frequency respectively, which is complex in the general case, bj and

cj being perturbation’s amplitudes. Inserting Eq. (3.46) into Eq. (3.44) and (3.45), we

arrive at a set of linear homogeneous equations for bj and cj. This set of homogeneous

equations which can be written in matrix form as

M × (b1, c1, b2, c2)
t = 0 (3.47)
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where M is a 4× 4 matrix whose different elements are given in Appendix B. We solve

the condition of the existence of nontrivial solutions using a Matlab code. Figures 3.13

represents threshold’s amplitude on the (K, ν) plane.
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Figure 3.13: Threshold’s amplitude on the (K, ν) plane.

The Fig. 3.13 presents regions of MI in the (K, ν) plane for the slow-mode [Fig. 5(a)

and Fig. 3.13(d)] and fast-mode [Fig. 3.13(c) and Fig. 3.13(d)] with [Fig. 3.13(b) and

Fig. 3.13(d)] and without [Fig. 3.13(a) and Fig. 3.13(c)] second-neighbor. As remark,

we note that there is a slight increase of the gain due to the second-neighbor coupling.

Moreover, there is a generation of new spot of maxima of gain in the same (K, ν) region

comparatively to the case of only first-neighbor.

3.2.3 Numerical experiments

We present in this section the numerical experiments on the propagation of slowly

modulated waves in the network, this to check the analytical calculations presented in the

previous sections. The numerical experiments are carried out on the equation (3.29)
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describing the propagation of waves in the NETL of figure 3.9 . The parameters of

the network are chosen to be L1 = 0.310mH; L2 = L3 = 0.100mH C0 = 400pF ; β =

0, 0197V −2. The wave introduced has the form

Vn=0(t) = V0[1 + m cos(2πfmt)][1 + tanh(
t− T0

Le

)] cos(2πft) (3.48)

where V0 is the amplitude of the wave, Le indicates a parameter making it possible to

control the slope of the excitation, T0 is a real which shifts the solution of the origin of

times, m stands for the modulation rate and fm is the frequency of modulation. We take

the carrier frequency f = 3121KHz for slow-mode and f = 6100KHz for the fast-mode;

the initial amplitude is V0 = 1.5V , Le = 4µs, T0 = 20, m = 5% and fm = 18KHz.

Compared to dissipations, we take for each line σ1 = 0.00461 and σ2 = 0.0. The fourth-

order Runge-Kutta scheme is used with normalized integration time step ∆t = 5× 10−3.

Moreover, the number of cells is chosen so that we do not encounter the wave reflection

at the end of the lines.
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Figure 3.14: Propagation of waves through the network for the slow-mode in the absence of

second-neighbor. (a) and (c) For line 1 respectively in the cells 400 and 500; (b) and (d) For

line 2 respectively in the cells 400 and 500. The parameters of the network are: L1 = 0.310mH;

L2 = 0.100mH C0 = 400pF ; β = 0, 0197V −2.

Figures 3.14, 3.15, 3.16 and 3.17 show us examples of the MI exhibited by the network

with the two modes of propagation. Signal voltage (in Volts) as a function of time at

different cells (400 and 500). We observe a synchronization between the waves through

the two lines in the same cells. As time goes on, the wave exhibits a modulation of

its amplitude, which lead to the formation of wave packets. The wave introduced at

cell n = 0 with a small modulation exhibits some nonlinear distortions of the envelope

when time grows. It is a typical example of MI phenomenon. Figure 3.14 presents

the behavior of waves through the line when the propagation mode is the slow-mode in
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Figure 3.15: Propagation of waves through the network for the slow-mode in presence of

second-neighbor. (a) and (c) For line 1 respectively in the cells 400 and 500; (b) and (d) For

line 2 respectively in the cells 400 and 500. The parameters of the network are: L1 = 0.310mH;

L2 = L3 = 0.100mH C0 = 400pF ; β = 0, 0197V −2.

the absence of second-neighbor while Figure 3.15 presents the behavior of waves through

the line when the propagation mode is the slow-mode in presence of second-neighbor.

Figure 3.16 presents the behavior of waves through the line when the propagation mode

is the fast-mode in the absence of second-neighbor and Figure 3.17 presents the behavior

of waves through the line when the propagation mode is the fast-mode in presence of

second-neighbor. Figures [3.14, 3.15, 3.16, 3.17](a) and [3.14, 3.15, 3.16, 3.17](b) account

for cell 400, Figures [3.14, 3.15, 3.16, 3.17](c) and [3.14, 3.15, 3.16, 3.17](d) account for

cell 400. On the Figures 3.15 and 3.17, we see the contribution of the second-neighbor
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Figure 3.16: Propagation of waves through the network for the fast-mode in the absence of

second-neighbor. (a) and (c) For line 1 respectively in the cells 400 and 500; (b) and (d) For

line 2 respectively in the cells 400 and 500. The parameters of the network are: L1 = 0.310mH;

L2 = 0.100mH C0 = 400pF ; β = 0, 0197V −2.

and we can observe that the amplitude of the voltage has increased; we can note that this

contribution can be used to control the magnitude of waves due to the competitive effect

between first and second-neighbor couplings.

On Figure 3.18, we confirm the synchronization between the waves through the

two lines. This is obtained for the same cell (500) from datas collected during the evolution

of the signal in the last figures case. For the slow-mode, the slope is negative while for

the fast-mode, the slope is positive as predicted by Eq.(3.35).
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Figure 3.17: Propagation of waves through the network for the fast-mode in presence of second-

neighbor. (a) and (c) For line 1 respectively in the cells 400 and 500; (b) and (d) For line

2 respectively in the cells 400 and 500. The parameters of the network are: L1 = 0.310mH;

L2 = L3 = 0.100mH C0 = 400pF ; β = 0, 0197V −2.

3.2.4 Concluding remarks on effects of second-neighbor inductive

coupling

In this part, we have studied analytically and examined the effect of modulation

rate in a coupled NETL. Using the reductive perturbation method, we have shown that

the dynamics of nonlinear waves in a coupled discrete nonlinear electrical transmission line

with negative nonlinear resistance and with the contribution of the second-neighbor can
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Figure 3.18: Signal voltage at a given cell (500) in line 1 as a function of the signal voltage of

the same cell (500) in line 2, (a) slow-mode without second-neighbor, (b) slow-mode with second-

neighbor, (c) fast-mode without second-neighbor and (d) fast-mode with second-neighbor with the

initial conditions described in figures (3.14, 3.15) and (3.16, 3.17) for the slow- and fast-mode

respectively.

be described by a set of coupled discrete complex Ginzburg-Landau equations. With some

parameters, we were able to cancel the gap existing between the fast- and slow-mode by

using the contribution of the second-neighbor. By employing the standard linear stability

analysis, the growth rate of the instability is derived as a function of the wave numbers and

system parameters. Therefore, we have analytically predicted MI domains by solving the

fourth-order polynomial obtained from the condition of nontrivial solutions. The regions

of modulational instability have been then obtained and the influence of second-neighbor
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occurring via inductors in a nonlinear transmission line have been studied. As result, we

found that the second-neighbor couplings add new maxima of gain; increase the group

velocity, and the magnitude of the wave. Hence, the network becomes more stable to

small external perturbations. The analytical studies are completed by the numerical

experiments performed in the network and this lead us to show that the second-neighbor

couplings can be used to control the magnitude of waves.

3.3 Suppression of modulated waves mixing in coupled

nonlinear LC transmission lines

The dynamics of modulated waves in a coupled nonlinear LC transmission line

is investigated. In order to solve the crucial problem of the mixing of waves of different

modes and then exploit the features of the modulational instability of each of two modes

through the network, we propose a different coupling type.

3.3.1 Model and equations of dynamics

We consider here the basic model usually used. This consists of a nonlinear

network with two coupled nonlinear LC transmission lines. Without loss of generality,

we only focus our attention in this work on two identical lines. Each line contains a

finite number of cells. An elementary cell consists of two elements: a linear inductor

of inductance L1 in the series branch and a nonlinear capacitor of capacitance C(Vjn)

in the shunt branch. Vjn represents the voltage of the line j and at the cell n. The

subscript j can take the values 1 and 2. For such coupled lines, experiments and analytical

studies showed that whenever the network is excited by an electrical wave, two modes of

propagation (slow- and fast-modes) are generated in each line. They unavoidably enter

into play with the wave-coupling behaviour. As mentioned in the previous section, Yémélé

and Kofané [28] placed a linear inductor of inductance L2 in the shunt branch and then

suppress the modes mixing. We propose to use only the half of the total number of additive

linear inductors. For this purpose, we modify the above described coupled NETLs by

adding the self L2 in parallel with the linear capacitor C which serves as the coupling

element of the two lines, as shown in figure 3.19.
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Figure 3.19: Diagram of the coupled nonlinear electrical lines. Three unit cells are reproduced

for each line.

In the line, the nonlinearity is introduced by a varicap diode which admits that the

capacitance varies with the applied voltage. The voltage dependance relation is assumed

to have a polynomial form given by

Q(Vjn) = C0(Vjn − αV 2
jn + βV 3

jn) (3.49)

where C0, α, β are constants. In the present work, we set α = 0.21V −1 and β = 0.0197V −2.

The properties of the network can be studied by using a solution of the form

Vjn(t) = εAj(x, t)eiθ + ε2[Ψj(x, t) + Bj(x, t)e2iθ] + c.c. (3.50)

where θ = kn−ωt is the phase and c.c. stands for the complex conjugate of the preceding

expression; k and ω are respectively the wave number and the angular frequency; ε is a

small parameter.

From the Kirchhoff’s laws applied to the circuit of figure 3.19, and considering

the relation (3.50), we derive the following system of nonlinear equations for the voltage

Vjn(t)
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(Vjn − αV 2
jn + βV 3

jn),tt = U2
0 (Vj(n+1) − 2Vjn + Vj(n−1))

− a(Vjn − V(3−j)n),tt − ω2
0(Vjn − V(3−j)n) (3.51)

with U2
0 = 1

L1C0
, ω2

0 = 1
L2C0

and a = C
C0
. For the different derivatives, we will set T = ε2t

and x = ε(n− vgt), where vg is the group velocity.

3.3.2 Amplitude equations

By inserting Eq.(3.50) into Eq.(3.51), one obtains the following order equations.

i) The coefficient ε, proportional to eiθ gives us the following system:





(−ω2 − aω2 + 4U2
0 sin2 k

2
+ ω2

0)A1 + (aω2 − ω2
0)A2 = 0

(aω2 − ω2
0)A1 + (−ω2 − aω2 + 4U2

0 sin2 k
2

+ ω2
0)A2 = 0

(3.52)

This system leads to two modes of propagation whose angular frequency ω and wave

number k are described by the dispersion relation of a typical band-pass filter for only the

second-mode. The two modes are given by the relation

ω2
l = Γl[4U

2
0 sin2(

k

2
) + 2ω2

0(l − 1)] (3.53)

where Γl = 1
1+2a(l−1)

, with l = 1 for the fast-mode, and l = 2 for the slow-mode. From

now on, we shall use the letter l on subscript as well as on superscript to designate the

fast- and slow-modes. The dispersion graph is given below on the figure 3.20.

On the figure 3.20(a), there is an overlap of fast-mode and slow-mode bandwidths.

This superposition acts in favor of a mixing of frequencies during the propagation. An

appropriate choice of the coupled NETLs parameters avoids the overlapping of these

bandwidths. To clearly differentiate them, it suffices to set L1 = 2L2(1 + 2a). Hence,

the choice of L1, C0, and a totally determines the system of our interest. So, by using

the following values (L1 = 0.4 mH; C0 = 400 pF; a = 0.5), we successfully separate the

bandwidth of the fast-mode from the bandwidth of the slow-mode (see figure 3.21).

It is important to observe that the present model always provides an aggregate

bandwidth greater than the one obtained from the model proposed in reference [28]. While

the low frequencies are prohibited for the slow-mode in the network when working in the

regime of interest, the fast-mode always admits very low frequencies as shown in figure
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Figure 3.20: Dispersion graph obtained with L1 = 0.220 mH; L2 = 0.470 mH; C0 = 320 pF;

C = 2.56 µF . (a) present model ; (b) model 2 in [28].
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Figure 3.21: Dispersion graph obtained with L1 = 0.4 mH; C0 = 400 pF; a = 0.5. (a) present

model ; (b) model 2 in [28].

3.21(a).

With this dispersion relation, we determine the group velocity given by

vgl =
∂ωl

∂k
= Γl

U2
0 sin(k)

ωl

(3.54)

On figure 3.22, we realize that the sidelining of very low frequencies signifies the loss of

highest group velocities. This figure is reproduced for the same parameters as in figure
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3.21.

Figure 3.22: Group velocity of the two modes obtained for the same parameters as in figure

3.21.

The next order equation provides a relationship between the signal propagating through

the two lines.

ii) The coefficient ε2, proportional to eiθ gives

A2 =
(
1 +

1

a
(1− U2

0 sin k

ωlvgl

)
)
A1 (3.55)

This relation also reads as A2 = λlA1 where λl = 1 + 1
a
(1 − 1/Γl) takes the value 1 for

the fast-mode and −1 for the slow-mode. The equality of the absolute values of signal

voltages is due to fact that we set identical linear and nonlinear components to the two

lines, otherwise |λ| will differ from 1. We might then expect to have two equivalent NLS

equations.

iii) The coefficient ε2, proportional to e2iθ gives

B
(l)
j =

αω2
l

ω2
l − U2

0 sin2(k)
A2

1 (3.56)

iv) The coefficient ε4, proportional to e0 leads to

Ψ
(l)
j (x, t) =

2αv2
g1

v2
g1 − U2

0

|Aj|2 (3.57)
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This equation will help us only for ω1 when we will determine the coefficient of nonlinearity.

v) The coefficient ε3, proportional to eiθ leads to Eq.(3.58); this is obtained by using

the Eq.(3.56) and Eq.(3.57).

iA
(l)
,T + P (l)A(l)

,xx + Q(l)A(l)|A(l)|2 = 0 (l = 1, 2) (3.58)

The Eq.(3.58) is the CNLS equations describing the propagation through the network.

In fact, the set of equation is written as uncounpled equations. This has been predicted

since the relation (3.55) was established. Only the modes affect and differentiate the pa-

rameters. P (l) and Q(l) are respectively the dispersion and nonlinear coefficients given by

the following systems:





P (l) = 1
2ωl(1+a−λla)

[U2
0 cos k − v2

gl(1 + a− λla)]

Q(l) = 1
2ωl(1+a−λla)

[
3βω2

l −
4α2v2

glω
2
l

v2
gl−U2

0
− 2α2ω4

l

ω2
j−U2

0 sin2 k

] (3.59)

P (l) measures the wave dispersion and Q(l) determines how the wave frequency is modu-

lated in amplitude. More precisely, these coefficients are as follows.

For the fast-mode, we have:




P (1) = −ω1

8

Q(1) = α2

ω1

[
(η − 2)ω2

1 + 4U2
0

] (3.60)

and for the slow-mode, we have:




P (2) = − 1
8ω3

2

[
ω4

2 − 2Γ2ω2
0(4U

2
0 + 2ω2

0)
]

Q(2) = ηΓα2ω2
ω4

2−4Γ
(

ω2
0+

U2
0

η

)
ω2

2+4Γ2ω2
0

(
ω2

0+2U2
0

)

ω4
2−4Γω2

0ω2
2+4Γ2ω2

0

(
ω2

0+2U2
0

) (3.61)

with η = 3β
2α2 .

3.3.3 Modulational instability

Up to date, the attention paid to this phenomenon still captures a lot of research

works. A clear idea of this interest is given by the important number of reports found in

the literature ( [82–95] to cite a few).
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3.3.3.1 Analytical study

In this section, we search the condition under which a uniform wave train moving

along the nonlinear lines will become stable or unstable to a small perturbation. Under

the frame of this instability, plane wave solution of Eq.(3.58) leads to the formation of

envelope pulse solitons. For the sake of clarity, we report in the Appendix C the well-

known details of the Benjamin-Feir instability. It then comes out that, in one hand, if

Q(l)/P (l) < 0 i.e. P (l)Q(l) < 0, then (ν − 2P (l)Kδ)2 is positive and plane wave solution of

NLS equation is stable. On the other hand, if P (l)Q(l) > 0, then (ν − 2P (l)Kδ)2 could be

negative under certain conditions and, consequently plane wave solution of NLS equation

is unstable; hence, it appears MI phenomenon. In this domain, we have (see Appendix

C):

ν = 2P (l)Kδ ± i|P (l)δ|
√

2Q(l)

P (l)
Φ2

j0 − δ2 (3.62)

It is expected that such an instability induces the formation of small wave packets or en-

velope pulse solitons train, solution of the NLS equation (3.58). Their explicit expression

are known to be on the form [96]:

V11(x, τ) = V0sech
[ 1

Ls

(x− veτ)
]
exp

[
i
ve

2P
(x− vpτ)

]
(3.63)

where Ls = 1
V0

√
2P
Q

is the width of the soliton while ve and vp are respectively the envelope

and the carrier speed.

By using the inequalities described above, the domains of MI are determined for each

mode.

• Domain of MI for the fast-mode

Unequivocally for this mode, the electrical network is modulationally unstable when

the carrier frequency ω belongs to the domain [ωi; 2U0] with ωi = 2U0√
2−η

and η < 2.

• Domain of MI for the slow-mode

In this case, the expressions of P (2) and Q(2) are more complicated and therefore

render the determination of MI domains not obvious. These domains depend on many

terms among which :

∆d = 4Γ2ω2
0

(
1− δ

)
, ∆n = 4Γ2ω2

0

(
δ2
η − δ

)
, ω2

± = 2Γω2
0δη ±

√
∆n , ω2

a = 2Γω2
0δη

, γcr = −1+
√

δ
U2

0 /ω2
0
, where δ = 1 + 2

U2
0

ω2
0
, and δη = 1 +

U2
0

ω2
0η
.
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One can study the variation with different parameters of interest as a the ratio of the

two capacitances (C, C0) involved in the network, or the nonlinear parameters (α, β) to

cite few among other. An example is given below with respect to η:

. For 0 < η < γcr, we have one domain of propagation of envelope solitons; ω2 ∈
[ωs, ω2max]

. For η = γcr, we also have one domain of propagation of envelope solitons; ω2 ∈ [ωa, ωs]

. For η > γcr, we still obtain one domain of propagation of envelope solitons; ω2 ∈
[ω2min, ωs] with ω2

2max = (4U2
0 +2ω2

0)/(1+2a), ω2
2min = 2U2

0 /(1+2a) and ω2
s = ω2maxω2min.

3.3.3.2 Numerical experiments

We now present the numerical experiments on the propagation of slowly modu-

lated waves in the network. This is done in the scope to check the analytical results above

presented. The numerical experiments are carried out in Eq.(3.51) describing the propa-

gation of waves in the coupled NETLs of figure 3.19. The parameters of the network are

chosen to be the same as those used above, i.e. L2 = 0.100 mH, C = 200 pF , a = 0.5,

α = 0.21 V −1 and, β = 0.0197 V −2. The wave introduced has the form

Vn=0(t) = V0[1 + m cos(2πfmt)] cos(2πfpt) (3.64)

where fm is the modulation frequency, V0 is the amplitude of the wave and m is the

modulation rate. We take fm = 5.4 kHz, V0 = 0.2 V and m = 1%. The fourth-

order Runge-Kutta scheme is used with normalized integration time step ∆t = 5× 10−3.

Moreover, the number of cells is chosen so that we do not encounter the wave reflection at

the end of the lines. For this purpose, we consider an additive sufficiently enough number

of modified cells at the end of each line. Their role is to gradually decay the voltage

amplitude. This is simulated by adding a viscous damping term to Eq.(3.51), valid only

for these supplementary cells; this technique is usually called absorbing boundary at the

free end [97,98].
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Figure 3.23: Signal voltage as a function of time at different cells on line 1. The signal is

equal in absolute value on line 2. (a) Fast-mode fp = 563 kHz, and (b) Slow-mode fp = 881

kHz. L1 = 0.4 mH; C0 = 400 pF; a = 0.5.

As the sine wave applied at one end of the coupled lines is slowly modulated, we

may expect modulation growth and formation of wave packets which propagates along

the network. Figure 3.23 shows an example of the MI exhibited by the network for the

two modes of propagation. The initial condition corresponding to the input wave is given
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Domains of IM

Mode Analytical predictions (kHz) Numerical results (kHz)

Fast-mode 69.04 - 796.18 82.96 - 789.22

Slow-mode 880.85 - 973.81 880.57 - 963.39

Table 3.2: Analytical and numerical frequency values for which there is modulational instability.

above by equation (3.64). We choose the carrier frequency fp = 563 kHz for the fast-

mode and fp = 881 kHz for the slow-mode, respectively. Column (a) presents the profile

for the fast-mode while column (b) is for the slow-mode. Each column shows the state of

the network at three different cells (namely 300, 700 and 1000 as indicated) in function of

time. As time goes on, the wave exhibits a modulation of its amplitude and phase, which

leads to the formation of wave packets. When the instability occurs in the system, the

amplitude of the resulting wave packet is larger than the amplitude of the input wave due

to the localization of the energy. This result is in accordance with the analytical treatment

for linear waves and confirm the fact that the use of the coupledNETLs described permits

the escapement of waves mixing due to the existence of two modes of propagation in the

network. Relation (3.55) permits us to present figures for only one line because the signal

voltages in the two lines are always either in phase (fast-mode) or π rad out of phase

(slow-mode) with the same amplitudes. We recapitulate the theoretical predictions and

the corresponding numerical results in the following table:

In the view to consolidate the validity of analytical results, we propagate the

solution of the NLS equation [96] since the above observed Benjamin-Feir intability con-

stitutes the proof that the network can support envelope solitons. For this purpose, we

take as the input voltage the profile of a modulated soliton given by

V
(l)
11 = Vmsech(

vglt

L
(l)
s

) cos(2πf (l)
p t) (3.65)

where f
(l)
p and vgl are the carrier frequency and the group velocity of the wave packet,

respectively, and L
(l)
s is the soliton width defined by L

(l)
s = 1

Vm

√
2P (l)

Q(l) . The superscript l

always stands for the two modes of propagation. The parameters of the signal voltage are

the same as in figure 3.23.

Figure 3.24 shows the propagation of fast- and slow-modulated (Figs.3.24(a) and
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Figure 3.24: Envelope soliton signal voltage as a function of time at different cells for the same

parameters as in figure 3.23.

3.24(b), respectively) soliton along line 1. Knowing that such envelope solitons are gener-

ally quite stable, we have numerically verified that this envelope soliton is strongly stable

to small perturbation. It is well known that a large width penalizes the increase in bit rate

of envelope solitons. It is then convenient to compact the width in order to increase their

bit rate. As expressed in their exact profile solution [see equation (3.63)], the ratio Vg/Ls

is plotted in function of the wavenumber ( see figure 3.25). The dashed line corresponds

to the model under investigation while the solid line corresponds to that of ref. [28]. It

comes out that the present model convenes for an increase of the bit rate.
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Figure 3.25: Ratio vg/Ls as a function of frequency for the model 2 of ref. [28] (solid line)

and for the present model (dashed line). L1 = 0.4 mH; C0 = 400 pF; a = 0.5.

3.3.4 Concluding remarks on the suppression of waves mixing

In this part, we have studied analytically and numerically the dynamics of mod-

ulated waves in two coupled NETLs. More precisely, the modes of propagation of these

modulated solitons, i.e. the fast- and the slow-mode, have been detected. The fast-mode

corresponds to the mode of propagation of a single isolated line while the slow-mode re-

sults in the coupling between the two lines. By using the reductive perturbation method,

we have shown that the dynamics of nonlinear waves in this coupled discrete nonlinear

electrical transmission line can be described by a set of coupled nonlinear Schrödinger

equations. We have analytically predicted the domains of frequencies for which plane

waves are modulationally unstable. The analytical studies have been completed by the

numerical experiments. The both studies show a quite well agreement between their re-

sults. Hence from the proposed unit cell considered in this work, the waves mixing effects

have been successfully suppressed. Identical results have been found for a different unit

cell setup (see ref. [28]). They argue that the avoidance of wave mixing was due to the

band-pass filter behavior of the unit cell they used. However, the characteristic of the

unit cell considered in the present work is a low-pass filter exactly as the original unit

cell before modification (refereed as model 1 in [28]); and the results of suppressing the
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waves mixing effects are monitored by the coupling cell block. This suggests that the type

of the unit cell is not really relevant to achieve the goal, and that only the position of

the additive inductor is important. Furthermore, it is important to remark that the total

number of additive linear inductors used here is the half of that required to construct

the model 2 as refereed in [28]. Moreover, the overall bandwidth is larger in the present

case due to the very low frequencies that are not automatically excluded. Preliminary

investigations confirm all the above results [99]. A particular attention has to be paid to

the fast-mode which contains these low frequencies. Besides, a more compact envelope

solitons allows an increase of the bit rate.

3.4 Modulational instability in two non-identical cou-

pled nonlinear electrical transmission lines

In this section, the dynamics of modulated waves in a non identical coupled non-

linear LC transmission lines is studied. We expect that an appropriate use of a band-pass

cell through the network permits to avoid the mixing of waves of different modes in the

lines; and we then exploit the features of the modulational instability of each of two modes.

3.4.1 Model and equations of dynamics

The model used in this part consists of a nonlinear network made of two different cou-

pled lines. The first line contains a finite number of cells which consist of three elements:

a linear inductor of inductance L1 in the series branch; a nonlinear capacitor of capaci-

tance C(Vjn) and a linear inductor of inductance L2 in the shunt branch. This capacitor

consists of a reverse-biased diode with a differential capacitance function of the voltage

Vjn. The second line is a copy of the first one from which inductor of inductance L2 is

suppressed. Hence, the first line is an assemblage of band-pass filter while the second line

is an association of low-pass filter. The two lines are connected by an intermediary linear

capacitor C, as shown in Fig. 3.26. This network is an asymmetric coupled lines.

In the line, the nonlinearity is introduced by a varicap diode which admits that the

capacitance varies with the applied voltage. The voltage dependance relation is assumed

to have a polynomial form given by
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Figure 3.26: Diagram of the network. Three unit cells are reproduced for each line. The first

line, in front is different of the second line backwards because of the inductor of inductance L2;

this first line is a band-pass filter and the second line is a low-pass filter.

Q(Vjn) = C0(Vjn − αV 2
jn + βV 3

jn) (3.66)

where C0, α, β are constants.

We now focus our attention on the nonlinear behavior of the lattice. From Kirchhoff’s

laws, it is easy to obtain the following system by using Eq.(3.66)





d2V1n

dt2
− α

d2V 2
1n

dt2
+ β

d2V 3
1n

dt2
= U2

0 (V1(n−1) − 2V1n + V1(n+1))− ω2
0Vn − a d2

dt2
(V1n − V2n)

d2V2n

dt2
− α

d2V 2
2n

dt2
+ β

d2V 3
2n

dt2
= U2

0 (V2(n−1) − 2V2n + V2(n+1))− a d2

dt2
(V2n − V1n)

(3.67)

with U2
0 = 1

L1C0
; ω2

0 = 1
L2C0

; a = C
C0
.

We use the semi-discrete approximation by setting τ = ε2t and x = ε(n − vgt), to

obtain the short wavelength envelope solitons; vg is the group velocity. This asymptotic

approach allows us to describe the envelope in the continuum approximation and to treat

properly the carrier wave with its discrete character. Then Vjn is given by

Vjn(t) = εAj(x, t)eiθ + ε2[Ψj(x, t) + Bj(x, t)e2iθ] + ”c.c”. (3.68)

where θ = kn − ωt is the phase and ”c.c.” stands for the complex conjugated of the
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preceding expression; k is the wave number; ω is the angular frequency; ε is a small

parameter.

3.4.2 Amplitude equations

This part is devoted to the determination of the order equations. Inserting

Eq.(3.68) into Eq.(3.67), we easily find the amplitude equations.

i) The coefficient ε, proportional to eiθ gives the following linear dispersion relations:

ω2
± =

8U2
0 (1 + a) sin2(k

2
) + ω2

0(1 + a)±
√

16U2
0 a2 sin2(k

2
)(4U2

0 sin2(k
2
) + ω2

0) + ω4
0(1 + a)2

2(1 + 2a)
(3.69)

where ω± and k are respectively the angular frequency and wave number; for ω+, the gap

frequency is ω2
+min =

ω2
0(1+a)

(1+2a)
and the cut-off frequency

ω2
+max =

(8U2
0 +ω2

0)(1+a)+
√

16U2
0 a2(4U2

0 +ω2
0)+ω4

0(1+a)2

2(1+2a)
; for ω−, the gap frequency is ω2

−min = 0

and the cut-off frequency is ω2
−max = ω2

+min. The linear dispersion curve that deals with

relation (3.69) is shown in Fig. (3.27).
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Figure 3.27: Dispersion graph obtained with L1 = 0.464 mH; L2 = 0.22 mH; C0 = 320 pF.

The curve representing ω+ is plotted in red color while ω− correspond to the blue. The dashed

lines correspond to a = 1.25 and the solid lines are represent for a = 5.0. The dotted lines mark

the limits of different modes. The bandwidth of ω+ increases with a.
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The blue curve line admits low frequencies and corresponds to ω− while the red curve

line is a typical band-pass filter and corresponds to ω+. Each dispersion graph occurs

on the first brillouin zone. The relation that we used to suppress the mixing frequencies

is the following: L1 = 4L2

1+2a2/(1+2a)
. Generally, when the two coupled lines have identical

linear characteristic parameters, one of the two modes reduces to the standard mode of

propagation of an isolated single line. In the present case, it is important to note that

none of the two modes corresponds to the uncoupled network due to the difference on the

two lines. The group velocity is taken to be

Vg±(k) =
∂ω±(k)

∂k
=

U2
0 (1 + a) sin(k)

ω±(1 + 2a)

± U2
0 a2(4U2

0 sin2 k
2

+ ω2
0) sin(k) + 4a2U4

0 sin(k) sin2(k
2
)

(1 + 2a)ω±

√
16U2

0 a2 sin2(k
2
)(4U2

0 sin2(k
2
) + ω2

0) + ω4
0(1 + a)2

(3.70)

Figure 3.28 shows us the group velocity of each mode.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

k/π

V
g

Figure 3.28: Group velocity of the two modes obtained for the same parameters as in figure

3.27. Red and blue colors correspond to Vg+ and Vg−, respectively. V ∗
g = 1.641 ∗ 106 represents

the crossing point of the two curves.

We realize that the sidelining of very low frequencies signifies the loss of highest

group velocities such as we can see on figure 3.28. Usually, the coupling is made on

identical type of lines; and then the group velocities are totally separated depending on

the mode; the smaller group velocity remains below the higher one in the whole range of
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the first brillouin zone. In figure (3.28), the group velocity of ω− is larger than the group

velocity of ω+ for k ∈ [0; 0.2690[; for k ∈]0.2690; 3.14], Vg− < Vg+.

ii) The coefficient ε2, proportional to eiθ gives two relations

A2 = λ3−2l
(l) A1 (l = 1, 2) (3.71)

where λ =
ω2
± (1+a)−(2−l)ω2

0−4U2
0 sin2( k

2
)

aω2
±

. The proportionality coefficient λ is no more equal

to neither 1 nor -1 as in identical coupled lines.
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Figure 3.29: Ratio of the amplitudes A1 (line 1) and A2 (line 2) for the modes corresponding

to ω+ (red curve) and ω− (blue curve).

iii) The coefficient ε2, proportional to e2iθ also leads to two relations that we can merely

set as follows 



B1 = γA2
1

B2 = δA2
1

(3.72)

with γ =
4αω2

± [ω2
± (1+a+aλl)+U2

0 (cos2 k−1)]

4ω4
± (1+2a)+(1+a)(ω2

±ω2
0−8ω2

±U2
0 )+U2

0 (4U2
0−ω2

0)+8U2
0 (−U2

0 +aω2
±+ω2

± ) cos2(k)+U2
0 (ω2

0+4U2
0 cos2(k)) cos2(k)

and

δ =
4αω2

± [aω2
±+(ω2

±+aω2
±+

ω2
0
4
−U2

0 +U2
0 cos2(k))λl]

4ω4
± (1+2a)+(1+a)(ω2

±ω2
0−8ω2

±U2
0 )+U2

0 (4U2
0−ω2

0)+8U2
0 (−U2

0 +aω2
±+ω2

± ) cos2(k)+U2
0 (ω2

0+4U2
0 cos2(k)) cos2(k)

.

where l = 1 for the first line and l = 2 for the second line.

iv) The coefficient ε4, proportional to e0 leads to

Ψ1 = Γ|A1|2 and Ψ2 = ∆|A1|2 (3.73)
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where Γ =
2αV 2

g±(2αV 2
g±+a2αV 2

g±λ2
l +a2αV 2

g±−U2
0 )

V 4
g±+2aV 2

g±−2U2
0 V 2

g±−2aU2
0 V 2

g±+U2
0

and ∆ =
2αV 2

g±[(V 2
g±+aV 2

g±−U2
0 )λ2

l +aV 2
g±]

V 4
g±+2aV 2

g±−2U2
0 V 2

g±−2aU2
0 V 2

g±+U2
0

v) The coefficient ε3, proportional to eiθ gives Eq.(3.74); this is obtained by using the

Eq.(3.71), Eq.(3.72) and Eq.(3.73).

iAj,τ + P
(±)
j Aj,xx + Q

(±)
j Aj|Aj|2 = 0 (j = 1, 2) (3.74)

The Eq.(3.74) is the CNLS equations describing the propagation through the network.

In fact, the set of equation is written as uncoupled equations. This has been predicted

since the relations (3.71) were established. Different dispersion relations and Eq.(3.72)

affect and differentiate the parameters. P
(±)
j and Q

(±)
j are respectively the dispersion and

nonlinear coefficients given by the following relations:

P
(±)
j =

U2
0 cos(k)+V 2

g±(aλ(l)−a−1)

2ω± (1+a−aλ(l))
where the indicator j and l take the values 1 for the first

line and 2 for the second line

and Q
(±)
1 =

3βω2
±−2αω2

± (γ+Γ)

2ω± (1+a−aλ1)
for the first line; for the second line, Q

(±)
2 =

3βω2
±−2αω2

± (δ+∆)

2ω± (1+a−aλ2)
.

3.4.3 Numerical study of modulational instability

We search in this section, the condition under which a uniform wave train moving

along the nonlinear lines will become stable or unstable to a small perturbation. Up to

date, the attention paid to this phenomenon still captures a lot of research works. A clear

idea of this interest is given by the important number of reports found in the literature.

Under the frame of this instability, plane wave leads to the formation of envelope pulse

solitons. The fact that we can observe the formation of envelope pulse solitons in the

network comes to P
(±)
j Q

(±)
j > 0. Under this condition wave becomes unstable. This is

also call Benjamin-Feir instability. If P
(±)
j Q

(±)
j < 0, plane wave solution of NLS equation

is stable. To determine the different zone where P
(±)
j Q

(±)
j > 0, we play on the coupling

constant a; we always consider the relationship of suppression of the mixing. Then we plot

the frequencies ω in function of coupling constant. Figures (3.30) and (3.31) represent the

distribution of domains of MI in red for the first line (left) and for the second line (right).
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Figure 3.30: Domains of Modulational Instability plotted for ω+. The blue color corresponds

to the case of no MI while the red color marks the MI domains. The left figure results from the

first line and the right figure presents the domains of second line. L1 = 0.464 mH; L2 = 0.22

mH; C0 = 320 pF.

Figure 3.31: Domains of Modulational Instability plotted for ω−. The blue color corresponds

to the case of no MI while the red color marks the MI domains. The left figure results from the

first line and the right figure presents the domains of second line. L1 = 0.464 mH; L2 = 0.22

mH; C0 = 320 pF.
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In figures 3.30 and 3.31, we have considered the space of parameters a and ωrd where

ωrd represents reduced frequency and is expressed as ωrd = (ω − ωmin)/(ωmax − ωmin).

ωmax and ωmin are evaluated for each new value of the coupling parameter a. We present

these two figures for ω+ (figure 3.30) and for ω− (figure 3.31). To confirm these domains,

we plot the gain for a = 5 only for ω+. This is presented on figure 3.32 in which three

zones of MI are obtained and then confirm the results presented on figure (3.32). δ is an

arbitrary real wave number accounting for the perturbation.

Figure 3.32: Gain of the two lines for ω+. At the left, line 1 and at the right line 2. On

each figure, we have three areas where the gain is not equal to zero. This result confirms the

observations made on figure 3.31.

In the view to consolidate the validity of the preceding results, we propagate the

solution of the NLS equation [100] since the above observed Benjamin-Feir intability

constitutes the proof that the network can support envelope solitons. For this purpose,

we take as the input voltage the profile of a modulated soliton given by

V
(l)
± = Vmsech((vg±t)/(L(l)

s )) cos(2πfp±t) (3.75)

where fp± and vg± are the carrier frequency and the group velocity of the wave packet

respectively, and L
(l)
s is the soliton width defined by L

(l)
s = 1

Vm

√
2P±j
Q±j

. Figures 8, 9 and
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10 show the propagation of upper modulated soliton along line 1 and line 2 for different

amplitudes. The numerical experiments are carried out in Eq.(3.67) describing the prop-

agation of waves in the coupled NETLs of figure 3.26. The parameters of the network

are chosen to be: α = 0.21 V −1 and β = 0.0197 V −2. Variables L1, L2, a and C0 have the

same values as in figure 3.27. The fourth-order Runge-Kutta scheme is used with normal-

ized integration time step ∆τ = 2× 10−3. We choose the carrier frequency fp+ = 1328.80

kHz and fp− = 173.37 kHz; we use several amplitudes to look their influence on wave

propagation. The different figures are given below where we have represented the signal

to multiple cells. From the left to the right, we have the cell of rank 1, 300, 600, 900,

1200, 1500, 1800, 2100, 2400 and 2700.
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Figure 3.33: Propagation of envelope soliton signal voltage as a function of time at different

cells plotted for ω+ ; left column corresponds to line 1, i.e. (a) and (c), while the right column

stands for line 2 i.e. (b) and (d). The input signal is given by equation (3.75). The upper row

refers to an amplitude of 0.2 V while the second row is obtain for signal voltage of 1.0 V . The

fission is not obvious enough on the upper row. Variables L1, L2, a and C0 have the same values

as in figure 3.27.

On figure (3.33), we realize that the non identical coupled lines support the enve-

lope pulse solitons train. This confirms the above studies. The parameters of the envelope

soliton are not always exactly the same for both lines (Fig.3.33(c) and Fig.3.33(d)). This

difference has been predicted by Eq.(3.71). The phenomenon of fission has already been

reported (see [96, 100]). On the upper row (Fig.3.33), the fission is very difficult to make

itself visible, and to clearly split the input pulse. We are not able to tell whether the

fission reduces the velocity of the secondary soliton or if it increases the velocity of the

initial soliton so that the two solitons remain bounded. However, Yemele et al. have
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Figure 3.34: Propagation of envelope soliton signal voltage (amplitude equal to 0.4 V ) as

a function of time at different cells always plotted for ω+ ; (a) corresponds to line 1 and (b)

corresponds to line 2. Here, we have not introduced all the energy corresponding to the chosen

amplitude at the initial time; this influence the fission. Variables L1, L2, a and C0 have the same

values as in figure 3.27.

suggested that the Raman effect is more manifested since it gives a constant deceleration

inducing the increase of the soliton velocity with respect to the propagation distance. This

could be verified for next figures on the second row in which the fission appears clearly.

The arrows on figure 3.33 (c and d) represent the secondary solitons produced by fission.

The double arrow shows the difference between the secondary soliton of the first line and

the one of second line due to the difference between the two lines. The induced very low

amplitude secondary solitary waves have a greater width and a higher velocity compared

to the initial solitary wave. For this reason, we can consider them as a part of the input

energy which is spreading along the network and therefore can be seen as a perturbation.

We have numerically study the stability of the system and it comes out that the pulse

is extremly stable to small perturbations. On figure 3.34, we show how the amount of

input energy corresponding to a given amplitude of the signal voltage may influence the

process of fission. This figure presents only one secondary soliton while figure 3.33 (c and

d) presents more than two generated solitons. We conclude that fixing the amplitude and

acting on the corresponding energy introduced through the line, the more the input en-

ergy is close to the full corresponding one, the better the fission occurs. The width of the

main soliton is then compressed; this is good for the transmission of waves packet since

the bit rate could be increased. As final result of this work, the solitary wave propagating
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Figure 3.35: Propagation of envelope soliton signal voltage as a function of time at different

cells plotted for ω−; left column corresponds to line 1, i.e. (a) and (c), while the right column

stands for line 2 i.e. (b) and (d). The upper row refers to an amplitude of 0.2 V while the row

below is obtain for signal voltage of 1.0 V . The signal voltage suffers from an effect of dispersion

when the time grows. Variables L1, L2, a and C0 have the same values as in figure 3.27.

through the two lines for ω− (see Fig. 3.35) suffers from an effect of dispersion after a

long distance of propagation during which the amplitude of the signal voltage grows with

the time. Hence, the network acts for these low frequencies regime as an amplifier.

3.4.4 Concluding remarks on a pair of non-identical coupled NETLs

In this section, we have studied the dynamics of modulated waves in two non-

identical coupled NETLs. Two modes of propagation of modulated solitons have been

detected. Generally, when the two coupled lines have identical linear characteristic pa-

rameters, one of the two modes reduces to the standard mode of propagation of an isolated

single line. In the present case, it is important to note that none of the two modes cor-
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responds to the uncoupled network due to the difference on the two lines. Modulational

instability has been studied and we have shown that the investigated system can support

a train of envelope solitons. The importance of the coupling constant for the MI domains

has been highlighted. During this work, we have confirmed that it is not mandatory to

couple two lines made of band-pass filters to solve the crucial problem of the mixing of

waves of different modes in the network; only the existence of the band-pass filter well-

positioned help for the suppressing [100]. It results that the entire coupled cells needs only

the half of the total number of additive linear inductors compared to the number used

to construct the line in ref. [28]. Besides, it is important to notice that for ω− , the use

of an appropriated width reducer could bring back the profile of the signal at its initial

form. Particularly for this mode corresponding to low frequencies, the system acts as an

amplifier. Another important thing is the fission which appears in the two lines during

propagation for only ω+ . This fission is influenced by the amplitude of the signal voltage

introduced at initial time as well as by the amount of the input energy.

3.5 Transverse stability in the discrete inductance ca-

pacitance electrical network

In this section, we derive the two-dimensional NLS equation governing the prop-

agation of slowly modulated waves in the network by a means of a method based on the

semi-discrete limit and in suitably scaled coordinates. The exact transverse solution is

found and the analytical criteria of stability of this solution is derived.

3.5.1 Main characteristics of the coupled NETLs and dynamic

equation

The standard nonlinear discrete LC line is a structure made of elementary cells

which consist of an inductance L and a nonlinear capacitor C(V ) [70]. Many schematic

electrical lattices have already been considered in the literature [47]. The model used

in this work consists of a nonlinear network with many coupled nonlinear LC dispersive

transmission lines. We imagine that there are many identical dispersive lines which are

coupled by means of inductance L3 at each node, as shown in figure 3.36. Each section

of line consists of a constant inductor L1 in the series branch and a nonlinear capacitor
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of capacitance C(Vn,m) in parallel with a constant inductor L2 in the shunt branch. The

nodes in the system are labeled with two discrete coordinates n and m, where n specifies

the nodes in the direction of propagation of the pulse, and m labels the lines in the

transverse direction.

Figure 3.36: Schematic representation of the NETL.

In the network, nonlinearity is introduced by a varicap diode which admits that the

capacitance varies with the applied voltage. The voltage dependance relation is assumed

to have a polynomial form given by

Q (Vn,m) = C0

(
Vn,m − αV 2

n,m + βV 3
n,m

)
(3.76)

where C0, α and β are constants. In the present work, we set α = 0.21 V −1 and β = 0.0197

V −2. Applying Kirchoff’s laws to this system leads to the following set of propagation

equations:

d2

dt2
(Vn,m−αV 2

n,m+βV 3
n,m)−U2

0 (Vn+1,m−2Vn,m+Vn−1,m)+ω2
0Vn,m−Ω2

0(Vn,m+1−2Vn,m+Vn,m−1) = 0

(3.77)

with U2
0 = 1/(C0L1), ω2

0 = 1/(C0L2) and Ω2
0 = 1/(C0L3). Equation (3.77) is the differ-

ential equation governing the wave propagation in the network under consideration. As

one can see, all of the lines have the same characteristic frequency. This is due to the

fact that all of the lines are identical. Ω0 is the coupling frequency. The properties of the

network can be studied by using a solution of the form

Vn,m(t) = εA(x, y, t)eiθ + ε2[ψ(x, y, t) + B(x, y, t)e2iθ] + cc (3.78)

Tala Tebue Eric Ph.D-Thesis



3.5 Transverse stability in the discrete inductance capacitance electrical
network 79

where θ = kn + qm− ωt is the phase and "cc" stands for the complex conjugated of the

preceding expression; k and q are the wave numbers respectively in the n and m direction;

ω is the angular frequency; ε is a small parameter. For the semi-discrete approximation,

we set 



τ = ε2t

x = ε(n− vgt)

y = ε(m− ugt

(3.79)

to obtain the short wavelength envelope solitons; vg and ug are the group velocities respec-

tively in the n and m direction. Substituting Eq.(3.78) into Eq.(3.77), we obtain different

equations as power series of.

# The coefficient of ε, proportional to exp(iθ), gives the dispersion relation

ω2 = 4U2
0 sin2

(
k

2

)
+ 4Ω2

0 sin2
(q

2

)
+ ω2

0 (3.80)

This dispersion relation shows that our network is a band-pass filter. Figure 3.37 repre-

sents the evolution of the angular frequency in the first brillouin zone for the n direction.

To plot Eq.(3.80), we fix q = π.

Figure 3.37: Dispersion graph obtained with L1 = L2 = L3 = 0.22 mH; C0 = 320 pF .

The group velocity is taken to be

vg =
U2

0 sin (k)

ω
(3.81)

This group velocity is represented in Fig. 3.38.

# The coefficient of ε2, proportional to exp(2iθ), leads to the following relation:
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Figure 3.38: Group velocity obtained for the same parameters as in figure 3.37

B =
αω2

ω2 − U2
0 sin2(k)− Ω2

0 sin2(q)− ω2
0/4

A2 (3.82)

# From the coefficient of ε3, proportional to exp(iθ), we obtain the following two-

dimensional nonlinear Schrödinger equation for A:

iAτ + P1Axx + P2Ayy + P3Axy + Q|A|2A = 0 (3.83)

with the following definitions




P1 = (U2
0 cos(k)− v2

g)/2ω

P2 = (Ω2
0 cos(q)− u2

g)/2ω

P3 = −ugvg/2ω

Q = 3β/2α2 − δ/α

δ = αω2/(ω4 − U2
0 sin2(k)− Ω2

0 sin2(q)− ω2
0/4)

(3.84)

The numbers P1, P2 and P3 are the dispersion coefficients, while Q is the nonlinearity

coefficient of the nonlinear Schrödinger equation.

3.5.2 Solution and stability of NLS

The focal point here corresponds to the determination of the solution of Eq.(3.83).

Before the discovery of solitons, mathematicians thought that nonlinear differential equa-

tions could not be solved, at least not exactly. However, solitons lead to the recognition

that through a combination of such diverse subjects as quantum physics and algebraic
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geometry, one can actually solve some nonlinear equations exactly. This innovation opens

up a wide window in the world of nonlinearity [101]. With the development of soliton

theory, many powerful methods for obtaining the exact solutions of NETLs have been pre-

sented [102–106]. In the present case, we use the variational method [107]. This method

is a powerful solution method for the computation of exact traveling wave solutions. Be-

cause of the complexity of the nonlinear wave equations, there is no unified method to

find all solutions of these equations. Here, we look for a propagating wave under the form:

A (x, y, τ) = a (z) ei(g(z)+Ωτ) (3.85)

where a(z) is the amplitude, g(z) is the phase, Ω represents the spectral parameter of the

wave and z = x + y − veτ the single variable for the amplitude, depending on ve which

is the velocity of the wave packet. By substituting Eq.(3.85) into the two-dimensional

NLS Eq.(3.83), and equating real and imaginary parts to zero, the following two coupled

ordinary differential equations are obtained:




−vea

′ + 2Pa′g′ + Pg′′a = 0

(veg
′ − Ω) a + P (a′′ − ag′2) + Qa3 = 0

(3.86)

where the prime stands for derivation with respect to z and P = P1 + P2 + P3. By

multiplying the first equation of (3.86) by a(z) and integrating once, it follows that the

phase g is related to the amplitude a(z) through the expression:

(ve

2
− Pg′

)
a2 = k1 (3.87)

where k1 is the constant of integration, which can naturally be taken as k1 = 0 for all

continue solution at the origin a = 0. Taken then k1 = 0, Eq.(3.87) yields

g′ =
ve

2P
(3.88)

By substituting Eq.(3.88) into the second equation of (3.86), we arrive to the following

differential equation satisfied by the amplitude a(z):

Pa′′ + Qa3 +

(
v2

e

4P
− Ω

)
a = 0 (3.89)

from which the first integral is obtained by multiplying Eq.(3.89) by a′ and integrating

the resulting equation:
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a′2 +
Q

2P
a4 +

(
v2

e

4P 2
− Ω

P

)
a2 =

2k2

P
(3.90)

with k2, another constant of integration. Let us mention that, Eq.(3.90) can be also

derived from the auxiliary Hamiltonian H̃ and lagrangian L̃ defined as follows:





H̃ = 1
2
m(a) [a′2 + U(a)]

L̃ = 1
2
m(a) [a′2 − U(a)]

(3.91)

This Hamiltonian may be viewed as the energy of a particle with an effective mass

m(a) = 1 moving in the effective potential

U(a) =
Q

2P
a4 +

v2
e − 4PΩ

4P 2
a2 − 2k2

P
(3.92)

It is obvious that equation (3.89) can be transformed into the following equivalent

autonomous dynamic system:





da
dz

= a′

da′
dz

=
(
−Q

P
a2 + Ω

P
− v2

e

4P 2

)
a

(3.93)

where solutions are the fixed points of the system. The number of equilibrium points, and

consequently the dynamic of this system depends on the sign of the quantity

F0 =
v2

e − 4PΩ

4PQ
(3.94)

In fact, when F0 > 0, the system (3.93) admits only the equilibrium point (0, 0) and

consequently, none nonlinear localized wave (NLW) can be obtained. However, for F0 < 0,

the system admits three equilibrium points: (0, 0) and (0,±Aeq), with

Aeq =

√
4Ω0P − v2

e

4PQ
. (3.95)

From the linear stability analysis, it appears that the stability of these equilibrium points

depend on the sign of the product PQ (the saddle point is obtained if lima=Aeq

d2U(a)
da2 < 0

and the center point else). In fact, when PQ > 0, the equilibrium point (0, 0) is a saddle

while the two others, (0, Aeq), are the centers. This analysis is confirmed by the phase

plane plot of the system sketched in Fig.3.39.(1) obtained for the numerical values of

parameters: P = Q = 1.0, ve = 0.0 and Ω = 1.0; that is PQ > 0 and 4PΩ − v2
e > 0, in

which closed trajectories are present. These trajectories indicate that small oscillations of
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the system as well as periodic solutions are possible and are separated by the homoclinic

orbit known as the separatrix characterizing the existence of pulse soliton or bright solitary

waves (BSW) in the context of the NLS system. These BSW are nonlinear solutions of

Eq.(3.93) with the vanishing boundary conditions

lim
z−→∞

a = 0,
da

dz
= 0 for a = A0, and

dna

dzn
= 0 for a = 0, n = 1, 2, ... (3.96)

where A0 is the maximum amplitude of the envelope wave. The condition (3.96) leads

to the following constraint to be satisfied by the integrating constant k2 and the spectral

parameter Ω

k2 = 0, and Ω =
v2

e

4P
+

Q

2
A2

0. (3.97)

However, when PQ < 0, there is a changes in the properties of the above equilibrium

Figure 3.39: Phase plane plot (a), and the effective potential U(a) (b) of the system described

by the NLS equation. The homoclinic orbit (a1) and the heteroclinic orbit (a2) are plotted in bolt

lines.

points; (0, 0) becomes a center while (0,±Aeq) are the saddle points. The phase plane plot
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sketched in Fig.3.39.(2), obtained for P = −Q = 1, ve = 0.0 and Ω = −1; that is PQ < 0

and 4PΩ − v2
e < 0 shows a changes in the behavior of the system. The closed and open

orbits are now separated by the heteroclinic orbits which evidences the existence of dark

solitary waves (DSW) which are NLW satisfying the non vanishing boundary conditions

lim
z−→∞

a = A0,
dna

dzn
= 0 for a = A0, n = 1, 2, ... (3.98)

from which the following expressions of the spectral parameter and the integration con-

stant are obtained:

Ω =
v2

e

4P
+ QA2

0, and k2 = −Q

4
A4

0. (3.99)

The plot of the effective potential U(a) indicates the presence of a double wells when

PQ > 0 and a single well for PQ < 0 which are in agreement with results of the phase

plane plots. It is then obvious that the solutions of NLS equation depend on the sign of

the product PQ.

3.5.2.1 Bright solitary waves as solution

Now we focus our attention to the derivation of bright solution (in this case

PQ > 0) of the NLS. For this end, the integration constant k1 = 0, while k2 and the

spectral parameter Ω will be taking as given in Eq.(3.97); thus, Eq.(3.90) can be rearranged

as (
da

dz

)2

= µ2a2(1− a2/A2
0), (3.100)

which admits the following well-known one bright soliton solution

a(z) = A0sech [µ(z − z0)] , (3.101)

with µ = A0

√
Q
2P

; µ is a parameter describing the pulse width. From Eq.(3.88), the

phase g(z) is given by

g =
ve

2P
(z − z0), (3.102)

where z0 is the initial position of the wave which can be equal to zero. Hence the solution

of the NLS equation can explicitly be rewritten as:

A(x, y, τ) = A0sech

[
A0

√
Q

2P
(x + y − veτ)

]
exp

{
i
[ ve

2P
(x + y − vpτ)

]}
, (3.103)

where vp is the carrier velocity, with the following expression

vp = ve − 2PΩ

ve

(3.104)
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As for the particular case of solution with stationary phase in time (vp = 0), we have:

ve± = ±A0

√
2PQ and Ω = QA2

0 (3.105)

3.5.2.2 Stability of solitary waves

Having found this solution, we then check its stability because an important aspect

of any family of solutions is their stability properties. For conservative systems, under

certain conditions, it is possible to derive an analytical criterion for linear stability of

solitons, which involves only the dependence of invariants on the solution parameters.

The stability of the BSW is determined here by the dependence of the norm (the power)

on the velocity ve. Solitons are stable if dN
dve

> 0 and unstable otherwise [108]. For the

model considered here, N(ve) can be found analytically as N =
∫ +∞
−∞ a2dz, leading to:

N = A2
0

∫ +∞

−∞

dz

cosh2(µz)
=

2A2
0

µ
(3.106)

Substituting the ve obtained in Eq.(3.105) into (3.106), one obtains

N =
v2

e

PQµ
, (3.107)

which is an increasing function of the envelope velocity for PQ > 0 and then pulse soliton

is stable.

3.5.2.3 Condition for possible MI

MI is a generic nonlinear phenomenon governing nonlinear wave propagation in disper-

sive an nonlinear media; it leads to a self-induced modulation of an input plane wave with

the subsequent generation of localized pulses. To determine the conditions of instability

of the modulated waves in the network, we use the plane wave solution given below:

A (x, y, τ) = A0e
i(k̃x+q̃y−$τ) (3.108)

By inserting equation (3.108) into equation (3.83), we have the following dispersion rela-

tion:

$ = k̃2P1 + q̃2P2 + k̃q̃P3 −QA2
0. (3.109)

The linear stability of this continuous wave can be investigated by looking for a solution

of the form

A (x, y, τ) = (A0 + b(x, y, τ)) ei(k̃x+q̃y−$τ+θ(x,y,τ)) (3.110)
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where b(x, y, τ) and θ(x, y, τ) are small perturbations for the amplitude and for the phase

respectively; they can be write as follows:




b (x, y, τ) = b0e
i(δx+σy−ντ)

θ (x, y, τ) = θ0e
i(δx+σy−ντ)

(3.111)

Substituting (3.110) and (3.111) into Eq.(3.83), one obtains a system for the perturbations.

For the nontrivial solutions of this system, we then have:
[
ν − 2k̃δP1 − 2q̃δP2 −

(
q̃δ + k̃σ

)
P3

]2

= (δ2P1 + σ2P2 + δσP3)
2
(
1− 2QA2

0

δ2P1+σ2P2+δσP3

)

(3.112)

It appears that the behavior of ν depends on the quantity Q
δ2P1+σ2P2+δσP3

. In one hand,

if this quantity is negative, the plane wave solution of NLS equation is stable. On the

other hand, if this quantity is positive,
[
ν − 2k̃δP1 − 2q̃δP2 −

(
q̃δ + k̃σ

)
P3

]2

could be

negative under certain conditions and the consequence is that the plane wave solution of

NLS equation is unstable; hence, it appears MI phenomenon in the line. This instability

induces the formation of small wave packets or envelope pulse solitons train, solution of

the NLS Eq.(3.83).

3.5.3 Numerical experiments

This section is intended to present the numerical experiments on the propagation of

slowly modulated waves in the network, this to check the analytical calculations presented

in the previous sections. The numerical experiments are carried out on Eq.(3.77) describ-

ing the propagation of waves in the NETL of figure 3.36. The wave is introduced in the

following form

V (t) = V0 [1 + m̃ cos(2πfmτ)] cos(2πfpτ) (3.113)

where fm is the modulation frequency, V0 is the amplitude of the wave and m̃ is the

modulation rate. We take fm = 54kHz, V0 = 0.2 V and m̃ = 1% . A fourth-order Runge-

Kutta algorithm has been used and a normalized integration time step ∆t = 2 × 10−3

is used for numerical simulations. Similarly, the number of cells N in the n direction is

chosen to be equal to 3000 and we have used periodic boundary conditions so that we do

not encounter the wave reflection at the end of the line. In the m direction, we have taken

M = 18. The parameters of the network are the same as in figure 3.37. This simulation

is made in the case where δ = σ, k̃ = q̃ that is P = P2 + P2 + P3. We take the carrier

frequency fp = 1752 kHz.
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Figure 3.40 shows the evolution of the plane wave in the network. On this figure,

we observe examples of the MI exhibited by the network. As time goes on, the wave

exhibits a modulation of its amplitude, which leads to the formation of wave packets which

is in agreement with the analytical calculations. In the view to consolidate the validity

Figure 3.40: Propagation of waves through the network at the cell 700 for m = 10 (a) and at

the cell 2000 for m = 18 (b). The parameters of the network are: L1 = L2 = L3 = 0.22 mH;

C0 = 320 pF .

of preceding results, we propagate the solution of the NLS since the above observed

Benjamin-Feir instability constitutes the proof that the network can support envelope

solitons. For this purpose, we take as input voltage the profile of a modulated soliton

given by Eq.(3.114)

V (t) = Vm sec h (µvgτ) cos (2πfpτ) (3.114)

In Fig. 3.41, we depict the time evolution of relation (3.114) in the line characterized

by equation (2) for the same frequency as in Fig.3.40. This result confirms the fact that

our network can support the pulse soliton. On this last figure, we can observe the fission

of two-bound solitons; this can be explained by the additional terms in the NLS equation.

A similar phenomenon has been already obtained in the context of higher-order NLS by

David Yemélé et al. [10].
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Figure 3.41: Propagation of envelope soliton signal voltage as a function of cell number n

at different times. The left column is obtained for t1 = 450 µs while the right is obtained for

t2 = 850 µs. The parameters are the same as in figure 3.40.

3.5.4 Concluding remarks

In this section, we have considered a system of coupled nonlinear dispersive trans-

mission lines and we have shown that the voltage for the transmission lines is described by

a two-dimensional nonlinear Schrödinger equation. The exact transverse solution has been

found and its stability has been studied. The condition for which the network can exhibit

modulational instability is also determined and we observe a good agreement between

analytical calculations and numerical simulations.
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Conclusion

The aim of this chapter is to discuss the results of our findings. We have solved

four main problems namely: the study of the effect of nonlinear coupling on modula-

tional instability, the study of the effect of second-neighbor inductive coupling on the

modulational instability in a coupled line of transmission, the suppression of modulated

waves mixing in coupled nonlinear LC transmission lines and the study of the transverse

stability in the discrete inductance-capacitance electrical network. The main results are

summarized in the different concluding remarks.
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General Conclusion

Ã Main Results of the Thesis

Throughout this dissertation, we have studied the nonlinear dynamics on some

nonlinear electrical lines. The thesis has been organised in three parts.

In chapter 1, we made a literature review on the soliton, nonlinear electrical

transmission lines and modulational instability;

The second chapter was devoted to methodology. We presented the mathematical

and numerical methods used to achieve our goals;

The last chapter discussed the results of our investigations.

The main objectives of this work were:

• to study the effect of nonlinear coupling on modulational instability in nonlinear

transmission lines; we show that by coupling NETLs in this way, the propagation of

waves in each line can be alternatively described by two nonlinear Shrödinger equations

according to the direction of the current flow through the coupling branch. We also point

out that the nonlinear coupling adds the domains of modulational instability (MI) of each

line. Finally, we show that a small variation of the nonlinear elements used in the coupling

branch can change significantly the behavior of the network.

• to study the effect of second-neighbor inductive coupling on the modulational in-

stability in a coupled line of transmission; as result, we found that the second-neighbor

couplings add new maxima of gain; increase the group velocity, and the magnitude of the

wave. Therefore, the network becomes more stable to small external perturbations.

• to study the suppression of modulated waves mixing in coupled nonlinear LC trans-

mission lines. It results from our investigation that: the entire network needs only the half

of the total number of additive linear inductors compared to that found in the literature;

the overall bandwidth is wider; the new coupling type allows the suppression of some

mixing of modes without excluding very low frequencies; hence, it becomes possible to

think of using the high group velocities of low frequencies of the first-mode. With another
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model, we confirm that for the suppression of modulated waves mixing in coupled nonlin-

ear LC transmission lines, the entire network needs only the half of the total number of

additive linear inductors compared to that found in the literature. It also results from this

work that: On one hand, the difference between the two lines induced the fission for only

one mode of propagation. This fission is influenced by the amplitude of the signal and the

amount of the input energy as well; it also narrows the width of the input pulse soliton,

leading to a possible increasing of the bit rate. On the other hand, the dissymmetry of the

two lines converts the network into a good amplifier for the ω− mode which corresponds

to the regime admitting low frequencies.

Ã Open problems and future directions

Despite the results that were found in this thesis, other points of interest may be

solved in the future.

• In this thesis we have derived only one type of soliton (envelope solution) of the NLS

equation. It would also be interesting to derive other types of soliton such as dark soliton

which can describe other physical properties of the network.

•We have used for numerical investigations on the full equation of the NETL the exact

analytical solution for the NLS equation instead of real NETL analytical solution. We

propose to look for these kinds of solution both in the case of continuous approximation

and its discrete fundamental form.

• The NLS equation derived in this thesis may be also used to describe the same

phenomena in many nonlinear systems. It is important to mention that, the NLS equation

obtained here has been derived under the Tanuiti reductive method; it would be also

interesting to know the effect of higher harmonics contribution generated by the NETL

on this equation.

• Our study also focused on the analytical and numerical study of modulated waves.

To complete our knowledge in such subjects, experimental studies through dissipative

nonlinear electrical transmission lines should be carried out.
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Appendix A

Derivation of equation (3.3)

We consider the NETL with the schematic diagram of Fig.3.1. By applying the Kirch-

hoff’s laws at node n for the first line, it follows that:

i1n = I1,n−1 − I1,n − i2n − jn (A1)

which can rewrite as follows after one derivative:

di1n
dt

=
d

dt
(I1,n−1 − I1,n)− di2n

dt
− djn

dt
, (A2)

where





jn = dQ2,n

dt

i1n = dQ1,n

dt

dI1,n−1

dt
= 1

Ls
(V1,n−1 − V1,n)

dI1,n

dt
= 1

Ls
(V1,n − V1,n+1)

di2n
dt

= 1
Lp

V1,n

(A3)

I1,n−1 is obtained between the nodes n − 1 and n while I1,n is obtained between the

nodes n and n + 1. By inserting (A3) into (A2), we obtain:

d2Q1,n

dt2
=

1

Ls

(V1,n+1 − 2V1,n − V1,n−1)− 1

Lp

V1,n − d2Q2,n

dt2
. (A4)

Similarly, the Kirchhoff’s laws at node n for the second line give:

j1
n = I2,n−1 − I2,n − j2

n + jn (A5)

which can rewrite as follows after one derivative:
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dj1
n

dt
=

d

dt
(I2,n−1 − I2,n)− dj2

n

dt
+

djn

dt
, (A6)

where





j1
n = dQ1,n

dt

dI2,n−1

dt
= 1

Ls
(V2,n−1 − V2,n)

dI2,n

dt
= 1

Ls
(V2,n − V2,n+1)

dj2
n

dt
= 1

Lp
V2,n

(A7)

By inserting (A7) into (A6), we obtain:

d2Q1,n

dt2
=

1

Ls

(V2,n+1 − 2V2,n − V2,n−1)− 1

Lp

V2,n +
d2Q2,n

dt2
. (A8)

By using Eq. (A9), that is





Q1,n = C01(Vj,n − η1V
2
j,n + δ1V

3
j,n)

Q2,n = C02

[
(Vj,n − V3−j,n)− η2(Vj,n − V3−j,n)2 + δ2(Vj,n − V3−j,n)3

] , (A9)

we obtain

(
Vj,n − η1V

2
j,n + δ1V

3
j,n

)
tt

= u2
0 (Vj,n+1 + Vj,n−1 − 2Vj,n)− ω2

0Vj,n

−a


 (Vj,n − V3−j,n)− (−1)3−j η2 (Vj,n − V3−j,n)2

+δ2 (Vj,n − V3−j,n)3




tt

, (A10)

where the subscript j can take the values 1 for the first line and 2 for the second line.

Derivation of equation (3.9)

The solution of equation (A10) is assumed to have the following general form:

Vj,n(t) = εAj(x, τ)eiθ + ε2[φj(x, τ) + Bj(x, τ)e2iθ] + cc,

where θ = kn− ωt and "cc" stands for complex conjugate. In order to use the reductive

perturbation method in the semi-discrete limit, we introduce the slow-envelope variables

x = ε(n− vgt) and τ = ε2t where ε is a small parameter and vg is a group velocity. The

terms of order ε2 proportional to eiθ allow to obtain the following relation:
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



2iωvg (A1)x = 2iu2
0 sin k (A1)x − a [2iωvg (A1)x − 2iωvg (A2)x]

2iωvg (A2)x = 2iu2
0 sin k (A2)x − a [2iωvg (A2)x − 2iωvg (A1)x]

(A11)

After one integration about x and by assuming that the integration constant is equal

to zero, we have:





[
ωvg (1 + a)− u2

0 sin k
]
A1 = aωvgA2

[
ωvg (1 + a)− u2

0 sin k
]
A2 = aωvgA1

. (A12)

Now using Eq. (3.7), one obtains

vgω = Γu2
0 sin k, (A13)

with Γ = 1 for the fast-mode and 1/(1 + 2a) for the slow-mode. Inserting (A13) into

(A12), we have:





A2 =

[
1

a
+ 1− 1

aΓ

]
A1

A1 =

[
1

a
+ 1− 1

aΓ

]
A2

. (A14)

For the fast-mode, A1 = A2 and for the slow-mode A1 = −A2. These two relations

can take the following form

Aj = −(−1)lA3−j, (A15)

where l = 1 for the fast-mode and 2 for the slow-mode.
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Appendix B

The coefficients of the CDCGL equations (3.39) are

Qr = 3ω2

A2U2
0 (1+a)

, Qi = 4βω
AU2

0 (1+a)

P1i = 2ω
U0(1+a)

[
σ1(ω2

0+2U2
0 +2Ω2

0−ω2(1+a))−U2
0 (σ2+2σ1)

ω2
0+2U2

0 +2Ω2
0−ω2(1+a)

]

P2i = 2ω
U0(1+a)

[
−Ω2

0(σ2+2σ1)

ω2
0+2U2

0 +2Ω2
0−ω2(1+a)

]

P1r = 1, P2r =
Ω2

0

U2
0
, η = 2aω

U2
0 (1+a)

γi = 2(P1r + P2r), γr = −2(P1i + P2i)

Γr = aω2

(1+a)(ω2
0+2U2

0 +2Ω2
0−ω2(1+a))

Γi = 2aσ1ω3

U2
0 (1+a)(ω2

0+2U2
0 +2Ω2

0−ω2(1+a))

The elements of the matrix are

This matrix form can be written as

M =




−Ω + m1 + im2 m3 + im4 −ηΩ + m5 + im6 0

m3 − im4 Ω + m1 − im2 0 ηΩ + m7 − im6

−ηΩ + m8 + im9 0 −Ω + m10 + im11 m12 + im13

0 ηΩ + m14 − im9 m12 − im13 Ω + m10 − im11




with
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m1 = −4P1r sin2(K
2
) cos(ν)− 2P1r cos(K) sin(ν)− 4P2r sin2(K) cos(2ν)

− 2P2r cos(2K) sin(2ν) + Γr
A2

A1
+ Qr|A1|2

m2 = −4P1i sin
2(K

2
) cos(ν)− 2P1i cos(K) sin(ν)− 4P2i sin

2(K) cos(2ν)

+ 2P2i cos(2K) sin(2ν) + Γi
A2

A1
+ Qi|A1|2

m3 = Qr|A1|2, m4 = Qi|A1|2, m5 = −Γr, m6 = −Γi

m7 = −Γr, m8 = m7, m9 = m6

m10 = −4P1r sin2(K
2
) cos(ν)− 2P1r cos(K) sin(ν)− 4P2r sin2(K) cos(2ν)

− 2P2r cos(2K) sin(2ν) + Γr
A1

A2
+ Qr|A2|2

m11 = −4P1i sin
2(K

2
) cos(ν)− 2P1i cos(K) sin(ν)− 4P2i sin

2(K) cos(2ν)

+ 2P2i cos(2K) sin(2ν) + Γi
A1

A2
+ Qi|A2|2

m12 = Qr|A2|2, m13 = Qi|A2|2, m14 = m7

The dispersion relation which determines Ω as a function of K is obtained from the

condition of the existence of nontrivial solutions of the algebraic linear homogeneous

system det(M) = 0, that amounts to a quadratic equation for Ω. Solving Eq. (3.47), the

frequency has the form

Ω = Ωr + iΩi

Hence, substituting this frequency into Eq. (3.46), one can note that the e−Ωiτ

enters inside the amplitude of the perturbation. The asymptotic behavior of the perturba-

tion is related to the sign of the constant Ωi. If constant Ωi is negative, solution increases

exponentially when τ goes towards the infinity and the system remains unstable under

the modulation.
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Appendix C

We look for plane wave solutions in the form

φjn(x, t) = Φj0e
i(Kx−Ωt), (j = 1, 2) (C1)

Inserting Eq.(*) into Eq.(3.58), we obtain the following expression describing implic-

itly the characteristics of the continuous-wave solution:

Ω = PjK
2 −QjΦ

2
j0 (C2)

Eq. (C2) is the dispersion relation of the plane wave solution. We can see that the

pulsation depend of wave number and the amplitude of the signal.

Now, we consider small perturbations bjn(x, t) for the amplitude and θ(x, t) for the phase;

bjn(x, t) and θ(x, t) are real functions. We then have:

φjn(x, t) = [Φj0 + bjn(x, t)]ei[Kx−Ωt+θ(x,t)] (C3)

Substituting this relation into Eq.(3.58), one obtains the following system for the per-

turbations:




−Φj0θ,t + Pjbj,xx − 2PjΦj0Kθ,x + 2QjΦ

2
j0bj = 0

bj,t + PjΦj0θ,xx + 2PjKbj,x = 0
(C4)

We take a general solution in the form





bj = bj0e
i(δx−νt) + c.c.

θ = θ0e
i(δx−νt) + c.c.

(C5)

where δ and ν are an arbitrary real wave number of the perturbation and the corre-

sponding propagation frequency respectively, which is complex in the general case, bj0 and

Tala Tebue Eric Ph.D-Thesis



APPENDIX C 105

θ0 being amplitudes’ perturbation. Inserting Eq.(C5) into Eq.(C4), we arrive at a set of

linear homogeneous equations for bj and cj. This set of homogeneous equations which are:





(2QjΦ
2
j0 − Pjδ

2)bj0 + iΦj0(ν − 2PjKδ)θ0 = 0

−i(ν − 2PjKδ)bj0 − PjΦj0δ
2θ0 = 0

(C6)

The dispersion relation given below which determines ν as a function of δ is obtained

from the condition of the existence of nontrivial solutions of the algebraic linear homoge-

neous system Eq.(C6).

(ν − 2PjKδ)2 = P 2
j δ2(δ2 − 2Qj

Pj
Φ2

j0) (C7)

It finally appears that the behavior of ν depends on the sign of Qj/Pj;
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