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Abstract

A study of the likelihood of quantum breathers in a 1D Heisenberg spin chain

including a Dzyaloshinsky-Moriya and a longer range interaction is done through

an extended Bose-Hubbard model. The energy spectrum of the resulting Bose-

Hubbard Hamiltonian, on a periodic one-dimensional lattice containing more than

two quanta involving spin switches shows interesting detailed band structures. These

fines structures are studied using non degenerate and degenerate perturbation the-

ories in addition to a numerical diagonalization. The attention is focussed on the

effects of various interactions that are: the anisotropy, the Heisenberg isotropic ex-

change interaction, the Dzyaloshinsky-Moriya Interaction (DMI), the Heisenberg

in-plane (X,Y) as well as the out of plane exchange interaction, the second, third

and fourth nearest-neighbors on the energy spectrum of the system. The outcome

displays a possibility of an energy self-compensation in the system and the presence

of new localized bound states. The signature of the quantum breather is also set up

by the computation of the eigenfunctions of new localized bound states that stand

as the precursor for local magnetization reversal process when many nearest neigh-

bors are involved. From a non degenerated perturbation theory it is shown that

the interaction between the quanta leads to an algebraic localization of the modified

extended states in the normal-mode space of the non-interacting system that are

coined quantum q-breathers excitations.

Keywords: Quantum Breathers; Heisenberg spin chain; Bose-Hubbard lattice;

Dzyaloshinsky-Moriya Interaction.
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Résumé

Une étude des excitations quantiques de type breathers dans des réseaux unidi-

mensionnels de spin, incluant des interactions de Dzyaloshinsky-Moriya d’une part,

de grande portée d’autre part, est faite à travers un modèle de Bose-Hubbard, à

l’image des chaînes d’Heisenberg. Le spectre d’énergie resultant des Hamiltoniens de

Bose-Hubbard correspondant, sur un réseau périodique unidimensionnel contenant

plus de deux quanta comportant des commutateurs de spins montre des structures de

bandes intéressantes. Ces structures sont étudiées en utilisant la théorie des pertur-

bations non dégénérée et dégénérée associée à la diagonalisation numérique. Notre

attention est focalisée sur les effets des diverses interactions qui sont: l’anisotropie,

l’interaction d’échange isotrope d’Heisenberg, l’interaction Dzyaloshinsky-Moriya

(IDM), l’interaction d’échange d’Heisenberg dans le plan (X,Y) aussi bien que dans

le plan Z, les interactions de second, troisième et quatrième proches voisins sur

le spectre d’énergie du système. Les résultats suggèrent une possibilité d’auto-

compensation de l’énergie dans le système et la présence des nouveaux états lo-

calisés. La signature du breathers quantique est également mise en place par le

calcul des fonctions propres des nouveaux états localisées qui se présentent comme

des précurseurs du processus de retournement locale de l’aimantation où de nom-

breux plus proches voisins sont impliqués. Partant d’une théorie des perturbations

non dégénérée, il est démontré que l’interaction entre les quanta conduit à une lo-

calisation algébrique des états étendus modifiés dans l’espace de modes normaux du

système sans interaction qui sont des excitations quantiques de type breather que

l’on dénomme q-breathers.

Mots clés: Breathers Quantiques; chaîne de spins de Heisenberg; réseau quan-

tique de Heisenberg; modèle de Bose-Hubbard; interaction de Dzyaloshinsky-Moriya
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General Introduction

Magnetization reversal process is known to be a spin switching property that can

be obtained through an understanding of the underlying dynamics in magnetic sys-

tems. Magnetization switching process has gained numerous importances thanks to

the success and development of random access memories. This process is normally

based on a coherent rotation of magnetization and domain walls in the presence

of a magnetic field. Another approach when the magnetic field is not necessarily

applied that assume its importance is the magnetization switching by stress induced

anisotropy and thermal activation [1,2]. Most often, among the various approaches,

magnetization switching occurs locally but tends to propagate along the lattice. In

our present study, we propose that based on the electronic properties of the atoms

constituting, a magnetic material, bosonic excitations can be a good candidate for

activating localized magnetization reversal processes in ferromagnets whenever a

magnetic field is not applied. For a nice localized process, first of all the lattice

should be discrete and a good candidates for such a process are discrete breathers.

Discrete breathers have received considerable attention in recent years, in the phe-

nomenon of localization and transport of energy in discrete lattices, both from the

theoretical and experimental investigations points of view [3–6]. These excitations

are generic time-periodic and spatially localized solutions of the underlying classical

Hamiltonian lattice with translational invariance. They can modify system’s prop-

erties such as lattice thermodynamics and introduce the possibility of non dispersive

energy transport. An attempt to connect them with biological functions could be

assisted by the help of a model for bio-molecular system. Ivestigations on discrete

breathers or intrinsic localized modes in recent years has revealed a wealth of new

properties of classical energy localization in many physical systems. Their spatial

profiles localize exponentially for short-range interactions. Recently, the application

of these ideas to the normal-mode space has allowed to explain some facets of the

Fermi-Pasta-Ulam (FPU) paradox [7–11]. The problem consists of the nonequipar-

tition of energy among normal modes of a weakly anharmonic atomic model. In the

harmonic limit, each normal mode corresponds to a periodic orbit in phase space

and is characterized by its wavenumber q. Such an investigation of localized ex-

citations in normal modes space from the harmonic limit into the FPU parameter
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General Introduction 2

regime allowed to realize the persistence of periodic orbits, termed q-breathers. In

the normal mode space, although the interaction is long ranged, it is selective and

purely nonlinear, thus q-breathers localize exponentially for classical investigations.

Quantum breathers consist of superpositions of nearly degenerate many-quanta

bound states, with very long times to tunnel from one lattice site to another [5].

These quantum excitations although being extended states in a translationally in-

variant system are characterized by exponentially localized weight functions, in full

analogy to their classical counterparts.

Studies of quantum modes on small lattice are of interest for quantum devices based

on quantum dot, for studies of photonic crystals, Josephson junction arrays [12,13],

arrays of weakly coupled waveguides, protein-like crystals [14], and possibly in myo-

globin [15], for the studies of Bose-Einstein condensates in periodic optical traps [16],

light propagation in interacting optical waveguide, cantilever vibrations in microme-

chanical arrays. It has also been shown that the intrinsic localized modes can occur

in isotropic ferromagnetic chains [17]. In many cases, quantum dynamics is impor-

tant.

Discrete breathers are nonlinear localized modes that can be created in translation-

ally invariant nonlinear lattice models. They can modify the system’s property such

as the thermodynamics of lattice and introduce the possibility of non dispersive en-

ergy during its transport. Investigations of discrete breathers or intrinsic localized

modes in recent years has revealed a wealth of new properties of energy localiza-

tion [18]. The study of the spectrum and eigenstates of the quantum breathers is

less known for the case of system containing more than two bosons. Indeed there are

several published papers for the case of two bosons. For instance, Nguenang et al [19]

investigated the localization properties of the eigenstates in a finite Bose-Hubbard

chain and they observe localization of the weight function as a function of the wave

number, which they interpret as a signature of quantum q-breather excitations dis-

playing an algebraic decay, at variance to the exponential decay of the q-breathers

in the case of a classical nonlinear systems [19]. Two-Vibron Bound States has been

investigated in the β− Fermi-Pasta-Ulam model [20] as well as in ref. [21–28, 30].

The most extensively studied system is the quantum discrete nonlinear Schrödinger

equation with two particles (a dimer). This system is integrable due to the existence

of two integral of motion (energy and boson number). The classical version can be

completely solved. Bernstein et al. [31–35] and Aubry et al. [36] studied the expected

splitting of degenerate pairs of eigenvalues in the quantum system. Less is known

for systems with many degrees of freedom. Dorignac et al. [11] and J. C. Eilbeck [30]

are the first to study the spectrum of the quantum discrete nonlinear Schrödinger
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equation, in the case of four and six bosons using degenerate perturbation theory.

The output suggested exponentially small band widths for quantum breather bands

with large boson number [21,30,31].

However, the existence of discrete breathers in ferro and anti-ferromagnetic spin

chains with many other interactions like the anti-symmetric interaction proposed by

Dzyaloshinsky [37] and Moriya [38–40] that is designed to describe weak ferromagnet

has not been investigated so far to probe intrinsic localized modes. Weak ferromag-

net plays an important role in describing insulators, spin glasses and low tempera-

ture phases of copper oxide super conductor [41], and more recently it opened up

some new possibilities in data storage technologies [42]. Indeed the DMI has been

the subject of many theoretical and experimental investigation during the recent

years. Most of theoretical studies are focussed on the role of this interaction in

the magnetic behavior. It was shown that DMI can be significant in the magnetic

behavior of Kagome lattice which are allowed by the low symmetry [43]. They can

determine the chirality of the magnetic ground state and more over chiral mag-

netic ordering that are due to DMI, can explain much the dynamics of the systems

discussed in Ref. [44, 45], in particular the splitting and dispersion of the triplet

modes [46], suppresses quantum fluctuations, driving the system to a more classi-

cal ground state [47]. Segienko et al. [48] have shown that the role of the DMI in

multiferrioc perovskite is to provide the microscopic mechanism for the coexistence

of strong coupling between ferroelectricity and incommensurate magnetism. Other

interesting effects in systems with DMI exist such as the field-induced gap phenom-

ena and a peculiar energy level structure [49,50]. Experimentally, Zorko et al could

explain why the DMI is the dominant magnetic anisotropy term in the Kagome spin

−1
2

compound ZnCu3(OH)6Cl2 using analysis of the high - temperature electron

spin resonance [51, 52]. Oren ofer explained why geometrically frustrated magnets

are ideal to explore perturbation beyond the Heisenberg model and demonstrated

that exchange anisotropy is a relevant perturbation in the Kagome lattice that con-

tributes to its ground-state properties [53]. Other authors have argued that DMI is

also important especially at low temperature. The above cited work on theoretical

and experimental investigations on DMI effects are just a few among others.

It is worth mentioning the fact that one dimensional (1D) quantum magnetism

[54] exhibits a variety of interesting phenomena thanks to their signifying quantum

spin nature. Various models of spin chain have been proposed with different ranges

of interactions such as, spin-Peirels states [55, 56], and many others to investigate

various phenomena. For instance, the behavior of quantum entanglement in frus-

trated spin systems was studied by many authors [57–61], and its importance for
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resonance in quantum information processing to describe quantum teleportation was

set up [62]. In regarding to our study it is worth mentioning that the necessity of

considering next-nearest neighbors has been prove in the studies of the entanglement

state between two spins in Heisenberg spin chain [63–67], even in the investigation

entanglement in three-qubit Heisenberg model [68].

In another viewpoint, longer range interactions was considered for the study

of ground state properties of the 1D isotropic spin -1/2 Heisenberg antiferromag-

net [69–71]. These next-nearest neighbor interactions leads, in general, to a compe-

tition of interactions which in turn gives rise to the dimer state where neighboring

spins end with forming singlet pair [72, 73]. In the same spirit the fidelity for the

Heisenberg chain was probed with aim to find its connection with quantum phase

transition [74].

However, in the case of Heisenberg spin system few studies where devoted to clas-

sical discrete breathers within the modulational instability framework [75]. Recently

in 2001, Y. Zolotaryuk et al. [76] studied the dynamics of classical spins interact-

ing via the Heisenberg exchange on spatial d-dimensional lattices (with and without

presence of single-ion anisotropy). They have shown that discrete breathers exist for

the cases where the continuum theory does not allow for their presence (easy-axis

ferromagnets with anisotropic exchange and easy-plane ferromagnets). They have

also proved the existence of localized excitations, using the implicit function theo-

rem, and have obtained necessary conditions for this existence. From the foregoing,

it is clear that from the above mentioned authors, very few studies were devoted on

the existence of quantum discrete breathers in Heisenberg spin chain. Moreover, it

is clear that, the local magnetization switching process that can help understanding

data storage process, while investigating a 1D Heisenberg spin model including DMI

and longer range interactions has not yet been investigated and needs a profound

inspection.

The purpose of this thesis is, to investigate the quantum version of the eigen-

value spectrum, in the Bose-Hubbard like lattice derived from a specific map of a 1D

Heisenberg spin model without and with including the DMI, to probe local magne-

tization switching process while investigating the quantum version of the eigenvalue

spectrum in a 1D Heisenberg spin model including longer range interactions. The

attention is focussed on the effect of the anisotropy interaction, of the DMI, Heisen-

berg exchange interaction, of second, third, fourth nearest neighbors interaction and

the next longer nearest neighbors interactions on the energy spectrum of the sys-

tem. From such an investigation, important and new features are set up. Using
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the number state method, non degenerate, degenerate perturbation theory and nu-

merical diagonalization, we have studied the localization of the energy with more

than two quanta, the localization of the eigenfunction in the real space and we have

computed the weight function of the eigenstates in the space of normal modes using

perturbation theory. The work of this thesis is organized as follows:

The first chapter elaborates on literature review on the magnetism, spin Hamil-

tonian and exchange interaction that allows to characterize the magnetic systems,

different types of magnetic excitations and their importance, with focussing on

breather-like excitation in magnetic chains. We also present the basic classical prop-

erties of discrete breathers to the normal mode space that explain some facets of

the Fermi-Pasta-Ulam (FPU) paradox. Quantum breathers and its applications are

also reviewed.

The second chapter is devoted to our methodology where we present different

methods used to model our system. These methods are: general formalism of particle

number representation, general formalism of second quantization, nondegenerate and

degenerate perturbation method, of Holstein-Primakoff transformation for the local

spins operators to treat the system from semi-classical as compared to the quantum

version in terms of bosonic creation and annihilation operator and there after the

number state method is used to derive the basis states.

The third chapter extends to the results and discussion of our work. The study

ends with a general conclusion summarising the most important results obtained.

The study also presents the outlook opened by this work.
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Chapter 1

Literature Review and Problems

In this chapter, we present the literature review on the magnetism, spin Hamiltonian

and exchange interaction that allow to characterize the magnetic systems, different

types of magnetic excitations and their importance, with focussing on breather-like

excitation considered in this work. We also present the basic classical properties of

discrete breathers to the normal mode space that explain some facets of the Fermi-

Pasta-Ulam (FPU) paradox. The quantum breathers and their applications are also

set up.

1.1 Generalities on Magnetism

Magnetism is a property of material that responds to an applied magnetic field. The

Origin of magnetism is at microscopic channel.

1.1.1 Microscopical Origin of magnetism

We know from the experiment of Stern and Gerlach in 1922 [77], that an electron is

not only characterized by its charge e, but also by an intrinsic magnetic moment (by

opposition to the orbital magnetic moment, proportional to its angular momentum,

then nil to the rest), called moment magnetic of spin. Magnetism finds its origin

in the properties of electrons. Their spin quantum state is responsible of one part

of magnetism; that can be attributed to the motion of electrons around themselves,

and partly attributable to the orbital motion of electrons (orbital magnetism) and

also the magnetism of nucleus itself (nuclear magnetism) (see Fig.1.1). The spin of

electron can only take two separate discrete states denoted up and down. In an atom,

the nucleons ( the protons and neutrons), have a mass of about 2000 fold higher than

that of electrons. Their magnetic moment is then about 2000 fold lower than that

of the electrons, and will be subsequently neglected. The magnetic character of

an atom is therefore only linked to electrons of its electrons cloud. The electrons

cloud is separated into shells and distinct shells, corresponding to different energy

levels. The filling of these layers and lower shells is governed by the Pauli principle

(as all fermions, two electrons can not be in the same quantum state) and Hund’s

rules [78]. If a shell is full, all the magnetic moments are compensated because of the

presence of pairs spin up / down. In this case, the shell is not magnetic. The shells
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1.1 Generalities on Magnetism 7

Figure 1.1: Motion of electron.

not totally filled are the only ones that contribute to the magnetism. In condensed

matter, only substances with unsaturated inner shells (unpaired spins) can have a

permanent magnetic moment. This is typically the case of the elements in 3d group,

such as manganese, iron, cobalt, nickel, and rare earth (4f) or lanthanides . In this

study, only elements of 3d group have been used.

1.1.2 Types of magnetism

By approaching a sample of material in the presence of a magnet, it addresses

various behaviors that reflect the different types of magnetism. These are principally:

diamagnets, paramagnets, ferrimagnets, antiferromagnets and ferromagnets.

Diamagnetism

In a diamagnetic substance, electrons are grouped in pairs so as to cancel the re-

spective magnetic moments of the atoms so that the substance has no permanent

moment. Such a substance can be magnetized in the presence of a external magnetic

field. In this case, it will induce an opposite magnetic moment at the direction of the

external field. This explains why diamagnetic substances are repelled by magnets.

The magnetization of diamagnetic materials is nil in the absence of an applied field

and weak when a field is applied. Diamagnetism is an extremely weak effect, even

compared to paramagnetism.

Paramagnetism

In a paramagnet, the magnetic moments are randomly orientated (see Fig.1.2(d))

due to thermal fluctuations when there is no magnetic field. In the presence of

an applied magnetic field, these moments start to align parallel to the field, such

that the magnetization of the material is proportional to the applied field. This
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1.1 Generalities on Magnetism 8

Figure 1.2: Types of magnetism:(a)Ferromagnetism; (b) Antiferromagnetism; (c) Ferri-
magnetism and (d)Paramagnetism

magnetization is only temporary because it stops as soon as the external field is no

longer applied. Paramagnetic substances are attracted by magnets. Paramagnetic

materials include magnesium, molybdenum, lithium and tantalum.

Ferrimagnetism

The magnetic moments of the atoms on different sublattices are opposed in ferri-

magnetic material as in antiferromagnetism without an applied field. However, the

opposing moments are not of the same size (see Fig.1.2(c) and a spontaneous mag-

netization remains. An overall magnetization is produced but not all the magnetic

moments may give a positive contribution to the overall magnetization. This hap-

pens when the sublattices consist of different materials or ions (such as Fe2+ and

Fe3+). Ferrites and magnetic garnets are ferrimagnetic materials.

Antiferromagnetism

Adjacent magnetic moments from the magnetic ions tend to align anti-parallel to

each other without an applied field (see Fig.1.2(b)). In the simplest case, adjacent

magnetic moments are equal in magnitude and opposite therefore there is no overall

magnetization. The elements manganese (Mn), chrome (Cr) and many of their alloys

are typical antiferromagnetic materials.
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Ferromagnetism

The magnetic moments in a ferromagnet have the tendency to become aligned par-

allel to each other under the influence of a magnetic field. However, these moments

will then remain parallel when a magnetic field is not applied (see Fig.1.2(a)). From

these properties, ferromagnetic materials therefore have a permanent magnetiza-

tion. The important term in the interaction of the localized moments is called the

exchange interaction. The exchange interaction occurs due to the Pauli Exclusion

Principle. If two electrons have different spins then they can occupy the same orbital

(angular momentum state), hence be closer to each other and they will therefore have

a stronger Coulomb repulsion. If the electrons have the same spin then they will

occupy different orbitals and therefore have less Coulomb repulsion as they will be

further apart. In this way, the exchange energy (the energy due to the repulsion

between the two electrons) is minimized. Therefore the Coulomb repulsion force

favours the parallel alignment of all the electron spins as the exchange energy is

minimized. The elements iron (Fe), nickel (Ni), cobalt (Co) and gadolinium (Gd)

and many of their alloys are typical ferromagnetic materials.

1.1.3 Magnetic Domains

Domains are microscopical regions of a ferromagnetic material. These regions are

divided into billions of micro domains called Weiss domains. Their interfaces of sepa-

ration are usually named Bloch walls. In each Weiss domain, magnetic moments are

aligned spontaneously in parallel. Ferromagnetic materials are instinctively divided

into magnetic domains because the exchange interaction is a short-range force, so

over long distances of many atoms the tendency of the magnetic moments to reduce

their energy by orienting in opposite directions wins out. When the material is de-

magnetized, the vector summation of all the moments from all the domains equals

zero. When the material is magnetized the vector summation of the moments gives

an overall magnetic moment. Inside a domain, the direction of magnetization is de-

termined by anisotropy. The antiparallel orientation of the moments on the two sides

of the wall is equally favorable from the view point of anisotropy. However, there

is a significant increase in the exchange energy. With a slow rotation over a longer

distance, the increase in the exchange energy can be reduced. The competition of

the two contributions determine the details of the reversal of the moment across

the domain wall. Assuming uniaxial anisotropy, where the upward or downward

orientation of the moments is preferred, there are two characteristic types of domain

walls. In most cases, the rotation of the magnetic moment is such that it remains

in the plane of the wall everywhere. Such a domain wall is called a Bloch wall(see

Fig.1.3(b)). When the rotation of the moment is in a plane perpendicular to the

wall, we speak of a Néel wall(see Fig.1.3(c)); the wall is perpendicular to the x-axis.
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Figure 1.3: (a) Magnetic structures with one and two domains, and the lines of the induced
magnetic field; Rotation of the magnetic moment for domain walls in the (y, z) plane (b)
Bloch wall and (c) Néel wall (figure adapted from [79])

1.2 General form of the spin chains Hamiltonian

A spin S is a discrete degree of freedom that transforms like an angular momentum

under rotations. A spin Hamiltonian consists of a sum of one-spin and two-spin

term. This is very analogous to the Hamiltonian of a particle system, where one

has one-body terms (an external potential) plus two-body terms (particle-particle

interactions). A spin Hamiltonian in its general form, is a sum of several terms, where

each term plays an important role in the Hamiltonian of the magnetic system. The

general form of the spin Hamiltonian can be written as

Hspin = HMf + HAn + HEx + HM + Hdip (1.1)

Where HMf is the magnetic field coupling. An external field H couples as

HMf = − ~H ·
∑

i

giµB
~Si (1.2)

This term looks anisotropic in that H defines a special direction in space. But the

material is isotropic in spin space, in the sense that the strength of its field coupling

is independent of the field’s direction. Here, ~Si is the spin which resides at the i-th

magnetic site called the spin angular momentum vector, µB is the Bohr magneton.

HAn is the single-ion anisotropy. This term has the form

HAn =
∑

i

A(Sz
i )

2 (1.3)

The term proportional to A represents the single-ion uniaxial anisotropy due to

crystal field effect and A is the anisotropy parameter. If the anisotropy parameter

Djoufack Zacharie Isidore Ph.D Thesis



1.2 General form of the spin chains Hamiltonian 11

A < 0, the system is associated with an easy axis spin chain while if A > 0, the spin

system is said to have an easy plane anisotropy for the spin chain.

HEx is the exchange interaction (sometimes called Heisenberg exchange) is bilinear

in spins and isotropic under rotations. The Heisenberg spin chain model was set

up in 1928. The most basic form of the Heisenberg Model has the Hamiltonian

expressed as the inner product of the spins in the form:

HEx = −
∑

<ij>

Jij
~Si · ~Sj (1.4)

Jij is the exchange integral.

If Jij > 0, the Heisenbgerg model has a ferromagnetic ordering, all spins are parallel,

that is to say all aligned in the same direction and otherwise If Jij < 0, the model

has an antiferromagnet ordering, the environment can be seen as two sub lattices

with up and down spins respectively and the same modules. From this equation,

the Heisenberg model Hamiltonian can be subdivided in two components as follows

HEx = −
∑

<ij>

J⊥
ij (S

x
i Sx

j + Sy
i Sy

j ) −
∑

<ij>

J
‖
ijS

z
i S

z
j (1.5)

The first antiparallel interaction term is a planar ferromagnet model and the second

parallel interaction term is reduced to the Ising ferromagnet model while J⊥
ij > 0

and J
‖
ij > 0.

If J⊥
ij = J

‖
ij = J , the Heisenberg Model is isotropic.

If | J⊥
ij |>| J

‖
ij |, the model is planar XY and the interaction is stronger in the XY

plane.

If J⊥
ij < 0, the interaction is planar antiferromagnetic.

If | J⊥
ij |<| J

‖
ij |, the Heisenberg anisotropic model is reduced to the Ising model and

the interaction is stronger along the z axis.

If J
‖
ij < 0, the interaction is Ising antiferromagnetic.

HD is the Dzyaloshinsky-Moriya interaction, or antisymmetric exchange, has the

form

HM = −
∑

<ij>

~Dij · (~Si ∧ ~Sj) (1.6)

is an antisymmetric exchange interaction between two magnetic moments ~Si and
~Sj. ~Dij is the Dzyaloshinsky-Moriya vector. It is antisymmetric with regards to site

permutation Dij = −Dji. This term is used for modelling a weak ferromagnet. It was

proposed by Dzyaloshinsky and Moriya [40,41] and it has a microscopic origin. Can

be indispensable to explain the structure of some compounds like ZnCu3(OH)6Cl2.
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1.3 Excitations in Magnetic Systems 12

The last term Hdip is the dipolar interaction. It is a special case extending beyond

nearest neighbors. However, in this case the interaction does not depend on the

crystal axes, and its microscopic origin is not in exchange, so it makes sense to treat

it separately:

Hdip = −
∑

<ij>

(gµB)2

r3
ij

[3(r̂ij · Si)(r̂ij · Sj) − ~Si · ~Sj] (1.7)

Dipolar interactions are important when exchange is small, and also in nuclear mag-

nets. In this thesis we are not taking into account the dipolar interaction.

1.3 Excitations in Magnetic Systems

There are two types of elementary excitations in magnetic systems that are: spin

waves or magnons and solitons. The soliton is a solitary wave that propagates

without deformation in a nonlinear and dispersive medium whereas a magnon is a

quantized spin wave.

1.3.1 Excitations of ferromagnets in the Heisenberg model

From equation (1.5), parallel spin orientation is energetically favorable. The ground

Figure 1.4: Excitations of ferromagnets: (a) ground state; (b)-(c) symmetry in the chain;
(d) a single defect

state corresponds to the case where all spins are parallels in any direction (see

Fig.1.4(a)). Here, the symmetry of the Hamiltonian is set up (see Fig.1.4(b-c)).

The degeneracy of this configuration is (2NS+1)-fold, N is the number of sites. Due

to the degeneracy, it is easy to choose the z quantization axis. If | J⊥
ij |<| J

‖
ij |,

the Heisenberg anisotropic model is reduced to the Ising model and the interaction

is stronger along the z axis and, if J
‖
ij > 0, the interaction is ferromagnetic. The

ground state is only 2-fold degenerate i.e. all spins in the site can be oriented up

or down along the z axis. The mobility of magnons or spin waves is provided by
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1.3 Excitations in Magnetic Systems 13

the first term of the Hamiltonian (1.5) also called spin-flip terms. In this case, the

ground state is excited and a single defect is added (see Fig.1.4(d)).

1.3.2 Excitations of antiferromagnets in the Heisenberg model

From equation (1.5), if | J⊥
ij |<| J

‖
ij |, the Heisenberg anisotropic model is reduced

to the Ising model and the interaction is stronger along the z axis and if J
‖
ij <

0, the interaction is antiferromagnetic. The ground state can be represented as

Figure 1.5: Excitations of antiferromagnets: (a) ground state or Néel state; (b) excited
state (magnon ∆S=1); (c) excited state (spinon ∆S=1/2)

an alternated spins alignment along the z axis (see Fig.1.5(a)). This arrangement

corresponds to the Néel state. This state is doubly degenerated because the same

configuration is defined at π close. The soliton is precisely an elementary anisotropic

excitation system, that authorizes the passage from one configuration to another. It

takes the form of a magnetic wall where the spins undergo a rotation of π. The

classical image of a such wall is given by the Fig.1.5(a). Those walls are very

localized. In the antiferromagnetic materials, the spin waves or magnons correspond

to the magnetic transitions. A reversal of a spin of the chain suffice therefore to

create a spin wave. On the other hand, a soliton state requisite to reverse the half

spins of the chain. The states corresponding to those excitations are represented

in the Fig.1.5(b-c). The mobility of solitons is provided by the first term of the

Hamiltonian (1.5).

However, there are others types of excitations in magnetic systems like breather.

A breather is a nonlinear wave in which energy concentrates in a localized and

oscillatory fashion. A breather is a localized periodic solution of discrete lattice.

There are two types of breathers that are: standing and travelling. Standing breather

corresponds to localized solutions whose amplitude varies in time whereas travelling

breather corresponds to solutions localized in all the lattice where amplitude do not

vary in time.

1.3.3 Importance of excitations in magnetic systems

For modern applications, excitations in magnetic systems play important roles in

computer materials to develop Random Access Memories (RAM) in magnetic data

storage and in the functions of devices. In magnetic systems, excitations can also

provide energy thresholds in lattices by discrete Breathers like excitations. The areas
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1.3 Excitations in Magnetic Systems 14

of applications of excitations in magnetic systems are:

Magnetic data storage

The hard disk is formed of small circular plates of aluminum on which a magnetic

layer is deposited, divided into billions of micro domains called Weiss domain (see

Fig.1.6). Each of these domains has a magnetization. The orientation of the magne-

Figure 1.6: Magnetic data storage from Encyclopedia of Nanoscience and Nanotechnology

tization of each domain is random. The magnetizations of these microdomains are

moving gradually on the direction of the excitation in the same way. When the exci-

tation is strong, all Weiss domains have their magnetization aligned on the excitator

field and the material becomes saturated. When the excitator field is not applied,

these domains remain aligned on the direction of the excitation: they undergo a re-

manent magnetization, which keep in memory the trace of the magnetic excitation.

This process is known as magnetic hysteresis. Magnetic data storage depends on

this process. Depending in the direction of the current in the bobbin, each of these

Weiss domains can be magnetized independently to store the bit "1" or demagne-

tized to store the bit "0". Initially, the magnetization was performed longitudinally.

By changing the geometry of the write head, it has succeeded in bits perpendicular

(see Fig.1.6), which helped to improve the storage density today. A reading head

runs the hard disk to read or write information magnetically. Magnetism is used in
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computer storage because it will store information even when the power is turned

off. Other examples of magnetic storage media are floppy disks, magnetic tapes and

magnetic strips of credit cards. However, the plates are in constant rotation. That

they are composed of mechanical parts that move and rotate, the hard drives are

relatively slow mechanisms to read and write data. To improve the speed of the

hard drive, it is important to associate in each hard drive a RAM which is a type

of memory that allow any computer and mobile to store temporary information. Its

major advantage is that its ability of reading is very fast than the hard drive.

Reading (and writing) data from a disk

The write head is an electromagnet. When a current passes in an electromagnet,

the electromagnet creates a magnetic field. A magnetic particle located on the plate

surface can be oriented in two different ways according that, the current across

the electromagnet in one sense or in the other to give the 0 or 1 bit; and we can

record the write signal as a function of time (see Fig.1.7). During the writing,

the electromagnet passes over a track. It orients the magnetic particles arranged

in one way, according the current passes through it. The phenomenon of Giant

Figure 1.7: Reading (and writing) data from a disk,Typical data speed: 120MB/sec. From
Encyclopedia of Nanoscience, Nanotechnology [80]

Magnetoresistance (GMR) is widely used in read heads of modern hard disks. GMR

is a quantum effect observed in the structures of thin films consisting of alternating

ferromagnetic layers and non-magnetic layers. It manifests itself as a significant

decrease in resistance observed under the application of an external magnetic field,

at zero field, the two adjacent ferromagnetic layers are antiparallel magnetization,

as they undergo a weak ferromagnetic coupling. An external magnetic field induces

a magnetization reversal, the respective magnetization of the two layers are aligned

and the resistance of the multilayer decreases abruptly. The effect occurs because

the electron spin of the non-magnetic metal is equally distributed in parallel and

antiparallel, and undergoes diffusion magnetic less important when the ferromagnetic
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1.4 Breather 16

layers are magnetized in parallel.

Another read heads have a magnetic tunnel junction (TMR) technology since 2005

[80] that detects the magnetic field radiated by the bit read.

The above cited domains applications of excitations in magnetic systems are just a

few among others.

However, in the absence of magnetic field in ferromagnets, breathers like excita-

tion can play important role for activating localized magnetization reversal processes.

This process has gain numerous importance thanks to the success and development

of random access memories.

Before continuing, let us remind of the breathers origin in past decades.

1.4 Breather

The term breather originates from the characteristic that most breathers are local-

ized in space and oscillate (breathe) in time [81] or oscillated in space and localized

in time.

1.4.1 Spatial Discreteness and Nonlinearity

Before defining the term discrete breather (DBs), it is important for us to review

the results already known about the study of the combined effect of nonlinearity and

discreteness on the spatial localization that leads to the emergence of a new class

of nonlinear excitations like discrete breathers [6]. For that D. K. Campbell et al.

have considered a one-dimensional chain of interacting (scalar) oscillators with the

Hamiltonian

H =
∑

n

[
1

2
p2

n + V (xn) + W (xn − xn−1)] (1.8)

The integer n marks the lattice site number of a possibly infinite chain, and xn and

pn are the canonically conjugated coordinate and momentum of a degree of freedom

associated with site number n. The on-site potential V and the interaction potential

W satisfy V ′(0) = W ′(0) = 0, V ′′(0),W ′′(0) ≥ 0. This choice ensures that the

classical ground state xn = pn = 0 is a minimum of the energy H. The equations of

motion read

ẋn = pn, ṗn = −V ′(xn) − W ′(xn − xn−1) + W ′(xn+1 − xn) (1.9)

They have linearized the equations of motion around the classical ground state and

obtained a set of linear coupled differential equations with solutions being small
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1.4 Breather 17

amplitude plane waves:

xn(t) ∼ exp i(ωqt − qn), ω2
q = V ′′(0) + 4W ′′(0)sin2(

q

2
) (1.10)

These waves are characterized by a wave number q and a corresponding frequency

ωq. All allowed plane wave frequencies fill a part of the real axis which is coined linear

spectrum. Due to the underlying lattice, the frequency ωq depends periodically on

q and its absolute value has always a finite upper bound. The maximum (Debye)

frequency of small amplitude waves ωπ =
√

V ′′(0) + 4W ′′(0). Depending on the

choice of the potential V(x), ωq can be either acoustic or optic-like, V (0) = 0 and

V (0) 6= 0, respectively. In the first case, the linear spectrum covers the interval

−ωπ ≤ ωq ≤ ωπ which includes ωq=0 = 0. In the latter case, there exists an

additional (finite) gap opens for | ωq | below the value ω0 =
√

V ′′(0). For large

amplitude excitations the linearization of the equations of motion is not correct

anymore. Similar to the case of a single anharmonic oscillator, the frequency of

possible time-periodic excitations will depend on the amplitude of the excitation,

and thus may be located outside the linear spectrum. They assumed that a time-

periodic and spatially localized state, i.e. a discrete breather, x̂n(t + Tb) = x̂n(t)

exists as an exact solution of Eqs.(1.9) with the period Tb = 2π/Ωb. Due to its time

periodicity, they expanded x̂n(t) into a Fourier series

x̂n(t) =
∑

k

Akn exp ikΩbt (1.11)

The Fourier coefficients are by assumption also localized in space

Ak,|n|→∞ → 0 (1.12)

Inserting this ansatz into the equations of motion (1.9) and linearizing the resulting

algebraic equations for Fourier coefficients in the spatial breather tails (where the

amplitudes are by assumption small) they arrive at the following linear algebraic

equations:

k2Ω2
bAkn = V ′′(0)Akn + W ′′(0)(2Akn − Ak,n−1 − Ak,n+1) (1.13)

If kΩb = ωq, the solution to (1.13) is Ak,n = c1e
iqn + c2e

−iqn. Any nonzero (whatever

small) amplitude Ak,n will thus oscillate without further spatial decay, contradicting

the initial assumption. If however

kΩb 6= ωq (1.14)

for any integer k and any q, then the general solution to (1.13) is given by Ak,n =

c1k
n + c2k

−n where k is a real number depending on ωq, ωb and k. It always admits
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an (actually exponential) spatial decay by choosing either c1 or c2 to be nonzero. In

order to fulfill (1.14) for at least one real value of ωb and any integer k, they have to

request | ωq | to be bounded from above. That is precisely the reason why the spatial

lattice is needed. In contrast most spatially continuous field equations will have lin-

ear spectra which are unbounded. That makes resonances of higher order harmonics

of a localized excitation with the linear spectrum unavoidable. The nonresonance

condition (1.14) is thus an (almost) necessary condition for obtaining a time-periodic

localized state on a Hamiltonian lattice. The performed analysis can be extended

to more general classes of discrete lattices, including e.g. long-range interactions be-

tween sites, more degrees of freedom per site, higher-dimensional lattices. But the

resulting non-resonance condition (1.14) keeps its generality, illustrating the key role

of discreteness and nonlinearity for the existence of discrete breathers. Discreteness

provides gap and bounds to the linear oscillation spectrum and nonlinearity makes

the amplitude of oscillation frequency dependent.

1.4.2 Examples of Discrete breather solutions

The term breather was first applied to a particular solution of the famous Sine -

Gordon Equation [81]. There exist others discrete breather solutions for various

lattices. In a chain (1.8) with the functions

V (x) = x2 + x3 + 14x4, W (x) = 0.1x2 (1.15)

The spectrum ωq is optic-like and shown in Fig.(1.8) Discrete breather solutions

can have Ωb which are located both below and above the linear spectrum. The time-

reversal symmetry of (1.9) allows to search for DBs displacements xn(t = 0) when

all velocities ẋn(t = 0) = 0. These initial displacements are computed with high

accuracy and plotted in the insets in Fig.(1.8) where solutions to two DBs frequencies

located above and below ωq are located. Their actual values are marked with the

green arrows. To each DBs frequency correspond two different spatial DBs patterns

among an infinite number of other possibilities. The high-frequency DBs Ωb ≈ 1.66

occur for large-amplitude, high-energy motion with adjacent particles moving out

of phase. Low-frequency DBs Ωb ≈ 1.26 occur for small-amplitude motion with

adjacent particles moving in phase.

From the spatial discreteness and nonlinearity, a new paradigm of nonlinear sci-

ence has recently emerged the concept of discrete breathers, equally labelled Intrinsic

Localized Modes (ILM) in solid state physics and discrete solitons in nonlinear op-

tics. Discrete breathers are localized non linear excitation, generic time periodic

and spatially localized solutions of the underlying classical Hamiltonian lattice with

translational invariance. Their spatial profiles localize exponentially for short-range

interaction, independent of the actual (assumed to be large) size of the lattice, in-
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Figure 1.8: The frequency versus wave-number dependence of the linear spectrum for a
one dimensional chain of anharmonic oscillators with potentials (1.15). The chosen DBs
frequencies are marked with green arrows and they lie outside the linear spectrum, ωq.
Red circles indicate the oscillator displacements for a given DBs solution, with all velocities
equal to zero. Lines connecting circles are guides for visualization (Figure adapted from [6])

dependent of the spatial dimension of the lattice, mostly independent of the actual

choice of nonlinear forces acting on the lattice, and so on. They can modify the

system’s properties such as the thermodynamics of the lattice and introduce the

possibility of non dispersive energy during its transport.

The existence of two distinct names for the same phenomenon is an indication that

separate historical paths led to their discovery and provides key insights into the

reasons for their existence [4]. A breather is a localized, oscillatory excitation that

is stabilized against decay by the discrete nature of the periodic lattice. An ILM is
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an excitation that is localized in space by the intrinsic nonlinearity of the medium,

rather than by a defect or impurity. By the early 1990s, researchers following these

two paths had converged on the insight that stable localized periodic modes, whether

called ILM or DBs, were generic excitations in discrete nonlinear systems.

Investigation of discrete breathers in recent years has revealed a wealth of new prop-

erties of energy localization.

1.5 Basic classical Properties of Discrete Breathers

The properties of discrete breathers that can be found in the literature [5, 6] are:

Spatial localization in space: The spatial decay of the breather is thus char-

acterized by the convergence properties of the corresponding Fourier series defined

through the analytical properties of the generating periodic function.

The spatial decay of a discrete breather is typically exponential : A Fourier

series representation of the time periodic discrete breather leads to Fourier number

dependant exponents of the spatial decay.

Short-range interactions: Two DBs profiles spatial localize the exponentially for

short-range interaction for a one-dimensional Fermi-Pasta-Ulam (FPU) and Discrete

Nonlinear Schrödinger (DNLS) chain with nearest neighbour interaction.

Existence and stability: In 1994 MacKay and Aubry proved a theorem that

demonstrates the precise existence of DBs in a wide class of nonlinear lattice mod-

els [82]. It is now known that DBs not only exist rigorously in a large class of

Hamiltonian systems but are also linearly stable [83].

Nonexponential relaxation: The DBs are then generally very robust and long-

lived, although interaction among breathers is possible resulting in some cases in

breather accumulation. If the system is placed in contact with a reservoir that ab-

sorbs energy, the lattice loses energy yet in a nonexponential fashion. This feature

of slow relaxation is directly attributed to the presence of DBs [18,84].

Mobility: Even though DBs are spatially quite discrete and may occupy very few

sites, in many cases they move across the lattice with essentially ballistic, particle-

like motion. This DBs motion preserves their shape and frequency although in an

approximate fashion. The speed of DBs propagation is slower than the sound speed,

i.e., the speed of the linearized phonon modes of the system [18].

Generic and structurally stable solutions : Discrete breathers are generic and

structurally stable solutions because the necessary nonresonance condition is easily

fulfilled for a lattice. This condition requires the discrete breather frequency as well

as all of its multiples to not resonate with the linear spectrum of the system. Non-

resonance is easy to achieve because the linear spectrum of a Hamiltonian lattice

is bounded. The nonresonance condition explains why breather solutions are non-

generic and structurally unstable in the opposing case of Hamiltonian fields.
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Periodic orbits: Discrete breathers are periodic orbits. For generic Hamiltonian

systems periodic orbits occur in one parameter families, and so do discrete breathers.

The parameter describing the family can be the amplitude of a breather, or its fre-

quency, or any other meaningful observation [85].

Recently, the application of these properties to the normal mode space in a weakly

anharmonic atomic chain has helped to explain essential features of the FPU para-

dox.

1.6 Fermi-Pasta-Ulam Problem

In 1955, FPU published their well-known paper on the absence of thermalization

in arrays of particles connected by weakly nonlinear strings [86]. In particular they

observed that energy, initially placed in a low-frequency normal mode of the linear

problem with a frequency ωq and a corresponding wave number q, stayed almost

completely locked within a few neighbor modes, instead of being distributed among

all modes of the system. Moreover, recurrence of energy to the originally excited

mode was observed. These later expectation was due to the fact, that nonlinearity

does induce a long-range network of interactions among the normal modes. To

understand and explain the FPU results. Ten years after, two major approaches

were developed. The first one, taken by Zabusky and Kruskal, was to analyze

dynamics of the nonlinear string in the continuum limit, which led to a pioneering

observation of solitary waves [87]. The second approach, followed by Izrailev and

Chirikov, pointed to the existence of a stochasticity threshold in the original FPU

system. For strong nonlinearity (or simply large energies) the overlap of nonlinear

resonances leads to strong dynamical chaos, destroying the FPU recurrence and

ensuring fast convergence to thermal equilibrium. Later studies showed that the

local dynamics of four consecutive low-frequency modes may become substantially

chaotic, while almost all initial energy stays localized in these modes during the time

of computation. The redistributed mode energies fall exponentially with increasing

mode numbers in this regime (coined weak chaos) and the energy flow to higher

frequency modes was argued to be exponentially slow.

1.7 q-breathers

Recently, S. Flach et al demonstrated the existence of q-breathers (qBs) as exact

time-periodic low-frequency for solutions in the nonlinear FPU system continued

from the normal modes of the corresponding linearized system [83, 88]. These solu-

tions are exponentially localized in the q-space of the normal modes and preserve

stability for small enough nonlinearity.

They continue from their trivial counterparts for zero nonlinearity at finite en-
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ergy. The stability threshold of qBs solutions coincides with the weak chaos thresh-

old. Persistence of exact stable qBs modes is shown to be related to the FPU

paradox. The FPU trajectories computed in 1955 are perturbations of the exact

qBs orbits. M.V. Ivanchenko et al. [89] find the existence of qBs and obtain that the

localization and stability of qBs are enhanced with increasing system size in higher

lattice dimensions opposite to their one-dimensional analogues.

Recent simulation results on q-breathers, show that the localization properties of

a q-breather are characterized by intensive parameters, that is, energy densities and

wave numbers. By using scaling arguments, q-breather solutions are constructed in

systems of arbitrarily large size. Frequency resonances in certain regions of wave

number space lead to the complete delocalization of q-breathers. The relation of

these features to the Fermi Pasta Ulam problem have been discussed by S. Flach et

al [85]. Moreover Mishagin et al. [90] have studied q-breathers in one, two and tree

dimensional discrete nonlinear Schrödinger lattices. They have proved the existence

of these solutions for weak nonlinearity and have found that the localization of q-

breathers is controlled by a single parameter which depends on the norm density,

nonlinearity strength and seed wave vector.

From basic classical properties of discrete breathers and q-breather results which

explain some aspects of the FPU paradox on nonequipartion energy described above,

it is clear that at present, because the occurrence of classical breathers and q-breather

are a relatively well understood phenomena, a great attention is done to charac-

terized their quantum equivalent for which less are known and needs a detailed

inspection.

1.8 Quantum breathers

Two decades of intensive research have polished theoretical understanding of DBs

in classical nonlinear lattices. Less is known about their quantum counterparts

quantum breathers (QBs). Before using quantum breather, it is important to spec-

ify the correct correspondence relation between a classical model and its quantum

mechanical counterpart. This will be the conventional first or second quantization

procedures. Quantum breather consist of superpositions of nearly degenerate many

quanta bound states, with very long times to tunnel from one lattice site to another.

Because of the bosonic commutation relations one can define quantum breathers

as bound boson states. A quantum breather state belongs to a band of N states.

Each bound state of such a quantum breather band is characterized by a quantum

number or a wave number. The particle property of such a bound state can be

probed with the help of correlation functions. These correlation functions should

show (exponential) decay in the distance between parts of split bound bosons.

From a computational point of view, it is impossible to study quantum properties
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of a lattice problem in the high energy domain and for large lattices, since solving

the quantum problem leads to diagonalizing the Hamiltonian matrix with rank bN

where b is the number of states per site, which should be large to make contact

with classical dynamics. Thus, typically, quantum breather states have been so far

obtained numerically for small one-dimensional systems [91–93].

1.8.1 The Bose-Hubbard chain and related models

The quantum discrete nonlinear Schrödinger equation also called Bose-Hubbard

model Hamiltonian is given by

H = −
N∑

l=1

(
1

2
a†

na†
nanan + C(a†

nan+1 + h.c)) (1.16)

The second term stand for the hopping of the particle. This Hamiltonian conserves

the total number of particles. For b particles and N sites the number of basis state

is (b+N−1)!
b!(N−1)!

. For b = 0, there is just one trivial state of an empty lattice. For

b = 1, there are N states which correspond to one-boson excitations. These states

behave pretty much as classical extended wave states. For b = 2, the problem is

still exactly solvable, because it corresponds to a two body problem on a lattice. A

numerical solution displays in addition of continuum, a single band located below the

continuum. This single band corresponds to quasiparticle states characterized by one

single quantum number. These states are two-particle bound states. Any eigenstate

from this two-particle bound state is characterized by exponential localization of

correlations.

While increasing the number of particles to b = 3, Eilbeck [94] could set up updated

codes in Maple in order to deal with systems with up to b = 4 and N = 14. From

another point Dorignac et al. [11] did studied the spectrum of the quantum DNLS

equation, in the case of four and six bosons using degenerate perturbation theory.

1.8.2 Dimer and trimer

The dimer describes the dynamics of bosons fluctuating between two sites. The

number of bosons is conserved, and together with the conservation of energy the

system appears to be integrable. Such a system is integrable due to the existence

of two integrals of motion (energy and boson number). The classical version can be

completely solved. Bernstein et al. [32] and Aubry et al. [36] studied the expected

splitting of degenerate pairs of eigenvalues in the quantum system.

The trimer describes the dynamics of bosons fluctuating between three sites. A

trimer adds a third degree of freedom without adding a new integral of motion.

Consequently the trimer is nonintegrable. A still comparatively simple numerical

quantization of the trimer allows to study the behavior of many tunneling states in

Djoufack Zacharie Isidore Ph.D Thesis



1.9 Conclusion 24

the large energy domain of the eigenvalue spectrum [95].

1.8.3 Large lattices with fluctuating numbers of quanta

A number of papers are so far devoted to the properties of quantum breathers in

chains and two-dimensional lattices of coupled anharmonic oscillators [6]. Calcula-

tions will typically be restricted to four-six quanta in one and two-dimensional lat-

tices [26]. With these parameters one can calculate properties of quantum breather

states. For large enough anharmonic constant a complete gap opens up between the

two-quanta free state and quantum breather states [26,96]. However when decreas-

ing the anharmonic constant, Proville found, that the gap closes for certain wave

numbers, but persists for others and turns out to be rather a pseudogap [97].

1.8.4 Applications of discrete and quantum breathers

In past decades, discrete breathers or intrinsic localized modes, which are expected

to play fundamental roles in both energy storage and transport in various low di-

mensional materials, have been the subject of intense research. Experimental and

related theoretical work on applying the discrete breather concept to many dif-

ferent branches in physics ranging from electronic and magnetic solid to micro-

engineered structures including like superconducting materials, Bose-Einstein con-

densates loaded on optical lattices, antiferromagnetic structures, crystals and molecules,

micromechanical systems, bond excitations in molecules, lattice vibrations, Ultracold

atoms in optical lattices, electron-phonon interactions in crystals, spin excitations

in solids and others [12, 21, 98–101]. In quantum point of view, studies of quantum

modes on small lattice are of interest for quantum devices based on quantum dots,

for studies of photonic crystals, protein-like crystals and possibly in myoglobin.

1.9 Conclusion

In this Chapter, we have set out the generalities on Magnetism and the general

form of the spin chains Hamiltonian. We have presented different types of magnetic

excitations, their areas of applications with insistence on breathers like magnetic

spin excitation. We have exposed the basic classical properties of Discrete Breathers

which can explain some facets of FPU paradox. Quantum breathers have been de-

fined and some indications on theirs applications have been given.

The following chapter will be devoted to different methods used to tackle the prob-

lems of this thesis.

Djoufack Zacharie Isidore Ph.D Thesis



Chapter 2

Methodology

2.1 Introduction

In this chapter, we present different methods used to model our physical system.

These methods are: the general formalism of particle number representation, the

second quantization formalism, nondegenerate and degenerate perturbation method,

the Holstein-Primakoff transformation for the local spins operators to treat the sys-

tem from semi-classical as compared to the quantum version in terms of bosonic

creation and annihilation operator and the number state method.

2.2 Particle-number representation: General formalism

The simplest starting point for a many-body state is a system of noninteracting

particles [102–105], i.e. the Hamiltonian of the total system H is simply the sum

of the single-particle Hamiltonian h(i) for each individual particle; there are no

interaction terms depending on the coordinates of more than one particle:

Ĥ =

f∑

i=1

ĥ(ri, p̂i) (2.1)

A solution of the Schrödinger equation can be found in terms of a product of single-

particle states: i.e. a set of single-particle wave functions ψi(r) it fulfills the condition

ĥ(ri, p̂i)ψi(r) = εiψi(r) (2.2)

A product state like

Ψ(r1, · · · , rf ) = ψi1(r1) · · ·ψif (rf ) (2.3)

will be an eigenstate of H with ĤΨ = EΨ, E =
∑f

i=1 εi. Additionally the wave

function must still be symmetrized for bosons and antisymmetrized for fermions in

order to fulfill the requirement that the wave function takes the same value (bosons)

or changes its sign (fermions) under the exchange of two particles. We call bosons

the particles for which the wave function must be symmetrical, while fermions are

particles for which the wave function must be anti-symmetric. For fermions, suitable

25



2.2 Particle-number representation: General formalism 26

basis states are given by Slater-determinants:

Ψ(r1, r2, · · · , rf ) =
1√
f !

∑

π

(−1)π

f∏

i=1

ψi(riπ) (2.4)

where π is a permutation of the indices i = 1,..., f and (−1)π is its sign, i.e., +1 for

even and -1 for odd permutations. The permutation changes the index i into iπ. For

bosons this sign is left out.

2.2.1 Second quantization: General formalism

The second quantization is a good representation of quantum mechanic operators

and wave functions through the creation and destruction operators. Strictly speak-

ing, there is not really another quantization. It is a quantum formalism very useful

for treating many identical interacting particles systems. The main advantage of this

formalism is the guarantee of the indistinguishability principle, which is implicitly in

the anticommutation relations of the operators creation and annihilation. Thus, one

avoids the cumbersome work of using antisymmetrized products of single-particle

wave functions. In Quantum mechanics, the information specifying that a particle

occupies a particular level state is meaningless because the particles are indistin-

guishable. The only meaningful information is how many particles populate each

state level ψi(r)=the occupation numbers ni. Any state in the Fock space is noted

by | n1, n2, · · · , ni

〉
designate a product tensor state where there is n1 particles in

the state | 1
〉
, n2 particles in the state | 2

〉
and ni particles in the state | i

〉
. Given

the occupation number operator it is natural to introduce the creation operator a†
i

that raises the occupation number in the state | i
〉

by 1,

a†
i | · · · , ni−1, ni, ni+1, · · ·

〉
= Bni + 1 | · · · , ni−1, ni + 1, ni+1, · · ·

〉
(2.5)

ai | · · · , ni−1, ni, ni+1, · · ·
〉

= B∗
ni | · · · , ni−1, ni − 1, ni+1, · · ·

〉
(2.6)

where Bni and B∗
ni are the normalization constants to be determined. The creation

and annihilation operators a†
i and ai are the fundamental operators in the occupation

number formalism. These operators allow to pass from a sector to another in the

Fock space. From equations (2.5) and (2.6), we can deduce that

a†
iai | · · · , ni, · · ·

〉
= B∗

nia
†
i | · · · , ni−1, · · ·

〉
=| Bni |2| · · · , ni, · · ·

〉
(2.7)

It is possible to distinguish in particular:
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The vacuum state

| vac
〉

=| n1 = 0, n2 = 0, · · · , ni = 0, · · ·
〉

(2.8)

The action of ai on this state gives

ai | vac
〉

= 0 (2.9)

This relation explains the fact that it is impossible to destroy a particle that does

not exist.

The state for a single particle

| ψi

〉
=| n1 = 0, n2 = 0, · · · , ni−1 = 0, ni = 1, ni+1, · · ·

〉
(2.10)

We can construct this state by making the operator a†
i to act on the vacuum as

vac | ψi

〉
= a†

i | vac
〉
. For the sake of simplicity this state will be noted by | 1

〉
and

we write | 1
〉

= a†
i | vac

〉
. We can also destroy it by making it to act on the operator

ai

ai | 1
〉

= 0 (2.11)

The state for two particles

| ψi

〉
=| n1 = 0, n2 = 0, · · · , ni−1 = 0, ni = 2, ni+1, · · ·

〉
(2.12)

The states for two particles are generated from the vacuum by

| 2
〉

= a†
ia

†
i | vac

〉
(2.13)

or from the state for a particle as

| 2
〉

= a†
i | 1

〉
(2.14)

If the particles are bosons, the state must be symmetrical. In this case for any i, j

the following equality must be true.

a†
ia

†
j | vac

〉
= a†

ja
†
i | vac

〉
(2.15)

We deduce from equation (2.15) for the bosons that:

a†
ia

†
j = a†

ja
†
i ⇐⇒ [a†

i , a
†
j] = 0 (2.16)
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In the same way, we can also have

aiaj = ajai ⇐⇒ [ai, aj] = 0 (2.17)

On contrary, for the fermions, the state will be antisymmetrical and the equality

from the equation (2.15) becomes

a†
ia

†
j | vac

〉
= −a†

ja
†
i | vac

〉
(2.18)

we deduce that

a†
ia

†
j = −a†

ja
†
i ⇐⇒ {a†

i , a
†
j} = 0 (2.19)

and from equation (2.19), we have

aiaj = −ajai ⇐⇒ {ai, aj} = 0 (2.20)

In the Fock space, Ni ≡ a†
iai is where the number for farther ith state. It is hermitian

and its eigenvalues which are ni =| Bni |2 give effectively the number of particles

placed on the site i. For the bosons, the constants of proportionality Bni and B∗
ni are

such that a state that can accept any number of particles. From the conventional

fashion, we take the constant Bni positive.

Bni =
√

ni (2.21)

From equation (2.21), it is clear that

a†
i | · · · , ni, · · ·

〉
=

√
1 + ni | · · · , ni + 1, · · ·

〉
(2.22)

ai | · · · , ni, · · ·
〉

=
√

ni | · · · , ni − 1, · · ·
〉

(2.23)

a†
iai | · · · , ni, · · ·

〉
=

√
ni

√
1 + (ni − 1) | · · · , (ni − 1) + 1, · · ·

〉
(2.24)

For the fermions, ni = 0, 1 according to Pauli exclusion principle, we have

a†
i | · · · , ni, · · ·

〉
=

√
1 − ni | · · · , ni + 1, · · ·

〉
(2.25)

ai | · · · , ni, · · ·
〉

=
√

ni | · · · , ni − 1, · · ·
〉

(2.26)

These relations allow us to obtain the commutation or anti commutation relations
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between a†
i and ai that are: for bosons

[ai, a
†
j] = δij, [a†

i , a
†
j] = [ai, aj] = 0 (2.27)

for fermions

{ai, a
†
j} = δij, {a†

i , a
†
j} = {ai, aj} = 0 (2.28)

2.3 Perturbation methods

Quantum study of a physical system is based on the resolution of the Schrödinger

equation associated with that system. That resolution can be done exactly only

in very special cases where the Hamiltonian is simple to be easily diagonalized, to

derive analytically energies and wave functions. In the general case, the Schrödinger

equation is very difficult to solve. For this, we use the numerical formulation to

approximate analytical solutions by approximation methods. The approximations

methods are numerous in quantum physics. These methods are: the derivation

method, the Hartree-Fock method, the variational method, the time-dependent per-

turbation method and the stationary perturbation method. We describe in this

section only the stationary perturbation one [104–106].

2.3.1 Stationary perturbation method

This method is applied if a real system is stationary and can be described by small

changes in an ideal system where the solutions of Schrödinger equation can be ob-

tained easily. The Hamiltonian of the system is written as

H = H0 + H1 (2.29)

where H0 is the unperturbed Hamiltonian and H1 is the perturbing Hamiltonian.

| ψ0
k

〉
is defined as unperturbed eigenvector, and E0

k is the unperturbed eigenenergy.

Also, | ψk

〉
is perturbed eigenvectors and Ek is the perturbed eigenenergy. En

k is the

n-th order energy correction. | ψn
k

〉
is the n-th order correction of the wave function.

We shall consider the orthogonality constraint for the basis i.e.
〈
ψ0

k | ψ0
l

〉
= δk,l; it

also requires an intermediate normalization
〈
ψ0

k | ψk

〉
= 1. The resulting orthogonal

constraint is
〈
ψi

k | ψj
k

〉
= δi,j. To understand better the modifications brought by the

perturbation method, we introduce a real parameter γ which can be continuously

varied between 0 and 1, this can allow us to install gradually the perturbation. The

general Hamiltonian takes the form

H(γ) = H0 + γH1 (2.30)
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The eigenvalue equation of H(γ) is written

H(γ) | ψk

〉
= (H0 + γH1) | ψk

〉
= E(γ) | ψk

〉
(2.31)

2.3.2 Nondegenerate perturbation theory

As 0 < γ < 1, we develop E(γ) and | ψk

〉
in the following form

E(γ) = E0
k + γ1E1

k + γ2E2
k + γ3E3

k + · · · · · · · · · =
∞∑

n=0

γnEn
k (2.32)

| ψk

〉
=| ψ0

k

〉
+ γ1 | ψ1

k

〉
+ γ2 | ψ2

k

〉
+ γ3 | ψ3

k

〉
+ · · · · · · · · · =

∞∑

n=0

γn | ψn
k

〉
(2.33)

we substitute (2.32)and (2.33) in (2.31) and we get

(H0 + γH1)(
∞∑

n=0

γn | ψn
k

〉
) = (

∞∑

n=0

γnEn
k )(

∞∑

n=0

γn | ψn
k

〉
) (2.34)

regrouping the terms in power of γ, in each member of (2.34) we obtain the series

of equations known as perturbation equations

(H0 − E0
k) | ψ0

k

〉
= 0 (2.35)

(H0 − E0
k) | ψ1

k

〉
= (E1

k − H1) | ψ0
k

〉
(2.36)

(H0 − E0
k) | ψ2

k

〉
= (E1

k − H1) | ψ1
k

〉
+ E2

k | ψ0
k

〉
(2.37)

(H0 − E0
k) | ψ3

k

〉
= (E1

k − H1) | ψ2
k

〉
+ E2

k | ψ1
k

〉
+ E3

k | ψ0
k

〉
(2.38)

...
...

...
...

(H0 − E0
k) | ψn

k

〉
= (E1

k − H1) | ψn−1
k

〉
+ E2

k | ψn−2
k

〉
+ · · · + En

k | ψ0
k

〉
(2.39)

Correction of the energy: general case

The correction of the energy at γ0 order is H0 | ψ0
k

〉
= E0

k | ψ0
k

〉
, this is only the

eigenvalue equation. The projection of the perturbation equations (2.35-2.39) on a
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state
〈
ψ0

k | taking into account the orthogonality constraint for the basis, becomes

E0
k =

〈
ψ0

k | H0 | ψ0
k

〉

E1
k =

〈
ψ0

k | H1 | ψ0
k

〉

E2
k =

〈
ψ0

k | H1 | ψ1
k

〉
(2.40)

...

En
k =

〈
ψ0

k | H1 | ψn−1
k

〉

correction of eigenvector: general case

The projection of (2.39) on a state
〈
ψ0

k′ | gives for k 6= k′

〈
ψ0

k′ | ψn
k

〉
=

〈
ψ0

k′ | H1 − E1
k | ψn−1

k

〉
− E2

k

〈
ψ0

k′ | ψn−2
k

〉
+ · · · − En

k

〈
ψ0

k′ | ψ0
k

〉

E0
k − E0

k′

(2.41)

for k′ = k, we have
〈
ψ0

k′ | ψn
k

〉
= 0. As the basis of eigenvectors associated to H0 is

completed, it comes that

| ψ0
k

〉〈
ψ0

k |=
∑

k′

| ψ0
k′

〉〈
ψ0

k′ | = 1 (2.42)

Multiplying (2.42) by | ψn
k

〉
we get the correction for the perturbing state at the n

order:

| ψn
k

〉
=

∑

k′ 6=k

〈
ψ0

k′ | ψn
k

〉
| ψ0

k′

〉
(2.43)

using (2.41)

| ψn
k

〉
=

∑

k′ 6=k

〈
ψ0

k′ |
[
H1 | ψn−1

k

〉
− E1

k | ψn−1
k

〉
− E2

k | ψn−2
k

〉
− · · · − En

k | ψ0
k

〉]〉

E0
k − E0

k′

| ψ0
k′

〉

(2.44)

First order correction

The first order correction of the energy is non-degenerated and equal to the average

value of the perturbation H1 in the unperturbed state E1
k =

〈
ψ0

k | H1 | ψ0
k

〉
. The

energy at that order is:

E(γ) = E0
k + γ

〈
ψ0

k | H1 | ψ0
k

〉
(2.45)
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The correction of the eigenvector at the first order is based on (2.41) and equal to:

| ψ1
k

〉
=

∑

k′ 6=k

〈
ψ0

k′ | H1 | ψ0
k

〉

E0
k − E0

k′

| ψ0
k′

〉
(2.46)

and the eigenvector at this order is:

| ψk

〉
=| ψ0

k

〉
+ γ

∑

k′ 6=k

〈
ψ0

k′ | H1 | ψ0
k

〉

E0
k − E0

k′

| ψ0
k′

〉
(2.47)

Second order correction

According to (2.40), it comes that the second order correction is equal to:

E2
k =

〈
ψ0

k | H1 | ψ1
k

〉
(2.48)

i.e. using equation (2.46) we get:

E2
k =

∑

k′ 6=k

|
〈
ψ0

k | H1 | ψ0
k′

〉
|2

E0
k − E0

k′

(2.49)

The energy at this order is:

E(γ) = E0
k + γ

〈
ψ0

k | H1 | ψ0
k

〉
+ γ2

∑

k′ 6=k

|
〈
ψ0

k | H1 | ψ0
k′

〉
|2

E0
k − E0

k′

(2.50)

2.3.3 Degenerate perturbation theory

This method is applied in the case where different states have the same energy. The

treatment is similar to nondegerate case. By taking into account the degeneracy, we

introduce a supplementary index i = 1, 2, · · · gl, where gl is the degeneracy order.

The energies and eigenvectors of H will be noted respectively by:

E(γ) = E0
ki + γ1E1

ki + γ2E2
ki + γ3E3

ki + · · · · · · · · · =
∞∑

n=0

γnEn
ki (2.51)

| ψki

〉
=| ψ0

ki

〉
+ γ1 | ψ1

ki

〉
+ γ2 | ψ2

ki

〉
+ γ3 | ψ3

ki

〉
+ · · · · · · · · · =

∞∑

n=0

γn | ψn
ki

〉
(2.52)

The eigenvalue equation is written as:

H(γ) | ψki

〉
= E(γ) | ψki

〉
(2.53)
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Using the same technique as in nondegenerate case, we obtain:

(H0 − E0
ki) | ψ0

ki

〉
= 0 (2.54)

(H0 − E0
ki) | ψ1

ki

〉
= (E1

ki − H1) | ψ0
ki

〉
(2.55)

(H0 − E0
ki) | ψ2

ki

〉
= (E1

ki − H1) | ψ1
ki

〉
+ E2

ki | ψ0
ki

〉
(2.56)

(H0 − E0
ki) | ψ3

ki

〉
= (E1

ki − H1) | ψ2
ki

〉
+ E2

ki | ψ1
ki

〉
+ E3

ki | ψ0
ki

〉
(2.57)

...
...

...
...

(H0 − E0
ki) | ψn

ki

〉
= (E1

ki − H1) | ψn−1
ki

〉
+ E2

ki | ψn−2
ki

〉
+ · · · + En

ki | ψ0
ki

〉
(2.58)

In the case of degenerate perturbation theory, the relation of orthonormalization is

written as:
〈
ψ0

ki′ | ψn
ki

〉
= 0,

〈
ψ0

ki′′ | ψ0
ki

〉
= δii′′ . Multiplying equation (2.55) by the

bra
〈
ψ0

k′i′′ | we get

〈
ψ0

k′i′′ | H0 − E0
ki | ψ1

ki

〉
= E1

kiδkk′δii′′ −
〈
ψ0

k′i′′ | H1 | ψ0
ki

〉
(2.59)

For k=k’ we get the first order perturbation as:

E1
kiδii′′ =

〈
ψ0

ki′′ | H1 | ψ0
ki

〉
(2.60)

For k 6= k′

〈
ψ0

k′i′′ | ψ1
ki

〉
=

〈
ψ0

k′i′′ | H1 | ψ0
ki

〉

E0
ki − E0

k′i′′
(2.61)

Multiplying (2.56) by the bra
〈
ψ0

ki′ | and taking into account the relation of or-

thonormalization, it comes that

E2
kiδii′ =

〈
ψ0

ki′ | H1 | ψ1
ki

〉
(2.62)

Introducing the relation

∑

k 6=k′,i′′

| ψ0
k′i′′

〉〈
ψ0

k′i′′ | +
∑

k,i′′

| ψ0
ki′′

〉〈
ψ0

ki′′ | = 1
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into equation (2.62) we get

E2
kiδii′ =

∑

k 6=k′,i′′

〈
ψ0

k′i | H1 | ψ0
k′i′′

〉〈
ψ0

k′i′′ | ψ1
ki

〉
(2.63)

+
∑

k,i′′

〈
ψ0

ki′ | H1 | ψ0
ki′′

〉〈
ψ0

ki′′ | ψ1
ki

〉

For i′ 6= i′′, it comes that

E2
kiδii′ =

∑

k 6=k′,i′′

〈
ψ0

k′i | H1 | ψ0
k′i′′

〉〈
ψ0

k′i′′ | ψ1
ki

〉
(2.64)

Replacing equation (2.61) into (2.64), the correction of energy at the second order

becomes for i = i′ 6= i′′:

E2
ki =

∑

k 6=k′,i′′

〈
ψ0

k′i | H1 | ψ0
k′i′′

〉〈
ψ0

k′i′′ | H1 | ψ0
ki

〉

E0
ki − E0

k′i′′
(2.65)

2.4 Model Hamiltonian

We use a model for the classical Heisenberg ferromagnetic spin chain.

H = HEx = −
∑

<ij>

Jij
~Si · ~Sj = −

∑

<ij>

Jij[S
x
i Sx

j + Sy
i Sy

j + Sz
i S

z
j ] (2.66)

Here, ~Si = (Sx
i , Sy

i , Sz
i ) is the spin angular momentum vector, Jij is the exchange

interaction parameter. We consider in this first section, the isotropic ferromagnetic

spin chain case where Jij = Jx
ij = Jy

ij = Jz
ij = J . We introduce the classical quantity

Sc = ~S and a condition which allows the transformation of equation (2.66) into a

quantum spin system. We also introduce a dimensionless form Ŝi =
~Si

~
and define

Ŝ±
i = Ŝx

i ± iŜy
i and Ŝ±

j = Ŝx
j ± iŜy

j . We recast the Hamiltonian into the following

dimensionless form.

Ĥ = −
∑

<ij>

J

2
[Ŝ†

i Ŝ
−
j + Ŝ−

i Ŝ†
j − 2Ŝz

i Ŝ
z
j ] (2.67)

It is impossible to diagonalize the Hamiltonian(2.67) by a canonical transformation,

but it is possible to transform to the new dimensionless one, using either pure Bose

or pure Fermi operators [109,111]. Ŝi satisfies the commutation relations [Ŝ†
i , Ŝ

−
j ] =

2Ŝz
i δij, [Ŝ±

i , Ŝz
j ] = ±Ŝ±

i δij, with Ŝi · Ŝi = S(S + 1). In this respect, the Hamiltonian

maintains a relatively simple form.
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If J⊥
ij 6= J

‖
ij, the Hamiltonian (2.67) becomes

Ĥ = −1

2

∑

<ij>

J⊥
ij (Ŝ

−
i Ŝ+

j + Ŝ−
j Ŝ+

i ) +
∑

<ij>

J
‖
ijŜ

z
i Ŝ

z
j (2.68)

It is also possible to use the Fourier transformation defined as follow

Ŝi

±
=

1√
f

∑

−→q

Ŝ±−→q exp± i(−→q .
−→
i ), Ŝ±−→q =

1√
f

∑

i

Ŝ±
i exp± i(−→q .

−→
i ) (2.69)

The Hamiltonian(2.68) can be subdivided in two terms, where the first one is the

perpendicular component.

Ĥ⊥ = − 1√
f

∑

<ij>

Jij

∑

<q1q2>

Ŝ−
q1

Ŝ+
q2

exp−i(−→q1 .
−→
i + −→q2 .

−→
j )

=
∑

j

1

f
exp−i(−→q1 −−→q2 ).

−→
j

∑

l

J | −→l |
∑

<q1q2>

Ŝ−
q1

Ŝ+
q2

exp−i(−→q .
−→
l ) (2.70)

with
−→
l =

−→
i −−→

j then
−→
i =

−→
j +

−→
l and

∑
j exp−i(−→q1 −−→q2 ).

−→
j = Nδ−→q1

−→q2

Ĥ⊥ =
∑

q

Ŝ−
q Ŝ+

q

∑

l

J(l) exp−i(−→q .
−→
l ) (2.71)

Spins operators must satisfy this anti- commutation relation [Ŝ+
j , Ŝ−

i ] = 2Ŝz
i δij

Ŝ+
q1

Ŝ−
q2
− Ŝ−

q1
Ŝ+

q2
= 1

f

∑
<ij> [Ŝ+

j Ŝ−
i − Ŝ−

j Ŝ+
i ] = 2

f

∑
j Ŝz

j exp−i(−→q1 −−→q2 ).
−→
j

If T= 0, then all spins are lined up =⇒ 2Sδ−→q1
−→q2 .

If T 6= 0, then all spins are randomly aligned =⇒ 2 < Sz > δ−→q1
−→q2 .

[Ŝ+
q1

, Ŝ−
q2

] = Constδ−→q1
−→q2 =⇒ bosons.

If does make sense to introduce bosons, we use Ŝ−
q =

√
2Sa+

q and Ŝ+
q =

√
2Saq

where S ≫ 1 and [aq, a
+
q ] = 1

−→
S2

j = (Sx
j )2 + (Sy

j )2 + (Sz
j )

2 = S(S + 1)

Ŝ−
j Ŝ+

j + Ŝ+
j Ŝ−

j = (Sx
j )2 + (Sy

j )2

= 1
2f

∑
<q1q2> (S+

q1
S−

q2
− S−

q2
S+

q1
) exp−i(−→q1 −−→q2 ).

−→
j

= 2S
2f

∑
<q1q2> (aq1a

+
q2
− a+

q2
aq1 + δq1q2) exp−i(−→q1 −−→q2 ).

−→
j

= S
f

∑
<q1q2> δq1q2 exp−i(−→q1 −−→q2 ).

−→
j + 2S

f

∑
<q1q2> a+

q2
aq1 exp−i(−→q1 −−→q2 ).

−→
j

(Ŝz
j )

2 = S(S + 1) − S − 2S
f

∑
<q1q2> a+

q2
aq1 exp−i(−→q1 −−→q2 ).

−→
j therefore

Ŝz
j = S

√
1 − 2

Sf

∑
<q1q2> a+

q2
aq1 exp−i(−→q1 −−→q2 ).

−→
j . After approximation, we get

Ŝz
j = S − 1

f

∑
<q1q2> a+

q2
aq1 exp−i(−→q1 −−→q2 ).

−→
j
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Ĥ⊥ = −1

2

∑

<ij>

J⊥
ij (Ŝ

−
i Ŝ+

j + Ŝ−
j Ŝ+

i )

= −1

2

∑

<ij>

∑

<q1q2>

J⊥
ij (Ŝ

−
q1

Ŝ+
q2

+ Ŝ+
q2

Ŝ−
q1

) exp−i(−→q1 .
−→
i + −→q2 .

−→
j )

= −S

f

∑

j

∑

l

J⊥(l)(a+
q1

aq2 + aq2a
+
q1

) exp[i(−→q1 −−→q2 ).
−→
j − i−→q .

−→
l ]

= −2S
∑

q

a+
q aq

∑

<ql>

J⊥(l) exp−i−→q .
−→
l + Sf

∑

<ql>

J⊥(l) exp−i−→q .
−→
l (2.72)

The second component of the Hamiltonian (2.68) is called parallel component and

is defined as

Ĥ‖ = −
∑

<ij>

J
‖
ijŜ

z
i Ŝ

z
j

= −
∑

<ij>

J
‖
ij(S − 1

f

∑

<q1q2>

a+
q2

aq1 exp−i(−→q1 −−→q2 ).
−→
j )(S − 1

f

∑

<q1q2>

a+
q2

aq1 exp−i(−→q1 −−→q2 ).
−→
j )

= −
∑

<ij>

J
‖
ij(S

2 − 2S

f

∑

<q1q2>

a+
q2

aq1 exp−i(−→q1 −−→q2 ).
−→
j )

= −S2fZJ‖ + 2SZJ‖
∑

q

a+
q aq(2.73)

f is the number of sites and Z is the number of next neighbors. If J
‖
ij = J

‖
ij = J ,

the Hamiltonian is written as

Ĥ = Ĥ⊥ + Ĥ‖ = E0 +
∑

q

ǫqa
+
q aq (2.74)

where, ǫq = 2SJZ(1−γq), γq = 1
Z

∑
q exp−i−→q .

−→
l = 1

3
(cos(qxa)+cos(qya)+cos(qza))

and E0 = −S2fZJ

2.5 Semi-fermions

In Spin algebra, the general commutation and anti-commutation relation is given

by: [Sα
i , Sβ

j ] = iεαβγS
γ
i δij. Spins commute on different sites and anti-commute on the

same site. This implies that, for different site, the commutation relation is [Sα
i , Sβ

j ] =

0 and in the same site,the anti-commutation relation is [Sα
i , Sβ

i ] = iεαβγS
γ
i . To this

end, we use the Holstein-Primakoff transformation for the local spin operators to
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treat the system from semi-classical as compared to the quantum version in terms

of bosonic creation and annihilation operator.

2.6 Holstein-Primakoff transformation

The original [107] Holstein-Primakoff transformation in quantum mechanic is a

mapping from the angular momentum operators to boson creation and annihilation

operators as:

Ŝ+
i =

√
2[1 − ǫ2 a†

i ai

2
]
1/2

ǫai

Ŝ−
i =

√
2ǫa†

i [1 − ǫ2 a†
i ai

2
]
1/2

Ŝz
i = [1 − ǫ2a†

iai]

(2.75)

where ǫ = 1√
S
, the creation and annihilation bosonic operators a†

i and ai satisfy the

anti-commutation relation [ai, a
†
i ] = 1. The square root of equation (2.75) can be

expanded as Taylor series in power of ǫ if S → ∞ and a†
iai 6 2S i.e. n ≤ 2S as:

[1 − ǫ2 a†
i ai

2
]1/2 = 1 − ǫ2

4
a†

iai − ǫ4

32
a†

iaia
†
iai − ǫ6

126
a†

iaia
†
iaia

†
iai − o(ǫ8) (2.76)

Any states with more that 2S bosons is a perfect bosonic state.

Replacing equation (2.75) and (2.76) in (2.67), a quantum Hamiltonian can be

obtained in a power series of ǫ, which is rescaled by J as a sum of

Ĥ0 = −S2f −
f∑

i

[a†
iai+1 + aia

†
i+1 − (a†

iai + a†
i+1ai+1)] (2.77)

that is the unperturbed Hamiltonian and

Ĥ1 =
1

4

f∑

i

[
a†

ia
†
iaiai+1 + a†

ia
†
i+1ai+1ai+1 + a†

iaiaia
†
i+1

+aia
†
i+1a

†
i+1ai+1 − 4a†

iaia
†
i+1ai+1

]
(2.78)

that is the perturbing Hamiltonian; f is the number of sites in a one-dimensional

periodic lattice. In this way, the total Hamiltonian of the system can be written as

the sum of two terms as in (2.30), where γ = ǫ2 is the parameter controlling the

strength of the interaction.

The Hamiltonian (2.30) conserves the number of bosons N =
∑f

i a†
iai whose eigen-

value is n =
∑f

i ni, and it is possible to apply the number state method to calculate

the eigenvalues and eigenvectors of the Hamiltonian operator.
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2.6.1 Number of state method

To describe the components of the quantum states, we use a position state

representation | ψi

〉
=| n1, n2, · · · , nf

〉
, where ni represents the number of bosons at

site i (n =
∑

i ni).

Figure 2.1: Example: 1D lattice, 4 sites and 7 quanta (bosons)

For example, the state | 2023
〉

represents a state with two bosons at the site 1,

nothing at site 2, two bosons at site 3 and three bosons at site 4 as seen in Fig.

2.1. Considering the fact that the chain of length f is subject to periodic boundary

conditions, we can apply the translation operator to these states. The chain is

tanslationally invariant and the Hamiltonian of this quantum system commutes with

the number operator N̂ =
∑f

i=1 a†
iai, whose eigenvalue is n. For a given number of

bosons, each eigenstate is a linear combination of the number state with fixed n.

In addition to the number of quanta n, there are n − 1 further quantum numbers

which define the relative distance between the bosons. The number of states for n

particles and f sites is given by (n + f − 1)!/(n!(f − 1)!), a quantity which expands

rapidly with n and f .

For the sake of simplicity, we consider an odd number of sites f = 2σ−1 , where σ can

take f+1
2

different values. A general eigenfunction of these states for the Hamiltonian

(2.30) is a Bloch wave that can be written as ( see the notation in [3, 11,19,21,22])

| Ψ
〉

=
σ∑

i=1

Ci | ψi

〉
(2.79)

We can construct from the number states technique that a Bloch states as

| ψi

〉
=

1√
f

f∑

s=1

(
T̂

τ

)s−1

| 1 0 · · · 0︸ ︷︷ ︸
i−1

1
〉

(2.80)

Here T̂ is the translation operator and k = 2πν/f , with ν ∈ {−f+1
2

, f−1
2
} and

τ = eik being the eigenvalue of the translational operator T̂ . The lattice under

consideration is an homogeneous quantum lattice with periodic boundary condi-

tions. Therefore it is possible to block-diagonalize the Hamiltonian operator us-

ing eigenfunctions of the translation operator T̂ defined as T̂ a†
i = a†

i+1T̂ , so that

T̂ [n1, n2, · · · , nf ] = [nf , n1, · · · , nf−1]. In each block, the eigenfunctions have a fixed

value of the momentum k [20].
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2.6.2 Case of non degenerate perturbation method applied to the ground

state

The ground state of the operator Ĥ is then obtained when all the spins of f sites are

oriented in parallel and there are no spin excited. In this case, the number states

constructed is

| ψi

〉
=

1√
f

f∑

s=1

(
T̂

τ

)s−1

| 0 0 · · · 0︸ ︷︷ ︸
i−1

0
〉

(2.81)

From periodic boundary conditions, the operators Hamiltonian and N̂ commute with

the translational operator T̂ , and τ is the egienvalue of the translational operator

T̂ . For more precision, we define an eigenstate with the following eigenvector

| ψ0

〉
= 1√

f
{| 0, 0, 0, 0, · · · , 0

〉
+ 1

τ
| 0, 0, 0, 0, 0, · · · , 0

〉

+ 1
τ2 | 0, 0, 0, 0, 0, · · · , 0

〉
+ · · · + 1

τ (f−1) | 0, 0, 0, 0, 0, · · · , 0
〉
}

(2.82)

We apply the eigenvector (2.82) in each term of the operator Hamiltonian

Ĥ | Ψ
〉

= (Ĥ0 + γĤ1) | ψ0

〉

= −S2fJ | ψ0

〉
= E0 | ψ0

〉 (2.83)

2.6.3 Case of non degenerate perturbation method applied to the first

excited state

This state corresponds to the case where a single local spin-flip excitation occurs in

a ferromagnetic spin chain with f sites. The number states proceeded here lead to

a Bloch states given through.

| ψi

〉
=

1√
f

f∑

s=1

(
T̂

τ

)s−1

| 1 0 · · · 0︸ ︷︷ ︸
i−1

0
〉

(2.84)

For a given eigenstate chosen as | φ
〉
, we get T̂ | φ

〉
= τ | φ

〉
. The periodic condition

also requires that T̂ f | φ
〉

= τ f | φ
〉

=| φ
〉
. Thus it comes that τ f = 1. For more

precision, we define an eigenstate with the following eigenvector

| ψ1

〉
= 1√

f
{| 1, 0, 0, 0, · · · , 0

〉
+ 1

τ
| 0, 1, 0, 0, 0, · · · , 0

〉

+ 1
τ2 | 0, 0, 1, 0, 0, · · · , 0

〉
+ · · · + 1

τ (f−1) | 0, 0, 0, 0, 0, · · · , 1
〉
}

(2.85)
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We apply the eigenvector (2.85) in each term of the operator Hamiltonian

a†
iai+1 | ψ1

〉
= 1√

f
{| 0, 1, 0, 0, · · · , 0

〉
+ 1

τ
| 0, 0, 1, 0, 0, · · · , 0

〉

+ 1
τ2 | 0, 0, 0, 1, 0, · · · , 0

〉
+ · · · + 1

τ (f−1) | 1, 0, 0, 0, 0, · · · , 0
〉
}

= τ | ψ1

〉 (2.86)

aia
†
i+1 | ψ1

〉
= 1√

f
{| 0, 0, 0, 0, · · · , 1

〉
+ 1

τ
| 0, 1, 0, 0, 0, · · · , 0

〉

+ 1
τ2 | 0, 0, 1, 0, 0, · · · , 0

〉
+ · · · + 1

τ (f−1) | 0, 0, 0, 0, 0, · · · , 1
〉
}

= τ−1 | ψ1

〉 (2.87)

(a†
iai + a†

i+1ai+1) | ψ1

〉
= 1√

f
{| 1, 0, 0, 0, · · · , 0

〉
+ 1

τ
| 0, 1, 0, 0, 0, · · · , 0

〉

+ 1
τ2 | 0, 0, 1, 0, 0, · · · , 0

〉
+ · · · + 1

τ (f−1) | 0, 0, 0, 0, 0, · · · , 1
〉
}

= 2 | ψ1

〉 (2.88)

Applying the eigenvector (2.85) in equation (2.30) and using respectively (2.86),

(2.87) and (2.88), we found that eigenenergy at the first excited state is

Ĥ | Ψ
〉

= (Ĥ0 + γĤ1) | ψ1

〉
= (−S2fJ − (τ + τ−1 − 2)) | ψ1

〉
= (E0 + E1) | ψ1

〉
(2.89)

It is important to mention here that the response of the eigenfunction by the ap-

plication of Ĥ1 is nil i.e. Ĥ1 | ψ1

〉
= 0. This eigenenergy E1 will be plotted and

commented in the next chapter.

2.6.4 Case of non degenerate perturbation theory applied to the second

excited state

We consider the two local spin-flip excitations in the model. The general eigenfunc-

tion is given by

| Ψ
〉

= 1√
f
{C1

∑f
s=1(

T̂
τ
)s−1 | 2, 0, · · · , 0

〉
+ C2

∑f
s=1(

T̂
τ
)s−1 | 1, 1, 0, · · · , 0

〉

+C3

∑f
s=1 ( T̂

τ
)s−1 | 1, 0, 1, 0, 0, · · · , 0

〉
+ · · ·

+C(f+1)/2

∑f
s=1(

T̂
τ
)s−1 | 1, 0, · · · , 0, 1, · · · , 0

〉
(2.90)

To ensure that
〈
Ψ | Ψ

〉
= 1, it is necessary that C1, C2, ... are normalized as

∑(f+1)/2
i=1

∣∣∣Ci

∣∣∣
2

= 1. The general eigenfunction is the linear combination basic

state where we note here that | ψ1

〉
= 1√

f
{C1

∑f
s=1 ( T̂

τ
)s−1 | 2, 0, · · · , 0

〉
, | ψ2

〉
=

1√
f
{C2

∑f
s=1 ( T̂

τ
)s−1 | 1, 1, 0, · · · , 0

〉
, · · · ,

| ψ(f+1)/2

〉
= 1√

f
{C(f+1)/2

∑f
s=1 ( T̂

τ
)s−1 | 1, 0, · · · , 0, 1 · · · 0, 0

〉
are the eigenvectors.

The action of the Hamiltonian operator given in equation (2.30) applied to each

eigenfunction gives for the case of a value f = 7 (number of sites in the lattice) with
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4 basis states. The number of basis n depends on the number of site in the lattice

and it is given as follows 1 ≤ n ≤ f+1
2

if f is odd and 1 ≤ n ≤ f
2

for even values of

f .

Ĥ | ψ1

〉
= −

[√
2(γ

4
− 1)(1 + τ−1) | ψ2

〉
− 4 | ψ1

〉]

Ĥ | ψ2

〉
= −

[√
2(γ

4
− 1)(1 + τ) | ψ1

〉
+ (γ

2
− 4) | ψ2

〉
+ (1 + τ−1) | ψ3

〉]

Ĥ | ψ3

〉
= −

[
(1 + τ) | ψ2

〉
− 4 | ψ3

〉
+ (1 + τ−1) | ψ4

〉]

Ĥ | ψ4

〉
= −

[
(1 + τ) | ψ3

〉
− 4 | ψ4

〉
+ (τ 3 + τ−3) | ψ4

〉]
(2.91)

For successive calculation with increasing of f , it comes that

Ĥ | ψ(n−1)

〉
= −

[
(1 + τ) | ψ(n−2)

〉
− 4 | ψn−1

〉
+ (1 + τ−1) | ψn

〉]

Ĥ | ψn

〉
= −

[
(1 + τ) | ψ(n−1)

〉
− 4 | ψn

〉
+ (τ

f+1
2 + τ− (f+1)

2 ) | ψn

〉] (2.92)

With the basis introduced in equations (2.91) and (2.92), we can derive the matrix

elements of the Hamiltonian by the formula

Hij =
〈
Ψj | Ĥ | Ψi

〉
=

〈
ψj | Ĥ | ψi

〉
(2.93)

From equation (2.93) it is clear that

Ĥ11 =
〈
Ψ1 | Ĥ | Ψ1

〉
=

〈
ψ1 | Ĥ | ψ1

〉
= −u

Ĥ12 =
〈
Ψ2 | Ĥ | Ψ1

〉
=

〈
ψ2 | Ĥ | ψ1

〉
= −

√
2q∗

Ĥ21 =
〈
Ψ1 | Ĥ | Ψ2

〉
=

〈
ψ1 | Ĥ | ψ2

〉
= −

√
2q

Ĥ22 =
〈
Ψ2 | Ĥ | Ψ2

〉
=

〈
ψ2 | Ĥ | ψ2

〉
= −y

Ĥ23 =
〈
Ψ3 | Ĥ | Ψ2

〉
=

〈
ψ3 | Ĥ | ψ2

〉
= −g∗

Ĥ32 =
〈
Ψ2 | Ĥ | Ψ3

〉
=

〈
ψ2 | Ĥ | ψ3

〉
= −g

Ĥ33 =
〈
Ψ3 | Ĥ | Ψ3

〉
=

〈
ψ3 | Ĥ | ψ3

〉
= −u

Ĥ34 =
〈
Ψ4 | Ĥ | Ψ3

〉
=

〈
ψ4 | Ĥ | ψ3

〉
= −g∗

Ĥ43 =
〈
Ψ3 | Ĥ | Ψ4

〉
=

〈
ψ3 | Ĥ | ψ4

〉
= −g

Ĥ44 =
〈
Ψ4 | Ĥ | Ψ4

〉
=

〈
ψ4 | Ĥ | ψ4

〉
= −(u + τ 3 + τ−3)

(2.94)

For successive calculation with increasing of f , it comes that

Ĥ f−1
2

f+1
2

=
〈
Ψ f+1

2
| Ĥ | Ψ f−1

2

〉
=

〈
ψ f+1

2
| Ĥ | ψ f−1

2

〉
= −g∗

Ĥ f+1
2

f−1
2

=
〈
Ψ f−1

2
| Ĥ | Ψ f+1

2

〉
=

〈
ψ f−1

2
| Ĥ | ψ f+1

2

〉
= −g

Ĥ f+1
2

f+1
2

=
〈
Ψ f+1

2
| Ĥ | Ψ f+1

2

〉
=

〈
ψ f+1

2
| Ĥ | ψ f+1

2

〉
= −(u + τ− f+1

2 + τ− f−1
2 )

(2.95)
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2.6.5 Effect of the anisotropy interaction in the Heisenberg ferromag-

netic spin chain Model

We describe the novel Hamiltonian for an anisotropic ferromagnetic chain. The

corresponding Heisenberg Hamiltonian can be written as

HAn = H +
∑

i

A(Sz
i )

2 (2.96)

The term proportional to A represents the single-ion uniaxial anisotropy due to

crystal field effect and A is the anisotropy parameter. We can derive the discrete

quantum Hamiltonian using Holstein-Primakoff bosonic representation then equa-

tion (2.96) can be written after introducing dimensionless Hamiltonian

ĤAn = ĤA0 + γĤA1 + O(γ2) (2.97)

Hence we set

ĤA0 = Ĥ0 + 2
A

J

f∑

i

a†
iai (2.98)

and

ĤA1 = Ĥ1 − 4
A

J

f∑

i

a†
iaia

†
iai (2.99)

We also use the basis introduced in equation (2.80) to calculate the matrix elements

for a dimensionless Hamiltonian. In this way the Hamiltonian matrix is presented

in the next chapter.

2.6.6 Application of degenerate theory when four or six bosons are in-

volved in the extended Bose-Hubbard chain

We consider here the same Hamiltonian given in equation (2.96) with resealing at ǫ2.

Before using degenerated perturbation theory, it is important to know that all bosons

on the same band might have the same energy. The Hamiltonian of equation (2.96)

shows that all bosons on the same band have different energy at zero anisotropy

coupling (A = 0). In order to discourage many bosons to occupy the same site, we

can derived a Bose-Hubbard like lattice from a specific anisotropic term by using

the usual commutation relations of the bosonic operators . For this we start by

defining the perturbed Hamiltonian as Ĥ = Ĥ0 + V̂ , where Ĥ0 is the nonlinear
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on-site interaction Hamiltonian given by

Ĥ0 = −
f∑

i

Aγa†
ia

†
iaiai (2.100)

If A < 0, the model is also known to describe an attractive interaction or a repulsive

one if A > 0. All the other term of the Hamiltonian describe the non-linear interac-

tion within the particles located in adjacent sites, including the hopping term and

linear on-site interaction terms. It is denoted by V̂ .

V̂ = −∑f
i

(
J [a†

iai+1 + aia
†
i+1 − (a†

iai + a†
i+1ai+1)] + A(a†

iai)

+γ
4
J [(a†

ia
†
iaiai+1 + a†

ia
†
i+1ai+1ai+1) + (a†

iaiaia
†
i+1 + aia

†
i+1a

†
i+1ai+1) − 4a†

iaia
†
i+1ai+1]

)(2.101)

To describe the components of the quantum states, we use a position state basis rep-

resentation as in the third section. For sake of memory, the state | ψi >=| 2000110 >

represents a state with two bosons at site 1, one boson at site 5, one boson at site

6 and no boson elsewhere. In view of the periodic structure of the lattice, the chain

is translationally invariant and the Hamiltonian of this quantum system commutes

with the number operator N̂ =
∑f

i=1 a†
iai , whose eigenvalue is denoted by n. We

can generate an equivalence class of states by applying the translation operator with

a periodic boundary conditions to one of these states. We can manage to order these

classes. For example, the set of all classes containing | 22 >, | 202 >, | 2002 >, and

so on, is referred to as the {2, 2} band. All classes containing | 42 >, | 402 >,

| 4002 >, . . ., is referred to the {4, 2} band. All the classes containing | 24 >,

| 204 >, | 2004 >, . . ., is referred to as the {2, 4} band and all the classes containing

| 33 >, | 303 >, | 3003 >, . . . is referred to {3, 3} bands.

Bands involving the interaction of single bosons with composite states, such as

{2, 1, 1}, {3, 1}, {4, 1, 1}, {3, 1, 1, 1}, {5, 1}, {1, 1, 2}, {1, 3}, {1, 1, 4}, {1, 1, 1, 3},
{1, 5}, · · · , are more difficult to analyze and do not reveal interesting structures.

Hence, we do not consider these bands in the present study provided that the main

information is not loosed. This section is devoted to the fine structure of the {2, 2},
{4, 2}, {2, 4} and {3, 3} band.

If the anisotropy is considered without the Hamiltonian term denoted by V̂ , the

states | 22 >, | 202 >, | 2002 >, . . ., of all previously mentioned bands are degener-

ated. Therefore, we use degenerated perturbation theory to obtain both eigenvalues

and eigenvectors for the case of the perturbed Hamiltonian. For a given number of

bosons, each eigenstate is a linear combination of the number of states with fixed n.

In addition to the number of quanta n, there are n−1 further relative distance i−1

between the four and six quanta. We consider an odd number of sites f = 2σ − 1,

which can take (f + 1)/2 different values for the sake of simplicity. We do proceed
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in the same way as in the third section, then the Bloch waves of {2, 2}, {4, 2}, {2, 4}
and {3, 3} states can be written in the notation of Ref. [19, 22,107] as:

| ψ >=
σ∑

i=1

Ci | ψi > (2.102)

We can construct number states with Bloch waves as

| ψi >=
1√
f

f∑

s=1

(
T̂

τ

)s−1

| 2 0 · · · 0︸ ︷︷ ︸
i−1

2 > (2.103)

| ψi >=
1√
f

f∑

s=1

(
T̂

τ

)s−1

| 4 0 · · · 0︸ ︷︷ ︸
i−1

2 >

| ψi >=
1√
f

f∑

s=1

(
T̂

τ

)s−1

| 2 0 · · · 0︸ ︷︷ ︸
i−1

4 >

| ψi >=
1√
f

f∑

s=1

(
T̂

τ

)s−1

| 3 0 · · · 0︸ ︷︷ ︸
i−1

3 >

Here T̂ is the translation operator and τ = eik, with k = 2πν/f and ν ∈ {−σ, · · · , σ}.
Using standard degenerated perturbation to the second order approximation given

by equation(2.65), we define the Hamiltonian matrix element in its simplest notation

after changing in equation (2.65), < ψ0
k′i | by < ψi |, | ψ0

k′i′′

〉〈
ψ0

k′i′′ | by | ψ̃ >< ψ̃ |,
| ψ0

ki

〉
by | ψi′ >, H1 by V and E0

k′i′′ by Ẽ(0) as

H
(m,l)
i,i′ =

∑

ψ̃

< ψi | V | ψ̃ >< ψ̃ | V | ψi′ >

E(0) − Ẽ(0)
(2.104)

where | ψ̃ > is any state not in the {2, 2}, {4, 2}, {2, 4} and {3, 3} subspace; Ẽ(0) is

the corresponding energy of | ψ̃ > while E(0) is the energy of (m, l) bosons on the

same site at zero coupling. The expression of this energy is given as

E
(0)
l = −Aγl(l − 1) (2.105)

We can use equation(2.105) to evaluate the energy of l bosons on the same site. For

instance, in the case of n = 4, the {4} band has energy E
(0)
4 = −12Aγ, the {3, 1}

band has energy E
(0)
3 = −6Aγ, the {2, 1, 1} band has energy E

(0)
2 = −2Aγ, the

{2, 2} band has energy 2E
(0)
2 = −4Aγ and so on.

Considering the lattice with four bosons (n = 4). We can subdivide this case in

several bands. The lowest band is a linear combination of states with four bosons

on site i and no bosons somewhere else. The next lowest band is composed of states
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with three bosons on site and another boson elsewhere. The third band consists

of states with two bosons on one site and two bosons on a separate site. Bands

involving the interactions of single bosons with composite states, such as {3, 1},
{1, 3}, {1, 1, 2} and {1, 1, 2} are not consider here because they are more difficult to

analyze. We consider here only the {2, 2} band because it presents great interest

since it represents the simplest case of a band describing two particles interacting

with each other. The calculations detailed of its elements of Hamiltonian matrix are

shown in Appendix.

Next, we consider the case of n = 6 bosons. This case displays three bands:

namely the bands {4, 2}, {2, 4} and {3, 3} .

In this case, the first band under consideration is the {4, 2} band. Then if we proceed

as in the case of {2, 2} band, it turns out that we obtained a Hamiltonian matrix

describing this {4, 2}. The second band is the {2, 4} band and the last band is the

{3, 3}.

2.7 Effect of the DMI in the Heisenberg anisotropic exchange

ferromagnetic spin chain Model

To describe a weak ferromagnetic system, we consider a one dimensional Heisenberg

ferromagnetic spin chain defined by a coupling between the Heisenberg anisotropic

exchange HEx from equation (1.4) and the Dzyaloshinskii-Moriya interaction HD

from equation (1.6) given by the following Hamiltonian :

HM = −
∑

<ij>

[
Jij

~Si · ~Sj + ~Dij · (~Si ∧ ~Sj)
]

(2.106)

The first term is the Heisenberg anisotropic exchange energy between nearest-neighbor

spins < ij > where Jij is the exchange interaction parameter, the second term rep-

resents the DM interaction, which is an antisymmetric exchange interaction between

two magnetic moments ~Si and ~Sj. This term is used for modeling a weak ferromag-

net. Here ~Dij is the DM vector. It is antisymmetric with regards to site permutation

Dij = −Dji. In contrast with Dij, Jij is symmetric and Dij < Jij, ~Si = (Sx
i , Sy

i , Sz
i )

is the spin angular momentum operator.

For the sake of simplicity, we will denote Dij = D with ~D = (Dx, Dy, Dz), ~Sj by
~Si+1 and Jij will be replaced by J1 and J2.

Introducing the dimensionless spin variables Ŝi = Si

~
and defining Ŝ±

i = Ŝx
i ± iŜy

i

and D̂±
i = D̂x

i ± iD̂y
i , the Hamiltonian(2.106), considering f sites becomes

ĤM = −1

2

∑

i

[
J1(Ŝ

†
i Ŝ

−
i+1 + Ŝ−

i Ŝ†
i+1) + 2J2Ŝ

z
i Ŝ

z
i+1

]
− i

∑

i

[
D̂†

i (Ŝ
z
i Ŝ

−
i+1 (2.107)

−Ŝ−
i Ŝz

i+1) + D̂−
i (Ŝ†

i Ŝ
z
i+1 − Ŝz

i Ŝ
†
i+1) + D̂z(Ŝ

−
i Ŝ†

i+1 − Ŝ†
i Ŝ

−
i+1)

]
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Using the Holstein-Primakoff transformation, the quantum Hamiltonian giving by

equation (2.107) can be rewritten as a power series in ǫ by two terms after being

rescaled with ǫ2 as a sum of

ĤM = ĤM0 + γĤM1 (2.108)

where γ = ǫ2 is the parameter controlling the strength of the interaction, α =

J1 + iDz, α∗ = J1 − iDz, f is the total number of sites. Dz is DM vector along the

z-axis, can be considered by an anisotropy.

ĤM0 = −S2fJ2 −
∑f

i

[
α∗a†

iai+1 + αaia
†
i+1 − J2(a

†
iai + a†

i+1ai+1)
]

(2.109)

and

ĤM1 =
∑f

i
1
4

[
α∗(a†

ia
†
iaiai+1 + a†

ia
†
i+1ai+1ai+1)

+α(a†
iaiaia

†
i+1 + aia

†
i+1a

†
i+1ai+1) − 4J2(a

†
iaia

†
i+1ai+1)

] (2.110)

2.7.1 The ground state when DMI are involved

Using the same non degenerated method, we realize that the energy of the ground

state is

ĤM | Ψ
〉

= (ĤM0 + γĤM1) | ψ0

〉
= −S2fJ2 | ψ0

〉
= EM0 | ψ0

〉
(2.111)

2.7.2 The first excited state when DMI are involved

The energy of the first excited state is

ĤM | Ψ
〉

= (ĤM0 + γĤM1) | ψ1

〉

= (−S2fJ2 − (α∗τ + ατ−1 − 4J2)) | ψ1

〉
= (EM0 + EM1) | ψ1

〉

For the cases where DMI are taking into account in the model, when two, four

and six spins are excited, Let us start by defining the new perturbed Hamiltonian

as H̃M = ĤM0 + V̂M , where ĤM0 is the on site interaction part of the Bose-Hubbard

Hamiltonian.

All the remaining term of the Hamiltonian describe the nonlinear interactions be-

tween the spin located in adjacent sites as well as the linear on site interactions in

addition to the hopping terms represented by V̂ .

ĤM0 = −
f∑

i

Aγa†
ia

†
iaiai (2.112)
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and

V̂M = −
∑f

i

[
α∗a†

iai+1 + αaia
†
i+1 − J2(a

†
iai + a†

i+1ai+1) + A(2a†
iai)

−γ
4
[α∗(a†

ia
†
iaiai+1 + a†

ia
†
i+1ai+1ai+1) + α(a†

iaiaia
†
i+1 + aia

†
i+1a

†
i+1ai+1)

−4J2a
†
iaia

†
i+1ai+1 − Aa†

iai]
] (2.113)

Using equations (2.104) and (2.126), we obtain the {2, 2}, {4, 2}, {2, 4} and {3, 3}
band Hamiltonian matrix presented in the next chapter. To avoid overloading the

thesis, detailed calculations in this section are presented in the Appendix (A, B, C,

D).

2.8 Effect of the long range interaction in a Heisenberg isotropic

exchange ferromagnetic spin chain model

In this section, we present different types of Heisenberg Hamiltonians while the

effects of longer range interaction are taken into account.

2.8.1 Effect of the second nearest neighbor

We consider a model for a one dimensional Heisenberg ferromagnetic spin chain,

which includes in addition to the first nearest neighbors interaction with strength

J1 the second nearest neighbors ferromagnetic interaction with strength J2.

HL1 = −
∑

i

(
~Si · ~Si+1 + α1

~Si · ~Si+2

)
(2.114)

Here, α1 = J2/J1 is the ratio controlling the coupling interaction between the first

and second nearest-neighbor. We recast the Hamiltonian into the following dimen-

sionless form as an isotropic Heisenberg model where interactions between spin com-

ponents along each axis are equals Jx = Jy = Jz = J

ĤL1 = −
∑

i

1

2
[Ŝ+

i Ŝ−
i+1 + Ŝ−

i Ŝ+
i+1 + 2Ŝz

i Ŝ
z
i+1

+α1(Ŝ
+
i Ŝ−

i+2 + Ŝ−
i Ŝ+

i+2 + 2Ŝz
i Ŝ

z
i+2)] (2.115)

Using equation (2.75), we transform the Hamiltonian (2.115)in to a quantum Hamil-

tonian as

ĤL1 = −
∑f

i

[
a†

iai+1 + aia
†
i+1 − (a†

iai + a†
i+1ai+1) + γ1

4
(a†

ia
†
iaiai+1

+a†
ia

†
i+1ai+1ai+1 + a†

iaiaia
†
i+1 + aia

†
i+1a

†
i+1ai+1 + 2a†

iaia
†
i+1ai+1)

+α1(a
†
iai+2 + aia

†
i+2 − (a†

iai + a†
i+2ai+2)) + ξ1

4
(a†

ia
†
iaiai+2

+a†
ia

†
i+2ai+2ai+2 + a†

iaiaia
†
i+2 + aia

†
i+2a

†
i+2ai+2 − 4a†

iaia
†
i+2ai+2))

]
(2.116)
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where f is the lattice size, ξ1 = α1γ1 is the parameter controlling the strength of the

interaction with γ1 = ǫ2

2.8.2 Effect of the third, fourth nearest neighbor and generalization

The Hamiltonian of 1D Heisenberg ferromagnetic spin chain, which in addition to a

second nearest neighbor interaction includes the third nearest neighbors is written

as follows

HL2 = −
∑

i

(
~Si · ~Si+1 + α1

~Si · ~Si+2 + α2
~Si · ~Si+3

)
(2.117)

Here, α2 = J3/J1 is the ratio controlling the coupling between first and third nearest

neighbor. We transform also equation (2.117) into a quantum spin system by using

the same technique as in the previous section into the following dimensionless form

ĤL2 = ĤL1 −
∑

i

1

2
α2(Ŝ

+
i Ŝ−

i+3 + Ŝ−
i Ŝ+

i+3 + 2Ŝz
i Ŝ

z
i+3) (2.118)

Using Holstein-Primakoff’s transformation scheme, we bosonise this later Hamil-

tonian through the following :

ĤL2 = ĤL1 −
∑f

i α2

[
a†

iai+3 + aia
†
i+3 − (a†

iai + a†
i+3ai+3) + ξ2

4
(a†

ia
†
iaiai+3

+a†
ia

†
i+3ai+3ai+3 + a†

iaiaia
†
i+3 + aia

†
i+3a

†
i+3ai+3 − 4a†

iaia
†
i+3ai+3)

] (2.119)

where ξ2 = α2γ1. Another puzzling point is how will be the new Hamiltonian of a

1D Heisenberg ferromagnetic spin chain if it includes the fourth nearest neighbors?

The new Hamiltonian is written as follow:

HL3 = HL2 −
∑

i

α3
~Si · ~Si+4 (2.120)

where, α3 = J4/J1 is the ratio. We can once more bosonise equation (2.120) us-

ing Holstein-Primakoff technique of transformation into the following dimensionless

form.

ĤL3 = ĤL2 −
∑f

i α3

[
a†

iai+4 + aia
†
i+4 − (a†

iai + a†
i+4ai+4) + ξ3

4
(a†

ia
†
iaiai+4

+a†
ia

†
i+4ai+4ai+4 + a†

iaiaia
†
i+4 + aia

†
i+4a

†
i+4ai+4 − 4a†

iaia
†
i+4ai+4)

] (2.121)

Where the parameter ξ3 is ξ3 = α3γ1. To generalize the effects of a given nearest

neighbors in one dimensional ferromagnetic Heisenberg spin chain, we consider a
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general Hamiltonian as

HL(m−1)
= −

f∑

m=1

f∑

i=1

(
~Si · ~Si+1 + α(m−1)

~Si · ~Si+m

)
(2.122)

Where α(m−1) is the ratio the of the exchange interaction of a given nearest neigh-

bors m. For m = 1, we get α0, which is a parameter that will always be nil and

corresponds to the case in 1D Heisenberg spin chain where only the first nearest

neighbors are taken into account. We can once more quantize the Eq.(2.122) by the

Holstein-Primakoff bosonic transformation and it reads:

ĤL(m−1)
= −∑f

m=1

∑f
i

[
a†

iai+1 + aia
†
i+1 − (a†

iai + a†
i+1ai+1) + γ1

4
(a†

ia
†
iaiai+1

+a†
ia

†
i+1ai+1ai+1 + a†

iaiaia
†
i+1 + aia

†
i+1a

†
i+1ai+1 − 4a†

iaia
†
i+1ai+1)

+α(m−1)[a
†
iai+m + aia

†
i+m − (a†

iai + a†
i+mai+m) +

ξ(m−1)

4
(a†

ia
†
iaiai+m

+a†
ia

†
i+mai+mai+m + a†

iaiaia
†
i+ + aia

†
i+ma†

i+mai+m − 4a†
iaia

†
i+mai+m)]

]
(2.123)

Here m is a given number of nearest neighbors and ξ(m−1) = α(m−1)γ1.

2.8.3 Effect of long range interactions when four or six quanta are in-

volved

Let us start by defining a perturbed Hamiltonian as H̃L(m−1)
= ĤL0 + V̂L(m−1)

, where

ĤL0 is the on site Hamiltonian of the usual Bose-Hubbard term.

ĤL0 = −
f∑

m=1

f∑

i=1

Aγma†
ia

†
iaiai (2.124)

and

V̂L(m−1)
= −∑f

m=1

∑f
i=1

[
a†

iai+1 + aia
†
i − (a†

iai + a†
i+1ai+1) + 2 A

J1
a†

iai − γ1

4
(a†

ia
†
iaiai+1

+a†
ia

†
i+1ai+1ai+1 + a†

iaiaia
†
i+1 + aia

†
i+1a

†
i+1ai+1 − 4a†

iaia
†
i+1ai+1)

+α(m−1)[a
†
iai+m + aia

†
i+m − (a†

iai + a†
i+mai+m) + 2 A

Jm
a†

iai − ξ(m−1)

4
(a†

ia
†
iaiai+m

+a†
ia

†
i+mai+mai+m + a†

iaiaia
†
i+m + aia

†
i+ma†

i+mai+m − 4a†
iaia

†
i+mai+m)]

]
(2.125)

Where α(m−1) = Jm

J1
is the ratio of Heisenberg exchange interaction between the

first and the second nearest-neighbor.
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2.9 Localization in the space of normal mode

In the case of classical nonlinear system, quantum breathers are characterized by

exponential localized weight functions [5]. Before continuing let us remind that

recently, Nguenang et al. [19] studied the properties of quantum q-breathers in a

one-dimensional optical lattice containing two quanta modeled by the Bose-Hubbard

Hamiltonian. They explored the localization phenomenon in the system by comput-

ing appropriate weight functions of the eigenstates in the normal-mode space using

perturbation theory. Unlike the classical case where the localization is exponential,

they found algebraic localization. Although the model derived from the spin Hamil-

tonian here which is also a Bose Hubbard-like Hamiltonian, it is important to probe

the localization properties since this model involve also various other linear and

nonlinear intersite coupling. In this respect, we start by the energy of our system

when γ is so small that it can be assimilated to the case of γ = 0, corresponding to

the case for which the sum of two single particles energies with the constraint that

the sum of their momenta equals the Bloch momentum k. Considering the equation

(2.109) and (2.110) while two spins are excited, we get

E0
k,k1

= −2[J1(cos (k1 + k) + cos k1) − Dz(sin(k1 + k) − sin k1)] + 4J2 (2.126)

where k1 = 2πν/(f + 1)−k/2 is the conjugated momentum of the relative distance

of both quanta and ν = 1, · · · , f+1
2

. Ek,k0
1

has a finite spread at fixed k. However,

for k = ±π, the spectrum of the continuum band becomes degenerate. Thus, for

| k ± π |≪ 1, the eigenenergies are very close.

We use a non degenerated perturbation theory to find the weight function in the

normal-mode space in order to probe the signature of quantum q-breathers. Here

H1 is the perturbing Hamiltonian, | ψ0
k1

> is an eigenstate of the unperturbed case

(γ = 0). In the first-order approximation, the eigenfunction of the perturbed system

is given by

| ψk̃1
>=| ψ

(0)

k̃1
> +γ

∑

k′
1 6=k̃1

< ψ0
k′

1
| Ĥ1 | ψ0

k̃1
>

E0
k̃1
− E0

k′
1

| ψ0
k′

1
> (2.127)

where γ is the strength of the perturbation which is local in the Hamiltonian matrix

(3.12) and the perturbation parameters are γ/f , γ/Dz and γ/J1. For Bloch wave

numbers far from ±π, the spacing is of order 1/f , so the approximation should work

for γ < 1. For Bloch wave numbers close to ±π, the appraximation breaks down

if γ ≥ π− | k |. For γ = 0, | ψk̃1
>=| ψ0

k̃1
> the weight function is compact. The

off-diagonal (k1 6= k̃1) weight function at the first-order approximation is also given
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by

C(k1, k̃1) =|< ψ0
k1

| ψk̃1
>|2 =

|<ψ
(0)
k1

|Ĥ1|ψ(0)

k̃1
>|2

|E0
k̃1

−E0
k1

|2 , k1 6= k̃1 (2.128)

E0
k1

and E0
k̃1

are the eigenenergies of the unperturbed system. Setting ∆ = k1 − k̃1,

the weight function of the system can be written as follows. For | ∆ |≪ 1,

C(k1, k̃1) ≈
γ2[J2

2 + 16[D2
z + J2

1 + (J2
1 − D2

z) cos(k) − DzJ1 sin(k)]]

256(f + 1)2∆2[J1 cos(k
2
) + Dz sin(k

2
)]2[sin (2k̃1+k

2
) + ∆

2
cos (2k̃1+k

2
)]2
(2.129)

We can derive several results using the general form of the equation (2.129).

The decay of the weight function with increasing ∆ means that we have localization

in the normal-mode space. For 2k̃1 + k ≡ 0 (mod 2π) and k = 0 we have the weight

function with Heisenberg interaction parameter.

C(k1, k̃1) ≈
γ2(J2

2 + 32J2
1 )

16(f + 1)2J2
1∆4

(2.130)

Equation (2.130) shows the algebraic decay ∼ 1
∆4 of the weight function. For 2k̃1 +

k ≡ 0 (mod 2π) and k = ±π we have the weight function with DMI interaction

parameter.

C(k1, k̃1) ≈
γ2(J2

2 + 32D2
z)

16(f + 1)2D2
z∆

4
(2.131)

Here we find an algebraic decay ∼ 1
∆4 of the weight function. For 2k̃1 + k ≡ 0

(mod 2π) and k = ±π
2

we have the weight function with Heisenberg and DMI

interaction parameters.

C(k1, k̃1) ≈
γ2[J2

2 + 16(D2
z + J2

1 ± DzJ1)]

8(f + 1)2(Dz + J1)2∆4
(2.132)

For 2k̃1 + k 6= 0 (mod 2π), k = 0 and k̃1 = ±π
2

the weight function is reduced to

C(k1, k̃1) ≈
γ2(J2

2 + 32J2
1 )

64(f + 1)2J2
1∆2

(2.133)

we find an algebraic decay ∼ 1
∆2 of the weight function. For 2k̃1 + k 6= 0 (mod 2π),

k = π and k̃1 = ±π the weight function is

C(k1, k̃1) ≈
γ2(J2

2 + 32D2
z)

16(f + 1)2D2
z∆

2
(2.134)

we find algebraic decay ∼ 1
∆2 of the weight function. For 2k̃1 + k 6= 0 (mod 2π),
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k = π
2

and k̃1 = ±2π
3

the weight function is

C(k1, k̃1) ≈
γ2[J2

2 + 16(D2
z + J2

1 ± DzJ1)]

16(f + 1)2(J1 + Dz)2(1 + ∆
2
)2∆2

(2.135)

We find also the algebraic decay of the weight function is ∼ 1
(1+∆)2∆2

2.10 Conclusion

In this chapter, we have developed a mathematical model which allows us to trans-

form the Heisenberg classical spin chain Hamiltonian into its quantum version. Using

general formalism of particle number representation, number state method, pertur-

bation method, we have derive the matrix elements to obtain analytically the Hamil-

tonian matrices and weight function that can be solved numerically.

The following Chapter will be devoted to the presentation of different results and

discussion.
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Chapter 3

Results and Discussion

3.1 Introduction

This chapter is devoted to resume the analytical and numerical results obtained in

this thesis. In this respect we will discuss the result on the phenomenon of localiza-

tion and transport of energy in 1D ferromagnetic materials. With aim at probing

the magnetization reversal process that is a process that undergoes an energy cost,

we therefore start by elaborating the energy spectrum in 1D Heisenberg ferromag-

netic spin chain with varying the exchange energy parameter and also that of the

anisotropy. In the same time we also show the effect of the DMI on the energy spec-

trum. Then after the effect of longer range interaction on the energy spectrum is

probed. Finally, we present the localization in real space and in the space of normal

mode.

3.2 Energy spectra in a finite Heisenberg isotropic exchange

spin chain

In this section, we present the analytical and numerical results in the model by using

the numerical diagonalization.

3.2.1 Energy at the ground state

For the ground state, all spins are oriented in parallel and there is no spin-flip

excitation in a Heisenberg spin chain. The energy of the ground state is

E0 = −S2fJ (3.1)

There are (2Sf+1) states that have the same energy E0.

3.2.2 Energy spectrum for one boson in the model

In the model (2.89), when one spin is excited, its energy is

E1 = −2(cos(ka) − 1) (3.2)

Where a = 1 is the lattice step. The energy spectrum displays only a bound state.
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Figure 3.1: Energy spectrum of one boson in the extended Bose-Hubbard chain

The bound state occurring in Fig.3.1 is the result of a localized state, constituted

by one spin engaged in a switching process.

3.2.3 Energy spectrum for the two-boson in the model

From the equations (2.94) and (2.95) obtained in chapter 2, the Hamiltonian matrix

for the two-boson in the model is

H1 =
Ĥ1

J
= −




u
√

2q · · ·√
2q∗ y g

g∗ u g
...

. . . . . . . . .

g∗ u g

g∗ P




(3.3)

where P = τ− f+1
2 + τ− f−1

2 + u, u = −4, y = u + γ
2
, q = (γ

4
− 1)g and g = 1 + τ .

The structure of the Hamiltonian matrix obtained in equation (3.3) is similar to the

two-bosons case described in refs. [5, 13, 18–20, 22, 23] and four bosons described in

ref. [11]. We can derive the eigenenergies for each given Bloch wave number k from

the Schrödinger equation given by Ĥ | ψk >= E | ψk >.

Using numerical diagonalization as in [22, 109, 111], we can derive the eigenvalue

spectrum of the corresponding Heisenberg spin chain. We have plotted numerically

the energy spectrum as a function of wave number k for the interaction strength

γ = 1. This is shown in Fig.3.2, where the result is obtained from the numerical

diagonalization of the Hamiltonian matrix (3.3). Here, it is clear that, an isolated

ground-state eigenvalue appears for each k that corresponds to a bound state [19,
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Figure 3.2: Energy spectrum of the two boson in the extended Bose-Hubbard chain; Here
the value of the interaction strength γ = 1, n = 2 and f = 37

22,24]. The same similar phenomena have been obtained in other nonlinear models

in Ref. [11] for the case of four particles and in Ref. [19, 20, 22, 24, 26–28] for two

particles’case. Figure3.2 clearly shows the energy spectrum composed essentially by

a localized band below the delocalized band.

3.2.4 Effect of the exchange and anisotropy interactions on the two-

bosons state energy spectrum

In presence of the exchange and anisotropy interactions, the Hamiltonian matrix

becomes:

H =
H

J
= −




t
√

2q · · ·√
2q∗ t + γ/2 g

g∗ t g
...

. . . . . . . . .

g∗ t g

g∗ P




(3.4)

where P = τ− f+1
2 + τ− f−1

2 + t, q = (γ
4
− 1)g, t = −4[1 + A

J
(1 − γ)], g = 1 + τ

Now let us use a numerical diagonalization to derived the eigenvalue spectrum for the

anisotropic ferromagnetic chain and probe the influence of the exchange interaction

on the energy spectrum.

In this respect we introduce as an example the following set of parameters of the

CsNiF3 material which is a best example of 1D spin system namely J = 23.6 and

A = 9. For this case, the energy spectrum is composed also by the continuum band

above the single band as illustrated in Fig.3.3(a) and (b).

Modifying the parameters of the CsNiF3 material is also supported by the idea
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Figure 3.3: Energy spectrum of the two bosons in the extended Bose-Hubbard chain for
different values of exchange interaction and anisotropy parameter where the value of the
interaction strength is γ = 1, n = 2, J = 23.6 and f = 37: (a) A = 9; b) A = 36; (c)
A = 48 and (d) A = 70.

that such a material may also face some physical constraints such as heating or

magnetostriction effects that can led to the modification of its physical parameters.

For the ferromagnetic materials case characterized by J = 23.6 and A > 9, the

energy spectrum for these materials is always composed by the continuum band

above the single band. Here we notice that, with increasing the anisotropy parameter

of the material the single band progressively merge into the continuum band and the

complete merging of the single band into the continuum occurs for the anisotropy

parameter A = 48. This is clearly shown in Fig. 3.3(c). It is also realized that

keeping this value of the the exchange integral parameter in the range J = 23.6 and

then increasing the anisotropy parameter to A = 70, the single band can appear

above the continuum as seen in Fig.3.3(d).

From these later figures, we notice that when the exchange interaction is constant,

increasing the anisotropy parameter contributes to modify the localized states.

In the case of ferromagnetic materials with J = 23.6 and A < 9., the continuum

band does not merge with the single band, the width of the gap progressively increase

when the anisotropy parameter’s value decreases. However, for A ≤ 0.01 the width

of the gap turns out to remain unchanged.
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We also noticed that for ferromagnetic materials where J > 23.6 and A > 9., their

energy spectrum is comparable to the case of ferromagnet with J = 23.6 and A < 9,

displaying a gap with constant width.

Needless to mention here is the fact that, for the ferromagnetic materials with J <

23.6 and A = 9, it is realized that as the exchange integral parameter is decreasing,

the gap between the continuum and the single band reduces so that a complete

merging of the single band into the continuum band occurs for J = 4 and A = 9 such

as the case seen in Fig.3.3(c). When the exchange integral J < 4, it is realized that

the single band changes its concavity initially below and takes a reverse concavity

above the continuum. The continuum band leaves the single band and the width

of the gap becomes more larger when J decreases. This phenomenon is depicted in

Fig.3.4(a-d).

Here we also noticed that, the width of the gap progressively increases as the
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Figure 3.4: Energy spectrum of the two boson in the extended Bose-Hubbard chain for
different values of exchange integral parameter where the value of the interaction strength
is γ = 1, n = 2, A = 9 and f = 37: (a) J = 9; (b) J = 4; (c) J = 2 and (d) J = 0.5

exchange integral J decreases. On varying the values of the exchange interaction

parameter some little difference in the spectrum occurs just as a matter of ordering

the position of the bands in the energy spectrum.

From a physical picture applied to a magnetic material in the framework of a spin

system it is important to mention the fact that there is a limitation i.e. n ≤ 2S. In
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the case of CsNiF3 material S = 1 and since the localized states occur for n = 2 the

states occurring in Fig. 3.2 and 3.3 are the results of a localized state constituted of

two adjacent spins engaged in a switching process. This process reveals an intrinsic

local magnetization reversal process that occurs in such a ferromagnet.

3.2.5 Energy spectrum for the four or six bosons in the extended Bose-

Hubbard chain

Using the previous formulation given by equations (2.104) and (2.126), we obtain

the {2, 2} band Hamiltonian matrix as:

Ĥ(2,2) = −4J2B

Aγ
Iσ − J2B

Aγ




Γ W

W ∗ 0 W
. . . . . . . . .

W ∗ 0 W

W ∗ P




(3.5)

where B = (γ
4
− 1)2, Iσ is the σ × σ unity matrix, W = 1 + τ = 2eik/2 cos (k/2),

P = 2 cos (σk), Γ = 6(C
B
− 1), C = (3γ

4
− 1)2 and A is always the anisotropy

parameter.

The structure of the matrix in equation (3.5) is very similar to the four bosons case

described in Ref. [11]. and two-boson case described in Ref. [3, 19,22]. Exact result

can be obtained in the limit case for which the number of sites tends to infinity.

Hence, for f → ∞,

E(k) = −3

2

J2B

Aγ
− J2B

Aγ

(
4 + Γ +

4 cos2 (k/2)

Γ

)
(3.6)

if
∣∣∣Γ

∣∣∣ > 2 cos (k/2)

Using the same technique, we have plotted the energy spectrum of the CsNiF3

structure with few bosons but with a different value of γ according to the limitation

given by n ≤ 2S. The energy spectrum of the Hamiltonian matrix (3.5) is obtained

by numerical diagonalization method. The sign of the anisotropy parameter here

determine whether the underlying Bose-Hubbard model is repulsive (A > 0) as

shown by Fig.3.5(a) or not. The fine structure of the ferromagnetic materials in the

{2, 2} band is constituted by a continuum band in addition to an isolated band and

represents the ground state of a system with four bosons. The isolated band that

appears either above or below the continuum is composed of states constituted with

adjacent sites that are each occupied by two quanta. In the continuum, band most

of the sites are separated by one or more vacant sites. The localized band clearly
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Figure 3.5: (color online) a) Detail of the Energy Spectrum for the Bose-Hubbard model
derive from the anisotropic Heisenberg model in a periodic lattice where n = 4, f = 37,
J = 22 and γ = 0.75: repulsive for A = 7

describes the localization of energy that corresponds to the breather solution of the

classical nonlinear system. This is the so-called the soliton band [108]. The stars

correspond to the energy spectrum obtained from an exact numerical diagonalization

of the matrix (3.5). For the case of the breather band, the lines represent its plot

from the analytical equation (3.6) obtained in the limit when the number of sites

tends to infinity. From a physical picture referred to the spin system, we shall keep in

mind that the limitation given by n ≤ 2S allows only material with sufficiently high

spin in order to display such a localization phenomenon that would lead a localized

magnetization reversal process involving two groups of two spins each.

Next, we consider the case of n = 6 bosons. This case displays three bands: namely

the bands {4, 2}, {2, 4} and {3, 3} .

In this case, the first band under consideration is the {4, 2} band. Then if we proceed

as in the case of {2, 2} band, it turns out that we obtained a Hamiltonian matrix

describing this {4, 2} band as

H(4,2) = − 2J2

3Aγ
(3B + 2C)Iσ − BJ2

A




Γ 1 P ∗

1 0 1
. . . . . . . . .

1 0 1

P 1 Γ




(3.7)

where P = 6eik D
B

, B = (γ
4
− 1)2, C = (3γ

4
− 1)2, D = (5γ

4
− 1)2 and Γ = − 1

3B
(3B +

2C − 13D).

The structure of the matrix in equation (3.7) is also a three diagonal matrix, which

is different from previous matrix for the position of their elements and very similar
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to the case of the six bosons described in Ref. [11]. The energies of this band do not

depend on the crystal momentum k.

To characterize energy spectrum of this band, we have also used the parameters

greater and smaller than those of the CsNiF3 structure. The structure of the energy
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Figure 3.6: Detail of the Energy Spectrum for the extended Bose-Hubbard model, here
n = 6, f = 37: a) case of repulsive nonlinearity where A = 8 and J = 20, γ = 0.5; (b)
case of repulsive nonlinearity where A = 9 and J = 16, γ = 0.25; (c) case of repulsive
nonlinearity where A = 9; J = 26 and γ = 0.17

spectrum of these ferromagnetic materials is different from the {2, 2} band by the

rectangular form of the continuum band and always composed by two bands where

the single band can appear above for repulsive nonlinearity presented in Fig.3.6(b)

while in Fig.3.6(a) the system display only the continuum band. We also notice

that in the spectrum of Fig.3.6(a) and Fig.3.6(b), the continuum band appears

to be very degenerated at their lower and upper edge. Unlike the case studied by

Dorignac and Eilbeck [11] where they observed a continuum band in addition to two-

breather bands, we do not get the two-breather bands with the initial parameter used

here. However, on varying the parameter A, J and γ we can obtain two-breather

bands in addition to a continuum band. This may happen in the singular case

of the CsNiF3 material when it faces some physical constraints such as heating

or magnetostriction that may lead to change its parameters as seen in Fig.3.6(c).
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Henceforth, all ferromagnetic materials displaying a spin value high enough to fulfil

the restriction n ≤ 2S would present an energy spectrum characterized by a single

and continuum bands with a reduced gap.

The second band is {2, 4} band, we also obtained the Hamiltonian matrix using the

same technique as in the case of {2, 2} or {4, 2} bands.

H(2,4) = − 2J2

3Aγ
(3B + 2C)Iσ − BJ2

Aγ




Γ τ P ∗

τ ∗ 0 τ
. . . . . . . . .

τ ∗ 0 τ

P τ ∗ Γ




(3.8)

Where P = 6eik D
B

, B = (γ
4
− 1)2, C = (3γ

4
− 1)2, D = (5γ

4
− 1)2 and Γ = − 1

3B
(3B +

2C − 13D), Iσ is the σ × σ unity matrix. The structure of the matrix in equation

(3.8) appears to be the same as {4, 2} band, the difference with the previous matrix

is very low since it is similar to the two quanta case described in Ref. [11].

The bands presented in the energy spectrum of these ferromagnetic materials appear

at a first glance to be composed with flat lines where the single band can appears

above the continuum for a repulsive nonlinearity as depicted in Fig.3.7 (b) while

only the continuum band appears in Fig.3.7 (a). On varying the values of A, J and

γ we can obtain also the {4, 2}-like band with two breathers bands in addition to a

continuum band. However they are rather more likely as the {2, 4} band but with

a difference that this energy spectrum is rather degenerate than the {4, 2} case.

From a physical picture applied to the spin system, it is important to mention that

there is a limitation, i.e n ≤ 2S, while the number of bosons in a pure bosonic

system has no such constraint. However there exist some materials for which the

spin S is high enough so that from the spin picture the case of n = 6 can be seen

as two adjacent spins with one being able to proceed to two switches and the other

four switches. In the case of the CsNiF3 material, the process may turn out to be

more complex since a spin can any be turned down, no more. In this framework the

physical picture can be described as that of two groups of four spins and two spins

adjacently situated that can be involved in one switch per group. In any case, this

can be understood as the result of a local magnetization reversal process that occurs

in such a ferromagnet involving only few spins.

Using the same method as in the {4, 2} case, the Hamiltonian matrix of the {3, 3}
band is

H(3,3) = −3J2B′

Aγ
(Iσ + M) (3.9)
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Figure 3.7: Detail of the Energy Spectrum for the Bose-Hubbard model derived from an
anisotropic Heisenberg model in a periodic lattice where n = 6, f = 37, J = 23.6 and
A = 9 corresponding to the {2, 4} band: (a) case of repulsive nonlinearity where γ = 1;
(b) case of repulsive nonlinearity where γ = 0.5

where B′ = (γ
2
− 1)2, M1,1 = 1

2
− 4 D

B′ , D = (5γ
4
− 1)2 and Mi,j = 0 for any i 6= 1 and

j 6= 1.

The diagonal form of the matrix in equation (3.9) is similar to the case of six bosons

described in Ref. [11]. It is important to stress that the matrix elements in equation

(3.9) are independent of the wave vector k. For the sake of simplicity, we have plotted

the energy spectrum of this state as function of the wave vector only a ferromagnetic

material characterized by the parameter close to the CsNiF3 structure but with a

different value of γ, as shown in Fig.3.8(a); the eigenvalue of the corresponding {3, 3}
band appears only with two symmetric single bands.
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Figure 3.8: (a) Detail of the Energy Spectrum where A = 9.5, n = 6, f = 37, J = 21 and
γ = 0.17

The lower single band is in fact a result of the transformation of the continuum

band into a single band. From a physical picture applied to the spin system it is

also important to mention that there is a limitation, i.e n ≤ 2S, while the number

of bosons in a pure bosonic system has no such constraint. However, there exists
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some materials for which the spin S is high enough so that from the spin picture

the case of n = 6 can be seen as two adjacent spins with each involving three

switches. From our results, it is clear that in the framework of six bosons for

the case of other ferromagnets with spin not enough the process should be more

complex. In such a context, two groups of (three spins) a triplet can be engaged

in a single switch each per group or triplet in the same time. Such a process needs

experimental investigation. In any case, this can be understood as the result of

a local magnetization reversal process. All ferromagnetic materials that display

parameters different to those of the CsNiF3 structure, i.e. spin value fulfilling the

condition n ≤ 2S and the possibility of forming two triplet spins, have the same

energy spectrum characterized by two symmetric single bands with a larger width

of the gap between those single bands.

3.3 Energy spectra in a finite Heisenberg anisotropic exchange

spin chain with antisymmetric interactions

In this section, we present the analytical and numerical results in the novel model

by using nondegenerated, degenerate method and numerical diagonalization from

the ground state to six spins excited when DMI are involved.

3.3.1 Energy at the ground state when DMI are involved

At the ground state, all spins are oriented in parallel and there is no spin-flip exci-

tation in a finite Heisenberg spin chain. The energy at this ground state is

EM0 = −J2fS2 (3.10)

We mention here that, the energy of the ground state is without the DMI. This means

that, DMI have no effect in the ground state. All spins are oriented in parallel along

the z axis.

3.3.2 Energy spectrum for one boson in the model when DMI are in-

volved

In the model, when one spin is excited, replacing in equation (2.112) α and α∗ by

their values, we obtain the energy as

EM1 = −J2fS2 − (α∗τ + ατ−1 − 4J2) = −J1(τ + τ−1)) − iDz(τ − τ−1) + 4J2(3.11)

= −2[J1(cos(k) − Dz sin(k)] + 4J2

Figure3.9 shows that in the absence of anisotropic exchange interaction (J2 = 0.0)

for k = 0, the energy spectrum is not nil. There is a nonzero minimum energy cost to
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Figure 3.9: Energy spectrum of one boson for a Heisenberg spin chain with DMI for
different values of J1 and Dz where J2 = 0.0: (a) J1 = 0.5, Dz = 1.0; (b) J1 = Dz = 0.5;
(c) J1 = 1.0, Dz = 0.05

create an excitation. According to the Goldstone theory, gapless bosonic excitations

will exist in the energy spectrum. This theorem implies that the ground state has

broken a continuous symmetry of the Hamiltonian.

3.3.3 Effect of the DMI on the energy spectrum of a planar ferromagnet

for two bosons

When the DMI are involved, the new form of the Hamiltonian matrix is written as

follow

HM = −




Γ
√

2q∗

√
2q y h∗

h Γ h∗

. . . . . . . . .

h Γ h∗

h p




(3.12)

where Γ = −4J2, P = J1[τ
− f+1

2 + τ− f−1
2 ] + Γ, y = Γ + γ J2

2
, q = gh, g = (γ

4
− 1),

h = ατ + α∗ and α = J1 + iDz.

We use numerical diagonalization method to derive the energy spectrum of the spin

chain including antisymmetric interaction. To be more explicit, we have fixed the

in-plane intersite exchange interaction constant to (J1 = 1) and we suppose that the

out-of-plane coupling J2 is nil. By increasing the DMI parameter, we have plotted
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Figure 3.10: Generation of the energy spectrum of a two domain wall by appearance and
shifting of a degenerated point in the energy spectrum of two-quanta for a Heisenberg spin
chain with DMI for different values of Dz. Here the value of the interaction strength is
γ = 1, n = 2, J1 = 1, J2 = 0.0 and f = 101: (a) Dz = 0.0; (b) Dz = 0.25; (c) Dz = 1; (d)
Dz = 17.5

the corresponding energy spectrum as a function of Bloch wave. From a physical

picture applied to magnetic material in the framework of a spin system, it is impor-

tant to mention the fact that there is a limitation i.e. n ≤ 2S, while the number

of bosons in a pure bosonic system has no such constraint. In the first case of

Fig.3.10(a), the energy spectrum of the system is plotted in absence of antisymmet-

ric interaction Dz, and without exchange interaction along the z axis (J2 = 0.0). The

energies spectrum of these ferromagnetic materials represented by stars displays a

continuum, which is a delocalized band. In the continuum band most of the sites are

separated by one or more vacant sites. This result is already known in Fig.3.3. For

a ferromagnetic material where Dz = 0.25, the energy spectrum is always formed by

a continuum but in addition there are two bound states arising, which are merged

to the continuum respectively above (cyan color) and another below (black color)

over the entire Brillouin zone. However, the main difference when compared with

the Fig. 3.10(a) is that, the energy is not degenerated for k = ±π as in Fig.3.10(a)

but it becomes degenerate at k/π = 0.8. At this point, we also mention that both

bound states appear as single bands that are symmetric with respect to the degen-
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erate point. It’s important to mention that, there is cut-off in the left part of the

energy spectrum that is automatically pasted to the right extremity of the energy

spectrum. This is an energy conservation process in the Brillouin zone through a

self compensation effect as seen in Fig. 3.10(b). This shifting of the degenerated

point in the energy spectrum continues with an increasing value of DMI interaction

Dz. In Fig.3.10(c) this shifting increases rapidly with an increasing value of DMI

until the DMI takes the value Dz = 9 where around the degenerated point there

are two bound states arising on the spectrum. Beyond this value, the degenerated

point moves slowly. Then the splitting of the continuum spectrum definitely led to

a degenerated point located at k/π = 0, for Dz ≥ 17.5 while the bound state are

completely merged with the continuum. Beyond this value of DMI (Dz > 17.5), the

shifting phenomenon of the degenerated point in the energy spectrum do no longer

occurs. From a physical picture of Fig.3.10(d), the structure of the energy spectrum

appears to display two domains walls, in the well known elementary excitations of

the Néel phase of an XXZ model of the antiferromagnet. In the spin picture this

corresponds to two spins with the same orientation incrusted twice in different sites

in an antiferromagnetic spin chain. Whereas two symmetric bound states appearing

nearby the degenerated point of Fig.3.10(b) and Fig.3.10(c) correspond to a spin lat-

tice with two neighboring spins that flip together in the same time. Let us mention

the fact that the variation of the DMI parameter to negative values will only swap

the shifting of the degenerated point in the energy spectrum from the left to the right.

3.3.4 The Heisenberg exchange interaction’s impact on the energy spec-

trum for two bosons when the DMI are involved

In this section, unlike the previous paragraph, with aim to focus our attention on

the effect of the parameter J1 on the energy spectrum of ferromagnetic materials,

we shall keep the value of DMI parameter constant, and vary the Heisenberg inter

site in-plane(X,Y) exchange interaction(J1 > 1).

We distinguish two cases in this section: firstly, the case of the ferromagnetic

materials where Dz = 17.5 and J1 ≤ 1, which corresponds to the limit of shifting the

degenerated point of the energy observed in Fig.3.10(d), where the energy spectrum

has a symmetric form and corresponds to the energy spectrum of antiferromagnetic

materials in the Néel phase with two domain walls. What happen while Dz = 17.5

and J1 ≥ 1? Contrarily to Fig.3.10 where the shifting of the energy spectrum was

strongly proportional to the DMI and occurred from the right to the left, we notice

a backward effect and as far as the parameter J1 increases the initial profile of

Fig.3.10(a) is recovered as they crosses different steps from Fig.3.11(b) and 3.11(c).

The size of the energy increases with an increasing value of J1. Figure 3.11(d) shows

the end of this process, which is similar to Fig.3.10(a). However, the main difference
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Figure 3.11: Backward shifting process of the degenerated point in energy spectrum of
two-quanta in a Heisenberg spin chain with DMI for different values of J1 where the value
of the interaction strength is γ = 1, n = 2, J2 = 0.0, Dz = 17.5 and f = 101: (a) J1 = 1;
(b) J1 = 10; (c) J1 = 25; (d) J1 = 600

when compared with the result in Fig.3.10(a) is that, the size of the energy here

which is larger in Fig.3.11(d) is related to the larger values of Dz. We also mention

the fact that, for all value of J1 ≥ 600 the form of Fig.3.11(d) remains the same.

These later figures show that, the exchange interaction J1 and the DMI have an

antagonist effect in a planar ferromagnet.

To probe the influence of J2 on the energy spectrum, we re-plot the energy

spectrum of our system, assuming that the Heisenberg parameter intersite coupling

J2 along the Z axes is not nil. Keeping in mind the previous question, here we

keep J1 constant to the value J1 = 1 and on varying the value of J2 from 0.1 to 8.

While J2 takes the value from 0.1 to 0.3, the energy spectrum is always identical

to the case obtained in Fig.3.10(a). While for J2 = 0.5 the single bound state arise

below but merged to the continuum in the Brillouin zone this case is illustrated

in Fig.3.12(a). While for J2 = 6, the single bound state in Fig.3.12(b) is clearly

separated to the continuum. From those later figures, it is important to mention

that, the exchange interaction J2 along the Z axes is responsible for the gap that

is opening between the single bound state and the continuum. For non zero values

of Dz, Fig.3.12(c) illustrates the energy spectrum exhibiting clearly the presence
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Figure 3.12: Energy spectrum of two-quanta in Heisenberg spin chain with DMI for different
values of J2 where the value of the interaction strength is γ = 1, n = 2, J1 = 1 and f = 101:
(a) J2 = 0.5 and Dz = 0.0; (b) J2 = 6 and Dz = 0.0; (c) J2 = 8 and Dz = 1.5

of two single band of bound states that appears to be symmetric with respect to

the degenerate point whereas they are merged to the continuum in the remaining

brillouin zone, respectively. This is a scenario that often appears in antiferromagnet.

However, here there is an additional single bound state that appears bellow and

completely separated from the continuum. A question arising is what shape should

the energy spectrum displays if (J1 = 0)?

While the parameter J1 is nil, the Heisenberg spin chain is reduced to an Ising

ferromagnetic model. We have considered in this section these two following cases:

firstly the case where the DMI Dz is non zero and J2 = 0. Here , the energy spectrum

is constituted only by the symmetric continuum band degenerated for k = 0. This

spectrum appears to be similar to the energy spectrum of an antiferromagnetic

material. It is important to notice that this energy spectrum presented in Fig.3.13

(a) keeps its shape and remains unchanged for all non zero values of Dz. It is worth

mentioning that the value of this energy increases when the parameter Dz is high

and that it decreases when it is weak without modifying the symmetric form of the

energy spectrum. Secondly, we examine the case where J2 and Dz are both non

zero. Here, the energy spectrum is always similar to those of an antiferromagnetic

material, the single bound state appears below and the continuum for J2 = 0.1 and

it is separated from the continuum for J2 = 0.9. This case also confirm the role of

the parameter J2 that is to open up a gap between the single bound state and the

continuum as seen in Fig.3.13(b) and 3.13(c).
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Figure 3.13: Band structure of two-quanta in Ising and DMI spin chain for different values
of J2 where the value of the interaction strength is γ = 1, n = 2, J1 = 0 and f = 101: (a)
J2 = 0.0 and Dz = 0.1; (b) J2 = 0.1 and Dz = 0.1; (c) J2 = 0.9 and Dz = 0.1

3.3.5 Effect of the DMI on the energy spectrum of the spin chain when

four or six quanta are involved

When four quanta are involved in presence of DMI, the Hamiltonian matrix is

H
(2,2)
M = −4mB

Aγ
Iσ − B

Aγ




Γ W ∗

W 0 W ∗

. . . . . . . . .

W 0 W ∗

W P




(3.13)

where B = (γ
4
−1)2, Iσ is the σ×σ unity matrix, W = m′q′+2iJ1Dzq, m = J2

1 +D2
z ,

q = 2ieik/2 sin (k/2), q′ = 2eik/2 cos (k/2), P = 2m′ cos (σk) + 4J1Dz sin (σk), m′ =

J2
1 − D2

z , Γ = 6(C
B
− 1), C = (3γ

4
− 1)2 and A is the anisotropy parameter. Re-

markably, the matrix elements of the matrix (3.31) are independent of the exchange

interaction parameter along the Sz direction J2. This parameter disappears in the

degenerate perturbation theory used here to calculate the matrix elements. The

energy spectrum of the Hamiltonian matrix (3.31) is derived from a numerical di-

agonalization method. Where we have plotted the energy spectrum as a function of

wave number k of a given ferromagnetic material. In this way, we can distinguish

several configurations of the energy spectrum of ferromagnetic materials such as:

For a ferromagnetic material where J1 = 1, A = 7 and Dz ≤ 1, their energy spec-
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trum are plotted in Fig.3.14. Let us start by emphasizing that when four quanta are
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Figure 3.14: Detail of the energy spectrum for the extended Bose-Hubbard model derived
from the Heisenberg spin chain and DMI in a periodic lattice containing four quanta for
different values of the DMI where A = 7, n = 4, γ = 0.05, f = 101 and J1 = 1: (a)
Dz = 0.0; (b) Dz = 0.075; (c) Dz = 0.5, (d) Dz = 1; (e) Dz = 1.5; (f) Dz = 75

involved the energy spectrum form of the ferromagnetic material without the DMI

parameter (Dz = 0.0) shows in Fig.3.14(a), a fine band structure constituted by the

{2, 2} band in addition to the continuum. The isolated band which appears either

above or below the continuum spectrum, as the sign of the anisotropy parameter

changes, stands for the localized state. This isolated band is composed of the states

consisting of adjacent sites that are each occupied by two quanta. Whereas in the

continuum band, most of the sites are separated by one or more vacant sites. The

localized band is a signature of the localization of energy that corresponds to the

quantum counterpart of the breather solution of the classical nonlinear system. From

a physical picture referred to the spin system, we shall also mentioned that the lim-

itation given by n ≤ 2S allows only materials with sufficiently high spin in order to

display such a localization phenomenon that would lead a localized magnetization

reversal process involving two groups of two spins each (doubled). Figure3.14(b)

shows the case where the DMI is non zero and represents the beginning of appear-

ance of a degenerated point not at the edge that is progressively shifted from the

right to the left. This profile is similar to the case of two quanta previously pre-

sented in Fig.3.10(b). The degenerated point move further with an increasing value

of DMI parameter as seen in Fig.3.14(c) and Fig.3.14(d). Figure 3.14(d), obtained

for Dz = 1 displays an energy spectrum comparable to an energy spectrum in the
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antiferromagnetic materials in the Néel phase for k = 0 in the middle of the Brillouin

zone. From these later figures, the main difference when compared to the plots of

Fig.3.10 for two quanta is that, the continuum band is not surrounded by two bound

states that are more visible nearby the degenerated point.

Needless to mention the fact that unlike the case of Fig.3.10 corresponding to the

case of two quanta, where the spectrum keep the same profile for larger values of the

DMI parameter than Dz = 17.5. Here in Fig.3.14, we see that for four quanta it is

no longer the same because as soon as the DMI parameter is greater than exchange

interaction (Dz > J1 i.e Dz > 1) the single bound state that is initially situated

below the continuum turns out to appear above the continuum (see Fig.3.14(e)).

Further increasing of the DMI parameter led to Fig.3.14(f) that shows the end of

this process, which is similar to Fig.3.14(a). However, the main difference with the

result in Fig.3.14(a) is that, the size of the energy here which is smaller in Fig.3.14(f)

is related to the large values of Dz (the size of the energy decreases with an increas-

ing value of Dz ) and the single bound state appears above the continuum. For

any value of Dz ≥ 75, the form of Fig.3.14(f) remains unchanged. Furthermore,

increasing progressively the values of the exchange interaction, the energy spectrum

can recover the form of Fig.3.14(a).

For a good explanation of the peculiarity of the DMI interaction in the system when

more than two quanta are involved, we start by the case where the parameter J1

is nil, the system is described only with the Dzyaloshinsky-Moriya interaction. By

so doing, we realized that for Dz = 1 the energy spectrum of the DMI spin chain

appears at first glance identical to the one described in Fig.3.14(a) with the differ-

ence that the single bound state is located above the continuum (see Fig.3.15(a)).

While for a fixed value of Dz = 1, on varying the value of the exchange interaction

J1, we get once more all the plots of Fig.3.14. The main difference being that, here

the single bound state occurs above the continuum while J1 < Dz and below for

J1 > Dz. This situation is exhibited respectively in Fig.3.15(a-c) and Fig.3.15(d-f).

From these later plots of the energy spectrum in a ferromagnetic spin chain, the

outcome reveals an antagonist behavior between the Heisenberg in-plane exchange

interaction (J1) and DMI (Dz). Next, we consider the case of n = 6 bosons. This

case displays three bands: namely {4, 2}, {2, 4} and {3, 3}, bands.

In this case, the first band under consideration is the {4, 2} band. Then if we pro-

ceed as in the case of the {2, 2} band, it turns out that we obtain a Hamiltonian
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Figure 3.15: Detail of the energy spectrum for the extended Bose-Hubbard model derived
from the Heisenberg spin chain and DMI in a periodic lattice containing four quanta for
different values of the J1 where A = 7, n = 4, γ = 0.05, f = 101 and Dz = 1: (a) J1 = 0.0;
(b) J1 = 0.075; (c) J1 = 0.5; (d) J1 = 1 and γ = 0.05; (e) J1 = 1.5; (f) J1 = 75

matrix describing this {4, 2} band as

H
(4,2)
M = − 2m

3Aγ
(3B + 2C)Iσ

− B

Aγ




Γ α∗2 P

α2 0 α∗2

. . . . . . . . .

α2 0 α∗2

P ∗ α2 Γ




(3.14)

where P = 6eik D
B

, m = J2
1 + D2

z , α2 = (J1 + iDz)
2, α∗2 = (J1 + iDz)

2, B = (γ
4
− 1)2,

C = (3γ
4
− 1)2, D = (5γ

4
− 1)2 and Γ = − 1

3B
(3B + 2C − 13D).

To answer the question on how will the shape of the energy spectrum in presence

of the DMI appears, we start by distinguishing two cases: firstly, the case of the

ferromagnetic materials where J1 = 1 and varying the parameter Dz.

When the DMI parameter is zero, the energy spectrum of these ferromagnetic ma-

terials appears at first glance composed by three single lines similar to bound states.

Whenever increasing the values of J1 this structure of the energy spectrum remains

unchanged. On varying the DMI parameter, we realized that the same scenario as

the one observed in Fig. 3.6 occurs. These results reveal that DMI can also influence

the position of the localized bound state in the spin chain in which the DMI is the
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Figure 3.16: Detail of the energy spectrum for the extended Bose-Hubbard model derived
from the Heisenberg spin chain including DMI in a periodic lattice containing six quanta
for different values of the Dz, where A = 7, n = 4, γ = 0.05, f = 101 and J1 = 1: (a)
Dz = 0.0; (b) Dz = 0.5; (c) Dz = 2; (d) Dz = 50

leading interaction.

The second band is the {2, 4} band, from which we also obtained the Hamiltonian

matrix using the same technique as in the case {2, 2} or {4, 2} bands.

H̃
(2,4)
M = − 2m

3Aγ
(3B + 2C)Iσ

− B

Aγ




Γ α∗2τ−1 P

α2τ 0 α∗2τ−1

. . . . . . . . .

α2τ 0 α∗2τ−1

P ∗ α2τ Γ




(3.15)

Where P = 6eik D
B

, m = J2
1 + D2

z , τ−1 = e−ik, α2 = (J1 + iDz)
2, α∗2 = (J1 + iDz)

2,

B = (γ
4
− 1)2, C = (3γ

4
− 1)2, D = (5γ

4
− 1)2 and Γ = − 1

3B
(3B + 2C − 13D). Here,

the energy spectrum appears to be composed by three single bands isolated from

each other (see Fig.3.16(a)), but if the value of DMI goes to zero then we get a

continuum band; in addition to two breather bands as seen in Fig.3.16(b) or just
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the continuum and a breather band (see Fig.3.16(c)). Also we may get only the

continuum band as exemplified in Fig.3.16(d). However, they are rather more like

the {2, 4} band but with a difference that this energy spectrum is more degenerated

than the {4, 2} band. Another difference is that while increasing the DMI parameter

to (Dz = 0.5) both of single band described in Fig.3.16(b) display a sinusoidal form.

This form of a lower single band is clearly shown in Fig.3.16(c) for Dz = 2. From a

physical picture applied to the spin system, it is important to re-mention that there

is a limitation i.e. n ≤ 2S, while the number of bosons in a pure bosonic system

has no such constraint. In this framework, the physical picture can be described as

that of two groups of four spins (a quadruplet) and two spins (a doublet) adjacently

situated in the lattice that can undergo a switching process one group first and then

after the next. This can be understood as the result of a local magnetization reversal

process that occurs in such ferromagnet involving only few spins.

Using the same technique as in the {4, 2} case, the Hamiltonian matrix of the {3, 3}
band is

H̃
(3,3)
M = −3mB′

Aγ
(Iσ + M) (3.16)

where B′ =
(

γ
2
−1

)2
, m = J2

1 +D2
z , M1,1 = 1/2−4D/B′, D = (5γ

4
−1)2 and Mi,j = 0

for any i 6= 1 and j 6= 1.

Comparing the structure of the matrix obtained in equation (3.32), this structure is

similar to the six bosons case described in Ref. [41,112]. To derive the eigenvalue of
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Figure 3.17: Energy spectrum for the extended Bose-Hubbard model derived from the
Heisenberg spin chain and the DMI in a one periodic lattice containing six quanta for
different values of Dz where, A = 7, γ = 0.05 and f = 101: (a) Dz = 0. and J1 = 1, (b)
Dz = 0.5 and J1 = 100

the corresponding {3, 3} band, we assume these two following cases: In the first case,

the exchange interaction is constant (J1 = 1) and we vary the DMI parameter. In ab-

sence of the DMI, Fig.3.17(a) shows that the energy of such ferromagnetic materials
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is composed only by two lines of bands broadly separated. It is impossible to know,

without plotting their eigenfunctions, which of them corresponds to the continuum

band. The answer to this issue will be given in the next section of the localization

in the real space. For Dz different to zero, the form of the spectrum remains the

same like in Fig.3.17(a). The difference is that the levels of energies of those bands

decrease with an increasing value of Dz (see Fig.3.17(b)). The outcome shows that

in the absence of the DMI, while increasing the value of J1, the spectrum keeps con-

stant the levels of energies of bands as seen in Fig.3.17(a) and it remains unchanged.

Secondly we keep Dz = 1 and on varying the exchange interaction, the form of the

energy remains unchanged and the levels of energies of the bands also decrease with

an increasing of J1. From our results it is clear that in the framework of six bosons

for the other ferromagnets with spin not high enough the process should be more

complex. In such a context, two groups of (three spins) a triplet can be engaged

in a single switch each per group of triplet in the same time. We also realized that

the shape of the energy spectrum of the {3, 3} band remains unchanged when the

values of the parameters J1 and Dz varies in the same time or while J1 is absent and

vice versa i.e. The parameters J1 and Dz therefore do only translate the bands from

one level to another on the spectrum when the number of quanta is greater than four.

3.4 Energy spectra in a Heisenberg spin chain with long range

interactions

In this section, we present the effects of second, third, fourth and long range inter-

actions on the energy system.

3.4.1 Influence of the second nearest interaction on the energy spectrum

When the second nearest neighbor are taken into account, using the equation (2.115),

the Hamiltonian matrix is written as follow

Ĥ1 = −




u2

√
2q∗1

√
2q∗2 0 0 0 0 0√

2q1 w2 + y2
−1,1 g∗

1 g∗
2 0 0 0 0√

2q2 g1 z2 g∗
1 g∗

2 0 0 0

0 g2
. . . . . . Ũ2

. . . 0 0

0 0
. . . . . . . . . . . . . . . 0

0 0 0
. . . . . . . . . . . . g∗

2

0 0 0 0 g2 g1 Ũ2 g∗
1 + y2

−σ,(σ−1)

0 0 0 0 0 g2 g1 + y2
−(σ−1),σ p2




(3.17)
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where u2 = −4 − 4α1, w2 = −2 + γ1 − 2α1, Ũ2 = −2 − 2α1, z2 = −2 − 2α1 + ξ1,

q∗1 = (γ1

4
−1)g∗

1, q1 = (γ1

4
−1)g1, g1 = 1+τ 1, p2 = τ− f+1

2 +τ
f+1
2 )+Ũ2, q∗2 = ( ξ1

4
−α1)g

∗
2,

q2 = ( ξ1
4
− α1)g2, g2 = α1(1 + τ 2), g∗

2 = α1(1 + τ−2), y2
−1,1 = α1(τ

−1 + τ 1),

y2
−(σ−1),σ = α1(τ

−(σ−1) + τσ) and y2
−σ,(σ−1) = α1(τ

−σ + τ (σ−1)), σ = f+1
2

.

The structure of this matrix Hamiltonian is constituted by five diagonals. We no-

tice here an appearance of three new terms that are y2
−1,1, y2

−(σ−1),σ and y2
−σ,(σ−1) in

the matrix elements. Using numerical diagonalization, we have derived the energies

spectrum of the system as function of Bloch wave number k.

Let us start by emphasizing the results of the case where the ratio is zero (i.e.

α1 = 0.0 and γ1 = 0.05). The energy spectrum is constituted with a single band (red

color with circle symbol see Fig.3.18(a)), which stays above the continuum band.

This single band stands for localized bound states and corresponds to the case of

a ferromagnetic materials described in Ref [112]. We notice that while increasing

the parameter γ1 up to a value of γ1 = 0.5, the energy spectrum displays a new

bound state (blue color with square symbol see Fig.3.18(b)), which is merged with

the continuum in its major part.

To probe the influence of second nearest neighbors on the energy spectrum, let us

choose α1 = 0.241 and ξ1 = 0.12 for which the energy spectrum of such a ferromag-

netic materials displays in addition to a continuum band two single bands located

respectively above and below the continuum band (see Fig.3.18(c)). However, the

main difference when comparing this result with that of Fig.3.18(b) is that, the con-

tinuum band is less degenerated at the edge i.e for k = ±π. It also appears that

the gap between the continuum and the lower single band starts to occur nearby

the momentum value of k = ±π
2

up to the edge of the Brioullion zone. For α1 = 0.6

and ξ1 = 0.3, the energy spectrum displays in addition to a continuum band and

two previous single bands, a new single band (see the cyan color with triangle up

symbol) located between the free state’s band and the band located on the top of

the panel. This is clearly shown in Fig.3.18(d) where, the shape of the continuum

band is more affected for k = 0 and at the edge of the Brillouin zone. The presence

of two isolated bands above and below the free state band is a signature of multi

bound states in the system. Here the one with triangle up is induced by the presence

of second nearest neighbors interactions. To testify the existence of these localized

bound states whose signature seems to appear in the energy spectrum obtained in

this section, we need to compute the corresponding eigenfunctions. This will be

done in section localization in real space .
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Figure 3.18: Energy spectrum of two bosons interacting with second nearest neighbors in
the heisenberg chain where f = 101 : (a) for α1 = 0 and γ1 = 0.05; (b) for α1 = 0, γ1 = 0.5;
(c) for α1 = 0.241, γ1 = 0.5 and ξ1 = 0.12; (d) for α1 = 0.6, γ1 = 0.5 and ξ1 = 0.3

3.4.2 Influence of the third and fourth nearest neighbor on the energy

spectrum

While using the basis states constructed within number state framework, the matrix

Hamiltonian of equation (2.119) reads

Ĥ2 = −




u3

√
2q∗1

√
2q∗2

√
2q∗3 0 0 0 0 0 0√

2q1 Q3 Q∗
1 g∗

2 g∗
3 0 0 0 0 0√

2q2 Q1 z3 g∗
1 g∗

2 g∗
3 0 0 0 0

√
2q3 g2 g1 Ũ3

. . . . . . . . . 0 0 0

0 g3
. . . . . . . . . . . . . . . . . . 0 0

0 0
. . . . . . . . . . . . . . . . . . . . . 0

0 0 0
. . . . . . . . . . . . . . . . . . g∗

3

0 0 0 0
. . . . . . . . . . . . . . . Q∗

2,3

0 0 0 0 0
. . . . . . g2 Q3,3 Q∗

1,2

0 0 0 0 0 0 g3 Q2,3 Q1,2 P3




(3.18)
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where P3 = τ− f+1
2 + τ

f+1
2 + Ũ3, q∗3 = ( ξ2

4
− α2)g

∗
3, q3 = ( ξ2

4
− α2)g3, g3 = α2(1 + τ 3),

g∗
3 = α2(1 + τ−3), u3 = u2 − 4α2, w3 = w2 − 2α2, z3 = z2 − 2α2 + ξ2, Ũ3 =

Ũ2 − 2α2, y3
−2,1 = α2(τ

−2 + τ 1), y3
−1,2 = α2(τ

−1 + τ 2), y3
−(σ−2),σ = α2(τ

−(σ−2) + τσ),

Q3 = w3 + y2
−1,1, Q1 = g1 + y3

−1,2, Q∗
1 = g∗

1 + y3
−2,1, Q3,3 = Ũ3 + y3

−(σ−2),(σ−2),

Q2,3 = g2 +y3
−(σ−2),σ, Q∗

2,3 = g∗
2 +y3

−σ,(σ−2), Q1,2 = g1 +y2
−(σ−1),σ, Q∗

1,2 = g∗
1 +y2

−σ,(σ−1)

y3
−(σ−2),(σ−2) = α2(τ

−(σ−2) + τ (σ−2)) and y3
−σ,(σ−2) = α2(τ

−σ + τ (σ−1)).

The structure of this Hamiltonian matrix is more complex than the case described

in Eq.(3.17). Here, the main difference is that, it involves seven diagonals instead of

five. Thus the number of diagonal increases with the number of nearest neighbors

and there is also an appearance of new terms such as y3
l,n.

In this section, we consider only the case where α1 = 0.8, ξ1 = 0.4, α2 = 0.241 and

ξ2 = 0.12. Energies spectrum obtained from a numerical digonalization always dis-

plays in addition to a continuum band one single band lying below the continuum

and two others isolated bands that at a first glance stand for new bound states.

Figure 3.19(a) and Fig.3.19(b) really look alike since, the continuum band is non

degenerated at the edge of the Brillouin zone. Another question mark is how the

energy spectrum will be affected if we consider the case where the Hamiltonian of

a 1D Heisenberg ferromagnetic spin chain also includes the fourth nearest neighbors?
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Figure 3.19: Energy spectrum of two bosons interacting with third and fourth nearest
neighbors in the heisemberg spin chain where f = 101 and γ1 = 0.5: (a) case of third
nearest neighbors for α1 = 0.8 and ξ1 = 0.4, α2 = 0.241 and ξ2 = 0.12 ; (b) case of fourth
nearest neighbors, for α1 = 0.8 and ξ1 = 0.4, α2 = 0.241 and ξ2 = 0.12, α3 = 0.1 and
ξ3 = 0.05

The Hamiltonian matrix is subdivided as the sum of two matrices and the total

Hamiltonian matrix is rewritten as H̃3 = Ĥ3 + Ŷ3 where Ĥ3 is the first term of the
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matrix given by:

Ĥ3 = −




u4

√
2q∗1

√
2q∗2

√
2q∗3

√
2q∗4 0 0 0 0 0 0 0√

2q1 w4 g∗
1 g∗

2 g∗
3 g∗

4 0 0 0 0 0 0√
2q2 g1 z4 g∗

1 g∗
2 g∗

3 g∗
4 0 0 0 0 0√

2q3 g2 g1 Ũ4 g∗
1 g∗

2 g∗
3 g∗

4 0 0 0 0
√

2q4 g3 g2 g1 Ũ4
. . . . . . . . . . . . 0 0 0

0 g4
. . . . . . . . . . . . . . . . . . . . . . . . 0 0

0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . g∗

4

0 0 0 0
. . . . . . . . . . . . . . . . . . . . . g3∗

0 0 0 0 0
. . . . . . . . . . . . . . . g∗

1 g∗
2

0 0 0 0 0 0
. . . . . . . . . g1 Ũ4 g∗

1

0 0 0 0 0 0 0 g4 g3 g2 g1 p4




(3.19)

where u4 = u3 − 4α3, w4 = w3 − 2α3, z4 = z3 − 2α3 + ξ3, Ũ4 = Ũ3 − 2α3,

P4 = α1(τ
− f+1

2 + τ
f+1
2 ) + Ũ4; q∗4 = ( ξ3

4
−α3)g

∗
4, q4 = ( ξ3

4
−α3)g4, g4 = α3(1 + τ 4) and

g∗
4 = α3(1 + τ−4).

The structure of the first part of the matrix, involve nine diagonals. In addition to

five diagonals given by the case of third nearest neighbors interacting spin, there

are two news diagonals due to the effect of the fourth nearest neighbors. The last

term denoted with Ŷ3 is the matrix that displays the order of appearance of the new

elements.

Ŷ3 = −




0 0 0 0 0 0 0 0 0 0 0 0

0 y2
−1,1 y3

−2,1 y4
−3,1 0 0 0 0 0 0 0 0

0 y3
−1,2 y4

−2,2 0 0 0 0 0 0 0 0 0

0 y4
−1,3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0
. . . . . . . . . . . . . . . . . . . . . . . . 0 0 0

0 0
. . . . . . . . . . . . . . . . . . . . . . . . 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 A

0 0 0 0 0 0 0 0 0 0 B E

0 0 0 0 0 0 0 0 0 C F H

0 0 0 0 0 0 0 0 D G I 0




(3.20)
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where, y4
−3,1 = α3(τ

−3 + τ 1), y4
−2,2 = α3(τ

−2 + τ 2), y4
−1,3 = α3(τ

−1 + τ 3), A =

y4
−σ,(σ−3) = α3(τ

−σ+τ (σ−3)), B = y4
−(σ−1),(σ−2) = α3(τ

−(σ−1)+τ (σ−2)), C = y4
−(σ−2),(σ−1) =

α3(τ
−(σ−2)+τ (σ−1)), D = y4

(σ−3),σ = α3(τ
−(σ−3)+τσ), E = y3

−σ,(σ−2), F = y3
−(σ−1),(σ−1),

G = y3
−(σ−2),σ, H = y2

−σ,(σ−1), I = y2
−(σ−1),σ.

To describe the new shape of the energy spectrum, here, we choose successively

α1 = 0.8 and ξ1 = 0.4, α2 = 0.241, ξ2 = 0.12, α3 = 0.1 and ξ3 = 0.05. While looking

at Fig.3.19(b) and Fig.3.19(a) where the third nearest neighbors are involved, we

realized that the shape of the energy spectrum remains almost identical in both

cases. Therefore in this case the energy spectrum is not affected when more than

three nearest neighbors are considered. From the generalized form of this Hamilto-

nian (2.123), we can probe the Fermi-Pasta-Ulam behavior on this generic model.

In this respect, we proceed to successive calculations with increasing at each fold

the number m of nearest neighbors. It turns out that the general form of the matrix

Hamiltonian of our system can be written for the sake of clarification as a sum of

two matrices

Ĥ(m−1) =




u1

√
2q∗1

√
2q∗2 · · · · · ·

√
2q∗m−1

√
2q∗m 0 · · · 0

√
2q1 w2 g∗

1 g∗
2 · · · · · · g∗

m−2 g∗
m−1 g∗

m
. . .

...
√

2q2
. . . z3

. . . . . . . . . . . . . . . . . . . . . . . . 0
... g2

. . . Ũ4
. . . . . . g∗

m

g3
. . . . . . g∗

m−2 g∗
m−1

. . . g∗
m−3

...
...

√
2qm−1

. . . . . .
√

2qm
. . . . . . g∗

2

...

0
. . . . . . g∗

1 g∗
2

...
. . . . . . . . . . . . . . . . . . . . . g1 Ũm−1 g∗

1

0 · · · 0 gm gm−1 · · · · · · g2 g1 pm




(3.21)

and
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Ŷ(m−1) =




0 0 · · · · · · 0 · · · · · · 0

0 y2
−1,1 y3

−2,1 y4
−3,1 y5

−4,1 · · · · · · Y ∗ . . .
...

... y3
−1,2 y4

−2,2 y5
−3,2 y6

−3,2
. . . 0

. . .
...

y4
−1,3 y5

−2,3
. . . . . . . . . 0 H

. . . 0

y5
−1,4 y6

−2,4
. . . ym

−i,i 0
. . . 0 T

...
. . . . . . 0

. . . . . . . . . 0 Z∗

. . . . . . 0
. . . 0

...
... Y 0

. . . 0
. . . . . .

0 0
. . . 0 W

. . . y5
−(σ−1),(σ−3)

...
...

. . . . . . . . . 0
. . . . . . L∗ K∗

...
. . . 0 Z

. . . . . . . . . L X y2
−σ,(σ−1)

0 · · · · · · 0 · · · · · · K y2
−(σ−1),σ y1

−σ,σ




(3.22)

where Y = ym
−1,(m−1), Y ∗ = ym

−(m−1),1, H = ym
−(m−2),2,Z = ym

−(σ−m+2),(σ−1), Z∗ =

ym
−(σ−1),(σ−m+2), K = y3

−(σ−2),σ, K∗ = y3
−σ,(σ−2), L = y4

−(σ−2),(σ−1), L∗ = y4
−(σ−1),(σ−2),

W = ym
−(σ−m),(σ−m), X = y3

−(σ−1),(σ−1) and T = ym
−σ,(σ−m+1).

It is easy to derive from equations (3.21) and (3.22) all others previous results ob-

tained in equations (3.17, 3.18, 3.19 and 3.20). For this, we consider that, an element

such as ym
−i,i = α(m−1)(τ

−i + τ i) where m is the number of nearest neighbors, α(m−1),

denotes the ratio of the Heisenberg exchange interaction, i is the power of parameter

τ .

While m is an odd number, all elements written in the same form as ym
−i,i and

ym
−(σ−m),(σ−m) are nil. In particular for m = 1, ym

−i,j = ym
−j,i = 0. For m ≥ 2, ym

−i,j

and ym
−j,i are non nil. Assuming that n and l are two non zero integers, if m− l ≤ 0

then gm−l = ym
−(m−l),n = ym

−n,(m−l) = 0.

3.4.3 Effect of long range interactions on the energy spectrum when four

or six quanta are involved

The {2, 2} band Hamiltonian matrix including the second nearest neighbors is.
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Ĥ
(2,2)
1 = − 4

A
(
B1

γ1

+
α2

1B2

γ1

)Iσ − 1

A
(
B1

γ1

+
α2

1B2

γ1

) × (3.23)




Γ1 W ∗
1 W ∗

2 0 0 0 0 0

W1 Γ2 W ∗
1 W ∗

2 0 0 0 0

W2 W1 0 W ∗
1 W ∗

2 0 0 0

0 W2 W1 0 W ∗
1 W ∗

2 0 0

0 0
. . . . . . . . . . . . . . . 0

0 0 0 W2 W1 0 W ∗
1 W ∗

2

0 0 0 0 W2 W1 Γ2 W ∗
1

0 0 0 0 0 W2 W1 P2




where B1 = (γ1

4
− 1)2, B2 = (γ1

4
− 1)2, Iσ is the σ×σ unity matrix, W1 = 1+ τ =

2eik/2 cos (k/2), W ∗
1 = 2e−ik/2 sin (k/2), W2 = 1 + τ = 2eik cos k, W ∗

2 = 2e−ik sin k,

P2 = 2 cos (σk), Γ1 = 6(C1

B1
− 1), C1 = (3γ1

4
− 1)2, Γ2 = 6(C2

B2
− 1), C2 = (3γ1

4
− 1)2

and A is the anisotropy parameter.

We distinguish several configurations of the energy spectrum of ferromagnetic ma-

terials depending of ratio α1.

We distinguish here several configurations of the energy spectrum of ferromag-

netic materials depending on the ratio α2
1.

When four quanta are involved, the shape of energy spectrum of the ferromagnetic

materials without the second nearest neighbors i.e. for α2
1 = 0.0 shows in Fig.3.20(a),

a single band’s structure lying above the continuum. This is the {2, 2} band. This

isolated band can appear either above or below the continuum spectrum as the sign

of the anisotropy parameter changes. The isolated band is a localized band and

stands for states consisting of adjacent sites that are each occupied by two quanta,

whereas in the continuum band, most of the sites are separated by one or more va-

cant sites. The localized band describes the localization of energy that is a signature

of the presence of the quantum counterpart of the breather solution of the classical

nonlinear system. From a physical picture referred to the spin system, we shall also

mention that the limitation given by n ≤ 2S allows only materials with sufficiently

high spin in order to display such a localization phenomenon. That phenomenon is

a precursor of a localized magnetization area that would lead to its local reversal

process involving two groups of two spins in a single switch. Figure 3.20(b) exhibits

the case where the second nearest neighbors are taken into account for α2
1 = 0.4. A

dimerized state is a state characterized by two group of two neighboring spins inter-

acting that can thereafter undergo a local magnetization reversal process through a
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Figure 3.20: Excitation spectrum of four bosons in the band {2, 2} interacting with second
nearest neighbors in the extended Bose-Hubbard spin chain of different values of α2

1 where
A = 1, γ1 = 0.5 and f = 101: (a) first nearest neighbors for α2

1 = 0; (b) second for
α2

1 = 0.4; (c) second for α2
1 = 0.8

single switch. Here, the energy spectrum displays in addition to the continuum, a

single band (blue color in square symbol) lying below the continuum. It is difficult

for us to distinguish if these bands really stand for localized states or not with-

out investigating the amplitudes of the corresponding states. Such an issue will be

addressed in section V. The fundamental difference when we compare the energy

spectrum in Fig.3.20(b) to the one shown in Fig.3.18(a) or Fig.3.20(a) is that the

continuum band begins to be non degenerated at the edge of the Brillouin zone. For

α2
1 = 0.8 the new isolated band appears above the continuum but located below the

isolated band on the top of the panel (see red color in circle symbol) and the contin-

uum. As the parameter α2
1 increases, the less degenerated the continuum becomes

at the edge of the Brillouin zone (see Fig.3.20(c)).

How will be the shape of the energy spectrum when more than two nearest neighbors

will be considered in the system? The Hamiltonian matrix in this case is
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Ĥ
(2,2)
2 = − 4

Aγ1

(B1 + α2
1B2 + α2

2B3)Iσ

− 1

Aγ1

(B1 + α2
1B2 + α2

2B3)




Γ1 W ∗
1 W ∗

2 W ∗
3 0 0 0 0 0 0

W1 Γ2 W ∗
1 W ∗

2 W ∗
3 0 0 0 0 0

W2 W1 Γ3 W ∗
1 W ∗

2 W ∗
3 0 0 0 0

W3 W2 W1 0 W ∗
1 W ∗

2 W ∗
3 0 0 0

0 W3
. . . . . . 0

. . . . . . . . . 0 0

0 0
. . . . . . . . . . . . . . . . . . . . . 0

0 0 0
. . . . . . . . . 0

. . . . . . W ∗
3

0 0 0 0 W3 W2 W1 Γ3 W ∗
1 W ∗

2

0 0 0 0 0 W3 W2 W1 Γ2 W ∗
1

0 0 0 0 0 0 W3 W2 W1 p3




(3.24)

where B3 = (γ1

4
− 1)2, Iσ is the σ × σ unity matrix, W2 = 1 + τ = 2e3ik/2 cos(3k/2),

W ∗
2 = 2e−3ik/2 sin(3k/2), P3 = 2 cos (σk), Γ3 = 6(C3

B3
− 1), C3 = (3γ1

4
− 1)2 and A is

the anisotropy parameter.

To address this issue, two cases are considered. In the presence of the third

neighbors where α2
1 = 0.8 and α2

2 = 0.34, the continuum on the spectrum keeps

its shape identical to the one of Fig.3.20(c). The new isolated band appears to be

partially merged to the continuum (see band with triangle left symbol in Fig.3.21(a)).

For α2
1 = 0.8 and α2

2 = 0.6, such a phenomenon appears with the presence of another

single band (see magenta color with triangle right in Fig.3.21(b)). It is important to

mention that from the outcome, the number of single bands increases as the number

of nearest neighbors with increasing α2
2. The presence of four single bands here is a

signature of multi bound states in the system.

The general Hamiltonian matrix of m nearest neighbors in the {2, 2} band is
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Figure 3.21: Excitation spectrum of four bosons in the {2, 2} band interacting with third
nearest neighbors in the extended Bose-Hubbard spin chain for different values of α2

1 and
α2

2 where A = 1, γ1 = 0.5 and f = 101: (a) for α2
1 = 0.8 and α2

2 = 0.34; (b) for α2
1 = 0.8

and α2
2 = 0.6

Ĥ
(2,2)
(m−1) = − 4

Aγ1

(B1 + α2
1B2 + · · · + α2

(m−1)Bm)Iσ − 1

Aγ1

(B1 + α2
1B2 + · · · + α2

(m−1)Bm) ×



Γ1 W ∗
1 W ∗

2 W ∗
3 · · · · · · W ∗

m−1 W ∗
m 0 · · · 0

W1 Γ2 W ∗
1 W ∗

2 W ∗
3 · · · · · · W ∗

m−2 W ∗
m−1 W ∗

m
. . .

...

W2 W1
. . . W ∗

1 W ∗
2

. . . . . . . . . . . . . . . . . . 0

W3
. . . . . . Γm−1

. . . . . . . . . . . . . . . . . . . . . W ∗
m

...
. . . . . . . . . Γm

. . . . . . . . . . . . . . . . . . W ∗
m−1

...
. . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . W ∗
m−2

Wm−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

Wm−1
. . . . . . . . . . . . . . . . . . 0

. . . . . . . . .
...

Wm
. . . . . . . . . . . . . . . . . . . . . Γm

. . . . . . W ∗
3

0
. . . . . . . . . . . . . . . . . . W2 W1

. . . W ∗
1 W ∗

2
...

. . . Wm Wm−1 Wm−2 · · · · · · W3 W2 W1 Γ2 W ∗
1

0 · · · 0 Wm Wm−1 · · · · · · · · · W3 W2 W1 pm




(3.25)

Next, we consider the case of n = 6 spins. This case displays three bands: namely

{4, 2}, {2, 4} and {3, 3}, bands.

In this case, the first band under consideration is the {4, 2} band. Then if we proceed

as in the case of the {2, 2} band, it turns out that we obtain the Hamiltonian matrix

describing this {4, 2} band when second nearest neighbors are taken into account as

follows
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Figure 3.22: Excitation spectrum of the extended Bose-Hubbard model derived from the
Heisenberg spin chain in a periodic lattice containing six bosons in {4, 2} band and {2, 4}
band interacting with first, second and third nearest neighbors for different values of α2

1

and α2
2 where A = 0.1, γ1 = 0.5 and f = 101: (a) first nearest neighbors for α2

1 = 0;
(b) second nearest neighbors for α2

1 = 0.8; (c) third nearest neighbors for α2
1 = 0.8 and

α2
2 = 0.6

Ĥ
(4,2)
1 = −Ĥ

(4,2)
1 = − 4

3Aγ1

[(3B1 + 2C1) + α2
1(3B2 + 2C2)]Iσ (3.26)

− 1

Aγ1

(B1 + α2
1B2)




Γ1 1 1 0 0 0 P ∗
2 P ∗

1

1 Γ2 1 1 0 0 0 0

1 1 1 1 1 0 0 0

0 1
. . . 0

. . . 1 0 0

0 0
. . . . . . . . . . . . . . . 0

0 0 0 1 1 0 1 1

P2 0 0 0 1 1 Γ2 1

P1 0 0 0 0 1 1 Γ1




where P1 = 6eik D1

B1
, P2 = 6e2ik D2

B2
, B1 = (γ1

4
− 1)2, B2 = (γ1

4
− 1)2, C1 = (γ1

4
− 1)2,

C2 = (3γ1

4
− 1)2, D1 = (5γ1

4
− 1)2 and Γ1 = − 1

3B1
(3B1 + 2C1 − 13D1) D2 = (5γ1

4
− 1)2

and Γ2 = − 1
3B2

(3B2 + 2C2 − 13D2).
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To probe the shape of the energy spectrum when the second nearest neighbors

are involved, we consider two cases: firstly, the case of the ferromagnetic materi-

als where α2
1 = 0. In this case, the system is reduced to a case where only the

first nearest neighbors are interacting. The energy spectrum of these ferromagnetic

materials display in addition to a continuum band that turns out to appear with

a flat shape and a size testifying its non degeneracy, two singles bands of a priori

bound states above and below this flat band. There is a consistent gap between the

continuum band and the lowest band as seen in Fig.3.22(a). Secondly, we realized

that for α2
1 = 0.8, the continuum on the spectrum keeps its flat shape identical to

the one shown in Fig.3.22(a). Whereas both single bands ( see upper band in red

with triangle right and lower band in color blue color with triangle left) display an

oscillating shape instead of lines. Here, the continuum band in {4, 2} band and the

{2, 4} have the same form. In order to avoid overloading the paper, we have plotted

energies spectrum of these bands in the same Fig.3.22(b). As we can see, these

bands exhibit the same shape.

While the third neighbors are accounting in the system, the matrix Hamiltonian

reads

Ĥ
(4,2)
2 = − 4

3Aγ1

[3B1 + 2C1 + α2
1(3B2 + 2C2) + α2

2(3B3 + 2C3)]Iσ(3.27)

− 1

Aγ1

(B1 + α2
1B2 + α2

2B3)




Γ1 1 1 1 0 0 0 P ∗
3 P ∗

2 P ∗
1

1 Γ2 1 1 1 0 0 0 0 0

1 1 Γ3 1 1 1 0 0 0 0

1 1 1 0 1 1 1 0 0 0

0 1
. . . . . . 0

. . . . . . . . . 0 0

0 0
. . . . . . . . . . . . . . . . . . . . . 0

0 0 0
. . . . . . . . . 0

. . . . . . 1

P3 0 0 0 1 1 1 Γ3 1 1

P2 0 0 0 0 1 1 1 Γ2 1

P1 0 0 0 0 0 1 1 1 Γ1




where P3 = 6e3ik D3

B3
, B3 = (γ1

4
− 1)2, C3 = (3γ1

4
− 1)2, D3 = (5γ1

4
− 1)2 and Γ3 =

− 1
3B3

(3B3 + 2C3 − 13D3).

The shape of the energy spectrum in the presence of the third nearest neighbors

exemplified here in Fig.3.22(c) corresponds to the case of α12 = 0.8 and α2
2 = 0.6.

The shape of the upper and lower band is more sinusoidal when compared to the

case of Fig.3.22(b). These results reveal that the next nearest neighbors contribute
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to transform the single upper and lower bands into bands with a sinusoidal shape.

Henceforth, all ferromagnetic materials displaying a spin value high enough to fulfill

the restriction n ≤ 2S would exhibit the same energy spectrum described in this

section.

For a given number m of nearest neighbor, the general expression of the matrix

Hamiltonian is written as follows

Ĥ
(4,2)
(m−1) = − 4

3Aγ1

[3B1 + 2C1 + α2
1(3B2 + 2C2) + · · · · · · + α2

(m−1)(3Bm + 2Cm)]Iσ(3.28)

− 1

Aγ1

(B1 + α2
1B2 + · · · · · · + α2

(m−1)Bm) ×



Γ1 1 1 1 · · · 0 P ∗
m P ∗

m−1 P ∗
m−2 · · · P ∗

2 P ∗
1

1 Γ2 1 1 1 · · · · · · 0
. . . . . . 0 0

1 1
. . . 1 1

. . . . . . . . . . . . 0 0 0

1
. . . . . . Γm−1

. . . . . . . . . . . . . . . . . . 0 0
...

. . . . . . . . . Γm
. . . . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . 1

Pm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

Pm−1 0
. . . . . . . . . . . . . . . 0

. . . . . . . . .
...

Pm−2 0 0
. . . . . . . . . . . . . . . Γm

. . . . . . 1
...

. . . . . . . . . . . . . . . . . . 1 1
. . . 1 1

P2
. . . 0 0

. . . . . . . . . 1 1 1 Γ2 1

P1 · · · 0 0 0 · · · 1 · · · 1 1 1 Γ1




The second one is the {2, 4} band. Its Hamiltonian matrix is obtained using the

same technique as in {4, 2}

Ĥ
(2,4)
1 = − 4

3Aγ1

[3B1 + 2C1 + α2
1(3B2 + 2C2)]Iσ

− 1

Aγ1

(B1 + α2
1B2)




Γ1 τ ∗ τ 2∗ 0 0 0 P2∗ P1∗

τ Γ2 τ ∗ τ 2∗ 0 0 0 0

τ 2 τ 0 τ ∗ τ 2∗ 0 0 0

0 τ 2 . . . 0
. . . τ 2∗ 0 0

0 0
. . . . . . . . . . . . . . . 0

0 0 0 τ 2 . . . 0
. . . τ 2∗

P2 0 0 0 τ 2 τ Γ2 τ ∗

P1 0 0 0 0 τ 2 τ Γ1




(3.29)
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Where P1 = 6eik D1

B1
, P2 = 6e2ik D2

B2
, B1 = 9

16
, B2 = (γ1

4
− 1)2, C1 = (3γ1

4
− 1)2,

C2 = (3γ1

4
− 1)2, D1 = (5γ1

4
− 1)2 and Γ1 = − 1

3B1
(3B1 + 2C1 − 13D1) D2 = (5γ1

4
− 1)2

and Γ2 = − 1
3B2

(3B2 + 2C2 − 13D2).

The structure of the matrix in equation (3.29) appears to be the same as the {4, 2}
band, with the difference that, this matrix depends on the element τ . On varying the

ratio α2
1, several cases can be distinguished. Firstly we choose the case where α2

1 = 0.

Here the energy spectrum is constituted by two single bands of states respectively

located above and below the continuum and very similar to the case of the {4, 2}
band shown in Fig.3.22(a). Next, we realized in the presence of second neighbors,

for α2
1 = 0.8, the difference between the {4, 2} band is that the both single bands

(upper band in black circle and lower band in magenta square symbols) display a

very sinusoidal shape instead of a semi sinusoidal as we can observe in the same

shape in Fig.3.22(b). However it is important to notice that these two single bands

display sinusoidal shapes.

In order to probe the new shape of the energy spectrum for the {2, 4} band when the

third nearest neighbors are accounting, the Hamiltonian matrix is given in equation

(3.30) and we consider the case where α2
1 = 0.8 and α2

1 = 0.4 (see Fig.3.22(c)). Then

the outcome displays an energy spectrum that appears almost identical to the one

obtained in Fig.3.22(b). The peculiarity here is that both single bands which are

here labeled with square symbols in color magenta below the continuum and with

black circle symbols above the continuum occurs with more oscillating shape when

comparing to the case of {4, 2} band.

Ĥ
(2,4)
2 = − 4

3Aγ1

[3B1 + 2C1 + α2
1(3B2 + 2C2) + α2

2(3B3 + 2C3)]Iσ(3.30)

− 1

Aγ1

(B1 + α2
1B2 + α2

2B3)




Γ1 τ ∗ τ 2∗ τ 3∗ 0 0 0 P ∗
3 P ∗

2 P ∗
1

τ Γ2 τ ∗ τ 2∗ τ 3∗ 0 0 0 0 0

τ 2 τ Γ3 τ ∗ τ 2∗ τ 3∗ 0 0 0 0

τ 3 τ 2 τ 0 τ ∗ τ 2∗ τ 3∗ 0 0 0

0 τ 3 . . . . . . 0
. . . . . . . . . 0 0

0 0
. . . . . . . . . . . . . . . . . . . . . 0

0 0 0
. . . . . . . . . 0

. . . . . . τ 3∗

P3 0 0 0 τ 3 τ 2 τ Γ3 τ ∗ τ 3∗

P2 0 0 0 0 τ 3 τ 2 τ Γ2 τ ∗

P1 0 0 0 0 0 τ 3 τ 2 τ Γ1




Where P3 = 6e3ik D3

B3
, B3 = (γ1

4
− 1)2, C3 = (3γ1

4
− 1)2, D3 = (5γ1

4
− 1)2 and Γ3 =
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− 1
3B3

(3B3 + 2C3 − 13D3).

Using the same technique as when the next nearest neighbors are taken into account,

and repeating successfully this technique we get a general expression of the matrix

Hamiltonian in the {2, 4} band as follows

Ĥ
(2,4)
(m−1) = − 4

3Aγ1

[3B1 + 2C1 + α2
1(3B2 + 2C2) + · · · · · · +

α2
(m−1)

γ3

(3Bm + 2Cm)]Iσ(3.31)

− 1

Aγ1

[
B1

γ1

+
α2

1B2

γ2

+ · · · · · · +
α2

(m−1)Bm

γm

] ×



Γ1 τ ∗ τ 2∗ · · · · · · τ (m−1)∗ τm∗ 0 P ∗
m P ∗

m−1 · · · P ∗
1

τ Γ2 τ ∗ τ 2∗ · · · · · · · · · . . . . . . . . . 0 0

τ 2 τ
. . . τ ∗ τ 2∗ . . . . . . . . . . . . 0 0 0

τ 3 . . . . . . Γm−1
. . . . . . . . . . . . . . . . . . 0 0

...
. . . . . . . . . Γm

. . . . . . . . . . . . . . . . . . 0

τ (m−1) . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . τm∗

τm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . τ (m−1)∗

0 0
. . . . . . . . . . . . . . . 0

. . . . . . . . .
...

Pm 0 0
. . . . . . . . . . . . . . . Γm

. . . . . . τ 3∗

Pm−1
. . . . . . . . . . . . . . . . . . τ 2 τ

. . . τ ∗ τ 2∗

...
. . . 0 0

. . . . . . . . . τ 3 τ 2 τ Γ2 τ ∗

P1 · · · 0 0 0 τm τ (m−1) · · · · · · τ 2 τ Γ1




With the same spirit as in the case of {2, 4} band, the matrix Hamiltonian of the

{3, 3} band with the next nearest neighbors is given as

Ĥ
(3,3)
(m−1) = − 3

Aγ1

(N1 + α2
1N2 + · · · · · · + α2

(m−1)Nm) ×



1 + M(1, 1) 0 0 0 0 0 0 0

0 1 + M(2, 2) 0 0 0 0 0 0

0 0
. . . 0 0 0 0 0

0 0 0 1 + M(m,m) 0 0 0 0

0 0
. . . . . . . . . . . . . . . 0

0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 1 + M(2, 2) 0

0 0 0 0 0 0 0 1 + M(1, 1)




(3.32)
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Figure 3.23: Excitation spectrum of the extended Bose-Hubbard model derived from the
Heisenberg spin chain in a periodic lattice containing six bosons in the {3, 3} band inter-
acting with, first second and third nearest neighbors for different values of α2

1 and α2
2 where

A = 0.1, γ1 = 0.5 and f = 101: (a) first nearest neighbors for α2
1 = 0; (b) second nearest

neighbors for α2
1 = 0.8; (c) for third nearest neighbors α2

1 = 0.8 and α2
2 = 0.4

where N1 = (γ1

2 −1)2, M(1,1) = 1/2−4D1/N1, D1 = (5γ1

4 −1)2, M(m,m) = 1/2−4Dm/Nm,

and M(i,j) = 0 for any i 6= 1 and j 6= 1.

To depict the energy spectrum of the {3, 3} band when the second and a third nearest

neighbors interactions are accounting , we consider two following cases : the first case

does not consider the second nearest neighbors(α2
1 = 0). In this respect, Fig.3.23(a) shows

that the energy of such ferromagnetic materials is constituted only by two single bands

separated by a huge gap. It is impossible without computing their eigenfunctions to know

which of them rely to be a localized state. The answer of this issue will be given in the next

section. Secondly when the ratio is non zero, it implies that the interactions of the second

nearest neighbors are taken into account. For α2
1 = 0.8, which corresponds to a trimerized

state where two groups of three spins interact together. Their energy spectrum display
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three single bands. When comparing this spectrum to the case of Fig.3.23(a), the main

difference is that, the interactions of second nearest neighbor introduce one new single band

in the spectrum as seen in Fig.3.23(b) the band with cyan color plotted in triangle left.

Finally, for α2
1 = 0.8 and α2

2 = 0.4 we take into account the effect of third neighbors and

the resulting energy spectrum displays four single bands (see black color with triangle right

symbol in Fig.3.23(c)) instead of three as the case where the third neighbor interactions

are absent. Henceforth increasing the number of nearest neighbor influences the energy

spectrum by increasing its number of single band.

3.5 Localization in real space

In this section, our aim is to testify the existence of localized bound states whose signature

appear in the energy spectrum obtained in sections 3.2, 3.3 and 3.4.

3.5.1 In a Heisenberg spin chain

In section 3.2, Fig.3.2-3.8 show the rise of bound states, which appear sometime above and

below the continuum. That seems to be a signature of the existence of the localized states.

For this, we plot in real space, the square of eigenfunctions as function of the sites number

or sites position in the lattice i, for each bound states. In Figure3.2, which corresponds to
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Figure 3.24: Square of the wave function amplitudes corresponding to the eigenvectors as
a function of the position of the band along the chain: (a) case of the band located on the
energy spectrum in Fig. 3.2, 3.3, 3.4 and 3.8; (b) case of the band in Fig. 3.5; (c) case of
the band in Fig. 3.6 and 3.7

the case of isotropic Heisenberg spin chain, the single band that appears below the contin-

uum is a localized bound state. Figure 3.24(a), shows that its wave function is localized
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and indicate that there is a high probability of finding two bosons on the same sites. To

probe the existence probability of a given localized state given in Fig.3.3 and 3.4 for the

corresponding ferromagnetic chain, we also plotted the square of the eigenvectors in the

real space for different values of anisotropy and exchange interaction. But it appears to be

the same as those plotted in figure 3.24(a).

In the attractive case in Fig.3.5(a), the ground state is a localized state, located on two

different positions along the chain illustrated by figure 3.24(b). This also illustrates the

fact that there is a high probability to find four bosons in two adjacent sites, each contain-

ing two bosons. It also represents the intrinsic localized mode with a complex character

that the chain allows us to appreciate while plotting the eigenvector as a function of the

position of particles.

In Fig.3.6 and 3.7, their ground state is less localized which means that the probability of

finding six particles on two sites, i.e. one site with fours particles and another site with

two particles on an adjacent site is weak as shown in Fig. 3.24(c).

Figure 3.8(a) shows two single bands. But only the lower band is a localized state with a

probability similar to the one presented in Fig. 3.24(a).

3.5.2 In a Heisenberg spin chain with antisymmetric interactions

In section 3.3, Fig.3.10(b) and 3.10(c) show the rise of bound states, which surround the

continuum and are mostly separated from the continuum only nearby the degenerated

point. That seems to be a signature of the existence of the localized states that would tend

to appear nearby the degenerated point of the energy spectrum. Then it turns out that the

eigenfunctions of these bound states display a probability less than five per cent for k = 0

and k = π/2. This is not shown here to avoid overloading the thesis. Such probability

indicates that the single band surrounding the continuum and mostly separated from the

continuum only nearby the degenerated point is rather a very weak localized state. This

result remains whenever the single band appears on top or at the bottom of the continuum.

The energy spectrum in Fig.3.12(a) shows the presence of a single band that is surround-

ing the continuum tend to appear completely separated from the continuum as exhibited
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Figure 3.25: Square of the normalized Eigenfunctions of the localized states located on the
energy spectrum: (a) case of the band at the bottom (red color) located in Fig.3.12 and
in Fig.3.13(b)- 3.13(c); (b) case where both bound states (red and cyan color) are chosen
in Fig.3.16; (c) case of two symmetric bound states (red and magenta color) located in
Fig.3.17; (d) Plot of the eigenfunction in log-scale as function of the site number for the
case of k = π/4. The dashed lines added allows to realize the exponential decay of the
eigenfunction.

in Fig.3.12(b) and 3.12(c). This is a clear signature of a single bound state. This single

bound state is really a localized bound state as proved by Fig.3.25(a) where the square of

the eigenfunction exhibit a localized profile. This localized bound state’s existence is con-

firmed by its localized profile as for instance when the Bloch wave number is k = 0. Such

a representation was described in the case of two bosons in Ref. [113]. In Fig.3.13, which

corresponds to the case where the Heisenberg spin chain is reduced to the Ising model.

The single band that appears below the continuum is also a localized bound state because

its probability of localization is the same as the one seen in Fig.3.25(a). The nature of

the single band that appears either on top or at the bottom of the continuum of Fig.3.14

and Fig.3.15, is similar to that of a weak localized state because the eigenfunction of this

bound state have a weak probability that is around four per cent respectively for k = 0
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and k = π/2. This can be understood from the fact that this single band seems to be more

merged to the continuum.

For the case of the three bands shown in Fig.3.16 when the value of Dz is very weak or

nil, the upper and the lower bands that appear are localized bound states located with a

high probability for k = π/2 and k = 2π/3 as seen in Fig.3.25(b) whereas the bound state

between the upper and the lower bound states is a delocalized band. Figure 3.17 shows

two single bands, but the upper band turns out to stand for a delocalized state meanwhile

the lower band is a localized band located on the lattice with a high probability as seen in

Fig.3.25(c). This profile of the localized eigenfunctions confirms the existence of an intrin-

sic localized mode in the system that is also coined quantum breather since the quantum

effects are considered. Figure 3.25(d), presented here as an example of the eigenfunction

plotted in Logarithmic scale allows to confirm the exponential localization of quantum

Breathers in real space. This is the proof that the Fermi Pasta-Ulam (FPU) feature of the

above mentioned quantum breathers derived in real space from our Heisenberg spin chain

including the DMI model, is effective.

3.5.3 In a Heisenberg spin chain with longer range interactions

In this section, we probe the existence of new localized states whose signatures appear on

the energy spectrum and we also investigate to the influence of second and third nearest

neighbors interactions on their location and shape.

The localization property of these bound states can be seen from the plot of the proba-

bility | Ci |2 of the translational invariant states Eq.(2.80) of the system corresponding to

the Bloch wave vector k at the centre (k/π = 0) and at the edges of the Brillouin zone

(k/π = ±1).

In the case of two bosons interacting with second, third and four nearest-neighbors,

Fig.3.18(b) and (d) and Fig.3.19(a) show the rise of single bands occurring respectively

below and above the continuum. For each of these single bands, while plotting the square

of the corresponding eigenfunctions as function of the lattice sites i, and a few selected

values of the Bloch wave number, we realized that they look at a first glance as a signature
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Figure 3.26: Square of the normalized Eigenfunctions of the single band (blue square
symbols) located below the continuum band in Fig.3.18(b),(d) and Fig.3.19(a): (a) case
of first nearest neighbors; (b) case of second nearest neighbors; (c) case of third nearest
neighbors

of new localized states. We start here to analyze the existence and the properties of

the lower single band (blue color with square symbols), which lies below the continuum.

From Fig.3.26(a), we notice that the value of the square amplitude is high at the centre

(k/π = 0) of the Brillouin zone and displays a probability around 100 per cent. At the

edges of Brillouin zone this probability is around 40 per cent for ((k/π = −1) and around

4 per cent for (k/π = 1). This high probability obtains at the centre shows that, the single

lower band stands for a localized state. In such case a local magnetization excitation can

occur thanks to the local spin excitations process favored by this localized state. This

implies that the ground state of the system prefers to be in the on site bound states and

corresponds to the 2-on-site breather band | 20 · · · 0 > in addition to its cyclic permutations

Eq.(2.80). At the edges of the Brillouin zone hence the system is in the off-site bound state

| 110 · · · 0 > plus the cyclic permutations of Eq.(2.80) shown recently in Ref. [114]. We also

notice in Fig.3.26(b) and Fig.3.26(c) that, when the second and a third nearest neighbors

are involved, the probability of localization decreases respectively at the centre and at the

edges of the Brillouin zone down to values less than 30 per cent. This implies that the lower
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band stands for a delocalized state in the presence of second neighbor and third nearest

neighbors.
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Figure 3.27: Square of the normalized Eigenfunctions of the single band (red circle symbols)
located above the continuum band in Fig.3.18(b),(d) and Fig.3.19(a): (a) case of first
nearest neighbors; (b) case of second nearest neighbors; (c) case of third nearest neighbors

Next, we analyze the existence and properties of the upper single band located above

the continuum with red circles. We realize from Fig.3.27(a) that the value of the square

amplitude is high at the centre than the value at the edges where the probability, which is

around 30 per cent. This value confirms the fact that, the upper band exist and stands for

a localized bound state. In Fig.3.27(b)-(c) the values of the amplitudes decrease rapidly at

the edges and become nil at the centre of the Brillouin zone. This implies that the system

prefers to be in the off-site bound state. This upper band stands for a delocalized state

when the second and third nearest neighbors are involved in the system.

The middle single band with triangle up symbols in cyan color of Fig.3.18(d) and

Fig.3.19(a), is testified by the fact that in Fig.3.28(a) the system displays a many body

localization shape which rather stand for a delocalized state because its amplitude is not

sizeable since it is less than 30 percent at the centre and even while second nearest neighbors

are involved (see Fig.3.28(b)). This can be understood from the fact that this band is

merged with the continuum in its major part. On the other hand, the same condition on
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Figure 3.28: Square of the normalized Eigenfunctions of the single band (cyan triangle up
symbols) located between the continuum and the upper band in Fig.3.18(d) and Fig.3.19(a):
(a) case of second nearest neighbors; (b) case of third nearest neighbors

the amplitudes is reproduced at the edges of the Brillouin zone i.e. for ((k/π = −1) and for

((k/π = 1) (see Fig.3.28(a) with second nearest neighbors). Whenever the third nearest

neighbors are included the unsizeable values of the amplitudes remain for ((k/π = −1) and

for ((k/π = 1) (see Fig.3.28(a)).

From a physical viewpoint related to the behavior of the magnetization process; it

should be noticed that the delocalized states arising here are more related to spins fluctua-

tions and in such context the spin system would not undergo a local magnetization reversal

process. A delocalized state means that the system would definitely lead to an absence of

a local magnetization excitations.
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Figure 3.29: Square of the normalized Eigenfunctions of the single band (blue color with
square symbols) located below the continuum band in Fig.3.20(b) and Fig.3.21(a): case of
second nearest neighbors and third nearest neighbors

Now we consider four bosons in the system, with the possibility of interaction at the

scale of the second neighbors in addition to the on site interactions, with the first and third

neighbors interacting. Let us keep in mind that in this case Fig.3.20(b)-(c) and Fig.3.21(a)-
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(b) show the signature of single bands occurring above the continuum band. Therefore with

Fig.3.29, we can testify the existence and the properties of single band located below (blue

color) the continuum. We realize in Fig.3.29 in the presence of second and third nearest

neighbors that, the value of the amplitude at the centre is sizable since it is larger than 30

per cent and it is higher than the ones obtained at the edges of the Brillouin zone, whose

values at (k/π = −1) and at (k/π = 1) are less the minimum sizable value of 30 per cent.

This reveals that the lower single band exist and it stands for localized state. This implies

that the system prefers to be in the double 2-on-site breather band | 220 · · · 0 > plus its

cyclic permutations. Here it is important to mention that, the value of the amplitudes

remain unchanged when either the second or the third nearest neighbors are considered.
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Figure 3.30: Square of the normalized Eigenfunctions of the single band (red color with
circle symbols) located above the continuum band in Fig.3.20(a)-(c) and Fig.3.21(a): (a)
case of first nearest neighbors; (b) case of second nearest neighbors; (c) case of third nearest
neighbors

From the panel of Fig.3.30, we notice that the properties of the single band in red

circle located above the continuum in Fig.3.20(a)-(c) and Fig.3.21(a)-(b) can be seen re-

spectively in Fig.3.30(a) for the case of first neighbors, for the case of second neighbors

(see Fig.3.30(b)) and for the case of third neighbor (see Fig.3.30(c)). Although this single

band turn to stand for a delocalized state thanks to the size of its amplitude, we can notice

here that, the value of amplitude is always more high at the centre than at the edges of the
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Figure 3.31: Square of the normalized Eigenfunctions of the single band (cyan color with
triangle up symbols) located above the continuum band in Fig.3.20(c) and Fig.3.21(a) :
(a) case of second nearest neighbors; (b) case of third nearest neighbors
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Figure 3.32: Square of the normalized Eigenfunctions of the single band (indigo color with
triangle left symbols) located above the continuum band in Fig.3.21(a): case of second and
third nearest neighbors

Brillouin zone. Needless to mention is that the values of amplitude of these bands decrease

when the number of neighbors increases.

The band from Fig.3.20(c) realized in the presence of second neighbors, which is ex-

hibited with triangle up (in cyan color) appears with the amplitude values as 2 per cent

at the centre, 10 per cent at the edge left and 1 per cent at the edge right as depicted in

Fig.3.31(a) stands for a delocalized state. However when the third neighbors are account-

ing in the system, we realize that this band suddenly stands for a localized state since it

displays probabilities value around 70 per cent at the edge left, 75 per cent at the centre

and 15 per cent at the edge right (see Fig.3.31(a))

The band that occurs above the continuum as seen in Fig.3.21(a) and (b) (in indigo

triangle left) refers to a localized state since the magnitude of its eigenfunction is around 50

per cent at the centre, 12 per cent at the edge left and around 30 per cent at edge right(see

in Fig.3.32. This means that its existence is confirmed and reveals a local magnetization
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Figure 3.33: Square of the normalized Eigenfunctions of the single band (blue color with
triangle left symbols) located below the continuum band in Fig.3.22(a)-(c): (a) case of first
nearest neighbors; (b) case of second nearest neighbors; (c) case of third nearest neighbors

excitations that may according to some physical circumstances engage a local reversal

process.

Let us now consider the case of six bosons moving in the system while interacting

with the first, the second and the third neighbors. Figure 3.22(a) shows two single bands

separated by a continuum where the one on top and that at the bottom correspond to

localized states since they display a high probability of existence. This result was already

obtained in Ref [112] and is shown here in Fig.3.33(a), which corresponds to the case of

the bottom band (blue color with triangle left) where the value of the amplitude at the

centre is 43 per cent and 50 per cent at the edges of Brillouin zone. This means that

the ground state of the system prefers to be in the on-site bound states and corresponds

to the 4-on-site and 2-on-site breather band | 420 · · · 0 > plus the cyclic permutations.

In Fig.3.33(a) while the second neighbors are taken into account, those values become 45

per cent at the centre, 35 per cent for (k/π = −1) and 45 per cent for (k/π = 1) (see

Fig.3.33(b)). In the presence of third neighbors, we get 30 per cent at the centre, 18 per

cent for (k/π = −1) and 22 per cent for (k/π = 1) (see Fig.3.33(c)). From these later
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Figure 3.34: Square of the normalized Eigenfunctions of the single band (red color with
triangle right symbols) located above the continuum band in Fig.3.22(a)-(c): (a) case of
first nearest neighbors; (b) case of second nearest neighbors; (c) case of third nearest
neighbors

figures, we notice that the values of amplitudes decrease when the number of neighbors

increases. We also realize that when the number neighbors increases, the amplitude stays

high enough to be sizable at the centre where the wave vector is (k/π = 0). The band with

the square symbols that is concerned with the presence of first, second and third neighbors

is devoted to localized state thanks to its sizeable amplitude at the centre of the Brillouin

zone. This result indicates that a local magnetization excitations process can occur in the

system.

In the case of the band on top (see red color with triangle right), of Fig.3.34(a) which

correspond to the first neighbors, the corresponding value of the amplitude at the centre is

40 per cent and 45 at the edges of Brillouin zone. In Fig.3.34(a), which is set up for that

case of the second neighbors acouting in the system, we get 42 per cent at the centre, 32

per cent for (k/π = −1) and 50 per cent for (k/π = 1) (see Fig.3.34(b)). When six bosons

in the system interact with third neighbors, the amplitude is around 30 per cent at the

centre, 22 per cent for (k/π = −1) and 22 per cent for (k/π = 1) (see Fig.3.34(b)). From

these figures, we notice that the difference between outcome of both bands is very weak.

The localization of the {3, 3} band exited in from Fig.3.23 (a)-(c) can be seen in
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Figure 3.35: Square of the normalized Eigenfunctions of the band localized on the energy
spectrum in Fig.3.23(a)-(c): case of bands (blue color with square symbols and cyan color
with triangle left)

Fig.(3.35). This figure shows the plots corresponding to the wave vector k at the cen-

tre and at the edges of the Brillouin zone. From Fig.(3.35), we notice that the value

of the square amplitude of the lower single band (blue color with square symbols) from

Fig.3.23(a)-(c) is high enough for the wave vector k at the centre (k/π = 0) and at the edge

of the Brillouin zone (k/π = ±1). This corresponds to the double 3-on-site breather band

| 330 . . . 0 >. We also realize that the value of amplitude remain high enough to be sizeable

when the number of neighbors increases. This profile of amplitude testify the existence

of localized bound state, which is an intrinsic localized mode in a quantum system and

therefore is quantum breather. This result is already known in ref. [112]. From the physi-

cal viewpoint, this case is a good indicator of a local magnetization reversal process in the

system. In Fig.3.23(a)-(c), the second and fourth bands stand for delocalized states where

their amplitude is nil respectively at the centre and at the edges of Brillouin zone, whereas

the third band corresponds to a localized state as exemplified by their sizable amplitude

(see Fig.3.35).

3.6 Localization in the space of normal mode

While looking at the energies spectrum and the corresponding eigenfunctions in the previ-

ous section, it is realized that the existence of quantum breathers in such a spin chain is

no longer doubtful. The presence of the single isolated band from the continuum definitely

confirm the Fermi-Pasta Ulam (FPU) feature, as that of the localization phenomenon of

nonlinear classical and quantum lattice in real space, as far as the Heisenberg spin chain
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including antisymmetric interaction is considered. From the foregoing a question raised

here is whether this feature of FPU remains for the underlying model whenever we move

from real to normal mode space?
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Figure 3.36: (Color online) Weight function: (a) for different values of the interaction γ
where f = 101, J2 = J1 = 1, Dz = 0, k = 0 and k̃1 = π

2 ; (b) for different sizes of the system

where γ = 0.01, J2 = J1 = 0.5, Dz = 0.5, k = 0 and k̃1 = −2
3π; (c) for different values of

exchange interaction J2 and J1 where, γ = 1, f = 101, Dz = 0.5, k = π
2 and k̃1 = −π

4 ; (d)
for different values of DMI Dz where, γ = 1, J2 = J1 = 23.6, f = 101, Dz = 0.5, k = π

2

and k̃1 = −π
4 . Dashed lines are results using approximation formula Eq.(2.133), Eq.(2.134)

and Eq.(2.135).

Figure3.36 exhibits the numerical results obtained by perturbation method, where we

have plotted the weight function as a function of ∆
π . In Fig.3.36(a), we find localization in

the normal-mode space for different values of γ. This allows us to appreciate their complex

character characterized by an intrinsic localized mode which in this context is interpreted as
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quantum q-breathers. The weight function is more localized as γ decreases as seen with the

position of weight function for the case of γ = 0.000001, which is more compactified. The

dashed lines are the results obtained while using the formula of equation (2.133). These

results obtained here are similar to those presented in [19]. In Fig.3.36(b), we probe the

influence of the size of the nonlinear quantum lattice on the localization phenomenon and we

find that the states compactifies more with increasing size. This result also provides a good

agreement between the numerical diagonalization and the approximation’s results given

with dashed lines that are obtained from the analytical formula of equation (2.135). We also

probe the influence of exchange interaction and DMI on the localization phenomenon and

we find that the weight function is also localized for different values of exchange interaction

and DMI, respectively. We can see a good agreement between the numerical results of the

diagonalization with the approximation from the analytical formula of equation (2.135),

which is clearly exemplified in Fig.3.36 (c) and (d).
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Figure 3.37: (Color online) Weight function: (a) for different values of DMI Dz in log-log
scale, the same as in Fig. 3.36(d) where, γ = 1, J2 = J1 = 1, f = 101, Dz = 0.5, k = π

2

and k̃1 = −π
4 ; (b) for different values of k̃1 where γ = 1, J2 = J1 = 0.5, Dz = 3.1, f = 101

and k = 2
3π

In Fig.3.37(a), we see the 1
∆4 decay for eigenstates fulfilling 2k1 + k 6= 0 (mod 2π) and

k = 0, and in Fig.3.37(b), the 1
∆2 decay for eigenstates fulfilling 2k1 +k ≡ 0 (mod 2π) and

k = 0.
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3.7 Conclusion

In this chapter, we have presented the analytical/numerical results obtained in this thesis

and their discussions in order to enhance the phenomenon of localization of excitation

that can serve as precursor of local magnetization reversal process that can be realized in

1D ferromagnet. We have elaborated on energy spectrum in 1D Heisenberg ferromagnetic

spin chain for probing the magnetization reversal process with the exchange, exchange and

anisotropy, exchange and DMI and longer range interaction when two, four and six quanta

are involved. Thus localization features for spin chain has been set up both in real and

normal mode space.
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The aim of this thesis was to study the properties of quantum breathers that stand as

precursors of local magnetization reversal prosses in 1D ferromagnets. To this end

we proceeded mapping a classical ferromagnetic Heisenberg spin chain including

DMI and longer range interactions into an extended Bose-Hubbard-like Hamilto-

nian. Then we study the properties of quantum breathers in the underlying one-

dimensional periodic lattice containing two, four and six bosons. The resulting

fine structures are studied using numerical diagonalization with non degenerate and

degenerate perturbation theory. Our results confirm that in absence of DMI and

longer range interactions, when the nonlinearity is significant in the ferromagnetic

materials, a single band for the localized states will split from the continuum band.

From a physical picture of a ferromagnetic spin chain, the continuum band here is

describing a magnetic spin chain with completely delocalized excitation along the

chain whereas the case of single band for two on-site bosons corresponds to the case

of a local magnetization reversal process involving two switching spins. The results

obtained for the case of n = 4 or n = 6 also show that we have succeeded from our

mapping to describe the energy spectrum of a spin chain facing a local magnetization

reversal process that reveals the presence of bound states through the appearance of

single bands that are signature of quantum breathers in the system. The anisotropy

energy has the same role as the exchange integral energy, that it can either enlarge

the gap between the continuum and the localized state or order the position of the

bands in the energy spectrum.

In the presence of DMI, which is an antisymmetric interaction revealed interest-

ing and important features: namely, the DMI is responsible for the displacement

of the degenerated point in the energy spectrum. While the degenerated point is

moving, the system undergo an energy conservation process through a self compen-

sation effect that happens with the fact that, there is a cut-off in the left zone of the

energy spectrum that is automatically pasted to its right part whenever two or four

quanta are involved. For the case of two quanta, this antisymmetric interaction is

also responsible for the appearance of two bound states surrounding the continuum

appearing symmetric with respect to the degenerated point in the energy of the

system. Through our numerical computations, a critical value of the DMI param-

eter for which the degenerated point in the continuum spectrum stop moving was
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found. Beyond this value of DMI strength, the shifting process of the degenerated

point in the energy spectrum no longer occurs. The shape of the energy spectrum

displays two domains walls, which is the well known elementary excitations of the

Neel phase of a XXZ model of an antiferromagnet. The antisymmetric property of

the DMI led the ferromagnetic spin chain to behave more like an antiferromagnetic

spin chain whatever the values of the Heisenberg exchange interaction parameters

J1 and J2. We also notice an antagonist effect between the Heisenberg exchange

interaction (i.e. J1) and DMI as far as the shifting process of the degenerated point

in the energy spectrum is concerned. The Heisenberg exchange interaction J2 in this

system tends to enlarge or to order the position of the single band on the energy

of the system. While the parameter J1 is nil, the Heisenberg spin chain is reduced

to the Ising ferromagnet and their energy spectrum is constituted only by the sym-

metric continuum band degenerated for k = 0. This spectrum appears once more

to be similar to the energy spectrum of an antiferromagnet. This energy keep its

shape and remain unchanged for non zero values of the DMI parameter. We also

realized that, the impact of the DMI on the {4, 2} and {2, 4} bands was to influence

the position of the localized bound state on the energy spectrum of the spin chain.

Whereas in the {3, 3} band, the exchange interaction and DMI produce the same

effect that is the translation of the line band on the spectrum.

In presence of long range interactions, We could derive an explicit analytic ex-

pression for the Hamiltonian matrix corresponding to the case of two, four and six

bosons, from which a generalized analytic expression of each matrix Hamiltonian

was set up for the case of a given number of nearest neighbors. The outcome shows

the existence of multi bound states. On one hand we first focus our attention on the

effect of second, third and fourth nearest-neighbors on the energy spectrum of the

system, and thereafter we could analyzed the properties of these states for differ-

ent wave vectors used to probe the probability of localization of a given eigenstate.

Thanks to the large range of interactions which are accounting in this system, new

bound states could be found among which some stand for localized states as for

instance, the case of two bosons interacting with the second and third neighbors, for

which the energy spectrum displays in addition to a continuum band a single bound

state, one new bound states located between the continuum and the upper band,

only the lower and upper bands stand for a localized bound state in the case of the

first neighbors interacting. In the {2, 2} band, only the upper band stands for a de-

localized state. For the case of {4, 2} and {2, 4} bands, we also notice that the values

of amplitudes decrease when the number of neighbors increases and it is devoted to

localized bound state thanks to its sizable amplitude at the centre of the Brillouin

zone. Here, when the number neighbors increases, the amplitude remainds high

enough to be sizable. For the case of the {3, 3} band, the value of amplitude stays
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high when the number of neighbors increases. This band corresponds to a perfect

localized state. These localized states that appear thanks to the {2, 2}, {4, 2}, {2, 4}
and {3, 3} bands are quantum breathers excitations. The intrinsic nature of these

excitations led them to generated localized magnetization excitations that can be

the first step towards local magnetization reversal process, which can be experienced

in such a magnetic system either through a couple spins or a couple of two group of

dimerized or trimerized spins. Such a process with different size of the eigenstates

may have application in quantum computing. Hence further experimental studies

of such phenomenon are encouraged.

In normal-mode space, we computed appropriate weight functions of the eigen-

states using the perturbation theory. We observe localization of these weight func-

tions that are interpreted as a signature of intrinsic localized mode also coined

quantum q-breathers. Here, the interaction between the bosons leads to an alge-

braic localization. Henceforth although the Fermi Pasta-Ulam feature is clearly

exhibited by the breathers excitations in real space for our model, it is once more

clear that moving to normal mode space change an important aspect of the FPU

feature. In any case the existence of the breather excitations here allows to know

how local magnetization reversal process with few spins can be proceeded in a fer-

romagnetic spin chain including DMI.

Perspectives

Despite the results obtained in this thesis, other points of interests may be solved

in the future.

♣ In forthcoming works, we will study the Probabilities of localization of the

bound states as function of time to understand more the phenomenon of localiza-

tion in a such system.

♣ In a near future, we will study the localization of energy in real and in the

normal mode space by analyzing analytically their waves functions to extend our

understanding of the localization phenomenon in some other magnets with more

complex structures.

♣ Our study has focussed on the analytical and numerical study, experimental

studies should be carried out as a complement of our knowledge in a such physical

system.

♣ Based on the electronic properties of the atoms constituting, a magnetic ma-

terial, bosonic excitations like quantum breather excitation can be used to activate
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a localized magnetization reversal processes in ferromagnets whenever a magnetic

field is not applied to storage data.
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Appendix

Appendix A: Elements of matrix in the {2, 2} band

In this section, we show how we have calculated with details, different matrices

elements presented in chapter three. To avoid to have heavy calculations, we chose

the specific odd case of f = 7 as an example. The different states of this class are:

| ψ1

〉
= 1√

7

∑7
s=1

(
T̂
τ

)s−1

| 2200000
〉

=| 22
〉

| ψ2

〉
= 1√

7

∑7
s=1

(
T̂
τ

)s−1

| 2020000
〉

=| 202
〉

(A.1)

| ψ3

〉
= 1√

7

∑7
s=1

(
T̂
τ

)s−1

| 2002000
〉

=| 2002
〉

It is important to mention here that for f = 7, the periodic boundary condition

becomes τ 7 = 1. In this way we have taken into account others considerations such

as | 2001100
〉

= τ−4 | 1100200
〉

= τ 3 | 1100200
〉

and | 2000200
〉

= τ−1 | 0200020
〉

=

τ−3 | 2000200
〉
. The action of each state on the operator Hamiltonian V̂ gives

V̂ | ψ1

〉
= V̂ | 22

〉
= α∗√6(3γ

4
− 1) | 33

〉
+ α∗τ−1

√
2(γ

4
− 1) | 112

〉

+α
√

6(3γ
4
− 1) | 13

〉
+ α

√
2(γ

4
− 1) | 211

〉
− 2γ | 22

〉

| ψ2

〉
= V̂ | 202

〉
= α∗√2(γ

4
− 1) | 211

〉
+ α∗τ−1

√
2(γ

4
− 1) | 1102

〉

+α
√

2(γ
4
− 1) | 112

〉
+ α

√
2(γ

4
− 1) | 2011

〉
(A.2)

| ψ3

〉
= V̂ | 2002

〉
= τ−1α∗√2(γ

4
− 1) | 11002

〉
+ α∗√2(γ

4
− 1) | 2011

〉

+α
√

2(γ
4
− 1) | 1102

〉
+ τ 3α

√
2(γ

4
− 1) | 11002

〉

The news intermediates states that appear after Hamiltonian operator acting on

each base state are: | 31
〉
; | 13

〉
; | 112

〉
; | 211

〉

Detail of the class | 31
〉

V̂ | ψ̃1
1

〉
= V̂ | 31

〉
= α∗(3γ

4
− 1) | 4

〉
+ α∗τ−1

√
3(γ

4
− 1) | 121

〉
(A.3)

+α
√

6(3γ
4
− 1) | 22

〉
− α | 301

〉
− 3

2
αγ | 31

〉
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Detail of the class | 13
〉

V̂ | ψ̃1
2

〉
= V̂ | 13

〉
= α∗(3γ

4
− 1) | 22

〉
+ α∗√3(2γ

4
− 1) | 121

〉
(A.4)

+τα(3γ
4
− 1) | 4

〉
− τ−1α | 103

〉
− 3

2
αγ | 13

〉

Detail of the class | 112
〉

V̂ | ψ̃1
3

〉
= V̂ | 112

〉
= α∗√2(γ

4
− 1) | 202

〉
+ 2α∗(2γ

4
− 1) | 121

〉

+τα
√

2(γ
4
− 1) | 22

〉
+ α

√
2(γ

4
− 1) | 1111

〉
− 3

2
αγ | 112

〉

V̂ | ψ̃2
3

〉
= V̂ | 1102

〉
= α∗√2(γ

4
− 1) | 2002

〉

+α∗√2(γ
4
− 1) | 1111

〉
− τ−1α∗ | 10102

〉
(A.5)

+τα
√

2(γ
4
− 1) | 202

〉
+ α

√
2(γ

4
− 1) | 11011

〉
− 1

2
αγ | 1102

〉
− α | 1012

〉

V̂ | ψ̃3
3

〉
= V̂ | 11002

〉
= α∗τ−3

√
2(γ

4
− 1) | 2002

〉

+α∗√2(γ
4
− 1) | 11011

〉
− τ−3α∗ | 20101

〉

+τα
√

2(γ
4
− 1) | 2002

〉
+ τ−3α

√
2(γ

4
− 1) | 11011

〉
− 1

2
αγ | 11002

〉
− α | 10102

〉

Detail of the class | 211
〉

V̂ | ψ̃1
4

〉
= V̂ | 211

〉
= α∗√2(γ

4
− 1) | 22

〉
+ α∗√3(2γ

4
− 1) | 301

〉

+τ−1α∗√2(γ
4
− 1) | 1111

〉
+ α

√
2(γ

4
− 1) | 202

〉
+ 2α(2γ

4
− 1) | 121

〉

−3
2
αγ | 211

〉
− α | 2101

〉

V̂ | ψ̃2
4

〉
= V̂ | 2011

〉
= α∗√2(γ

4
− 1) | 202

〉
(A.6)

+τ−1α∗√2(γ
4
− 1) | 11011

〉
− α∗ | 2101

〉

+α
√

2(γ
4
− 1) | 2002

〉
+ α

√
2(γ

4
− 1) | 1111

〉
− α | 20101

〉

V̂ | ψ̃3
4

〉
= V̂ | 20011

〉
= α∗√2(γ

4
− 1) | 2002

〉

+τ 3α∗√2(γ
4
− 1) | 11011

〉
− α∗ | 20101

〉

+τ−3α
√

2(γ
4
− 1) | 2002

〉
+ α

√
2(γ

4
− 1) | 11011

〉
− 1

2
αγ | 20011

〉

Detail calculation of the elements in the Hamiltonian matrix H(2,2)

We have used the degenerate perturbation method, in this method the correction

of the energy in second order is given by equation (2.65), where
〈
ψ0

k′i |,
〈
ψ0

k′i′′ |, H1

and E0
k′i′′ are replaced respectively by

〈
ψi |,

〈
ψ̃j

i |, and Ẽ
(0)
k′i′′

E2
ki =

∑

k 6=k′,i′′

< ψ0
k′i | H1 | ψ0

k′i′′ >< ψ0
k′i′′ | H1 | ψ0

ki >

E0
ki − E0

k′i′′
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H11 =
∑

ψ̃

〈
ψi|V̂ |ψ̃

〉〈
ψ̃|V̂ |ψi′

〉

E
(0)
22 −Ẽ

(0)
i

=

〈
ψ1|V̂ |ψ̃1

1

〉〈
ψ̃1

1 |V̂ |ψ1

〉

E
(0)
22 −Ẽ

(0)
31

+

〈
ψ1|V̂ |ψ̃1

2

〉〈
ψ̃1

2 |V̂ |ψ1

〉

E
(0)
22 −Ẽ

(0)
13

+

〈
ψ1|V̂ |ψ̃1

3

〉〈
ψ̃1

3 |V̂ |ψ1

〉

E
(0)
22 −Ẽ

(0)
112

+

〈
ψ1|V̂ |ψ̃1

4

〉〈
ψ̃1

4 |V̂ |ψ1

〉

E
(0)
22 −Ẽ

(0)
211

=

〈
22|V̂ |31

〉〈
31|V̂ |22

〉

E
(0)
22 −Ẽ

(0)
31〈

22|V̂ |13
〉〈

13|V̂ |22
〉

E
(0)
22 −Ẽ

(0)
13

+

〈
22|V̂ |112

〉〈
112|V̂ |22

〉

E
(0)
22 −Ẽ

(0)
112

+

〈
22|V̂ |211

〉〈
211|V̂ |22

〉

E
(0)
22 −Ẽ

(0)
211

(A.7)

=
α
√

6( 3γ
4
−1)α∗

√
6( 3γ

4
−1)

−2γ
+

α
√

6( 3γ
4
−1)α∗

√
6( 3γ

4
−1)

−2γ
+

α
√

2( γ
4
−1)α∗

√
2( γ

4
−1)

2γ

+
α
√

2( γ
4
−1)α∗

√
2( γ

4
−1)

2γ
= −αα∗

γ
[6(3γ

4
− 1)2 − 2(γ

4
− 1)2] = −m

γ
[6C − 2B]

Where α = J1 + iDz; m = αα∗ = J2
1 + D2

z ; C = (3γ
4
− 1)2 and B = (γ

4
− 1)2

H12 =

〈
ψ1|V̂ |ψ̃1

3

〉〈
ψ̃1

3 |V̂ |ψ2

〉

E
(0)
22 −Ẽ

(0)
112

+

〈
ψ1|V̂ |ψ̃1

4

〉〈
ψ̃1

4 |V̂ |ψ2

〉

E
(0)
22 −Ẽ

(0)
211

=

〈
22|V̂ |112

〉〈
112|V̂ |202

〉

E
(0)
22 −Ẽ

(0)
112

+
〈
22|V̂ |211

〉〈
211|V̂ |202

〉

E
(0)
22 −Ẽ

(0)
211

=
2τα2( γ

4
−1)2

−2γ
+

2α∗2( γ
4
−1)2

−2γ
= −BW

γ
(A.8)

Where W = m′q′+2iJ1Dzq; m′ = J2
1 −D2

z ; q = τ −1 = 2ieik/2 sin (k/2); q′ = τ +1 =

2eik/2 cos (k/2) and B = (γ
4
− 1)2

H13 =

〈
ψ1|V̂ |ψ̃3

3

〉〈
ψ̃3

3 |V̂ |ψ3

〉

E
(0)
22 −Ẽ

(0)
11002

+

〈
ψ1|V̂ |ψ̃2

4

〉〈
ψ̃2

4 |V̂ |ψ3

〉

E
(0)
22 −Ẽ

(0)
2011

= 0 (A.9)

H21 =

〈
ψ2|V̂ |ψ̃1

3

〉〈
ψ̃1

3 |V̂ |ψ2

〉

E
(0)
22 −Ẽ

(0)
112

+

〈
ψ2|V̂ |ψ̃2

3

〉〈
ψ̃2

3 |V̂ |ψ2

〉

E
(0)
22 −Ẽ

(0)
211

=
2τ−1α∗2( γ

4
−1)2

−2γ

+
2α2( γ

4
−1)2

−2γ
= −BW ∗

γ
(A.10)

H22 =

〈
ψ2|V̂ |ψ̃1

3

〉〈
ψ̃1

3 |V̂ |ψ2

〉

E
(0)
202−Ẽ

(0)
112

+

〈
ψ2|V̂ |ψ̃2

3

〉〈
ψ̃2

3 |V̂ |ψ2

〉

E
(0)
202−Ẽ

(0)
1102

+

〈
ψ2|V̂ |ψ̃1

4

〉〈
ψ̃1

4 |V̂ |ψ2

〉

E
(0)
202−Ẽ

(0)
211

+
〈

ψ2|V̂ |ψ̃2
4

〉〈
ψ̃2

4 |V̂ |ψ2

〉

E
(0)
202−Ẽ

(0)
2011

=
2m( γ

4
−1)2

−2γ
+

2m( γ
4
−1)2

−2γ
+

2m( γ
4
−1)2

−2γ
+

2m( γ
4
−1)2

−2γ
(A.11)

= −4mB
γ

H23 =

〈
ψ2|V̂ |ψ̃2

3

〉〈
ψ̃2

3 |V̂ |ψ3

〉

E
(0)
202−Ẽ

(0)
1102

+

〈
ψ2|V̂ |ψ̃2

4

〉〈
ψ̃2

4 |V̂ |ψ3

〉

E
(0)
202−Ẽ

(0)
2011

=
2τα2( γ

4
−1)2

−2γ

+
2α∗2( γ

4
−1)2

−2γ
= −BW

γ
(A.12)

H31 =

〈
ψ3|V̂ |ψ̃1

3

〉〈
ψ̃1

3 |V̂ |ψ1

〉

E
(0)
22 −Ẽ

(0)
112

+

〈
ψ3|V̂ |ψ̃1

4

〉〈
ψ̃1

4 |V̂ |ψ1

〉

E
(0)
22 −Ẽ

(0)
211

= 0 (A.13)
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H32 =

〈
ψ3|V̂ |ψ̃2

3

〉〈
ψ̃2

3 |V̂ |ψ2

〉

E
(0)
22 −Ẽ

(0)
1102

+

〈
ψ3|V̂ |ψ̃2

4

〉〈
ψ̃2

4 |V̂ |ψ2

〉

E
(0)
22 −Ẽ

(0)
2011

=
2τ−1α2( γ

4
−1)2

−2γ

+
2α∗2( γ

4
−1)2

−2γ
= −BW ∗

γ
(A.14)

H33 =

〈
ψ3|V̂ |ψ̃2

3

〉〈
ψ̃2

3 |V̂ |ψ3

〉

E
(0)
22 −Ẽ

(0)
1102

+

〈
ψ3|V̂ |ψ̃3

3

〉〈
ψ̃3

3 |V̂ |ψ3

〉

E
(0)
22 −Ẽ

(0)
11002

+

〈
ψ3|V̂ |ψ̃2

4

〉〈
ψ̃2

4 |V̂ |ψ3

〉

E
(0)
22 −Ẽ

(0)
2011

+

〈
ψ2|V̂ |ψ̃3

4

〉〈
ψ̃3

4 |V̂ |ψ3

〉

E
(0)
202−Ẽ

(0)
2011

=
2m( γ

4
−1)2

−2γ
+

2m( γ
4
−1)2+2τ3α∗2( γ

4
−1)2

−2γ
+

2m( γ
4
−1)2

2γ
(A.15)

+
2m( γ

4
−1)22τ−3α2( γ

4
−1)2

2γ
= −B[4m+m′(τ3+τ−3)+2iJ1Dz(τ3−τ−3)]

γ

= −B(4m+P )
γ

Where P = 2m′ cos(3k) + 4J1Dz sin(3k), increasing the number of site f , we have

obtained the general form of the matrix H(2,2)

H(2,2) = −4mB
Aγ

Iσ − B
Aγ




Γ W

W ∗ 0 W
. . . . . . . . .

W ∗ 0 W

W ∗ P




(A.16)

Using the same technique, we could calculated the matrix elements shown in

section 3.4 when the longer range interaction are involved in the Heisenberg model.

To avoid overloading the thesis, we did not presented such details.
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