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Chapter 1

Introduction

1.1 Historical introduction

1.1.1 The fourth-order differential and difference equation

Consider the family of monic polynomials { P, }nen, orthogonal with respect to a linear functional £ (see
(2.5)). It satisfies a three-term recurrence relation (which we denote TTRR) [Chihara, 1978]

{ Pn+1(I) = (I - ﬁn)Pn(I) _ﬁ!nPn~l(I)a n>1,
Py(z) =1, P (z) =z — fo,

where 3, and -y, are complex numbers with v, #0 Vn €& N\
The rth associated of { Py, }nen is the family of monic polynomials {P,(lr)}neN, defined by the previous
relation in which 8,, v, and P, are replaced by Bnir, Vn4r and P,(lr), respectively,

P,(lil(:r,) =(r = 3nsr) P,(‘,r)(:r) - yn+rP,(Lr_>1(:1:), n>1,
P (x)=1.P"(z) =z - B,.

The rth associated of the regular lincar functional £ is, by Favard Theorem [Favard, 1935], the unique
linear functional £ with respect to whicli {P,gr)},,eN is orthogonal and satisfices (£(7,1) = ,.

Let { Py }nen be a family of polynomials. orthogonal with respect to the linear functional £ and S(L),
the Stieltjes function of £ given by

A,

n+l’

S(L) (=) =S(z) = -

n>0

where My, is the moment of order n of £: AL, = (L. z™).
When S satisfies a Riccati differential equation

#(x)S(z) = B(z) S(x)* + A(x) S(x) + D(x),

where ¢, A, B and D are polynomials, then {P,},en are called Laguerre-Halin orthogonal polynomials
[Magnus, 1984], [Dzoumba, 1985]. It is well-known [Magnus, 1984] that these polynomials satisfy a
fourth-order linear differential equation.

Classical and semi-classical (continuous) orthogonal polynnomials are particular cases of Laguerre-
Hahn orthogonal polynomials, and they satisfy a second-order linear differential equation.

The rth associated Lagucrre-Hahn orthogonal polynomials are Laguerre-Hahn orthogonal polynomi-
als; therefore they satisfy a fourth-order linear differential equation.

The search for these differential equations has been very intensive during the past few years. For
r = 1, Grosjean (1985, 1986) found them for Legendre and Jacobi families, and Ronveaux (1988), has
given a single equation valid for the first associated classical (continuous) orthogonal polynomials.
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For an arbitrary r, computer algebra packages have been very useful due to the heavy computations
involved. In this context we mention that Wimp (1987) has used the MACSYMA [ref] package to
construct the fourth-order differential equations satisfied by the rth associated Jacobi polynomials (r
in this case is integer or not). Belmehdi and Ronveaux (1989) devised a REDUCE program in order
to obtain these differential equations for the associated classical orthogonal polynomials of integer (and
fixed) order r.

Differential equations valid for the rth associated Laguerre-Hahn orthogonal polynomials and for
any integer r were given by Belmehdi et al. (1991) using the properties of the Stieltjes function of the
associated functional (see [Magnus, 1984}. [Dzoumba, 1985]). Then, followed some papers giving, in a
simple way, the single fourth-order differential equation for the associated classical orthogonal polynomials
of any integer order r (see for instance [Ronveaux, 1991], [Zarzo et al., 1993], [Lewanowicz, 1995]).

As it was the case for the associated orthogonal polynomial of a continuous variable, many works
have been done to give the fourth-order difference equation satisfied by the associated classical orthogonal
polynomials of a discrete variable.

Atakishiyev et al. (1996) have derived the relation (already known for classical continuous orthogonal
polynomials [Ronveaux, 1988]) giving the link between the first associated classical discrete orthogonal
polynomials and the starting polynomials. and used this relation to prove that the first associated of the
classical discrete orthogonal polynomials are solurions of a fourth-order linear difference equation which
can be factored as product of two second-order linear difference equations.

Using the explicit representation of the associated Meixner polynomials (with the real association
parameter r > 0) in terms of hypergeometric functions, Letessier et al.(1996) gave the fourth-order
difference equation satisfied by the rth associated Meixner polynomials and deduced by an appropriate
limit process the difference equation for the rth associated Charlier, Laguerre and Hermite polynomials.

This equation, thanks to the computer algebra system MATHEMATICA [Wolfram, 1993] and the
relation proved in [Atakishiyev et al., 1996] is given explicitly for the first associated of Charlier, Meixner,
Krawtchouk and Hahn polynomials [Ronveaux et al.. 1998a].

The question one can ask is whether it is possible to give one fourth-order difference equation valid
for the rth associated Laguerre-Halin orthogonal polvno:mials including orthogonal polynomials of con-
tinuous, discrete variable and also g-polynomials? The answer is yes and the first part of this dissertation
aimed at answering this question.

1.1.2 The non-linear difference equations

Here, we consider that the polynomials {£,},en. orthogonal with respect the semi-classical linear func-
tional £ is orthonormal ((£, P,P,) =1 Vn € N, thus, satisfying

IPn = Any P11+L +b71P71 +anPL—la n Z 07 aop P—l = 01

where a,, and b,, are complex numbers with a, # 0.

The coeflicients a,, and b,, can be given explicitly for classical (continuous) orthogonal polynomials in
terms of the polynomials ¢ and > appcaring in the Pearson differential equation, ad;(qb[:) =L, satisfied
by the linear functional £ with respect to which { P,}nen is orthogonal (see for instance [Nikiforov et al.,
1983) [Chihara, 1978], [Szegd, 1939, [Lesky, 1985, [Koepf et al., 1996]...).

These coefficients are also known for classical orthogonal polynomials of a discrete variable and for
g-classical orthogonal polynomials ([Nikiforov et al.. 1991|, ‘Szegd, 1939], [Lesky, 1985], [Koepf et al.,
1996], [Medem, 1996]...).

When the polynomials are semi-classical (instead of classical), except for some particular cases, it is
difficult to give, in general situation, the coefficients a,, and b,.

The properties or the coetficients a,, and b, as well as those of the polynomials P, have been inves-
tigated by many authors.

o Firstly, we cite for example Laguerre. who, in 1885, explored the properties of the orthogonal
polynomials related to the weight function p satisfving
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where R(z) is a rational function of z. He also studied Padé approximations and continued fraction
expansions of functions satisfying a differential equation of the form

W(z)f'(z) = 2V(z) f(z) + U (=),

where U, V and 1V are polynomials; and recovered orthogonal polynomials P, as denominators of

the approximants of f. He succeeded in showing that the orthogonal polynomials P, satisfy the
rernarkable differential equation,

WO,y +[2V + W0, — WO ]y + K,y =0,

where ©,, and K, are polynomials with bounded degrees, whose coefficients are solutions of certain

(usually) non-linear equations which provide non-linear equations for a, and b,, (see [Magnus, 1991]
for more details about Laguerre equations).

e Secondly, we cite the works by Freud (see [Freud, 1976, 1977, 1986]) who investigated the asymptotic
behaviour of the recurrence coefficients for special families of measures by a technique producing
an infinite system of (usually non-linear) equations (called Freud equations) for these coefficients
(see [Magnus, 1991] for more details about Freud equations). For example, if the polynomials P,

are related to the weight p(z) = exp(—z*) on the whole real line, then the Freud equations are
reduced to [Nevai, 1983]

1a2 (a2, +aZ+a2_)=n,n>2 a9=0, a} = %%—j—;,
bp =0, n >0.

It should be noted that other people found similar non-linear equations and identities (see for instance
[Laguerre, 1885], [Perron, 1929], [Shohat, 1939], see also [Nevai et al., 1986], [Magnus, 1991] for more
details), but these authors did not study their solutions when no simple form could be found.

Using the Freud equations, Freud (1976) gave a conjecture about the asymptotic behaviour of recur-
rence coefficients when the polynomials P, are rclated to the weight function
p(z) = |z|® exp(—|z|*) stating that :

Let a, and b, be the coeflicients of the following recurreuce relation

z Py = Qn+1 I)n-}-l +brlprl+anpn—l~ 77’20: ag P, =0,

satisfied by the polynomials {P,},en, orthogonal with respect to the weight p(z) = |z|® exp(—|z|®),
{ > —1, a > 0. on the whole real line. Then a,, and b, obey:

0 _ 2(a)

nlgrolo [TL/C((X)]I/O‘
LIinportant investigations have been devoted to the proof of Freud conjecture as well as to the study of the
asymptotics for {P,}nexn, the distribution of zeros, the sharp estimates of the extreme zeros ... ([Chihara,
1978}, [Freud, 1976, 1977, 1986], [Lubinsky, 1984, 1985a, 1985b], [Lubinsky et al. 1986, 1988] , [Magnus,
1984. 1985a, 1985b, 1986], [Bonan, 1984], [Maté¢ et al., 1985], [Mhaskar et al., 1984a, 1984b], [Nevai,
1973. 1983, 1984a, 1984b, 1983, 1986], [Sheen, 1984] ..., for more details see [Magnus, 1984, 1985a.
1985b, 1986]).

Later, Belmehdi and Ronveaux (1994) gave a systematic way to obtain non-linear equations for the
recurrence coeflicients, valid for any semi-classical orthogonal polynomial of a continuous variable. In
fact, given a semi-classical linear functional £ satisfving %((ﬁﬁ) = ¢ L, where ¢ and v are polynomials,
they werc able to provide two non-linear equations for the coefficients a,, b, of the recurrence relation -
satisfied by the polynomials {F,},.cn associated to L, called Laguerre-Freud equations (denomination
borrowed from Magnus [Magnus 1985b, 1986]).

In the second part of this dissertation. we give a generalisation of the previous results [Belmehdi et al..
1994} by giving the system of two non-linear difference equations satisfied by the recurrence coefficients:
equations which are valid for semi-classical orthogonal polynomials of a continuous and discrete variable.
and also for g-semi-classical orthogonal polynomials (both of class 1).



10 Chapter 1. Introduction

1.2 Summary of the main results

1.2.1 The fourth-order difference equation

1. Using the result in [Suslov, 1989], we prove the following:

Consider £ a regular linear functional satisfying Dy (¢ L) = ¢ L, where 1 is a first degree polynomial
and ¢ a polynomial of degree at most two. D, is the Hahn operator defined by

D, f(z) = % 2 #0, q#0, q#1,D, £(0):= £(0).

Then, if {Pn}nen is the monic family of polynomials. orthogonal with respect to £, then, the first

associated P! of P, satisfies the fourth-order difference equation

Q; -1 1
T [P( ) (z; } = 0.
2,n—1 q2 (q _ 1)2 1,2 n—l(z q)

Operators Q37, | and @5, _, are given by:

QL = 26 — (1 + Qo 1y +vaytt — Ao t])Gg + g0+ ¥t) Iy,
Qo = (P + ¥ ta)le® A1+ (L +q) b2y + Y2 1G5

—[q* A1 (@2) + Y2 t2) + Az (d2) +q41)]Gg

+q o) (@7 A2 + (1 + ) d3) + Y3 t3)] L,

with
, " n_ 1
Ao = [l +[n— 10 %}. M= T a#1,n>0,6,P@) =Plgs) VPEP.
diy = old'm), Yy =vid'z), ti=t(g'r), t(z)=(q- 1z,
A = L+ @by +dut — Aot

This result [Foupouagnigni et al., 1998d], iz used to deduce the factored form of the difference
cquations satisfied by the first associated classical orthogonal polynomials of a discrete variable
[Ronveaux et al., 1998a] and also the factored forin of the differential equation satisfied by the first
associated classical continuous orthogonal polynomials [Ronveaux. 1988]. We have used, also, this
result to prove that under certain conditions on the parameters. the first associated of little and
big g-Jacobi polynomials are still classical. Moreover, we deduce that if p,(x;a,bl|q) (respectively
P,(z;a,b,¢;q)) denotes the monic little ¢-Jacobi polynomials (respectively monic big ¢-Jacobi
polynomials), then they are related with their respective first associated by:

1
(1) (.
Wiaa )

r 1
a" q" pn(—;~,aqlq),
aq' a
1 z 1
P1(ll)(z;a’—ac;q) = a"P,(=;—,aq,cq;q).
qa, a a

2. We prove that thie rth associated Dy-Laguerre-Hahn orthogonal polynomials satisfy the single
fourth-order difference equation [Foupouagnigni et al., 1998e]

4
le(n,r,q,:r)Dg P,(Ir) = 0,

j=0

where I;(n,r, q,z) are polynomials in z.
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We use suitable change of variable and limit processes to extend the above result to the rth asso-

ciated Laguerre-Hahn orthogonal polynomials of a continuous and a discrete variable, respectively
[Foupouagnigni et al 1998b].

We apply this result to compute explicitly the coefficients I;(n.r, g, z) for the rth associated classical
orthogonal polynomials (including classical continuous, classical discrete and ¢-classical polynomi-
als) [Foupouagnigni et al., 1998b, 1998c, 1998e].

1.2.2 The non-linear recurrence equations

We prove the following theorem (see 8.1) which is tlie main result of the second part of this Dissertation.

Theorem

The coefficients 3, and -y, of the three-term recurrence relation
Prir(z) = (z = Bo) Pa(z) = 1nProa(z),n 2 1, By (z) = 1, A (z) = = — fo,

satisfied by the D,-semi-classical monic orthogonal polynomials of class at most one, {P, }nen, can be
computed recursively from the two non-linear equations

(wQ + [211]%%3—)(7" + ’771+1) = Fl(q!IB()- '7/8’11;717"' 7771)7
(Y2 + [2n + 1]%95(,—3)13n+1“r’n+1 =F(g Bo- -, Bri vy oo Vnt1)-

¢; and v are the coeflicients of the polynomials ¢ and v ( Z ¢;77, Y(z Z Yjz?)

appearing in the Dy -Pearson equation, Dy(0L) = L, satisfied by the regular linear functlonal .C. F| is
a polynomial of 2n + 1 variables and of degree 2; and F; a polynomial of 2n + 2 variables and of degree
3, with the initial conditions
(L, ) \
Bo = 1) 11 = —¢(Bo).

We use suitable change of variable and limit processes to extend the previous theorem to the D and
A-semi-classical orthogonal polynomials of class at most one [Foupouagnigni et al., 1998a]. We then
give the Laguerre-Freud equations for the generalised Cliarlier and generalised Meixner of class one and
use these equations (numerical and symbolic computation with Maple V Release 4) to give a conjecture

about the asymptotic behaviour of the coefficients 8, and ~,, of the generalised Charlier and generalised
Meixner polvnomials of class one:

Conjecture

The coefficients 3, and +,, of the three-terin recurrence relation satisfied by the monic generalised Meixner
polynomials of class one obey:

1 - —(n -
lim {8, — + 4 oM (ay +a2 — 1) — 0, tim [, - uw(n + o 1)(Tf +ay—1) o,
n—oo 1-—n 1—p n—oo (1~ p)?

and those of the three-term recurrence relation satisfied by the monic generalised Charlier polynomials
of class one obey:

lim (B, —n) =0, tLm (v, —p) =0.
n—o0 n—00

1.3 Outline of dissertation

In Chapter 2 we give some results and definitions on orthogonal and associated orthogonal polynomials.
We also prove some characterisation theorems for classical orthogonal polynomials.
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Chapter 3 gives some useful properties of the operators A4, and D, and the proof of some charac-
terisation theorems for D, ,-classical and D, .-semi-classical orthogonal polynomials; characterisation
theorem which are valid (by limit processes) for the operators %, Dy and A.

Chapter 4 is devoted to the study of the D, ,-Riccati difference equation satisfied by the Stieltjes
function of the given associated linear functional. In particular, we prove that the affine D, ,-Laguerre-
Hahn orthogonal polynomials are the D -semni-classical orthogonal polynomials and conversely. In this
chapter, it is also proved that the D, ,-Laguerre-Hahn orthogonal polynomials can be obtained from the
D,-Laguerre-Hahn orthogonal polynomials by a change of variable.

In Chapter 5 we give the factored form of the fourth-order difference equation satisfied by the first
associated D,-classical orthogonal polynomials and we deduce the difference equation for classical orthog-
onal polynomials of continuous and of discrete variable. We also consider the situations for which the
first associated of the little and big g-Jacobi polynornials are still classical.

Chapter 6 describes the method used to obtain, for the general situation, the single fourth-order
difference equation satisfied by the rth associated D, D, and A-Laguerre-Hahn orthogonal polynomials.
The coeflicients of the fourth-order difference equation for classical situations are also given explicitly.

Chapter 7 gives useful coeflicients for classical orthogonal polynomials like 85, Yn, Tn1 and T 5.

Chapter & presents the method used to obtain the two non-linear equations for the coefficients of
the TTRR satisfied by the Dg-semi-classical orthogonal polynomials of class at most one. We also show
how these equations can be used to obtain the two non-linear equations for the coefficients of the TTRR
satisfied by the D and A-semi-classical orthogonal polynomials of class at most one. The conjecture
about the asvmptotic behaviour of the coeflicients of the TTRR satisfied by the generalised Charlier
and the generalised Meixner polynomials of class one (conjecture obtained thanks to the two-non-linear
equations) is also given.

The appendices I, IT and III contain the data for classical orthogonal polynomials as well as the results
on the fourth-order difference equations for classical situations.

It should be mentioned that:

e Chapter 2, devoted to the preliminaries, is based on [Chihara, 1978]. [Guerfi, 1988], [Belmehdi,
1990a), [Salto, 1995] and [Medem, 1996].

¢ Chapters 3 and 4 generalise to the operator D, certain results given in the above mentioned
references.

s The original results obtained in the framework of this thesis are presented in chapters 5, 6 and 8.



Chapter 2

Preliminaries

2.0.1 The notion of topology

We recall the notion of topology on polynomials and linear functional vector spaces. These notions have
been defined in [Tréves, 1967], [Maroni, 1985. 1988|, (Guerfi, 1988] and [Belmehdi, 1990a]. For these
preliminaries, we shall exploit the works by Maroni [Maroni, 1988], Guerfi [Guerfi, 1988] and [Belmehdi,
1990al.

Let P be a vector space of polynomials in one real variable with complex coeflicients, endowed with

the strict inductive limit topology of the spaces P,. P,, C P is the vector space of polvnomials of degree

at most n. It satisfies -

o)
Pn C Pryr, n >0, P=| J Py,
n=0
and is endowed with its narural topology which makes it a Banach spacc.
Let I be the dual of F. equiped with its topology which is defined by the system of semi-norms:

1L = sup |My,
k<n

where M}, denotes the moraents of the functional £ with respect to the sequence {z"},: My = (L)y =
(C.z%). P and P arc Fréchet spaces.

We consider V the vector space generated by the elements {( BN D6}, (D = L) with its inductive
limit topology. 4 denotes thre Dirac measure: (4, f) = f(0), f € COO( ).
Let F be the lincar application:

F:. ¥V — P

n _1 j } n }
d=> :dj(—},'iphs — F(d)=> d;z’. (2.1)
=0 ) 3=0

F verifies the following properties:
1) F is an isomorphism defined on V into P.
ii) The transpose !F of F, is an isomorphism defined on P/ into V',

i) 'F =F on P.

Thus, :
(F(L).d) = (L, F(d)),VL e P', ¥d e V. (2.2)
Since {(:—nl!):D”é}n forms a basis of ' [Maroni, 1988], that is, any element £ of P’ can be expressed
as
L= Z(C D”(S (2.3)
n>0

13
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it follows that

FL) =) (L)az™ (2.4)

n>0

V’ is therefore the vector space of formal series.

Remark 2.1 Let L(P,F) (respectively L(P',P')) be the vector space of continusus linear applica-
tions defined on P into P (respectively on P' into P'). The transpose of any element of L(P,P) is
an element of L(P',P'). We shall use this process to define certain elements of L(IP',I”') basically
by transposing those of L(P,P).

2.0.2 Notations

We understand by linear functional any element £ of P’ and denote by (£, P) the action of £ € P’ on
P € P. We also denote by R the field of real numbers, C the field of complex numbers and by N the
set of integers. Henceforth, we will use interchangeably deg(¢) and deg ¢ to denote the degree of the
polynomial ¢. The operator D represents the usual derivative operator (D = %) while the Kronecker
symbol §,, ; is defined by
. .
Sy = { 1 i n=yjy

0if n#j

2.1 Orthogonality and quasi-orthogonality

2.1.1 Orthogonal polynomials

Definition 2.1 A set of polynomials {P,},en is said to be an orthogonal polynomial sequence (OPS)
assoctated to the linear functional L € P' if

deg(Pn) =n, A+ ne N,

(C,P,P,) =0 YV m,neN m#n, (2.5)
(L, PP, #0 VY n€eN.

Definition 2.2 A polynomiul P is said to be monic if its leading coefficient is equal to one (P = =" +
box™ 1 + ...); and a monic polynomial family is a one in which any element is monic.

Definition 2.3 A linear functional £ € P’ is said to be regular if there exists an OPS associated to L.

Remark 2.2 We state the following properties.

1. If £ is a regular linear functional, then there ezists a unique monic (OPS) associated to L.
2. If {P.}nen s orthogonal with respect to L, then {P,}.en forms a basis of P.

3. Any polynomial family {Pp}nen with deg(Pr) =n  Vn € N forms a basis of P.

Remark 2.3 If {P,}nen 15 a set of polynomials with deg{P,) = n Vn € N and £ a given linear
functional then the following propzrties are equivalent:

1) (L,PoPn) =0 VmneN n#m and (L, PaP,) #0 YnelN
i) (L,z™P)=0 VmneN 0<m<nand (L,z"P,)#£0 VneN

The following theorem, proved in [Chihara, 1978], gives a necessary and sufficient condition for the
regularity of a given lincar functional.
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Theorem 2.1 (Chihara, 1978) Let £ be a linear functional and M, the moment of order n of L
defined by M, = (L, z").
A necessary and sufficient condition for the existence of an orthogonal polynomial sequence for L is

A, #0 VneN,

where the determinant A, is defined by

M, M, .. M,y M,
My, M, ... M. Mnp
An =det(Mjyr)o<jr<n = : : : : :
M1 M, ... My, My
Mn AI,—L+1 N Mn. ]\1211

Definition 2.4 (Chihara, 1978) A linear functional £ is called positive-definite if
(C,7(x)) > 0 for every polynomial 7 that is not identically zero and is non-negative for all real .

Theorem 2.2 (Chihara, 1978) The linear functional L is positive-definite if and only if its moments
are all real and A, >0 Vn €N

The following theorem, taken from [Belmehdi, 1990a] gives in a more general situation some characteri-
sations of a regular linear functional.

Theorem 2.3 (Maroni, 1987, Belmehdi, 1990a) Let £ be any linear functional; then the following

properties are equivalent:

1) The linear functional £ is regular.
ii) There exists a polynomial sequence {Pp}pen (with deg(Pr) =n  V¥Yn € N) such that

det((L, P; Pr))o<jk<n #0 VneN

i) For any polynomial sequence {Q, }nes: (with deg{Q,) =n Vn e N),

det({(£. Q; Qr))o<jk<n #0 VneN.

Theorem 2.4 (Szegé, 1939, Belmehdi, 1990a) Given a regular linear functional L, the monic or-
thogonal polynomials (O.P.) associated to £ are given by

(£, Q0Q0) (£,Q0Q1) ... (£,Q0Qn-1) (£, QoQn)
(£, Q1Q0) (£,1Q1) ... (L£,Q1Qn-1) (£,1Qn)
Palz) = . . . . )

-
n—1

: : : : : (2.6)
<['1Qn——lQ0> <£a Qn—lQl) <['1Qn—lQn—l> <['1Qn-lQn>
Qo Q1 e Qn-1 . Qn

where {Qn}nen is any monic polynomial family (with deg(Q,) =n Vn € N); and,

A7 =det((£,Q; Q) o<jk<n, n > 0,

with the convention A”, = 1.
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2.1.2 Quasi-orthogonal polynomials

The notion of quasi-orthogonal polynomials was introduced in [Riesz. 1923] and extended by Maroni and
Van Rossum (for more information see [Belmehdi, 1990a}).

Definition 2.5 (Belmehdi, 1990a) Let £ be any linear functional and {Pp}pen a polynomial family
with deg(Pp) =n  VYn € N. {P,}nex is said to be quasi-orthogonal of order s with respect to L if

(L,PyPm)=0.|n-m|>s, (2.7)
Im e N, (L, Py Pmys) #0. ’

{Pp}nen is said to be strictly quasi-orthogonal with respect to L if

(L,P.Pp) =0. [n—m| > s, (2.8)
(L, Py Prmas) #0 Ym €N, '

Remark 2.4 (Belmehdi, 1990a) 1. Conditions (2.7) are equivalent to

(L, 2" Prti—s) =0, VmeEN Vt>1, (2.9)
Im €N (L£.2™Prys) £ 0, '

while (2.8) is equivalent to

(L,x™Pristyrs)y =0, VmeN, Vt>1, (2.10)
(LaIum+S> #0- Vme N. )

2. 1t follows from the definition 2.5 that if {Py }nen is orthogonal with respect to L, then {Py}pen ts
strictly quasi-orthogonal of class s = 0 with respect to L(see also ‘Shohat, 1937]).

3. Notice that quasi-orthogonality of class s = 1 was investigated in [Dickinson, 1961] and that the
definition 2.5 was also given in [Chihara, 1957] and [Ronveaur, 1979] but without the second
condition: Im e N, (L, P, P,_s) = 0.

2.1.3 Other definitions

Definition 2.6 Given a polynomial f € 2 and a linear functional £ € P'. the product of f and L, fL,
is defined as
fc : 2= C
{(fL,PY = (L, fP) VPeg?Z.

Given f an element of P, the application £ — fC belongs to L(P'.P') and is the transpose of the
following element of L(P,P): P — fP.

Definition 2.7 Given a polynomial g € P and a linear functional £ € ', the product of L and g, Lg,
is a polynomial defined as

Lo(xr) =D gr(L.z* 7)ol (2.11)
i=0 k=j

where

n
g’r) = Zgj.’lfj.
=0

Given a functional £, the application P — LP belongs to L{P.P). By transposition, we define the
product of two linear functionals £ and .M as:
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Definition 2.8 The product of two linear functionals L and M is defined by
(LM, P)={L,MP), VP €P.

Definition 2.9 (Belmehdi, 1990a, Dini, 1988) The operator 6. is defined as

6. : PP
P(z)—Plc)
o) = { e TEC 212)

where ¢ is a complex number.
The application 6, belongs to L(P, P).

Definition 2.10 Consider the linear functional L. From the above definition and by transposition (see
remark 2.1), we define the linear functional (x — ¢)7'L, as

(x—c)7'L . P>C
(z—e)7'L, Py = (L£,8.P) VPeP, (2.13)

where ¢ € C.

Corollary 2.1 (Belmehdi, 1990a) For any complez number c, and for any linear functional L the
following holds:

(z-c)(z-) L) =L, (=) [z -0 L] =L —(L,1)4,, (2.14)

where . 1s the Dirac measure at the point c.

2.1.4 Dual basis

Definition 2.11 (Maroni, 1988) Let {Pp}nen be a monic polynomial family with deg(P,) =n Vn €
N.Then {Py}nei forms a basis of P and therefore generates a unique basis of ', called dual basis asso-
ciated to { Py }nzn, denoted by {P,}.cn and satisfying

(Pr.Pp)=6pm VYmneN (2.15)

Any element £ of F' can be expressed in this basis as (see [Roman et. al.. 1978], [Maroni, 1988]):

L= (L,P)P,. (2.16)

n>0

Proposition 2.1 Let £ be a regular linear funciional, {P,}nen the corresponding monic orthogonal
family and {P, }pex the dual basis associated to { P, }nen. We have

Pr

P,= " : .
gt Yhen (2.17)

Proof:  Let us write P,L =} ¢, ;P;. We obtain
j

c”wj = (L"anP]> = <‘C7"ann>6n,3
by the fact that {P,}n=n is orthogonal with respect to £. Thus,

Pr

P,= —"
(L, Py Pn)

L.
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2.2 Associated orthogonal polynomials

2.2.1 Three-term recurrence relation

We first give the following theorems which we shall use further to define associated orthogonal poly-
nomials. The first is taken from [Chihara, 1978] and the second from [Favard,1935] (see also [Wint-
ner,1929],[Stone,1932],[Sherman,1933],[Shohat,1938], [Peron,1957]).

Theorem 2.5 (Chihara,1978) Let £ be a regular linear functional and {P,}nen the corresponding
monic orthogonal polynomials. {P,}nen satisfy a three-term recurrence relation

Pry1(z) = (2 = Br) Pa(z) — vPaar(z), n2>1,
{ Poa) =1,P () = = — Bo, (2.18)

where 3, and ~, are compler numbers with v, #0 Vn e N.

Proof:  Since {P,}nen is orthogonal with respect to £, it forms a basis of P (see Remark 2.2). We
therefore expand the polynomial zP, on the basis { P, }nen and obtain

n—2
Py = n+1+,3nPn+'7nPn—1+Z nn,ijan]-v (219)
=0

where v,, 3, and 7, ; are complex numbers.

To compute 7, ;, we apply the linear functional £ to both sides of the equation obtained after
multiplying the previous one by P;, j < n — 2 to get

Mnjlo; = (L, 2P, P)=0,j<n-—1,

with Iy, = (L. P, P,).

Ccnsidering the fact that Ip, # 0 Vn € N (see (2.5)), it follows from the above equation that
;= 0, j <n —1. Therefore equation (2.19) becomes

IPn = Pn+1 +611P11+'711Pn—1- n Z 1.
M:micking the approach used above to compute 75, ;, but with the previous equation, we express 7y,
as
“n 10,1171 = <£7IP‘I171PI2) = <['9P11Pn> = I(),n # Oy n Z 1.

Hence v, #0n > 1.
By convention one takes g = (£, 1). a
TLe converse of the above theorem is due to Favard (1935) (see also [Chihara,1978]) .

Theorem 2.6 (Favard’s Theorem) Let {8.}nen and {yn}nen be two sequences of compler numbers
and let { Py}nzn be the family of polynomials defined by the recurrence formula

{ Pn+l (I) = (I - ﬂn)Pn(I) - 'YnPn-l(I)y n Z 11
FPo(z) =1,P (z) =z — So.

Then, there exists a unique linear functional L such that
(L£,1) =y and _(Vllzl?an) =0 Vm,ne N, n#rm.
L is regular and {P,},en are the corresponding monic orthogonal polynomials if and only if
Yo 0 VYneN,
while L is positive-definite if and only if

Bryvm€R VYVneN andv, >0 VneNlN
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2.2.2 The first associated orthogonal polynomials

Definition 2.12 Given a regular linear functional L and the corresponding monic orthogonal polynomials

{Pp}nen, the first associated of the polynomial Py, is & monic polynomial of degree n, denoted by P,(ll)
and defined by

P () = L(L, Poi1(z) = Prpi(t)
Yo z—t

) VneN, (2.20)

with vo = (£,1). It is understood that the linear functional L acts on the variable t.

Lemma 2.1 The monic polynomial family {P,EI)},LEN satisfies the three-term recurrence relation

(2.21)

P (z) = (£ — 3ny1 )P (@) — ~nn PY, (2), n > 1,
PV (z) =1, P (z) =z - 41,

where B, and v, are defined in (2.18).

Proof:  Using the three-term recurrence relation satisfied by {P,},en (see (2.18)) and (2.20) we obtain

(1) 1 Prio(z) — Paa(t)
P = e, Dol =Py
- l(ﬁ’ (-T' - Bn-f-l)Pn——l(z') - ’7n+1Pn(I)
Yo -t
_(t = Bnt1) Prya(t) _'Yn+an(t)>
T —t
- (e- 3'14):'}5(0 Pn—l(ﬂz : f)nI-l(t))

P (z) — Pn(t)>

1
~Yn-1 (E
70 T —t

1 ,
- :E(Ex Pn+1(t)‘)
= (£— B8 )Pz) = a1 P (7)) VneN,

O
We deduce from Theorem 2.6 and Lemma 2.1 that there exists a unique regular linear functional £

with respect to which {Pr(L”}neN is orthogonal with (£{",1) = ;.
Iterating the above process, we define the general associated orthogonal polynomials.

2.2.3 The rth associated orthogonal polynomials
Definition 2.13 Let £ be a regular linear functional end {P,}nz1 the corresponding monic orthogonal
polynomials satisfying (2.18).

The rth associated of the orthogonal polynomial P, is a polynomial of degree n, denoted P,Sr) and
defined by

. P () - PUL e
Py = (e, T DB O g0y (222)

Tz —t
with
(£7,1) =5, 721,

assuming that v = (L. 1), P = P, and L9 = £; where L7V is the regular linear functional with
respect to which {P,(,T_“}”gu is orthogonal; and it is understood that £~V acts on the variable ¢.
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Lemma 2.2 If £ is a regular linear functional and {P,}ncn the corresponding monic orthogonal poly-

nomials, then, the rth associated polynomials {P,(lr)}neN of {Pn}nen satisfy the three-term recurrence
relation

{ P (@) = (2 = Basr) P2 (@) = mer PTh (2), 2 1, (2.23)

PV(x)y=1,P7 @)=z - B,,r>0.

Proof:  We shall prove the lemma by induction on r. For r = 1, (2.23) is satisfied thanks to Lemma
2.1. We suppose that (2.23) is satisfied up to a fixed integer r. Then using (2.22) we obtain

(r)
Py = Lo Tatale) ~ Pia(t),
Y r—t
= —1—<C(T) (z — ﬂn+r+1)Pr(11-;-)1 (z) - '7n+r+1PT(1r)($)
Ir k z -t
(= Brire1) P () = ’Yn+r+1Pr(zr)(t)>
z—t
1 PT(LT) T P,(Ir) t
= ($~ﬂ11+r+1)_(‘c(r)’ +1(:3:—t +1())

P -POw, 1
. Lo, _ 1 (r)
n—+»r-4—ll_yr (‘C T —1 > -~ (C Pn+1(t))
= (2~ Basrs) PV (@) = pnarnt P (@) VnEN
Thus {P{" }ncw satisfies (2.23) VreN. 0

As consequence of the previous lemma, we claim the following known result (see [Magnus, 1984,
[Belmehdi. 1990b]).

Lemma 2.3 (Magnus, 1984, Belmehdi, 1990b) The associated polynomials P,(lr) satisfy

p{npir+b P,E:LIR(,TT H Vrek =Tnke YREN VrelN (2.24)

Proof:  In the first step we write (2.23) for Pl+1 and PV
(21 (:C - (I - ,‘371 - r)P r)( ) - ’Yn-*—rP,(lr_)l (1:)‘ (225)
Pirt(z) = (2= 3nr) PV (@) = e P (2). (2.26)

In the sccond step we subtract the two equations obtained after multiplying (2.25) and (2.26) by Pr(lr::l)
and P, respectively,
P plrtl) _ pin P(T“' Amen (P PUHD L p(n) plrel)y

n+1 n—1 n 1 n n—2

Then relation (2.24) results by iterating the latter. |

2.3 Operators D, 7, D,, G, and D,

2.3.1 Operator D

The application P —» DP belongs to L(P,Z). By transposition, we define derivative of the linear
functional as:
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Definition 2.14 Let £ be a given linear functional, we define the D-derivative of L, DL, as

DL . P—=C
(DL.P) = —(L.DP) VPeP. (2.27)

Proposition 2.2 Let £ be a regular linear functional, {P,}nen the corresponding monic orthogonal
family and {Pn}nes the dual basis associated to {Pp}ner:. If {Qua}nen 15 the dual basis associated to
the monic family {Qn 1 }ner defined by

DP,

0. = ,
Jn,l o+ 1

then we have
DQILl = —(77 + 1\)Pn_+_1.

Proof:  This follows from Proposition 3.3. O

Definition 2.15 The regular linear functional £ and the corresponding monic orthogonal polynomials
are said to be D-semi-classical (or scmi-classical continuous) if there exist two polynomials v of degree
at least one, and ¢ such that

D(oL) = L. (2.28)

Moreover, if ¢ is a polynomial of degree at most two and v « first-degree polynomial, then, the lincar
functional and the corresponding orthogonal polynomials are called D-classical (classical continuous).
For more details about D-semi-classical orthogonal polynomnials can be found in [Maroni, 1985, 1987],
[Marcellin, 1988], [Belmehdi, 1990a] and references therein.

2.3.2 Class of the D-semi-classical linear functional

Let £ be a D-semi-classical linear functional satisfying

D(ol) =y L, (2.29)

where ¢ is any non-zero polynomial and ¢ a polynomial of degree at least one. £ satisfies

D(foL) = (¢Df + U f)L. for any polynomial f.
Definition 2.16 [We define the class cl(L) of the D-semi-classical linear functional £ as

c(£) = min {max(deg(f —2.deg(g) — 1)},

(fog)=R:

where

Ry =1{(f.9) € B /deg(g) > 1 and D(SL) = gL}.

Proposition 2.3 (Belmehdi, 1990a) If £ is a« D-semi-classical linear functional satisfying (2.29), then
L is of class s = max(deg(o) — 2,deg(y) — 1) if and only if

[T trel + 1L #0, (2.30)

ez,

where Zy is the set of zeros of &. The complez number . and the polynomials ¢., V. are defined by
{(r=0c)o. =0, v—0c= (. — )b + 7. | (2.31)

Proof:  For a proof sce Proposition 3.4. a

Remark 2.5 It follows from the definition of the class of the linear functional that the D-classical linear
functional is a D-semi-classical lincar functional of class s = 0.
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Lemma 2.4 Let £ be a regular linear functional.

i) If there exist two polynomials v # 0, and o such that

D(oL) =¢L (2.32)
then ¢ is a non-zero polynomial.

11) Conwversely, if there ezist two polynomials ¢ # 0 and ¥ such that (2.32) holds, then ¢ is of degree
at least one.

Proof:  For a proof see Lemma 3.1. |

2.3.3 Characterisation of D-classical orthogonal polynomials

The following theorem which is a corollary of the theorem 3.1 gives some characterisations of classical con-

tinuous orthogonal polynomials (see [Chihara, 19781.[Nikiforov et al., 1983], [Al-salam, 1990]. [Marcelldn
et al.. 1994], ...).

Theorem 2.7 Let £ be a reqular linear functional, {P,}ner: the corresponding monic orthogonal family
and Qp, . the monic polynomial of degree n defined by

_ m
Bn.m Qn.m =D Pn+n17

with
(n +m)!
n!

me = QnO = n

The following properties are equivalent:
1) There exist two polynomials, O of degree at most two and v of degree one, such that

Dol =vL

i7) There exist two polynomials. & of degree at most two and v of degree one, such that for any integer
m,

,D((:)L:Hl) = I-‘HLL‘“
(Lon-QynQuan) =F 6, VjneN (k, £0VneN),
with the linear functionael L, and the polynomial ., defined, recursicely, by

(v"m-l = Do + Ulm, L/)O = wy

L"m«] = CbL.m- EO =L
and given explicitly by
tm(r) = mo'(z) + Y(x), (2.33)
=¢m L. (2.34)

1i1) There exist two polynomials, & of degree at most two and ¥ of degree one, such that
for any integer m, the following second-order difference equation holds:

(/‘ ’D:(V)n_m + U Der,m + )‘:l.m Qn,m =0 VYng N7

with the polynomial Y., given by (2.39) and the constant A}, . given by

1 H

@
A = 11{1 +(n —1; -—} =—n{Y +(2m+n-1) —} (2.35)
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w) There exist two polynomials, o of degree at most two and 1 of degree one, such that, for any
integer m, the following relation holds:

nD {Q '1—1.m.+1[:m+l] = - A;,,nl,Qvl,anm VTL S N, (236)

with the polynomial v, the linear functional L,, and the constant A}, ., given, respectively, by (2.33).
(2.84) and (2.55).

v) There exist a polynomzal o of degree at most two and three constants ¢n 41, Cnns Cnpn—1 with
Cnon—1 # 0 such that

¢IDPH = Cn,n+1Pn+l + CTL,TIPTL + Cn,’n—IPn—l, n > 1

vi) For any non-zero integer m, there exist a sequence of complez numbers {un m}nex such that
Qn,m—l = Qruu - un—l,an-—l,m + Un—‘z,an—‘.l,m- vneN - {0, 1}-

Remark 2.6 Let us comment on the above properties.

For allm € 14, the derivative of order i, {Qn.mnen, of the family { Pnim bnes is classical and orthogonal
with respect to the classical linear functional C,,.

The functional version of the generalised Rodrigues formula [Nikiforov et al, 1983], 'Belmechdi, 1990c].
given below, is obtained by iterating the relation (2.36):

ri—1

i
Qn,mOmE = - m Dn(én+m£)~
E) P (j+2m - 1) %
2.3.4 Operators 7, and D,
Definition 2.17 The arithmetic shift operator T, is defined by
T.:Z2 — P
P — TP T Pr)y=Plr+.), c €R (2.37
We denote 71 = T
Definition 2.18 The differcnce aperator D, is defined by
D.:? — P
Plr+w) - Pz ~
P — D_P D,Px)= —(T—)—‘(I—)..u €2 w#0. (2.38.

W

We denote Dy = A and D_; = X, N and V denote the forward and the backward difference operators.
respectively.

The applications P — 7,FP and P — D_P belong to L{F.F). We, therefore. use their transposes to
define the action of the operators 7. and I, on the linear functionals.

Definition 2.19 The action of the arithmctic shift operator T, on the functional £ is defined by
(TLL.P)y =(C,T.,P) vPeP. (2.39,
Definition 2.20 Given a linear functional £, we define the D, derivative of £. D_C, as

D_,C . P C
D.C,P) = —(L,D_,P) V¥Pe?. {2.40)
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Definition 2.21 The regular linear functional £ and the corresponding monic orthogonal polynomials
are said to be D, -semi-classical if there exist two polynomials ¥ of degree at least one, and © such that

D.(3L) = L. (2.41)

Moreover, if & 1s a polynomial of degres at most two and y a first-degree polynomial, then, the linear
functional and the corresponding orthogonal polynomials are called classical discrete.

Using the above definitions. we obtain the following properties:

Proposition 2.4 (Salto, 1995)

7..D_ = D,T..=D_. D,D_,=D__D,. (2.42)
Tolfg = T.fTg TASO=T.fT.L (2.43)
D.Afg = [fD.g+T.yD.f=T fD.g+gD./f. (2.44)
DafL = fD.L+D.fT.L=T fD.L—-D_fL. (2.45)
wD,L = (T.—-T)L. (2.46)
Du(fgl = T.fD.(4L)-T. fD_gL+D_(fg)L. Vf.ge . YL eF". (2.47)

Norice that equation (2.42) means that:

T—.,D,¢ = DT ¢®=D_,%. D.D_®=D__D_ 9, Vdec >,
T.D,® = D.T_..®=D_,% D.D__.®=D__.D_ % Vde ™.
Proof:  This follows directly from Proposition 3.1. 3

The following lemma proves that th arithmetic shift of the associated orthogonal polynomials (resp.
regular linear functional) are the associated shiftec orthogonal polynomials and shifted regular linear
functional, respeetively.

Lemma 2.5 Given a ~eqular linear fur ctional £ ani {P, }he:: the corresponding monic orthogonal poly-
. . rl - ~
nomials, the rth associated P, of P, :nd Ll of L obey

(TP =P, T..oo' =T c"  wroa=li (2.43)

Proof:  We shall zive the proof he indnetim oz ro Ie follows from Lemma 3.2 that {7 Py}, = wre
the monic orthogonal polynomials asso iated e T £,

Forr =0T, )" =T, P,(,m =7 P, and (T, 5)(0 =7 =7,C.

Suppose that (2.48) is sarisfied up 1o a fixed r. Then using 2.22) and the fact that £ acts on tae
variable £, we get

(=

(r: )
2 ! r ~tn~ R
TP ey = ST ) A(T Ppoy) (o —(7,P ) >
T r—t
(r} (ry .
= l./T, [:(r;. T“‘ P'H'I(I) - 7: Pn+)1‘ t)>
’_'r\ w 3 I — ¢
(- (ry ;
_ L(\tvl:(”,ff; 7: Pn—l(r) _Pn’l t)>
o (t—)
_ L"C" P:l’—‘l(',r_*_;‘d ~pr(1.r-‘l t)>
"y ) L+ =t

— 7:, R(lr-l)(:r )

Then,
(T.P,, " =T.P'". IneN 7reN (2.49)
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We use remark 2.3 to get
(T 0) ) (T Py =0 = (TL LOFY T, P D), > 1, 1 > 0. (2.50)
For n = 0 (sce definition 2.13),
(T OV 1) =y = (T, £+ 1), (2.51)
We combine (2.49), (2.50) and (2.51) to get
(70 TPy = (T, L0 TPy vn >0,

Hence (7., E)(TH) =T, L+ thanks to the fact that {7.. P,(fH)}nEN, which is orthogonal with respect
to T, L7+ forms a basis of P. O

2.3.5 Class of the D_-semi-classical linear functional

Let £ be a D,-semi-classical linear functional satis{lying

D.(8L) = ¥L, (2.52)

where o is any non-zero polynomial and ¢ a polynomial of degree at least one. £ satisfies
D_(feéL) = (¢D.f +vT,f)L, for any polynomial f.

Definition 2.22 We define the class cl(L) of the D, -semi-classical linear functional L as

(L) = (fﬂm)iEnRQ{max(deg(f) —2.deg(g) — D},

where
Ry = {(f.9) € F? /degly) > 1 and D,(fL) = gL}.
The following proposition give a characterisation of the class of a D -semi-classical linear functional.

Proposition 2.5 (Salto, 1995) If £ is a D_-semi-classical linear functional satisjying (2.52), then L
is of class s = max(deg(¢) — 2,deg(v) — 1) iof and only if

IT (rewl +1{Lsve ) #0. (2.53)

cELy
where Zgy is the set of zeros of ¢. The complex number r. , and the polynomials ¢.. U, . are defined by
(£ = Ao =y U~ 00 = (1 4w — ooy + Ter (2.54)
Proof:  This follows from Proposition 3.4. a

More details about the class of a D_-semi-classical linear functional can be found in [Salto, 1996] and
[Godoy et al., 1997b].

Remark 2.7 Fromn the definition of the class of the semi-classical linear functional. we deduce that the
D_ -classical linear functional is a D_ -scmi-clussical linear furictional of class s = ().

Lemma 2.6 The lincar functional £ s requlur if and only if T, L is regular.

Proof:  For a proof see Lemma 3.2.

L]

Lemma 2.7 Let £ be a regular linear functional.
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i) If there exist two polynomials v # 0 and ¢ such that

D_(4L) =YL, (2.55)
then ¢ is a non-zero polynomial.

it) Conwversely, if there exist two polynomials © # 0 and ¥ such that (2.55) holds, then ¢ is of degree
at least one.

Proof: This follows from Lemma 3.1. |

Proposition 2.6 (Salto, 1995) Let L be a regular linear functional, { P,}nen the corresponding monic
orthogonal family and {Pp}ncy the dual basis associated to {Pp}pen. If {Qnitnen is the dual basis
assoctated to the monic family {Q,. 1 tnen defined by

- D_P,_
in: — et
' n+1

)

then we have _
D—_uQn,l =—(n+ 1)Pn+1-

Proof:  For a proof see Proposition 3.5. m|

2.3.6 Characterisation of \-classical orthogonal polynomials

The following theorem which is a corollary of Theorem 3.1 gives a characterisation of the orthogonal
polynomials of a discrete variable [Al-salam. 1990}, [Nikiforov et al., 1991], [Garcia et al., 1995], [Salto,
1995].

Theorem 2.8 Let £ be a regular linear functional, { P,},ex the corresponding monic orthogonal family
and Q.. the monic polynomial of degree n defined by

Bn,'w le.ln =A™ PIH—ITL: 256)

with
(n+m)!

Bn,m = ! ) Qn,() = Pn‘ 257)

The following properties are «quivale nt:
1) There exist two polynomials, O of degree at most two and o of degree one, such that

A(oL) = L.

11) There exist two polynomials. o of degree at most two and ! of degree one, such that for any integer
m,

A(’:)Em) = Umc-
<‘Cvn-(2j,an.m> = kn(sj,n- (kn # 0vn € N),
with the linear functional £, and the polynomial 1, defined, recursively, by
Y1 = Ap =~ TL‘my Yo = 1/]7
Em-—] = T(¢ Em)- EO =L

and giwen explicitly by

o) = ol +m) — o(z) + ¥ (x + m), (2.58)

T

Lo =[let+irTmC. (2.59)

J=1
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iis) There exist two polynomials, o of degree at most two and 3 of degree one, such that
for any integer m, the following second-order difference equation holds:

QDAV Qn,m + Ilr""?'l A Qn,m + /\:11"1 Qn.m =0 Vneg N:

with the polynomial Vo, given by (2.58) and the constant A, given by

Iz "
/\:1,111 =—-n {'u/':n + (’1 - 1)%} = —-n {wl + (2m +n - 1)'4)2_} (260)

i) There ezxist two polynomials, ¢ of degree at most two and v of degree one, such that, for any
integer m, the following relation holds:

TZV [Qn—l.m«&lﬁm»l] = - /\:1,-,71Qn,m£m Vn € N7 (261)

with the polynomial v, the linear functional L, and the constant X, ,, given. respectively, by (2.58),
(2.59) and (2.60).

v} There exist a polynomial o of degree at miost two and three constants cnni1. Cnn. Cnn-1 With
Cnn—1 7 0 such that

¢vpn = C71.71+1Pn,-1 + ’jr1,11Pn + Cn.n—IPn—lv n> 1.
vi) For any non-zero integer m. there exist sequence of complex numbers {u, m ner such that
Qn,m—l = Qn‘m + “nA],an-l,r: + l'n—'l.an—Q,m, Vn € N - {07 1} (262)
Remark 2.8 1. For all m € N, the N-derivative of order m, {Qn. m}nen, of the family { P, }nen
s classical discrete and orthogonal with respect to the classical linear functional L,,.

2. The analogue of the functional version of the generalised Rodrigues formula [Nikiforov et al.. 1991],
[Salto, 1995] given below, is obtained by iterating the relation (2.61)

rni—1 n-—m
1

Qnom dlo+7)T"L = =\ ¢lx+ )T L.
J]:[l EL"+(2m+]+n—L% J];II )

3. If the linear functional £ 1s represented by the positive weight p on the interval I = a b,

(£.P =\ plz)P(z) VPEeF, (2.63)
r=I

with x" ¢(z) p(x)|° =0 7n € N, ther we have the equivalence

A{oL) = VL <= Alop) = vp. (2.64)

2.3.7 Operators G, and D,
Definition 2.23 The geometric shift operator G, is defined by
Gg:2 — 2
P — G.P GP(z)=Plqr), ¢ #0. (2.65)
Definition 2.24 (Hahn, 1948) The ¢-difference operator D, called Hahn operator is defined by
D, — P
_ Plgz) - P(a)

r — DP D r)y=—-—L €2 q#0, ¢#£ 1. (2.66)
(¢ — D)z

The applications 7 — G, I” and P — D, P belong to L(2,2). We, therefore, use thoir transposes
to define the action of the operators G, and D, on the linear functionals.



28 Chapter 2. Preliminaries

Definition 2.25 The action of the geometric shift operator G, on the functional £ is defined by

(GL.P)=1ic,6

; P) VPeP. (2.67)

<

Definition 2.26 Given a linear functional L. we define the D,-derivative of L. D, L, as
D, L . o C

1
(D,L,P) = 45<£7DLP> VP € P. (2.68)

Definition 2.27 Given a real number ¢ # 1 and an integer n, we define the real number [n], by

n o __

1
,q# 1, n>0. (2.69)

= L=

Definition 2.28 The reqular linear functional £ and tl:e corresponding monic orthogonal polynormials
are said to be Dy-semi-classical if there exist two polynomials i of degree at least one, and o such that
Dyol)y =y L. (2.70)

Moreover, if ¢ is a polynomial of degree at most two and v a first-degree polynomial, then the linear
functional and the corresponding orthogonal polynomials are called D,-classical or g-classical.

From the above definitions, we state the following corollary of Proposition 3.1 ‘Medem. 1996].

Proposition 2.7 (Medem, 1996)

Q,JD% = D,. D,G =t4,D,. D%’Dq = quD%, (2.71)
Golfg) = GofGuy. G(fL)=GqfgL. (2.72
Dyifg) = D9~ GwD,f=6,fT,9+9D,f, (2.73)
DfL) = fD,L-D,fG,L=G,fD,L+D,fL. (2.74)

(q—1)D,L = a7 (G,L-L). (2.75)
Dy(fgly = GofD,gL)—C, fDyyL +Dfg)L. YfgeZ VL eP. (2.76)

Notice that the identities defined in (2.71) are valid when the operators ¢, and D, act on 2 and also on

-

2.3.8 Class of the D, -semi-classical linear functional
Let £ be a D,-semi-classical linear functional satisfving

D, oL, =1 L, (2.77)
where ¢ is any non-zero polynomial and v a polynomial of degree at least one. L satisfies

D,(f¢L) = (¢Dy f+1G, f)L, for any polynomial f. We, therefore, define the class of the Dgy-semi-classical
linear funictional £ as:

Definition 2.29 We define the class cl(L) of the Dy-semi-classical lincar functional £ as
(L) = min {max(deg(f) - 2,dez(y) — 1)}.

tf9)enRey

where

Ry ={(Ff9)e? /deg'g) > 1, D,(fL) = gL}
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Proposition 2.8 (Medem, 1996) If £ is a D,-semi-classical linear functional satisfying (2.77), then
L is of class s = max(deg(¢) — 2,dea(v) — 1: if and only if

T (real = Lo )] #0. (2.78)

cELy

where Zy is the set of zeros of 0. The compley number ., and the polynomials ¢., {4 are defined by

(r—cige =0 V== (qr — C)Peq +Tecq. (2.79)
Proof:  For a proof see Proposition 3.4. (]

Remark 2.9 It follows from the definition of the class of the linear functional that the D,-classical linear
functional is a D,-semi-classical lincar functional of class s = 0.

Lemma 2.8 The linear functional £ 1s regular if and only if G,L (with ¢ # 0) is regular.
Proof:  This follows from Lema 3.2. |

Lemma 2.9 Let £ be a regular linear functional. we have:

1) If there exist two polynomials ¥ # 0, and o such that
Dy(6L) = L. (2.80)

then ¢ is a non-zero polynomial.

it) Conversely, if there exist two polynomiials © # 0 and ¢ such that (2.80) holds, then v is of degree
at least one.

Proof:  For a proof see Lemma 3.1. 3

Proposition 2.9 (Medem, 1996) Ler £ be a reqular linear functional. {P,}nex the corresponding
monic orthogonal family and {P .}, =1; the dual basis associated to {Pp}ne.
If {Qn}ner 1s the dual basis associated to the monic family {Qn1}ne:: defined by

o _D/[Pn-l
Ty,

then we have

’D;;Q,._.l =—qn+1,P,..

Proof:  This follows from Proposition 3.7. a

2.3.9 Characterisation of D,-classical orthogonal polynomials

We give some characterisations for D, -classical orthogonal polymomials. The following theorem is a
corollary of Theorem 3.1 [Medemn, 1996 .

Theorem 2.9 Let £ he a regular linear functioral {P,} ey the corrfspondmg montic orthogonal farmaly,
and Qn.m the monic polynomial of degree i defined by

Bn,m v’l Qn m = D;“ Pn+m-

with

ro—1

Bn m((l/ = H [7! - I — _/]q Q,,‘r) = [)ﬂ.

c={
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The following properties are equivalent:
1) There ezist two polynomials. ¢ of degree at most two and v of degree one, such that

D,(6L) = vL.

i1) There exist two polynomials. ¢ of degree at most two and 1y of degree one, such that for any integer
m,

Dq(¢£m) = ﬁ"mﬁv
<Eman.an‘m> = knd_j.ru Vj,'ﬂ eEN, thp =U0Vne N):

with the linear functional L, and the polynomial O, defined. recursively, by

L’)m+1 = ,qu + ngUm~ o = v

Lons1 =G6Gu0L). Lo=L
and given explicitly e~
() = LD =0 oy (2.81)
(g —1;x
Lm=]]ot@n) G L. (2.82)
j=1

i1t) There exist tuo polynomials, ¢ of degree at most two and ¥ of degree one, such that
for any integer m. the following second-order g-difference equation holds:

QDQDL Qn,m + d"m Dq (Qn.m — A Qn,wi =0 Vne N,

n.m

with the polynomial v, given by (2.81) and the constunt XX=, gi en >y

n.m

1 1

b==nl, S —2m+n -1

‘ Q
0

’\r-:m = _[”]Q {lDfltm, + {” - 1}

. (2.83)

~

L 1
i q

q

1) There exist tico polynomials, & of degrec at most tio a~d ¢ of degree one, such that. for any
anteger . the following relation holds:

(3]
<2

:”']qlDl i(211-<1‘!ll+l£”l-1: = —q )‘:;,‘y (.)n '.ﬁn Vn S (284)

with the polynomial o, the linear functional L. avd the constan- A, ., given respectivel, by (2.81).
(2.82) and (2.85,.
v) There exist a polynomial o of degree at wost fuwo ard th-ce ~onstants ¢, . +1. Cn.,.. “n no1 with
Cunn—1 7 0 such that
¢/D%Pn = ('n.n+lpn—l +ro0Pre o Py

vi) For any non-zero integer in, there emst a sequence of comples numbers {un m}ney such that
Qn,ﬁA—l - (271,,711 + u'n—l.mthl,r' T+ n—2 m(gnA‘; L8] vn € F; - {O 1}
Remark 2.10 1. For allm € N, the D, -derivative of order i, {Qn.m Yneri, of the family < Poym bnc
s q-classical and orthogonal with respect o the g-classical linear functional C,,.

2. The q-analogue of the functional version of the yeneralised Rod—igues formula [Medern, 1596] given
below, is obtuiried by iterating the relation "2.6.):

11

Qn,mﬁm - (71)7(1—v H X.L._—JLI— DTLLEH*{—VH'

J- U = )ar.t) M
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2.4 The g-integration

I:: this section, exploiting the thesis of Medem [Medem, 1996]. we recall the definition of the concept of
the g-integration with the assumption 0 < ¢ < 1 and give some properties. More details can be found in
‘Jackson. 1919] and [Gasper ct al., 1990] and [Medem, 1996].

2.4.1 The g-integration on the interval [0,a], a > 0

Let f be a real function defined on the interval [0,a] and P,({0. a]} the “g-partition” of the interval [0, a]
defined by

P,([0,a]) = {...a¢" < ag” < ... < aq < a}.
For any integer \', consider the ”Riemann sum”
N N

Ax(f) =Y (aq" = aq"™) f(ag™) = a(1 — ) Y _ " f(ag").

n=0 n=0

If the limit of Ax(f) when N —) oo is finite, then f is said to be g-integrable and the g-integral of f on
the interval [0,a]. denoted [ f(s)d,s, is given by

/f Ydgs = hm An(f) —al—qi (2.85)

2.4.2 The g-integration on the interval [a.0], a < 0

Let f be a real function defined on the interval [0, a] and P,([a,0]) the ”g-partition” of the interval [a, 0]
defined by
W([a,0)) = {a<aq< ...aq" <ag®™ < ...} = {ag",n € N}.
For any integer N, consider the ”Riemann sum”
N

An() = S(ag™ — ag) flag") = —a1- ) 3 q" Flag")

n=0 n=0

If the limit of Ax(f) when N — oc is finite, then f is said to be g-integrable and the g-integral of f on
-hie interval la, 0. d(uot(dj f(s)dys. is given by

[ felds = Jiw An(f) = ol =)D ¢ flag®), (2.86)

n=0

2.4.3 The g-integration on the interval [a.¢{, a > 0

Let f be a real function defined on the interval [a,oc[ and Py([a.oc]. the ”g-partition” of the interval
oc| defined by

Pyla, o) ={a<ag™' <...ag" <aqg™" ' <...} ={aqg ™. n € N}.

For any integer N, consider the ”Riecmann sum”

N N
—n— il —n— 1 \ —n —-n—
AN =) (ag ™t = ag™") fag ‘)=a(r1>§jq flag™"™").
1n1=0 n=0

If the limit of Av(f) when N — oc is finite, then [ is said to be g-integrable and the g-integral of f on
the interval [a, oo[ denoted [ f(s)dys, is given by

s = i An() = - 1D 0" e (287)
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2.4.4 The ¢-integrationon the interval | — 00, a|, a < 0

Let f be a real function defined on the interval | — o0, a] and P, (] — oo, a]) the "g-partition” of the interval
] — oc, a] defined by

Pl —oc,al)={a>a¢ ' >...>ag" ' > .} ={ag"". n € N}
For any integer .\, consider the "Riemann sum”

N

N
Av(f) = Z(aq—” —aqg " Vflag™" ) = ﬁa(l —~1) Z 77" flag=" ).

n=0 n=0

If the limit of A~ (f) when N — oc is finite, then f is said to be g-integrable and the g-integral of f on
the interval ] — oc, al, denoted ff\ fis)dgs, is given by

[ o= Jim () = (g =03 g flagT (289)

n=0

Remark 2.11 The g-integration i< estended to the whole real line by using relations (2.85)-(2.88) and
the following rules

b ¢ b
/(lf(s)dqs = /f(s)dq.9+/0f(.9)dqs Ya,b € R,

/:0 f(s)dys

J! e

| s

As the usual intezration, the ¢-irtegration enjovs some properties. Here. we give some. which are
proved using the definition of the corrept of the g-integration.

b o
/ f(s)dys +/ f(s)dys Va,be R, a<0,b>0
v oa b

i

2 b
/ Fls)dys + / f(s)dys Ya,b€R a<0,b>0 (2.89)

i

[ flsydys + / F(5)d,s +/mf(s)dqs Va.be &
Ja b

el

Lemima 2.10 1. If f is a real “unction continuous at 0, then we have

/” D, f(s)d,s = fla) — f(O).

(o

For any function f integrabl- on [0.a . we hare

D, fis)dys = fa),
0

assuming that the operator T, acts on the variable a.

3. If f is a real function contin-ious on the interval [0, af, then f is g-integrable on [0,a] and obeys

lim /“ f(s)d,s = /“ f(s)ds.
1o 40

4. If f and g are two real functions, ¢-integrable on the interval [0,a], then we have -

)

@ &3 1 a
/0 SO als)dys = 15§~ [ Ds(s)slusidys = £sla) sl - p /O 9(s)D 1 f(s)dys.
with 415 = f(a)gla) = FO)(0).

Remark 2.12 The previous lemn.a can be cxtended to the whole real line by using (2.89).
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The D, -semi-classical orthogonal
polynomials

3.1 Introduction

We define the operators 44, and D, . The first generalises the operators 7. and G, and the second
generalises the operators D, D, and D,. We give some definitions related to these operators and then
give the characterisation theorems for D, ,-semi-classical orthogonal polynomials: and deduce by limit
processes the characterisation theorems for D, D, and D,-semi-classical orthogonal polynomials.

3.1.1 Operators 4,, and D,

Definition 3.1 We combine the operators T, and G, to obtain a new operator denoted by A,. and
defined by

Ay 2 — P
P — AP A LPx)=G,T.P)=Plgr ~w). ¢ #0. (3.1)

We denote

AL =4

ale
—
(%)
NS
-

Definition 3.2 (Hahn, 1948) The difference operator D, , is defined by
Dyg,:F — P
Plqr +w)— P(r)
(q—-Dr+w

P — D,.P, D, P(r)= wER gER q#0. (33)

We denote
D,.=D: . (34)

The applications P — A, P and P — D, P belong to L(2,P). We, therefore, use their trans-
poses to define the action of the operators 4, . and D, ., on the linear functionals.

Definition 3.3 We define the action of the operator A, . on the functional L as

1
(AL, P) = 5([:.4(7‘&1’) VP el (q£0). (3.3)
Definition 3.4 We define the D, . -derwative of a given linear functional £, Dy L, as
D, .L : F-C
1
(D,.L, Py = ——{—1([:, D, .’y VPeP,(qg#0). (3.6)

33
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Definition 3.5 The regular linear functional L and the corresponding monic orthogonal polynomials are
said to be D, -semi-classica! if there exist two polynomials U of degree at least one, and ¢ such that

D, .(¢L) = ¥L. (3.7)

Moreover. if ¢ is a polynomw.ial of degree at most two and 1> a first-degree polynomial, then the linear
functional and the correspon ling orthogonal polynomaials are called D, ,-classical.

Remark 3.1 The operators D, and D, generalise the operator d% in the following way:

)

d
lim D, = . lim D,

2—0 T g1 d:p
while the opemtms , D ad D, can be obtained from the operator D, ., by the following limnit processes:

. . d
lin. Dg., = Dg, lim Dy =D_, lim D,,=—.
w—t g—1 g—1.o—0 dr

Lemma 3.1 Let £ be a reg :lar linear functional.
i) If there exist two poly-.omials © # 0, ard ¢ such that
D, (oL =L, (3.8
then ¢ is u nan-zero polynomial.

it) Conversely, if there erist two polynomials ¢ £ 0 and  such that (8.8) holds, then v is of degree
at least one.
Proof: ~ We give the proof for the operator D, , and extend it to the operators 1. D, and D, by

limit processes (see Remark 3.1).

i) Suppose that
.
=S

wita v, 5% 0; and let {2, 7 her be the monic pol nomldl family orthogonal with respect to L. If
¢ = 0. we apply both <ides of 3.8) to the polvnornial - L P, and obtain

1
U= oL, —Po =L PP
[

Thn (E Py = 0. TLis is a contradicrion becatse {7} e s the monic (OPS) associated to £
(sc- (2.3) Ihus 2 18 a nen-zero polynomial.

i) Suppose that ¥ iz a ons-ant denoted g and then apply bor h sides of (3.8) 1o the polynomial

PPy () = 1) and get
L'0<L:a1)(l])¢)) — (Dq e E)P()I)()\/

Il

1
4 WL Dy (RR)) =

Sirme (L. ) P)) # 0. we deduce that v, = 0 and 1t results from (3.8) that
D, (¢L =0
T previous equatior. is equivalent to o £ = 0. In fact,.
D,(¢l)y=0 = (D, (0L).P)y=0 VPe&e?>

=
(oL,D,.P) = 0 YPe?
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Since o # 0, we pose
¢
olr) = Z ¢,z
=0

with o; # 0. Then applying both sides of (3.8) to the polynomial O%P{. we obtain

1 1
0= (éca _Pt) = _<‘C7¢Pt) = (‘C>PLPt>‘
ol o
The previous equation gives a contradiction since {Pn},leN is orthogonal with respect to £. We,
therefore, conclude that the polynomial > is of degrce at least one. a

Remark 3.2 The operators D, Dy or Dy . transform any polynomial P, of degree n in a polynomial
of degree n — 1.

Lemma 3.2 If £ is a linear functional and Y one of the difference operator {7, Gy, Aqu}. ¢ # 0, then
the linear functional Y (L) s regular if and only if L is reqular.

Proof:  We prove the lemma for the operator A, . and extend it to the operators 7_. and G,. If
{Pn}nex is the monic polynomial family orthogonal with respect to £, then {7 A, ,FPn}nen is the
monic polynomial family orthogonal with respect to A, .. L.

In fact,

1
(Agw L, A0 PnAg o Pn) = —0n,m Yn,meN
q
We prove the following proposition:

Proposition 3.1 For all qqw € R, ¢ #0, q #1; for all f. g € P; and for all L € P the following
properties hold:

. 1 1

1) Aq .4;’,&‘ = ‘“1;,w“1r1,w =14, DyAye =94, D, .., Dq,wA;'w = 5:1;'*.Dq._ = ED;‘W (3.9)
’ii)D;_‘_.D,IW, = qD,,.wD;M,, Aq‘*.A;M, = A;'w_w!q,* =1,. (3.10)
(iﬁ)/{md(f {}) = ‘4(I.w'f‘4q.\~'g' Aqw‘(f E) = Aq.-‘ffiqw«.'ﬁ‘ (311)
iv)Dy ,(fg) = fDguwg+ Ay ogDq f = Ay fDy g+ 9D, f, (3.12)
Dy (fLY=fDg LAD, fA, . L=4,,f DL+ DyofL, (3.13)
vi)(g —1)Dy.. L = (z — 1‘:—{1)—1(‘4(,_,, L-L). (3.14)
Dq,w(fg‘c) = Aq,w fDq,u(gl:) - Aq,w f Dq,w.(/ L+ Dq,td(fg) ‘Cv Vf,_(] elP, VL e P (315)

Proof:  Properties i) and ii) arc obtained directly from the definition.

It should be noted that the identities in relations (3.9) and (3.10) are valid when the operators A, .
and D, act on P and also on P.
For ii1), use of (3.3) gives

(AgolfE).P) = ~(JL,4;.,P)

1
q
1 .
= S(L.fA1P)
q
1 .
—(L. A, (A fP))
q
= (flq 4,'£v -'L[,wfp)
= (4, AL P,
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thus
Aq-u(f'c) = Aqv.vf“iqyw/:'

_ flgz + w)glgr +w) — f(x)g(x)
Dy(f9) = (g— Dz +w

glgz +w) — g(x) flgz +uw: - f(2)
= - + +
f) (g— Dr+w 9lgz +w) (g—Dr+w
= f(&)Dyu9(x) + 9(gz + w) Dy f(2).
then reversing the role of f and g, we deduce that
Dq,w(fg) = fDq.u:g + ‘4q.ngq,df = Aq,u.'fDq._.'g + qu.Jf-

We now use i), ii) and iii) to prove iv).
l »*
<Dll-d(f£)7p> = _a(fﬁqu,uP)
1
= ——(L,fD;.P)
q '

1 * * -
—5<£, D: (fP)—Ar_PD; f

1 - -
= (Dol fP) + (L,D; L fA7LP)

L .
a(Dwf.c, As L P)

+
= (fDgul,P)+{(Aqu(D; fL),P)
= (fDguL,P)+(DgufA; L. P).

= (fDq,uﬁaP>

Then
Dq-u(fl:) = fl)zl.'.d£ + Dt[.-df“‘lq._dﬁ = AiqM fDq _.'E - Dg.;}f[:-
For ¢ #1 aud ¢ # 0, we have

(£ — —2—) (AL —L).P) (Aol = L8 .2 P)

P(r) - P{y=)
= (Ar/,wﬁ - L, L%)

I

T4

1 P — P(r)
= —(q- 1AL, ——"———
q (;~1 S
L. .
= 4((1—1)5<L,Dq.w1’>

= (¢—-1)(D,.L,P).
Then.

(q-1)D, .L=(x~— - q)“(AWE - L).

The relition (3.15) follows straightforwardly from (3.12) and (3.13) -

Remark 3.3 The proof of Proposition 2.4 (resp. Proposition 2.7) s obtained in the same way just by
replacing g by one and w by zero, respectively. In particular, to derive the relation (2.46) from (3.14),

we first multiply both sides of (3.14) by (x — %_q), then use (2.14) to yet

(((1 - I)I‘ + “")Dq,wﬁ = (‘411,u - I(l L:
Thercfore, (2.46) yiclds by taking ¢ = 1 in the previous relation.
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Proposition 3.2 If L is a reqular linear functional, and ¢ € R — {0}, then we have
Dy o(¢L) = VL = D (o) =yL, (3.16)

with

- 1 . -
o= {0+ ¢—1z+ o). (3.17)
q

Proof:  Let ¢ and ¢ be two polynomials. then using Proposition 1.3 we have

qu(cbﬁ =yL = (D, (0L), AguP) = (YL A, .P) VPP
=y — —<¢£,D;w,‘4,,_up> = YL AquP) VPEP
— - (o£ gD _P) = (L, A  P) VPEP
= —(oL,Dg.P)y=( L, ¢g—NVe+wD, ,P+P) YPecP
= - ((O+[((1— Liz+wh L£,D,,P)=(¢L.P) VPEF
N 5(0 {6 +Tg— 1)z —wh)L].P) = (WL, P) ¥PeF
= D; _(of) =vL,
with o given by (3.17). C

Corollary 3.1 (Salto, 1995, Medem, 1996) From the above proposition, we deduce the following:
i) L 1s Dq . -semi-classical <= L 1s D} _-semi-classical.
it) L is Dy-semi-classical <= L is 'st—srmi-classical.
Indeed,

D (oL) = YL == Di(oL) = ¢L.
g
with
1
o= —(¢o+ (g — L)ry).
q
i) L is D-semi-classtcal <= L 15 D__ -semii-classical. Morcover,
D.(oL) = vl == D_y(ol) = ¢,
where

b=¢+ v

Remark 3.4 If ) represents one of the operators: T... G,.

Ay d; D_,D,;, and Dy, we define the
power of Y, Y™ as

Y=Yyl omo> 1 with YV = 7y,
where Ty ts the identity operator.

Remark 3.5 One proves easily that YP € Pand Vn<N

.~1I;M.P(x) =0P(q"r+wn],). C;P(r) =Plg"z). T'Plzx, = Pz 4+ n.). (3.18
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3.1.2 Class of the D, -semi-classical linear functional
Let £ be a Dy ,-semi-classical linear functional satisfying
Dy.(#L) = L. (3.19)

where ¢ is a non-zero polynomial and ¥ a polynomial of degree at least one. £ satisfies
D, (fol) = (¢Dy.. f + A4, )L, for any polynomial f.

Definition 3.6 We define the class cl(L) of the D, ,-semi-classical linear functional £ as

c(£) = min {max(deg(f) — 2.deg(g) — 1)}. (3.20)
Wfig)ER
where
R = {(f,g) € B*/deg(g) > 1 and D, .(fL =gL}. (3.21)

We state the following lemmas and propostion which we shall use to prove the proposition clhiaracterising
the class of the semi-ciassical linear functional.

Lemma 3.3 Consider L a reqular linear functional, 1> a non-zero polynomial and o a polynomial of
degree at least one. Then, for any zero, c. of o, we have

- 1 —w
Dyus(0L) = L = D0 = ool = (Lot gu) Sz = 7eq (& CTCyp (3.22)
where
¢ - (.I - C)¢C7 d) - OC = (qI ‘+‘(.U - C)'(/bc,q,/,- + r‘;_q’u}- (323)
Proof:  The proof is obtained straightforwardly by using (2.14), (3.13) and (3.23). O

Lemma 3.4 Let £ be a regular linear functional. If there exist four polynomials ¢, ¢, o and U, with
deg(o > 1), such that ) i
D, (oL)y=vL, D, (oL, = L. (3.24)
then, for any zero, ¢, of b, .
Fequw = (Lthequ) = 0. (3.25)
where,

b=1(z—c o, U—00, = (qrdw =Yoo, _+ro,.. (3.26)

Proof:  The second relation of  3.24) thanks to Lemina 3.3 is ecuivalent 1o

N - - . 1 c— o .
Dy ppc L)y =, L (Lo, 0)bcmw — 10, T — —)7 L, (3.27)
q (1' (1

where 1., and ¢, _ arce defined by (3.26). The previous relation. used together with + 3.13) and the
first. relation of (3.24) gives

- - - 1 - ,
(@lﬁ“&q,wd)t - (J)Dq‘qor - Ur,q-‘)ﬁ - -<£u'¢"r'.q.w> Veee + = T (-77 - ;—)_1£4 (325)
; il q

The multiplication of the latter equation by (i — "—TI—“’), use of '2.14 znd the relation (xr —a)d, =0, gives

W, - - - . 1
(x — T) YA whe + 0D, 00 — e )= -1y, L.
q
It follows from the previous equation and the fact that £ is regular rhat.
- - ‘ - - l
(r — WAoo + 0Dy s — ey = —Togw-

q q

Thus, re,. = 0and L'Aq,wép + (bD,,.w(])f -~ '(,1‘(,*. = 0. We, therefore. dednice that (L',1.7)C‘q~) = 0. ad

The following proposition, alreardy known for the operator D_ "Salto. 1995, is also needed to char-
acterise the class of the Dy -semi-classical lincar functional.
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Proposition 3.3 Consider &1. &5, ¥y and ¥y, four polynomials such that: ®; # 0, ®» # 0. deg(®,) <
deg(®2, deg(¥:1) > 1 and deg(¥2) > 1. Let L be a regular linear functional satisfying

D,J_J((I’lﬁ) = \I’lﬁ, Dq,_‘;(¢2£) = \I’Qﬁ, q # 0. (329)
If ® denotes the highest common factor of ®, and >: & = hef (P, ®y), then, there exists a polynomial
¥ such that,

Dy (8L) = UL (3.30)

and
max(deg(®) — 2. deg(¥) — 1) < max(deg(®;) — 2,deg(¥;) - 1), j =1, 2. (3.31)
Moreover, If ®, is not a divisor of 5 (92 # f &1, Vf € P), then the previous relation becomes
max(deg(®) — 2.deg(¥) — 1) < max(deg(®;) — 2,deg(¥;) - 1), j =1, 2. (3.32)

Proof:

We shall give the proof mimicking the approach developed in [Salto, 1996] for the operator D,,. Since
® = hef(®,, $,), there exist two polynomials ¢, and ¢, satisfving

b =33, ¢, =P, (3.33)

with @, and &)2 having no commnion zero.
In the first step. we combine (3.12), (3.15) and (3.29) to get

Dy (®2®,L) = Ay @9, L — 4,,82D,,8,L + D, ,(®,$2)L, (3.34)
Dy (01®:L) = Ay 8\ WoL ~ A, 8D, @2 L+ D, (928 L. (3.33)

In the second step, we subtract the two previous equations taking care that $,d, = 9,8, to get
Ay a0y - ‘I’Dq,u‘i’l) - -‘141.*'&)1(\1'2 - ‘I’Dq.u‘i’z)] L£=0.
Since £ is regular. we deduce that
A, ®p(T — ¢D,, ) = A, (¥ — DD, 3).

Using the previous relation and the fact that @5 and @5 have no common zero. it follows that there exists
a polvnomial ¥ verifving

4@ T =0, —0D, b, A, PV =Ty - 3D, P (3.36)

Use of (3.33) and (3.36) trausforms (3.29) in
A'l.w‘i’quw((I’C) = ‘4q,u(il\1’£- (3.37)
Agu®aDy (PL) = A, , DL (3.38)

Sim'c_(i’l andfi)g have no common zero, there exist two polynomials (Bezout identity) Ly, and hsy such
that &, by + ®5 ha = 1. In the third step, we sum the two equations obtained by multiplying (3.37) and
(3.38) by A4, Lh and 4, __ha, respectively, and get

Dg (L) =TL.

The latter equation, used together with Lemma 3.1 gives deg(¥) > 1. In the fourth step, we use (3.33)
and (3.36) to get '

deg(®,) = deg(P) + (leg(‘ij), deg(¥) + deg(d;) < max(deg(¥;),deg(®;) — 1), j =1, 2. (3.39)
We. therefore, deduce (3.31).

If we assume that polynomials ®; and &, are such that &, # f&5 Vf € P, then, deg(®) <
deg(®;). j =1, 2. We finally use (3.39) to get (3.32). a
The following proposition gives a characterisation for the class of semi-classical linear functional.
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Proposition 3.4 If £ is a D, -semi-classical linear functional satisfying (3.19), then L is of class
cl(£) = max(deg(o) — 2.deg(y) — 1) if and only if

TT (rewad + KL ey ) # 0. 340

cEZ,

where Zy is the set of zeros of o. The complex numbe ~ r¢ ., and the polynomials ¢.. V¢, are defined
by
r=c)pe=¢. b — b =(qr +w —C)Ueq .+ g (3.41)

Proof:  We first recall the definition of the class c1{£) of £ (see (3.20) and (3.21)).

c(£) = min {max(deg f)— 2,deg(g) — 1 },

(f.9)1ER
where
R ={{f,g) € P*/deg(g) > 1 and D, .(fL) = gL}.
Let (o.%) € R such that there exists a zero. c. of ¢ verifving req . = L.4.4.) = 0. We shall prove
that,

c(L) < max(deg(o) — 2,deg(v) — 1).
Equation D, ,(6L) = v L. thanks to Lemima 3.3 is equivalent to
D, (0cL) = gL,
therefore, (¢, L'c 4,..) belongs 10 R (see Lemma 3.1). Llorcover. the degree of ¢, v, @, and v 4. obey
max(deg o) — 2,deg(vr ¢, .. ) — 1) = max(deg(d) — 2,deg(v) — 1) — 1.

Thus,
cl(£) < max(deg(¢,) —2.deg . 4.) — 1) < max(deg(¢) — 2.deg(v) — 1.

We conclude that for any ‘o, ) € R such that cl(£) = max(deg(d) — 2. deg(v) — 1). then. for any zero.
c. of o.

Feq =1Ly |£0. (3.42)
Conversely. we shall prove that for anv o, 0] € K suen that (3.42) nolds for any zero. ¢, of é. then
(L) = max{deg(p)—2.deg(e —1). Let (¢, 4 € K osuch that el £) = max deg(o,,) ~2.deg v ) -1 .
We assume without lo=s of gererality that deglo,,) < degi o). We write
2= ¢m f+R. R fel. deg(R) <deg(o, ).
e If R # 0. then, fron Proposition 3.3, there exis™s (0. ;"—J) € R. with ¢ = hef(¢. O Such That
max(dog(ét — 2. degl J‘\ — 1) <max(dez(d,, ) —2.deg’v,, —1)=chL.
This is a contradiction hecause (o,¢) = R. This. B = 0.
o If deg(f: > 1, then. it vields from Lemma 3.4 ~hat for any zero, ¢. of f (then of o).
r .v;...i + 3(;yuc q,u)l =0.
The previous equation contradicts (3.42).
Finally, f is a coustant and we have o = fo,.. > = fi,,. Thus,

el(L) = max(deg(o) — 2.deg(e) — 1) = max(deg( ¢, — 2. deglyn,; —1).

a
The proof of the proposition is therefore complete. Ir should be: noted -hat the proof of Propositions
2.3, 2.5 and 2.8 arc deduced by Hmit processes (sec Remark 3.1).
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Remark 3.6 It follows from the definition of the class of the linear functional that the Dg,-classical
Linear functional is a D, _-semi-classical linear functional of class s = 0.

Definition 3.7 The Pecrson-type difference cquation (3.19) s said to be irreducibie o c € Zs if
gl = (L ve, 00 # 0 Moreover. (3.19) is said to be irveducible if it is not vedi:~ibl- on any c € Z,.
Proposition 3.5 L(J L bn a regular linear functional. {P,}.en the corresponding rmonic orthogonal
family and {P,}aen the dual basis associated to { P}, zx. If {Qn1}nen is the dual basis associated to
1

the monic family {Q, . == defined by
Dr (,,'-Pn—L
Qn.l = I‘*w‘/l” (3—13)
[n— 1],
then, we have
7oQn = —qn + 1Py (3.44)
Proof:
(D;Yan,LPm—{»l) = —(I‘in, 1+1>
= _(IL7”'+ ](I(Qn‘LQm.l)
= _Qi” + 1]q611.m
= —q[ll“f- :l]q<Pn-1.Pm4]>,
then
D;.anvl = —q [n + 1]an~1‘
O

3.2 Characterisation theorems for D, ,-semi-classical orthogonal
polynomials

3.2.1 D, .-classical orthogonal polynomials

Theorem 3.1 Let £ be a regular linear funcrional. {P.}, c1; the correspondin

2 e e arthogonal famnily.
and Q,  the mionic polspnomial of degree n defined by

Bn.m((] (anx Dm 1,4,7, (343,
with
m—1
Bnﬂz(q) = H [” —m — j}(l‘ ()”_(] = P,‘ Vn e N (346)
J=0

The following properties are equivalent:
1) There caist two polynomaals, o of degree at most two and v of degree o-we, s 1ch that
D, (of)=1L. (3.47

it) There exest two pulynomials. ¢ of degree at most two and & of degree one, such that for any integer
T,

Dfl-w(ocm) = U, L. (3.48)
Emv(zj‘m(2n<m> = }"u(s_/_n. 7/_/ n et (/\',1 75 (V47) = N), (349)

with the tincar functionl L, and the polynomial v, defined. recursively. by

-1 = Dq e ~ (. “1q J_rl./'m. Ty =, (3')())
Lowr = Ay L, ). Lo=L (3.51)
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and given explicitly by

d(q"xr +wlml,) - ¢z

! n m,. . ;
Y, (1) = e +q"P(qMr + wm’,). (3.52)
L =]]el@s +wily) 45.L. (3.53)
Jj=1

1) There exist two polyr.omials, ¢ of degree at most two and ¢ of degree one. such ‘hat
for any integer m. the folowing second-order difference equation holds:

Oqu,;uD;‘r_‘,- Qn,m + Um Dq,u.’ Qn.m + /\n,m Qn,m =0 vYnek (35‘1)
with the polynomial vy, giver: by (3.52) and the constant A,, ,,, given by
'
R
7 2q
tv) There exist two poly-omials, ¢ of degree at most two and U of degree one, such that. for any
integer m, the following rela~ion holds:

Anm = —[n] ; {qurn + [H - 1} } (353)

[n]q D;,__ [Qll—l,r::+1£~n+l] = _q)\'r,an,mEm Ve N (356)

with the polynomial v, . the linear functional L,, and the constant A\, ., given, respectively, by (3.52).
(3.53) and (3.55).

v) There exist a polynorial O of degree at most two and three constants c, ny1, Cnon, Crop—1 With
Cnn-1 £ 0 such that

¢D?,;Pn = Cn,,n~an—1 + Cn,nPn + Cn.n—IPn—I- n>1 (357)
i) For any non-zero int-ger m, there exist a sequence of complex numbers {in m}ner: such that
(2/A.'uA1 = (~. o 'qul.r':Qn—l.m + l'n—‘l.*llQn-‘.’.m- ¥n S N~ {0\ 1} (358)

Proof: 1) = /). S:ppose that the property i) is satisfied. We will show by induction on m
that the relations (3.48) and (3.49) hold. From (3.47) and the orthogonality of the family { P, }ner:, it is
obvious that the relatdons (248 and (3.49) are satisfied Zor i = 0. Snppose that relations (3.48) and
349 are satisfied up to a fixed integer . Using Proposition 3.1, we have

D!{... ((;6[ -1 ) = Dq.ﬁ é-4q‘.‘:(Q£m )
= Dq,d ':’Aq,,_'(d)ﬁm) + Aq.no Dq,,; -"q.;((f)ﬁm)

Dq..; (:)Aq...,'((«hcm) + -4'/‘&*0(1 Aq,* D'/‘J (’)Em)
= [)q,n ’—"4([‘;(4)5771) +q -'141,,.;0 -’111”. (’-.m E )
— Dq‘,; ’:)Aq.*'((j)cm) T4 -41/.-'lrr'm A §oa (-"‘C' )

= (Dq,* ¢ +4q Aq‘uu‘f'n) -“fl,w(c)ﬁm)

= 7-'771+1[:rn~1-

Thus. the relation (3.48) holds for all integers .
Let y and » be two integers such that 7 < n. Using Proposition 3.1 and the fact that (3.48) and

3.45)) hold up ro a fixed integer m, we have
U + 1]:,, [H + lv_q/L‘m+1 . Qj,mw—)Qu,m+l>
= <-{1<»~'(OC’W . Dq w Q}+I,rn Dq..‘ an+l,m)
— (.Aq.‘ (O‘Cﬂl. 5 Dq < [Qu+l 771Dr" w Qj+1,m] - ‘41.4. (271#1,7:1[);—,‘ ,<(2101.n1)

{

1. 1 -y
_E(D,I,,JA«; ‘u.(OEm)a(Ju*l_m Dq.@ Q]rl,m/ - :1<0£1H?(2H et 'JD;.#(J‘j*I,nl)
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- 1 x R
= *(I)r;._; "OLm)sQn+1,me,u Qj+1,m> - E(L"mvQn+1«m¢-4q,wD;_w(\,);+1,m)

1
_<['nw Clyy, Qn+1.m q.< (2]41 m) - E(Ema CQn+1.m¢"l Dq WCJ_]+1 >
= 0.

because deg(d)‘{;wD;ijilym) < deg(vm Dy Qjt1.m) =j+1<n+1 (see Lermma 3.5).
Repeated use of the following relations, proved in Lemma 3.5,

n+ 1,0+ 1), (Comt1, Qumt1Qnme1) = At im{Lin- Qri1,m@nit ), (3.59)
Antim = %/\n+l+zm,o £0 VYn,meN (3.60)
gives
(£ Qun @) = [] 228055 p by (3.61)
o oy A+ 1f
Thus,

<£m: Qn,m(gn,‘m> 3& 0 Vn,m € N

Iteration of relations (3.50) and taking into account (3.9) lead to

m—1
O = 3 @A Dy blx) + qmAT ()
m-—1

S PaID, LA () + g AT ()

m—1 ; 1 .
Atle(r) - Al oz
— E q,w ( g, Q( ) + qm:{‘(rlrllwu(l.).
= (g— Dr+w

Thus,
¢™z +wim],) — o(r)
(g —1)r+w

UnlT) = + " dlgM e+ wm ).

Taking into account Remark 3.5, relation (3.53) follows directly from the ireratio:s: of  3.51).
1) = d1i).  Assuming that the property ii) holds. it follows that for anv intezer m. the monic
polynomial family {Q,, , }nen is orthogonal with respect to £,.,; thus. {Q, . },,2:; forras a basis of 2.
From the following expansion

o Dq,u D;,w(p)n,m + zr'/)m Dq,q.; (g'n.m = - Z /\j,m Q»],!H7 (362

=0

we obtain

jm( 111:(2] mQ] 111) nu'Q] meu,Dq (211 m T u 111(2] m qACJr m)
s O(J_] mD D‘ (.)n m) = (‘- m 171'(2_],711‘ gy C_ n.m>

(£
(£

= <['myOQ] me qu(p)ﬂ m/ (Dq.u:((j)‘cnl%(?j,"lE J-«'Qﬂﬂl./
—(

1
['nu O(;)_] mD D; w (.)n m> -+ —‘<“ L. D' (Qj,me.uQn.m))
q
1
= _<£1us O(Jj,me,uD;.w Qn.m) - :[(OEHD(J],mD;‘uL q,"Qn.m\/
1 . .
+_ <d) ﬁm; Dq,w (p)j,nl A-qvaq.,.' (Jvn.m )>

(ﬁma(/)(gj mequ w (211,1”) - /.’-“/L"m ( j Y”.D D‘ On m/

q e
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+ <¢ ‘C'le D;,ij.mA;,JDq,an,m)

= + (¢£:naA;qu,qu,nu‘l;,qu,u Qn,rn)

= Q=

= +q<¢£ma44;‘“;(Dq,ij.me.; Qn.rn))

= <44q,w(Q£m)~Dq,..,‘Qj.ng.‘uczn,m)

[ﬂfI[n]q<£m-—lan—l.m+l Qn-l,m+1)
= Oforyj <n,

by orthogonality of {Qn. m+1 }new with respect to Lym41. Thus,
QI)Dq,wD;A_,; Qn,m + U Dq.w Qn,m + /\r: m Qn,m =0 Ve N

Identification of the coefficieats of " in the previous equation gives

124
%[n - 1](,[71]1 + w:n[”:'/ - /\n.m. =0
Then using the following relation
[M% =¢'" "n),. YneN, (3.63)
we obtain &
Anom = — 0] (v, + [0 — 1]: Q_q)

iti] = 1). Assuming that the property iii) holds. elementary computations using (3.12) and (3.54)
for m =1 give
: . 1 -
n+ 1) (Dy,(0L) —¢L.Qny) = —6(0[L D% Dy Poey) = (0L, Dy Prit)
= _<CAOD:,JD;@-P‘1+1“‘_("D(]“* Pn%—i)
= <L"-/\n+2.1 I)n-l>
= 0 Vnz i (3.64)

Since ~he famity {0, 1 aex forms a basis of 27 it is clear ~hat
D, .1 2Ly =0l

i1 = v Cowputations using Proposition 3.1 si w stralghitforwardiy that given an integer v,
(3.56) 1= equivizlent o

v Dq...'D?_* O.n,m + ’l/'m Dq,; Qn.m e )\'z.w (2r 771)L:NL =0 Yn

M

S

Since L£,, is rezular (see preperty ii)) it is obvious that pro perties i) and iv, are equivalent.

i) == v . Exp.anding tl.c polynomial O(I)D;M,P,, wthe basis <P}, e of 2

n-1
O(I)D;,wpn = Z ’,_71']1)]7
Jj=)
we obrain, using (3.10).
('71‘] <C7 PJPJ) = <O£?PJD;_~PH>
= (C)E,D;J(A,,‘_P_P.‘) -0, A, D )

= —q(Dyu(0l), A, Pl —qlcl.P.D, P;)
= —q(L.(VA,.P;~oD,_ P D)
= 0O foryg<n-1.
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Thus,
¢(AE)D;,an = Cn,,n+1Pn+1 + Cn,npn + Cn‘n—lpn,~1 .

When we set j = n — 1 in the above equations we obtain, taking into account (3.63),

Cnon—1 <£ Pn—lpnvl)
= _(I<£‘a (L/"‘Aq.wpn—l + éDq,an—l)[)n>

i

n— N ¢ n
= —q(¢" 'y + =1 )L 2P

= W - L, PP
q 2q
- n /\n‘O ([:, PnPn>
[”]q
# Oforn>1

by relation (3.74).
v) = {). Expanding the linear functional D, (¢L) in the dual basis {P,},c, of the orthogonal
family {P, },e.

Dyu(9L) = > haPu, (3.63)
n>0
we obtain, using (3.57).
hy = (Dgqu(oL).Ppn)
1 *
= __<£7¢Dq,an>
q
1
= —;1_<£'c'1,11+lpn+1 +cn,nPn +Cn,n—1Pn—1>
= Oforn >2,
then
h, =0 for n>2. (3.66)
On the other hand.
1
he = (D,u(elf),1)= _FIW’AD;.J) =0, (3.67)
hy = —CI(T'O(LI)()P()) #0 (3.68)

because by hvpothesis, ey -1 0 forn > 1.

Use of {3.65)-(3.68) and the fact that P; = ﬁ%ﬁ—)ﬁ {(sce (2.17)) give

CI,()<£7 PUP()>P1
(1<£) Pl P1>

Then the regular linear functional £ satisfies D, _(¢L) = L, where

. N _(11.0<£7P()P()>
Vo= R

D, ($L) = Py = — (3.69)

Py (z),

with deg(e) < 2 and deg{y) = deg(Pr) = 1. Thus L is D, -classical, and therefore properties 7) and v)
Aare equivalent. .

i) = vi). Since properties i) and ii) are equivalent, assuming that the property 1) is satisfied. it
vields that for any integer m the monic polynomial farily {2, m }neri is orthogonal with respect to £,,.
Let m be a non-zero integer. We expand the polynomial @y, ,,—1 in the basis {Qn.m}nen of B,

n—1

Qn,mfl = (211.111 + Z “’j,m(p)j,m

Jj=0
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and obtain

UJ»’”U + 1]q<'/~:m‘ Qj»'Yl(\?J m) = J + 1]q<ﬁvan,mfl Qj,m)

Lo DgQir1m-1Qrnm-1)

Ag e (@Lm-1), Dg(Qi+1.m-1Qn,m-1))
—(Ag(@Lm1), A0 Qisrtm-1Dg . Qnom-1)

1
_E<D* q..,(qﬂ:m 1 Qj—H.m—lQn,m-—l)

—[n]{Lm, Aqw@+1.m-1Qn-1.m)
= —(Dg, w(Q)Em 1),Qi+1.m=1@n.m=1)

—[n]g{Lm; Agw@j+1.m-1Qn-1.m)
= —(Ln_1,¥m- 1QJ+1 m—1Qn.m-1)

"'[n]q( me q.wQ1+1.m-1Qn71,m)
= Oforj<n-2

I

by the orthogonality of {Qn 1 tnew atd {Qnm—1 fney with respect to L, and £,,_1, respectively. There-
fore,

Qn.m~1 = Qn‘m - “'1~1.'11Q7171,n: + u‘:7‘.’A171Qn—‘2.m Vn c tg - {O 1} Vm € EJ - {O}

iv) = 7). Let {Pp}.e:. and {Q- m}-en be the dual basis associated ro the monic families { P, } nex
and {Qnm }ner, respectively.
In the first step we expand Qg1 in the dual basis {Qn.o}new.

Qo1 =Y Qo
720
and obtain, using. (3.58)
a = (Qui-Qjo
= (Qo1-Qju —uy1:Q 10+ wj—21Qj-01)
= 0for >3
Using (2.17). we, therefore, obrain,
2 2
Q1 = ZOJQJ_O =5 aP,=cl, (3.70)
J=0 J=0
where
‘L aP (x)
or = ) (3.71)
= (L.P,P;)

In the second step. we compure Df Qo - using (2.17,, (3.44) and obtain

D;AW(QOJ) = —qu = L'[,. (372)
where P (x)
—qi\r —
I - .
V) = ey (373)

Use of (3.70)-13.72) permit us to cor.clucde that

D} (ol) =L
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The previous equation, thanks to Proposition 3.2, is equivalent to
D'J‘w(é/:) =L,
'\\'itll -
o =qo—[{g—1)r+w.
We complete the proof of vi) = ). by remarking that deg(¢) < dez(P> =2 and deg(v) = deg(Py) =
{sce (3.71) and (3.73)).
Summing up, we have proved that ¢) == 1) = {ii) == ). iii &= ). {) <= v) and 1) <= vi);

thus, the proof of the theorem is complete. O

Lemma 3.5 Let £ be a regular linear functional satisfying D, (@L) = VL, where ¢ is a polynomial of
degree at most two and ¢ a first-degree polynomial. The following properties hold:

7) Ant10 20 Vn ey, (3.74)
r 1 2m
- n+1],4° B
Angrom = —————— X, . 142m.0; 3.7:
i) 11 f g T 2], o (3.75)
i) Dyotn #0 Yme N (3.76)
il‘) [n + 1]'(_;<C”l+lTQTI,I7I+1(;)71-”1'f1> = /\n—l.m<Lm~‘(271+L.m(2~:+1,m>v (377)

with £, Anan and Qy ., defined in Theorern 3.1.

Proof: i) From the rclation

Dyt =[x+ 3 a) (g

-

where o j

(g,w) are complex numbers given by

n—1
o0 . X 1!' .
ay (g.2) = (=Y 4 (). . ), (3.78)

q

wi obtain,

1 . . .
= = (oL, D] o) =(WL.a", vz
«q '
O” "
r - \ . r ; - -
= (1 +'”'h7ﬂ)'”"” _;f‘,l\lj 71 €l (3.79)

/\11~~I,0 - r PRI
= - ) Moy =Y fM, wnzit
q Jj=9

where M = L,z-) is the nmoment of order j of the lincar funti nal £ arel f, are con.plex numbers
easily computed as function of coeficients a;, ; and those of the polonontials .2 and . Sine= £ is regular.
to have all its moments given in the unique way by the previons or-s, ir is n=cessary ro have

Anc1o #F0 Vel (3.80)
iin The D, -derivative of (3.52). taking into account (3.63), gives

LI

)
E—— — KT
D’I-«J’lf/]"t = Ly - [27”.07 +9q -
P

_ 2mor 1 -2 0oy, 3 -
- q Lt —q i-i ”,q —/q)

, ©
— (]-1n"l," _ D”/Ai, o
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then
¢H __q2m
420 T w1,

We, therefore, conclude using (3.80) that for any integer m, ¢!, # 0 and ¥, is a first-degree polynomial.
iii) use of (3.53), (3.63) and (3.81) give

Dy ¥m =¢™ @' + [2m]s Aemir1o VmeN (3.81)

A = —[n]q{w;n+[n—m¢—"}

"

— Pl ) -1y )
¢

= —[nle@®™{¥' + (2m]: +¢*"[n - ”ﬁ)ﬁ}
11
= —[n], ™ {Y +2m +n- 1]1 E
— [TL]q q2m /\
[n+2m]q n+2m,0-

We derive the relation iv 1 using Proposition 3.1. the second property of Theorem 3.1 and the orthogonality
of the family {Q m }ner with respect to L,,. In fact,

[n+ 1jg[n + 1g{Lms1. Qnm+1@n.m—1)
= (-4q,u'(¢£m), Dq,an+l,nqu,an+l,m>
= (Agu (@Lm), Dy w (Qn*l,me,wQ"H-m) - AQ,WQ"WLL”’D?,WQ"*U")

L.
= - 5<Dq,g.;f1q,w (¢Em)» Qn+1.me.an+1,m>

1 . 5
_E<O£m - Qn+l,mAq_JD;_JQn-H.m)

1 *
= - (Em » wr‘lQn—l,me.ﬁ. Qn—l.m) - §<‘Cm7 ¢Qn+1,me._<Dq,_.'Qn+l,m)

= —[TL - 1] <£n17Q11-¢-1 m n+1 m) [TL + 1]q[n] ¢ <£7n Qn+1 an+1 m)

"

(@] -
= ‘[TL - 1]': {U'lm + [”]’; E}(L«mv(ng»l.vaH—l,m)

= /\n+1.m <Em,Qn+1,1nQn+1,"1>-

3.2.2 D, -semi-classical orthogonal polynomials

Let £ be a regular linear functional and {P,},,en the corresponding monic orthogonal family. When the
linear functional £ is D, -semi-classical of class s > 0 satisfying (3.47), the characterisation theorem
(see Theorem 3.1) is not valid anymore. In particular, the derivative D, _ P, of P, is not orthogonal with
respect to A, . (0L) but quasi-orthogonal of class s with respect to A, ,(¢L). The following theorem,

which generalise some results in [Salto, 1995] and [Medem, 1996] gives some characterisations for Dy, -
seini-classical orthogonal polynomials.

Theorem 3.2 Let £ be a regular linear furictional and {P,}nen the corresponding momnic orthogonal
family. The following properties are equivalerit:

1) There ezist two polynomials: ¢ of degree at leust one and ¢ such that

Dq.(6L) = L. (3.82)
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i1) There ezists a polynomials ¢ # 0 and an integer s with deg¢ < s + 2 such that

(AQw(d)E), Qm,lQn,l) = 07 ln — m| > 8 (3 83)
(‘4q.w'(¢[')an,lQm+s,l) # 07 Vm Z 1a |
where polynomials Q1 are defined in theorem 3.1.
ii1) There ezists a polynomial & # 0 and an integer s with t = deg¢ < s + 2 such that
n+t—1
OD;’*-Pn = Z En_ij n>s+ 1, (384)
j=n—s—1
with
€nn-s—1 720, n>s+1. (3.85)

Proof: i) = ii). Suppose that (3.82) is satisfied. Then ¢ # 0 by Lemma 3.1 and (3.82).
Let m and n be two integers such that n > m + s and pose s = max{deg(¢) — 2,deg(y) — 1}. Using
(3.82) and Proposition 1.3, we get

[m + 1}41 [TL + l]q("{q,w ((b['), Qn,lQm.l)

= (A(],w(oc) Dq,u.‘ Pm+1Dq,uJ Pn+1>

= (‘4qw(o£) Dq,u.‘ [Pn+1Dq,w Pm—H] - Aq,an+1Dg,me+l>
1

- ;I'(D;,WAQ»W (OE)7 PTH-qu,w Pm—l)

1 .
- E(éﬁy Ppp1A; D2 Prit)

(L, Pry10A% D2 Prit)

:—(LPnHUDqM)PmH)— q

1
q
=0,

because deg(% oAy D} P+ ¥ DgwPrmi)<m+s+1<n+l
Given non-zero integer m, we have, from the previous computations,

(-"‘q-u (O[-:)v Dq,w P'm-HDq,uJ Pm-s+1)
1 4
= _(chnH-s-Flw Dq,u.' Pm+1> - E(cyPm+s+10Aq,wD3_me+l

¢

= —{[m+ 1qupdpst1 + [mgm = 1],¢' ™™ ;6t.s+2}]0,m~—s+l

= *[771 + 1](1 {L"Pép.s+l + %[m]i_‘dt,s¢2}10‘m+s+l< (386)

where g, is defined by
IO,m = ([-::Pmpm>7 m 2 0) (387)

and the polynomials ¢ and ¢ are given by

L 4
o) = 6,7, gx) =Y v, (3.88)
J=0 j=0
with |o|[1,] # 0.

It results from (3.86) that (Aq .. (0L). Dy Pms1Dgo Prisi1)({onest1)™! = U(m,s), takes one of
the three values:

) t<s+2. p=s+ 1.
Um,s) = —[m +1 9,1 £ 0, m >0,

ii): t=s+2. p<s+ 1.
Dt
U(m.s) = —[m]. [m + 1], =2 40, m > 1,
q {1
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i) t=s+2,p=s+1,

Ulm,s) = —[m + 1], ($as1 + "’5;2 (] }-

U {(m, s) for the case iil) is not zero by the regularity of the linear functional L.

In fact, mimicking the approach used in (3.79), we conclude that if £ is regular and satisfies (3.32),
with ¢ and ¢ given by (3.88) and ¢t = p + 1, then we have

Q-

1/1,,+82+—1[m]5 £0 VmeN (3.89)

We deduce that (4 ,(0L),Qm1Q@m+s1) # 0 Vm > 1 and therefore that the property ii) is
fulfilled.
ii) = ii11). We assume that i) holds and expand ¢Dj} P, on the basis {P, }nen

n+t

¢D; ,Pr > &nj P,

7=0
where t = deg(d), and get

En.jIO,j = (¢£1Pj D;__.,-Pn>
= ((bﬁ, A;'u(flq,ij Dq,uPn)>
= q[n]e(Agu(0L). Ag e P;Qn-1,1)
= Oforn>j+s+1,
by (3.83).
Moreover, for n > s + 1,
én,n—sflIO,n—sfl = Q[n]q(Aq.w(O‘C)yflq,w Pn—s—l Qn—l,l) # 0
also by (3.83).
iii) = i).
Let {Pn}nzn be the dual vasis associated to the monic family { P, }.en and ¢ the degree of ¢.
We expand the linear functional D, .. (¢£) in the basis {Py }nen

Dyu(dL) =Y anP,
n>0

and get
Xy, = (Dq,u(qb[:): Pn)
1
- ’—a ([:,OD;“ Pn>

s+t—1

1
= L X EuR)

j=n—-s—1

= Oforn>s+ 1.
Then

s+1

> a;P;
=0

Dy.(oL)

s+1
= 2y L
=0 (L, P Fy)
= YL
thanks to Proposition 2.1. We deduce from the previous equations, Lemma 3.1 and the fact that - # 0,
that v is of degree at least one. The lincar functional £ is. therefore, D, ,-semi-classical. O



Chapter 4

The formal Stieltjes function

4.1 The Stieltjes function and the Riccati difference equation

4.1.1 Some definitions

Definition 4.1 The formal Stieltjes function S(L) of a given linear functional L € P' is defined by

S(L)@) == iﬂ’; , (4.1)

k>0

where (L), = (L, z%), represents the moment of order k of the linear functional £ with respect to the
sequence {T™}n>0.

We define the action of the operators D, 7, D, G4, Dy, D, A, .. and D, . on the Stieltjes function
S(L) as is done in [Medem, 1996, (for more information see [Medem, 1996, p. 357]).

Definition 4.2 (Medem, 1996) The operators T,, D, G,, D,, D, 4, and D, . act on the Stieltjes
function S(L) of the linear functional £ in the following ways:

T.S(L)(z) = SOz +)=-> (£)n

an+1"?
o (r+w)

qu([,)(r) = S([:)(q I) — _ Z (‘C)n

n+l pn+l v 4 ?é 0.

n>0 q
L B (L),
A uS(L)(x) = S(L)(gz+w) 2;0 PEEwoTt
L)
DS(L)(xr) = Z(n +1) 57112’
n>0 '
_ SL)lgr) = S(L)(x) [+ 1g (L)n
D ,C I = = .
qS( )( ) (q—l)I 11220 qn+1In+2
D,S(L)(x) = Stz + -‘i)j = S == Z ([')"é ((_ + 1‘)n+1 . n1+1> ’
n>0 v w“ T
_ S(O)gx ~w) = S(L)(x) B 1 1 1
Da..5L0)=) = (-1 +w B HZ;()(E)"((I—UI‘*“W ((q.r+w)"+1 B :z:”“) ’

Definition 4.3 The formal Stieltjes function S(L) = S (see ({.1)) of the regular linear functional £
satisfies a Riccati differential equation if S satisfies an equation of type [Magnus. 198{], [Dzoumba, 1985]

o1
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o(2)DS(z) = A(z S(z)? + B(z)S(z) + C(z), (4.2)

where ¢ is a non-zero polynomial and A, B and C are polynomials.
When A = 0, the Riccati differential equation is called the afine Riccati differential equation.

Definition 4.4 The formal Stieltjes function, S(L) = S, of the regular linear functional L satisfies a
D..-Riccatt difference equation if S satisfies an equation of type

#(z)D.S(z) = G(z;w)S(x)T.S(z) + E(z;w)S(x)
+F(z;w)T,S8(z) + H(z; w), (4.3)

where ¢ 1s a non-zero polynomial and E,| F,G and H are polynomials in the variable z and depending on
w.

When G = 0, the D, -Riccati difference equation is called the affine D, -Riccati difference equation.

Definition 4.5 The formal Stieltjes function S(L) = S of the reqular linear functional L satisfies a
D,-Riccati difference equation if S satisfies an equation of type

o(z)DyS(r) = G(z;9)S(2)GeS(z) + E(z;9)S(2)
+F(z;9)G,5(x) + H(z: q) (4.4)

where ¢ ts a non-zero polynomial and E, FG and H are polynomials in the variable £ and depending on
q.
When G = 0, the Dy-Riccati difference equation is called the affine Dg-Riccati difference equation.

Definition 4.6 The formal Stieltjes function, S(L) = S, of the regular linear functional L satisfies a
D, .-Riccati difference equation if S satisfies an equation of type

olgr +w)D, .S(r) = G(z;q,w)5(zx) Ay S(x) + E(z;,q,w)S(x)
+F(z;,q. v)A, .5(z) + H(z;q,w), (4.5)

where ¢ is a non-zero polynomial and E. F,G and H are polynomials in the variable z and depending on
q and w.

When G = 0, the Dy .-Riccati difference equation 1s called the affine D, ,-Riccati difference equation.

Definition 4.7 Let Y be any one of the four operators {%,D,’Dq,Dq,J}. Then, the regular linear
functional L and the corresponding monic orthogonal polynomials belong to the V-Laguerre-Hahn class
(resp. affine Y -Laguerre-Hahn cluss; if the Stieltjes function of L satisfies a Y-Riccati difference equation
(an affine }-Riccati difference equation). The regular linear functional and the corresponding orthogonal
polynomials belonging to the Y-Laguerre-Hahn class are called Y-Laguerre-Hahn linear functional and
Y -Laguerre-Hahn orthogonal polynomials, respectively (see [Magnus, 1984], [Dzoumba, 1985]. [Guerfi.
1988). [Medem, 1995], [Salto. 1996]. [Marcellan et al.. 1998]).

4.1.2 Some properties

Proposition 4.1 The formal Stieltjes function, S(L), of a given linear functional L € P' obeys the
relations

i) S(al + BM) = aS(L) + BS(M) Va,3€C, YMeP
i) S(fL) = fS(L) + LOof, YfeP.

iii) Ag. S(L) = S(A,w £),

) S(D, L) = D,.S(L).

47)
4.8)
49)

AA/-\/-\
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Proof:

S(al + M) =

The Stieltjes function and the Riccati difference equation 53

i) Let a, 8 be two complex numbers and £. M two linear functionals. Then,

(ol + M, z*)
>
k>0

= oY ¥

k>0

= aS(L) + 3S(M).

(M, z*)
ZhHT

_ﬁz

k>0

1-+1

ii) Let k£ be an integer; we shall prove that

S(z*L) = TS (L) + Choz*

VkeN

and use property i} to deduce that (4.8) holds for any f € F.

In fact,

For property iii),

where

S o)) =

S(4gwl)(z)

K SO (x

o= (FR L)

n1
n=0
T
E m
— Z I—m”.I% (taking k +n = m)
m=k
x o0 (£7I1n> <[: I >
—T (Z rm+1 - Z Zml )

m=0 n=0

Z(‘C My ph—l-m
Z(z:,‘

[:9013

yr! ™1 (taking k — m = j)

FS(L)(@) +

_ i(—lqwﬁx)
gn—1
1°o (£, A7.7™)
(I '+1

I
!
e 1
S

H

3

i

fl

|
[]# 1
[
TN
=3
N
g

3

|

w
e~
S
s
38
+\/

(4.10}
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Then,
x n E j
SeuOfe) == 2 ( e

On the other hand, using the series expansion of (T)"”

1 2 (M) (~w)P
:Z( )

(q:c + ;d)n~—1 (qz)n+1+1) ’

p=0

we obtain

AgS(L)(z) = _Z( (£,z™)

+1
= gqxr +w)"

n+P E In)
= Z Z q_»,; n+p*1 :

n=0p=0

Then changing the variable n + p = j, the previous equation gives

SE (e R

= S(Aq.L)(=),

AgwS(L)(z)

by (4.11) after reversing the role of n and j.

(4.11)

(4.12)

To derive relation iv), we compute both sides of (4.9) and remark that they are the same. In fact,

D, . C.x
S5(DquL)(x) = —Z%‘q)
n=0
iy el
- qn:1 -l
1 x 1 (L%)ll —
= 6 .’E”+1< ’ =% _ g )
n=—l q

Then, using the relations (derived by induction on n),

(a+b)" = Z(?)ajb"_j Va.beC JneN,
—a \J
j=0
n—1
a® =" = (a-b)> @bV Vahe T VneN,
we obtain
1 o0 1 n-1 k
StD, L)(z) = = Z — Z( ) q R, xRy,
1.7 k=0 j=0

On replacing n by n + 1, we obtain,

1
S(DgL)(x Zl-n+z Z( ) —‘”k Tk, gt k)

(4.13)

(4.14)

(4.15)
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Let us compute Dy ,S(L)(x).

fo o)

1
Dq,_‘,S([f)(I) = ([, T > ’Jm
n=0
> . Dq’“ pntl
B i qu_,r_w n+1 _ n+1 ([: :E")
& r4+w—x 1 (qz +w)tl

Use of (4.14) transforms the previous relation into

ool

— n—j
DguSiL)(z) = Z < (g2 + ) n+1_[n+1 Z(q‘[+“’
- Yy
== q:c+ Wit gitl”
Rewriting this equation, taking into account the series expansion of ('T)"Ff (see (4.12)), leads to
o]
. (n +k = j)! (~w)*
D, .S(L)(x) = ;)JZO I]+1 Z k! (n — )l (qz)mth—i+1

3 E n
= Z Z Z S (n— ) n+(kf2) rEJthJj-l
El(n—j)x q

n—=0 j=0 k=0

The change of variable, n + k = t. transforms the latter equation into

(t = DN —w)* (L, ' F)
KUt —k — j)l zt=2 gt=3=1"

] ) t m!(—w)* L ozt *)
Dfl _S(L)(I) = ZZ Z k‘ (7IL — k) o2 q"‘“

'Z:) (—w)k/ Lotk

Ir+2 qrn‘l

- ZE’: (%) (=w )“’C-f‘*‘”)

.’Et+ q"l i

2 (D) (kL ptH
= >3y e

r -1
- 0 q

[
[~]

(]
[v]N

Again, replacing m — k by | in the above equation. we obtain

t i (m":{) (_M)m—l<£’_rt-l—m>
t+2 mi-1
0 (=0 T q

0 m=

i i (T)(—J/m_l/ﬁ,$t+l_"'>
¢+2 ,m—~1
t m=0 =0 T q

= S(Dq,w )(I)v

>

=

£

(n
5
0

I
[~]e

t

™8

i
=]

by (4.15); hence the proof of Proposition 4.1 is complete.  TWe give some cousequences of the previous
proposition, already given in [Guerfi. 1988], [Salto. 1995], [Medem, 1996 .
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Corollary 4.1 The formal Stieltjes function S(L) of a given linear functional L € P' obeys the relations:
T.8(£) = S(7.L), S(D.L) = D,S(L),
G S(L) = S(GgL), S(DGL) =DgS(L).

We announce another corollary of Proposition 4.1. This result has been given for the operators D, D,
and D (see [Dzoumba, 1985]. Guerfi, 1988], [Medem. 1996]).

Theorem 4.1 Let £ be a regular linear functional. £ belongs to the affine D, ,-Laguerre-Hahn class if
and only if £ is Dy, -semi-classical.

Proof:  Suppose that C iz D, -semi-classical and satisfies D, _.(¢L) = ¥L, where ¢ is a non-zero

polynomial and 1 a polynomial of degree at least one. We first use Propositions 3.1 and 4.1 to compute
S(Dy... (L)) and obtain

S(Dq..(¢L))

1

S(Aq . ¢Dg Ll + Dy, ¢L)
= 43,0S(Dy L)+ (Dy. LYo A0+ Dy, u0S(L)+ LDy 0
= 450,0D,.5L)+ (Dy. L) Ay 0+ Dy ,6S(L)+ LDy 0.
Secondly, we use again Proposition 4.1 to compute S(¢-£) and we obtain
S(WL) = S(L) + Ly

Since Dy . (¢L) = L and ¢ is a non-zero polynomial, we deduce from the above computations that S(L)
satisfies the affine D, -Riccat! difference equation

¢lgz +w)D. .S(L)(z) = (P(z) — Dy.o(x))S(L)(z) + LOyY(x)
—(D,,. £)Bodlqx +w) — LoD, _¢(z).

Thus, £ belongs to the affine D, . -Laguerre-Hahn class.

Conversely, assume that t1e Stieltjes function S({£) of the regular linear functional £ satisfies an
affine D, ,-Riccati difference ¢juation

A@)D,.S(L) 1) = B 1)S: L)(z - + C(x).

where B and C are any polyn-mials and 4 is a non-zero polynomial. Using Propositions 3.1 and 4.1 we
obtain

= B xS L)x)+ )
<
S(Ar)Dy, L) (r. — (Dy,L)0gAIZ) = S Blx L){x) — LB(r) + C(x)
<

SAR) L. L~ DB(r)L)(x) ‘D, L)0hA(x) — LOeB(x) + C(z).

The right hand-side of the previous equation is a polvnomial while the left hand-side is, by definition of
the Stieltjes function of a giv-n linear functional. an infinite (-inless it vanishes) lnear combination of
{le-FT n € N}. Therefore. bot:. sides of the previous equation vanish and we obtain

A@)D,  L-B(z)L=1 (4.16)
and
(L, L0)8A(x) — L6B(z) +Clzj=0 VzeR (4.17)
Again. we use Proposition 3.1 to deduce that (4.16) is equivalent to )
- 1 »
Do Ay A L) = (B~ Dy _A)L. (4.18)

The previous cquation, used "ngether with Lemma 3.1 taking nto account the fact that A # 0, allows
us to conclude that the degre- of B + }—’D;’ﬂ A is at lcast one. Then the regular linear functional [ is
D, . -semi-classical. a



4.2. Dy -Laguerre-Hahn OP as Dy-Laguerre-Hahn OP o7

4.2 D, .-Laguerre-Hahn orthogonal polynomials as D,-Laguerre-
Hahn orthogonal polynomials

In this section we prove that the Dy . .-Laguerre-Hahn orthogonal polynomials can be deduced from Dg-
Laguerre-Hahn orthogonal polynomials by a change of variable and then we give some consequences.

Theorem 4.2 Let £ be any reqular linear functional, then we have:

i) L is a Dg-Laguerre-Hahn linear functional if and only if Aa,leq L ts a D,y-Laguerre-Hahn linear
functional. This means that the Stieltjes function S(L) of L satisfies

olgr +w)Dg, S(Li(z) = G(z;q,w)S(L)(2)Ag,uS(L)(x) + E(z;9,w)S(L:(x)
+F(z:q,w)Aq..5(L)(z) + H(z;¢,w), (4.19)

where a is ary non-zero real number, ¢ is a non-zero polynomial, E,F,G and H are polynomials
in the variable x. if and only if the Stieltjes function S(A,, . L) of Aa,l_:;[: satisfies

olgriD,S L)(r) = G(z:q,w)S(L) ()G S(L)(z) + E(z;q.2)S(L)(x)
+F(:c;q.;‘))gq5([f)(z) + H(z;q,w), (4.20)
where c =a™' Ay 2 9. = A, » @ forde{L. E. F, G, H}.

ii) Let £ be a Dy ,-Laguerre-Hahn linear functional satisfying (4.19). If {Pu}nen and {P,}nen rep-
resent the monic orthegonal families associated to £ and A,, _£ respectively, then we have the
following results:

Po(z) = a~" Py(az + ﬁ) Vr €R, (4.21)

Bnlq,w. 0, E.F,G,H) =afBn(q,0.6,E,F,G, H)+1——
—-q
ﬁl/n(/‘hw! O,EF,G,H) = a’zﬁ/n(q70‘q§~,E7F7G~7H)a
where 3,. . 3, and A, are coeficients of the three-term recurrence relation satisfied by {P,}nen and
{[)n}nEN:

(r), n>0

I_)n—l-l .T‘l:(."E—?,I(([.LAJ,?.E.F,CE.[:I)).}D(-T) 7”(‘17‘“ é_EFGvH)Pn-—l < Y
Py 1= (r— ,3,1((,,0,9 E,F,G,H)Pu(r) = 3,(q.0.¢. E,F,G,H)P,_,(x). n >0, (4.22)
P_i(r) =0.R(r) = 1. Poy(z) = 0, Pa(x) =1
Proof: ) We use the relation [Guerfi, 1988], [Medem. 1996)
-{al_:_q qu_ = G_l Dq AQ,T:f_q, A“'fiJ—q Aq‘_- = gq ‘4“'1—:7,’ q ;ﬁ l.a ;ﬁ 0 (—123)

and get
Sgr +wiDy . S(L)(x) = Glz;q.w)SIL)(2)Aq LS(L)(x) + E(z:4,2)S(L)(z)
+Flrig,w Ay  S(L (x) + H(z;q,)
—
ey A O Aa 2, Do S(E)(2) = G530, 9)Au 2, S(E) (&) Au =, Aq LS(L) ()

+Ergo Ay =S £)(2) + F(z;q,0) A0 = o 4,,S(L0)(z) + H(z;q.)

o Al aqe S(L)(x) = G(:c;q.w)Aa _5( )(2) G A= S(L)(x)
+E(rq . A, Nz) + F(z;q,w) G, Amﬁs(ﬁ)( z)+ Hiz:q )
—

541Dy SUL)(x) = G(z:q,w)S(L)(x)G, S(L)(x) + E(x;q.0)SIL)(r)
+F riq..G,S L) (x) + H(x;q,w),
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by the relation (4.8): S(Aq ., £) = A, S(L).
ii) Since the family {Aa,ﬁPn}ne\; is orthogonal with respect Aq. (o £ (see Lemma 3.2), we deduce

that P, = a~" Aa‘ﬁ . thanks to the uniqueness of the monic orthogonal polynomial family associated
to a given regular linear functional.

Since {Pn}nen is orthogonal with respect to the linear functional £, it satisfies
Pn+1(l') = (I - ﬂn(Q7w' ¢7E~F)G7H))Pn(x) - AV.H(QS(“)’OﬂEvFvG7H)Pﬂ—‘1(I)7

where 8,(q,w.,0,E,F,G,H), ~,(q,w.¢,E. F,G, H) are complex numbers dependingon ¢, w. ¢, E, F, G
and H.

After applyving the operator ‘4011—Tq to both sides of the previous equation, we obtain that

w , .
Ag. = Pra(z) = (az + T-q¢ Bn(g,w, ¢, V) Ag, 12 Polz) — nlg.w, 6,9) Ag, (= Proi1(2).

This latter equation. used together with (-1.21), gives

_ w 1

Prwi(s) = (54 T~ = B(g,. 6.0 Pala) — 5 mla.,0,0) Pa (2).

—ga a2
We complete the proof of the theorem by identifying the coefficients of the previous equation with the
ones of the three-term recurrence relation satisfied by family {P,}.en, orthogonal with respect to the
D,-semi-classical linear functional A-‘-if—q L
Pn—H(I) =(z - Bn (g,0. (5»7:'))}3" (z) — Yn(q.0, q;v d')]sn—l (). n >0,

with ¢ and 1 defined by (4.24 . 0
Remark 4.1 Since the results stated in Theorem 4.2 are valid for any real number a # 0, without loss of
generality. we choose a = 1. In this case Al,li—q = Tl‘i—q and we, therefore, get the following consequences:

Corollary 4.2 Let £ be any regular linear functional, {Py}nex and {P,}ncen represent the orthogonal
families associated to £ and Tﬁ L, respectively. Then, we have the following results:

1. L is D, _.-semi-classical if and only if Tﬁﬁ is Dy-semi-classical, i.e.,
Dy_(0L) =t <> DydL) = L.
where ¢ s any polynomial and v a polynomial of degree at least one, with

=T L 0lr) = 6(x + ——). O(z) = vz + —— . (4.24)
o l1-gq l-gq

2. The coefficients of the TTRR satisfied by { P,}ner and {}5,1},1:\; are related by

3n(qw.d,v) = 8n(q,0.¢,0) — 1—j(—1

”n(q'i“" ¢”L.) = :/7I(q70‘q~571;‘)7

where 3,. B and 4. are coefficients of the three-term recurrence relation
€ 1(2) = (2 = 3n(q.©.0.¥)) Pr(z) — 1mlq,w, 0. ¥) Py (z). n 20,
P, l() (I_390¢¢)P(I_f11q0d)u) ().HZO,

P_i(z) =9, Py(r)=1, P_y(z) =0,Py(z) = 1
and o, U given by (4.24 .
Proo’: The proof is simi.ar to the one given for D, w-Laguerre—Hahn case. In particular, we have,
Dou(ol) =v = T un(cﬁll) v T = L
— D, Tm (L) = T~ UT C
= D,,(Tﬁ (.bT]qu ):Tﬁ UTﬁE.



Chapter 5

Difference equations for the first
associated classical orthogonal
polynomials

5.1 Introduction

In this chapter we derive the single fourth order difference equation satisfied by the first associated of
the g-classical orthogonal polyvnomials. We give this equation in the factored and simple form, we then
use Theorem 4.2 to deduce the single fourth order difference (resp. differential) equation satisfied by
the first associated of the classical orthogonal polynomials of a discrete variable and continuous variable,
respectively.

Although the main result of this section is contained in the general theory given in the next chapter, this
method 1s worth to be communicated because it uses the properties of the functions of a discrete variable
of the second kind [Suslov, 1989] rather than the properties of the Stieltjes function which are used in
the next chapter. It also allows us to have a factored aud simple form for the fourth-order difference
equation and to confirm the results obtained by the general theory.

5.2 g¢-classical weight

Let p(z1 be a positive weight function defined on the interval I =]a. bl and let £ be a linear functional
defined by

(C,P) = /P(s)p(s)d,,s. (5.1)

I

The orthogonality weight p (defined in the interval I) is said to be g-classical if p satisfies:

1) There exists a monic polynomnial family { Py }ne::, orthogonal with respect to p, ie.,

/Pn(s] Pr(s)p(s)degs =knbym VYn.me i (k, #0 VneN). (5.2)
!

ii) There exist two polynomials ¢ of degree at most two and © of degree one such that

D, (¢0) = ¢, (53)
with

gt o(z)p(z)|h =0 Vneli (5.4)
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Lemma 5.1 The linear functional L represented by the q-classical weight p (see (5.1)) is D,-classical
and satisfies

D(¢L) = L. (53)
Proof: If P is any element of P, we use (5.1)-(5.4) and get,

(Dol £), P) —5 (#£,D, P)

_ ! / B(5)0: P(s) pls)dys
= 2 [ (04(643) plas) P(e)) = Dy (las)p(as) P(s))dys
= = [ (Duo(s pls) PLs/a)) + Duto(s 10(s)) Pls)ys
= 0 p(s) Psfalls+ [ C0p(9) P s
1
= /?."z(s)p(s) P(s)dys
1
= (YL, P).
Hence, D,(oL) = L. We complete the proof by remarking that {P, }nex is orthogonal with respect to
L (see (5.2)). a
The monic polynomials {P,}.en, orthogonal with respect to £, satisfy the second order g-difference
equation (see Theorem 3.1),
QQ.n [y(I)] = [d)Dq D% + qu + ’\n.OId]y‘ 1:) = 07 (56)

an equation which can be written in the g-shifted form,

(@1 + ) 01)G, — (1 + ) @y + Uyt — Ano t7)G, + qoq) Taly(z) = 0. (5.7)
with
’\n,O = —[Il]q{t/,’ + [TL — 1]# %}, (58)
by = olg'z), Yy = U(¢'z), ti=tlg'ry, t r)=(g—1)r.

5.3 Fourth-order ¢-difference equation for P,(l_)l(:c; q)

Tl.e first associated P,:l_)l(x; q) of P,_1(z:q) i= a monic polvuomial ¢ degree n — 1 defined by

P(l) (17‘(1) _ i([: P”(S;(I) — Pu(IQQ)) _ l / P,ls: ’1') B Pn(I;Q)
n-1'0,q) = v /=
Yo I

s—1 o

p(s)dgs, (5.9)

s—z
where v Is given by 79 = (£, 1) = [ p(s)dgs
7

Relarion (5.9) can be rewritten as

Pl (59) = p() Qnlz:9) — Pa’:9)0(x) Qo(w;0), (5.10)
where
P.(s:
Qnlz;q) = L / ‘(S’Q)p:s,»d,s.
9 p(x) 5=
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It is well-known [Suslov, 1989] that Q,(z;q) also satisfies Equation (5.6); hence. by (5.10)
P\ (z:q)

Q‘_"n
p(z)

+ Pn(x;Q)QO(I;Q)} =0. (5.11)

In a first step, we eliminate p(x) and Qq(z;¢q) in Equation (5.11) using Equation (5.3) and Equation (5.6)
for P,(z;q). This can be easily carried out using a computer algebra system—we used Maple V Release
4 [Char et al., 1991]—and gives the relation

G0 + vy 1) Qe [P @0)] =[0Gy + £ T Palz; ), (5.12)
with
Qaor = 06— (L+0)én) +¥aytt — Ao t])Ge + (¢~ ¥ 1) Lu. (5.13)
e = (%” - (1L +q)¢q) + ¥yt ~ Ao ti) t,
f = -(—2’i =) ((g+ Doy + vy t) tr.

In a second step, we use Equations (5.12), (5.13) and the fact that the polynomials P,(z;q) satis-
fy Equation (5.6), again. This gives—after some computations with Maple \".4—the operator Q3% _;
annihilating the right-hand side of Equation (5.12),

Qi = (b + ¥ ta)lg” AL + (1 +9) by + Y2 tz]@?
—[g* AL (¢2) + Y t2) + A3 (2) + ¢1)] G4 (5.14)
+q¢) [¢° A2 + (1 + q) d3) + Y3 t3)] Lo,
where A; = (14 9)0 ;) + ¥yt — Ao ts.
We, therefore, obtain the factored form of the fourth-order g¢-difference equation satisfied by each
Pr(Ll—)l(I: q)
Y Q'E,n—l [

=<2 n—1

2nolgd (g — 1)2 22 Pr(zlf)1($§‘1)] =0. (5.13)

5.4 Applications

5.4.1 The first associated Little and Big ¢-Jacobi polynomials
For the Little ¢-Jacobi polynomials, pn(z; a, blg) [Area et al., 1998a],[Koekoek et. al, 1996]

( _z(z-1) zl—aq+(abq2—l)r
prz) = — v da-1)

and for the Big g-Jacobi polynomials. P,(z;a,b,c: q) [Area et al., 1998a],[Koekoek et. al 1996]

2

— ha? —
o(r) = acq - a+ o) + :5_7 ¥(z) = cq + aq(l — (b+ ¢)q) + (ahq r
q

qlg — 1) ’

the constant ¢ —2¢ isequal to 2(1;4_“1')'12. Therefore, the first associated of the Little g-Jacobi polvnomials
(resp. Big g-Jacobi polynomials) is still in the Little g-Jacobi (resp. Big g-Jacobi) family when abg = 1.
Let f.(a.hlq) and ~.(a,blq) ( resp. Bnla,b,c:q) and v, (a,b,c;q)) be the coefficients of the three-
- term relarion ‘see (2.18)  satisfied by the Little g-Jacobi polynomials p,(z:a. blq) and the Big g-Jacobi
polynomials Pt x:a.b c: q), respectively.
Ir follows immeciately from Lemma 7.1 that they obey:

1 1 1 . 1
Buo1(a. —q) = qa 3n(=,aq|q), Yas1(a,— lq) = ¢ d®>~,(=.aq q),
qa a qa a

k=)
=
t
-~
)
a
)
=
I

1 1 Y 1
a 3n(=,aq,¢q:q), vny1(a, —.c;q) = a” v (=.aq,cq;q).
a qa a
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The previous equations used, together with (2.23), give:

Theorem 5.1 The monic Little gq-Jacobi (resp. monic Big q-Jacobi) polynomials and their respective
first associated are related by

z 1
P\ (z;a, —Iq) = a"q"pn(—; =, aqlq), (5.16)
qa aq a
1 ;1
PO(zi0, —,ciq) = a"Pa(%;~,aq,cq;0). (5.17)
qa. a a

5.4.2 The first associated D-classical orthogonal polynomials

Since lim1 D, = %, from Equations (5.13) and (5.14). we recover by a limit process the factored form of
q—

the fourth-order differential equation satisfied by tlie first associated P,(ll_)1 (z) of the (continuous) classical
orthogonal polynomials P,_; [Ronveaux. 1988],

Q;‘nn 1«" n-—1 [ 7(11—)1(1:)} = 07 (518)
with
Q5 n d? d
Oxc — i — U el "o ]
=2 n-—1 g_lzi qz(q — 1) I2 ¢d1}2 + (20 w) d + (é w + An)Ida
1 Q3% af2
*xw( — ' — I A I

QZ,n—l 4¢(2}) q_}] q q— 1) d J.2 + (¢ + w) + (V + ) iy

where

1"

A= limApg=—-n[(n—- 1) + 9]
q—1 2

5.4.3 The first associated D, _-classical orthogonal polynomials

In this subsection we apply the result of Theorem 4.2 to deduce the fourth-order difference equation
satisfied by the D, . -classical orthogonal polyvi:omials and then deduce the difference equation for classical
orthogonal polvnomials of a discrete variable.

In the first step we replace in (5.13). the polynomials ¢ (resp. ¢ and P,‘ll)1 ) by Tig_qq_S, Tlg_qiﬁ and

T— Pn_)l, respectively. 1.e..

&= Tﬁé, U= Tﬁ 0, P,(ll_)1 (r;q) = Tl—f“., Is,gl_)l(z;q.w) (5.19)
and get an equation which multiplied by 'Tl;_;, taking into account (4.23) and Proposition 3.5, gives

-

o ——2nmt [P (g _ |
TEN(g -1 1+ )2 [ (I’q’“’)] 0, (5.20)
where
Q'?n 1~ (ﬁu’] —12 - 1+Q)@[ +L;[1':t_1 —’\"»OE)AQ.J+(I(QE+1ZJE)I(1,
1 = (o + v B)le” A+ (1+ ) gy + i Bl AT

'—[ 41(0[2 “"1.[_3{)4—";5 (O[2+(]A1)]A W
+qdyla° Ay + (1 +q; by + Y5y 83)] T

with the notations

Aj(z) = fiJ =(1+ q)éjJ: + 1.7:_,-: t, — Ao tg, 6[1’1 =6’z + w1lg), z/_;[j] =g’z +wlily),
t; -:—(le_l—__ut(I) =¢ ((g=lix+w , fh=Hz)=(¢g— Dz +w.
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Since {P,}nen is D,-classical with respect to £ (see (5.5)), it follows immediately from Theorem 4.2
that {Pp}nen (with Pu(z;q,w) = TFT” P, (x;q)) is Dy -classical with respect to £ = T;TWE’ where
the linear functional £ satisfies D, (¢L) = L. Therefore (5.20) is the factored form of the fourth-
order difference equation satisfied by the first associated P,(Ll_)] (r;q.w) of the Dy _-classical orthogonal
polynomial P, (z;gq,w) .

5.4.4 The first associated A-classical orthogonal polynomials

We obtain the difference equation satisfied by the first associated Pv(ll_)l of the polynomial of a discrete

variable, P,_1, orthogonal with respect to the classical linear functional £ (with £ satisfying A(¢~)£~) = L)

[Atakishiyev et al., 1988]. [Ronveaux et al. 1998a], [Foupouagnigni et al., 1998b] by limit processes
( lim Dy, =4):

g—1, w—1

01 Qsh 1 [P ()] =0, (5.21)
where
Aoy = lim Q3
= O T? = (260) + by = M) T + (o) + b(0))Ta
and

PR 1 %4
Q‘) — - 1m Q _
2,n—1 w1, g1 2,n—1

= (0 + @) (An = 200) = Py = 202 — Pp2)) T
+[0(3) (20(2) + 40(1) + 201y — 2An) + Sy (201) + V1) + Dia) — 2 M)
+2 61y (Yi2y + P — An) + (o) + P3) Wy = Aa) + An (A = )] T
+o1)(An — 20(2) — W2y — 203) — v (3)) L,

with the notations

» : a;u
7

b =olz+7]), Vg =vl(z+]d), An= (}1_)ml Mo=-n(¥ +(n~1)
The results given in this chapter (see Equations (5.12) aud (3.14)), which agree with the ones obtained
using the Stieltjes properties of the associated linear functional [Foupouagnigni et al., 98e19], can be used
for connection problems (see [Askey, 1963, 1975]. [Askey et al.. 1984], [Lewanowicz, 1995, 1996], [Godoy
et al.. 1997a] [Area et al.. 1998b]) , expanding the first associated Pfﬂl in terms of P,, in the same spirit
as iu [Lewanowicz, 1995]: and also in order to represent finite modifications inside the Jacobi matrices
of the g-classical starting family [Ronveaux et al., 1996]. We have also computed the coefficients of
the fourth order g-difference equation satisfied by the first associated g-classical orthogonal polynomials
appearing in the ¢g-Hahn tableau. In particular, from the Big ¢-Jacobt polynomials, we derive by limit
processes [Koekoek et al.. 1996] the fourth-order differential (resp. g-difference) equation satisfied by the
first associated classical (resp. g-classical) orthogonal polynomials.

For the Little g-Jacobi polynomials, for example, the operators Q3 .| and Q53— are given below,
with the notation: v = ¢".

Qmo1 = qx[(qZ:z—1)Q:—u_l(—u—r:~u+(1217abx/2+q1:)gq
+a(-1+bqzx) T4,
o1 = v lq'z? [qa(—l +bg'z) x

(¢*rabv + ¢*zabv® + ¢*xv + ¢*r — qu — quv — v — av)G?
— vz + a? + @ — ¢Pr? - Prabl® + ¢"2%a2 %3

- @zd*b? - Pzabl® + g%V - P rabv? — ¢*za’bv? + ¢*ar?
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®*za?b® — ¢*rav - ¢*zav — ¢*zv — ¢*zv - Prav + ¢y
Crv + ¢ 22a®b? vt + ¢*rlaby — ¢*za®b® + qa?V? — Prav?
2¢5z2abv? + ¢®z%abv® + 2qar? + V2 — q4:1:ab1/3)7;

(=1 + qz)(¢*zabv + ¢*zabt? + @Prv + ¢z — qu

gav — v — av)1y].



Chapter 6

Difference equations for the rth
associated Laguerre-Hahn
orthogonal polynomials

6.1 Introduction

Using the properties of the Stieltjes function of a given Laguerre-Hahn linear functional, we derive the sin-
gle fourth-order difference equation satisfied by the rth associated D,-Laguerre-Hahn orthogonal polyno-
mials [Foupouagnigni et al., 1998d, 1998e]. We deduce by the limit process, ;l_rg D, = %, the fourth-order
differential equation satisfied by the rth associated D-Laguerre-Hahn orthogonal polynomials [Belmehdi
et al., 1991].

Moreover, we use Theorem 4.2 to give the fourth-order difference equation satisfied by the rth associ-
ated D, -Laguerre-Hahn orthogonal polynomials. Then follows, immediately, the fourth-order difference

equation satisfied by the rth associated A-Laguerre-Hahn orthogonal polynomials [Letessier et al., 1996],
[Foupouagnigni et al., 1998b, 1998c¢].

6.2 The associated D,-Laguerre-Hahn linear functional

6.2.1 The associated D,-Laguerre-Hahn linear functional is a D,-Laguerre-
Hahn linear functional

Theorem 6.1 (Foupouagnigni et al., 1998e) The associated of any integer order of the reqular linear
functional belonging to the Dy-Laguerre-Hahn class belongs to the Dy-Laguerre-Hahn class.

The proof of the above theorem is given by induction on the order of association using the following
proposition.

Proposition 6.1 (Foupouagnigni et al., 1998e) Let £ be a given regular linear functional; £!'") the
associated of order r of £ and S.(= S(L("))) the Stieltjes function of L£L{T).
If S, satisfies the D, -Riccati difference equation,

0(42)D,Sr(z) = Gr(r;9)S,(2)G,5(z) + Ev(x;9)S, (x) |
+ F.(£:9)G,5:(x) + H.(z;q), v > 0. (6.1)

where ¢ is a non-zero polynomial and E,. F,. .G, and H, are polynomials in the variable r depending on
q, then the same property holds for S, ., :

6(4) Dy Sri ()

Graa (-E Q)Sr+l (I)gq Sr41 (-T)
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+ET+I(I:Q)ST+1(I)
+Fr(2:9)Gg Sria (x) ~ Hroa(229),

with
H,
Gry1 = )
Yr
H,
En = (gz—3)— - F,
Vr
H,
Fr+l = (I-ﬁr)_'—'Er-
Yr
H,y1 = —oélqzr) ++.Gr — gz — Br)E. — (x — 3:)F,
, H,
+(I - Jr)(qf - ﬁr) -
Ir
Proof:  Application of the D, -derivative rule
fqx) fiz) .
o, (L) = fo 59 _ 9(0)D, f(z) = @)Dy 9()
! (- Dz g9(x)g(qx) ’

to (6.21) gives

Y [+ Dg Srsa(x)]
(g7 = 3r + Gy Sr11(2)) (2 = 3r + Sria(2)
Using (6.21), (6.1) and (6.8), we obtain the D, -Riccati difference equation for S;4,

D, S-(z) =

H;
¢(qI)Dqu+l = A’/—Srflgqsr—%l

. H. H, .
+L(qI - ﬁr)* - Fr}5r+1 - [(I - ﬁr) Y - Erqu5r+l

—-o(qr) +v.G, —{qx — 3, Er — (2 — 3,)F5.
Identification of the previous difference equation with /6.2) completes the proof.

Remark 6.1 [se of (6.4)-(6.6) gives the followning properties:

i)
H,
Er+1 — Fr+1*Er+F,-:(q—1>.’If 7
H,
E,—+1 + Fr+1 +E,- et F,~ = — ((1 —‘—q)I - 2.3«,-).

}{r + HrHr+1
S Afr

Eri1Foy — E.F, = diqr) —H,G,.

(6.2)

(6.6)

(6.9)

(6.10)

(6.11)

i1) Knowing polynomials ¢, Eq, Fo, Go, Hy, 3, and v,. n > 0. we can compute the coefficients E;,

Fi and H; for alli > 1 using equations (6.4)-(6.6).

Note that the coefficients B, and v, of the three-term recurrence relation (see (2.18)), for D,-semi-

classical orthogonal polynomials of class one are giver. by Theorem §.1.

Let £ be a regular Dg-Laguerre-Hahn linear funcrional. By Theorem 6.1, the rth associated of £,
L), belongs to the D,-Laguerre-Hahn class and its Sticltjes function S, satisfies the following D, -Riccati

difference equation

&lqryDeSe(z) = G, x:q)S, r)G,Sr(z) + Er(z:9)S,(x)
+ Flrq)G,5 (zy+ H, (z;9), >0,
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where ¢ is a non-zero polynomial and E,, F}.,G, and H, are polynomials in the variable z depending
eventually on ¢. The following proposition proves that the degrees of the polynomials E,, F,., G, and H,
are bounded.

Proposition 6.2 (Foupouagnigni et al., 1998e) The polynomial coefficients E,, F,., G, and H, sat-
isfy:
deg(H,) <m —1. deg(E,) <m and deg(F,)<m, r>0, (6.12)

where m is given by m = max{deg(Ep). deg(Fy), deg(Hp) + 1}.

Proof: For r = 0, (6.12) holds by hypothesis. Suppose that (6.12) holds up to a fixed integer .
Then using (6.4), we obtain

deg(Er+1) = deg((gr — ﬁr)% ~F.) <m, (6.13)

T

by the above hypothesis. Likewisc, using (6.5), we have deg(F,+,) < m. Finally use of (6.4) and the fact
that the last two inequalities of (6.12) hold for any integer r, give

deg(Hr—1) =1 =deg(Friy + Eri2) <m.

Corollary 6.1 Let L be a D;-semi-classical linear functional satisfying

D, (L) = L, (6.14)

where ¢ is any non-zero polynomial, 1 a polynomial of degree at least one, and E,, F.,G, and H, are
defined by (6.1). Then the following properties hold:

deg(H,) max{deg(), deg(¢) -1} -1 Vrel
deg(E,) < max{deg(y), deg(¢)—1} VreY, (6.15)
deg(Fy) < max{deg(¥), deg(¢)—-1} VreN

IN

Proof:  We shall give the proof by showing that

m = max{deg(Ey). deg(Fo}, deg(Ho) + 1} < max{deg(y), deg(s) — 1},

then use Proposition 6.2.

In fact, since £ is D,-semi-classical satisfying (6.14), we deduce from Theorem 4.1 that L is a D,-
Laguerre-Hahn linear functional and its Stieltjes function Sy satisfies

olqr)DySy = GS0GeSo + EoSo + FoGySo + Ho,
where
Eo{z:q) = u(xr) — Dyo(z),
Folz:q) = Gotz;q) =0, (6.16)
Ho(z;q) = LO¢(x) — (DyL)boolqzr) — LD, ¢(x).
From (6.16) results immediately
deg(Fy) < deg(Ep) < max{deg(v), deg(o) — 1}. (6.17)
It follows from (2.11) and (2.12) that

deg(Lpv) < deg() — 1, deg(L6oDyd) < deg(d) - 2. (6.18)
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To show that
deg((Dy L)bop(gr) < deg(d) — 2, (6.19)

we assume
n
olgr) =Y ¢;7’
—

and deduce that

fog(qr)

n-1
ZOj+1$J,
7=0
n—1
(DyL)bodlqr) = 3 647,
7=0

with

n—1

C—5j = Z Cﬁk.‘_l(’DqC,Ik‘j).
k=j

It turns out that ]
(anl = ¢n<Dq£ 1) = —agf)n(ﬁ,p;ll) = 0,
then deg((D, £)0p(gz)) < deg(p) — 2.
Using (6.18) and (6.19), we deduce that
deg(Hp) < max{deg(v), deg(¢) —1} — 1. (6.20)
It results from (6.17) and (6.20) that

m = max{deg(Eyp), deg(Fy', deg(H,) + 1} < max{deg(v’), deg(s) - 1}.

The previous equation, combined with Proposition 6.2, completes the proof of the corollary. c

6.3 Fourth-order difference equation

Through the following steps, we will show that the rth associated Laguerre-Hahn orthogonal polynomials
are solution of a single fourth-order linear difference equation with polynomial coefficients. To do this. we
shall need the following identities giving relation between S; and the associated orthogonal polynomials.

Lemma 6.1 (Sherman, 1933, Maroni, 1986a) Let £ be a given reqular linear functional; {Pp }ex

the corresponding monic orthogonal polynornials satisfying (2.18); L'™) the rth associated of L and S.(=
S(LT))) the Stieltjes function of L) then. we have

So(z) = r . VYrer, 6.21
(<) T — 3+ Sra(z) res ( )

where 3, and v, are defined in (2.18).

Lemma 6.2 (Dzoumba, 1985) Let £ be a given reqular linear functional; {Py}nen the corresponding

monic orthogonal polynomials satisfying (2.18); L™ the associated of order r of[:; {P,(Lr’}ngﬁ the orthog-
onal polynomials associated to L) and S.i= S5(L!"7)) the Stieltjes function of L7 . Then. the following
identity holds:

Pr‘.r+l/ + Sn+r~—lP,(1:+11)

Sr = —"r
Pr(I:»)A + Sn+r~1Pr(Lr)

(6.22)

where B, and v, are defined in (2.18).
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We suppose that £ is a regular linear functional belonging to the D,-Laguerre-Hahn class, that £{} is
the rth associated of £, and that { P,(f)}ne\v is the family of monic polynomials, orthogonal with respect
to £!7). If S, represents the Stieltjes function of L™, then by Theorem 6.1, for any integer r, S, satisfies
a Dg-Riccati difference equation (see (6.1)). We first apply the difference operator G, to (6.22) and obtain

q ’ST_H) + gq Sn+r+1gq Pr(zrjl)
gq Sr = =r ) (r)
gq Pn+1 + Gq Sn+r+1gq Pn

(6.23)

Secondly. we apply the quotient rule (see (6.7)) to (6.22) and obtain

D, S,

(PT(:'_)1 + Sn+r+1Pr(Lr)) (ngr(l,—-{—)l + G Sntr+10q Pr(‘r)) Ty

Il

(gq Pr(1r+1)Dq Pr(ir) - gq P1(1";')1Dq Pr(lrjil)) S"+T+1

+ (gq Pf(lr—tl)’Dq Pr(1’—-21 - gq Pr(lr)Dq P:STH)) gq Sn+r+1

!

(gq Pr(lr)Dq Pr(tr—tl) - gq Pr(lrjil)Dq Pr(lr)) Sn+r+1gq Sn+r+l
- gq Pr(lz—)l’DtI P7(1T+1) + gq Pn(,r+1)Dq P,(l:_)l (624)
+ (G PG P - G, PIVG P ) Dy S,

Further, we replace S;, G,S, and D,S,, given by (6.22), (6.23) and (6.24), respectively, in (6.1) and
obtain after taking into account (2.24), the D,-Riccati difference equation for S, ,11; an equation which

when compared with
#(qz)Dg Sntr+1(2) = Grars1(29)Sntr+1(2)Gq Sntrs1(x)
+E i r+1(29) Sntr i (2)
+Fgri (I; Q)gq Sn+r+1 (I) + Hn+r+l (1; Q)a
gives the following proposition:

Proposition 6.3 (Foupouagnigni et al., 1998e) The coefficients of the D,-Riccati difference equa-
tion for S;y-41 are given by

I

Tn.r En+r+l

~6(qz) (G, P, P - G, P Dy PV

n+1
~E,PUVG, P~ F.pig, P (6.25)
Hr r r rHr— r
+—7"P1(1 )gq Pr(1+)1 + X 1_1 P7(1~ﬁl)ng,(,r+'1),
s Fusrn = 0lqr) (G POD, PIHY — G, PUID, P, )
~E-PIG P - B PG P (6.26)
H, (r) -~ r 'YrHr-— "
+Tpn+)19q P + Tllpr(z g, P,
Tr.r Hv1+r+l = ‘(f)(q-’:) (gq P1(1T+I)Dq Pr(lr-zl - gq Pv(xg—)lD(l [)1§LT+1))
*Erp,(lﬂ'l)gq Pn(g—)l _ FTPT(],:—)lgq Pfgrﬂ) (6.27)
H, ¥-H
+ T

n+l

r r—1

PGy Pl + PG, P,
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Tn-1rHotr = —¢(qx) (gq P(’+1 D, P g P (NP Pf(]r_—%;l))
~E. PG, P — FLP{G, P (6.28)
HT THT‘ (r (r
+—Pf(f)gq P7(lr) + 1 +1 gq 1)7
Fr Yr—-1

where m, . is given by (2.24).
We combine (2.24) and (6.25)-(6.28) to obtain:

Theorem 6.2 (Foupouagnigni et al., 1998e) The associated polynomials obey:

¢(qx)Dq P1(1r) = _En+7‘+lgq Py(;r) - FrP(r)
Hn+r T ’,-H T
+—gq P1(1<F)1 + ’) Pf(l tl). (6.29)
Tntr Tr—1
¢(qI)D Pnril _ En+r-r—lgq P(r+1 +E, P(r+1
n+r 'Hr
H g, pirth - L pin, (6.30)
Yn+r Tr
é(ql') Pyi:}l = Fn+r+1gq n+1 - F P,(li)l
Hr_
~Hpir1Gy P + 77 Il p(reny, (6.31)
r—1
¢(QI)DQ P1(1r+1) = Fn+r+lgq P(r+l) + E P (r+1)
1) Hr
—Hpir1Gg P( +1 " n+1 (6.32)

Proof:  We subtract the two equations obtained after multiplying (6.25) (and (6.28), respectively)
by ng(r G, nrtl and obtain

Envr-f—lg P( — Tn— 1an+rgq ng—)l

= —¢(qr) (gq Q P(rH ngn+1ng(1r—11)) D, Pr(zr)
- (ng’(If)ngT(lT+1) - glIPrE:-)lg P‘nr+11 ) F" Pr(lr) (633)

- r (r)
+ (9(1177(1 )g(IP1(lr+1) - P

(r+1 Y Hroy (r+41)
n+l(/qP )77 Pn—l .

el

Then use of the relation obtained from (2.24)

r T 1
gth1(1 )gqpr(er - G,F, +1gq nr+1 ' = S, (6.34)
and the fact that
Tn.r
Tn—1loyr = —
Tn+r

transform (6.33) in {6.29).

Again, we multiply both sides of (6.25) (and(6.28), respectively) by QQP,(IHLIl QqP,§r+1) and obtain
two equations which subtracted give

W"'rE7l+r‘lgq Pr(1r+ll — Tn-1, an+rg P(r+1,1 .
= —¢iqr) (QqP,j G, PtV — G, P g_lgqp("‘l)> D, Pl

n—1

+(6uPLIG, PYHY - G, P G, P B, P (6.35)

T }IT‘ r
(gq [r)gqpr(zr+l gq n+lg'lP( H)) 7 P( )

n
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Then use of (6.34) transforms (6.35) in (6.30).
Equations (6.31) and (6.32) are obtained in the same way by combining (6.26), (6.27) and (6.34). O
For the sake of simplicity and uniformity we shall present difference equations in terms of powers of
the operator A, instead of Dy . This is possible because for g # 1 or w # 0, all powers of the operator
D,,. can be expressed in terms of the powers of 4, and conversely. To do this we present the following
lemma {proved by solving system of equations).

Lemma 6.3 The powers of the operators D, ., and A, are linked by the following relations:

Dy, = Ay, =1I.
{(g—-Dr+w)Dgo = Agw—ZLa
({g— 1)z + W)Q Dﬁ,w = q_l AZM - [2]q qﬁl Aqw + Za,
((q=-Vz+w)’ D, = ¢ A5, - Bloa A}, + Bl 4w — Za,
((q—Dz+w)'Dy, = ¢ %A, - (-1 q %4, +(1+¢)[3],¢7° 4%,
Mg Agu + L.
((q—Dz+w)’Di, = ¢ A  —[6l,g704;  +(1+¢*)[5leq 43,

—(1+ 92) (5] 4_7 ‘43,.& + [5]4 q* Aqe — Ly,

A, = D, =1
Ay, = ((g- Dz +w)Dgo +1a,
A, = qll@g-Vz+w)? D, +(1+9) ((g— 1z +w)Dgo + Ly,
A, = Plg-Vz+w)’ D), +4qBl((g— Dz +w)’ D} +(3lg((g - Dz +w)Dy o + Iy,
A, = g-Dr+w)' D), +¢ (-1 (g~ Dz +w)* D3,
+q(1+¢*) Bl ((a—Dx+2)*D2, —(g— 1) [4], ((g— Dz +w) Dy + T4.
A, = ¢%((@-Dz+w)’ D) +4° [l (g - 1)r +w)' D],

+¢° (1+¢*)[5], (g - Dz + )’ D} . +q(1+¢%) [3] (¢ — 1)z — w)* D2
+[5]q ((q - 1)1: +w) Dq.d + Id-

Remark 6.2 If we take w =0, ¢ # 1 (resp. w # 0, ¢ = 1) in the previous lemma, we find the link
betueen the powers of the operators D, and G, (resp. D, and T, ).

Theorem 6.3 (Foupouagnigni et al., 1998e) Let £ be a regular linear functional belonging to the

D,-Laguerre-Hahn class, L) the rth associated of L and {P,(lr)}neN the family of monic polynomials,
orthogonal with respect to L. If S, represents the Stieltjes function of L), by Theorem 6.1. for any
integer v, S, satisfies a Dq-Riccati difference equation (see (6.1)). The associated polynomials P satisfy

D [P] = Novr o [PIY] (6.36)
Dot [P] = Vo [PE] (6.37)
where the operators Drn, Nep1n-1, Drs1n1 and A7, are given by
Drn=a2G;+a1Gy +a0Td, Nesinoy =a1Gq +aoZly, (6.38)
Drpiin-1 =h2 G2 = b1 Gg + by Ty, N =b1Gg +boZa. (6.39)

The coefficients aj, b;, a; and b; are defined as

as = K3o(h11 K7y — K32 Ku1).  bo = Kj0(Ky 1 K71 — K31 Kg,y)
a = —K2,(Ks0 K:i+KioR35,), b= —1\"5,1(K3,0 K:1+ Ko KS.I)
ao = K3,1(Kao Kan + K41 Keo),  bo=K3,(KsoKs) + KyoKsa) (6.40)

ar = Ky ((K3o K7y + Ki10Ks1), b =Ke1(KzoKey+KigKza)

ao = —K3,1(Ka1 Kyo + Kan Rso)y bo = —K3,(K51 Kepo+ K1 Ka2o0),
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where the coefficients K;; are given below with the notations:

Ki = Ki,O(I;Tvnvq) = I(i(‘r;ranvq)a

{

Kij =K j(z;m,n,q) = G Ki(z;r,n.q) = Ki(¢/z;7,n,q). (6.41)
¢(gz) : plgz)
K =——— Enr N aI\':'———_r; 3
N P +r41(23q), R 7= 1)z Fr(z;q)
Hypr(z; Heo1(z:9) -
Ky = M}]ﬂ S B Zfr >1 ’ (6.42)
Yn+r Yo Go 1f r=20
H, (z;
K= 295 4B (), Ky = @0
(g~ Dz Yr
. Hy oy (x;
K: = Hlaz) Fotrs1(1:9). K3 = =Yrnorp ﬂ~
(q - I)I A'n+r+1
Proof:  Use of the relation
(g—1)2DyP(x) =G,P(z) - P 1) VPEeP.
transforms relations (6.29)-(6.32) in
Ki1G P\ = KP4+ K3G, PY), + Ky PUTY, (6.43)
KiG, PV = K PV + KsG, PU™Y 4+ Kg P, (6.44)
K7G P\ = KyP\ + KgG, P") + Ky PIrY), (6.45)
K: G PU*Y = Ko PV 4 KeG, PUY + Ko P, (6.46)
where K; are given by (6.42).
In the first step, we solve equations (6.43) and (6.44) in terms of G, P”:L)1 and G, P! and obtain
RGPV - Ry PV — Ky P
r) 1 Yyq n 14 n_ -
= . (6.47
gl] n 1 [\3 6 )
- r+l g (r—1) _ (r)
G, P = RGP [\[‘i Pa: " = Ko Fn 6.48)
13

In the second step we apply the operator G, 1o both sides of (6.43) and (6.46) and get

Ki,G2PY) = KauG, Pl + Ken Gl P + Ky G, PLTHY,
Ko GEPU™Y = K;5,6, PV~ Ky G2PY + Ko, G, P

Then, we replace G, Pf]i)
equations and obtain

. and G, pirth given by (6.47

4

) and (6.48) respectively, in the two previous

1\—31 5 ( 1\11\_1 (I\’g Kﬂ'l +K5[\’4 1)
2 p A a2 pir) 1¢ (r. 2 : (r)
= ——Gg P B i P
g "+ I\’7y1 gq " 1\3 1\ 1 1\’3 ]\’711 n
K, Ky, (re1y (Wi Koy + K5 Kea) oorg1y ’
G, P T - - Pt .49
[(3K7_1 v e 1\3 [\'7_; n—l (6 )
K (r K1 K5, r+1y (Ws Kz + KqKen) r-1
ZP(r+1 - 8,1 2 plr+t) P _ p )
gq 1\71 g n—1 I\’B [{7.“ gl n—1 K3 A’7,1 n-1
K1 K(,J (r, _ (1\'6 1\'3.1 + K‘) Kﬁvl) P(r) [6 5‘))
Kykq, 00 K3 K7, n '
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In the third step we apply the operator G, to both sides of (6.43) and (6.44) and obtain

Ky, G: P 1\’21041)( + K31 G2 P + Kan G PV,
Kl . g2 7'+1) — P(r‘+1) + K g2 P(r+1) + Iﬁ gq ‘Pr(Lr)'

Finally, use of (6.49) and (6.50) transforms the two previous equations in

KS,O(KI,I A—'I',l - K3,1 A—S,l)gg Pysr) - K?,I(KS,O K?,l + Kl,O KS.I)gq P( )
+I(3 1(Kz c Ko+ Ky 1 I\’G O)P(r) =
K1 (K30 K71 + Ky 0R3,1)G, P,,HLI1 — K31 (Ky, Kg0 + Ky Ks O)P(r“)

KoKy Koy — K3y Kg)G2 PUHY — K1 (Kao K7y + Ky o K1) Gy PATY
F K1 (Kse Ksq + Kao Kg1)PUHY =
Kei(Kso K71+ K1 9K3.)Gy P\ = K1 (Ksy Koo+ Koy Kog)PUHY.
thus the proof of Theorem 6.3 is complete. O

After proving Theorem 6.3. we have now all ingredients to derive the single fourth-order difference
equation satisfied by P

In fact, we apply the operator G, to both sides of (6.36) and eliminate G, *P nrﬁl) in the equation
obtained, by using (6.37) and obtain
3G Pl + G PV + ¢t Gy P\ + ¢y P
= G P +& P, (6.51)

with polynomials ¢; and ¢, given by

c3 = byaza,co=baary, cp =bragy —biay
¢y = —bodyr, &1 = badoy —brarg, G = ~boar,,
where x; ; = G2x. for xi € {a:. bia;, b}

By the same process, we apply the operator G, to both sides of (6.51) and eliminate G, 2P"*!) in

n—1
the equation obtained. by 1sing (6.37) and get
di G *PY + d3G, P +dy G PP +d Gy P +dy PV
= &GP +d PV, (6.52)

with

dy = by baiaz, d3 = babs oy, dy = b‘z(ao,lbz,l - dl,l’;x.L),

di = (hib1parg— by @o,1b21) — babgrary), do = (@11 b1 — @g. b2 )bo,

di = (bihiya@ry —biagiban) —babordry), do = (@1, by 1 — dgy ba1)bo.

We, therefore, deduce from (6.36), (6.51) and (6.52) the following result:

Theorem 6.4 (Foupouagnigni et al., 1998e) The associated polynomials P,(lr), for any integer n and
for any integer r. satisfies the single fourth-order difference equation

‘ as g2 n +(lv gq +Cl0 Pvr) &1 &0
3 G3P) 4 ¢, G2PY) + ¢ gqp“’ +co P & &% |=0, (6.53)
dsGiPY +d3 B3P + dy IRV + dy G P 4 do Py dy
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which by Lemma 6.3 can be written in the two different forms:

4
S Ii(rngi2) G P (2) = 0, (6.54)
j=0
I (r,n,q;x) D] P7) (z) = 0. (6.55)
j=0

where I;(r,n, q; ), It (r,n. q; 7) are polynomials in the variable © and depending on r,n and q.

6.3.1 Fourth-order differential equation for P{"”

We deduce from the previous results and by the limit process, lim1 Dy = %, the fourth-order differential
q—

equation satisfied by the rth associated orthogonal polynomial of the D-Laguerre-Hahn class [Belmehdi
et al., 1991]. Moreover, we recover relations used in [Belmehdi et al.. 1991] to derive the fourth-order
differential equation satisfied by the rth associated D-Laguerre-Hahn orthogonal polynomials.

From (6.55) and by the limit process we get

4 d j
> Ij(r.n,liz) = P(x) =0, (6.56)
= dr

where I5(r,n.1;x) = lim I} (r.n,q: z).
j a1

To compare more easily the equations obtained from (6.29)-(6.32) by this limit process with those
given in [Belmehdi et al., 1991], we state the following lemma:

Lemma 6.4 If E (z;1), Fr(x;1) are the limit when ¢ —» 1 of E.(z;q) and F,(z;q) respectively, we have
Eivrpi(zl) —E-(z:1)= Fyra (1) = Fo(z;1) VneN (6.57)
Proof:  We shall prove the lenma using the relation
Eryz;1 —E(x:1)= Foi(x;1) — Fr(1;1).
easily derived by limit process fror:1 (6.9).

In faet. use of the previous relation gives:

E, (z:1 - E (z;1) = ZE1+r+1(.IT:1)—E]+r(I21)
71=0

n
= ZFJ.{.r:f](IZl) —F]',,r(fl‘Il)
3==0)

= Fpyrp(x1) = Fe(a; 1),
C
When we take the limit of equations (6.29)-(6.32) as ¢ — 1, we obtain, taking into account the previous
letmina [Magnus, 1984, [Dzoumba. 1985] [Belmehdi et al., 1994,

d Cvn-rol + C‘r

D ~
(r) ; n+r p(r) r (r+1)
éIT—Pn - 2 P'lr * Tnidr Pn_H * Tr-1 D Pn-l ’
OiP(r+” — _Cn~r~1 -C- P(r-rl) . Dn+r P(r+]) _ & P(r).
dr n—1 2 n—1 Yridr T T n
d Cryr-1 = Cr i) Yr 1
é-d_Pr(lil = __"___TQ‘TPH‘_I _Du+r+lpy(lr)+ A__Dr—lpr(lr+ )y
I Ir—1
ol ptr+ o Cnara+ G P _p,,, preb - Prpm

dl‘ n 2 n—1 Y n+l:*
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where the polvnomial coefficients C, and D, are given by

C, = Cr(z) = Er(z;1) + Fr(z;1), D, = D.(2) = lim H.(z:q). (6.58)

Notice that the previous four differential equations, already known earlier [Magnus, 1984]. [Dzoumba,
1985], are exactly those which allow Belmehdi et al. (1991) to derive the fourth-order differential equation
satisfied by the associated orthogonal polynomial of the D-Laguerre-Hahn class. The coeflicients C, and
D, for the associated D-classical orthogonal polynomials, are given by

Cr = (z— 3,)2rds + 1) — &, ’3— = (2r — ) + v1.

r

where ¢ and v are the polynomials appearing in the Pearson differential equation satisfied by the regular
linear functional £: D(¢L) = v L, with

o(x) =¢ox?+ ¢z + o, U(x) =1 T + Y.

6.3.2 Fourth-order difference equation for the rth associated D, ,-Laguerre-
Hahn orthogonal polynomials

We deduce the difference equation satisfied by the associated D, ,-Laguerre-Hahn class from Theorem
6.4.

Consider £ a D,-Laguerre-Hahn linear functional and {P,}nen the corresponding family of monic

orthogonal polynomials. Let PL” and £ be the rth associated of P, and L, respectively. The Stieltjes
function S, of £ satisfies (6.1):

P(gr)DeSr(x) = Gr(x;9)S:(2)G,Sr(z) + E.(2;9)S:-(z)
+ Fi(z;9)G;S-(z) + Ho(z;q), >0,

where ¢, E,. F.., G, and H, are polynomials in z and depending on ¢. It follows from Theorem 6.4
that P,Sr) satisfies the fourth-order g-difference equation (6.54) where the polynomials I;(r, n. ¢;z) depend
on the polynomial coefficients ¢, E., F., G, and H.. To be more explicit, we denote I;(r,n.q;z) =
Iiiron,qx;¢. E. Fr Gy Hy).

It results from Theorem 4.2 ar.d Lemma 2.5 that the polynormials {pn}ner;, with P, = Tﬁ Py, are

orthogonal with respect to £ =T-. L and that the Stieltjes function S, of £{7) satisfies
q

qD(q:l:+w)Dq,_5'r(.r) = (;'r(:c;q,w)gr!’z).’-lq“.S'T(:z:)+Er(a:;q.w
1

where ¢ = Tl_—_”“d)' and ®(x;q, o) = T%é(r;q), ¢ e {E,. F,,G,.H.}.
We state the following

Theorem 6.5 The rth associated pr(‘r) of the polynomial P, satisfies the fourth-order difference equation

4

S Hrnguiz) A PO() = 0. (6.59)
o=0 .

where the polynomial coefficient IJg r,n.q,w; ) depending on &, E., F., G, H, and denoted If(r.n,q,g;z) =
. n.q.wr;0 E. Fr.,G. H.), cre given by

[jg(r,n,q,_u;:t: o. E. F..G..H)= Lilr,n, gz — L'é,E,,F,,G,,H,).

]—q7
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Proof:  We replace in (6.54) P{” by = B e,

P(T) :TLIS(T)
n Tog ' 7

and obtain an equation which multiplied by the operator Tl—_w gives
-9
4
Z T=e Ii(ron,g;x) T-o G T PU)(z) = 0.
i-q T—q 1-gq
j=0
We therefore use the relation (4.23): 7-. Qg Tr"—q = A{; » to transform the previous equation in
T—q - ’
! w
Z Lrn.gz— m) Al P (x) =0,
=0

We complete the proof by identifying the coefficients of A{;.J Pﬁ”(z) in the previous equation with the
ones of (6.59). o

6.3.3 Fourth-order difference equation for the rth associated A-Laguerre-
Hahn orthogonal polynomials

From the fourth-order difference equation satisfied by the rth associated orthogonal polynomial of the
D, .-Laguerre-Hahn class, we deduce, again, by the limit process the fourth-order difference equation

satisfied by the rth associated orthogonal polynomial of the A-Laguerre-Hahn class {Foupouagnigni et
al., 1998b)
4

Z If‘(r,n;a:) T/ IS,ST)(I) =0,
2=0

with .

I]‘-A(r,n;.p) = lm 1 I;(r.n‘q,w;r;é, E. F..G- H.).

w—. q—

6.4 Application of difference equations to classical situations

6.4.1 Coeflicients E,, F. and H, for classical situations

Here we suppose that the regular linear functional £ satisfics the Dy -Pearson linear functional equation,

Dy(o L) = v L, where ¢ is a polynomial ¢f degree at most two, and v is a first-degree polynomial given
by

gﬁ(I) = Oy 2 + AT +on, ofr)y=uvz+ g, |1_'1MO3‘ + |Q2 + |Ol‘ + |Oo‘ , # 0.
It follows from Proposition 6.2 tl:at H, is constant and E, and F, are polynomials of degree at most one.
Let us compute first polynomials E,.. F,, and L in terms of o and ¢. The first D -derivative of
(6.4). (6.5) and the first and second D,-derivative of (6.6) give, respectively,

H,
Dy Eroy = q— — D, F., >0, (6.60)
Hr
DyFry = TT-DyE r20. (6.61)
qEr + Fr = -ng Dq [ ((12I - /31‘/D7 Er - ((II - ﬂr/Dq Fr
H,
+{1 ~ g)(qx — ﬁ,)T, r>, (6.62)

H, N
gD E, + DyF. =g — g ¢y, T >0 (6.63)

T
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In the first step, we solve equations (6.60), (6.61) and (6.63), taking into account the initial conditions
{(6.16)

Ho(z.,q) = LOgy(z) — (DeL)80¢(qz) — LODeY = (1 — ¢2)70,
D, Eo(z.q,uw) = ¢ — ng(l) =y — (1 +q) o2
FO(IvQ) = 0.

and obtain [Foupouagnigni et al., 1998e]

DyE, = ¢+ ([r]g - (20992,
DqFr — q?»r[r}q@7 (6.64)
H,

— = ¢t +q"([2r]y - )¢
Tr

In a second step, we compute the coefficients F, and F, using (6.62), (6.64) and the equation cbtained
after iterating (6.9):
r—1

H
E.~Fr=((g-1)n)Y. =2 ~v-Dg ¢
k=0 Tk

and we get huge expressions for E, and F,. Finally. use of Maple V.4 and the simplification procedures
for g-hypergeometric terms developped in [Bding et al., 1998  allow us to have readable expressions for
E. and F; [Foupouagnigni et al., 1998e],

Ex;q) = (@~ d2—q vilg-1)(g"-q) (g zq—qd z+z¢* —1q) ¢ (6-65)
+@-1 (@ —gor+q (g-1){¢g"Tqu1+qvo —q T —¢o))/

(q—=1)2(q" —q)(g"+q) o2+ (q") Y1 (g - 1)),

Forig) = (-14+4¢) (¢ - (¢ r¢* —¢ zq+z¢* —xq¢")0r" + (6.66)
(¢ (@-1 (¢ —q)d1—q lg=1) (g zq" v1 —Vog® ~ g Tquy +qg))On
+¥ () (g —1)° <251)<1/(q’ (q-1)2Ug" —) (@ + @) da+ (@) ¥ (g— D).

Remark 6.3 1. For g-classical situations, coefficients K>. Ky, Kg and Ky (see (6.42)) are constant
with respect to the variable r.

2. Forr =0, I{4 =0, then it follows from (6.40,. (6.42) and (6.64)-(6.66) that (6.36) and (6.37) (for
r =0 and for Dy-classical situattons) are. respectively, equivalent to equations (5.7) and (5.12).

3. When the regular functional £ is D,-semi-classical, Ky = v Go = 0 (forr = 0). This allows us

to obtain the factored form of the fourth-order difference equation for the first associated Dy-semi-
classical orthogonal polynomzals.

6.4.2 Results on general associated D,-classical orthogonal polynomials

The coefficients 1;(r, n,g¢; x) (see (6.53)) can be computed using the algorithm described in (6.21)-(6.53).
But this involves heavy computations due to huge expressions containing powers of ¢ which need to be
factored. To avoid these difficulties, we again used Maple V.4 to compute symbolically the coefficients
I,fr.n. q: 1) and ro simplify common factors as was done for the associated classical discrete orthogonal
polynomial [Foupouagnigni et al., 1997¢] to obtain

Theorem 6.6 (Foupouagnigni et al., 1998c, 1998e) The  coefficients [;{r,n,q;z) of the
fourth-order q-differcnee equation satisfied by the rth associated Dy-classical orthogonal polynornials are
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given by
Iy = Ky 2(Kio,0K10,1 — K12,0K12,1),
I; = Koz (Ki2,0(ke,3Ki21 +Ki31) — Kio,0 K101 (K23 + Ks.2)) + Ko 1 Ki0,0 Ki2,2,
I, = Kio.1 (Ko, 2 (Ki0.0 Ni0,1 + Riz.0 — K51 Ki2.0)
~ Ry,1 Kyo,0) — K12 1 (K12,2 K13.0 + k11,2 K12.0), (6.67)
I = Kio.0Ki2,2 (k2,2 K12.0 + Ki3,0) + Ki0,2 K12,0 (Ko, 0 — K10.0 K10,1),
Iy = Ky, _1(Ki0,1K10,2 — K12,1K12,2),

where the coefficients K; ; are obtained from (6.41). (6.42) and

Ky(z) = Ki(qr)Ki(qz) — K3(x)Ks(z), Kiolx) = K7(qx) + K1(x).
Ki(x) = Ky(qr)Ka(z) + Ky(x)Ke(x), Kia(r) = Ka(qzx) + Ks(2),
Riz(xr) = K;(gr)Ks(z) + Ky(r)Ke(x), Kia(r) = Ks(qz) + Ka (),

with coefficients E,, Fn, and given by (6.64)-(6.66).

Notice that coefficients [;(r.n. ¢;x). are given in appendix III. for some D,-classical orthogonal poly-
nom:als.

6.4.3 Fourth-order differential equation for the rth associated D-classical or-
thogonal polynomials

From the relation lim1 Dy = % and by the limit process, we recover using Maple V" Release 4 the fourth-
q—

order differential equation satisfied by the rth associated classical continuous orthogonal polynomials
(see Belmehdi et al., 1991], [Zarzo et al., 1993]) [Lewanowicz, 1995], [Foupouagnigni et al., 1998e]). This
equation is given in terms of the factored form of the fourth-order differential equation satisfied by the
first associated classical continuous orthogonal polynomials as already done earlier [Lewanowicz, 1995 .

O (r.n.z)P(x) =0, (6.63)
where
O(r,n,q; 1) ZI rnq,xQJ
and
e 1 . OurngT)
O] 20(z) (r.n) 451 g% 1q - 1)2r2
= Q33+ (1 ~r)Cin, Q5 ,, (6.69)
with
12 d
Qr, = N’J{ﬁ + 30'% —n(n —2)0"Iy4.
Clront) = (41— 1)0" +2¢),
nir.n) = (n+ Di{n-2r —2)¢" +20').

55 and Q3¢ are given by (5.13. and (5.14).

6.4.4 Fourth-order difference equation for the rth associated A-classical or-
thogonal polynomials

We first deduce the fourth-order difference equation for the rth associated D, ,-classical orthogonal
polvnomials using Theorems 4.2 and 6.6, then deduce the difference equation for the rth associated

A-classical orthogonal polynomial by the limit process:  lim Dy . = AL
w—1,g1
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We assume that { P, }nen, orthogonal with respect to £, is Dy-classical with £ satisfying Dy (4L) = 9L
where ¢ and ¥ are polynomials of degree at most two and degree one, respectively. The rth associated
P satisfies Theorem 6.6. It yields from Theorem 4.2 and 6.6 that {Pn}nen, With P, = T—. Py,

is orthogonal with respect to £ = T_. £ and L is Dy -classical satisfying Dg . (L) = ¥L. where
0=T-w¢and ¢ = Tl___w_tﬁ. Again. we use Theorem 1.2 and 6.6 to conclude that the rth associated P\
of the Dy ..-classical orthogonal polynomial P, satisfies the fourth-order difference equation

4
Ii(r.n,q, w;; ¢, ) Aq‘u.j ]3,([)(3:) = 0.

j=0

We, therefore, use the limit process to state the following:

Theorem 6.7 (Foupouagnigni et al., 1998c) Let P, be the classical orthogonal polynomials of a dis-

crete variable associated with the linear functional £ satisfying A(¢) = L. Then, the rth associated P( ™)
of P, satisfies the fourth-order difference equation

4
SR T P (@) =0,
Jj=0

where the coefficients I]A are given by

If = K9,2(K10,0K10,1 - I\'12,0K12. 1);
I3 = K2 (K20 (k2 3Ki21 + Ki3,1) — Kio,0 K10,1(K2,3 + K5 2)) + Ko.1 K100 K122,
I = Ko (Ko 2 (Koo K101 + Kis,0 — Ks,1 Ki2.0)
- Ky,1 Ki0.0) = K12.1 (W12,2 K13.0 + k11,2 K12,0), (6.70)
I? = KigoKi2a (ka2 K120~ Kiz.0) + Kio,2 K12,0 (Koo — Kio.0 K10,1),
18 = Ko _i (K. 1Kio.2— Ki21K ).

with the notation: K; ; = ki(z + j}. Coefficients k; read as:

ki(z) = 6+ 1)+ Eniritx), ko(z) = o(z + 1) — Fr(z), ki(z) = I;{,nLn
Intr

ks(z) = { SRALE Cks(x) = Bz + 1)+ Erlo). ko(x) = ~ 27

1f r=20 Trr
kr(z) = d(x+1)— Foorg1(2), ke(x) = —Hnyrir, ko(z) = ke(z + Dky(z + 1) — ks(2)ks (2),
klo(I) = k7(I+1)—I\ ( ) 1\11( ): kQ(I+1)k2(I)+k4(I)k6(.’E), }\'12(1?) = k2(1+1)+k5(17),
kyz(z) = ks(z + 1)ks(r) +ky(x)ke(z). k1a(z) = ks(z+ 1) + ko(x)

uith
E,—(I,é,{) = lim E,-(.’E - T d)a )
w—1l,g—1 —q

= (O~gn—25o+l./)1)

+(02n—202+b ) (¢2 n? —¢2+¢>1n+1/)1n—@1+uo)
Q(n—l)Q"+Ul

Fi(z,6,0) = lim Fo(z - ——T

w—l.g—1 1 —4q

=)

= (E))II‘TI

(0201+302+d) n? —4¢2n—202ul—oooln+vln<bz+o>10—wl é1)
2(”“1)¢2+U1 ’

H = = lim Hr(z—ﬁ.Tﬁ&,Tﬁ&)=((2r—1)q32+é1)~7r.

w1 g—1
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It should be mentioned that E., F, and H, are given by (6.64). (6.65) and (6.66), respectively. The

coefficients B3, ~n are given in Lemma 7.1.

;3,1 = Bn((i;, 7:)) = lm (BT, Twt) + L)
w—1,q—1 1—q 1-q 1—-g¢q
. ~<l~52 (D1 +261)n% — (T1 +26)) (=1 + 02)n — Yo (=01 + 260)
(C1+2¢, 1) (2(n — 1) 03 + Uy) ’
T = A(60) = lim oy (Tee . T )
w—1,g—1 q B

= —(n-2)(n-1)"4}
Han =2 (n=12@o+ (n—1)% 3¢y n® +2n g — 8¢1n — 4o +5¢1)) d5 +
(—n=2)(n 122 -1 (n=2)(n—1)20; + 49 (n— 1) (=3+2n) &
+ (o +Pn—) (N =200+ 40U, —Torn +301%))@3
(=t (n—1)(=3+2n)¢° —v; —duin+301— 2499 +nio+20n°%)

+”L~"f(—6+ 5n) o + 1 (J’o ~ vy - ’Lil) )0_2 - 1]’% n— 1)<Z~9f —'jf(i‘o+ Jfln "1211)931
+50U7?)"/(((2" —Dox+u)(1=2+2n)da —P1 2((=3+2n) s + 1))
Remark 6.4 The coefficients 10A (r,n,z), as well as operators Dy, Npn. f)nn and ./Vr,n (see Theorem

6.3), are given in Appendiz II for all classical orthogonal polynomial of a discrete vartable. They are
obviously deduced from those of q-classical case by Theorem 4.2.



Chapter 7

Three-term recurrence relation
coeflicients for classical situations

7.1 Introduction

We describe the method used to compute the coefficients 8, and «, for the D,-classical case.

This method, already used in [Koepf et al., 1996] but for classical continuous and classical discrete
cases. consists to derive from the second order difference equation satisfied by {P,}nen (3.54) a system
of equations satisfied by Ty, 1, Thn2 and A, o [Foupouagnigni et al., 1998a], then solve these equations and
deduce coefficients 8, and ..

7.2 Three-term recurrence relation coefficients for D,-classical
situations

7.2.1 Coeflicients 75, and T,

Let £ be a Dy-classical linear functional satisfying
Dy(¢L) = L. where o is of degree at most two and ¥ a first-degree polynomial i.e.,

olz) =0 + o1z 00y (x) =1z + Yo, [hl(|d2] + 61| + [¢o]) # 0. (7.1)
It follows from Theorem 3.1 that {P,}..¢:; satisfies
¢DqD’l P, +yv Dy P+ dpe Ph=0 ¥n € N, (7.2)

with A, o given by (3.33).
Use of the expansions (see [Foupouagnigni et al.. 1998a], see also (8.8)),

n

P.(x) = Z Tn, Pk Dyx™ =[n], zm !

=0

allows us to write (7.2) as

We compute the first three coefficicnts d, ; and obtain, with p = ¢*,

dng=¢"'plg—1d~¢ (p=1)(=p+q)d2+q" plp—1) (g = 1) ¢y,

81
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dii = Q2P (—p+@(—p+d)d1—2¢%p(g—1)(-p+q) o) A(n)
+02¢ pla—1)* Ao +2¢ (—p+d*)(@® - p) b2 —2¢° p(g— 1) (—p + ¢°)¢1) B(n)
-2¢* (p—1)(=p+q)

dna = (" p(@=1 o+ (—p+)(—p+a)d2—®plg— 1) (—p+q)¢v1) An)
@ (p—D(=p+q)d1+¢ p(p—1)(g—1) vo.

We solve the equations dno =0, dy1 =0 and dn2 =0 in terms of A, g, Tn,1 and T, 2 and get

Ao = (P_l)(—¢20+0t,’91;f101/)1+¢2® ~[nl, (1,Z)1+[n—1]l9—)
/)((1—1) 1 q

T - (=1+p)qlg—1)(g—p)dr —pglg—1)*(=1+ p)iho

! (@g—1)%2(q? d2 — Y1 gp* + 1 p? — 2 p?) '

Tn: = %@q? (=1+p) (g —1)*(g+p)(qg—p)’ 0092

—2¢° (-1+p)(g—1)*(=p+¢>) (g—p)* ¢:°

+2¢ p(=1+p)(g—1)*(g—p) (=2p+ ¢ Tq)Uodn

~20°¢ (<14 ) (- D' (g— P 6o 207 (<1 = p) (= D' (g = p)to?) /
((g+ D (g-D" (=¥ qp* + 1 p* + ¢2¢° = 3207) (@® G2 — ¥1 g p° + ¥ p* — b2 p?)).

7.2.2 Coeflicients 3, and v, for D, -classical orthogonal polynomials
We use the following identities already given in [Foupouagnigni, 1993a] (see also (8.8))

Bn =Tn1 —Tnt11: tn=Tn2—Tnt12— BT (7.4)
to compute the coefficients 3,, yn and get:

Lemma 7.1 (Medem, 1996) The coefficients 3,, and v, of TTRR satisfied by the polynomials { Py }nex
(see (2.18)), orthogonal with respect to the D,-classical linear functional L, satisfying Dy(¢L) = ¢ L,
where & and U are defined in (7.1), are given by:

Inlgeg,) = —p((—(g+ 1) (=1+p)(—q+p) 1 —(g= 1) (=pg —qg—qp+p°)to. ¢
—pl- D@+ D (=1+pvrey —p* (a- D own)
(F1+p)(p+ V)b +p (a—1jv1)i=(—q+p (g+ p)o2—p°(qa—1 1),

elg, o) = (=14 p)(=p+ ") 02— tg— 1) pu)(s —g + p)* (g + p)* G0 627
+ (—qp(—q+p)d” —qpig—1(—q+p yoo
+ 20°(g-D(=q+p)la+pihoo+qdp g-1)710")os
P q(g—D(=g+p)vno” -qpt (g -1 %o 0

+ pig- 1)2w12¢>o)/>f1/((f—q =t o2+ 07 (g— 1) ur) x
(g=p)lg+p)ds —p* (¢ — L) (¢ — p*) D2 — p" (g = 1)h1)).

7.3 Three-term recurrence relation coefficients for D-classical
situations

7.3.1 Coefficients 7, ; and Tn’z
satisfying D(AL) = 'L, we obtain T,y and T, » by limit process [Koepf et al., 1996]:

n((n—1)¢1 + ¢o)
2n - Doy +14

If we denote by f‘n‘l and T, o the eoefficients T, ; and T, > when toe linear functional £ is D-classical

Tn.,l = lim Tn’] =
g—1
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Tn’2 = hm Tn)2

q—,1
= %H(Q (n=1 02+ (n=2)(n=1)" 01" +¢ho (n—1) (2n - 3) ¢

+ Un(n =1 do+10’ (n = 1)) /(((2n = 3)d2 +¥1) (20 = 2) 62 +11))-
We, therefore, use (7.4) to deduce coefficients §, and %, and get [Lesky. 1985]. [Koepf et al., 1996]. ...

G = lim 8, — - 21 =1é1 =2%0) o2+ 21 hn + Yot
n—q—»,l n (1/)1+2¢2n)((2n_2)¢2_+_¢.1) ,

Fo = liman=—n(Hdo (n=2)(n - 120" + (-(n - 2) (n = 1)*¢:°

q—,1
4 4(n—1)2n-3)U1 ¢+ (n— 2) o) 2>+ (v (n — 1) (2n — 3) 6,°
+ (2=n) o101+ (=6 +5n)11° do + vo 1) po

+1? (—n+1) ¢1° — o b1 i’ + do 1/)13)/

((2n =1) g2 + ¢1) (2n — 2) 02 + U1)*((2n — 3) ¢2 + ¥1)).

7.4 Three-term recurrence relation coefficients for \-classical
situations

We state the following:

Lemma 7.2 (Salto, 1995, Koepf et al., 1996) Let {Pa}nex be a family of monic_polynomials, or-
thogonal with respect to the A-classical linear functional £ satisfying A(oL) = UL. If 8,, and 7, are the
coefficients of TTRR satisfied by { P, }nen, then, they are given by

B, = _f;'z((j’l+251)"2~—(J’1f2<51)(—1/;1+.072)"~—1#.'0(—L‘~'1+2¢~)2)
(U =209n) (2(n—1) 09 + 1)

—((n =2)(n - 1)* ¢} x

~(@dn=2)(n—1%¢y + (n— 1> (3¢ n? —2n gy —8uy1n—4d4g +50y)) &

+(—(n—2)(n—l)zéf—'{)l(n—Q)(n—l)Q(f)l+41,e7)1(n—1)(—3+2n)(50

+ o+ Uin =) (no — 200 + 491 ~ Tdin + 3¢ n7)63

(1 (R =1)(=3+2n) 02 — ¢y (=5 U1 n+30, — 200 +ndp + 2U, n?) oy

0P (=6 4+5n) oo+ Uy (Vo +dhin— 01)2 )y — v (n— 1083 — 2 (g + T1n — U1) éy

+ 60 9)n /(@0 = 1)@ +4) (=2 +2n) o + 002 (=3 + 2n, G+ 0a) .

The corresponding coefficients Tml and Tn,2 are deduced by the same way 'Koepf et al., 1996].



Chapter 8

Laguerre-Freud equations for the
recurrence coefficient of the
semi-classical orthogonal
polynomials of class one

8.1 Introduction

We assume that £ is a regular linear functional satisfving

Dy(eL) =yL, (8.1)
with polvnoinials ¢ and ¢ given by
! p
olr) = Zo‘ oou(r = Z vyl p > 1, o] # 0. (8.2]
=0 5=0

We suppose that (8.1) is not reducible and that the class of the linear functional £, cl(£) s cl(L) = s =

max{degio — 2.deg{y) — 1}. {FPy},z:. which is a family of monic polynomials orthogonal with respect
to L. satisfies the TTRR:

Pn+;(I) = (I'— B,L}Pn(l'/‘ *’YnP,—__l»(.T,), Tt Z 1. (8 3
Py(r) =1.Py(z1 =1 = 3, -

where 3, and 4,, are complex numbers with ~,, #0 Vne N

Wher. £ 5 D, D, or A-classical, the coeflicients 3, and =, can be given explicitlv n terms of
polynomials ¢ and v+ appearing in (8.1 (see the previous chapter).

But if £ i D, D, or A-seni-classical of class s > 0, it is very difficult to give the coefficicnts 3,, and
“p explicitlv in terms of the polyvnomials © and .

We propose a method whicl: enables us to compute them recursively when the linear {inctional £
1s Dy-seri-classical of class s = 1. Then. we use Theorem 4.2 to extend this result to the A-classical
orthogonal polynomials.

This method consists 1) derive two noni-linear equations satisfied by 3,, and ~,,. called Lagierre-Freud
cquations.

84
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8.2 Starting the Laguerre-Freud equations

The initial form of the Laguerre-Freud equations is obtained by applying both sides of (8.1) to the
polynomials P, P, and P, P, .1, respectively

(Dq,w(oﬁ)apnpn> = <¢E7Pnpn>a
<Dq,u(¢~c)ypnpn+l> = (¢EaPnPn+1>~

Then, we apply the rules (3.6) and (3.12) to the previous equations and obtain

(E,OD%P,,Q%P”) + ([,,qu_;_Pn P,) = —q{y L, P,P,), (8.4)
(E,OD% n+lg%Pn> + <67¢D%Pn Pay1) = —q (L, PpPry). (8.5)

The respective right-hand sides of the previous equations are given by

Lemma 8.1 (Belmehdi et al., 1994)

{ <1#E P. P, ) [U(ﬂn) +U2(7n +7n+1)]10,n7
(WL, PpPoy1) = [t + ¥2(Bn + Bry 1) ¥nt1don-

Proof:  Using the three-term recurrence relation (8.3), we first derive the relation
Ipnsr =Yne1don YN EN (8.7)
and then use it together with (8.3) to prove the lemma. In fact, use of (8.3) and (8.7) give

E Pn+1Pn+1>

L. Pn+1((:[ - ﬂn) 'YnPn—1)>
L. Py zPy)

Po(Poyz + Bny1 Pag1 + vng1 Pr))
/n+1(['aPnPn>

= "/n+110,n~

10.n+1

(
(
(
(L.

Using (8.7) we obtain

(WL, PnPy)

Yo (L, PaPp) + Ui (L, 2Py Po) + o (L, 22 Py Py)

= tYolon + 1 (L,(Poy1 + BnPrn + 70 Pao1)Py)
+12(L. (Pat1 + BaPr + YaPasi)?)

= Yolon +U1Bndon +¥2(Jonsr ~ 32l +~21o0 1)

= [Y(Bn) + ¥2( v + Ynt1) o n-

(WL, PaPny) = o(L, PaPos1) + Y1 (L, 2Py Poy1) + Vs (L, 2Py Py
= V1L, (Pns1 + BnPrn + v Pr1)Pay1)
+92(L, (Pnsa + Bny1 Pas1 -+ Y1 Pu)( Pag1 + B, Pn + TnPn1))
= Yo + V2(Brniifonsr + Yng1 Builom
= ['9/)1 +92(8, + Bn+1)]7n+110,n

0
I order to express all terms of (8.4) and (8.5) in terms of 8, and ~,. we need to expand the polynomials
P, in the basis {x"},en with coeflicients depending on 3, and ~,,.
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8.3 Intermediate coeflicients

8.3.1 Coeflicients T}, .
Lemma 8.2 (Foupouagnigni et al., 1998a) All basic coefficients T,, ; in the ezpansion of
Py(z) =) Tpa™" (88)
i=0
can be computed recursively from the relations:
Ty, = Do,
Tn.D - 17 n Z Ov (89)
Tn+1,1 = Tn,l - /3-,1, 7 2 1, (810)
Tn+1.j = T,,‘j - ,BnTn,j—l —’ "YnTn—l,j—‘2~ 2 S ] S n, (311)
Tn+1,n+1 = _,3:1Tn,n - "/nTn—l,n—la n>1. (8-12)

Proof:  We use the relation (8.8) and the three-term recurrence relation (8.3) to obtain

n—1

n n+1 n

2 nt+l—1 __ E 1—: § 1—7 N § n—1—k
Tn,i-’fn ' = Tn—‘—l,i-TnJr ¢ + ﬁn Tn.,jI1 J + ‘n Tn—l,k$ .

1=0 =0 7=0 k=0

We replace the variable j and k in the previous equation by j — 1 and & — 2, respectively, to obtain

n+1 n+1 ’ n+1

n

n+l-—1 __ Ll =1 n+l—j - n+1—k
E Tn.iz - E Tn+14i-E + ﬁn E Tn,j—lz I+ 'n __>_ Tn-l,k—Qz y
1=0 =0 j=1 k=2

an equation which is equivalent to

<T71+1.0 - T11,0)-r”+l + (Tn+1.l - Tn,l + ,BnTn,O)-/I:n

n
+ Z(’TnJrl,k - ]}Lk + Jnka—l + AI'nTnfl,kf'Z)"L‘”JrlAk T 4n+1ln+l + ﬁnTn,n
k=2

+711Tn71 n—-1= 0.

From the relation Py = Ty gax + 111 = x — J, it follows that Ty o = 1 and Ty ; = —f5. We coniplete
the proof by identifying to zero all coeflicients of the polynomial on the left hand-side of the previous
cquation. a

Corollary 8.1 Using Lemma 8.2, we compute the coefficients T, ; j = 0.3 as:

Tn,Jrl,l = - Z B, n> 0,
1
Tvl+1,2 - Z jllﬁj - ZFYLW n > 17 313)
0 <n i=1
n
Thy13 = — Z 38 Bk + Z (0B + 30v5) + /%Z%‘
N p<hk<n 1<i<y<n i=1

—ZH,_,%. n> 2.
-1

All other terms can be computed in the same way, but for class s = 1, only these 3 terms will be used.

Let us emmphasise that the two rerms 5,1 and T3, 5 are alrcady given in [Chihara, 1978]: the compu-
tation of the higher order coefficienrs allows to generate Laguerre-Freud equations for any arbitrary class
s > 1. These coeflicients play the role (but in a shmpler way) of the Turdn determinants introduced in
(Behnehdi et al., 1994] showing the interest of Laguerre-Frend equations.
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8.3.2 Coefficients B!

The coefficients B¥ appear from the action of the linear functional £ on the polynomial z"** P,
B = (L.2"F Py, (8.14)

with the initial condition

::(ﬁaInfzﬁ ::<£:[%1%J = LLn~
From the relation 0 = (£, P4y Py.);k > 1 and (8.8) we deduce that

k
— E k—i
- I%+ijn L
i=1

We use the previous equation to compute, recursively, the coefficient BX. In particular, we have:

By, = =Tay1.1lon,
Bi = (Tat11Tny2,1 = Tngo2)lom, (8.15)
Bl = [Tai11(Tnzso— Tne2aTngsn) + Th+31Tny22 — Thoz 3] lon-

Notice that the connection between BY and the coefficients C;fk introduced in [Belmehdi et al., 1994],
2n+k
n+kP Z Cn+LP
is obviously
BE =CitF Ioe.
8.3.3 Structure relations
We first recall the structure relation (3.84):

i1
¢DLP11: Z gn._ijsvn>s~

Jj=n-s-—1

with t = deg(0). &hn—s—1 # 0, n > s+ 1 and then appl\ the linear functional £ to both sides of the
equation obtained when multiplying the previous one bz P; and get

€njlo; = (oL, P, D%Pn). n—s-1<j<n+t-1. (8.16)
Then. using (8.2}, (8.14) and the previous equation we et

&n _;If),_) = <Q)£,PJ'D;:P,I>

! n
= (L,P) ) dix)) m+ 1=K Ty 2™ %
1
k=1

1220

= clg)(L. IkPj )
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with
n+t—1
al@= Y Gli+ U Tunjor (8.17)
i+j=k.i<t. j<n—1
Thus,
n+t—1 _
njloy= Y (9B}, (8.18)
k=)

Once (8.18) is derived, we are now able to compute the coefficients &, ; in terms of f,. v, and the

polynomials ¢ and ¢, by using (8.2) (8.15) and (8.18). To be more precise, we assume that the linear
functional £ is of class at most one, this implies that

3 2
$(z) =Y 0.2, ¥(x) =D ¢,
j=0 3=0

with
(I¢ol + [¢1] + 02| + @) ([en | + [pal) # 0.

We use the method described above to compute the coefficients £, ;, n —1 < j < n 4 2 and get

gn,n+2 = [71]%(1)3,
fn,n-{—l = q1—~n {[[n]n(gn + ﬁn-H) —Tn,1]¢3 + [n}qd)ZZ})

€n<'1 = ql—" {[n]qul + [[n]qﬂn - n,l]¢'_’ + [[n]q('Yn + Tn+1 + BZL)
+T311 - ﬁn Tn,l - (1 + Q) Tn,2]¢3}a

bnn—: = ¢ "{[nlgbo — Tu161 — [T3.1 — (1+ )Tz + [nlgvn]e2
T3+ 1+ Q)Tns — % Tnt — [Blg Tns + [1]g ¥n(3n-1 + B2)]0s}
The search for £, ,,_2 requires the constant T, . which is huge and needs heavy compuration. To get rid
of this difficulty we. agair, use (3.12), (8.1) anc (8.16) to get
Enjlo; = (0L,P, DLPy)

= (o/J,D:T 4,* PP, — D%Aq_w P; P,)

= —q Dy 2L),G, P, P)—q{el. D, P, Py

= —qlLoe g Py ) — (oL, D Py Py

= —q'L.(G,Pj+ dD,P;)P,),
hence

Enjlo, = —g(L tudy o Py + @D P)) Py (3.19
It follows immed:iately that
bnmnalono=—q(l.¢" Pro+[n - 2],¢03)x" Pp).

We use (3.63) ar:d 18.7) t 2 simplify rhe expres-ion of £, ,,_» and get

%

1
T q

fn.n—‘_' :"'7“_ A + [71 - 2] )ﬁmﬁ/n—l- (820

I the same way. we compute anothier expressi o for £, ,—; which we denote by £

ro,n—1
. 11~1[0J1—1 = —q(L. (u;l,, P+ 9D Py ) Py

= =g (L @Wo + 11 —vur? T T P Ty

w(on 4 orr + o’ gur ) =12 b 0= 2 Tt
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and get, after simplifications,

+
nn-—1

= Q[n - I]q YnTn103 — Q([n - 2]an—l,l + [n - 1]qﬁn)7n¢3
—q[n - 1]4%02 + q’l”-nTn.1¢2 - (‘17#'1 + qipa 3. + Tn-l,ll/)z)’)’n qn_l-

8.4 Final form of the Laguerre-Freud equations

We prove the following theorem which is the main result of this chapter.
Theorem 8.1 The coefficients 3, and v, of the three-term recurrence relation

Pﬂ+1(z) (I_ﬁn) ( ) 'Yn n— I(I) ‘Il>1 PO( )— l,Pl(.’E) :‘—I—ﬁo

satisfied by the D,-semi-classical orthogonal polynomials of class at most one, { P, },en, can be computed
recursively from the two non-linear equations

{ (’wz + [2TL]_}{%£)(')’71 + '771-{-1) = Fl(Qa;BOa' .. »,Bn;fyl- - "a’Yn)v

8.21
(W + 21+ 1] 2) Furvmer = Fa(g.i Bov- - Fui s 7o) (821

¢; and v; are the coefficients of the polynomials ¢ and 1) appearing in the Pearson equation, Dy (¢L) =
WL, satisfied by the regular linear functional L. Fy is a polynomial of 2n + 1 variables and of degree 2
and F, a polynomial of 2n + 2 variables and of degree 3, with the initial conditions

Bo = iﬁ f; vnn = —(Bo). (8.22)

Proof:  In the first step we use the structure relation (3.84) to transform Equations (8.4) and (8.5)
as

&n,n—?(ﬁy Q%P” Pn—?) + f:,n_1<£, g}; Pn, Pn—l) + (1 + q_") fn,n IO n

= —q(L. ¢ P, Pp), (8.23)
£n+1,n—1(£7 g% Pn Pn—l) -+ fn+1,n q_" IO,n + gn,n—l 10.n+1
= ‘—(]<C’l;{)Pn Pn+1>- (824)

In the second step we compute (C,Q% P, P,_,) and (£, Q% P, P,_») using (8.8) and get

<£7gl Pn Pn—l) = <[’a((1_” In +q1—n TTI,1 'Tn;l)Pn‘1>
q
= (I;HB}z—l +q1_nTn,1 IO,n—l
(1_”(‘1 - 1)T11.1 IO,n—la
<£7(qvnl_n + ql—n Tn,l Infl +q2—n n'QIn_Q)Pn_')>

i

<Eyg% Pn Pn-—?)
= (I_nBz—‘_’ + ql_" T11,1B1]172 + (12_nTn‘2IO,n~i'~

[n the third step we use (8.6) and the previous equations to simplifv (8.23) and (3.24) and obtain:

n ¢’ 2 2 n .
(I? +e ( [2"] ; ) (’711 + Tn+l = [(1" [2711(1 ﬁ;z + (](q + (12 )(Tr%,l - -jnTn,l)

(q + 1)<(1 + q).n n 2](7)'1 + [(1') [Qn:1.3n - ((1 + q)”)Tn.l]C)‘_‘ + q2 [Qn]qél + q2"+2-3,21 (825)
+¢°" (@ = D2 [qT2 — B Tnn — (14 )Too] + ¢ g3 — (g — DTnalth + ¢ 20,

=" (g + 20+ 1) Q?—;‘)vm Bner = {85 + (¢ =13, T,

+Hg+ 27— (¢ DT + (¢ — D) Tz + (U4 204 1B (8.26)
+[((12 - DT +[3 ] Bu-alvn — nl ~[(g+2)T2 - (1 +(1 et )] T 1 [3] 1:,3}@3

B2 A= DBaTun+ @+ D + T2 = (g + 1) Tz + 200+ gYner 2o + (B = Tny )on
+n+ 10 + ¢ Buvnpite — @™g — Dy Tuavs + ¢ yna9r.
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The first initial condition is obtained by applying the linear functional £ to P, = z — 3y while the second
comes [rom the application of both sides of (8.1) to the polynomial #p£p.
In fact, it follows from (8.1) that

(6L, PoPy) = (Dy(6L), FoFs) = = (4L, Dy PaFo) = 0.

The previous equation used together with (8.6} gives ¥(8o) + 112 = 0.
We complete the proof of the theorem by saying that:

1. For any non-zero integer n, the coefficients 12 + [j]lﬁ‘;—a, J = 2n, 2n + 1 of the right-hand sides
q

of the two previous equations, thanks to the fact that the D,-semi-classical linear functional £ is
regular (see (3.89)), are non-zero (except if ¢3 = 12 = 0).

2. The left-hand sides of the previous equations contain only constants, sums and products of coef-
ficients 3; and ;. Polynomials F} and F; are obtained by replacing Tn 4 J = 1,2,3 in equations
(8.25) and (8.26) by (8.13).

O

Notice that we can also obtain the second Laguerre-Freud Equation (8.26) by identification of the two
expressions £, n—1 and En n_l-

Equation (8.25) gives, linearly, yn+1 in terms of 8;, j = 0,n and v;, j = 1,n; when (8.26) gives
ﬁn+1 in terms of B;, j = 0,n, 7v;, j = 1,n and the previous 7,4+ via the non-linear term (12 + [2n +
1]1 ﬂn—H’Yn—H

The fact that ) is not obtained linearly (except for the classical case) in terms of the previous
B; and v; exemplify the fundamental barrier between semi-classical of class s > 0 and classical situation
in which both ¢3 and 1, are zero. For D,-semi-classical of class s > 0, both relations (8.25) and (8.26)
must be used simultaneously, starting with the initial values given by (8.22). In the classical situation
Equations (8.25) and (8.26) can be decoupled.

8.4.1 Laguerre-Freud equations for D,-classical orthogonal polynomials

When we take ¢3 = 12 = 0 in Equations (8.25) and (8.26), we obtain the Laguerre-Freud equations for
D,-classical orthogonal polynomials:

n—1
"1 +[2n]%% B+ (A4 o2+ (¢ =D ] Y 6
ji=0
+ [2n]yf1 + "y = 0, (8.27)
G+ R v+ G 0d Dy (828)
7=0

n—1

n—1
= =D B 2+ lla = DpaBu — di] D~ B

j=0 j=0
n—1
+(q — 1)¢n Z BiBj — ¢2 B2 — ¢1 By — [n + 1]4 ¢0.
0<i<j<n—1

Remark 8.1 Using Maple V.4 and the simplification procedures for g-hypergeometric terms developped
in [Bding et al., 1998], we have solved (8.27) with the initial condition By = —%11 to get B,.
Taking into account the 3, obtained above, we have solved (8.28) with the initial condition v; =

—ﬁ% to get v,. Obviously the coefficients B8, and v, obtained coincide with the ones given in Lemma
7.1.
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8.5 Applications to D, D, and D, -semi-classical orthogonal
polynomials of class one

8.5.1 Laguerre-Freud equations for D-semi-classical orthogonal polynomials
of class one

We obtain these equations by computing the limits of (§.25) and (8.26) as ¢ — 1 to obtain [Belmehdi et
al., 1994], [Foupouagnigni et al., 1998a]

n—1 n—1

$(Ba) + 4d3 D i +2) 05.6(8) = —(h2 +20¢5)(Yn + Yat1)
1i=1 =0
STeB) + 365> (Bt +8) + |20+ Dynar 2D % b2+ 21 (n3n + ) Bi)ds
i=0 i=1 i=1 i=0
+  [¥1 + 23] ne = =2 + (2n + 11d3)3n+1vn21- (8.29)
where (=) - dla)
o(z) - ¢la
O.p(x) = :c*—a’
with the initial conditions
_(Lx)

Bo = (Tﬁ’ rvem = —¥(Bo).

8.5.2 Laguerre-Freud equations for D -semi-classical orthogonal polynomials
of class one

It follows from Theorem 4.2 that the Laguerre-Freud equations for D semi-classical linear functional of

class one is obtained just by replacing 3, {resp. » and v ) in (8.25) and (8.26) by 3; — ¢ (T;=_¢ and
- ~q

TV respectively). For this reason, we need to control the behaviour of T, ;. T, » and T, 3 when 3; is

replaced by Bi— 1%

Lemma 8.3 If the coefficients T,, ;, j = 1,2,3 represent the coefficients Th;, 7 =1,2,3 in which §; is
replaced by B; ~ l‘"Tq, then, they are related by

7_wn,l = Tn.l + nw >
l1—¢q
7T +(n—l)wT N w? (n
ne=dnat /T — p nat T PEACTA (8.30)
- . (n—2)w w? n—1 3 \
Tn,3 = ]TL.B + ”7)(& Tn.2 + 5 ( " ’ Tn.} + — (n P
1-¢q 1-g)r N 2 (1-¢)*\3/
Proof:
The proof follows immediately from (8.13). O

We replace o and 9 in (8.25) and (8.26) by Tie- o and To—_v, respectively (and implicitly 3; by
3, - ﬁ), taking into account the previous lemma and obtain the Laguerre-Freud equations for the
recurrence coefficients of the Dy ,-semi-classical [Azatas~on et al, 1998] orthogonal polynomials { P, }nen.
These polynomials are orthogonal with respect to the linear functional £, of ¢lass ar mo=t one, satisfying
D, (L) =vL. Henee we take the linit of these two e-uations as ¢ — 1 and obrain:

Theorem 8.2 (Foupouagnigni et al., 1998a) The rocffirients 3, and v; of the three-term recurrence
relation,

Pn«l = (I - )'/Jn)Pﬂ ~ Tu Pn-l- n > 0, P—l = 0. [)() = 11
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satisfied by the monic polynomials { Pp}nen, orthogonal with respect to the D, -semi-classical linear func-

tional L, of class at most one, satisfying D, (¢L) = YL, are given by

n—1

¥(Bn) + 4¢3 Z ¥ +2 Z 03, 9(8:) + w Z 05, 9(B:) + 2 (g) wios
i=1 1=0 i=0

+ (g) wzwg = — (2 + 2n¢3)(Yn + Tnt1),

where
_ 4(@) -~ 9la)

r—a

0.4(x)

and

Z #(B:) + l(Qn + D)Yns1 + 22%‘] ¢ +
1=0

i=1

+ 3¢s > wi(Bict +Bi) + 2yur1 (0B + > B
i=1

=0

+  nweynir — (n -2'_ 1) wer + |i—nw2ﬁ¢ + (n ;r 1) wz} b2

i=0

- wl: > fgiﬁj+n2ﬁiﬁi+(2”—1)Z’Yi+n’7n+1:| ¢3

0<i<j<n i=0 i=1

v [(g)uﬁ g bi (nz 1) w3:| ¢s + [ + Y2fnlpnis

= —[’(1)2 + (2n + 1)¢3]ﬁn+17n+1,

with the initial conditions

(£,z)
1

Bo = 1)

, Y2 = —v¢(Bo).

8.5.3 Laguerre-Freud equations for D,-classical orthogonal polynomials

(8.31)

(8.32)

The Laguerre-Freud equations obtained in (8.31) and (8.32) contain, obviously, the classical cases when
Y2 = ¢3 = 0. We use the notation of [Salto, 1995] so that we can compare more easily with the results

therein.
#(z) =az® +bz+c and ¢(z) =pz+q.
Equations (8.31) and (8.32) reduce to:

n—1

Y(Brn) + 2a Z B; + 2nb + 2nafi, = —nwp,

1=0

; ¢(ﬁz) + l(?n + 1)’)‘,1+1 + 2 Z’yi:| a— (Tl -2i— ]-)wb

i=1
n
n+1\ ,
+  |—nw i + wl a = —pynt1.
[ ;ﬂ ( 3 ) ] a PYn+1
Rewriting the second equation with n =& n — 1 and subtracting we get:

&(Bn) + 0+ (2n+ Dalyn+1 — [p + (2n — 3)a]ya

n—1

S (n
—nwh — anwf,, — aw Z B + aw® (2) =0.

=0

(8.33)

(8.34)

(8.35)
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Using symbolic computation with Maple V.4 we have checked positively that for the classical discrete
orthogonal polynomials, the coefficients 8, and ~,, given explicitly in terms of polynomials ¢ and ¥ (see
Lemma 7.2), are solutions of Equations (8.33) and (8.34) (with w = 1).

Equations (8.33) and (8.35) are exactly the ones derived in the thesis [Salto, 1993] taking into account
the D,, derivative of the linear functional given by definition 2.20 and the one used in [Salto, 1995]. Let us
remark, however, that in [Salto, 1995] the v,, equation is obtained using the so-called D,. representation,
expanding a classical orthogonal polynomial P, as a sum of (see (2.62)) (maximum three) D, P;(i =
n + 1,n,n — 1). This technique cannot be extended to the class 1, because of the non-existence of such
a representation for semi-classical orthogonal polynomials of class s > 0.

8.6 Applications to generalised Charlier and generalised Meixner
polynomials of class one

8.6.1 Laguerre-Freud equations for the generalised Meixner polynomial of
class one

These polynomials with £ parameters were introduced in [Ronveaux, 1986] in order to show the quasi-
orthogonality character of the D, derivative (with w = 1). The weight p is given by:

i £
p(i) = (lﬁ)[ [ITG +a)), 0<u<la;>0),i=0,1,2,... (8.36)

D¢
Generalised Meixner polynomials are denoted by ms,a’“), where @ = (ay...., as), which reduce. of course,

to the well-known classical Meixner polynomials when & is the scalar o (€ = 1).
Iff{=2, a; #1 and a2 # 1, the weight p obeys

Aop) = vp.
with
é(r) = 7 and ¥(x) = (u — 1)x + (@1 + ao)px + pajas. (8.37)
The family is, therefore, discrete semi-classical of class one.
In fact, we have
¢(x) = xoo(x). Y(7) — do(z) = (x+ Do (x) + 701,
with
ou(z) =z, Yoa(x)=(p- Dz +p(g~ar -1, 1791 =pla; —1)(ar =1 . (8.38)

Since the only root of ¢ is zero. it follows from Proposition 2.5, and the fact that ro; # 0 (for (o, —

)(az — 1) # 0). that for £ = 2 and for «a; — 1){as — 1) # 0. the generalised Meixner poivnomial is of
class one.

Of course, when a; = 1 (or a» = 1), the class reduce 1o 0 and we obtain the classical Meixner
polvnomials m!*# [Nikiforov et al., 1991]. In particular for a; = as = 1, the genera.ised Meixner

polvnomials of class 1 reduces to the particular case of the Meixner polynomials. called disczete Laguerre
polynoniials and denoted [Chihara. 1978

la. (r) = mi# (r). (8.39)

We have checked, positively, the Laguerre-Fread equations when w — 1 with the <nown 3,,.-, of the
classical Meixner polynomials and the discrese Laguerre polvniomials.

It should be noted that for £ =2 and for arbitrary positive ay and a., the weight giver. by Equation
(8.36), is noT a polynomial modification of th.e Mecixner weight, except when a; or ag is at integer.
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Replacing in Equations (8.31) and (8.32) w by one and polynomials ¢ and % given by Equation
(8.38), we obtain the Laguerre-Freud equations for the generalised Meixner polynomial of class s =1:

(L= W+ ) = (um 1)((’;) +82) + (1 + i
+alar + az2)) B+ (1 4+ 1) Zﬂl
+u(a1 + az)n + pagag, (8.40)
(1= w)(Br + Brs1)Tnpr = —n Zﬂ; (1 + wn + pler + ) + 1) yngs

("+1) Zﬂ2+2 Z%, (8.41)

with initial values
_ M _por @ Fi(ltan, 1+ as;2ip) 71=1/)(ﬂo)
My 2Fi(a1, a3 15 1) ’ 1-p

(8.42)

8.6.2 Laguerre-Freud equations for generalised Charlier polynomial of class
one

The generalised Charlier polynomials introduced in [Hounkonnou et al., 1998] are discrete semi-classical
orthogonal polynomials associated with the weight

p(x)z(ﬁ)N,NzL (1>0),z=01,2,.... (8.43)

The generalised Charlier weight p is semi-classical and satisfies the Pearson equation

A(gp) = ¥p,

with
d(z) =2V and () =p- V. (8.44)

If N = 2, the orthogonal polynomial family associated to the weight p(x) = (—5}; is discrete semi-classical
of class one (and called generalised Charlier polynomials of class one).

Replacing in Equations (8.31) and (8.32) w by one and the polynomials ¢ and ¢ given by Equation
(8.44) (but with N = 2), we obtain the Laguerre-Freud equations for the generalised Charlier polynomials
of class one:

n—1
Yn+ Tny1 = ( ) ﬂz +nfn + Z Bi + i, (845)

i=0

n

n+1
—nZﬁz+n’7n+1+ ( ) +Z[32+2271+7n+1, (8.46)

i=0 i=1

(ﬂn + ﬂn-{-l )’Yn+l

with initial values

_ My BL(2VE)  poFi(2;p)
Po = Mo_ LeVE) - R (8.47)

71 = :u'_Bga

where Iy(z) and [ (z) are the modified Bessel functions of order 0 and 1, respectively.
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Remark 8.2 The polynomials P, have been computed for the generalised Meizner and Charlier polyno-
mials of class one, up to n = 10 from B,,7. generated by the Laguerre-Freud equations given above
and also from the Hankel representation of polynomials (see (2.6)) which requires the computation of the
moments M, up to j = 19. These moments were computed from the moment recurrence relation for the
generalised Meizner and Charlier polynomials of class one, respectively:

(1—pMyio = araopble + (o + a2)puhliy
d (k
- Z(“UJ (]) Myi2-j,
i=1
b k
Mk+2 = ﬂf\lk - Z (—1)‘7 (]) Mk+'2-j~
=1

The polynomial coefficients in both approaches are written in terms of My and M; using the initial values
of the Laguerre-Freud recurrence given by Equations (8.42) and (8.47). The polynomials obtained in these
two ways coinctde, of course, and the Laguerre-Freud approach is obviously more efficient.

8.6.3 Asymptotic behaviour

In the first step we compute numerically, up to n = 100000, the coefficients 3, and v, Using (8.40) and
(8.41), for several values of the coefficients ;. a; and p and the result of the plot for all cases indicates
that the sequences 13 and 91 are convergent. Assuming that they converge, their limits, a(z) and b(u)

n

It 14+p
) = Lo b = (8.48)
are obtained using Maple V.4 and Equations (8.40), (8.41) with the approximations:
Yn = a{p)n? and B, = b(u)n, for n large.

In the same way. but with 8, and ~., replaced by 8, — b(u)n and v, — a(u)n?, respectively. us-
ing numerical and symbolic computation with Maple V.4 and analysis of Equations (8.40) and (8.41)
{Foupouagnigni et al.. 1998f, we observe the asymptotic behaviour for the coefficients 8, and ~,.

The same process, applied to (8.45) and (8.46), allows to observe the asymptotic behaviour for the
generalised Chariier polynomials of class one. We, therefore, give the following conjecture about the
asymptotic behaviour for the generalised Charlier and Meixner polynomials of class one. These results,
obtained by the Laguerre-Freud equations with Maple V.4, are under investigation [Foupouagnigni et al.,
1998f] in order t¢ give a suitable proof.

Conjecture 8.1 The coefficients B, and 5, of the three-term recurrence relation satisfied by the monic
generalised Meizrier polynomials of class one obey:

hm (.3 — ~—1 4 n— ——_/1(01 +oaz— 1) =0. lim | ~,— pntar =D +ap = 1) =0
P r 1 - i 1 - v Tl x " (1 — /L,“Z '

and those of the three-term recurrence relction satisfied by the monic generalised Charlier polynomials of
class one obey:

lim (8, —n) =0. lim (~, — ) =0.

T2 71— OO
It should be menzioned that the coefficients 3 and v, of the generalised Meixner polynomials of class 1,
are known wiien (o or og is an integer [Renveaux et al., 1998, They obviously confirm the asvmptotic
behaviour of the cocfficients 3 and =, stated in the previous conjecture.
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Conclusion and perspectives

We first list our main contributions to the theory of orthogonal polynomials, then give some open problems
which can be iuvestigated as the continuation of this work.

9.1 Conclusion

Chapter 1 introduces the work while Chapter 2 recalls some known 1naterials on orthogonal polynomials.

The main results of Chapter 3 are theorems 3.1 and 3.2, Theorem 3.1 gives a general caracterisation of
classical orthogonal polynomials. This result gives a more general caracterisation of classical orthogonal
polynomials, and is valid for classical orthogonal polynomials of a continuous variable, classical orthogonal
polynomials of a discrete variable and also for ¢-classical polynomials. It constitutes a unified theory for
classical orthogonal polynomials.

Theorein 3.2 caracterises the semi-classical orthogonal polynomials. It gives some links between the
semi-classical aspect of the orthogonal polynomials, the quasi-orthogonal aspect of the derivative of these
orthogonal polynomials and the structure relations satisfied by these polynomials.

In Chapter 4, we study the properties of the formal Stieltjes function. We mention two results.
The first is the theorem 4.1, stating that the affine D, ,-Laguerre-Hahn orthogonal polynomials and the
D, .-semi-classical orthogonal polynomials are the same. This result is used to obtain the coefficients
of the affine D ,-Riccati difference equation and the coefficients of the fourth-order difference equation
satisfied by the associated Laguerre-Hahn orthogonal polynomials.

The scecond result is theorem 4.2, It proves that the D, ,-Laguerre-Hahn orthogonal polynomials
can be deduced, using a suitable change of variable, from the Dg-Laguerre-Hahn orthogonal polynomials.
This result is very interesting and could have lot of applications. We have used it to deduce the cocfli-
cients of the fourth-order difference equation satisfied by the rth associated A-Lagucrre-Halin orthogonal
polynomials from the coellicients of the fourth-order difference equation satisfied by the rth associated
D,-Laguerre-Haln orthogonal polynomials. The Laguerre-Freud equations for the recurrence coefficients
of the D, -semi-classical orthogonal polynomials of class 1 have also been obtained using thcoremn 4.2.

In Chapter 5 we use a result by Suslov [Suslov, 1989] to obtain the factored form of the fourth-order
difference equation satisfied by the first associated Dg-classical orthogonal polynomials. We have again
used theorem 4.2 to deduce the factored form of the fourth-order difference equation satisfied by the first
associated A-classical orthogonal polynomials.

We mention that equation (5.12} can be used to obtain some families of classical orthogonal polyno-
mials for which the first associated is still classical. These families:

1- For classical continuous orthogonal polynomials we note the Grosjean polynomials [Ronveaux et
al., 1996] of the first kind G& for which the first associated is a Grosjean polynomial of the second kind
g% [Grosjean, 1985, 1986}, i.e.,

@)Y =977 ~1<a <0,

96
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where G2 () = Pt "), —1 < a < 0and o (x) = P,(l"‘]_")(u:), 1< <2
P,(Ia'ﬁ) represents the monic Jacobi polyuomials with the parameters v and g,

2- For the classical orthogonal polynomials of a discrete variable, we note that the fivst associated of
the monic Hahn polynomial H,(z,«, 3, N} with a + 8 + 1 = 0 is classical and is related to the Hahn
family by [Area et al., 1996]

Huo(z,a, 3, N)Y = II,(x —a—1,-a,1+a,N = 1).

3- For the g¢-classical polynomials, we have already pointed out the situations for which the first
associated little ¢-Jacobi polynomials py,(z;a,bl¢) and big g-Jacobi polynomials P,(z;a,b, ¢;q) are still
classical.

The monic little g-Jacobi (resp. monic big g-Jacobi) polynomials and their respective first associated
are related by

1 r 1
(g q. — — gttt el
) (z; ’qalq) a’q pn(aq,“,aqm),
1 . . Tz 1
PV sa,——,ciq) = aFPa(=;=,aq,¢q;¢)
qga, a a

In Chapter 6 we have proved (sce theoran 6.1 and proposition 6.1) that the associated of any integer
order of the Laguerre-Hahn linear functional is a4 Laguerre-Hahn linear functional. We also gave upper
bounds for the degrees of coefficients I, F,., (/; and H, of the Dy-Riccati difference equation satisfied
by the Stieltjes function S, of the rth associated £ of £ (see proposition 6.2).

Theorem 6.3 gives fondamental relations which lead to the fourth-order difference equation for the
rth associated D,-Laguerre-Halin orthogonal polynomials

4
> Liirn,g2)G] P = 0.

=0

given in theorem 6.4. Theorem 6.3 and 6.4 are valid for D-Laguecrre-Hahn orthogonal polynomials (by
limit process) and for A-Lagucrre-Hahn orthogonal polynoinials (via theorem 4.2). We have also given
explicitly coefficients F,., F., G, H, and I;(r,n,q; ) for classical situations.

Chapter 7 contains kuown materials needed for this work.

The main result of Chapter 8 is theorem 8.1 which shows that it is possible to compute recursively
via two non-lincar equations, cocflicients 4, and v, of the three-terin recurrence relation satisfied by the
D,-semi-classical orthogonal polynowials of class one. This new result (theorem 8.1 ) is used, together
with theorem 4.2 and lemma 8.3, to obtain Theorem 8.2 giving the Laguerre-Freud equations for the
recurrence coeflicients of the D, -semi-classical orthogonal polynomials of class one.

Using theoremn 8.2, we have piven a coujecture about the asymptotic behaviour of the coefficients 3,
and 7y, of the three-term recurrence relation satisfied by the generalised Charlier and generaliscd Meixner
polynomials of class 1.

9.2 Perspectives

As the continuation of this work, many investigations can be done:

1. Theorem 4.2 proves that the A-Laguerre-Hahn orthogonal polynomials can be obtained from the
D,-Laguerre-Hahn orthogonal polynomials. In principle, this result means that any result obtained
for the Dy-Lagucrre-Hahn orthogonal polynomials can be extended to the A-Laguerre-Hahn or-
thogonal polynomials. It will be interesting to see how these results are extended and see their
consequences in the applications of orthogonal polynomials.

2. It might be possible to simplify and writte the fourth-order difference equation for the D,-classical
orthogonal polynomials in the compact form as was done for D-classical orthogonal polynomials
(sce (6.69)) [Lewanowicz, 1995].
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. One can use the fourth-order difference equation satisfled by the rth associated D,-classical or-

thogonal polynomials P{"

4
M(rn,q;2) By =) 1i(rn,q;5)G] B =0,
=0
to expand the rth associated PS" in the basis {Pn}nen

n

[)7(17)(_1/) = Z C(”)j) [)J’

J=0

as was done for D-classical orthogonal polynomials and A-classical orthogonal polynomials (see
[Lewanowicz, 1996,1997], [Area et al. ,1998a, 1998b], [Godoy et al., 1996], [Askey 1965,1975],[Askey
et al, 1984] ...).

. The fourth-order difference equation can be established for the general Laguerre-Hahn orthogonal

polynomials. We mention for example that Bangerezako [Bangerezako, 1998], had derived the
fourth-order difference equation for the Laguerre-Ilaln polynomials orthogonal on special non-
uniform lattices (snul).

. The Laguerre-Freud cquations for class s > 1 can be obtained by mimicking the approach developed

in this thesis. This generalisation is already under investigation [Azatassou et al., 1998].

. The conjecture obtained using the Laguerre-Freud equations need to be proved and extended to

the semi-classical orthogonal polynomials of class s > 1. For this purpose, It may be hepful to have
a look at the papers giving the proof of Freud’s conjecture (see the Introduction).
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Appendices

10.1 Appendix [
10.1.1  About D-classical orthogonal polynomials

We give the polynomials ¢ and 4 appearing in the Pearson equation satisfied by the weight p
(D(¢p) = vp) defining the classical orthogonal polynomials of a continuous variable [Chihara, 1978],
[Nikiforov et al., 1983, 1991], [Szcgd, 1939).

1. Jacobi PS4
ple) =1-a* Ylz)=—(a+B+2z+ 8 -a

2. Laguerre L%(x)
plz) =z, Y(z)=-—z+a+1

3. Hermite H,(z)
o(a) = 1, $(s) = -2
4. Bessel B{x)
() = 2%, P(z) = ~2(z +1)
10.1.2  About A-classical orthogonal polynomials

We give the polynomials ¢ and 1 appearing in the Pearson equation satisfied by the weight p
(A(¢p) = 2p) defining the classical orthogonal polynomials of a discrete variable [Chihara, 1978], [Niki-

forov et al., 1983, 1991], [Szegd, 1939].

1. Haln A9 (2)
pley=os(N+a—zx), P@)=-(a+8+2)z+ (B+1)}(N -1)
2. Meixuer m" ()
$lx) =z, Yla) =pr+ (p -1z
3. Krawtchouk £ (z)

(Np-rx)

#(z) = 2, Yla) =

4. Charlier cgf')(a,‘)
pz) =z, Yz)=p-z

99
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10.1.3 About ¢ polynomials

We give the polynomials‘qﬁ and % appearing in the Pearson equation satisfied by the weight p (Dq(ép) =
¥p) defining the polynomials appearing in the ¢-Hahn tableau. [Kockock ct al, 1996), [Kooruwinder,
1994]. Notice that these polynomials ¢ and ) were already given case by case in [Medem, 1996] and [Ivan
et al, 1998].

1. Big ¢-Jacobi P,(z;a,b,¢;q)

N Vo2 eqg=z+aq(l-(b+c)qg+bqr)
$la) =acq—(a+at o, Y() = T

2. Little g-Jacobi p,(z;a, blq)

_l—zt+aq(bgr-1)
q (~1+q)gq

3. Stieltjes-Wigert Sy (z;q)
qgr —1

M/J(Z):(_—HTI)—Q

218

4. g-Meixner m,(z;b,¢; q)

é(z) = ~be + qu, P(z) = ctg-beg—gz

(1-q)q
5. Alternative g-Charlier K, (z;a;b)
z(1-x) ~14+z{l+agq)
(z) = ——, Y(a) = ————
) q ) (-1+a)q
6. Little ¢-Laguerre/Wall L;a)(x;q)
z(l-1x) -l+ag+z
() = —, Y(@) = ———=—
(=) q (@) (~1+4q)q
7. ¢-Charlier UL (2 )
o) =a- (1 ajo+ o, yia) = T
8. Discrete g-Hermite h,,(¢; x)
T
b(e) =2 =1, ¥(z) = 1
—4q

10.2 Appendix II

10.2.1 Results on general associated classical discrete polynomials

We use Theorem 4.2 and 6.3 to obtain operators Dy, Nrt1n-1, Dra1n-1 and Ny, for the classical
orthogonal polynomials of a discrete variable (see Foupouagnigni et al. 1998b]. These basic operators
(see (6.38) and (6.39)) and the coefficients of the fourth order difference equation for associated classical
discrete orthogonal polynomials (see (6.7)) are written down in each case (for notations see [Nikiforov et

al.,1991]).
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Charlier case CH(z), 4 >0

-

d’(l) =, U)($) =-z+ 122

Drn = pR+2)T -Q+2z-r)z-n—r+1+p)T
~(-3z~24+3r—2* +2zr~r* +rp) Iy

Nesinor = —rp(e—n—-r+1+p)T+rplp+2+z—r)Iy,

pQ+2) T —ple—n—r+14+0)T +pl—r+p) Iy,
~(—z+n+r—-1-wWT-(p+z+1-r)1y

p(l+z2)(-2+n+2R),
Qep+2R+4p-2R*+nR~3nR*-n*R),
Qep+2R+4p—-5un—-2axpun—-4pcR+4R* — 104 R - 6 R,
—4AnR+5nR? +4n’ R —n? +n?),
+(—2zp—-4R-6p-2n-2R*+6R*+7TnR—-3nR>—-n?R+2n?),
pd+z)(n+2R),

where Risgiven by R=r —2 — 1~ 2.

Meixner case M,g”’“)(a:), vr>0 0<p<l

Nr+],n—l

Dystn—1

N

Iy(r,n,x)

Il (T,n,:r)

I

B(z) = 73 H(x) = (1 — D + pv,

= p+2)@+1+)(-1T7°
+(-2—z+r)(Q4z—r-—ntpv+zpt+rpt+np+p)(p-10T
—(—rp+rpv+rip =3z —rP+2zr— 27 —24+3r) (p - 1)1y,

= H4r(v+r-1)(Q+zc—r-n+pv+apt+rp+np+ppT
—rwv+r—=Dpv+ocput+z—r+rp+2)uly,

= p(x +)(@+1+v)T7°
—(e+l+v+r)(l4+z—r—n+puv+apt+rp+np+p)ul
+(T‘—T‘l/+$,u+7‘/l,+7‘2/l.+pl/2+:B2/L+2.'L‘;Ll/+27‘ﬂl/
422 pur 4 pv —r*)uly,

= —(u-H(l+az~r—ntpuv+zpu—rp+np+p)T
+(pe-D(ep+p+pv+rp—r+a+1)I,,

i (=3p+M+2R-3)(z+v)(x+1),

~6plr 22 ) —4p? — 4%y - 204y - 3uR*-3uMR -Gz p
22 p—dp—dpv-2xpv—-3MR-3R*+ M*R+3R*M + 2R5,

101
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L(rnz) = -4R° —6u2—4M2R~9,u2V—14u2m—4pR—2pM—5M—M3
—6u—4$2p2—4x2p——4xpu—4:c,u2u—14xp—9pu+2+ 16Rzp +10Rpv
+12pR2+4R:1:2,u+4Ra:uu+8,qu+12uMR+12MR+2u3+4M2— 104°R
+5M,uu—6R2M+2x2uM—5u2M+2muuM—10R+12R2+4pM2,

L(r,n,z) = 2R3+M2R+6/l21/+10/12]J+24/1R+12/I,M+6M+2.7?2/L2
+2$2u+2:z:,u,u+2xu2u+10z,u+6,uu—-4~9pR2——9/LMR—9NR—4;L3
—2M2+12,u2R+3R2M+6u2M+12R—9R2—2;1MQ,

Iy(r,n,z) = —(z+4)(z+3+V)(~p+ M+2R-1)p,

where R=r—az—2—plr+z+v), and M= (n+1)(1-u).

Krawtchouk case k%p)(z), p>0,¢>0,p+g=1

o(z) = o, W(a) = §<<1 _ N —2),

Dyn = (g-D@+2)(-z=1+N)T*?
+(—2—z+r)(—2q—2zq+qN—N+z+r+1+n)T
+(~3zq—2q—qu+r—r2—$2q+rN+2;vqr+2rq)Id,

Meistn-1 = (q—1)(N—r+1)(—2(1—2zq+qN—N+z+r+1+n)r7'
+(q~1)(N—r+1)(qN—N—2q—2zq+r+z)rId,
Dryin-1 = fl(‘l“l)(fc+2)(*$*1+N)7'2
+(q—1)(N—:c—r—1)(—2q—2zq+qN—N+z+r+1+n)T
—(q—l)(—?qu+qN2-r]N-+—2rq+2:L‘qr+$2q+zq—qu+2rN
2 —p—2zr—=N*+N+2Nz—-2° - 2)Iy

Neww = —(—x—r—qN+2q+2$q—n—~1+N)T—(—21q—2q+qN+r+:E-—N+l)Id,
ILr,nz) = q(l+z)(z-N)(@-1)2R+n),
Li(r,n,z) = (6:1:q+9nq—4[\’q—12(12

—4(E(]3N+27L2—?:IZN(]+2!E2(]—8(]3N+125Eq3+4$2q3‘+‘8q3
—9nq2+4q-—2n—4R—3712q+12q2N+6:cq?N—18:1:(;2—612qv2
C2nglt—3nltt =200 — 181 g* - 12g 1 -2 R+ Tl + 18Ry +61R°),

L(r,n,z) = ~(10zg—8ng—6Ng—42¢°
—5an2+81q2n—4xq3N+2m2nq2+5an+2qun+n2
—2xNq+2z%q- 12(13N-+-20z(13-f-42¢2q3 —-2quzn-}-28(13-l~6nq2
+14q - 2R——8mqn—n3—4n2(]+18(]2N+6$(12N—3qu2—212n(]
—6z%¢? —12nqR~4z°qR-6nR> 4R’ + 12Rq* - 12qR* - 4n*R
+4nR-12Rq+6R* - 10¢° NR-16TqR + 162¢°R—4c¢* N R
+4zNgR+10NgR+42% ¢ R),
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Lr,nz) = —(10zq+nq-6Ng—42¢° —4x¢® N -22Ng+222¢g-12¢3N
+20z¢° +42%°¢* +28¢° ~3ng® +14¢—2R-n’q+ 18¢* N +6z2¢* N
-30z¢? - 622> +3nR*+2R*—6R¢*+n*R—nR+6Rg),
Li(r,n,z) = q(d+z)(z+3-N)(g—-1)(n—2+4q+2R).

where Risgiven by R=7+4+2 —2xq+gN —5¢— N + 2.
Hahn case hgf’ﬁ)(z, N) a>-1, > -1,

dz)=z(N+a-2), v@)=@B+1N-1)—(a+8+2)

The rth associated P,ST) of the Hahn polynomials, with n + r < N, is annihilated by the following
difference operator, by a decomposition already used in the r associated Meixner case (sec [Lewanowicz,
1997)).

4 4
M =3 Lion,e) T =D D+ (= 1)) Lirn,z) T7, (10.1)
7720 7=0
where from (5.21) |
ﬁf’n = @+(a+N-z2-2)T"

+(7+n@B3+n+a)-3N+6z - (a+2N)z+22°+ B33 +n+z - N)T
+@+B8+1)(N -z -1)Zy

DY = (z+44+8)(N-2-4)(204+3n+n>-8N ~4(N-4)z+4z2°
+B8(6+n—2N+2z)+a(n—2z—-2))T?

+ (360 + 141n + 56n° + 61 +n' =260 N —45Nn — 15N n?® + 44 N?
-2(5243n(34n)-20N)(N=5)z
+2(3n(3+n)+1524+4(=154+ N)N)z? - 16 (N — 5) 23 + 8 z*

+al m-2-2)(n-22-2)+ 2B +n+z-N)(n+8~2N +2z) + of
203 4+2n? —3n%z - 2(z+1) (38 - 12N + 232 — 4Nz + 4 2?)
+n(35-15N+2lz -6 Nz +6z?%)
+802n°+Tn—-3Nn+4(N-z-4)(z+ 1)) +B(2n®

+n2 (17~ 3N +3z)+n(80+ 39z + 62> — 24N -6 Nz)

F2(N—a =) (-28+9IN+4Ng - 1Ta - 42H))) T
+z+1)(z+1-N—-a)(-n(3+n)+a(d~n+2z)~F(n+8~2N +21)
—d04+ 12N - 24w+ 4 Na - 42°) Iy,

Lir,ng)=-2(z+1)(z+1-N)(z+1-N-a)(z+8+1) (r+8+n+1+a),
Lrnz)= (r+B8+n+14+a)(8402 -24r Na+ 18aNB+4alr+74np
~234NB+588r+58ar+50na—30NB%—10ar? + 14782
—24N7?4+20n% 45812 +368° + 90N+ 271 + 2703 - 420N — 150
+40n 4+ 600x? +1922° + 242 + 587 n -~ 42a B+ 66 N+ 14372
+120% —24r NB+5608sn+483N?2 + 6 N2 32 + 4ar® +2r2 8% +48+3
+6a" 37+ 34880 — 2520 0 — 1322% a + 156 2% 8 + 30 8% = + 48z 1?
+2482° 2428 a+ 122272 + 62%a® + 18z 0% — 107 a? + 2a%1?
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—~ 600Nz -6rNaf+4artf-6rNS-6NB*r+248N%2

- 1278+ 122° Br+122%ar - 128° Nz -48zaf +84aNz
200Nz + 2N o + 48z ar + B fr — 48 AN a* — 6 vr?

— 122N +628r*+683%°zr —128Nzr —12aNzr+ 12aNx 8

—bzalr+24n%2+48n2+24N%2? ~ 12N n? +16n2? + 8n’2?

~ 48Nz —~24Nn - 288 Nz + Un B +r’n+4r¥n+ 3 n + ra?

+98n - W0na* —3ant+? P+ 02 B+ 0 g+t o+ + 962 N®

8Nl ~16Nnz~ONBn+3rn+7ring+15rnf+4anp

—4NBn*+48rn*+3a’rn+T7ar’n+4arn®+2afn?+6arnp

—6NanfB-GNrnf-32N8n—-9arn—-24Nan—-24Nrn

+683%zn+4f8aen? —6za’n~dzan’+40zan+ 1225 an

+122° B+ 122% rn+482rn -Gz arn+G6zrnf- 12aNzn
“12ANxzn—122 Nrn+450),

Lr,nz)y==20r+8+n+1+a)(15402 - 30rNa+19aN B +4afr

+140n B8~ 326 N3+ 88837 +88ar+60na— 36 N3* — 13ar?
+177 8% 30N +131n* +887% +548° + 133 N* + 27" +475 3

— 770N —295a + 238 n + 858z + 2202° + 222" + 88rn —~ 5503
+103Na+ 1781 +24a* -30rNB+768zn+ 558N + 6 N2 52
+4ar® +277 2 +487° + 622 8% + 48982 - 369z a — 15327
+1772° B+ 36822 +602r® +2282° - 222% a + 1227 % + 622 o°
+24z0® -13ra’+2a*r* -858 Nz —6rNaf+4ar’f-6r°Nj
—6NP*r+228N%°z - 1022 B+ 1222 Br+ 122%ar - 123° Nz
—50zaf+98aNz —2328Nz+22Nz%a+60zar+60z3r

— 448Nz —6zar’—12z2Nr* +6z8r*+68%zr—128Nzr
—12aNzr+10aNzB -6za’r+12n2 +80n%z +3n* +160nc
+22N%22 —40Nn® +32n2® + 16n° 2% — 44 N2® - 80N n —- 330 N z?
+19n82 49 n+4rn+7r* 02 +9rn? +3508n% - 1lna® - 5an’
+2a*n?+ 2082 + 508 B+ 508 a+5rn® +110c N2 —16 Nnz
~-32Nnz-6NBn+38rn+7r2nf+26rnf+8anB—8Nj3n2
+88rn*+3a’rn+Tar*n+8arn®*+4afn’+6arnf-6Nanf
~6NrnfB—46NBn—-4darn-30Nan—-30Nrn+683°zn +8Fzn?
—~6za’n—-8zant+4dzan+ 122%2an+ 1222 8n+122%rn
+602rn-6zarn+6rrnfi-12a0Nrn-12ANxn-12zNrn

+ 1093),

Ii(ryn,a) = P+ B +n+14+a)2760z —36rNa+30aNB+4afr
+150n 8 —486 N3+ 118 8r + 118ar + 94na — 42 N 82 — 16 ar?
+207 8% —~36 Nr2 +100n2 + 11872 + 7282 + 210 N% + 2r* + 8103
- 1380N — 5700 + 2000 + 132022 + 2882% + 24 2% +118rn ~ 102a 4
+174Na +208r2 +36a* -36r N3 +800zn+ T2 N> +6N%32
+dard +2r° 3 +48r + 6223 +73282 — 588z a— 20422 o
+2282° B3 +423%z+ 72zr* +2482% - 2420 a + 1222t + 624
+30za® ~167a® +2a*r? - 1320Nz ~6rNaf+4ar*8-6r"Nj
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~ONBr + 248Nz - 1222 a8+ 1222 3r + 1222 ar - 126° Nz
~T2zaf+132aNz-3008Nz+2dNz’a+ 2zar + 72z 67
483Nz -6rar’ 12z Nri+6z8r: +6p8%zr-128Nxr
—12aNzr +12aNaef—6eo?r+ 2250+ 5602w + 112n e + 24 N2 2?
~28Nn®+16nz’+8n*z? —48Nz® —56 Nn— 432 Nz? + 20m % +rin
+4r3 0+ 3202 42+ 1700 = 16na® - 1lan®* + 2 + 02 82+ 0%
tnta4rn 142N ~8Nnfe - 16Nnz - 6N A n+ 35 rn
+7rnB+2lrnf+danf-4NBR +48rn> +3arn+7arin
+darn’+2ap8n*+6arnf-6Nanf—-6Nrng—44N pn
~15arn—-36Nan—-36Nrn+68zn+482n* -6xa*n—A1zan’
+64zan+ 12z an+122°fn+122°rn+ T2zrn—6zarn
+6zrnB-12aNzn—-128Nzn— 12z Nrn),

Li(rynz)=-2@xz+4)(z+4-N)(z+4-N—-o){z+4+08) (r+B+n+1+a).

10.3 Appendix 111

We give the cocllicients I;(r, n, ¢; &) of the fourth-order difference equation satisfied by the rth associated
D,-classical orthogonal polynomials. ¢; and 1’; are the coefficients of the polynomials ¢ and 1, both
relaved to the ¢g-Pearson equation: Dy(o L) =y L.

Coefficients [;(r,n,q;z) for some g-classical orthogonal polynomials

For the discrete g-Hermite and Stieltjes-Wigert cases [see Koekoek et al., 1996], we compute the coeffi-
cients I;(r,n,q;z) using the results given in Theorem 6.6 and obtain after cancelling common factors the
following results with the notations: v = ¢” and p = ¢".

1. Discrete g-Hermite case (¢(z) = 2? — 1, ¢(z) = £ ).

l—q
Lirnge) = @ pd®+d" 2~ tvp~dvp-vpg—vp)
(gz —1)(gz +1),
L, qa) = (@Pab =3 p2 420202022 £ 202 p° 22 — P pat
e+ PP 12 2 R+ 20 R PR - 20 pg it
12020282 =20 pg et £ 202 pPat + 202 P 0 —w p? g
M a v p =02 g+ 20 pf et — P upt 4 222 prP g

+’/2p2(111x2+U2pq10$2_u3p2q9$2+V2p2q5$2_u3p2q8z2

+l/3,{)2:1,‘2q5—1//)2(11'1:1,'4+2U2/):l:2q7—l/q12:£4—q”:z:lil/-{-;vﬁpqm

—V3p2(16—3l/3/)2(14—41/3/)2(13—3113,02(12*-21/3/)2(1—21/3/)2(15)
plvTie
Lr,n,qz) = —(@7 2% +302p%¢ %22 +3¢° 2207 p? + 402 p? ¢® 22

upg Pt v 42 22T — 2w p gt 4 20 2t — Qv pt ' gt
—(1“:1:41/,0—qlow4l/p+4uzp3q8w2+4V2p3qga:2-+-21/2/J2q“2;2
L2 e - 2upt gt 8 gt — vt 15 p? — v B gl 2t
23t gl Bt £ 2 2 Mt pR g2t -y pgtt

— 2wttt g Pt - 208 P g0 40 )P g0

F 202 0 2 = 28 P T 2 3R Pt — v pat gt - 207 B P

+ 202 8 2 =28 PP Pt 4300 P T2t — 2u P gt 4+ v R g2 gt
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4 3 12 .4

‘ )
-V[)Z(IHCIJ —vpt¢z —V/)2(1]6$E4—l/(113 3,4 18 ,.6 19 .6 2

prrt+qgir ptqgTIop
58 /}3 ‘13 43 /)3 (12 48 /)3 (15 5y /)3 (14 ~h /)3 ([7 — 9.8 /)3 (16

20 (I,‘G p.!

-2 =5

-2 p g+ wipTh g7,
Li(r,n,qz) = (—1/3,02—\L21/2p2qw:1:2+21/2pqg:1:2-{-qﬁacﬁxzp2
+2V2p2(]8132+2l/2p21‘2l]7-—21/p(113$4+2V2p(]8$2 +2U2p2q9m2
3 2 8.2
[
2wpttaet vpaty?

200t Pt P20 P 200 g -
—vp? M 20 p T P00 vt P R

—r g2 at =B =38 gt~ 4B PP — 300 pP gt — 208 pP g
q nq ,q r1a pq p

—2U3p2(]5—l/q13x4v1/pq16z4—z/pqmz4—l/pql7:1:4—l/3p2x2!]7
+l/2/)(]11 .'r?+1/302q11:r2+1/3p2q12m2+u2p2q12m2+q21 -776/’)
V—'Zp l(] 07
. . — 2 6 5 .2 3 2
Li(r,n,qz) = @ p®+¢r" —qrvp—qvp—vpg—vp)

(¢"2 = 1) (¢*x +1)g™°.

2. Sticltjes-Wigert case ( ¢(z) = £, ¢(z) = 4E=L)

q’ glg—1
I(r,n,qz) = (Czvp+avg+q+1)qz,
Lmn,gz) = —(@"pPPet v +¢" 2202 p? + B2 3 p+ 24° 12 pa?

+q3xup—q2$+xuq2+q21/2z2+q2:c?1/2p+upq2$+q+qxu

+qz* v pt+vpqr+1l+zv+1)g,

Lrn,qz) = (1+2q+2¢ 0 p2® + %222 p* + * v 2% + 2qzv
2%z + 22 p P P+ 202 % Pt 2P+ PP pa? + ¢t 2PV p?
+2vpz+ @ +2¢3zvp+ 2avd + 232V + 28z 4+ ¢ 220
Y g B g B ST BN P S L PR S PP
—vpgtet—vtp+2¢tzvp),

Lrn,giz) = —(Ppa% ¢ +3pf 2 + 07 pf2? + 07 pP P 2
+J;2p1/2(15+(14y;1/p+(14z+2q41/2p:1:2+(13:):21/2+(13z1/+q3$1/p
-~z +zvi +vptz+q+qzv+1),

Li(r,n,qgz) = (wpiPz+q+qzrv+1)giz.
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