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Introduction

Numerical models play an increasing role in analyzing real life problems today
and especially engineering problems. In many applications as underground wa-
ter flow with transport of pollutants, the need of accurately computed water
velocity (for a good understanding of the transport phenomenon) has focused
the attention of engineers on Mixed Hybrid Finite Element Methods (MHFEM).
These methods are based upon a simultaneous computation of the hydraulic
potential and the velocity in the flow process, in such a way that the discrete
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versions of these quantities converge, in adequate norms, to their exact counter-
parts respectively. The computation of the velocity is performed in such a way
to preserve the physical law concerning the continuity of its normal component
on each interface between two adjacent elements. Thus the mass conservation
law is respected at the grid block level. Moreover the MHFEM-based velocity
is a nice candidate to put into the discrete version of transport equation.
Although in much literature on MHFEM some authors (for instance [2], [1] and
[6]) give a higher level mathematical presentation, some papers like [3] deal with
a physical presentation of MHFEM available to engineers.
The objective of this paper is to present, through a diffusion model, a weak but
efficient version of MHFEM constructed without any variational formulation,
following only the basic ideas of finite volume method. This method could also
be viewed as a variant of finite volume method as that will be shown later.
Our paper is organized as it follows. In section 1 we describe the mathematical
model problem. Section 2 deals with basic aspects of mixed hybrid finite volume
through a discretization of the model problem. Section 3 is devoted to some
mathematical properties of MHFVM solution: stability and error estimates.
Section 4 concludes this work and gives some perspectives.

1 Mathematical model

We are dealing here with a mathematical model for a one-dimensional diffusion
phenomenon governed by the following equation and boundary conditions:

− d

dx

[
D(x)

d

dx
u(x)

]
= f(x) in Ω = ]0 , 1[ (1)

u(0) = α, u(1) = β (2)

where α and β are in IR, D(.) is the diffusion coefficient which is piecewise
constant and such that there exists two real numbers D− and D+ satisfying

0 ≺ D− ≤ D(x) ≤ D+ a.e. in Ω (3)

and where f(.) is a source-term given in a suitable functional space.
The system (1)-(2) governs miscellaneous diffusion phenomena, for instance

steady state one-phase flow in a porous medium. The existence and uniqueness
of a variational solution u ∈ H1(Ω) ⊂ C0(Ω) of (1)-(2) are ensured if f(.)
is given in L2(Ω). Our aims in what follows are: (i) to carry out a mixed
hybrid finite volume formulation of the problem (1)-(2), (ii) to show that this
formulation generalizes classical finite volume method, (iii) to prove existence
and uniqueness of a discrete solution, (iv) to show its connection with mixed
hybrid finite element method, (v) to show the stability of the computed solution
and give error estimates.
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2 Mixed hybrid finite volume formulation of (1)-(2)

The notion of regular mesh plays a key role in what we intend to do in this
section and the following ones. Let us define this notion before going on.

Definition 1
Let

{
xi+ 1

2

}P

i=0
be a given sequence of points in Ω = [0, 1] such that

0 = x 1
2
≺ x 3

2
≺ ... ≺ xP− 1

2
≺ xP+ 1

2
= 1 (4)

We set

Ωi =
]
xi− 1

2
, xi+ 1

2

[
, hi = xi− 1

2
− xi+ 1

2
for i = 1, ..., p (5)

The family z = {Ωi}P
i=1 defines a regular mesh of Ω if the discontinuities of

D(.) do not belong to any Ωi and there exists a real number 0 ≺ ω ≤ 1 such
that

ωh ≤ hi ≤ h ∀ 1 ≤ i ≤ P (6)

where h = max hi
1≤i≤P

•

Let us carry out now the mixed hybrid finite volume formulation of the
system (1)-(2). Following the ideas presented in our earlier work (see [5],[6]),
the system (1)-(2) is equivalent to

dq

dx
(x) = f(x) in Ωi for i = 1, ..., P (Balance equation) (7)

q(x) = −D(x)
du

dx
(x) in Ωi for i = 1, ..., P (Darcy law) (8)

u(x−
i+ 1

2
) = u(x+

i+ 1
2
) for i = 1, ..., P − 1 (Continuity of potential) (9)

q(x−
i+ 1

2
) = q(x+

i+ 1
2
) for i = 1, ..., P − 1 (Continuity of flux) (10)

u(x 1
2
) = α , u(xP+ 1

2
) = β (Boundary conditions) (11)

where
φ(x−

i+ 1
2
) = φ(x+

i+ 1
2
) means lim φ(x)

≺
x→x

i+ 1
2

= lim φ(x)
�

x→x
i+ 1

2

(12)

For sake of clarity and commodity we set:

φΩi

i+ 1
2

= φ(x−
i+ 1

2
), φΩi

i− 1
2

= φ(x+
i− 1

2
), φ

Ωi+1

i+ 1
2

= φ(x+
i+ 1

2
).
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Let us assume that f(.) is a sufficiently regular function, i.e. at least in
C0(Ω).When integrating (7) in Ωi and using a Taylor expansion for (8), the
system (7)-(11) yields obviously:

qΩi

i+ 1
2
− qΩi

i− 1
2

= hi 〈f〉i for i = 1, ..., P (balance equation) (13)

qΩi

i+ 1
2

≈ Di
h/2

[
ui − uΩi

i+ 1
2

]
qΩi

i− 1
2

≈ Di
h/2

[
−ui + uΩi

i− 1
2

]  for i = 1, ..., P (Darcy law) (14)

qΩi

i+ 1
2

= q
Ωi+1

i+ 1
2

(continuity of flux) (i)

uΩi

i+ 1
2

= u
Ωi+1

i+ 1
2

(continuity of potential) (ii)

}
for i = 1, ..., P − 1

(15)

uΩi
1
2

= α and uΩP

P+ 1
2

= β (Boundary conditions) (16)

One naturally deduces from the system (13)-(16) what we call the ”Mixed
Hybrid Finite Volume” scheme which writes as it follows:

Find {Ui}P
i=0 ,

{
UΩi

i− 1
2
, UΩi

i+ 1
2

}P

i=1
and

{
QΩi

i− 1
2
, QΩi

i+ 1
2

}P

i=1
such that

QΩi

i+ 1
2
−QΩi

i− 1
2

= hi 〈f〉i for i = 1, ..., P (Discrete balance equation)
(17)

QΩi

i+ 1
2

≈ Di
h/2

[
Ui − UΩi

i+ 1
2

]
QΩi

i− 1
2

≈ Di
h/2

[
−Ui + UΩi

i− 1
2

]  for i = 1, ..., P (Discrete Darcy law)

(18)

QΩi

i+ 1
2

= Q
Ωi+1

i+ 1
2

UΩi

i+ 1
2

= U
Ωi+1

i+ 1
2

}
for i = 1, ..., P (Continuity of flux and potential)

(19)

UΩi
1
2

= α and UΩP

P+ 1
2

= β (Boundary conditions) (20)

Remark 1
It is interesting to note that a simple elimination of

{
UΩi

i− 1
2
, UΩi

i+ 1
2

}P

i=1
using (18)-

(19) leads to the classical finite volume method as presented in [4] for instance.
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The converse is not true.Indeed the basic ideas involved in the equations (17)-
(20) above are far to be the same as in the classical finite volume method.
This shows that the mixed hybrid finite volume method can be viewed as a
generalization of a classical finite volume method for diffusion problems•

We have the following obvious result.

Proposition 1
Let us set: Ui+ 1

2
≡ UΩi

i+ 1
2

= U
Ωi+1

i+ 1
2

for i = 1, ..., P − 1. Therefore the discrete

unknowns {Ui}P
i=1 ,

{
Ui+ 1

2

}P−1

i=1
obey to the following equations:

Ui =
h2

i

4Di
〈f〉i +

1
2

[
Ui+ 1

2
+ Ui− 1

2

]
for i = 1, ..., P (21)

and for i=1,...,P-1:

−Di

hi
Ui− 1

2
+
[
Di

hi
+

Di+1

hi+1

]
Ui+ 1

2
− Di+1

hi+1
Ui+ 3

2
=

1
2
[
hi 〈f〉i + hi+1 〈f〉i+1

]
(22)

with
U 1

2
= α and UP+ 1

2
= β (23)

The system (22)-(23) satisfies obviously the discrete maximum principle,
that is, if

[
〈f〉]P−1

i=1 , α and β are ≥ 0 then Ui+ 1
2

is ≥ 0 for i = 1, ..., P − 1.
Thus there exists a unique solution for this system. One deduces then the

existence and uniqueness of {Ui}P
i=1 and

{
UΩi

i− 1
2
, UΩi

i+ 1
2

}P

i=1
via the equation

(21) and system of relations (18) [i.e. the Darcy law] respectively. Hence, the
Mixed Hybrid Finite Volume scheme (17)-(19) yields a unique discrete solution.

Let us prove that the mixed hybrid finite volume method is connected to the
mixed hybrid finite element method. We denote P1(Ωi) the space of polynomial
functions defined in Ωi whose degree is ≤ 1. Following [3] and [5], the mixed
hybrid finite element formulation of the system (1)-(2) may be written as follows:

Find :{
ΦΩi

}P

i=1
in

P∏
i=1

Xh(Ωi), {U i}
P
i=1 in RP and

{
U

Ωi

i− 1
2
, U

Ωi

i+ 1
2

}P

i=1
in
[
R2
]P

such that :

(i) for each i ∈ {1, ..., P} and ∀ w ∈ Xh(Ωi) one has∫
Ωi

[Di]
−1 ΦΩi(x)w(x)dx =

[
U

Ωi

i+ 1
2
w(xi+ 1

2
)− U

Ωi

i− 1
2
w(xi− 1

2
)
]
−
∫

Ωi

U iw
′(x)dx

(24)∫
Ωi

ΦΩi(x)dx =
∫

Ωi

f(x)dx (25)

where Xh(Ωi) = P1(Ωi) is the so-called Raviart-Thomas space over Ωi of
lowest order;
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(ii) Continuity of flux and potential across the mesh interfaces should be taken
into account;

(iii) Boundary conditions must be involved.

Using as basis functions for Xh(Ωi) the polynomial functions defined by

eΩi

i+ 1
2
(x) =

x− xi− 1
2

hi
and eΩi

i− 1
2

=
xi+ 1

2
− x

hi

and applying the so-called trapezoidal rule to the left hand of (24) one ob-
tains the system of equations (18) i.e. the discrete Darcy law. Since (25) is
equivalent to(17), this shows the connection between the mixed hybrid finite
element method and the scheme (17)-(19) named ”Mixed Hybrid Finite Volume
Method”.

3 Stability and Error Estimates

We should introduce a tool needed in our analysis of some mathematical prop-
erties of the discrete solution.

Lemma 1 (Discrete Poincaré inequality type)
Let v be a continuous function in Ω, with v(0) = v(1) = 0. Then we have

P∑
i=1

hi

[
vi− 1

2
+ vi+ 1

2

2

]2
≤ [mes (Ω)]2

P∑
i=1

1
hi

[
vi+ 1

2
− vi− 1

2

]2
where vi+ 1

2
= v(xi+ 1

2
) for i = 0, ..., P•

Terminology:
For any continuous function v in Ω, the quantity ‖v‖z defined by

‖v‖z =

[
P∑

i=1

1
hi

(
vi+ 1

2
− vi− 1

2

)2
] 1

2

is the so-called discrete H1
0 (Ω) norm (see for instance [4]).

Proof of Lemma 1:
Let v be a continuous function in Ω, with v(0) = v(1) = 0. Then we have,

with the notations previously introduced,
vi− 1

2
= −v 1

2
+ v 3

2
− v 3

2
+ ... + vi− 3

2
− vi− 3

2
+ vi− 1

2
vi+ 1

2
= −v 1

2
+ v 3

2
− v 3

2
+ ... + vi− 3

2
− vi− 3

2
+ vi− 1

2
− vi− 1

2
+ vi+ 1

2
Combining linearly these two relations and using Minkowski inequality gives[

1
2

(
vi− 1

2
+ vi+ 1

2

)]2
≤
[∣∣∣v 3

2
− v 1

2

∣∣∣+ ∣∣∣v 5
2
− v 3

2

∣∣∣+ ... +
∣∣∣vi− 1

2
− vi− 3

2

∣∣∣+ ∣∣∣vP+ 1
2
− vP− 1

2

∣∣∣]2
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Integrating in Ωi, summing over i ∈ {1, ..., P} and applying Cauchy-Schwarz

inequality yields
P∑

i=1

hi

[
1
2

(
vi− 1

2
+ vi+ 1

2

)]2
≤ [mes (Ω)]2

P∑
i=1

1
hi

[
vi+ 1

2
− vi− 1

2

]2
The lemma 1 is then proven.

We should give now a stability result for the mixed hybrid finite volume
scheme (22)-(23). In this frame-work a non-restrictive assumption which we
make is that α = β = 0 i.e. U 1

2
= UP+ 1

3
= 0.

Proposition 2(Stability of the discrete solution)
The unique solution of (22)-(23), denoted {Ui}P

i=1, satisfies the inequality
P∑

i=1

1
hi

(
Ui+ 1

2
− Ui− 1

2

)2

≤
[

mes(Ω)
D−

]2 [
‖f‖L2(Ω)

]2
•

Proof of Proposition 2:
Multiplying the relation (22) by Ui+ 1

2
, summing over i ∈ {1, ..., P} and

reordering the terms of the right and the left hands yields
P∑

i=1

Di

hi

(
Ui+ 1

2
− Ui− 1

2

)2

=
P∑

i=1

∫
Ωi

f(x)
(

U
i− 1

2
+U

i+ 1
2

2

)
dx

A double application of Cauchy-Schwarz inequality to the right hand of the
preceding equality gives

P∑
i=1

Di

hi

(
Ui+ 1

2
− Ui− 1

2

)2

≤ ‖f‖L2(Ω)

[
P∑

i=1

hi

(
U

i− 1
2
+U

i+ 1
2

2

)2
] 1

2

Using the lemma 1 and the assumption (3), it’s easily seen that the propo-
sition 2 follows •

Let us give now in the following proposition our main result.

Proposition 3 (Error estimates)
Setting:
ei+ 1

2
= u(xi+ 1

2
)− Ui+ 1

2
, ei = u(xi)− Ui , êi+ 1

2
= [−Du′] (xi+ 1

2
)−Qi+ 1

2
,

one has

P∑
i=1

1
hi

[
ei+ 1

2
− ei− 1

2

]2
≤ Ch2 (26)

(let us recall that hi = xi+ 1
2
− xi− 1

2
for i ∈ 1, ..., P );

P∑
i=1

1
hi+ 1

2

[ei+1 − ei]
2 ≤ Ch2 , with hi+ 1

2
=

hi+1 − hi

2
(27)

and

(i)
P∑

i=1

hi

∣∣∣êi+ 1
2

∣∣∣2 ≤ Ch2 and (ii) max
0≤i≤P

∣∣∣êi+ 1
2

∣∣∣ ≤ Ch. (28)
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where C denoted miscellaneous constants not depending on h •

Proof of Proposition 3:
We are going to use some times in the proof the following simplified nota-

tions:
qi+ 1

2
= qΩi

i+ 1
2
, qi− 1

2
= qΩi

i− 1
2
, Qi+ 1

2
= QΩi

i+ 1
2
, Qi− 1

2
= QΩi

i− 1
2
, for i =

1, ..., P
Let us prove first the estimate (26). The system from which we have derived

the Mixed Hybrid Finite Volume (MHFV) scheme writes (see equations (7)-
(11)):

qΩi

i+ 1
2
− qΩi

i− 1
2

= hi 〈f〉i for i = 1, ..., P (Balance equation) (29)

qΩi

i+ 1
2

≈ Di
hi/2

[
ui − uΩi

i+ 1
2

]
qΩi

i− 1
2

≈ Di
hi/2

[
−ui + uΩi

i− 1
2

]  for i = 1, ..., P (Darcy law) (30)

qΩi

i+ 1
2

= q
Ωi+1

i+ 1
2

(continuity of flux) (i)

uΩi

i+ 1
2

= u
Ωi+1

i+ 1
2

(continuity of potential) (ii)

}
for i = 1, ..., P − 1 (31)

uΩi
1
2

= α and uΩP

P+ 1
2

= β (Boundary conditions) (32)

Taking into account the consistency error, (30) leads to

qΩi

i+ 1
2

= Di

hi/2

[
ui − uΩi

i+ 1
2

]
− EΩi

i+ 1
2

qΩi

i− 1
2

= Di

hi/2

[
−ui + uΩi

i− 1
2

]
+ EΩi

i− 1
2

 for i = 1, ..., P (33)

where EΩi

i+ 1
2

= Dihi

4 u′′
(
θg

i+ 1
2

)
and EΩi

i− 1
2

= Dihi

4 u′′
(
θd

i− 1
2

)
Combining linearly these two equations and thanks to (29) one obtains

ui =
h2

i

4Di

[
〈f〉i + EΩi

i+ 1
2

+ EΩi

i− 1
2

]
+

1
2

[
ui+ 1

2
+ ui− 1

2

]
for i = 1, ..., P (34)

Therefore one deduces from (31) and (33) that that

Di

hi

[
ui+ 1

2
− ui− 1

2

]
+ Di+1

hi+1

[
ui+ 1

2
− ui+ 3

2

]
=

1
2

[
hi 〈f〉i + hi+1 〈f〉i+1

]
+
[
EΩi

i− 1
2 ,i+ 1

2
+ E

Ωi+1

i+ 1
2 ,i+ 3

2

]
for i = 1, ..., P − 1

(35)
where we have set for i = 1, ..., P
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EΩi

j− 1
2 ,j+ 1

2
=

Djhj

8
u′′
(
θd

j− 1
2

)
− Djhj

8
u′′
(
θg

j+ 1
2

)
(36)

with, thanks to the assumption (6),

∣∣∣EΩi

j− 1
2 ,j+ 1

2

∣∣∣ ≤ Ch (37)

Remarking that the equation (22) is equivalent to

Di

hi

[
Ui+ 1

2
− Ui− 1

2

]
+ Di+1

hi+1

[
Ui+ 1

2
− Ui+ 3

2

]
=

1
2

[
hi 〈f〉i + hi+1 〈f〉i+1

]
for i = 1, ..., P − 1

(38)

and combining linearly this equation with (35) one sees that the errors
ei+ 1

2
= ui+ 1

2
− Ui+ 1

2
i = 1, ..., P − 1 satisfy the following system of equations:

For i = 1, ..., P − 1

Di

hi

[
ei+ 1

2
− ei− 1

2

]
+

Di+1

hi+1

[
ei+ 1

2
− ei+ 3

2

]
=
[
EΩi

i− 1
2 ,i+ 1

2
+ E

Ωi+1

i+ 1
2 ,i+ 3

2

]
(39)

Multiplying (39) by ei+ 1
2
, summing over i = 1, ..., P − 1 and reordering the

terms yields

P∑
i=1

Di

hi

[
ei+ 1

2
− ei− 1

2

]2
=

P−1∑
i=1

ei+ 1
2
EΩi

i− 1
2 ,i+ 1

2
−

P−1∑
i=1

ei+ 1
2
E

Ωi+1

i+ 1
2 ,i+ 3

2
=

P∑
i=1

EΩi

i− 1
2 ,i+ 1

2

[
ei+ 1

2
− ei− 1

2

]
Thanks to (37) Cauchy-Schwarz inequality one deduces

P∑
i=1

Di

hi

[
ei+ 1

2
− ei− 1

2

]2
≤ Ch

{
P∑

i=1

Di

hi

[
ei+ 1

2
− ei− 1

2

]2} 1
2
{

P∑
i=1

hi

Di

} 1
2

Remarking that
P∑

i=1

hi = mes (Ω) and using the assumption(3) yields the

estimate (26).

Let us prove (27) now. All the previous notations are conserved. From the
continuity of the flux across the mesh interfaces one has

qΩi

i+ 1
2

= q
Ωi+1

i+ 1
2
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Let us set:

qi+ 1
2
≡ qΩi

i+ 1
2

= q
Ωi+1

i+ 1
2

The system of equations (13)-(16) leads to

qi+ 1
2
− qi− 1

2
= hi 〈f〉i for i = 1, ..., P (40)

with

qi+ 1
2

= − 2DiDi+1

hi+1Di + hiDi+1
[ui+1 − ui] + Ed

i+ 1
2
− Eg

i+ 1
2

for i = 1, ..., P (41)

where for i = 0, ..., P one has set

Ed
i+ 1

2
= 2DiDi+1h2

i+1
4[hi+1Di+hiDi+1]

u′′
(
ξd
i+ 1

2

)
Eg

i+ 1
2

= 2DiDi+1h2
i

4[hi+1Di+hiDi+1]
u′′
(
ξg

i+ 1
2

)
 (42)

with the following conventions

h0 = hP+1 = 0, D0 = DP+1 = 1 (43)

u0 = u 1
2

and uP+1 = uP+ 1
2

(44)

Reasoning the same way on the system of equations (17)-(19) yields

Qi+ 1
2
−Qi− 1

2
= hi 〈f〉i for i = 1, ..., P (45)

with

Qi+ 1
2

= − 2DiDi+1

hi+1Di + hiDi+1
[Ui+1 − Ui] for i = 1, ..., P (46)

U0 = α and UP+1 = β (see (23) and (44) ) (47)

Note that the system (45)-(47) is nothing than the classical centered finite
volume scheme.

Combining (40) and (45), and taking into account (41) and (46), one can see
that the quantities {ei}P

i=1 ,where ei = ui − Ui, verify the following relations
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2Di−1Di

hi−1Di+hiDi−1
[ei+1 − ei] + 2DiDi+1

hi+1Di+hiDi+1
[ei − ei+1] =[

Eg

i+ 1
2
− Ed

i+ 1
2

]
−
[
Eg

i− 1
2
− Ed

i− 1
2

]
for i = 1, ..., P

(48)

with

e0 = eP+1 = 0 (49)

Multiplying (48) by ei, summing over i ∈ {1, ..., P} and reordering the terms
yields

P∑
i=1

2DiDi+1

hi+1Di + hiDi+1
[ei − ei+1]

2 =
P∑

i=0

Ed
i+ 1

2
[ei+1 − ei]−

P∑
i=0

Eg

i+ 1
2

[ei+1 − ei]

(50)

From the assumption (3) and (6) one deduces

P∑
i=1

2DiDi+1

hi+1Di + hiDi+1
[ei − ei+1]

2 ≥ (D−)2

D+

P∑
i=0

1
hi+ 1

2

[ei+1 − ei]
2 (51)

where

hi+ 1
2

=
hi + hi+1

2
for i = 0, ..., P

On the other hand it follows from (41), (3) and Cauchy-Schwarz inequality
that∣∣∣∣∣

P∑
i=0

Ed
i+ 1

2
[ei+1 − ei]−

P∑
i=0

Eg

i+ 1
2

[ei+1 − ei]

∣∣∣∣∣ ≤ Ch

(
P∑

i=0

1
hi+ 1

2

[ei+1 − ei]
2

) 1
2

(52)

where C is a constant depending only on Ω, ω, D−, D+ and max
x∈Ω

|u′′(x)| .

From (50)-(52) one deduces that(
P∑

i=0

1
hi+ 1

2

[ei+1 − ei]
2

) 1
2

≤ Ch

Hence (27) is proven.
It remains to prove (28) for achieving the proof of Proposition 3. Subtracting

(18) from (33) one obtains
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qΩi

i+ 1
2
−QΩi

i+ 1
2

=
Di

h/2

[(
uΩi

i − UΩi
i

)
+
(
UΩi

i+ 1
2
− uΩi

i+ 1
2

)]
− Ei+ 1

2
(53)

qΩi

i− 1
2
−QΩi

i− 1
2

=
Di

h/2

[(
uΩi

i − UΩi
i

)
+
(
uΩi

i− 1
2
− UΩi

i− 1
2

)]
+ Ei− 1

2
(54)

It’s clear by continuity of the exact and the discrete potential across mesh
interfaces (see (15) and (19)) that one has

ei+ 1
2

= uΩi

i+ 1
2
− UΩi

i+ 1
2

and ei− 1
2

= uΩi

i− 1
2
− UΩi

i− 1
2

Setting for i = 1, ..., P

êi+ 1
2

= qΩi

i+ 1
2
−QΩi

i+ 1
2

and êi− 1
2

= uΩi

i− 1
2
− UΩi

i− 1
2

we get by combining linearly (53) and (54) that

êi+ 1
2

+ êi− 1
2

=
Di

hi/2

[
ei− 1

2
− ei+ 1

2

]
+
[
Ei− 1

2
− Ei+ 1

2

]
∀ 1 ≤ i ≤ P (55)

On the other hand it results from (13) and (17) that

êi+ 1
2

+ êi− 1
2

= 0 ∀ 1 ≤ i ≤ P (56)

It follows from (55) and (56) that for i = 1, ..., P

hi

[
êi+ 1

2

]
≤ 2 max

{(
D−)2 ,

1
4

}(
1
hi

[
ei− 1

2
− ei+ 1

2

]2
+ hi

[
Ei− 1

2
− Ei+ 1

2

]2)
Summing over i = 1, ..., P the right and the left hands of the preceding

inequality, taking into account (26), and remarking that

P∑
i=1

hi

[
Ei− 1

2
− Ei+ 1

2

]2
≤ Ch2

yields

P∑
i=1

hi

[
êi+ 1

2

]2
≤ Ch2

Thus (28) -(i) is proven. One deduces from this last inequality (28)-(ii) by
using (56), that is,

êi+ 1
2

= êi− 1
2

for i = 1, ..., P

Proposition 3 is then completely proven.
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4 Conclusion and perspectives

The work we have presented here is a first step in our research activities con-
cerning mixed hybrid finite volume analysis of engineering problems in gen-
eral and underground-water flow in particular. The theoretical results obtained
from our analysis are satisfactory: see stability and convergence of the discrete
solution in Propositions 2 and 3. This situation encourages us to deal with
mixed hybrid finite volume analysis of stationary and time-dependent diffusion-
convection problems in multi-dimension. A 2-D mixed hybrid finite volume
simulator for underground-water flow is under-development with the purpose of
its validation on a real site. In this connection some results can be found in [7]
[8] [9].

Ackowledgement: I would like to thank very much the french cooperation
for its financial support through a ”CORUS” project.
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loque International du Réseau Africain de Mathématiques Appliquées pour
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