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Abstract� In these notes we present in printed form the content of a se�
ries of lectures given by �ve of the authors at the International Workshop
in Classical Analysis held in Yaound�e in December ����� Our purpose is
to introduce the problem of Lp�boundedness of weighted Bergman projec�
tors on tube domains over symmetric cones� and show some of the latest
progress obtained in this subject� We begin with a complete description
of the situation on the upper half�plane� Next� we introduce the geometric
machinery necessary to study the problem in higher dimensions� This in�
cludes the riemannian structure of symmetric cones� the induced Whitney
decomposition and the introduction of a wider class of spaces with mixed
Lp�q�norms� Our main result is the boundedness of the weighted Bergman
projector on the weighted mixed norm spaces Lp�q

�
� for an appropriate range

of indices �� p� q� Finally� we conclude by discussing various applications�
further results� and open questions�
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Foreword

In December ���� the �International Workshop in Classical Analysis� Par�
tial Di�erential Equations and Applications� was held in Yaound�e� Cameroon�
Here we present an outgrowth of the notes of a series of lectures that 	ve

of us� delivered on that occasion� These notes were carefully taken by Cyrille
Nana�� who also wrote the 	rst coherent draft�
We provide in these lecture notes an introduction to the analysis of weighted

Bergman spaces on tubes over symmetric cones and� at the same time� a self

contained presentation of the joint results we have obtained during the past
few years ��
������ ���� ���� �����
During the academic year �������� the 	rst named author gave a graduate

course based on the same notes and he is indebted to his students for many
corrections and improvements�
It is pleasure to thank the people and the institutions that promoted and

supported the workshop� We mention in particular the Ministry of Research
of Cameroon� the University of Yaound�e� and the CIMPA� A� Bonami ac

knowledges support from the Foreign Ministry of France� G� Garrig�os from
Universidad Aut�onoma de Madrid� M� Peloso and F� Ricci from CIMPA for
their travel funding�
Finally� A� Bonami� G� Garrig�os� M� Peloso and F� Ricci wish to express their

appreciation to D� Bek�oll�e for his kind invitation and wonderful hospitality�
extended to all the participants of the workshop who patiently attended our
lectures� Special thanks go to Jocelyn Gonessa� who� together with Cyrille
Nana� spent a lot of energy for the success of the workshop�

�D� B�ekoll�e� A� Bonami� G� Garrig�os� M� Peloso and F� Ricci�
�A Ph� D� student of D� B�ekoll�e�
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�� Bergman spaces in the upper half�plane of the ��D

complex space

We begin our presentation with the simplest case� the upper half
plane H
of the one
dimensional complex space C� This is the prototype of a tube
domain over a cone� the cone being the positive real half
line ������ This
approach gives us the opportunity to introduce the subject in a more familiar
context� and to describe and prove many of our results using elementary tech

niques� Such presentation will also help understanding the problem in higher
dimensions� where many new limitations appear and subtle di�culties must
be overcome�
The results we present here in one
dimension are all well
known� and can

be found scattered in the literature �see e�g�� ����� ���� or ���� for basic prop

erties of Hardy and Bergman spaces�� In our presentation� we will try to be
as self
contained as possible� emphasizing the proofs which are keener to be
generalized to higher dimensions �specially arguments involving group invari

ance�� This approach will end up with three apparently di�erent problems
which will be considered later in higher dimension� and which will turn out to
be equivalent� providing a common point where geometry� real and complex
analysis merge� We solve them completely in the one dimensional case�

���� De�nitions and basic properties�

Let H�H� be the space of holomorphic functions on H� where this domain
denotes the upper half
plane in C�

H � R� i����� � fx� iy � C � y � �g�
We 	rst de	ne the Bergman spaces�

DEFINITION ���� Given p � ������ the �unweighted� Bergman space Ap �
Ap�H� is de	ned by

Ap � H�H� � Lp�H� dxdy�

�

�
F � H�H� � kFkpAp �

Z �

�

Z
R

jF �x� iy�jpdxdy ��
�
�

Given � � � and p � ������ the weighted Bergman space Ap
� � Ap

��H� is
de	ned by

Ap
� �

�
F � H�H� � kFkp

Ap
�
�

Z �

�

Z
R

jF �x� iy�jpdx y� dy
y
��

�
�

We shall denote by Lp
� the Lebesgue space associated with the measure

y���dxdy� Observe that Ap
� � Ap for � � ��

Below� we give examples of functions in these spaces� We leave the veri	ca

tion as an exercise to the reader�
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EXAMPLE ���� Let � � � be 	xed�

�i� The holomorphic function F� de	ned on H by F��z� �
�

�z�i�� belongs to

Ap
� if and only if � � � and p � ���

�
�

�ii� The holomorphic function G� de	ned on H by G��z� �
eiz

z�
belongs to

Ap
� if and only if � � � and �

�
� p � ���

�
�

The next proposition gives basic inequalities for functions in Ap
��

PROPOSITION ���� Let p � ����� and � � ��
�i� There exists a constant C � C�p� �� � � such that for all x� iy � H and

for all F � Ap
�� the following inequality holds�

jF �x� iy�j � Cy�
���
p kFkAp

�
�

�ii� There exists a constant C � C�p� �� � � such that for all y � ����� and
for all F � Ap

�� the following inequality holds�

kF ��� iy�kp � Cy�
�
p kFkAp

�
�

�iii� For all F � Ap
�� and for all y � �� the following holds�

lim
jxj��

F �x� iy� � �������

PROOF� Before starting the proof� let us remark that Ap
� is invariant by

translations and dilations� More precisely� we 	x x � R and y � �� and
consider the translate of F � Ap

� under x� given by F��u� iv� � F �x�u� iv��
Then F� is also in Ap

� with same norm as F � Analogously� if we de	ne the
dilate of F by F��u� iv� � F �y�u� iv��� then F� is in Ap

�� with norm

kF�kAp
�
� y�

���
p kFkAp

�
�

Let us now prove �i�� From the invariance properties above� it su�ces to
consider the case x � � and y � � �which can be applied afterwards to �F�����
Let D�z�� r� denote the disc of center z� and radius r� The mean value

property� H�older�s inequality and the fact that v��� is bounded below on the
interval ��

�
� �
�
�� imply that

jF �i�j � C

�����
Z Z

D�i� �� �

F �u� iv�dudv

����� � Cp

�Z Z
D�i� �� �

jF �u� iv�jpdudv
� �

p

� Cp��

�Z �
�

�
�

Z �
�

� �
�

jF �u� iv�jpdu v���dv
� �

p

� Cp��kFkAp
�
�

�ii� Again� by invariance it su�ces to prove the case y � �� Proceeding as
above we obtain

jF �x� i�jp � Cp

Z
jv��j� �

�

Z
ju�xj� �

�

jF �u� iv�jpdudv����
�



BERGMAN PROJECTORS ON TUBE DOMAINS OVER CONES �

Then� integration with respect to x gives�

kF ��� i�kpp � Cp

Z
jv��j� �

�

�Z
R

Z
ju�xj� �

�

dx jF �u� iv�jpdu
�
dv

� Cp��

Z
jv��j� �

�

�Z
R

jF �u� iv�jpdu
	
v���dv � Cp��kFkpAp

�
�

�iii� Once more� we may assume that y � �� Rewriting ���
� we see that�

jF �x� i�jp � C

Z
jv��j� �

�

Z
R

��x� �
� �x�

�
� 	
�u�jF �u� iv�jpdu v���dv�

Then� from the dominated convergence theorem it follows that

lim
jxj��

jF �x� i�jp � ��

�

EXERCISE ���� Modify the proof of part �iii� above to show that the limit
in ����� holds uniformly in y over compact sets of ������ Combine this fact
with �i� to show that� when � � �� y� � �� then for all F � Ap

��

lim
z��
�z�y�

F �z� � lim
jxj�y��
y�y�

F �x� iy� � ��

COROLLARY ���� Let p � ����� and � � �� Then for every compact set K
of C contained in H� there exists a constant CK � CK�p� �� � � such that for
every F � Ap

�� the following estimate holds�

sup
z�K

jF �z�j � CKkFkAp
�
�

PROOF� This follows immediately from assertion �i� of Proposition ���� �

COROLLARY ��	� For all p � ����� and � � �� the Bergman space Ap
� is a

Banach space�

PROOF� The function F �� kFkAp
�
de	nes a norm on Ap

�� because of the
equality k � kAp

�
� k � kLp� and Ap

� is complete in this norm� Indeed� let fFqg
be a Cauchy sequence in Ap

�� By Corollary ���� for every compact set K of C
contained in H� we get�

sup
K
jFq � Frj � CKkFq � FrkAp

�
�

it then follows that the sequence fFqg converges uniformly on every compact
set K of C contained in H� By Weierstrass Theorem� its limit F is a holo

morphic function on H� On the other hand� since the space Lp

� is complete�
the Cauchy sequence fFqg converges in Lp

� to a function G � Lp
� � Therefore�
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we can extract a subsequence Fqk that converges a�e� to G� This implies that
G � F almost everywhere on H� Furthermore� fFqg � F in Ap

�� �

We point out that we could as well have de	ned the spaces Ap
� for non

positive �� and prove the same propositions� This is of no interest� since an
easy consequence of Proposition ��� in this case is the fact that the weighted
Bergman spaces reduce to f�g when � � �� Before giving the proof of this fact�
we need to recall basic properties of the Hardy classes� which may be seen� in
some way� as the limit classes when � tends to ��

���� Hardy spaces on the upper half
plane�

Proofs and details of the results surveyed here can be found� e�g�� in ���� Ch�
��� and ���� Ch�II��

DEFINITION ���� For p � ������ the Hardy space Hp � Hp�H� is the space
of holomorphic functions on H which satisfy the estimate

kFkHp �� sup
y��

�Z �

��
jF �x� iy�jpdx

� �
p

���

It is clear that k � kHp is a norm on Hp� The next lemma follows from the
mean value property and H�older�s inequality �proceeding as in Proposition ���
above��

LEMMA ����� For every z � x� iy � H and for every F � Hp

jF �z�j �
�
�

�y

	 �
p

kFkHp�

Moreover� for every compact set K of H we have

sup
z�K

jF �z�j �
�

�

�dist�K�	H�

	 �
p

kFkHp�

COROLLARY ����� For all p � ������ Hp is a Banach space�

Again� we use the same kind of proof as for Bergman spaces�

The next result is an easy consequence of the residue theorem� and gives
the Cauchy integral representation for functions satisfying an Hp
integrability
condition�

PROPOSITION ����� Let F � Hp� � � p ��� Then for all z � x� iy � H
and 
 � ��� y�� we have

F �z� �
�

��i

Z �

��

F �t� i
�

t� i
� z
dt�

DEFINITION ����� The kernel C�x � iy� � Cy�x� �
�
��

i
x�iy

is called the

Cauchy kernel of H�
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In the sequel� for every function � � H� C and for every y � �� we denote by
�y the function de	ned on R by �y�x� �� ��x� iy�� Then the Cauchy integral
formula may be written as follows� for all y � � and 
 � ��� y�

Fy � F� 	 Cy���

The next theorem is also well known� and gives the existence of boundary
values for functions in Hp� The proof for p � � is simple and only makes use
of harmonicity� We state below the full result comprising also the case p � ��
for which we refer� e�g�� to ���� pp� ������
� or ���� pp� �������� �the latter�
in the case of the disk��

THEOREM ���
� Let F � Hp� � � p ��� Then�
�i� The function y �� kFykp is non�increasing and continuous for y � ������
�ii� kFykp tends to kFkHp as y tends to zero�
�iii� There exists a function F� � Lp�R� such that Fy converges to F� in the

Lp norm as y tends to zero� also Fy � F� 	 Cy � F� 	 Py for every y � ��
Moreover� Fy tends to F� in Lp when y tends to ��

Here Py�x� denotes the Poisson kernel in H� It is given by

Py�x� �
�

�

y

x� � y�
�

has integral �� and de	nes an approximate identity �while the Cauchy kernel
does not��

Let us now give applications of the last theorem for weighted Bergman
spaces� We 	rst remark that Assertion �ii� of Proposition ��� can be read
in the following way� For F � Ap

� and � � �� the function F ��� i�� is in Hp�

with norm bounded by C��
�
p � Moreover� we have the following proposition�

PROPOSITION ����� Let F � Ap
�� � � p ��� Then�

�i� The function y �� kFykp is non�increasing and continuous for y � ������
�ii� F ��� i�� is in Ap

� for positive �� and tends to F in Ap
� as 
 tends to zero�

PROOF� The proof of �i� is a direct consequence of the fact that F ��� i�� is
in Hp� It is clear from �i� that F ��� i�� is in Ap

� for positive �� It remains to
prove that

R�
�
kFy � Fy��kppy���dy tends to �� This is an easy consequence of

the Dominated Convergence Theorem� �

REMARK ����� Let us now prove that� if � � � then Ap
� � f�g for every

p � ������ Indeed� it follows from Proposition ��� adapted to this case that�

for every F � Ap
�� the function G�z� �� F �z�

�z�i�m belongs to the Hardy space

Hp for m large enough� Hence� the function g � ����� � ����� de	ned by
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g�y� �
R
R
jG�x� iy�jpdx is non
increasing� Moreover

kFkp
Ap
�

 kGkp

Ap
�
�

Z �

�

g�y�y���dy



Z y�

�

g�y�y���dy 
 g�y�����

So� g�y� � � for every y � �� This implies that G �and also F � is identically
zero on H�

We now prove a density result which will be used often below�

PROPOSITION ����� Let � � � and � � p � �� Then� for all 
 � � and
� � q �� the set Aq

� �Ap
� is dense in Ap

� �

PROOF� Let m 
 � be large enough so that

Gm�z� �
�

��iz � ��m
� Aq

�������

�see Example ��� above�� Given F � Ap
� and � � � we consider

F ����z� � Gm��z�F �z � i��� z � H�

which belongs to Aq
� � Ap

� since both factors are bounded �the second one�

by Proposition ����� Further� the pointwise limit of F ����z� equals F �z� when
� � �� We have already seen that F ��� i�� tends to F in Ap

�� It remains to
see that the same is valid for Gm����F � Again� it follows from the Dominated
Convergence Theorem�

�

���� A Paley
Wiener Theorem�

Let us 	rst recall the version of the Paley
Wiener Theorem which is adapted
to Hardy spaces�

PROPOSITION ����� �i� For every g � L������� the following integral is
absolutely convergent�

F �z� �
�p
��

Z �

�

eiz	g���d� �z � H��������

and de	nes a function F � H� which satis	es

kFk�H� �

Z �

�

jg���j�d��������

�ii� The converse holds� i�e�� for every F � H�� there exists g � L������ such
that ������ and ������ hold�
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PROOF� Let us prove �i�� The integral on the right hand side of ������
is absolutely convergent� and de	nes a holomorphic function� Moreover� it
follows from the inverse Fourier formula that the Fourier transform of Fy is
given by cFy��� �

�p
��

g���e�y	 �

By Plancherel formula� kFyk�� �
R�
�

e��y	jg���j�d�� and Formula ���� follows at
once� Conversely� using Theorem ���� and the fact that the Fourier transform
of the Poisson kernel is equal to �p

��
e�yj	j� if g is the Fourier transform of F��

we get that

F �x� iy� �
�p
��

Z ��

��
eix	e�yj	jg���d� �z � H��

It remains to show that g is supported in ������ But� if we cut the integral
into two parts� the integrals over ���� �� and over ������ the 	rst one gives an
anti
holomorphic function� while the second one gives a holomorphic function�
Since F is holomorphic� it means that the 	rst one is �� By Fourier uniqueness�
this implies that g vanishes on ���� ��� and allows to conclude�

Let us now consider the weighted Bergman spaces�

THEOREM ����� �Paley
Wiener� �i� For every g � L�������� ���d�� the
following integral is absolutely convergent�

F �z� �
�p
��

Z �

�

eiz	g���d� �z � H��������

and de	nes a function F � A�
� which satis	es

kFk�A�
�
�
 ���

��

Z �

�

jg���j� d�
��
�������

�ii� The converse holds� i�e�� for every F � A�
�� there exists g � L�������� ���d��

such that ������ and ������ hold�

PROOF� ��� Again� the integral on the right hand side of ������ is absolutely
convergent� since by Schwarz�s inequalityZ �

�

jeiz	g���jd� �
Z �

�

�e�y	�
�
� ����

�
� jg���j�d�

�
�Z �

�

��e��y	d�
	 �

�
�Z �

�

jg���j�d�
��

	 �
�

���

�recall that � � ��� This implies that the right hand side of ������ de	nes a
function F which is holomorphic in H�
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To prove ������� we use the Plancherel formula� By ������� we have thatZ
R

jF �x� iy�j�dx �
Z �

�

e��y	jg���j�d�
and thereforeZ �

�

�Z
R

jF �x� iy�j�dx
	
y�
dy

y
�

Z �

�

jg���j�
�Z �

�

e��y	y�
dy

y

	
d�

�  ���

Z �

�

jg���j� d�

�����
�

To prove �ii�� we use Paley
Wiener Theorem for Hardy classes� For every
� � �� there exists g� which is in L������ such that

F �z � i�� �
�p
��

Z �

�

eiz	g����d��

The uniqueness of the Fourier transform implies that

e��
�	g���� � e��	g������

We take g��� � e�	g���� to conclude that F is given by the required formula�
Again� by the Plancherel formula and Fubini�s Theorem for positive functions
as above�

kFk�A�
�
�

Z �

�

jg���j�
�Z �

�

e��y	y���dy
	
d� �  ���

Z �

�

jg���j� d�

�����
�

This last integral is 	nite� which we wanted to prove� �

EXERCISE ����� Let � � � and � � p � �� Show that for all F � Ap
� there

exists g � Lp�������� ���
p�

p d�� such that ������ holds and

kgk
Lp
��������	

�� p
�
p d	�

� C kFkAp
�
�

�Hint� use Hausdor�
Young�s inequality��

���� Bergman kernels and Bergman projectors�

DEFINITION ����� Let H denote a Hilbert space consisting of complex func

tions on an open set E� We call reproducing kernel for H� a complex function
K � E �E � C such that� if we put Kw�z� � K�z�w�� then the following two
properties hold�

�� for every w � E� the function Kw belongs to H�
�� for all f � H and w � E� we have

f�w� � hf�Kwi�
It is worth noticing that these two properties imply that such a kernel K

satis	es the identity K�z�w� � K�w� z�� for all z�w � E�
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PROPOSITION ����� For every � � �� the Bergman space A�
� in H possesses

a reproducing kernel�

PROOF� By Corollary ��� used for the compact set fwg� we know that F ��
F �w� is a continuous linear functional on the Hilbert space A�

�� We combine
this with the Riesz representation theorem for such functionals� �

DEFINITION ���	� The reproducing kernel for A��H� is called the Bergman
kernel of H and is denoted by B�z�w�� More generally� for � � � the reproduc

ing kernel for A�

� is called the weighted Bergman kernel of H and it is denoted
by B��z�w��

We will see that the weighted Bergman kernel can be explicitly computed�
In what follows� the notation Log z and z� � e�Log z� �e z � �� � � C�

corresponds to the determination of the logarithm which is real in the positive
real axis�

THEOREM ����� If � � �� then the weighted Bergman kernel is given by the
formula

B��z�w� �
�����
�

�
z �w

i

	����
�

PROOF� By the Paley
Wiener theorem� every function F � A�
� can be written

as

F �z� �
�p
��

Z �

�

eiz	g���d��������

for some g � L�
���������� Since B���� w� � A�

�� there exists gw � L�
� such that

B��z�w� �
�p
��

Z �

�

eiz	gw���d��

Now� since the kernel B���� w� is reproducing for A�
�� polarizing the isometry

in the Paley
Wiener theorem gives

F �w� � hF�Kwi �  ���

Z �

�

g���gw���
d�

�����
�

The identi	cation with ������ gives that

gw��� �
�p

��  ���

e�iw	

�����
�
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Hence�

B��z�w� �
�

�� ���

Z �

�

ei�z�w�	�����d�

�
��

�� ���

�

��i�z � w�����

Z �

�

e�	��d�

�
��

�� ���

 �� � ��

� z�w
i
�
��� �

�����
�

�
z � w

i

	����
�

�

DEFINITION ����� The orthogonal projector from the Hilbert space L� �
L��H� onto its closed subspace A� is called the Bergman projector of H and
it is denoted by P � More generally� for every � � �� the orthogonal projector
from the Hilbert space L�

� onto its closed subspace A�
� is called the weighted

Bergman projector of H and it is denoted P� �

PROPOSITION ����� For every f � L�
� and z � H we have that

P�f�z� �

Z
H

B��z� u� iv�f�u� iv�du v���dv�������

PROOF� By the reproducing property of B��z�w� and the self
adjointness of
P� in L�

��H� we have�

P�f�z� � hP�f � B���� z� iL�� � h f � P�B���� z� iL��
� h f � B���� z� iL�� �

Z
H

B��z� u� iv�f�u� iv�du v���dv�

�

��
� Problem �� The boundedness of the Bergman projector�

We have just found an explicit formula for the orthogonal projector P� from
L�
� onto the subspace A

�
�� It is natural to ask whether this operator extends

in some meaningful way to Lp
� for p 
� �� and in that case whether the repro


duction property of B��z�w� �i�e�� P�F � F � holds in Ap
� spaces� The 	rst

observation in this direction is that� for 	xed z� the function B���� z� belongs
to Lq

� if and only if q � � �cf� Example ����� Therefore� the right hand side
of ������ is always well
de	ned whenever f � Lp

� � � � p � �� and moreover�
it coincides with f when this last function belongs to A�

� � Ap
�� We already

mentioned the density of this last set in Ap
� �Proposition ������ so the repro


duction property in Ap
� will hold whenever P� de	nes a bounded operator on

Lp
� � The next theorem gives a complete answer to these questions� that is� it

characterizes when P� is a bounded projector from Lp
� onto A

p
� �
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THEOREM ���
� Let � � p � �� Then the Bergman projector P� is a
bounded operator in Lp

� if and only if p � �� In this case� the operator P�
� with

positive kernel jB��z�w�j is also bounded in Lp
��

PROOF� We 	rst prove the necessary condition for p � �� We test P� on
a speci	c function which is in all Lp

�� namely f�w� � �B�w�v����� where
w � u� iv� and B is the ball of radius ��� centered at i� Then the mean value
property applied to the harmonic function B��z� �� gives us immediately that

P�f�z� � cB��z� i�

for some constant c� This function is in Lp
� if and only if p � �� which proves

the necessary condition�
To 	nish the proof of the theorem� it is clearly su�cient to prove that P�

� is
bounded in Lp

� � The main tool for the boundedness of operators with positive
kernels is Schur�s lemma� that now we state�

LEMMA ����� �Schur�s Lemma� Let �X�
� be a measure space and K�x� y�
a positive kernel on X �X� Let T be the operator de	ned by

Tf�x� �

Z
X

K�x� y�f�y�d
�y��

For � � p � �� let p� be the conjugate exponent� Suppose that there exist a
positive function � and a constant C such thatZ

X

K�x� y���y�p
�

d
�y� � C��x�p
�

and Z
X

K�x� y���x�pd
�x� � C��y�p�

Then the operator T is well de	ned on Lp�X�
�� and it is bounded on Lp�X�
��

PROOF� To prove Schur�s Lemma� it is su�cient to consider positive functions
f � An appeal to H�older�s inequality and the use of the 	rst inequality gives
that

Tf�x�p �

�Z
X

K�x� y�f�y���y�����y�d
�y�
	p

� Cp
p���x�p
Z
X

K�x� y�f�y�p��y��pd
�y��

Integrating in x and using the second inequality we obtain the result� �
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Let us go back to the proof of Theorem ����� We will do it in two steps�
Again� we write

P�f�x� iy� � c

Z �

�

�Z ��

��
�x� u� i�y � v������f�u� iv�du

	
v���dv�

and notice that the operator inside the parentheses is a convolution operator
whose norm� when acting on Lp�R�� is bounded by the L��R� norm of the
function ��� i�y�v������� This quantity is easily computed� for y and v 	xed�
and it is equal to c�y � v���� Thus� using Minkowski inequality for integrals�
we get

kP�f��� iy�kp � c

Z �

�

�y � v���kf��� iv�kpv���dv�
Since the function v �� kf���iv�kp belongs to Lp



������ v���dv

�
� it remains to

prove that the operator with kernel �y�v��� is bounded on Lp������� v���dv��
We use Schur�s Lemma with the function ��v� � v��� It is su�cient to choose
� � � such that ���p� � �� as well as ���p � �� and to use the homogeneity
of the kernel� �

REMARK ����� It is possible to give a shorter proof of Theorem ����� using
directly Schur�s Lemma for P�

� � The advantage of the proof presented here is
that it can be easily adapted to have boundedness of the operator in mixed
norm spaces which will be introduced below�

���� Problem �� Hardy
type inequalities in Ap
��

The Cauchy formula allows to estimate F � in terms of F � writing F ��x� iy�
as an integral along the circle of radius y�� centered at x� iy� one gets that

jF ��x� iy�j � �

y
sup

jw�x�iyj�y


jF �w�j�

As before� this quantity can be bounded in terms of the integral of F inside
the ball of radius y�� centered at x� iy�

ypjF ��x� iy�jp � C

y�

Z
y
��v��y

�Z
jx�uj�y

jF �u� iv�jpdu
	
dv�������

Integrating on H� we obtain the inequalityZ
H

ypjF ��x� iy�jpy���dxdy � C

Z
H

jF �u� iv�jpv���dudv�������

Indeed� just change the order of integration in the right hand side of �������
and use that Z

y
��v��y

�Z
jx�uj�y

dx

	
y���y��dy � cv����

for some positive constant c�
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The converse inequality of ������ is much more interesting� and can be seen
as a regularity property for the PDE F � � G� when G is a holomorphic data
with a certain integrability condition� Such type of property is commonly
known as a Hardy�type inequality� Clearly� there cannot be a version of it for
p � � because of constant functions� In the next proposition we show that�
for all � � p ��� there is a Hardy
type inequality in the Bergman spaces Ap

��

PROPOSITION ����� For all � � p � �� � � �� the derivation operator
maps continuously Ap

� into Ap
��p� Conversely� when � � p ��� there exists a

constant Cp such that the following Hardy�type inequality holds�Z
H

jF �u� iv�jpv���dudv � Cp

Z
H

ypjF ��x� iy�jpy���dxdy�������

PROOF� To prove ������� we shall give an explicit formula for F in terms of
its derivative� In fact� since the function F is holomorphic� we can replace F �

by the partial derivative in y� Since F vanishes at � �Exercise ����� we can
write �F �x� iy� as an integral of its derivative from y to ��� and get that

jF �x� iy�j �
Z ��

y

jF ��x� iv�jdv�

As before� we use Minkowski integral inequality to see that the Lp norm in the
x variable of an integral in v is bounded by the integral of the Lp norm in x�
Doing this� we are reduced to a problem on Lp������� v���dv�� The estimate
������ now follows easily from the following result�

LEMMA ��
�� �cf� e�g� ����� p� ���� For all � � p � �� there exists a
constant C such that� for all positive functions g on �������Z ��

�

�Z ��

y

g�v�dv

	p

y���dy � C

Z ��

�

ypg�y�py���dy�������

PROOF� This is very classical� and may be found for instance in �cf� e�g�
����� p� ����� We give its prrof for completeness� We are again considering
an operator with positive kernel� Moreover� this one is equal to �

v
�fv�yg�v��

which is clearly bounded by c�y � v���v��� that we have already considered�
This gives the proof for p � �� It is a simple consequence of Fubini�s Theorem
when p � ��

�

���� Problem �� Boundary values of functions in Ap
� �

This paragraph is more di�cult since it requires a good understanding of
distributions� It may be left aside at 	rst reading�
We have seen that all functions in the Bergman space A�

� can be obtained
as a Fourier
Laplace transform of some function g in a weighted L� space
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�Theorem ������ In a sense� the distribution f � !g can be seen as a �boundary
limit� of F � A�

�� since at least formally�

F �x� iy�� �p
��

Z �

�

eix	g��� d�� when y� ��

We want to give a precise meaning to this limit� ask whether such a boundary
limit exists for other values of p� and whether an elegant characterization
similar to Theorem ���� holds in that case� This question is more delicate
now� and the answer will make use of the Littlewood
Paley decomposition for
distributions with spectrum in ������ We also point out that the language of
distributions is necessary when we look at boundary limits in H �rather than

on the Fourier transform side�� Indeed� the elementary example F �z� � eiz

z

belongs to A�
� for all � � � �see Example ����� but we cannot give a reasonable

meaning to its pointwise limit eix

x
since it is not a distribution�

In order to present the Littlewood
Paley construction� we start with an
elementary lemma on the existence of C� functions with compact support �cf�
������

LEMMA ��
�� There exists a non�negative function � on R� which is of class
C� with compact support in ����� ��� and satisfying the following identity

���� � ������ � � for � � � � ��

As a consequence� X
j�Z

����j�� � � for � � ��

We de	ne � as the inverse Fourier transform of �� and �j��� � �j���j��� It
follows from the identity above thatX

j

f 	 �j � f������

when f is a tempered distribution whose Fourier transform is supported in
������� The candidate for space of boundary limits can now be de	ned as
follows�

DEFINITION ��
�� Let � � R and � � p � �� The �homogeneous� Besov
space Bp

� is the space of classes of tempered distributions on R� modulo poly

nomials� having Fourier transform with support in ����� and such that

kfkp
Bp
�
�
X
j�Z

���jkf 	 �jkpp ���������

Besov spaces arise naturally in the theory of partial di�erential equations
when proving theorems on existence� uniqueness and regularity of solutions�
For complex analysis we shall content ourselves to consider tempered distribu

tions whose Fourier transform is supported in ������ while in PDE one needs a



BERGMAN PROJECTORS ON TUBE DOMAINS OVER CONES ��

more general space� without this restriction� We also remark that the �Besov
norm� given by ������ vanishes if and only if the Fourier transform of f is
supported in f�g� that is� if and only if f is a polynomial� So we get a norm
on the quotient space that we consider�
We can now state the main theorem of this subsection�

THEOREM ��
�� Let � � p � � and � � �� For all f � Bp
� � the following

series of Fourier�Laplace transforms

F �z� �
X
j�Z

�p
��

Z �

�

eiz	�f 	 �j���d� �z � H��������

converges absolutely� and de	nes a holomorphic function which belongs to the
space Ap

�� Moreover� all functions F in Ap
� can be written in this form for a

unique �equivalence class� f � Bp
� � and there exists a constant C� independent

of f � such that

C��kFkAp
�
� kfkBp

�
� CkFkAp

�
�������

PROOF� We shall show the absolute convergence of the series in ������ by a

duality argument� For this� we use the observation that Bp
� and Bp�

��p�
p are
dual spaces with the duality pairing given by

hf� gi � lim
J��

X
jjj�jkj�J

Z
R

f 	 �j�x�g 	 �k�x�dx�

Using Plancherel�s theorem� we can make this duality look closer to the ex

pression in ������� by replacing the integral above by an integral involving

��f 	 �j���g 	 �k�� Indeed� it is easily seen that such factors vanish unless jj �
kj � �� As a consequence� we see that the duality pairing is also equal to

lim
J��

X
jjj�J

Z
R

f 	 �j�x�g�x�dx � lim
J��

X
jkj�J

Z
R

f�x�g 	 �k�x�dx�

Going back to the statement of the theorem� we 	rst observe that� at least
formally� the function F in ������ is actually given by the equality

F �z� � hf� gzi� z � H�

where gz is the distribution whose Fourier transform is given bybgz��� � �	�����e
iz	�

To show that the expression in ������ is well de	ned� it is enough to see that

gz � Bp�

��p�
p� As a 	rst step� we compute in the next lemma the Lr norm of

gz 	 �j�

LEMMA ����� For � � r � �� there exists a constant Cr such that

kgz 	 �jkr � Cr�
j
r�e��

jy

 j � Z�
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PROOF� By a change of variable� we may also assume j � �� since

kgz 	 �jkr � �j
r
�kg�jz 	 �kr�

Moreover� if z � x � iy� gz 	 �j � giy 	 �j�x � �� so that we may assume
x � �� For r ��� it is su�cient to prove the same estimate for the L� norm
of the Fourier transform� which is equal to e�y��� This last one is a direct
consequence of the assumption on the support of �� To prove the lemma for
other values of r� we remark that the same kind of estimates hold for the L�

norms of all derivatives d
d	
of e�y 	����� and in particular for its Laplacian �i�e��

the second derivative�� which is the Fourier transform of jtj��gz 	 ���t�� up to
a constant� In particular� we get the estimate

jgz 	 ��t�j � C
e�y



� � jtj� �
The conclusion of the lemma now follows immediately� �

Using the lemma we obtain an estimate for the norm of gz in Bp�

��p�
p by a
constant times �X

j

�j�����
p�

p e��
jyp�



	 �
p�

�

Each summand is equivalent to an integral over the interval ��j � �j���� so that
the norm of gz is bounded by

C

�Z �

�

t�����
p�

p e�yp
�t
�dt

t

	 p

p�

� C �y�������

which is 	nite� Thus� we have shown that F �z� is well de	ned� and from here
we deduce that it is holomorphic by a routine argument�
To prove that F � Ap

� is a little more tricky� Instead of giving a bound for
F �z�� as above� we 	rst estimate its norm in the x variable� keeping y 	xed�
We write Fy�x� � F �x� iy�� Then� by Minkowski�s inequality

kFykp �
X
j

kFy 	 �jkp�

Since Fy is given through its Fourier transform� it is easy to compute the
Fourier transform of Fy 	 �j and to see that it is� up to a constant�

e�y �c�j
!f � �e�y �d�j�� � e�y �c�j � e�y �d�j���c�j

!f���
��

because of the support condition on �� Hence Fy 	 �j is the convolution of
f 	 �j with a sum of three terms� for which we have already computed the L�

norm �see Lemma ��
��� Therefore�

kFykp � C
X
j

e��
jy

kf 	 �jkp�
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and we are lead to prove thatZ �

�

�X
j

e��
jy

kf 	 �jkp

	p

y���dy � C
X
j

���jkf 	 �jkpp�

Equivalently� we have to prove that there exists a positive constant Cp such
that� for every positive sequence �aj�� we have the inequalityZ �

�

�X
j

e��
j yaj

	p

y���dy � C
X
j

���japj �

This can be thought as a Schur
type lemma� we shall multiply and divide
inside the series by �j�� for some small positive �� From H�older�s inequality
we deduce that �X

j

e��
j yaj

	p

� Cp y
��pX

j

e��
jy���jpapj �

using the elementary fact thatX
j

e��
jy��jp

� � Cpy
��p�

�as one can check by replacing this sum by an integral�� A last integration
gives the required estimate provided we chose � � � � �

p
�

We have proved the left hand side inequality of ������� Let us now prove
the right hand side� which is much more elementary� We want to estimate

kf 	 �jkp� Let us choose y � ���j � ��j���� so that if � is in the support of c�j�
the product y� is between ��� and �� We write� as in ���
��

�f 	 �j � ey �c�j
cFy�

and� as before� compute the L� norm of the function whose Fourier transform

is ey�c�j� It is easy to see that this is bounded by a uniform constant when
y � ��j � Thus�X

j

���jkf 	 �jkpp � C
X
j

���j
Z ��j��

��j
kFykpp

dy

��j

� C
X
j

Z ��j��

��j
kFykpp y���dy � kFkp

Ap
�
�

To conclude the proof of the theorem� it remains to show that every function
F � Ap

� may be written as the Laplace transform of the Fourier transform of
some distribution f � Bp

� � Now� the Paley
Wiener theorem and the above
estimate ensure that this is the case when F is in the dense subset A�

� � Ap
��

Then standard arguments of functional analysis give the result for all F � Ap
��

�
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���� Some remarks on Hardy spaces� One may ask what happens for the
three problems under consideration when the weighted Bergmans spaces are
replaced by the Hardy spaces�
Let us start with the third one� The characterization of those functions

which arise as boundary values of Hp functions is now much simpler than for
the Bergman case�

THEOREM ����� Let � � p ��� Then� the mapping

Hp�H� �� Lp�R�
F ��� F�

is an isometric isomorphism from Hp�H� onto the subspace of Lp�R� de	ned

as Ep � ff � Lp�R� � supp !f � �����g�
PROOF� By Theorem ����� the correspondence above is an isometry� We have
already showed the support condition on the Fourier transform for p � �� For
general p 
� � one proceeds by density of H��Hp in Hp �similar to Proposition
���� above��
We have also shown surjectivity when p � � �in Proposition ������ For

general p 
� �� since the mapping is an isometry it su�ces to show that the
range is dense� For p � �� if f � Lp with supp !f � ������ and if f��g is a
smooth approximation of the identity� then lim��� kf � f 	 ��kp � �� while
by Young�s inequality f 	 �� � E� � Lp� When p � � and f � Ep� one
considers f ��x� � Gm��x��f 	 ����x�� where Gm is de	ned as in ������ with

m � m�p� large enough so that Gm�x� � L
�p
p�� �R� � L�� In particular� by

H�older�s inequality f � � L� � Lp� Also� the Fourier transform is supported in
the sum of the spectra of each of the factors� which is contained in ������ We
have shown f � � E� � Lp� while lim��� kf � f �kp � � follows easily by the
Dominated Convergence Theorem�

�

The subspace Ep of Lp�R� is sometimes denoted� by Hp�R�� In particular�
for p � �� the Hardy space H��H� is a Hilbert space which can be identi	ed
to the closed subspace H��R� of L��R�� This leads to the following expression
for the orthogonal projector�

PROPOSITION ����� The orthogonal projector S from L��R� to H��R� is
given by the following three properties�
�i� Sf is the inverse Fourier transform of !f�������
�ii� Sf � lim

y��
f 	 Cy�

�iii� Sf�x� � �
�
f�x�� i

��
Tf�x�� where Tf is the Hilbert transform of f � i�e�

the convolution of f with the principal value of �
x
�

�However� it shouldn�t be confused with the real Hardy space� de�ned� e�g�� in ���� Ch�
III��
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PROOF� The proofs of properties �i� and �ii� are easily deduced from the
previous results� The equality between expressions ��� and ��� follows from a
well known limiting argument� which can be found� e�g�� in ���� p� ������ �

We can now pose the question of the Lp
boundedness of the orthogonal
projector in H�� which leads to one of the 	rst examples of a singular integral
operator in Harmonic Analysis� the Hilbert transform� The answer to this
question requires more sophisticated techniques than Schur�s lemma� which
are developed in any classical book on Complex or Harmonic Analysis �cf� e�g�
���� p� 
�� and ���� p� ������

THEOREM ���
� �M� Riesz�� For all � � p � �� the projector S extends
to a bounded projector from Lp�R� onto Hp�R��

We will not consider Problem � in the context of Hardy spaces� since it does
not really makes sense�

To conclude this section we point out that� at least heuristically� the Hardy
spacesHp can be seen as a �limit� of the Bergman spacesAp

�� as � � ��� When
p � � this is quite obvious by the Paley
Wiener integral in ������� A�

��H� is

isometrically identi	ed with L�������� ����
��	��

d��� while� for H��H�� it is with

L�������� d��� Thus� for good enough functions F � H� � A�
��
� we have

lim
����

�kFk�A�
�
� kFk�H��

This property remains true for general p 
 �� based on the fact that� in the
sense of distributions�

�y����������y� dy � �f�g� as � � ���

The interested reader can try to state �and prove"� a correct theorem with this
principle� As we shall see� this principle is no longer true in several complex
variables� the limiting space of the weighted Bergman family��� is not the
Hardy space" �see x��� below��

�� Geometry of symmetric cones

This section is devoted to the theory of symmetric cones� These objects
provide a natural substitute to the half
line in higher dimensions� leading also
to many non
trivial �yet interesting� questions in the analysis of the associated
Bergman projectors� To be able to handle these problems in future sections
we 	rst need to exploit the rich geometry of symmetric cones� and establish
the right analytic setting where complex theory can be carried out� We do not
intend to give here a detailed account of statements and proofs which can be
found in many texts �such as ������ but we shall instead focus in describing
the main properties in three model cases� the cone of positive real numbers�
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the Lorentz cone� and the cone of positive de	nite symmetric matrices� The
goal is to present to the non specialist a general overview of the group theory
involved in this problem� without having to face with the deeper results and
more specialized notation appearing in most geometry books�

���� Convex cones�

Let V be an Euclidean vector space of 	nite dimension n� endowed with an
inner product ��j��� A subset # of V is said to be a cone if� for every x � #
and � � �� we have �x � #� Clearly� a subset # of V is a convex cone if and
only if x� y � # and �� 
 � � imply that �x� 
y � #�
Before giving examples� we give the next de	nition�

DEFINITION ���� Let # � V an open convex cone� The open dual cone of
# is de	ned by

#� � fy � V � �yjx� � �� �x � # n f�gg������

We say that # is self
dual whenever # � #��

EXAMPLE ����

�� The octant� # � �����n in V � Rn�
�� The Lorentz cone in V � Rn �or forward light
cone�� when n 
 ��

$n � fy � Rn � %�y� � � and y� � �g�
where the quadratic function %�y� � y���y��� ����y�n is called the Lorentz
form�

�� The cone of positive de	nite symmetric matrices in V � Sym�r�R�� the
space of all r � r real symmetric matrices� Here the dimension is n �
r�r���

� � r 
 �� The natural inner product on the vector space Sym�r�R�
is given by

�XjY � � Tr �XY � �
rX

i
�

xiiyii � �
X

��i�j�r
xijyij

whenever X � �xij���i�j�r and Y � �yij���i�j�r are r � r real symmetric
matrices� We denote by Sym��r�R� the cone� consisting of all positive
de	nite symmetric matrices �i�e�� matrices with positive eigenvalues��

It is easily seen that all three families of examples are self
dual cones �see
���� pp� ������� When we set V � Rn� it means that we endow it with the
canonical inner product� Even if all 	nite dimensional Euclidean spaces are
isometric to someRn� it is more convenient to denote by V the ambiant space�
There exists examples of cones in Rn �n 
 �� which are not self
dual for any

inner product in Rn� see ���� Ex� ������ even if we restrict to homogeneous
cones �see De	nition ��� below�� In this paper we shall only be interested in
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self
dual cones� For further properties of general cones the reader can consult
���� xI����
Before going on� let us remark that two of our examples coincide in dimension

��

LEMMA ��
� The identi	cation $� � Sym����R�� Consider the mapping

& � R� �� Sym���R�

given by

y � �y�� y�� y�� ��� &�y� �
�p
�

�
y� � y� y�
y� y� � y�

	
�

which is an isometry from the Euclidean space R� onto the inner product space
Sym���R�� Then y � $� if and only if &�y� � Sym����R��

PROOF� Observe that� if Y � &�y�� then

�%�y� � detY and
p
�y� � tr Y�

�

The next lemma gives a characterization of # for a self
dual cone #�

LEMMA ���� Let # be an open convex cone which is self�dual in �V� ��j����
Then�

# � fy � Rn � �yjx� 
 �� �x � #g������

In particular� # is the interior of its closure� i�e�� # �
	
�#��

PROOF� The inclusion ��� is immediate from ����� and the self
duality of
#� The converse is also easy� if y belongs to the right
hand side of ������ and
we choose any � � � and e � # 	xed� then we have

�y � �ejx� � �yjx� � ��ejx� � �� �x � #� f�g�
Thus� by self
duality y � �e � #� and letting �� �� we get y � #�

For the last assertion� observe that # �
	
# is always true since # is an open

set� For the converse� just notice that the interior of the right hand side of
����� is contained in the right hand side of ������ which by self
duality equals
#� �
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���� The automorphism group and homogeneous cones�

Let # be a 	xed open convex cone in V � and let GL�V � denote the group of
all linear invertible transformations of V� We de	ne the automorphism group
G�#� of the cone by

G�#� � fg � GL�V � � g# � #g�
The group G�#� is a closed subgroup of GL�V �� and in particular� a Lie group�
This is a straightforward consequence of the following lemma� The reader can

prove it as an exercise when the cone is self
dual� using the fact # �
	
�#�� shown

in Lemma ��
 �this fact is also true for all open convex cones��

LEMMA ���� An element g � GL�V � belongs to G�#� if and only if g# � #�

We denote by G the connected component of the identity in G�#�� It is easy
to verify that G is a closed subgroup of G�#�� Indeed� G is closed in G�#� as
a connected component of G�#�� Also� G is a group because GG and G�� are
the ranges of the connected sets G�G and G under the respective continuous
maps �g� h� �� g � h and g �� g��� so GG and G�� are connected subsets of
G�#� which both contain the identity and therefore GG � G and G�� � G�
In this paper we are interested in a special class of cones which behave well

enough under the action of G�#��

DEFINITION ��	� An open convex cone # is said to be homogeneous if the
group G�#� acts transitively on #� i�e�� for all x� y � #� there exists g � G�#�
such that y � gx� An open convex cone # is said to be symmetric if it is
homogeneous and self
dual�

A simple exercise is the following�

EXERCISE ���� Let # be a symmetric cone in �V� ��j���� Then G�#�� � G�#�
and G� � G� where 
	� denotes the adjoint under the inner product ��j���
EXAMPLE �����

��� The cone # � ����� is symmetric in R� Indeed� the automorphism
group is G�#� � G � R�� and we can identify # with G � �� The situation
is similar for the octant # � �����n� for which the identity component G �
fDiag �a�� � � � � an� j aj � �g � Rn

�� We leave as an exercise determining the
larger group G�#� �careful"� there are n" identity components��

��� The Lorentz cone # � $n is symmetric in Rn� To show this� we consider
the Lorentz group

O��� n � �� � fg � GL�n�R� j %�gx� � %�x�� �x � Rng�
and its subgroup O���� n� �� � fg � O��� n � �� j g�� � �g� In this case� we
will also describe completely the group G�#�� We shall show that

G�#� � R�O���� n� �� and # � G�#� � e�������
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where e � ��� �� � � � � ��� For the 	rst equality� the inclusion ��� is clear by
de	nition of the Lorentz group �and condition g�� � ��� Let us now prove the
second equality� Using hyperbolic coordinates� an arbitrary point y � # can be
written as

y � �rch t� rsh t ��� r � �� t 
 �� � � Rn�� � j�j � ��������

This is the same as saying y � r ���t� � e� where

��t� �

�
 ch t sh t �
sh t ch t �
� � I

�A and � �

�
� �
� ��

	
�������

for some �� � SO�n � �� �to prove the existence of ��� we have used the
fact that every point of the unit sphere in Rn�� is obtained as the image
through a rotation of the vector ��� �� � � � � ���� This implies that y is obtained
from e using the action of the linear transformation r ���t� which is clearly in
R�O���� n���� At this point� we have already proved that # is homogeneous�

Let us go on with the description of G�#�� It remains to show that every
element g � G�#� belongs to R�O���� n � ��� Since we already know that
this last subgroup acts transitively on #� it is su�cient to consider an element
g which 	xes e� Then� g 	xes the whole x�
axis and also the cone boundary�
and therefore it must take the form of a two block matrix as in the right hand
side of ������� for some ��� Moreover� since g preserves the cone� restricting
to the plane fx� � �g� we see that �� must leave invariant the unit sphere in
Rn��� and thus �� � O�n � ��� This 	nishes the proof�

We point out that our arguments show actually more� if we de	ne the
subgroups

A � fr��t� j r � �� t � Rg and K �

��
� �
� �

	
j � � O�n � ��

�
�

then we have found the Cartan decomposition of G�#�� i�e�� G�#� � KAK�
where K is compact and A abelian� Also� in ������ we have given a �polar
decomposition� for every y � #� which allows us to identify # with the set
SO�n� ���A� �with A� � fr��t� � A j t 
 �g�� We point out that this last
set is not a group� so this identi	cation will not say much about the �geometry�
of # �compare with x��� below�� Finally� we leave as an exercise to the reader
the veri	cation of

G � R� SO���� n � �� � SO�n � ��ASO�n � ���

where the �S� in front of a subgroup indicates that the linear transformations
have all determinant ��
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��� The cone # � Sym��r�R� is symmetric in Sym�r�R�� Indeed� just
consider GL�r�R� as a subgroup of G�#� via the adjoint action�

�g � GL�r�R�� Y � Sym�r�R�� ��� g � Y � gY g� � Sym�r�R��������

Now� every positive
de	nite symmetric matrix Y � # can be written as Y �
X� � X � I� for another such X � # �e�g�� by diagonalizing Y �� Thus� we have
shown # � GL�r�R� � I and the cone is homogeneous�
One can prove more� the automorphism group G�#� coincides with GL�r�R��

via the adjoint action in ���
��� This is shown� e�g� in ���� Ch� VI�� using an
analysis of their Lie algebras�

��� A simple example of a cone # which is self
dual but not homogeneous is
the �regular� pentagonal cone in R�� Indeed� a linear transformation preserving
this cone must send each of the 
 boundary lines into another one of these lines�
and similarly for the 
 boundary faces� Therefore� if we consider the triangular
cones formed by the convex hull of three consecutive boundary lines� we see
that each of these must be sent into another such triangular cone� Thus� there
is a smaller pentagonal cone inside # which is left invariant by any linear
transformation in G�#�� implying that # is not homogeneous�

���� Group structure of symmetric cones�

After having seen in some detail the examples above� we are ready to state
the main theorem about symmetric cones� We recall that� if G is a subgroup
of GL�n�R� and e � Rn� then Ge � fg � G j ge � eg is called the stabilizer
subgroup of e in G� Also O�n� denotes the orthogonal group in Rn� i�e� the
group of all n�n real matrices such that k� � k��� where k� is the adjoint of k
under the Euclidean scalar product on Rn� Finally� a subgroup H of GL�n�R�
is said to act simply transitively on a set # if for all x� y � #� there exists a
unique h � H such that y � hx� We write as well O�V �� GL�V �� etc� when
Rn is replaced by the euclidean space V �

THEOREM ����� Let # be a symmetric cone in V � Then�

�� The identity component G of G�#� acts transitively on #�
�� There exists a point e � # such that

G�#�e � G�#� � O�V � and Ge � G � O�V ��

�� There exists a subgroup H of G which acts simply transitively on #� i�e��
for all y � # we can 	nd h � H such that y � he� Moreover� G � H K�
the latter denoting the compact group K � Ge�

This result is well
known and can be found in most geometry books which
deal with symmetric spaces� For the 	rst two points we can refer� e�g�� to
Propositions I���� and I���� of ����� The third assertion is due to E� B� Vinberg�
being also valid in the more general setting of homogeneous cones ��
�� A
complete proof for symmetric irreducible cones can be found in ���� Th� VI������
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Rather than trying to describe the proof �which makes use of deeper results
on Lie algebras�� we shall verify the thesis of the theorem in our main example
# � Sym����R�� For this we use the fact that G�#� � GL���R�� as described
in ��� of the previous subsection �in fact� such equality is also a consequence
of ����� We point out that that the ideas in this proof are completely general�
and can be extended �with a little more complicated notation� to the cone
Sym��r�R�� Understanding this example will also help the reader who wants
to see the proof given in ���� Th� VI����� for general symmetric cones� To
follow this general proof� one should have at his disposal the language of Jordan
algebras�

PROOF of Theorem ���� for # � Sym����R��

The 	rst two statements in Theorem ���
 are immediate �with e � I� the
identity matrix�� so we shall focus only in the third assertion� Observe that
the group K � SO���� Now� take a positive
de	nite symmetric � � � matrix

Y �

�
y� y�
y� y�

	
� Sym���R��

Then y� � � and y�y� � y�� � �� Next consider the Gauss factorization of Y �

Y �

�
y� y�
y� y�

	
�

�
� �

y��y� �

	�
y� �

� y� � y��
y�

��
� y��y�
� �

	
�������

To understand this decomposition� one should recall the Gauss reduction of
the quadratic form with matrix Y �

Q��� � y��
�
� � �y����� � y��

�
� � y� ��� � ��

y�
y�
�� � �y� � y��

y�
� ����

��

which gives us the factorization Q��� � �� Y � � �P���D �P��� for the diagonal

matrixD � Diag �y�� y�� y��
y�
� and the change of basis P �

�
� y�

y�

� �

	
� Moreover�

since D is a positive matrix� we can rewrite ������ as�

Y � �P �pD��P �pD�� � �P �pD� � I�������

In particular� if we de	ne

N �

��
� �
v �

	
j v � R

�
and A �

��
�� �
� ��

	
j �j � �

�
�

we have shown that every Y � # can be written uniquely as Y � �na� � I� for
some n � N and a � A� Therefore� the �semidirect� product H � NA acts
simply transitively on Sym����R�� Moreover� just by multiplying we observe
that H is precisely the set of lower triangular ����matrices� and thus a group
as stated in the theorem� Finally� we notice that this reasoning gives us as well
the Iwasawa decomposition of G � NAK� with K compact� A abelian and N
nilpotent� �
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Now that we have described the main groups acting on the cone Sym����R��
let us use the identi	cation of the latter with the Lorentz cone $� to have a
graphical image of the corresponding orbits�

EXAMPLE ���	� Group action in the light�cone $� of R�� Using the mapping
& in ��� of x���� we have the following correspondence for the action of the
groups N � A� K in $��

Nilpotent group N �

�
� �
v �

	
� Y ���

�
 � � v�

�
v�

�
v

�v�

�
� � v�

�
�v

v v �

�A y

Abelian group A �

�
ret �
� re�t

	
� Y ��� r�

�
 ch �t sh �t �
sh �t ch �t �
� � �

�A y

Compact group K �

�
cos � � sin �
sin � cos �

	
� Y ���

�
 � � �
� cos �� � sin ��
� sin �� cos ��

�A y�

The orbits of N are parabolas lying in the planes fx� � x� � cg� c � ��
which cut transversally the cone� The orbits of K are circles lying in the
planes fx� � cg� c � �� which cut horizontally the cone� Finally� the orbits of
A are straight half
lines through the origin �for usual dilations� and hyperbolas
�for dilations of type ��t�� contained in the half
plane fx� � �� x� � �g� which
cut vertically the cone�

From this example $� � Sym����R�� we have the intuition of the analogous
description in higher dimension for these two families of examples� We give it
now� and leave the proof as an exercise�

EXAMPLE ����� Group action in Sym��r�R��
In this case� e is the identity matrix� We describe the three subgroups N � A�
K� which act via the adjoint action� and identify with subgroups of GL�r�R��
Then K identi	es with SO�r�R�� A identi	es with diagonal matrices with
positive elements on the diagonal� N identi	es with lower triangular matrices
whose diagonal entries are ��

EXAMPLE ����� Group action in $n�
In this case� e is as before the vector ��� �� � � � � ��� We have already described
the subgroup K� which identi	es with SO�n � ��� We have also described A�
which identi	es with R� � R�� For a � �a�� a��� its action a � y is given by
r����t�y� with a� � ret and a� � re�t� It remains to describe the action of N �
which identi	es with Rn��� If h � N is given by the vector column v� then�
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the action of h is given by

h � y �
�
 � � jvj�

�
jvj�
�

v�

� jvj�
�

� � jvj�
�

�v�
v v �

�A y�

REMARK ����� The identi	cation between a symmetric cone and the group
H is actually topological� I�e�� the correspondence h � H �� h�e � # is a home

omorphism� when H is endowed with Lie subgroup topology of GL�n�R�� To
verify this in the case # � Sym����R�� just observe that the inverse mapping
is given by�

Y �

�
y� y�
y� y�

	
� Sym����R� ���

� p
y� �
y�p
y�

q
y� � y��

y�

�
� H�

and hence it is continuous� This fact will be used in the next subsection� where
we exploit the structure of H as a riemannian manifold�

For general symmetric cones� one has also the Iwasawa decomposition G �
NAK� with H � NA� We then de	ne the rank of a symmetric cone # as
the dimension of the subgroup A in the decomposition� Equivalently� the
rank of # is the largest positive integer for which there is a linear invertible
change of coordinates in V that transforms # into another cone contained in
�����r �Rn�r� In our examples above one has

rank �����n � n� rank $n � �� and rank Sym��r�R� � r�

For a di�erent� but equivalent de	nition of the rank in terms of Jordan algebras
see ���� p� ����
We will also say that a symmetric cone # is irreducible whenever it is not

linearly equivalent to the product of at least two lower
dimensional symmetric
cones� E�g�� �����n is clearly reducible� while Sym��r�R� and $n �n 
 �� are
irreducible� Observe that the cone $� is equivalent to ������� and hence is
also reducible� From now on� we will restrict to irreducible symmetric cones�
Most results possess a generalization to reducible ones�

REMARK ����� Using the theory of Jordan algebras it is possible to classify
all irreducible symmetric cones of rank r� Roughly speaking� these are �����
for r � �� $n �n 
 �� for r � �� and the cones of positive
de	nite matri

ces Sym��r�R�� Her ��r�C�� Her ��r�H�� Her ����O�� when r 
 �� Here H
denotes the non
commutative 	eld of quaternions� and O the non
associative
	eld of octonions� being this last cone only symmetric when r � �� �Her �
stands for Hermitian matrices� In view of this classi	cation� it is clear that
we are not so far from the general case by just restricting to the examples
presented in x���� The reader wishing to learn more on the classi	cation of
symmetric cones is referred to Chapter V of �����
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���� Riemannian structure and dyadic decomposition�

Having identi	ed in Theorem ���
 a symmetric cone with a subgroup H of
G� it is possible to endow a riemannian metric in # as follows� given a point
p � #� consider the bilinear form

Gp � V � V �� R

de	ned as

Gp��� �� � �h���jh����� whenever p � he� h � H�

It is clear that for each p � #� Gp��� �� is an inner product on V � and therefore�
G de	nes a non
degenerate smooth metric in #� Moreover� this metric is G�
invariant� that is� for all g � G� p � #�

Ggp�g�� g�� � Gp��� ��� �� � � V�������

This is obvious by de	nition when g � H� In general� if p � he� sinceG � HK�
there exists k � K such that ghk � H� and then� since K � Ge� we can write
gp � ghe � ghke� Applying the de	nition of the metric we obtain

Ggp�g�� g�� � ��ghk���g�j�ghk���g�� � �k��h���jk��h���� � �h���jh����
�by the orthogonality of the group K � O�n� �G�� establishing our claim�
Associated with the riemannian metric G there is a distance function d � #�

#� R� de	ned as usual� for p� q � #

d�p� q� � inf
�

�Z �

�

q
G��t�� '��t�� '��t�� dt

�
�������

where the in	mum is taken over the smooth curves � � ��� �� � # such that
���� � p and ���� � q� The following proposition is an easy exercise using the
G
invariance of G�
PROPOSITION ����� The Riemannian distance d is invariant under the ac�
tion of the group G� i�e� d�gp� gq� � d�p� q�� for all g � G� p� q � #�

In order to understand how this distance looks like in a general symmetric
cone� we 	rst consider the trivial case of the �
dimensional situation�

EXAMPLE ����� For n � �� we consider the symmetric cone # � ������
Recall that� in this elementary case� G�#� � G � H � R�� We identify the
cone # � ����� with the multiplicative group H � R�� Then� for every
p � #� the riemannian metric takes the form�

Gp��� �� � p����p��� �
� � �
p�

� �� � � R�

The corresponding distance on # is therefore given by

d�p� q� � inf
�

�Z �

�

j '��t�j
��t�

dt

�
�
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where the in	mum is taken over all smooth curves � � ��� �� � # such that
���� � p and ���� � q� Assume that p � q� We claim that d�p� q� � log � q

p
��

Indeed� on the one hand� for every ��Z �

�

j '��t�j
��t�

dt 

Z �

�

'��t�

��t�
dt � log ���� � log ���� � log�q�p��

Conversely� for the segment ��t� � ��� t�p� tq� we haveZ �

�

j '��t�j
��t�

dt �

Z �

�

q � p

t�q � p� � p
dt � log�q�p��

Notice the trivial invariance of the distance under the action of the group
G � R�� d�gp� gq� � d�p� q� for every g � �� As a consequence� a natural
covering of the cone with invariant balls is the dyadic decomposition of ������

��j��� �j��� � Blog ���
j� � fp � # � d�p� �j � � log �g� j � Z�

Let us recall that this dyadic decomposition has played an important role in
the analysis of Besov spaces related to the upper half
plane�

Our example above suggests an analogue to the dyadic decomposition for
general symmetric cones� This will be de	ned in terms of G�invariant balls�
using the riemannian distance d in ������� That is� given y � # and � � � we
denote B
�y� � f� � # j d��� y� � �g� We recall that the topology generated
by these balls is equivalent to the original topology of H� and thus to the
relative topology of # as a subset of V �by Remark ������ Then we have the
following result�

THEOREM ����� Let # be a symmetric cone� Then� there exists a sequence
f�kg�k
� of points of # such that the following three properties hold�

�i� The balls B���k� are pairwise disjoint�
�ii� The balls B���k� form a covering of #�
�iii� There is an integer N � N�#� such that every y � # belongs to at most

N balls B���k� �
	nite overlapping property���

PROOF� Let fBjg�j
� be any countable covering of # with open balls of d

radius � �it exists since the topology of # is locally compact�� By induction� we
can select a subsequence fBjkg�k
� so that� for each k� the ball Bjk is disjoint
with Bj�� ���� Bjk�� � Then� the sequence f�kg�k
� of centers of such balls satis	es
properties �i� and �ii�� Indeed� the 	rst one is immediate� while for the second�
take any point y � # and a ballBj containing the point� Then� by construction�
Bj must intersect some ball Bjk � from which it follows that y � B���k��
To show �iii�� let 
 denote a left Haar measure in H� and (
 the induced

H�invariant measure in #� That is� (
 is de	ned by�

(
�E� � 
 �fh � H j he � Eg� � E � #�
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and satis	es (
�h � E� � (
�E�� for all h � H� Then� if y � # and we denote
by Jy � fk � Z� j y � B���k�g� we shall show that Card�Jy� is bounded
by a constant depending only on #� Indeed� since y � �k�JyB���k�� we have
�k�JyB���k� � B
�y�� Since these balls are disjoint and the measure (
 is
H
invariant we have

(
�B
�e�� � (
�B
�y�� 
 
��k�JyB���k��

�
X
k�Jy

(
�B���k�� � Card �Jy� (
�B��e���

Thus�

Card �Jy� � (
�B
�e���(
�B��e�� � N�#�� � y � #�

which is a 	nite constant since the Haar is 	nite and does not vanish over open
bounded sets� �

REMARK ���	� Sequences f�kg satisfying the properties of Theorem ����
are called ��lattices of #� They will play the same role as the dyadic grid in
������ and in particular� we shall use them in the analysis of functions with
spectrum in #� e�g�� to de	ne Besov norms or to discretize multipliers� This
will be a crucial point where geometry and analysis merge for the solution of
our problem� Of course� there is nothing special about the radius �� and we
could have as well considered ��lattices in #� for all � � �� These have the
additional remarkable property that� for each �� � �� the number N in the
Finite Overlapping Property is independent of � as long as � � � � �� �see
���� below� �

��
� Analysis of symmetric cones�

In this last section we give an account of the most important functions
de	ned on a cone� in the sense that they preserve a fair amount of its geometric
properties� We do it for our two families of irreducible symmetric cones� but
it can be done in general� see the remark below� When # is the positive real
line� which is of rank �� the analysis of the cone makes an intensive use of the
function %�y� � y which is clearly related to the automorphism group� We
want to 	nd its equivalent in higher rank�

��� Determinants and principal minors�
Consider 	rst the vector space V � Sym�r�R�� Then� we de	ne the kth�

principal minor of Y � V as the determinant

%k�Y � �

������
y�� � � � y�k
���

� � �
y�k � � � ykk

������ � k � �� �� � � � � r�
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Of course� %�Y � �� %r�Y � is the usual determinant of Y as a linear operator in
Rr� and hence� independent of the basis� The lower principal minors� however�
will depend on the choice of the orthonormal basis� Observe that�

%k�Y � � �� � � � �k� when Y � Diag ���� � � � � �r��������

%k�a � Y � � ��� � � � ��k%k�Y �� when a � Diag ���� � � � � �r� � A�������

%k�n � Y � � %k�Y �� when n � N�������

where in the last case we recall that N is the subgroup of GL�r�R� � G�#�
consisting of lower triangular matrices with ��s in the main diagonal� From
these two properties and the fact # � �NA� � I it can be shown easily that

# � Sym��r�R� � fY � V j %k�Y � � �� � k � �� � � � � rg �
Finally� we have the following homogeneity property�

%�g � Y � � �Det g�
r
n %�Y �� when g � G�#��������

where Det g denotes the determinant of g as a linear transformation� in V
which preserves the subset # �recall the original de	nition of G�#���
��� Determinant and principal minor for the forward light cones�
The previous cone had rank r� and we have de	ned r functions� Since the

forward light cone $n has rank �� we de	ne two functions� which are still called
the principal minors� by

%��y� � y� � y� and %�y� � %��y� � y�� � �y�� � � � �� y�n�� y � Rn�

As an elementary exercise� the reader can verify the equivalent of the above
properties for these two functions� that is

%��a � y� � a��%��y�� when a � �a�� a�� � A�������

%��a � y� � a��a
�
�%��y�� when a � �a�� a�� � A�������

%k�n � y� � %k�y�� when n � N� k � �� �����
�

%��gy� � �Det g�
r
n %��y�� when g � G�#��������

Now A and N are the two subgroups of the group G related to the cone $n

�see the example ���� above��

REMARK ����� The two cases above are two particular cases of a general
situation� That is� for a general symmetric cone # of rank r� we can de	ne
r determinant functions %k� which coincide with the previous ones in these
two families of examples� and which have the invariance properties given by
Equations ����� ����� ���� in terms of the groups N � A� K which appear in
the Iwasawa decomposition of G� This is done by using the theory of Jordan
algebras �see ���� p� ������ For the purposes of this paper� we will use below

�Observe that� when we identify G��� � GL�r�R�� via the adjoint action Y �� gY g��

then Det g � �det g�
�n

r � where the latter is the usual determinant as a matrix in GL�r�R��
From this equality� ���
�� follows easily�
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general notations� This may be understood as an uni	ed notation for the two
families of examples in a 	rst reading� But it may also be used to understand
the general situation in a deeper study of symmetric cones�

��� Generalized powers�
A generalized power in a symmetric cone # of rank r is de	ned by�

%s�y� � %��y�
s��s� %��y�

s��s� � � �%r�y�
sr � s � �s�� � � � � sr� � Cr�

where %k are the principal minors from the previous paragraph� and y � #
���� p� ����� For the case of the light
cone # � $n we have

%s��s��y� � %��y�
s��s� %�y�s� � �y� � y��

s��s� �y�� � �y�� � � � �� y�n��
s� �

These functions will play an important role when looking at the Bergman
projectors� since they are the natural test functions for Schur�s Lemma� From
a more geometrical point of view� their importance is justi	ed by the fact
that they constitute precisely the set of characters of the group H� i�e�� any
continuous multiplicative function on H is necessarily of the form�

h � H �� %s�he�� for some s � Cr

�see� e�g�� ���� Lemma ������
For the analysis in subsequent sections� the main property of generalized

powers states that these remain essentially constant within each invariant ball�

THEOREM ���	� Let # be a symmetric cone� Then� there exists a constant
C � C�#� 
 � such that� for all k � �� � � � � r�

�

C
� %k�y�

%k�y��
� C� whenever y � B��y���������

PROOF� Suppose 	rst that y� � e� Since the invariant ball B��e� is relatively
compact in # and the functions

y � # ��� %k�y�

%k�e�
� k � �� � � � � r�

are continuous and positive� there must exist a constant C 
 � such that

�

C
� %k�y�

%k�e�
� C� whenever y � B��e��

establishing ������ when y� � e�
In the general case� write y� � h � e� Then� the H
invariance of the distance

d gives

y � B��h � e� � h �B��e� �� h�� � y � B��e��������

Moreover� we claim that the following homogeneity property is true�

%k�y�

%k�h � e� �
%k�h�� � y�
%k�e�

� � h � H�������
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which combined with ������ and the previous case will gives us ������� Now�
property ������ for the determinant �i�e�� k � r� is obvious from ������� In
the case of principal minors we shall only prove it for # � Sym��r�R�� Use
the identity H � NA to write h � na� where n � N is a lower triangular
r � r
matrix� and a � Diag ���� � � � � �r� is diagonal with positive eigenvalues�
Now� h�� � a��n��� with n�� � N and a�� � Diag ����� � � � � � ���r �� Thus�
using properties ������ to ������ we conclude with�

%k�h
�� � y� � ���� � � � ���k %k�n

�� � y� � %k�y�

��� � � � ��k
�

%k�y�

%k�na � e��
�

��� The invariant measure in a cone�
We used in the proof of Theorem ���� the existence of an H
invariant mea


sure in #� that is� a measure (
 satisfying (
�h � E� � (
�E� for all h � H and
E � #� We obtained this measure from a left
Haar measure on the group H�
In this section we use the determinant function to obtain an explicit expression
for a G
invariant measure in #�

PROPOSITION ��
�� Let # be a symmetric cone� Consider the measure in
#�


�E� �

Z
E

dy

%�y�
n
r

� E � #�

Then 
 is G�invariant� i�e�� 
�g � E� � 
�E� for all g � G�

PROOF� This measure is locally 	nite �over #� since %�y� is bounded above
and below on compact sets of #� For the G
invariance� just perform a change
of variables and use property ������� �

COROLLARY ��
�� Let # be a symmetric cone and B��y�� an invariant ball
centered at y� � #� Then�

jB��y��j � %�y��
n
r �

where j � j denotes the Lebesgue measure and the constants in 
�� depend only
on #�

PROOF� Write y� � h � e� for some h � H� Then� using Theorem ���� and
the G
invariance of 
 we get�

jB��y��j �

Z
B��y��

dy � %�y��
n
r

Z
B��y��

dy

%�y�
n
r

� %�y��
n
r 
�B��y��� � %�y��

n
r 
�B��e�� � c%�y��

n
r �

�
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Finally� it is well
known that� in a riemannian manifold� Euclidean balls and
riemannian balls centered at a 	xed point are comparable when the radii are
small enough� That is� there are constants � � c� � c� � �� depending only
on #� such that

fx � Rn j jx� ej � c��g � B
�e� � fx � Rn j jx� ej � c��g�
for all � � ��� �� �see� e�g�� ���� x������� This� and the properties of the invariant
measure� imply that


�B
�y��� � 
�B
�e�� � %�e��
n
r

Z
B��e�

dy � �n�

Thus� a repetition of the proof of Theorem ���� yields the following�

COROLLARY ��

� Let � � � � � be 	xed and f�jg be a ��lattice in #�
Then� there exists a constant N depending only on #� such that every point in
# belongs to al most N balls of the family fB�
��j�g�

��� Trace and inner product�
Let # be a symmetric cone in V with inner product ��j��� Let e be the

�identity point� de	ned in Theorem ���
� We de	ne the trace of a vector
y � V �associated with f#� e� ��j��g� by�

tr �y� � �yje��
Observe that this apparently obvious de	nition extends the usual one in the
case of symmetric matrices� For the light
cone� tr �y� � y��
The main result for this function states that� as it happens with the principal

minors� the trace remains essentially constant within invariant balls� In fact�
we have a stronger result�

THEOREM ��
�� Let # be a symmetric cone� Then� there exists a constant
C � C�#� 
 � such that� for all � � #�

�

C
� �yj��
�y�j�� � C� whenever y � B��y���������

PROOF� Assume 	rst y� � e� The proof then is easy� since the inner product
�yj�� is a positive and continuous function when y� � � # �by self
duality��

Thus� restricted to the compact set B��e� � f� � # j j�j � �g this function
of two variables is between two positive constants C� and C�� Replacing � by
��j�j in numerator and denominator of ������� we establish the theorem for
y� � e�
For the general case� just write y� � h � e� for h � H� and notice that

�yj��
�y�j�� �

�h�� � yjh� � ��
�ejh� � �� �
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Then� one concludes easily using the 	rst case and ������ �we are also using
that � � h� � � � #� see Exercise ����� �

REMARK ��
�� We point out that� although the above de	nition is conve

nient for us� in the theory of Jordan algebras the trace typically appears with a
di�erent de	nition� independent of the inner product of the underlying vector
space �see ���� p� ����� In fact� it is precisely from such de	nition of trace how
one chooses a �distinguished� inner product in a Jordan algebra �see ���� pp�
���
���� A clever reader will 	nd out the reason for using the �natural� inner
product Tr �XY � in the space Sym�r�R� �see x�����
�
� The inverse transformation of the cone�
Let # be a symmetric cone and H the subgroup of G�#� for which # � H �e

�according to Theorem ���
�� Then� for every point of the cone y � h � e�
h � H� we de	ne its inverse by�

y�� � �h���� � e�������

Observe that y�� belongs also to the cone �since G� � G�� and moreover
�y����� � y� To verify the latter� take any k � K � Ge � G � O�n� such

that (h � �h����k � H �recall that G � HK�� Then� using that k� � k�� we
conclude�

�y����� � �(h � e��� � �(h���� � e � �hk� � e � h � e � y�

Observe also the following property of the determinant�

%�y��� � %�y���� y � #�������

which follows easily from ������ and �������

Again� this notion of inverse extends the usual one for positive
de	nite sym

metric matrices� Indeed� for one such matrix Y � h � I � hIh�� we have

Y �� � �h����Ih�� � �h���� � I�
In the case of the light
cone in R�� a direct computation gives�

y�� � �
��y�

�y���y���y��� y � $��

In the higher dimensional Lorentz cone $n� the same formula holds replacing
the vector by �y���y�� � � � ��yn��
The main property of the inverse transformation� for the purposes of these

notes� is stated in the following theorem�

THEOREM ����� Let # be a symmetric cone� and �H� e� be as in Theorem
��
�� Then� the transformation

y � # ��� I�y� � y�� � #�

is an involute isometry in # i�e�� I ��y� � y and d�y��� y��� � � d�y� y��� for all
y� y� � #�
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PROOF� The involution was already shown above� We will prove the isometry
only for the cone # � Sym��r�R� of positive
de	nite symmetric matrices� In
this case we have I�Y � � Y ��� with the usual inverse� By de	nition of the
distance� being an isometry is equivalent to

GI�Y � �DY I ����DY I ���� � GY ��� �� � � �� � � Sym�r�R�����
��

Now� it is a classical exercise in algebra to compute the di�erential of I� which
equals

DY I ��� � �Y ���Y ��� � � Sym�r�R��

Thus� if Y � h � I � hh�� then Y �� � �h���� � I � ��h����k� � I� for some
k � GI � G�O�Sym�r�R�� such that the matrix in parenthesis belongs to H�
Then� by de	nition of the metric G�
GI�Y � �DY I ����DY I ���� � G�h����k�I



Y ���Y ��� Y ���Y ������
��

� h �k��h�� � �Y ���Y ��� � �k��h�� � �Y ���Y ��� i���
��

� hh� � ��h����h����h����h��� � h� � ��h����h����h����h��� i���
��

� hh����h���� � h����h���� i � Gh�I��� ������

�

�

A simple consequence of the previous� which we shall use often below� is the
identity� B��y

��
� � � �B��y������ In particular� we have the following�

COROLLARY ����� Let # be a symmetric cone and f�jg�j
� a ��lattice as in

x���� Then the sequence f���j g�j
� is also a 
�lattice� and moreover it holds

�

C
� �yj�� � C� �y � B���

��
j �� � � B���j��

for a constant C � C�#� � �� The sequence f���j g is called the dual lattice of
f�jg�
PROOF� Simple exercise using the de	nition of �
lattice and Theorems ���

and ��
�� �

���� Two remarks on Jordan algebras and symmetric spaces�

REMARK ����� We point out that the inverse transformation is very deeply
related with the algebraic structure of symmetric cones� and their underlying
vector spaces� The de	nition we gave above �using the groupH� is good enough
for our purposes� but it is not the usual way to introduce it in the literature�
For example� in the vector space of symmetric matrices V � Sym�r�R� there is
a product composition law for which Y �� is an algebraic inverse element� This
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is not the usual matrix product �which does not preserve V � but the so
called
symmetric product �

X � Y �
XY � Y X

�
� X� Y � Sym�r�R��

Observe this product is commutative� but not associative" Also� the identity
matrix I � Ir is a neutral element for ���� and any invertible matrix X in
the usual sense is also invertible for ���� being X�� an inverse element� The
inverse element for �� however� may not be unique� in V � but it will be unique
in the subspace of polynomials P�X� � span fI�X�X�� � � �g �see ���� p� �����
This is therefore the right de	nition of �
inverse� which whenever it exists�
coincides with the usual X��� Finally� it is important to notice that from the
inverse operation one can recover the cone # � Sym��r�R�� as the identity
component of the set of invertible �or �
invertible in the above sense� elements
in V �
These properties are not restricted to symmetric matrices� and in general

there is a deep theorem �due to Vinberg� stating that the underlying vector
space of a symmetric cone can be endowed with a commutative �but not asso�
ciative� product for which # is the identity component of the set of invertible
elements in V �see Theorem III���� in ������ The product law obtained in this
theorem satis	es the axioms of a Jordan product� and with it the vector space
V becomes a Euclidean Jordan algebra� It is from this important theorem how
one can classify all irreducible symmetric cones �see Remark ������ and the
reason why Jordan algebras enter into play to understand this theory� The
reader wishing to learn more on this topic is encouraged to read the 	rst eight
chapters of the text �����

REMARK ���	� There is yet another approach to the inverse transformation
arising from riemannian geometry� and which avoids completely the use of
Jordan algebras� Roughly speaking� the approach is the following� associated
with a self
dual open convex cone # there is a positive function

��x� �

Z
�

e��xjy� dy� x � #�

called the characteristic function of #� It can be shown that the function log �
is strictly convex �i�e�� the second derivative D� log � is positive de	nite�� and
thus it de	nes a riemannian metric in # by�eGx��� �� � D	D� log ��x�� �� � � V�

Associated with �� one can also de	ne an involution in # by�

x� � �r log ��x�� x � #�

�Consider the simple example�X �

�
� �
� ��

�
and Y �

�
� a

a ��

�
� for which X�X �

X � Y � I �see� ���� p� 
����
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with the property that x� x� has unique 	xed point �say e � #� and �xjx�� �
n� With these de	nitions # becomes a riemannian symmetric space� and the

involution x �� x� an isometry for eG� One can show that this approach is
equivalent to the previous one� and in fact� y� � n

r
y�� and eG � n

r
G �see ����

pp� �
�
���� To learn more on this approach the reader can consult Chapter I
of �����

�� Weighted Bergman spaces on tube domains over

symmetric cones

In this section we extend to several complex variables the results proved
in the 	rst four paragraphs of Section � for the upper half
plane� Thus� we
establish an appropriate analytic setting where Bergman spaces and Bergman
projectors can be studied� introducing the right concepts with which a Paley

Wiener Theorem can be proved� The structure of symmetric cones is exploited
in two ways� 	rst because they constitute domains of positivity �i�e�� have a
partial order�� providing us with the right properties for Hardy
type norms�
second because of the group action and the homogeneity of determinants� which
lead easily to an explicit expression for the Bergman kernel� Many of these
results are known in the literature� and we refer to Chapter III of ���� for
results dealing with Hardy spaces� and to Chapters IX and XIII of ���� for
the L� theory of Bergman spaces� We also give a detailed account of �weighted�
mixed norm Bergman spaces� which appear in some papers of the authors �see�
e�g�� �
���

���� Weighted Bergman spaces and weighted Bergman kernels�
In the sequel� we shall assume that # � V � with V of dimension n 
 �� is

an irreducible symmetric cone� that is� a symmetric cone which is not linearly
equivalent to the product of at least two lower
dimensional symmetric cones�
We denote by r the rank of the cone #�
The following property de	nes a crucial element in the analysis of symmetric

cones� the Gamma function of #� We refer to Chapter V II of ���� for more
properties on it�

PROPOSITION ���� ������ Corollary VII�����

��� For � � R� the integral

 ���� �

Z
�

e��xje�%�x���
n
r dx

converges if and only if � � n
r
� �� In this case� if d �

��n
r
���

r�� � we have

 ���� � �
n
r
�� ��� �� � d

����� ��� �r � ��d� ��
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where  �x� denotes the usual Euler gamma function�
��� For y in # and � � n

r
� � we haveZ

�

e��xjy�%�x���
n
r dx �  ����%�y�

���

We refer to ���� for the proof of ���� Let us remark that ��� can be obtained
from ��� by a change of variables which maps e to y�

Even if we shall not use it right now� we write the generalization of this
proposition to generalized powers of the Determinant function�

PROPOSITION ���� For y � # and s � �s�� s�� � � � � sr� � Cr with �e sj �
�j � ��n
r��

r�� � j � �� � � � � r� thenZ
�

e��	jy�%s���
d�

%���
n
r

�  ��s�%
s�y����

Moreover� this integral converges absolutely if and only if the condition on s is
satis	ed�

We refer to ���� for the explicit value of the constant�  ��s�� Let us remark
that the condition on s is the condition for local integrability of %s relatively
to the invariant measure� y�� is the inverse of y� which has been de	ned in
the previous section�

In the sequel� we shall call T� � V � i# the tube domain with base # in the
complexi	ed vector space V � iV �

REMARK ���� From Proposition ��� ���� for � � n
r
�� 	xed and z � x�iy �

T�� it follows that the integral

z ��� �

 ����

Z
�

e��	j
z
i
�%�����

n
r d�

is absolutely convergent and de	nes a holomorphic function in the tube domain
T�� This holomorphic function is an extension of the function %�y��� de	ned
on # and so we shall denote it by %�� 
z

i

�
�

COROLLARY ��
� Let � � n
r
� � be 	xed� Then�

�i� %�y � y�� 
 %�y�� � y� y� � #

�ii� j%����x� iy��i�j � %�y���� �x � Rn� y � #�

PROOF� Immediate from the second part of the previous proposition� �

Let � be a real number and � � p � �� We shall denote by Lp
� the

weighted Lebesgue space Lp�T��%��n
r �y�dxdy�� We de	ne the Bergman space

Ap � Ap�T�� as the subspace of Lp � Lp
n
r
consisting of holomorphic functions�
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We de	ne the weighted Bergman space Ap
� as the subspace of L

p
� consisting of

holomorphic functions� We write the norm as k � kAp
�
� k � kLp� �

We 	rst state two basic properties of weighted Bergman spaces on tube
domains over symmetric cones� The following result is the extension of Propo

sition ��� to several complex variables�

PROPOSITION ���� Let p � ����� and � � R� Then� the following proper�
ties hold�
�i� There exists a constant C � C�p� �� � � such that for all x � iy � T�

and for all F � Ap
��

jF �x� iy�j � C%� ��n
r

p �y�kFkAp
�
�

�ii� There exists a constant C � C�p� �� � � such that for all y � # and for
all F � Ap

�� we have

kF ��� iy�kp � C%� �
p �y�kFkAp

�
�

PROOF� The weighted Bergman space Ap
� is invariant through translations

and automorphisms of the cone #� Then it su�ces to prove that for all F � Ap
��

F �ie� � CkFkAp
�

and
kF ��� ie�kp � CkFkAp

�
�

These follow using the mean value property in the same way as in the proof
of the analogous results in one variable �Proposition ����� �

We are linked to use Hardy spaces� as in the one
dimensional case� Let us
give their de	nitions and 	rst properties�

DEFINITION ���� For p � ������ the Hardy space Hp � Hp�T�� is the space
of holomorphic functions on T� which satisfy the estimate

kFkHp � sup
y��

�Z
Rn

jF �x� iy�jpdx
� �

p

�

We have the analogue of the main theorem in the one
dimensional case�

THEOREM ���� ��� Given F � Hp� the function

y � # �� kF ��� iy�kp
in non�increasing in the sense of the partial ordering on # de	ned in ������
Moreover� for every t � #�

lim
y���y��

Z
Rn

jF �x� i�y � t��� F �x� it�jpdx � ��

��� Given F � Ap�q
� � then for every t � #� the function Ft�z� � F �z � it� is

in the Hardy space Hs for every s 
 p�
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PROOF� For the proof ���� see ���� Th� III�
���� Assertion ��� is a consequence
of Proposition ���� ���� �

Let us give a 	rst application� We prove� as in the upper
half plane� that
the space is reduced to � when the weight is not locally integrable� that is
� � n

r
� �� The proof is due to Daniele Debertol�

PROPOSITION ��	� Let � � p � �� Then� for all � � n
r
� � we have

Ap
� � f�g�

PROOF� Assume 	rst that � � � � n
r
��� Then by part �ii� of Proposition ��


and part �i� of Corollary ���� for every F � Ap
�� the function G�z� � F �z� ie�

belongs to the Hardy space Hp on tube domain T� �for the de	nition and basic
properties of Hardy spaces� see x��� below�� Therefore� by Theorem ���� the
function

y � # ��� g�y� �

Z
V

jG�x � iy�jpdx

is non
increasing with respect to the partial ordering � of the cone� that is

x � y i� y � x � #������

Then� kF ��� iy�kp 
 kF ��� i�y � e��kp� and therefore

kFkp
Ap
�

 kGkp

Ap
�
�

Z
�

g�y�%��n
r �y�dy



Z

y�e
y��

g�y�%��n
r �y�dy 
 g�e�

Z
y
e

%��n
r �y�dy�

Now� by Theorem VII���� of ����� the latter integral is in	nite when � � n
r
���

Since kFkp
Ap
�
��� we conclude that g�e� � � and as a consequence� g�y� � �

for every y � # such that e � y� This implies that G �and also F � is identically
zero on T��
Assume next that � � �� The result still follows because the function

H�z� � F �z�%
�
p



z�ie
i

�
belongs to Ap

�� �

As a consequence� in the sequel we shall always assume that � � n
r
� �� It

follows from Proposition ��
 �i� that for every z � T�� the point evaluation
linear functional F �� F �z� is continuous on Ap

�� We can prove in the same
way as in the �
dimensional case that for � � n

r
� � and � � p � �� Ap

� is
a Banach space �this is also valid for Hardy spaces�� In particular� equipped
with the inner product

hF�Gi �
Z
�

F �z�G�z�%��n
r �y�dxdy� z � x� iy�
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A�
� is a Hilbert space� So� by the Riesz representation theorem� for every

z � T�� there exists a unique function kz � A�
� such that

F �z� � hF� kzi�
The kernel B��z� �� � kz��� is called Bergman kernel of T� when � � n

r
and

weighted Bergman kernel of T� for all � � n
r
� �� Moreover� the orthogonal

projector P� from the Lebesgue Hilbert space L�
� onto its closed subspace A

�
�

is called the Bergman projector of T� when � �
n
r
� and the weighted Bergman

projector of T� for all other values of �� It can be shown� in the same way as
in Proposition ����� that P� is given by

P�f�z� �

Z
T�

B��z� s� it�f�s� it�%��n
r �t�dsdt �f � L�

���������

We shall adopt the notation L�
����#� � L� �#�%�����d���

THEOREM ����� �Paley
Wiener� Let � � n
r
� �� Given g � L�

����#�� the
formula

F �z� �

Z
�

ei�zj	�g���d�� z � T��������

de	nes an element of A�
�� moreover�

kFk�A�
�
� C�kgk�L������������

with C� � ����n  ������r� �
Conversely� given F � A�

�� ���
�� and ���
�� hold for some g � L�
����#��

PROOF� The proof of this theorem is very similar to its counterpart in di

mension � �Theorem ������ We 	rst prove the direct part� The integral on
the right
hand side of ������ is absolutely convergent� because by Schwarz�s
inequality� for z � x� iy�Z

�

jei�zj	�g���jd� �
Z
�



e��yj	�%

�
� ���

� 
jg���j%� �
� ���

�
d�

�
�Z

�

e���yj	�%����d�

	 �
�
�Z

�

jg���j�%�����d�
	 �

�

�


 ��� �

n
r
�%����n

r
���y�

� �
� kgkL�� ��� ���

The latter equality follows by Proposition ��� since � � ���
To prove ������ we use the Plancherel formula to obtain the equalityZ

Rn

jF �x� iy�j�dx � ����n
Z
�

e���yj	�jg���j�d��
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Moreover� by Fubini�s theorem and Proposition ���� we get

kFk�A�
�
�

Z
�

�Z
Rn

jF �x� iy�j�dx
	
%��n

r �y�dy

� ����n
Z
�

�Z
�

e���yj	�jg���j�d�
	
%��n

r �y�dy

� ����n
Z
�

jg���j�
�Z

�

e���yj	�%��n
r �y�dy

	
d�

� C�

Z
�

jg���j�%�����d� � C�kgk�L������
We prove the converse part as in the one
dimensional case� using the corre


sponding Paley
Wiener for the Hardy space H��T��� Basically� once we know
that functions in H��T�� may be written as in ������� with g a square inte

grable function which is supported in #� the proof is exactly the same� This
is an easy consequence of the following result� which is well known�

LEMMA ���
� �Theorem III���� of ������ Let B be an open connected subset
of Rn and let TB denote the tube domain over B� Then for every function F
in the Hardy space H��TB�� there exists a measurable g � Rn � C satisfying
the estimate

sup
y�B

Z
Rn

e���yj	�jg���j�d� ���

such that for every z � TB

F �z� �

Z
Rn

ei�zj	�g���d��

Indeed� when B is #� the integrability condition forces g to vanish outside
#� letting y tend to in	nity� with �yj�� � �� �

FromTheorem ����� we obtain an explicit expression for the weighted Bergman
kernel B� in the tube T��

THEOREM ����� The weighted Bergman kernel B� of T� is given by

B��w� z� � d� %

�
w � )z

i

	���n
r

with d� � C��
�  ��� �

n
r
��

Here� %


w��z
i

����n
r is the determination of the power de	ned in Remark ����

PROOF� Since z � T� the functions F and B���� z� are in A�
�� By the Paley


Wiener theorem �Theorem ������ there exist two functions g� gz � L�
��#� such

that for w � T�

F �w� �

Z
�

ei�wj	�g���d�������
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and

B��w� z� �

Z
�

ei�wj	�gz���d��

The polarization of the isometry ������ gives

F �z� � hF�B���� z�iA�
�
� C�hg� gziL�� ��� � C�

Z
�

g���gz���%
�����d��������

Comparing ������ and ������ implies

gz��� � C��
� e�i��zj	�%�����

Therefore by Remark ����

B��w� z� � C��
�

Z
�

ei�wj	�e�i��zj	�%����d� � d� %

�
w � )z

i

	���n
r

�������

�

���� Mixed norm weighted Bergman spaces� Our main interest is the
study of the three problems that we have completely solved in the one
dimensional
case� We will see later that the solution is simpler in di�erent spaces� which
are part of a larger family of Bergman spaces� This is why we enlarge our class
of spaces� by introducing mixed norms� For � � p� q ��� let

Lp�q
� � Lq

�



#�%�y���

n
r dy�Lp�Rn� dx�

�
be the space of functions F �x� iy� on T� such that

kFkLp�q�
�

�Z
�

kF ��� iy�kqp%�y���
n
r dy

	 �
q

��

�with the obvious modi	cation if p � ��� We call Ap�q
� the closed subspace

of Lp�q
� consisting of holomorphic functions� These spaces will be called mixed

norm weighted Bergman spaces� For p � q� we have Lp�p
� � Lp

� and Ap�p
� � Ap

��

Before proceeding further� we give some examples of functions in Ap�q
� � Given

� � R� we denote by %��x�iy
i
� the holomorphic determination of the �� power

which reduces to the function %��y� when x � �� To illustrate our examples
we need the following lemma� which also de	nes beta functions on the cone�

LEMMA ����� ������ For �� � real� the integral

I����t� �

Z
�

%��y � t�%��y�dy

is convergent if and only if � � �� and �� � � ��n
r
� �� In this case�

I����t� � C���%
����n

r �t�

�
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PROOF� We shall show that this is an easy consequence of Proposition ����
The condition � � �� is necessary for the local integrability� Since %�y� t� is
bounded below for 	xed t� it is su�cient to restrict to the case when � � �n

r
���

Then� we can write

%��y � t� � c

Z
�

e��y�tj	�%������
n
r d��

Using Fubini Theorem� and integrating 	rst in y� we have to consider the
integral Z

�

e��tj	�%��������
�n
r d��

The necessary and su�cient condition on � � � is given in Proposition ����
which allows to conclude easily�

LEMMA ����� Let � � R� Then�
��� the integral

J��y� �

Z
Rn

����%��
�
x� iy

i

	���� dx������

converges if and only if � � �n
r
� �� In this case� J��y� � C�%���n

r �y�� where

C� �
�
���r�n ��� � n

r
�
��
 ��

�
� �
���

�

��� The function F �z� � %�� 
 z�it
i

�
� with t � #� belongs to Ap�q

� if and only

if � � max
�

�n
r
��
p

� n
rp
�

��n
r
��

q

�
� In this case�

kFkAp�q
�
� C��p�q%

��q�nq

rp
���t��

PROOF� ��� Interpret the integral in ������ as the L� norm of %��
�


 ��iy
i

�
�

By Proposition ���� Remark ��� and the Plancherel formula� the integral J��y�
is 	nite if and only if � � �n

r
� ��

��� The conclusion follows from part ��� and Lemma ����� �

We record the following extension of Proposition ��
 to mixed normBergman
spaces� The proof is the same� The reader will observe that we use the
invariance of the spaces under the action of translations in x� and the action
of the group G�

PROPOSITION ����� Let p� q � ����� and � � n
r
� ��

�
� There exists a positive constant C � C�p� q� �� such that for all x� iy �
T� and for all F � Ap�q

� �

jF �x� iy�j � C%� n
rp
� �

q �y�kFkAp�q
�
�

��� Let F � Ap�q
� � For y � #� the function F ��� iy� belongs to Ls�Rn� for

all s 
 p� Moreover� there exists a positive constant C � C�p� q� s� �� such that
for all y � #�

kF ��� iy�ks � C%� �
q
�n

r
� �
p
� �
s
��y�kFkAp�q

�
�
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We pass now to the density theorem� For the particular case of the Lorentz
cone� this was proved in �
�� Corollary ��
�

THEOREM ����� For all p� q� �� � � ����� and 
� � � n
r
� �� the subspace

Ap�q
� � A���

� is dense in the space Ap�q
� �

PROOF� Let F � Ap�q
� � Given � 
 � and 
 � �� let

F����z� � F �z � i
e�%��
�

z � ie

i

	
�

We claim that�

�� F��� � Ap�q
� with kF���kAp�q

�
� kFkAp�q

�
�

�� lim
���

kF � F���kAp�q
�
� ��

�� for � large enough� F��� � A���
� �

For claim ���� by Remark ���� observe that if z � x� iy�����%��
�

z � ie

i

	���� � %���
y � e� � %���e� � ��������

The desired conclusion then follows because kF ��� i
e�kAp�q
�
� kFkAp�q

�
�

For claim ���� using ������ and Theorem ���� we get

kF ��� iy�� F������ iy�kp � �kF ��� iy�kp�
On the other hand�

kF ��� iy�� F������ iy�kp
� kF ���iy��F ���i�y�
e��kp�kF ���i�y�
e��



��%�� ��i
��� iy� � e�

� kp�
The 	rst norm on the right
hand side tends to zero by assertions � and � of
Theorem ��� and so does the second one by dominated convergence� Now�

kF � F���kAp�q
�
�

Z
�

kF ��� iy�� F������ iy�kqp%��n
r �y�dy

which also tends to zero by dominated convergence�
Finally� to prove claim ���� 	rst assume that � 
 p� Observe that if 
 � ��

then %�
y � e� 
 
r%�y � e� and similarly for %�y � 
e�� By ������ and
Proposition ����� there exists a positive number � and a positive constant
C����� such that

kF������ iy�k� � %���
y � e�kF ��� i�y � 
e��k�
� C���%

�������y � e�kFkAp�q
�
�

Then

kF���kA���
�
� C�����kFkAp�q

�

�Z
�

%��������y � e�%��n
r �y�dy

	 �
�

�
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By Lemma ��� below� we can take � large enough so that the previous integral
converges�
Next� if � � p� we use H�older�s inequality to obtain that

kF������ iy�k� � kF ��� i�y � 
e��kp
��%�� ��i
��� iy� � e�

��
p�

p��

�

By Proposition �����

kF ��� i�y � 
e��kp � C�%
��
q �y � e�kFkAp�q

�

and by Lemma ����� if � is chosen large enough���%�� ��i
��� iy� � e�
��

p�
p��

� C�%
���n�p���

rp� �y � e��

Therefore�

kF���kA���
�
� C�

�Z
�

%����
n�p���
rp�

� �
q ���y � e�%��n

r �y�dy

	 �
�

which again converges if � is large enough� by Lemma ���� �

We intend now to show that the mixed norm Bergman spaces are simpler
in the case when p � �� The L� norm in the x variable can then be computed
using Plancherel formula� and the geometric tools of the last section can be
used�
First� recall that for p � q � �� by the Paley
Wiener theorem �Theorem

������ F � A���
� if and only if F � Lg� with g � L�

��#�� Here the Laplace
transform Lg of g is de	ned by

Lg�z� �
Z
�

g���ei�zj	�d��

Moreover�

kFk�
A���
�
� C�

Z
�

jg���j�%�����d��

Using the dyadic decomposition of the cone # �Theorem ������ if we write
Bj � B���j�� we have

kFk�
A
���
�
� C�

Z
�jBj

jg���j�%�����d�

� C�

X
j

Z
Bj

jg���j�%�����d� � C �
�

X
j

%����j�
Z
Bj

jg���j�d��

where the latter inequality follows by Theorem �����
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Conversely�X
j

%����j�
Z
Bj

jg���j�d� � c�
X
j

Z
Bj

jg���j�%�����d�

� c�

Z
�

jg���j�%�����
X
j

�Bj
���d��

By the 	nite overlapping property of the ballsBj � there exists a positive integer
N such that for every � � #�

P
j

�Bj
��� � N � Then

X
j

%����j�
Z
Bj

jg���j�d� � c�N

Z
�

jg���j�%�����d� � c��NkFk�A���
�
�

We have thus established the following result�

PROPOSITION ����� There exists a constant C � C��� � � such that for
every F � A���

� � if F � Lg with g � L�
� we have

�

C

X
j

%����j�
Z
Bj

jg���j�d� � kFk�
A���
�
� C

X
j

%����j�
Z
Bj

jg���j�d��

We intend to extend this proposition to the mixed norm weighted Bergman
spaces A��q

� � when it is possible� The 	rst inequality will be proved hereafter�
while the second one is postponed to the next subsection� We will see that
this is related with the third problem of the 	rst section �boundary values
of Bergman spaces�� and that the boundedness of the Bergman projection is
involved in the values of q for which it is valid�
We denote by bq� the space of all measurable functions g on # such that

kgkbq� �
�X

j

%����j�
�Z

Bj

jg���j�d�
	 q

�
	�

q

���������

Let

(q� �

�
��n

r
��

n
�r
�� if n � �r

� otherwise�

LEMMA ����� Assume q � (q� � Then� there exists C � � such that for every
g � bq� we have Z

�

jg���je��yj	�d� � Ckgkbq�%�y���
�
q
� n
�r ��

In particular� g is a locally integrable function in #�
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PROOF� By Lemma ���� and Schwarz�s inequality� we getZ
�

jg���je��yj	�d� �
X
j

Z
Bj

jg���je��yj	�d�

�
X
j

e���yj	j�
Z
Bj

jg���jd�

�
X
j

e���yj	j�
�Z

Bj

jg���j�d�
	 �

�
�Z

Bj

d�

	 �
�

�

Recall that %�n
r ���d� is a G
invariant measure on # �Proposition ������ Also�

by Corollary ���� we have

jBjj � %
n
r ��j��������

Now� the bound ������ implies thatZ
�

jg���je��yj	�d� � C
X
j

e���yj	j�
�Z

Bj

jg���j�d�
	 �

�

%
n
�r ��j�

� C
X
j

�
%� �

q ��j�

�Z
Bj

jg���j�d�
	 �

�
	�

e���yj	j�%
n
�r�

�
q ��j�

	

� kgkbq�
�X

j

e��q
��yj	j�%q�� n�r�

�
q
���j�

	 �
q�

�

where the last step follows by H�older�s inequality� Again� ������ impliesX
j

e��q
��yj	j�%q�� n�r�

�
q
���j� � C

X
j

e��q
��yj	j�%q�� n�r�

�
q
��n

r ��j�

Z
Bj

d��

Therefore� by Theorem ����� the 	nite overlapping property and Proposition
���� we obtainX

j

e��q
��yj	j�%q�� n�r�

�
q
���j� � C

X
j

Z
Bj

e���q
��yj	�%q�� n�r�

�
q
��n

r ���d�

� CN

Z
�

e���q
��yj	�%q�� n

�r�
�
q
��n

r ���d�

� C N  �
�
q�� n

�r
� �

q
�
�
%�q�� n�r� �

q
����q

�y� ��
since q�� n�r �

�
q
� � n

r
� �� The conclusion now follows� �

THEOREM ����� Let q � (q�� Given F � A��q
� � there is a unique function

g � bq� such that F � Lg and

kgkbq� � CkFkA��q
�
�
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PROOF� By density� take F � A��q
� � A���

� � By the Paley
Wiener theorem
�Theorem ������ there exists g � L�

����#� such that

F �z� � Lg�z� �
Z
�

g���ei�zj	�d� �z � T���

Recall that for y � Bj� y�� � B��
j � B���

��
j � since the mapping x �� x�� is

an isometry �see Theorem ��
��� Moreover� by Theorem ��
�� there exists a
constant A such that for all j� � � Bj and y � B��

j � we have �
A
� ��jy� � A�

Thus� for all y � B��
j � if C � e�A�Z

Bj

jg���j�d� � C

Z
Bj

jg���j�e���yj	�d�

� C

Z
�

jg���j�e���yj	�d� � C �
Z
Rn

jF �x� iy�j�dx�

by the Plancherel formula� Therefore�

jB��
j j
�Z

Bj

jg���j�d�
	 q

�

� Cq

Z
B��j

�Z
Rn

jF �x� iy�j�dx
	q

�

dy�

Furthermore� if we write Fy � F ��� iy� and yj � ���j � since there is a constant

C such that for every j� jB��
j j 
 C%

n
r �yj� �see �������� we get�Z

Bj

jg���j�d�
	 q

�

� C%�n
r �yj�

Z
B��j

kFykq�dy�

Moreover� by ������ we have %��j� � %�yj���� and thus

%����j�
�Z

Bj

jg���j�d�
	 q

�

� C%��n
r �yj�

Z
B��j

kFykq�dy

� C �
Z
B��j

%��n
r �y�kFykq�dy�

Therefore� since the balls B��
j also form a dyadic decomposition of # �see

Corollary ������

X
j

%����j�

�Z
Bj

jg���j�d�
� q

�

� C �X
j

Z
B��j

%��n
r �y�kFykq�dy

� C ��
Z
�

%��n
r �y�kFykq�dy

by the 	nite overlapping property for the balls B��
j � This 	nishes the proof�

�
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�� Mapping properties of the weighted Bergman

projectors

���� Statement of the main problem�
Recall that� for p � ����� and � � R we denote by

Lp
� � Lp



T�� %

��n
r �y�dxdy

�
the weighted Lebesgue spaces and by Ap

�� � � n
r
� �� the weighted Bergman

spaces� We consider the weighted Bergman projector P� de	ned in ������ as

P�f�z� �

Z
�

�Z
Rn

B��z� u� iv�f�u� iv�du

	
%��n

r �v�dv �f � L�
���

where B� denotes the weighted Bergman kernel whose expression was given in
Theorem ���
�
Our main goal is to determine the values of p � ����� for which P� extends

to a bounded operator on Lp
�� in which case it is a bounded projector from Lp

�

to Ap
�� We observe that P� is a self
adjoint operator and hence P� is bounded

on Lp
� if and only if it is bounded on Lp�

� � where p
� is the conjugate exponent

of p� We denote P�
� the positive integral operator de	ned for f � L�

� by

P�
� f�z� �

Z
�

�Z
Rn

jB��z� u� iv�jf�u� iv�du

	
%��n

r �v�dv������

We set

q� � � �
�

n
r
� �

� p� � q� � �� and (p� �
� � �n

r
� �

n
r
� �

������

Observe that � � q� � p� � (p� � Finally� notice that if P�
� is bounded on Lp

� �
then P� extends to a bounded operator from Lp

� to Ap
�� The converse is also

true in the case n � � �see Section ��� This is no more the case for n 
 � as
the following theorem shows�

THEOREM 
��� The following properties hold�

�� The operator P�
� is bounded on Lp

� if and only if q�� � p � q��
�� If P� extends to a bounded operator from Lp

� to Ap
� � then (p�� � p � (p� �

�� The operator P� extends to a bounded operator from Lp
� to A

p
� if p

�
� � p �

p� �

Let us make some comments on this theorem� When considering simulta

neously assertions ��� and ���� we see that there are values of p for which the
Bergman projector P� extends to a bounded operator from Lp

� to Ap
� while

the associated positive integral operator P�
� is not bounded on Lp

�� This is a
new phenomenon compared to all cases for which the Bergman projector is
known to satisfy Lp estimates� The proof of assertion ��� uses basically the
same methods as in the upper half
plane� that is Schur�s lemma� which gives
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Lp continuity properties for integral operators with positive kernels� Hence�
in order to get the larger range of values of p given in assertion ���� we must
exploit the oscillations of the Bergman kernel� While trying to do this� we are
lead to use the Fourier transform in the x variables and consequently to focus
on L� norms in these variables� This is the reason why we enlarged our class
of spaces� by introducing mixed norms�
We recall that for p� q � ����� we set

Lp�q
� � Lq



#�%�y���

n
r dy�Lp�Rn� dx�

�
� Ap�q

� � Lp�q
� �H�T���

Assertion ��� will be proved in subsection ���� In fact� we shall prove a more
general result giving necessary and su�cient conditions on p� q for the Lp�q

�

boundedness of P�
� � In subsection ���� we prove L

��q
� estimates for P� � Finally�

we shall prove assertion ��� in subsection ��
 using interpolation methods�
More precisely� assertion ��� will be obtained as a particular case of a result
giving a su�cient condition on p� q under which P� extends to a bounded
operator from Lp�q

� to Ap�q
� � We also prove a necessary condition on p� q so that

P� extends to a bounded operator from Lp�q
� to Ap�q

� � fact that includes assertion
��� as a particular case�

���� Positive integral operators on the cone�
We consider the following positive integral operator T de	ned on the cone

# by

Tg�y� �

Z
�

%���y � v�g�v�%��n
r �v�dv������

In the next subsection we shall see that T is closely related to the operator
P�
� � Recall that q� � � � �

n
r
�� � We shall need the following theorem�

THEOREM 
��� The operator T is bounded on Lq


#�%��n

r �v�dv
�
if and only

if q�� � q � q��

PROOF� �Su�ciency� We will use Schur�s lemma �Lemma ���
� as in the
one
dimensional case� For K�y� v� � %���y � v�� it su�ces to 	nd a positive
function � on # such that the following two properties are satis	ed�Z

�

K�y� v���v�q
�

%��n
� �v�dv � C��y�q

�

�����

and Z
�

K�y� v���y�q%��n
� �y�dy � C��v�q������

As Schur�s test functions we take � � %s� for appropriate s� We rely on the
following lemma� which may be found in �
�� Lemma ���� for the light cone�
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LEMMA 
�	� For t � #� the integral

Is�t� �

Z
�

%�y � t��%s�y�%�n
r �y�dy

is convergent if and only if the following conditions hold�

sj � �j � ��
n�r � �

r � �
� sj � � � ��r � j�

n�r � �

r � �
for j � �� � � � � r�

In this case�

Is�t� � C%s�t�%��t��

PROOF� The scheme of the proof is the same as for Lemma ����� The
conditions on s allow to restrict on values of � for which %�y � t�� can be
written as a Laplace transform� using Proposition ���� We then use Proposition
��� to reduce to the integralZ

�

e��tj	�%s��
���%���n

r ��� d��

To go on with the proof� one needs to write %s����� in terms of �� We refer
to ���� for the light cone� where all formulas are explicit� We get

%s����� � �%�
��
s��s����%�s�

� ����

where we note

%�
���� � �� � ��������

To get the result� we change of variables so that �� is replaced by ���� use
Proposition ��� again �the second range of conditions on s comes from it�� and
use ����� with t in place of �� This 	nishes the proof in this particular case� �

Let us go on with the proof of the su�ciency for the forward light cone� An
application of Lemma ��� in this particular case gives that ����� holds when

we take � � %��
� %

�� whenever ��� �� satisfy

�

q�

�n
�
� � � �

�
� �� � �� � �

q�
� �� � �� �

�

q�

�
�n

�
� �

�
and estimate ����� holds when

�

q

�n
�
� � � �

�
� �� � �� ��

q
� �� � �� �

�

q

�
�n

�
� �

�
�

Thus� both of �� and �� � �� must lie in the intersection of two intervals�
Assume q 
 q�� i�e� q 
 �� Then �� must lie in �

�
q�



n
� � � � �

�
� �� which is a

non
empty interval� For ��� we must have

�� � �� �
�
� �

q�
�
�

q�

�
�n

�
� �

�	
�
�
��

q
�
�

q

�
�n

�
� �

�	
�
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Since q 
 �� then ��
q
� � �

q�
and therefore� the previous intersection is non


empty if ��
q
� �

q�


�n
�
� �

�
� i�e� if q � � � �

�
r
�� � q� � The case q � q� can be

treated accordingly� it gives the dual condition q�� � q � ��
The general proof� for an arbitrary symmetric cone� follows the same lines�

using Lemma ����
�Necessity� We prove the necessity part of the theorem in the case of an

arbitrary symmetric cone� If we take the characteristic function of the invariant
ball B��e� as a test function g� from Theorem ���� we know that %�v� and
%�y�v� are almost constant on the support of g�v� as functions of the variable
v� So if Tg is bounded on Lq



#�%��n

r �v�dv
�
� the function %���y � e� is in

Lq


#�%��n

r �y�dy
�
� Using Lemma ����� we get the necessary condition q � q���

The dual condition q � q� follows from the self
adjointness of T � �

���� Estimates for the positive integral operator P�
� �

Recall that q� � �� �
n
r
�� � We shall prove the following extension of Theorem

��� ����

THEOREM 
���� Let p� q � ������ The operator P�
� de	ned by ���
� is

bounded on Lp�q
� if and only if

q�� � q � q� �

PROOF� For a function g � T� � C� we write gy�x� � g�x�iy�� It is su�cient
to consider non
negative functions f � Then�

P�
� f�x� iy� �



P�
� f
�
y
�x�

� d�

Z
�

�Z
Rn

j%����n
r
�

y�v �x� u�jfv�u�du
	
%��n

r �v�dv

� d�

Z
�

�
j%����n

r
�

y�v j 	 fv
�
�x�%��n

r �v�dv�
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By the Minkowski inequality and the Young inequality� we obtain that

k 
P�
� f
�
y
kLp�Rn� �

�Z
Rn

�

P�
� f
�
y
�x�
�p

dx

	 �
p

� d�

�Z
Rn

�Z
�

�
j%����n

r
�

y�v j 	 fv
�
�x�%��n

r �v�dv

	p

dx

	 �
p

� d�

Z
�

�Z
Rn

��
j%����n

r
�

y�v j 	 fv
�
�x�
�p

dx

	 �
p

%��n
r �v�dv

� d�

Z
�

kj%����n
r
�

y�v j 	 fvkp%��n
r �v�dv

� d�

Z
�

k%����n
r
�

y�v k�kfvkp%��n
r �v�dv�

The L� norm of %
����n

r
�

y�v is given by assertion � in Lemma ����� This implies
that

k 
P�
� f
�
y
kLp�Rn� � C�

Z
�

%���y � v�kfvkp%��n
r �v�dv

� T �kfvkp� �y��
where T is the positive integral operator de	ned in ��� on the cone #� Recall
that by Theorem ��
� this operator T is bounded on Lq



#�%��n

r �v�dv
�
if

q�� � p � q�� Therefore�

kP�
� fkLp�q�

�

�Z
�

k
P�
� f
�
y
kqLp�Rn�%

��n
r �y�dy

	�
q

� C�

�Z
�



T �kfvk��y�

�q
%��n

r �y�dy

	�
q

� C�kTk �
��kfvkp��

Lq


�� ��� n

r �v�dv
�

� C�kTk � kfkLp�q�

if q�� � p � q�� This 	nishes the proof of the su�ciency part�

�Necessity� We need to show that P�
� is unbounded on Lp�q

� when q 
 q��
To do this� we will show that� if P�

� is bounded on Lp�q
� � then T is bounded

on Lq


#�%��n

r �v�dv
�
� This fact will follow from the next lemma and a ho


mogeneity �dilation� argument� We adapt the proof from ���� where it is given
for p � q�

LEMMA 
���� There are positive constants � and c such that� for all z �
x� iy � T� and v � # with jvj � � and jyj � ��Z

juj��
jB��z� u� iv�jdu 
 c%�y � v��� �
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PROOF� It is su�cient to prove the inequalityZ
B��y�

j%�x� iy�j�adx 
 c%�y��a�
n
r �

Indeed� one can also show that the Euclidean norm is almost constant on
invariant balls of radius � �this is proved in detail in ���� jtj�jyj is bounded
by an universal constant on the ball B��y��� As a consequence� the invariant
ball B��y� is contained in the Euclidean ball fjxj � �g if jyj � �� for some
�� Now� we can use the fact that % is almost constant on the invariant ball�
which allows to write that the left hand side is equivalent to

%�y�
n
r

Z
B��y�

j%�x� iy�j�a dx

%�x�
n
r

�

Using the action of G and the formula of change of variable for %� we see that
this last quantity is equal to %�y��a�

n
r � multiplied by the same integral when

computed for y � e� This last factor is clearly a positive constant�
�

To get the announced implication� using Lemma ����� we test P�
� on spe


ci	c Lp�q
� functions� namely g�z� � �jxj���x�k�y�� z � x � iy� with k �

Lq


#�%��n

r �y�dy
�
supported in # � fjyj � �g� For x such that jxj � ��

and y � # such that jyj � �� one has the inequality

P�
� f�x� iy� 
 c

Z
�

%�y � v���g�v�Q�v���
n
r dv�

By assumption� there exists a constant C independent of g� such thatR
y���jyj��


R
�%�y � v���g�v�%�v���

n
r dv

�q
%�y��dy

� C
R
� g�v�

q%�v���
n
r dv�

By homogeneity of the kernel� we can replace the constant � by any positive
constant N � for every positive function g on #� we have the inequalityR

y���jyj�N

R

�
%�y � v���g�v�%�v���

n
r dv

�q
%�y���

n
r dy

� C
R
v���jvj�N g�v�q%�v���

n
r dv�

Using the density of compactly supported functions� we get the same inequality
without any bound on integrals� This means that the operator T is bounded�
and gives the restriction on q�

���� The boundedness of P� on L��q
� �

We recall that q� � � � �
n
r
�� and set Q� � �q� �

We will 	rst show how to relate the spaces bq� and A��q
� �
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THEOREM 
���� Assume � � q � Q�� Given g � bq�� then Lg � A��q
� and

kLgkA��q
�
� Ckgkbq� �

PROOF� Write F � Lg� For every y � #� Fy�x� is the inverse Fourier
transform of the function � �� g���e��yj	�� By the Plancherel theorem�

kFkq
A��q
�
�

Z
�

kFykq�%��n
r �y�dy

�

Z
�

�Z
�

jg���j�e���yj	�d�
	 q

�

%��n
r �y�dy�������

By Theorem ���
 and ������� we deduce that

kFkq
A��q
�

�
Z
�

�X
j

e����yj	j�
Z
Bj

jg���j�d�
	 q

�

%��n
r �y�dy�������

First assume that � � q � �� We recall that for � � ��� ����X
j

aj

	


�
X
j

a
j �

Since q
� � �� it follows from ������ and Proposition ��� that

kFkq
A��q
�

� C

Z
�

X
j

e�q��yj	j�
�Z

Bj

jg���j�d�
	 q

�

%��n
r �y�dy

�
X
j

�Z
Bj

jg���j�d�
	 q

�
Z
�

e�q��yj	j�%��n
r �y�dy

� C ����
X
j

�Z
Bj

jg���j�d�
	 q

�

%���q��j�

� C��q��

X
j

�Z
Bj

jg���j�d�
	 q

�

%����j� � C��q��kgkqbq� �

Assume next that � � q � Q�� At this point� our intention is to use H�older�s
inequality with the introduction of some factor related to some generalized
power of the Delta function� Again� to simplify the computations� we restrict
ourselves to the particular case in which # is the Lorentz cone $n� so that
r � � and %�y� � y�� � y�� � ��� � y�n and %��y� � y� � y�� To simplify the
notation� we call � � q��� We also take a real multi
index s � �s�� s�� to be
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selected later� An application of H�older�s inequality gives

X
j

e����yj	j�
Z
Bj

jg���j�d� �
�X

j

e����yj	j�

Z

Bj

jg���j�d���%�s��
� ��j�%

�s����j�
	 �

�

�
�X

j

e����yj	j�%s��
�

� ��j�%
s�����j�

	 �
��

�

From ������ it follows that

kFkq
A��q
�

� C

Z
�n

�X
j

e����yj	j�
�Z

Bj

jg���j�d�
��

%�s��
� ��j�%

�s����j�
	

�
�X

j

e����yj	j�%s��
�

� ��j�%
s��

�

��j�

	 �

��

%��n
� �y�dy�

Notice that by Theorem ����� ������ and the 	nite overlapping property of the
balls Bj� the sum in the second parenthesis on the right
hand side is bounded
by

I � C

Z
�n

e����yj	�%s��
�

� ���%s��
�

���
d�

%
n
� ���

�

We use Proposition ���� as well as ����� to obtain that

I � C%��s��s�������y�%�s��
�

� ���y�

if s��� � n
� � � and �s� � s���� � �� In this case� Proposition ���� if ��s� �

s���� � � n
� � � and �s��� � � � we have

kFkq
A
��q
�
� C

X
j

�Z
Bj

jg���j�d�
	�

%�s��
� ��j�%

�s����j�

�
�Z

�n

e����yj	j�%�s��
� �y�%��s��s������n

� �y�dy

	
� C

X
j

%s��������j�%
s��
� ����j�%

�s����j�%
�s��
� ��j�

�Z
Bj

jg���j�d�
	�

� C
X
j

%����j�
�Z

Bj

jg���j�d�
	 q

�

� Ckgkq
b
q
�
�

where the constant C depends on the involved parameters�
Therefore the conclusion follows if we choose s� and s� such that the follow


ing conditions are satis	ed�

s��
� �

n

�
� �� �s� � s���

� � ��
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and
s�� � �� �s� � s��� � � � n

�
� ��

The parameter s� can be suitably chosen since
n
�
� � � �� For s�� s�� s� must

lie in
�
��

��n
���

�

�
which is a non
empty interval� �

The statement of Theorem ���� is false for q 
 Q� as the next theorem
shows�

THEOREM 
���� For q 
 Q�� there is a function g � bq� such that Lg does
not belong to Lp�q

� �

PROOF� We give the proof for the particular case of the cone Sym����R�

of � � � real positive
de	nite symmetric matrices� For � �

�
�� ��
�� ��

	
�

Sym����R�� we recall that %��� � Det � � ���� � ��� � Take

g��� � e�	��	�%� �
� ���

�
� � j log %���

��
j
	� �

�

�

Then if I denotes the � � � identity matrix�

k�Lg�Ik�� �
Z
�

e�
	��
	�%�����
�
� � j log %���

��
j
	��

d�������

and

kgkq
bq�
�
X
j

%����j�

�Z
Bj

jg���j�d�
� q

�

�
X
j

%����j�

�Z
Bj

e��	�%�����
�
� � j log %���

��
j
	��

d�

� q
�

� C
X
j

�Z
Bj

%� ��
q
�����e��	�%�����

�
� � j log %���

��
j
	��

d�

� q

�

� C �X
j

Z
Bj

%���n
���

n
���� q� ���e�q	�

�
� � j log %���

��
j
	� q

�

d�

by Theorem ����� the H�older�s inequality and ������� Hence� by the 	nite
overlapping property�

kgkq
bq�
� C

Z
Sym����R�

e�q	�%�n����
q

����n
� ���



� � j log %���

��
j�� q

�d��������

It now su�ces to show that the right
hand side of ������ is in	nite while the
right
hand side of ������ is 	nite� This is given by the next lemma�
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LEMMA 
��	� For � and � real� the integral

I��� �

Z
Sym����R�

e�	��	�%����


� � j log %���

��
j��d�

is 	nite if and only if one of the following two conditions is satis	ed�

�� � � ���
�� � � �� and � � ���

PROOF� We use the Gauss coordinates of � � Sym����R� de	ned in x��� by

�� � ��� �� � ���
��

� 
��
��
��
� v�

Then %��� � ��
� and

I��� � �

Z ��

�

Z ��

�

Z
R

e��
���v���������
�� �� � �j log 
j�� ��
d�d
dv

� J���K��

where

J��� � �

Z �

�

e��
�

���� �� � �j log 
j�� d


and

K� �

Z �

�

�Z �

��
e�v

���dv

	
�����e��

�
d� � C

Z �

�

e��
�
�����d��

Next observe that K� �� if and only if � � ��
� while J��� �� if and only

if either � � �� or both � � �� and � � ��� �

We will now show how this last theorem is related to the boundedness of
the weighted Bergman projection� We consider the following commutative
diagram�

L�
�

P����� A�
�

P�

��y x��L
A�
�

L������ L�
����#�

Notice that L � L�
����#� � A�

� is invertible by Paley
Wiener theorem �The


orem ������ Given � � L�
� and F � Lg � A�

�� since P�F � F � the self

adjointness of P� implies

hP���F iA�
�
� h��F iL�� � h��LgiL�� �
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Now� by the Plancherel formula� if F�� denotes the inverse Fourier transform�

h��LgiL�� �
Z
T�

��x� iy�

�Z
�

g���ei�x�iy��	d�
	
%��n

r �y�dxdy

�

Z
�

�Z
Rn

�y�x�F���g���e��yj	���x�dx
	
%��n

r �y�dy

�

Z
�

�Z
�

!�y���g���e
��yj	�d�

	
%��n

r �y�dy

�

Z
�

�
%����

Z
�

!�y���e
��yj	�%��n

r �y�dy

	
g���%�����d��������

where equality ������ follows by Fubini�s theorem� Therefore� for g � L�
����#��

equality ������ and the polarization of isometry ������ in the Paley
Wiener
theorem imply that

h��LgiL�� � hP���F iA�
�

� C�hL��P��� giL������� � hT�� giL��������������

Comparing ������ and ������ then gives

T���� � %����

Z
�

!�y���e
��yj	�%��n

r �y�dy�

We shall need the following lemma�

LEMMA 
���� If q � �� then for all � � L��q
� � T� � bq� and kT�kbq� �

Ck�kL��q� �

PROOF� By Schwarz�s inequality and Proposition ����

jT����j � %����

�Z
�

j!�y���j�e��yj	�%��n
r �y�dy

	�
�
�Z

�

e��yj	�%��n
r �y�dy

	�
�

� C�%
�
� ���

�Z
�

j!�y���j�e��yj	�%��n
r �y�dy

	�
�

�
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Furthermore� by H�older�s inequality and Theorem ������Z
Bj

jT����j�d�
	 q

�

� C�

�Z
Bj

%����

�Z
�

j!�y���j�e��yj	�%��n
r �y�dy

	
d�

	 q

�

� C �
�%

q�
� ��j�

�Z
�

e���yj	j�
�Z

Bj

j!�y���j�d�
	
%��n

r �y�dy

	q

�

� C �
�%

q�

� ��j�

�Z
�

�Z
Bj

j!�y���j�d�
	 q

�

%��n
r �y�dy

	

�
�Z

�

e�
	q
q�� �yj	j�%��n

r �y�dy

	q��
�

� C����q%
���j�

Z
�

�Z
Bj

j!�y���j�d�
	 q

�

%��n
r �y�dy�

Thus�

kT�kq
b
q
�
� C����q

Z
�

X
j

�Z
Bj

j!�y���j�d�
	 q

�

%��n
r �y�dy

� C����q

Z
�

�X
j

Z
Bj

j!�y���j�d�
	 q

�

%��n
r �y�dy�

because if � � �� every sequence of positive numbers fajg satis	esX
j

a�j �
�X

j

aj

	�

�

Here� � � q�� � �� Next� by the 	nite overlapping property and by the
Plancherel theorem�

kT�kq
bq�
� C �

����q

Z
�

�Z
�

j!�y���j�d�
	 q

�

%��n
r �y�dy

� C �
����q

Z
�

�Z
Rn

j�y�x�j�dx
	q

�

%��n
r �y�dy

� C����qk�kqL��q� �

as we wished to show� �

We can now prove the following result�

COROLLARY 
���� If Q�
� � q � Q�� then P� extends to a bounded operator

from L��q
� to A��q

� �
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PROOF� Without loss of generality� we may assume that � � q � Q�� By
Theorems ���� and ����� L is a bounded isomorphism from bq� to A

��q
� � Then�

it follows from Lemma ���� that P� � LT extends to a bounded operator from
L��q
� to A��q

� � �

��
� Lp�q
� boundedness for the weighted Bergman projector P� �

If we interpolate the L��q
� or L��q

� estimates obtained in Theorem ���� with
the L��q

� estimates established in Corollary ����� we obtain the next theorem
which generalizes Part � of Theorem ����

THEOREM 
���� The weighted Bergman projector P� extends to a bounded
projector from Lp�q

� to Ap�q
� if�

� � �
p
� �

�
�

q�p�
� �

q
� �� �

q�p�
or

� �
�
� �

p
� �

�
q�p

� �
q
� �� �

q�p

�

PROOF� For a 	xed value of �� we have the following picture�
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By interpolation� P� is bounded on Lp�q
� for ��

q
� �
p
� in the interior of the light


shaded hexagon of vertices
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and their symmetric points with respect to ��
�
� �
�
�� �

On the other hand� P� does not extend to a bounded operator on Lp�q
� on

the dark
shaded regions of the 	gure� as the next result shows� This result
generalizes part ��� of Theorem ����

THEOREM 
��
� P� extends to a bounded operator on Lp�q
� only if

n

r
� � �

n

rp
�
� � n

r
� �

q
� � �

n

r
�

PROOF� Recall that P� is a self
adjoint operator and hence� P� is bounded
on Lp�q

� if and only if P� is bounded on Lp��q�

� � Apply P� to the function f�z� �
%����n

r
��y��b�ie��z�� where z � x�iy and b�ie� is an Euclidean ball with centre

ie relatively compact in T�� It is clear that f � T
��p�q��

Lp�q
� � Moreover� by

the mean value property� there is a positive constant C � C�n� such that for
every z � T��

P�f�z� � C%���n
r

�
z � ie

i

	
�

Now� by Lemma ����� P�f belongs to Lp�q
� � Lp��q�

� only if � � n
r
� n

rp
�

��n
r
��

q

and � � n
r
� n

rp�
�

��n
r
��

q�
� The conclusion follows� �

REMARK 
���� At this time� the problem of determining whether P� is
bounded on Lp�q

� for ��
p
� �
q
� in the blank region in the above 	gure is open�

�� Applications

In this section we give some applications of our main results� that is Theorem
���� and Theorem ����� For the particular case of the Lorentz cone� these
applications were described in ���� We will not give details of the proofs� which
will appear somewhere else�


��� Transfer of Lp
� estimates for the Bergman projector to bounded

symmetric domains of tube type�
First of all� it is well known �cf� e�g� Chapter X of ����� that every tube do


main T� over a symmetric cone # can be realized via a biholomorphic mapping
as a bounded symmetric domain D� �Symmetric� means that every point of D
is an isolated 	xed point of an involutive automorphism of D and this property
implies the homogeneity of the domain� Such a bounded symmetric domain
is said to be of tube type� In one complex variable� the upper half
plane is
realized as the unit disc via the linear fractional transformation

&�z� � i
� � z

�� z
�
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The biholomorphic transformations from T� toD which generalize & are known
as Cayley transformations� We assume that the bounded domain D is the
Harish
Chandra realization �cf� ����� p� ���� of the tube domain T�� In this
case� we shall call D a standard bounded symmetric domain of tube type� In
particular� D is starlike around � and circular� that is� ei�z � D if � � R and
z � D�

THEOREM ���� Let D be a realization of a tube domain T� over a symmet�
ric cone # as a standard bounded symmetric domain D� The conclusions of
Theorems ���� and ���� are valid with T� replaced by D�

As an example� Theorems ���� and ���� for the tube in Cn� over the Lorentz
cone $n �n 
 �� are also valid for the Lie ball e# of Cn de	ned by

e# �

�
z � Cn �

���� nX
j
�

z�j

���� � �� � � �jzj� �
���� nX
j
�

z�j

����� � �

�
�

The proof of Theorem 
�� is based on a transfer principle using the explicit
form of the Cayley transformation and some homogeneity arguments �see� �����


��� Duality �Ap�q
� � Ap��q�

� ��

THEOREM ���� Let p� q � ����� and � � n
r
� �� Assume that the weighted

Bergman projector P� extends to a bounded projector from Lp�q
� to Ap�q

� � Then
the topological dual �Ap�q

� �� of Ap�q
� identi	es with Ap��q�

� by means of the map

G � Ap��q�

� �� LG�F � �

Z
T�

F �z�G�z�%��n
r �y�dxdy��
���

PROOF� By H�older�s inequality� it is clear that given G � Ap��q�

� � LG is a
bounded linear functional on Ap�q

� with kLGk � kGk
A
p� �q�
�

� Conversely� let

L � �Ap�q
� ��� By the Hahn
Banach theorem� L extends to a bounded linear

functional on Lp�q
� with the same operator norm� Since �Lp�q

� �� identi	es with
Lp��q�

� via the standard L���
� duality pairing� there exists a function � � Lp��q�

�

satisfying kLk � k�k
Lp
��q�
�

such that for every F � Ap�q
� �

L�F � �

Z
T�

F �z���z�%��n
r �y�dxdy�

But� P�F � F and P� is a self
adjoint operator� Hence�

L�F � �

Z
T�

F �z�P���z�%
��n

r �y�dxdy�

Under our hypotheses� � � Lp��q�

� implies P�� � Ap��q�

� � This proves that L � LG

with G � P�� � Ap��q�

� � �
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��� Sampling and atomic decomposition for functions in weighted
Bergman spaces�

We 	rst recall the de	nition of the Bergman distance on T�� De	ne a matrix
function fgj�kg��j�k�n on # by

gj�k�z� �
	�

	zj	zk
logB�z� z�

where B is the unweighted Bergman kernel of T�� The map z � T� �� Hz with

Hz�u� v� �
X

��j�k�n
gj�k�z�ujvk



u � �u�� ���� un�� v � �v�� ���� vn� � Cn

�
�

de	nes a Hermitian metric on Cn� called the Bergman metric� The Bergman
length of a smooth path � � ��� ��� T� is given by

l��� �

Z �

�

fH��t�� '��t�� '��t��g �
�dt

and the Bergman distance d�z�� z�� between two points z�� z� of T� is

d�z�� z�� � inf
�
l���

where the in	mum is taken over all smooth paths � � ��� �� � T� such that
���� � z� and ���� � z��
Recall that the Bergman distance d is equivalent to the Euclidean distance

on the compact sets of Cn contained in T� and the Bergman balls in T� are
relatively compact in T�� Next� let Rn be the group of translations by vectors
in Rn and let H again denote the simply transitive group of automorphisms of
the symmetric cone # de	ned in Section �� Observe that the group Rn�H acts
simply transitively on T� and recall that the Bergman distance d is invariant
under automorphisms of Rn �H�
The following Whitney decomposition of the tube domain T� can be proved

exactly in the same way as the dyadic decomposition of the symmetric cone #
�Theorem ���� and Corollary ������

THEOREM ��
� Given � � ��� ��� there exists a sequence fzjg of points of T�
such that if Bj � B
�zj�� B�

j � B �
�
�zj��

�i� the balls B�
j are pairwise disjoint�

�ii� the balls Bj form a cover of T��
�iii� there exists a positive integer N � N�#� �independent of �� such that

every point of T� belongs to at most N balls Bj�

The sequence of points fzjg is called a ��lattice in T��
To establish the sampling theorem for functions in Ap

�� we need the next
result�
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PROPOSITION ���� There exists a positive constant C such that for every
holomorphic F in T� and for every � � ��� ��� the following properties hold�

�i� jF �z�jp � ��n
Z
d�z�w��


jF �w�jp dudv

%
�n
r �v�

�

�ii� if d�z� �� � �� then

jF �z�� F ���jp � C�p
Z
d�z�w���

jF �w�jp dudv

%
�n
r �v�

�

PROOF� We recall that the measure dudv

�
�n
r �v�

is invariant under automorphisms

of T�� Therefore� it su�ces to prove that

jF �ie�jp � ��n
Z
d�ie�w��


jF �w�jp dudv

%
�n
r �v�

�

and that� if d�ie� �� � �� then

jF �ie�� F ���jp � C�p
Z
d�ie�w���

jF �w�jp dudv

%
�n
r �v�

�

The 	rst inequality follows from the mean value property and the equivalence
between d and the Euclidean distance in a neighborhood of ie� The second
inequality follows from the equality

F �ie�� F ��� �

Z
���ie	

rF �w� � dw

and from Cauchy estimates

jrF �w�j � C

Z
B�ie���

jF �s� it�jdsdt

� C

�Z
B�ie���

jF �s� it�jp dsdt

%
�n
r �t�

� �
p

�

�

We can now prove the sampling theorem�

THEOREM ���� Let fzjg be a ��lattice in T�� � � ��� ��� with zj � xj � iyj�

�i� There exist a positive constant C
 such that every F � Ap
� satis	esX

j

jF �zj�jp%��n
r �yj� � C
kFkpAp

�
�

�ii� Conversely� if � is small� there is a positive constant C
 such that every
F � Ap

� satis	es

kFkp
A
p
�
� C


X
j

jF �zj�jp%��n
r �yj��
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PROOF� �i� By Proposition 
�
 �i�� for every j�

jF �zj�jp � ��n
Z
B�j

jF �w�jp dudv

%
�n
r �v�

�

On B�
j � the function %�v� is almost constant� therefore�X

j

jF �zj�jp%��n
r �yj� � Cp�

�nX
j

%��n
r �yj�

Z
B�j

jF �w�jp dudv

%
�n
r �v�

� Cp�
�nX

j

Z
B�j

jF �w�jp%��n
r �v�dudv

� Cp�
�nkFkp

Ap
�

because the balls B�
j are pairwise disjoint�

�ii� We haveZ
T�

jF �z�jp%��n
r �y�dxdy

� Cp

X
j

%��n
r �yj�

Z
Bj

jF �z�jp dxdy

%
�n
r �y�

� C �
p

X
j

%��n
r �yj�

Z
Bj


jF �zj�jp � jF �z�� F �zj�jp
� dxdy

%
�n
r �y�

� C ��
p

�X
j

%��n
r �yj�jF �zj�jp �

X
j

%��n
r �yj�

Z
Bj

jF �z�� F �zj�jp dxdy

%
�n
r �y�

	
�

since the invariant measure of Bj is independent of j �and equal to the invariant
measure of B
�e��� Now� by Proposition 
�
 �ii�� we obtainZ

T�

jF �z�jp%��n
r �y�dxdy

� Cp

�X
j

%��n
r �yj�jF �zj�jp��p

X
j

%��n
r �yj�

Z
Bj

Z
d�z�w���

jF �w�jp dudv

%
�n
r �v�

dxdy

%
�n
r �y�

	
If we show that the sum of the second term above is bounded by a constant C�
independent of �� times the left hand side� then we can choose � small enough�
and conclude the proof�
Notice that� by the 	nite overlapping property of the balls Bj� for 	xed w�X

j

Z
z�Bj�d�z�w���

dxdy

%
�n
r �y�

� N

Z
d�z�w���

dxdy

%
�n
r �y�

� C

for some universal constant C� by invariance of the distance and of the measure�
Using this fact� and switching the integration order in the second term on

the right hand side above� we obtain the desired estimate� �
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It is easy to deduce the atomic decomposition from the sampling theorem for
values of p for which the weighted Bergman projection P� is bounded� More
precisely� we have the following theorem �cf� �����

THEOREM ���� Assume that P� is bounded on Lp
� and let fzjg be a ��lattice

in T�� Then the following assertions hold�
�i� For every complex sequence f�jg such thatX

j

j�jjp%��n
r �yj� ����
���

the series
P
j

�jB��z� zj�%��n
r �yj� is convergent in Ap

�� Moreover� its sum F

satis	es the inequality

kFkp
Ap
�
� C

X
j

j�j jp%��n
r �yj��

�ii� For � small enough� every function F � Ap
� may be written as

F �z� �
X
j

�jB��z� zj�%
��n

r �yj��

with X
j

j�j jp%��n
r �yj� � CkFkp

A
p
�
��
���

PROOF� We call lp� the space of complex sequences f�jg which satis	es �
����
�i� From part �i� of the sampling theorem �Theorem 
���� we deduce that

the linear operator

R � Ap
� � lp�

F �� RF � fF �zj�g
is bounded� Hence its adjoint R� � lp

�

� � Ap�

� is also bounded� The conclusion
follows because

R� �f�jg� �z� �
X
j

�jB��z� zj�%
��n

r �yj��

�ii� From Theorem 
�� �ii�� for � small enough� we obtain that

kFk
Ap�
�
� CkfF �zj�gklp�� �

This implies that R� � lp� � Ap
� is onto� Moreover� if N denotes the subspace

of lp� consisting of all sequences f�jg such that the sumX
j

�jB��z� zj�%
��n

r �yj�
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is identically zero� then the linear map

lp��N � Ap
�

f�jg ��P
j

�jB��z� zj�%
��n

r �yj�

is a bounded isomorphism� The continuity of its inverse gives estimates �
����
�

Finally� Theorem 
�� gives the solution of a so
called Cartan B problem
which we now describe� To keep matters simple� we assume that T� is the
tube domain in C� over the Lorentz cone # � $�� Thus� n � � and r � ��
Again� we denote by H the upper half
plane of the complex plane C� For
all p � ������ it is easy to show that the restriction f of F � Ap

��T�� to
H� � H�H given by

R�F ��z�� z�� � F �z� � z�� z� � z�� ��

belongs to the weighted Bergman space Ap
��H

��� If dV denotes the Lebesgue
measure on H�� the latter space is the subspace of Lp�H�� �y�y�����dV �z�� z���
consisting of holomorphic functions� Moreover� the restriction map�

R � Ap
��T���� Ap

��H
��

is continuous� We are interested in the range of p for which R is onto� It has
been proved in ��� that this is the case when p � ��� ������ Theorem 
�� leads
to an extension of the result to the range p � ��� ��� �� ���� Moreover� there
exists a linear extension map�
This application may be extended to all tube domains over symmetric cones�

If the rank of the cone is r�H� � H�H should be replaced byHr � H�� � ��H
�r times��

�� Final remarks

���� Hardy�s inequality� boundary values and Besov spaces�
In this subsection� we report brie*y on the generalization of the three prob


lems solved in Section in the upper half
plane� We refer to ��� and ����
Throughout the subsection� f�jg will be a 	xed �

� 
lattice in #� We construct
a smooth partition of the unity associated with the covering Bj � B���j�� For
this purpose� we choose a function �� � C�c �B��e�� such that

� � �� � � and ��jB��e� � ��

�It is called a restriction map since it is actually given by a restriction when considering
the spherical cone instead of the Lorentz cone�
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For every j� we also write �j � gje for some gj � G� Then we can de	ne
�j��j� � ���g

��
j �� so that

�j � C�c �B���j��� � � �j � � and �jjBj
� ��

We assume that �� � e so that there is no ambiguity of notations� Further� by
the 	nite overlapping property� there exists a constant C � � such that if we
de	ne &��� �

P
j

�j����

�

C
� &��� � C�

We also de	ne �j � S by �j � �j�&�

PROPOSITION ����� The following properties hold�

�� !�j � C�c �B���j���

�� � � !�j � � and
X
j

!�j��� � � � � � #�

�� the functions �j are uniformly bounded in L��Rn�� so that there exists a
positive constant C such that for all f � Lp�Rn�� � � p � � and for all
j�

kf 	 �jkp � Ckfkp�
We introduce a new family of Besov
type spaces Bp�q

� � � � p� q ��� � � R�
They are de	ned as equivalence classes of tempered distributions by means of
the semi
norm

kfkBp�q
�
�

�X
j

X
j

%����j�kf 	 �jkqp
� �

q

� f � S ��Rn��

The Besov space Bp�q
� is a Banach space and does not depend on the choice of

f�jg and f�jg�
On the other hand� we introduce a generalized wave operator � � %



�
i
d
dx

�
on the cone #� That is the di�erential operator of degree r de	ned by the
equality

%

�
�

i

d

dx

	

eix�	

�
� %���eix�	� � � Rn�

which corresponds in cones of rank � and � to

� �
�

i

d

dx
in # � �����
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and

� �
�

�

�
� 	�

	x��
�

	�

	x��
� � � �� 	�

	x�n

	
in # � $n�

The following theorem is proved in ����

THEOREM ����� Let � � n
r
� � and � � p ��� With the notations

q� � � �
�

n
r
� �

� q��p �

� n
r
��

n

rp�
��q� if n

r
� p�

� otherwise
�

assume that � � q � q��p� The following properties are equivalent�

�� P� extends to a bounded projector from Lp�q
� to Ap�q

� �
�� the Laplace operator L is a bounded isomorphism from Bp�q

� to Ap�q
� �

�� for m large enough� �m � Ap�q
� � Ap�q

��mq is a bounded isomorphism�

In this theorem� assertion ��� generalizes Hardy�s inequality for Bergman
spaces �subsection ��
� while assertion ��� implies that the space of boundary
value functions of Ap�q

� functions is the Besov space Bp�q
� � i�e� ��� is a gener


alization of results of subsection ���� For p � �� we have proved part ��� in
Theorems ���� and ���� �see also Lemma ������ Moreover� in Corollary �����
under the assumption � � q � Q�� we showed the implication ��� � ����
For more details� the reader should consult ���� Using Theorem ����� four of
the authors ��� were able to 	nd other necessary condtions on p� q for the Lp�q

�

boundedness of P� � This allows to color in dark parts of the blank regions in
the previous 	gure�

���� Projections to Hardy spaces�

It is natural to ask whether the projection P�� which is the orthogonal pro

jection onto the Hardy space H��T��� which identi	es with a closed subspace
of L��Rn�� extends to a bounded operator on Lp�Rn�� i�e� under which as

sumptions on p Theorem ��
� extends to several variables� The answer has
been known for thirty years�

THEOREM ����� ����������� The operator P� extends to a bounded operator
on Lp�Rn� only if p � ��

It is a consequence of the fact that the characteristic function of the unit ball
is not a Fourier multiplier of Lp�Rn� when p 
� �� The Bergman projection�
that we have studied all along these notes� has a better behavior than the
Szeg�o projection P�� It still has some mystery� as we have shown� at least for
us�

In the one dimensional case� we have seen that Hardy spaces are in some
way the limit of weighted Bergman spaces� It is no more true in higher rank�
Indeed� recall that the condition � � n

r
� � for Bergman spaces Ap

� is im


posed so that the weight %��n
r �y�dxdy is locally integrable near the topological
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boundary of T�� We know that Ap
� � f�g when � � n

r
��� Also� by the Paley


Wiener Theorem we see that the Hardy space in T� should correspond to the
value of the parameter � � �� It is natural to ask what it is limit space ap

pearing when we let � � n

r
� �� �compare with the �
dimensional case in

the last paragraph of x����� The surprising answer was found by M� Vergne
and H� Rossi in the case p � � �see ���� p� ������ Namely� we obtain a new
holomorphic function space with a norm of Hardy type

Hp
� � fF � H�T�� j sup

y��

Z
��

Z
Rn

jF �x� i�y � t��jp dx d
�t� ��g�

where 
 is a measure supported in the boundary of the cone� For the light
cone
$n such measure is explicitly given by�Z

��

f�t� d
�t� �

Z
Rn��

f�jt�j� t�� dt
�

jt�j� f � Cc�R
n��

In general� the measure 
 is a particular case of the so
called positive Riesz
distributions� and is obtained as the distributional limit�

d
�t� � lim
��n

r
���

�� � n
r
� ��%��n

r �t����t� dt�

For more information about such Hardy
type spaces� see �����
Let us mention that� for these new spaces� the behavior of the projector is

completely unknown�
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