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1. Introduction
ByMf we denote the category of all smooth manifolds and all smooth maps andMfm ⊂Mf
be the subcategory of m-dimensional manifolds and their local diffeomorphisms. Let A be a
Weil algebra; it is a real commutative and finite dimensional algebra with unit, which is of the
form A = R · 1A ⊕NA, where NA is the ideal of nilpotent elements of A and TA :Mf →Mf
be the corresponding Weil functor, [5]. In particular, when A is the space of all r-jets of Rk into
R with source 0 ∈ Rk denoted by Jr0

(
Rk,R

)
, the corresponding Weil functor is the functor of

k-dimensional velocities of order r and denoted by T rk . For k = 1, it is called tangent functor of
order r and denoted by T r. For any manifold M , we consider each element of TAM in the form
of an A-jet jAϕ, where ϕ ∈ C∞(Rn,M) and n the width of A. For a smooth map f : M → N ,
the map TAf ∈ C∞(TAM,TAN) is defined by TAf

(
jAϕ

)
= jA (f ◦ ϕ).

Let M be a smooth manifold of dimension m > 0. For any r ≥ 1, we consider the
collection of canonical pairings (nondegenerates on the fibers)

〈·, ·〉M : TM ×M T ∗M → R and 〈·, ·〉′T rM = ς1r ◦ T r (〈·, ·〉M ) : T rTM ×T rM T rT ∗M → R

where ς1r is a linear form on Jr0 (R,R) defined by ς1r (jr0ϕ) = 1
r!
dr

dtrϕ(t)|t=0.

For each manifold M , there is a canonical diffeomorphism (see [3, 5])

κrM : T rTM → TT rM

which is an isomorphism of vector bundles

T r (πM ) : T rTM → T rM and πrTM : TT rM → T rM
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such that T (πrM )◦κrM = πrTM . Let
(
x1, · · · , xm

)
be a local coordinate system ofM , we introduce

the coordinates
(
xi, ẋi

)
in TM ,

(
xi, ẋi, xiβ , ẋ

i
β

)
in T rTM and

(
xi, xiβ , ẋ

i, x̃iβ

)
in TT rM . We

have
κrM

(
xi, ẋi, xiβ , ẋ

i
β

)
=
(
xi, xiβ , ẋ

i, x̃iβ
)

with x̃iβ = ẋiβ . On the other hand, there is a canonical diffeomorphism ([2])

αrM : T ∗T rM → T rT ∗M

which is an isomorphism of vector bundles

π∗T rM : T ∗T rM → T rM and T r (π∗M ) : T rT ∗M → T rM

dual of κrM with respect to pairings 〈·, ·〉′T rM = τr ◦ T r (〈·, ·〉M ) and 〈·, ·〉T rM , i.e. for any
(u, u∗) ∈ T rTM ⊕ T ∗T rM,

〈κrM (u) , u∗〉T rM = 〈u, αrM (u∗)〉′T rM
Let

(
x1, · · · , xm

)
be a local coordinates system of M , we introduce the coordinates

(
xi, pj

)
in

T ∗M ,
(
xi, pj , x

i
β , p

β
j

)
in T rT ∗M and

(
xi, xiβ , πj , π

β
j

)
in T ∗T rM . We have:

αrM

(
xi, πj , x

i
β , π

β
j

)
=
(
xi, xiβ , pj , p

β
j

)
with

{
pj = πrj
pβj = πr−βj

So, αrM establishes a canonical isomorphism between T ∗T rM and T rT ∗M . It has a fundamen-
tal importance in the description of higher order Lagrangian and Hamiltonian formalisms (see
[4]). By εrM we denote the bundle map (αrM )

−1. In particular, εr is a natural transformation
between the functors T r ◦ T ∗ and T ∗ ◦ T r defined on the category Mfm. For r = 1, ε1M is
called natural isomorphism of Tulczyjew over M . This construction has been generalized in [7]
for any Weil-Frobenius algebra defined below. In [9], the authors show that any Weil algebra
has a Weil-Frobenius algebra structure if and only if there is a natural equivalence between the
bundle functors TA ◦T ∗ and T ∗ ◦TA defined onMfm. The aim of this paper is to characterize
all natural transformations TA ◦ T ∗ → T ∗ ◦ TA, when A is a Weil algebra and we give some
applications to the lifts of 1-forms. So, the main results of this paper are theorems 2, 3 and 4.

All manifolds and maps are assumed to be infinitely differentiable, we fix one Weil
algebra A. For any g ∈ C∞

(
Rk,R

)
and any multiindex β = (β1, · · · , βk), we denote by

Dβ (g) (z) = 1
β!

∂|β|g

(∂z1)
β1 ···(∂zk)βk

(z)

the partial derivative with respect to the multiindex β of g.

2. The natural transformations TA ◦ T ∗ → T ∗ ◦ TA.

2.1. Preliminaries
For any k ≥ 2, we denote by Nk

A the ideal of A generated by the products of k elements of NA.

Proposition 2.1. There is one and only one natural integer h ≥ 1 such that, Nh
A 6= 0 and

Nh+1
A = 0. It is called the height of A.

Proof. See [3, 5].

�
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We put e0 = 1A, for each multiindex α 6= 0 the vector eα = jA (xα) is an element of NA.
Therefore, for any ϕ ∈ C∞ (Rn,R) we have

jAϕ = ϕ (0) · 1A +
∑

1≤|α|≤h

1
α! ·Dα(ϕ) (0) eα

It follows that the family {eα}1≤|α|≤h generates the ideal NA. We denote by BA the set of all
multiindices such that {eα}α∈BA is a basis of NA and BA its complementary with respect to
the set of all multiindices µ ∈ Nn such that 1 ≤ |µ| ≤ h. For β ∈ BA, we have eβ =

∑
µ∈BA

λµβeµ.

By this formula, we deduce that:

jAϕ = ϕ (0) · 1A +
∑
α∈BA

 1
α! ·Dα(ϕ) (0) +

∑
β∈BA

λαβ
β!
·Dβ(ϕ) (0)

eα (1)

Corollary 2.2. Let ϕ,ψ ∈ C∞ (Rn,M), the following assertions are equivalent:
(i) jAϕ = jAψ
(ii) ϕ (0) = ψ (0) = x and for any chart

(
U, xi

)
of M in x we have:

1
α!Dα(xi ◦ ϕ) (0) +

∑
β∈BA

λαβ
β! Dβ(xi ◦ ϕ) (0) = 1

α!Dα(xi ◦ ψ) (0) +
∑
β∈BA

λαβ
β! Dβ(xi ◦ ψ) (0)

where 1 ≤ i ≤ m and α ∈ BA.

Remark 2.3. Let
(
U, xi

)
be a local coordinate system ofM , the local coordinate system

(
xi, xiα

)
of TAM over the open TAU is such that, xi = xi0

xiα = xiα +
∑

β∈BA
λαβ · xiβ (2)

where xi0
(
jAϕ

)
= xi (ϕ (0)) and xiα

(
jAϕ

)
= 1

α! · Dα

(
xi ◦ ϕ

)
(z) |z=0. It is called an adapted

coordinate system associated to
(
U, xi

)
. In the sequel, the same symbol xi will be used both

for a function U → R and for the composite function TAU → U → R. The latter function may
also be written as the pullback π∗A,U

(
xi
)
.

2.2. The canonical isomorphisms between TAE∗ and
(
TAE

) ∗
Let p be a linear form on A. The mapping p̂ : (a, b) 7→ p (ab) is bilinear symmetric and satisfies

p̂ (ab, c) = p̂ (a, bc)

Definition 2.4. We say that the linear form p is nondegenerate if the bilinear form p̂ is nonde-
generate. The pair (A, p) is called a Weil-Frobenius algebra.

We denote by Dm the category of vector bundles with m-dimensional base and vector
bundle isomorphisms with identity as base maps. We denote by TA, the covariant functor
TA : Dm → VB from the category Dm into the category VB of all vector bundles and their
vector bundle homomorphisms, such that

TA (E,M, π) =
(
TAE, TAM,TAπ

)
and TA (idM , f) =

(
idTAM , T

Af
)

for any Dm-objet (E,M, π) and Dm-morphism (idM , f) ([3]). For a linear form p : A→ R and
the vector bundle (E,M, π), we consider the natural vector bundle morphism

τpA,E : TAE∗ →
(
TAE

)∗
(3)

defined for any jAϕ ∈ TAE∗ and jAψ ∈ TAE by:

τpA,E
(
jAϕ

) (
jAψ

)
= p

(
jA (〈ψ,ϕ〉E)

)
(4)

Afr. J. Pure Appl. Math.
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where 〈ψ,ϕ〉E : Rn → R, z 7→ 〈ψ (z) , ϕ (z)〉E and 〈·, ·〉E the canonical pairing. We have

Proposition 2.5. For any Dm-morphism f : E1 → E2, the diagram

TAf∗

TAE∗2 → TAE∗1
τpA,E2

↓ ↓ τpA,E1(
TAE2

)∗ →
(
TAE1

)∗(
TAf

)∗
commutes.

Proof. Let jAϕ ∈ TAE∗2 and jAψ ∈ TAE1 over TAM . We have:(
TAf

)∗ ◦ τpA,E2

(
jAϕ

) (
jAψ

)
=

(
τpA,E2

(
jAϕ

)) (
TAf

(
jAψ

))
=

(
τpA,E2

(
jAϕ

)) (
jA (f ◦ ψ)

)
= p

(
jA
(
〈f ◦ ψ,ϕ〉E2

))
= p

(
jA
(
〈ψ, f∗ ◦ ϕ〉E1

))
On the other hand,

τpA,E1
◦ TAf∗

(
jAϕ

) (
jAψ

)
= τpA,E1

(
jA (f∗ ◦ ϕ)

) (
jAψ

)
= p

(
jA
(
〈ψ, f∗ ◦ ϕ〉E1

))
=

(
TAf

)∗ ◦ τpA,E2

(
jAϕ

) (
jAψ

)
It follows that

(
TAf

)∗ ◦ τpA,E2
= τpA,E1

◦ TAf∗. Thus τpA,E : TAE∗ →
(
TAE

)∗ is a natural
homomorphism of vector bundles.

�

Remark 2.6. (Local expression of τpA,E). Let (η1, · · · , ηk) be a basis of local sections of E and(
η1, · · · , ηk

)
be the dual basis of local sections of π∗ : E∗ →M . We have an adapted coordinate

systems
(
xi, yj

)
in E,

(
xi, uj

)
in E∗,

(
xi, yj , xiα, y

j
α

)
in TAE,

(
xi, uj , x

i
α, u

α
j

)
in TAE∗ and(

xi, wj , x
i
α, w

α
j

)
in
(
TAE

)∗. Locally, we have

τpA,E
(
xi, uj , x

i
α, u

α
j

)
=
(
xi, wj , x

i
α, w

α
j

)
with


wj = ujp0 +

∑
α∈BA

uαj pα

wαj =
∑
β∈BA

uβ−αj pβ

where p(eγ) = pγ .

Theorem 2.7. There is a bijective correspondence between the set of all the natural isomorphism
of vector bundles τA,E : TAE∗ → (TAE)∗ satisfying, for any a, b ∈ A

τA,R (a) (b) = τA,R (1A) (ab) (5)

and the set of all the linear and nondegenerate maps of A.

Proof. For the first part, see [7]. Inversely, let τA,E : TAE∗ →
(
TAE

)∗ be the canonical vector
bundle isomorphism verifying (1.5). The map τA,R : A → A∗ denoted by p is a vector space
isomorphism. It induces the linear map

p : A → R
a → p (1A) (a)

We consider the bilinear symmetric map induced by p denoted p̂ and defined in the following
way: p̂ : (a, b) 7→ p (1A) (ab). By the equality (1.5), it follows that p̂ is nondegenerate. Let τpA,E
be a natural transformation defined by p. For any vector space V , using the equation (1.5) we
have τpA,V = τA,V . The equality τpA,E = τA,E comes by calculation in local coordinates.

Afr. J. Pure Appl. Math.
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Remark 2.8. The theorem above, shows in particular that: a natural vector bundle morphisms
TAE∗ →

(
TAE

)∗ (satisfying (1.5)) is a natural equivalence if and only if A is a Weil-Frobenius
algebra.

�

Example 2.9. (i) For A = D, consider the linear map pD : D→ R given by

pD(j10ϕ) =
d

dt
(ϕ(t)) |t=0

We have the natural isomorphism τpDD,E = IE : TE∗ → (TE)
∗, called the Swap map of E.

(ii) For A = Jr0 (R,R) and the linear form ς1r is non degenerate, it induces the natural vector
bundle isomorphism IrE : T rE∗ → (T rE)

∗, ([6]). The local expression of IrE is of the form:

IrE(xi, uj , x
i
β , u

β
j ) = (xi, wj , x

i
β , w

β
j ) with

{
wj = urj
wβj = ur−βj

For an arbitrary linear map p : A → R non necessarily nondegenerate, it induces the natural
vector bundle morphism τpA,E : TAE∗ →

(
TAE

)∗ over idTAM non necessarily bijective.

Corollary 2.10. There is a bijective correspondence between the set of all the natural vector
bundle morphisms τA,E : TAE∗ →

(
TAE

)∗ verifying (1.5) and the set A∗.

For each 1 ≤ |α| ≤ h, we consider the linear map ςαA : A→ R defined by:

ςαA(jAϕ) = 1
α!Dα (ϕ) (z)|z=0

It induces the vector bundle morphism ταA,E : TAE∗ →
(
TAE

)∗ over idTAM .
Let

(
xi, uj

)
be an adapted local coordinate system of E, the local expression of the bundle map

ταA,E : TAE∗ →
(
TAE

)∗ takes the form

ταA,E

(
xi, uj , x

i
β , u

β
j

)
=
(
xi, wj , x

i
β , w

β
j

)
with

{
wj = uαj
wβj = uα−βj

We denote by ∗ the covariant functor from Dm into Dm defined by:

∗ (E,M, π) = (E∗,M, π∗) and ∗ (idM , f) = (idM , (
tf)−1)

Corollary 2.11. All natural transformations of TA ◦ ∗ → ∗ ◦ TA verifying (1.5) are of the form

p0τ
0
A,∗ +

∑
1≤|α|≤h

pα · ταA,∗ (6)

where p0, pα are the real numbers.

Proof. Let τA : TA ◦ ∗ → ∗ ◦ TA be a natural transformations verifying (1.5), it induces
a linear map p : A→ R. This linear map has the form

p0ς
0
A +

∑
1≤|α|≤h

pας
α
A

So we have the result.
�

Corollary 2.12. For all k ≥ 2 and r ≥ 1, do not exist a natural equivalence between T rkE
∗ and

(T rkE)
∗ verifying (1.5). In particular Jr0

(
Rk,R

)
is not a Weil-Frobenius algebra.

Proof. See [9].
�
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2.3. Main results.
For each manifold M , there is a canonical diffeomorphism (see [3, 5])

κAM : TATM → TTAM

which is an isomorphism of vector bundles

TA (πM ) : TATM → TAM and πTAM : TTAM → TAM

such that, πTAM ◦ κAM = TA(πM ). In particular, for any f ∈ C∞ (M,N) we have

κAN ◦ TATf = TTAf ◦ κAM
Let p : A→ R be a linear map, it induces the natural vector bundle morphism τpA,· : TA ◦ ∗ →
∗ ◦ TA. For any manifold M of dimension m, we consider the vector bundle morphism

εpA,M =
[(
κAM
)−1]∗ ◦ τpA,TM : TAT ∗M → T ∗TAM.

It is clear that the family of maps
(
εpA,M

)
defines a natural transformation between the functors

TA ◦ T ∗ and T ∗ ◦ TA on the categoryMfm and denoted

εpA,∗ : TA ◦ T ∗ → T ∗ ◦ TA.

When p is nondegenerate, the mapping εpA,M is a vector bundle isomorphism over idTAM .
In local coordinate system

{
x1, · · · , xm

}
of M , we introduce the coordinates

(
xi, ẋi

)
in TM ,(

xi, πi
)
in T ∗M , (xi, ẋi, xiβ , ẋ

i
β) in TATM , (xi, πj , x

i
β , π

β
j ) in TAT ∗M , (xi, xiβ , ẋ

i, ẋ
i
β) in TTAM

and (xi, xiβ , ξj , ξ
β

j ) in T ∗TAM . We have:

κAM

(
xi, ẋi, xiβ , ẋ

i
β

)
=
(
xi, xiβ , ẋ

i, ẋiβ

)
with ẋiβ = ẋ

i
β . It follows that

εpA,M

(
xi, πj , x

i
β , π

β
j

)
=
(
xi, xiβ , ξj , ξ

β

j

)
with


ξj = πjp0 +

∑
µ∈BA

πµj pµ

ξ
β

j =
∑
µ∈BA

πµ−βj pµ
(7)

Example 2.13. (i) When A = D and pD : D→ R, j10ϕ 7→ d
dt (ϕ(t)) |t=0 we have the natural

isomorphism of Tulczyjew εM : TT ∗M → T ∗TM , (see [5]). For the linear map p0
(
j10γ
)

=

γ (0), we obtain the natural vector bundle morphisms ε0M such that locally,

ε0M
(
xi, πi, ẋ

i, π̇i
)

=
(
xi, ẋi, πi, 0

)
.

(ii) If A = J1
0 (Rp,R) and pJ1

0 (Rp,R) : J1
0 (Rp,R) → R, j10ϕ 7→ ϕ(0) +

p∑
i=1

∂ϕ
∂xi (0), we have

the natural vector bundle morphism ε1p,M : T 1
pT
∗M → T ∗T 1

pM defined in [12]. In local
coordinate,

ε1p,M

(
xi, πi, x

i
β , π

β
i

)
=
(
xi, xiβ , ξi, ξ

β
i

)
with

 ξi =
∑
|α|=1

παi

ξβi = πi

(iii) If A = Jr0 (R,R), and pJr0 (R,R) : Jr0 (R,R) → R, jr0ϕ 7→ 1
r! ·

dr

dtr (ϕ(t))|t=0, we have the
natural vector bundle isomorphism εrM : T rT ∗M → T ∗T rM defined in [2].

Afr. J. Pure Appl. Math.
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(iv) When A = Jr0 (Rk,R) and the linear form on Jr0 (Rk,R) defined by

pJr0 (Rk,R) (jr0ϕ) =
∑
|α|=r

1

α!
Dα(ϕ)(z)|z=0.

We deduce the natural transformations εrk,M : T rkT
∗M → T ∗T rkM such that locally

εrk,M

(
xi, πi, x

i
β , π

β
i

)
=
(
xi, xiβ , ξi, ξ

β
i

)
where


ξi =

∑
|α|=r

παi

ξβi =
∑
|α|=r

πα−βi

Let D be a derivation of A, for any real number t, Dt = exp (tD) ∈ Aut (A), where
Aut (A) is the group of all automorphisms of A. It is a Lie subgroup of Lie group GL (A). The
map Dt : A→ A is an automorphism of A, it induces a natural transformation D̃t,M : TAM →
TAM . On the other hand, the multiplication of the tangent vectors of M by reals is a map
mTM : R× TM → TM . Applying the Weil functor TA, we obtain TA (mTM ) : A× TATM →
TATM . Let c ∈ A, we put

afM (c) = κAM ◦ TA (mTM ) (c, ·) ◦ (κAM )−1,

it is a natural tensor of type (1, 1) on TAM , called affinor. In [5], one shows that, all natural
transformations T ◦ TA → T ◦ TA are of the form af (c) + T

(
D̃t

)
, where t ∈ R.

Theorem 2.14. Let (A, p) be a Weil-Frobenius algebra. All natural transformations θA : TA ◦
T ∗ → T ∗ ◦ TA are of the form

T ∗
(
D̃t

)
◦ εpA + (af (c))∗ ◦ εpA (8)

where c ∈ A, t ∈ R and D a derivation of A.

Proof. Let θA : TA ◦ T ∗ → T ∗ ◦ TA be a natural transformation, θA ◦ (εpA)
−1

= ϕA,p :
T ∗ ◦ TA → T ∗ ◦ TA is a natural transformation. We obtain a natural transformation ϕ∗A,p :

T ◦ TA → T ◦ TA, it exists a derivation D of A and c ∈ A such that ϕ∗A,p = af (c) + T
(
D̃t

)
, for

a real number t. We obtain θA = T ∗
(
D̃t

)
◦ εpA + (af (c))∗ ◦ εpA.

�

Corollary 2.15. Let (A, p) be a Weil-Frobenius algebra. All natural isomorphisms on a manifold
M , TAT ∗M → T ∗ ◦ TAM are of the form

T ∗(D̃t,M ) ◦ εpA,M
where t ∈ R and D a derivation of A.

Corollary 2.16. All natural morphisms TT ∗M → T ∗TM are of the form

aT ∗ (Ft,M ) ◦ εM + bεM + cε0M

where Ft,M is a one parameter subgroup of the Euler vector field on TM , a, b, c are real numbers
and t 6= 0.

Proof. We recall that D ' R2, the structure of Weil algebra is given by:

(x0, x1) · (y0, y1) = (x0y0, x0y1 + x1y0)

Let D be a derivation of R2. The natural transformation D̃t associated is given by:

D̃t,M = αFt,M .

Afr. J. Pure Appl. Math.
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On the other hand, any affinor is of the form βidTTM + c · afM (e1), with e1 = (0, 1). It follows
that the natural morphism

θM : TT ∗M → T ∗TM

is given by:
θM = αT ∗ (Ft,M ) ◦ εM + (α+ β) εM + bε0M ,

because (afM (e1))
∗ ◦ εM = ε0M .

�

Let (e0, · · · , er) the canonical basis of A = Jr0 (R,R). For 0 ≤ α ≤ r and a manifold M , we put: ε0M =
[
(κrM )

−1
]∗
◦ τ0A,TM

εαM =
[
(κrM )

−1
]∗
◦ ταA,TM

Consider the linear map φα : Jr0 (R,R)→ Jr0 (R,R) defined by{
φα (e0) = 0

φα (eβ+1) = (α+β)!
α!β! eα+β

is a derivation, it induces a one parameter subgroup of a vector field on T rM denoted by
φtα,M : T rM → T rM .

Proposition 2.17. Any derivation φ : Jr0 (R,R)→ Jr0 (R,R) is of the form

φ =

r∑
β=1

aβ · φβ

where a1, · · · , ar are real numbers.

Proof. For any α = 0, · · · , r, we have e0·eα = eα, therefore φ (eα)·e0+φ (e0)·eα = φ (eα).
It follows that

φ (e0) · eα = 0, ∀α = 0, · · · , r
So that, φ (e0) = 0. We put,

φ (e1) =

r∑
β=0

aβeβ

with a0, a1, · · · , ar are the real numbers. Using the relation e1 · e1 = 2e2, we have

φ (e2) = φ (e1) · e1 =

r−1∑
β=0

(β + 1) aβeβ+1

By the same way, e2 · e1 = 3e3, it follows that, 3φ (e3) = φ (e2) · e1 + φ (e1) · e2. Now

φ (e2) · e1 =

r−2∑
β=0

(β + 1) (β + 2) aβeβ+2

φ (e1) · e2 =

r−2∑
β=0

(β+1)(β+2)
2 aβeβ+2

We deduce that,

φ (e2) · e1 + φ (e1) · e2 =

r−2∑
β=0

3 (β+1)(β+2)
2 aβeβ+2

So,

φ (e3) =

n−2∑
β=0

(β+1)(β+2)
2 aβeβ+2
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Looking the expressions of φ (e1), φ (e2) and φ (e3) we put

φ (eα) =

r−α+1∑
β=0

(α+β−1)!
(β−1)!α! aβeα+β−1

By induction, using the relation eα · e1 = (α+ 1) eα+1, we obtain,

(α+ 1)φ (eα+1) = φ (eα) · e1 + φ (e1) · eα
Now,

φ (eα) · e1 =

r−α+1∑
β=0

(α+β−1)!
(β−1)!α! aβeα+β−1 · e1 =

r−α∑
β=0

(α+β)!
(β−1)!α!aβeα+β

φ (e1) · eα =

r∑
β=0

aβeβ · eα =

r−α∑
β=0

(α+β)!
β!α! aβeα+β

We deduce that

φ (eα) · e1 + φ (e1) · eα =

r−α∑
β=0

(α+1)(α+β)!
β!α! aβeα+β

Thus,

φ (eα+1) =

r−α∑
β=0

(α+β)!
β!α! aβeα+β

On the other hand, φ (er) = a0er−1 +a1er and er · e1 = 0. So that φ (er) · e1 +φ (e1) · er = 0. As

φ (er) · e1 = ra0er
φ (e1) · er = a0er

It follows that a0 = 0. So that, for any α = 0, · · · , r − 1, we have

φ (eα+1) =

r−α∑
β=1

aβ
(α+β)!
β!α! eα+β =

r−α∑
β=1

aβφβ (eα+1)

Thus, we obtain the result.

�

Theorem 2.18. All natural vector bundle morphisms T rT ∗M → T ∗T rM are of the form
r∑

α=1

aαT
∗ (φtα,M) ◦ εrM +

r−1∑
β=0

bβε
β
M

where aα, bβ, t are real numbers.

Proof. Any derivation φ : Jr0 (R,R)→ Jr0 (R,R) is a R-linear combination of the maps φα. The
rest of the proof comes from the formula εαM = (afM (eα))

∗ ◦ εrM , for any α = 0, · · · r − 1.

�

Corollary 2.19. All natural isomorphisms on a manifold M , T rT ∗M → T ∗ ◦ T rM are of the
form

r∑
α=1

aαT
∗ (φtα,M) ◦ εrM

where aα, t ∈ R.
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3. Applications: Lifts of 1-forms to Weil bundles revisited

In this section, we fix the linear map p : A→ R and εpA,∗ the natural transformation TA ◦T ∗ →
T ∗ ◦ TA such that: for any manifold M , εpA,M = [(κAM )−1]∗ ◦ τpA,TM .

3.1. Prolongations of 1-forms
Let ω ∈ Ω1 (M), we put:

ω(p) = εpA,M ◦ T
Aω (9)

ω(p) is a 1-form on TAM . If locally ω = ωidx
i then we have:

ω(p) =

ωip0 +
∑
γ∈BA

ω
(γ)
i pγ

 dxi +
∑
β∈BA

 ∑
µ∈BA

ω
(µ−β)
i pµ

 dxiβ (10)

with 
ω
(γ)
i = ω

(γ)
i +

∑
ν∈BA

λγνω
(ν)
i

ω
(µ−β)
i = ω

(µ−β)
i +

∑
α∈BA

λµαω
(α−β)
i

(11)

Definition 3.1. The differential form ω(p) defined on TAM is called p-prolongation of ω from
M to TAM

Example 3.2. (i) Case where A = D. (see [4])
(a) For the linear map p = 1D : D → R, j10γ 7→ γ(0) the local expression of ω(1D) is

given by:

ω(1D) = ωidx
i

The 1-form ω(1D) coincide with the vertical lift of ω from M to TM .
(b) For p = pD as defined in example 2, we have p0 = 0 and p1 = 1, so

ω(pD) =
∂ωi
∂xk

ẋkdx
i + ωidẋ

i

The 1-form ω(pD) coincide with the complete lift of ω from M to TM .
(ii) Case where A = Jr0 (Rk,R). For the linear map p = ςkα : jr0g 7→ 1

α!Dα(g(t))|t=0 we have
pγ = 0 for γ 6= α and pα = 1. So using the equation (2.2) we deduce that:

ω(ςkα) = ω
(α)
i dxi +

∑
1≤|β|≤r

ω
(α−β)
i dxiβ =

∑
0≤|β|≤r

ω
(α−β)
i dxiβ

Thus ω(ςkα) coincide with the α-prolongation of differential form ω fromM to T rkM defined
in [10].

(iii) General case. For the linear map p = ςαA : jAϕ 7→ 1
α!Dα(ϕ(z))|z=0 with α ∈ BA and

ϕ ∈ C∞ (Rn,R) we have: pγ = 0 for γ 6= α and pα = 1. Thus

ω(ςαA) = ω
(α)
i dxi +

∑
β∈BA

ω
(α−β)
i dxiβ

The differential form ω(ςαA) coincides with the α-prolongation of differential form defined
in [3].
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3.2. The symplectomorphisms εpA,M : TAT ∗M → T ∗TAM

Let Ω be a 2 form on M . It induces the vector bundle morphism Ω] : TM → T ∗M . We put:(
Ω]
)(p)

= εpA,M ◦ T
A
(
Ω]
)
◦
(
κAM
)−1

(12)

The TAM -morphism of vector bundles
(
Ω]
)(p)

: TTAM → T ∗TAM defines a differential form
Ω(p) on TAM of degree 2 called p-prolongation of Ω fromM to TAM . If locally Ω = Ωijdx

i∧dxj
then: 

Ω(p) = Ωijp0dx
i ∧ dxj +

∑
α∈BA

pα

 ∑
β∈BA

Ω
(α−β)
ij

 dxi ∧ dxjβ

+
∑

µ,β∈BA

( ∑
α∈BA

pαΩ
(α−β−µ)
ij

)
dxiµ ∧ dx

j
β

(13)

Example 3.3. In the particular case where A = Jr0
(
Rk,R

)
and p = ςkα we have:

Ω(ςkα) = Ω
(α−β−µ)
ij dxiµ ∧ dx

j
β

It coincides with the α-prolongation of Ω from M to T rkM defined in [10].

Example 3.4. If ΩM is a Liouville 2-form on T ∗M defined in local coordinates system
(
xi, πj

)
by:

ΩM = dxi ∧ dπi,
then we have:

Ω
(p)
M = p0dx

i ∧ dπi +
∑
α∈BA

pαdx
i ∧ dπαi +

∑
α,β∈BA

pαdx
i
β ∧ dπ

α−β
i (14)

It is clear that d
(

Ω
(p)
M

)
= 0. Thus the 2-form Ω

(p)
M defines a presymplectic structure on TAT ∗M .

It is symplectic form if p is nondegenerate.

Theorem 3.5. The vector bundle morphisms εpA,M : TAT ∗M → T ∗TAM is a symplecto-

morphism between the pre-symplectic manifolds
(
TAT ∗M,Ω

(p)
M

)
and

(
T ∗TAM,ΩTAM

)
. Where

ΩTAM is a Liouville 2-form on T ∗TAM

Proof. The expression in local coordinate of Liouville 2-form on T ∗TAM is given by:

ΩTAM = dxi ∧ dπi +
∑
α∈BA

dxiα ∧ dπαi(
εpA,M

)
∗ (ΩTAM ) =

∑
α∈BA∪{0}

d
(
xiα ◦ ε

p
A,M

)
∧ d
(
παi ◦ ε

p
A,M

)
= dxi ∧ d

(
p0πi +

∑
α∈BA

pαπ
α
i

)
+

∑
β,α∈BA

pαdx
i
β ∧ dπ

α−β
i

= p0dx
i ∧ dπi +

∑
α∈BA

pαdx
i ∧ dπαi +

∑
β,α∈BA

pαdx
i
β ∧ dπ

α−β
i

Thus
(
εpA,M

)
∗ (ΩTAM ) = Ω

(p)
M .

�

Remark 3.6. (i) In particular, when p = ς1r we obtain the results of [2].
(ii) When (A, p) is a Weil-Frobenius algebra, the bundle TAT ∗M has a canonical symplectic

structure determined by
(
εpA,M

)
∗ (ΩTAM ) = Ω

(p)
M . More precisely, in [9], the authors show

that: for any Weil algebra A the bundle TAT ∗M has the canonical symplectic structure
if and only if A is a Weil-Frobenius algebra.

Afr. J. Pure Appl. Math.



32 P. M. Kouotchop Wamba and Alphonse MBA

References
1. Abraham, R. and Marsden, J., E. Foundations of mechanics, second edition Library of congress

cataloging in publication data, October 1987.
2. Cantrijn, F., Crampin, M.,Sarlet W., and Saunders, D., The canonical isomorphism between T kT ∗

and T ∗T k. C.R. Acad. Sci. Paris, t. 309 (1989), série II, 1509–1514.
3. Gancarzewicz, J. , Mikulski, W. and Pogoda, Z., Lifts of some tensor fields and connections to

product preserving functors, Nagoya Math. J. 135 (1994), 1–41.
4. Gràcia, X., Pons, J., M., and Romàn-Roy, N., Higher order Lagrangian systems: Geometric struc-

tures, dynamics, and constraints, J. Math. Phy., 32, No., 10 (1991), 2744-2763.
5. Kolar, I., Michor, P. and Slovak, J., Natural operations in differential geometry, Springer-Verlag.

1993.
6. KouotchopWamba, P., M., Canonical Poisson-Nijenhuis structures on higher order tangent bundles,

Annales Polonici Mathematici 111 1 (2014), 21–37.
7. Kouotchop Wamba, P., M. and Ntyam, A., Prolongations of Dirac structures related to Weil bundles,

Lobatchevskii journal of mathematics, 35 (2014), N◦ 2, pp 106–121.
8. Kurek, J., Natural affinors in higher order cotangent bundle, Archivum Mathematicum (BRNO),

Tomus 28 (1992), 175–180.
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