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1. Introduction

By M f we denote the category of all smooth manifolds and all smooth maps and M f,, C Mf
be the subcategory of m-dimensional manifolds and their local diffeomorphisms. Let A be a
Weil algebra; it is a real commutative and finite dimensional algebra with unit, which is of the
form A=R-14 @ N4, where N, is the ideal of nilpotent elements of A and T4 : Mf — Mf
be the corresponding Weil functor, [5]. In particular, when A is the space of all r-jets of R into
R with source 0 € R* denoted by Jj (Rk7 R), the corresponding Weil functor is the functor of
k-dimensional velocities of order r and denoted by T}. For k = 1, it is called tangent functor of
order r and denoted by T". For any manifold M, we consider each element of T4 M in the form
of an A-jet j4¢p, where ¢ € C°(R", M) and n the width of A. For a smooth map f: M — N,
the map T4 f € C(TAM, TAN) is defined by T f (j4¢) = j* (f o ¢).

Let M be a smooth manifold of dimension m > 0. For any r > 1, we consider the
collection of canonical pairings (nondegenerates on the fibers)

(33 TM xp T*M = Rand (-, Yoppy =6t o T (( ) : T"TM xprpy T"T*M — R

where ¢! is a linear form on JJ (R, R) defined by <! (j5¢) = %%g@(tﬂt:o.

For each manifold M, there is a canonical diffeomorphism (see [3, 5])
Ky :T"TM — TT™M
which is an isomorphism of vector bundles

T (wp) : T"TM — T"M  and  why, : TT"M — T"M
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such that T (7} )ok’y, = 75, Let (z!,- -+ ,2™) be alocal coordinate system of M, we introduce
the coordinates (Z'l,l’l) in TM, (mﬂmﬁm%,x%) in T"TM and (xi,x%,m'i,iiﬁ) in TT"M. We
have

Ky (af, 3, 2, d5) = (2, 2, 3, 7p)
with Zf = @f. On the other hand, there is a canonical diffeomorphism ([2])

oy T*T"M - T"T*M
which is an isomorphism of vector bundles
Tyep YT M - T" M and T7 (wy) : T"T*M — T"M

dual of k%, with respect to pairings (-,*)rp; = 7 © T ({-,-)ar) and (-, -)prar, ie. for any
(u,u*) e T"TM & T*T" M,

(ks (w) s u)rrar = (u; oy (u)) ey
Let (xl, e ,zm) be a local coordinates system of M, we introduce the coordinates (zi,pj) in
T*M, (xi,pj,xfa,pf) in T"T*M and (mi,xg,ﬂj,ﬂf) in T*T" M. We have:

. ) 8 . 3 p; = "
al, (xzvﬂj,m;,,wj) - (mz,mg,pj,pj) with pg g

J

So, oy, establishes a canonical isomorphism between T*T"M and T"T*M. It has a fundamen-
tal importance in the description of higher order Lagrangian and Hamiltonian formalisms (see
[4]). By €, we denote the bundle map (a%,)”". In particular, e is a natural transformation
between the functors 77 o T* and T* o T" defined on the category Mf,,. For r = 1, &}, is
called natural isomorphism of Tulczyjew over M. This construction has been generalized in [7]
for any Weil-Frobenius algebra defined below. In [9], the authors show that any Weil algebra
has a Weil-Frobenius algebra structure if and only if there is a natural equivalence between the
bundle functors 74 o T* and T* o T4 defined on M f,,. The aim of this paper is to characterize
all natural transformations T4 o T* — T* o T4, when A is a Weil algebra and we give some
applications to the lifts of 1-forms. So, the main results of this paper are theorems 2, 3 and 4.

All manifolds and maps are assumed to be infinitely differentiable, we fix one Weil
algebra A. For any g € C* (Rk, R) and any multiindex S = (81, -+, Bk), we denote by

18]
Dg(g9) (2) = ﬁ(azl)ﬁ?_w (2)

the partial derivative with respect to the multiindex 5 of g.

2. The natural transformations 74 o T* — T* o T4.

2.1. Preliminaries

For any k > 2, we denote by N% the ideal of A generated by the products of k elements of N4.

Proposition 2.1. There is one and only one natural integer h > 1 such that, Nz # 0 and
NZ“ = 0. It is called the height of A.

Proof. See [3, 5].

Afr. J. Pure Appl. Math.
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We put eg = 1a, for each multiindex a # 0 the vector e, = j* (%) is an element of Ny4.
Therefore, for any ¢ € C* (R™,R) we have

=00 1a+ Y L Dal®)(0)eq
1<[a|<h
It follows that the family {eq}, <|aj<n generates the ideal Na. We denote by B, the set of all

multiindices such that {e,} is a basis of N4 and B4 its complementary with respect to

a€EBy
the set of all multiindices 4 € N™ such that 1 < |u| < h. For 8 € B4, we have eg = Z )\ge“.

HEBA
By this formula, we deduce that:

)\Ot
Pe=00)1a+ Y |4 Dale) )+ Y Ff-DB(w)(O) Ca (1)
a€By ﬁGEA '

Corollary 2.2. Let p,¢p € C (R™, M), the following assertions are equivalent:
(i) jhe =5 .
(i) ¢ (0) = (0) = = and for any chart (U,z") of M in x we have:
i AG i i S %
arDal@’ 0 9) (0) + Y FrDs(a' 09) (0) = 1 Dalz’ 09) (0) + Y FrDsla’ 0¢) (0)
BEBaA BEBA
where 1 <i<m and o € By.

Remark 2.3. Let (U, xi) be a local coordinate system of M, the local coordinate system (fi, ffl)
of TAM over the open T2U is such that,

i i

33. == .230
T, = x4+ X A -ap (2)

where ) (j4¢) = 27 (¢ (0)) and 2, (j2¢) = & - Do (27 0¢) (2) |2=0. It is called an adapted
coordinate system associated to (U7 xl) In the sequel, the same symbol z? will be used both
for a function U — R and for the composite function 74U — U — R. The latter function may

also be written as the pullback 77 (z%).

2.2. The canonical isomorphisms between 74 E* and (TAE) *

Let p be a linear form on A. The mapping p : (a,b) — p (ab) is bilinear symmetric and satisfies
p(ab,c) = p(a,be)

Definition 2.4. We say that the linear form p is nondegenerate if the bilinear form p is nonde-
generate. The pair (A,p) is called a Weil-Frobenius algebra.

We denote by D,, the category of vector bundles with m-dimensional base and vector
bundle isomorphisms with identity as base maps. We denote by T4, the covariant functor
T4 : D,, — VB from the category D,, into the category VB of all vector bundles and their
vector bundle homomorphisms, such that

T4(E,M,n) = (TAE,T*M,T*n) and T* (idy, f) = (idpap, TAf)

for any D,,-objet (E, M, ) and D,,-morphism (idys, f) ([3]). For a linear form p : A — R and
the vector bundle (F, M, ), we consider the natural vector bundle morphism

™ g TAE* — (T*E)’ (3)
defined for any j4¢ € TAE* and j4 € TAFE by:
7h 5 (1%0) (1'9) = (7" (4,0} ) (4)

Afr. J. Pure Appl. Math.
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where (), ) g : R* = R, 2= (¢ (2),¢(2)) g and (-,-) ; the canonical pairing. We have
Proposition 2.5. For any D,,-morphism f : E1 — Es, the diagram

TAf*
TAES — TAEY
fo,Ez \} i TZ,El
(T4E,)" — (T4E,)"
(T4f)
commutes.
Proof. Let j4p € TAE} and j4¢ € TAE; over T4 M. We have:
(T46) ol m, (1%0) (170) = (Thm, (%9) ) (TAF (7))

|
i)

|
S
~

On the other hand,
Thp o T (%) (M) = Th g (71 (£ o) (i*9)

(T4F) o 7h m, (i) (1*¢)

It follows that (TAf)* oThp, = Thm, © TAf*. Thus 74  : TAE* — (TAE)* is a natural
homomorphism of vector bundles.

|
Remark 2.6. (Local expression of T} ). Let (n1,--- %) be a basis of local sections of £ and
(771, e ,nk) be the dual basis of local sections of 7, : E* — M. We have an adapted coordinate

systems (z%,97) in E, (2',u;) in E*, (2,97, 2,,7%) in TAE, (2%, u;,7.,0%) in TAE* and

a?r )

(wi,wj,ffl,ﬁy) in (TAE)*. Locally, we have

— —Q
wj = ujpo+ E Uj Pa
P I v ) N i - e : a€By
TAE (m ,uj,xa,uj) = (a: ,w],ma,wj) with D _B-a
wy = w; ps
BEBA

where p(e,) = ps.
Theorem 2.7. There is a bijective correspondence between the set of all the natural isomorphism
of vector bundles T4 g : TAE* — (TAE)* satisfying, for any a,b € A

Tar (a) (b) = Tag (14) (ab) (5)

and the set of all the linear and nondegenerate maps of A.

Proof. For the first part, see [7]. Inversely, let 74 g : TAE* — (TAE)* be the canonical vector
bundle isomorphism verifying (1.5). The map 7ag : A — A* denoted by P is a vector space
isomorphism. It induces the linear map
p: A — R
a — p(la)(a)

We consider the bilinear symmetric map induced by p denoted p and defined in the following
way: D : (a,b) — p(1a) (ab). By the equality (1.5), it follows that p is nondegenerate. Let TfLE
be a natural transformation defined by p. For any vector space V, using the equation (1.5) we
have 74 |, = 74,v. The equality 7§ ;, = 74 g comes by calculation in local coordinates.

Afr. J. Pure Appl. Math.
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Remark 2.8. The theorem above, shows in particular that: a natural vector bundle morphisms
TAE* — (TAE)* (satisfying (1.5)) is a natural equivalence if and only if A is a Weil-Frobenius
algebra.

Example 2.9. (i) For A =D, consider the linear map pp : D — R given by

. d
pojoy) = o (e(?)) =0
We have the natural isomorphism THI;tDE = Ig: TE* — (TE)", called the Swap map of E.

(ii) For A = JJ(R,R) and the linear form ¢} is non degenerate, it induces the natural vector
bundle isomorphism I% : T"E* — (T"E)", (|6]). The local expression of I is of the form:

. ) . . . w; = u}
Ig(xz,uj,x}j,u?) = (xz,wj,x%,wf) with { wfg B ui_,g
Jj J

For an arbitrary linear map p : A — R non necessarily nondegenerate, it induces the natural
vector bundle morphism 74 . : TAE* — (TAE)* over idpa; non necessarily bijective.

Corollary 2.10. There is a bijective correspondence between the set of all the matural vector
bundle morphisms T4 p : TAE* — (TAE)* verifying (1.5) and the set A*.

For each 1 < |a| < h, we consider the linear map ¢4 : A — R defined by:
$3(7%¢) = 2a1Da () (2)]:=0

It induces the vector bundle morphism 75 f : TAE* — (T AE)* over idpa .
Let (:vi, u’ ) be an adapted local coordinate system of F, the local expression of the bundle map
WWE TAE* — (TAE)* takes the form

S

TAE (lﬂ’uj,flﬁ,ﬂ?) = (xl’wj,fk,ﬁjﬁ) with { w]@
J

S

We denote by * the covariant functor from D,, into D,, defined by:
«(B,M,m) = (E*,M,7.) and = (idar, f) = (idar, ("f)71)
Corollary 2.11. All natural transformations of T4 o % — % o T verifying (1.5) are of the form
p07_27* + Z Pa - TX,* (6)
1<]a|<h
where po, Pa are the real numbers.

Proof. Let 74 : T4 0% — %o T4 be a natural transformations verifying (1.5), it induces
a linear map p : A — R. This linear map has the form

Posh+ D Pash
1<]a|<h
So we have the result.

Corollary 2.12. For all k > 2 and r > 1, do not exist a natural equivalence between T} E* and
(T E)" verifying (1.5). In particular J§ (R’ﬁR) 1s not a Weil-Frobenius algebra.

Proof. See [9].
|

Afr. J. Pure Appl. Math.
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2.3. Main results.

For each manifold M, there is a canonical diffeomorphism (see [3, 5])
ke TATM — TTAM
which is an isomorphism of vector bundles
TA(mp) : TATM — TAM  and  wpay : TTAM — TAM
such that, mpay; o k%, = T4(mr). In particular, for any f € C* (M, N) we have
iy o TATf =TT f o k4,

Let p: A — R be a linear map, it induces the natural vector bundle morphism 74 : T4 0% —
%o T4, For any manifold M of dimension m, we consider the vector bundle morphism

o = [(30) ] 0 7h g s TATM - TTAM.

It is clear that the family of maps (52 M) defines a natural transformation between the functors
T4 oT* and T* o T4 on the category M f,, and denoted

e i THoT* - T*oTA
When p is nondegenerate, the mapping 5’;1’ M 18 a vector bundle isomorphism over idpajy.
In local coordinate system {xl, e ,xm} of M, we introduce the coordinates (xi, :'Ui) in TM,
(¢, m;) in T*M, (2, gbi,f;,?g) in TATM, (2, ﬂ'j,ff@,ﬁj@) in TAT*M, (a%, 7}, 4%, %) in TTAM
and (mi,Tiﬁ,gj,gf) in T*TAM. We have:

VS SRy A Sy W SN Sy g
ﬁM(x,x,xﬁ,xg)—(:r,xﬁ,x,xﬁ)

with &7, = 7. It follows that

& = mpo+ Z TPy
) e P p— . €B
EZ,M (w13ﬂj7xlﬁ7ﬂ—]ﬁ) = (xlvxlﬁvgjvgj) with gﬁ _ Z ﬁ:fﬁg (7)
Jj o J K
HEBA

Example 2.13. (i) When A=Dandpp: D — R, jlo— & (¢(t))|1=0 we have the natural

isomorphism of Tulczyjew ey : TT*M — T*TM, (see [5]). For the linear map pq (j&v) =
7 (0), we obtain the natural vector bundle morphisms €9, such that locally,

E(J)W (xi77rivij77:ri) = (xiai.ivﬂ-ivo) .

p

(ii) If A = J3(R”,R) and ppger) : Jo(R”,R) = R, jjp = ©(0) + 3 gf; (0), we have
i=1

the natural vector bundle morphism &) ,, : TyT*M — T*Ty M defined in [12]. In local

coordinate,
& = X om

511),M (mi,m,x%,wiﬁ) = (xi,xg,&,ff) with 5 la|=1
fi = Ty

(iii) If A = J§(R,R), and prrp) : JJR,R) = R, o — L. %(Lﬂ(t))'t;o, we have the

r!

natural vector bundle isomorphism e}, : T"T*M — T*T"M defined in [2].

Afr. J. Pure Appl. Math.
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(iv) When A = JJ(R¥,R) and the linear form on J§(R* R) defined by

. 1
PJr(R* R) (Jow) = Z aDa(<P)(Z)|z:0~

|| =7

We deduce the natural transformations €ev P Ty T M — T*T;'M such that locally
& = > om

E};M(.’Ei,ﬂ",l‘i,ﬂ-ﬂ) = (xi,xi7§-,§-ﬁ) where 8 e
s By B 554 fl = Z 7'('?

Let D be a derivation of A, for any real number ¢, D; = exp (tD) € Aut(A), where
Aut (A) is the group of all automorphisms of A. It is a Lie subgroup of Lie group GL (A). The
map D; : A — A is an automorphism of A, it induces a natural transformation D; s : TAM —
TAM. On the other hand, the multiplication of the tangent vectors of M by reals is a map
mras : R x TM — TM. Applying the Weil functor T4, we obtain T4 (mgy) : A x TATM —
TATM. Let ¢ € A, we put

afar (¢) = wiy o T4 (mrar) (c,7) © (w3y)

it is a natural tensor of type (1,1) on T4 M, called affinor. In [5], one shows that, all natural
transformations T o T4 — T o T4 are of the form af (c) + T (11), where ¢ € R.

Theorem 2.14. Let (A,p) be a Weil-Frobenius algebra. All natural transformations 04 : T4 o
T* — T* o T4 are of the form

7" (Dy) o hy + (af (c)" o (8)
where c € A, t € R and D a derivation of A.

Proof. Let 64 : T4 o T* — T* o T# be a natural transformation, 64 o (5]2)71 =Qap:
T*oTA — T* o T4 is a natural transformation. We obtain a natural transformation Cap -

ToT* — ToT4, it exists a derivation D of A and ¢ € A such that % , = af(c)+T (f)t), for
a real number t. We obtain 04 = T* (Et) oeh + (af(c))" o €h).
|

Corollary 2.15. Let (A, p) be a Weil-Frobenius algebra. All natural isomorphisms on a manifold
M, TAT*M — T* o TAM are of the form

T*(Diw) 0 €% o
where t € R and D a derivation of A.
Corollary 2.16. All natural morphisms TT*M — T*TM are of the form
aT* (Fyp)oen +ben + el

where Fy yr 15 a one parameter subgroup of the Euler vector field on T M, a, b, c are real numbers

and t # 0.
Proof. We recall that D ~ R?, the structure of Weil algebra is given by:
(zo, 1) * (Yo, y1) = (ToYo, Toy1 + T1Y0)

Let D be a derivation of R2. The natural transformation ﬁt associated is given by:

Dy v = aFy .

Afr. J. Pure Appl. Math.
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On the other hand, any affinor is of the form Sidrras + ¢ - afas (e1), with e; = (0,1). It follows
that the natural morphism
Op :TT*M — T*TM
is given by:
Oy = aT™ (Ft,M) ocenm + (Oé + 5) Em + bE(I)\/[,

because (afy; (e1))" oen = €9,

|
Let (eg,-- - ,er) the canonical basis of A = JJ(R,R). For 0 < « < r and a manifold M, we put:
r 1"
59\4 = [(KJM) } o T?LTM
o -11% Lo
Em = [(’{}n\/l) } OTATM

Consider the linear map ¢4 : J§(R,R) — Jj(R,R) defined by
{ balco) = 0
(

!
(/ba (66+1) %ﬁﬂg)eoﬁ-ﬁ
is a derivation, it induces a one parameter subgroup of a vector field on 7T"M denoted by
d)fLM T"M —T"M.

Proposition 2.17. Any derivation ¢ : J;(R,R) — JJ(R,R) is of the form

T
6=> as o
B=1
where ay,--- ,a, are real numbers.
Proof. For any « = 0,- -+ , 7, we have eg-e,, = €4, therefore ¢ (eq)-e0+¢ (€0)-€a = ¢ (eq).

It follows that
o(eg) e =0, VYa=0,---,r
So that, ¢ (eg) = 0. We put,

¢(er) =) apes
B=0

with ag, a1, - ,a, are the real numbers. Using the relation e; - e; = 2e5, we have
r—1
¢ (62) = gf) (61) ey = Z (/B —+ 1) agep+1
B=0
By the same way, es - e; = 3es, it follows that, 3¢ (e3) = ¢ (e2) - e1 + ¢ (e1) - e2. Now
r—2
¢(e2) -e1 = Z (B+1)(B+2)agepta
B=0
r—2
ber)-ex = Z (,8+1)2(B+2) ages o
B=0
We deduce that,
r—2
p(e2) - e1+p(er) e = Z 3%2(’642)%365%
B=0
So,
n—2
¢ (e3) = Z (ﬁ+1)2(ﬁ+2) apepo
B=0

Afr. J. Pure Appl. Math.
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Looking the expressions of ¢ (e1), ¢ (e2) and ¢ (e3) we put

r—a+1

$lea) = Y Gmrascats
5=0

By induction, using the relation e, - €1 = (o + 1) eq41, We obtain,

(@+1)¢(eat1) =¢(ea) €1+ ¢ (e1) - ea

Now,
r—a-+1 rT—Q
|
dlea) er= D Gomrascots1 1= (Fhi0seass
B=0 B=0
o = Zaﬁeg cCq = ((Jg‘rﬁ) agea4p
We deduce that
T—Q
blea)-ertolen) ea=y YD ame,
B=0
Thus,
rT—Q
I
¢(eat1) = Y (C;;fﬁ agea+p
B=0

On the other hand, ¢ (e,) = ape,—1 +are, and e, -e; = 0. So that ¢ (e,.)-e1 + ¢ (e1) e, =0. As

pler)-er = rage,
p(e1) e, = ager
It follows that ag = 0. So that, for any a =0,--- ,r — 1, we have

r—«x
!
¢ (€at1) Z ap ﬁlﬁ) Catp = Z ap9p (€a+1)

Thus, we obtain the result.

Theorem 2.18. All natural vector bundle morphisms T"T*M — T*T"M are of the form

T r—1
> aaT" (har) ohs + D boehy
a=1 B=0
where aq,bg, t are real numbers.

Proof. Any derivation ¢ : Jj(R,R) — JJ(R,R) is a R-linear combination of the maps ¢,. The
rest of the proof comes from the formula ¢, = (afys (eq))” 0 €4, for any a=0,---r — 1.
[ ]

Corollary 2.19. All natural isomorphisms on a manifold M, T"T*M — T* o T"M are of the
form

> aaT (dhar) o€l
a=1

where aq,t € R.

Afr. J. Pure Appl. Math.
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3. Applications: Lifts of 1-forms to Weil bundles revisited
In this section, we fix the linear map p : A — R and Ei’* the natural transformation T4 o T* —

T* o T4 such that: for any manifold M, ey , = [(k3) ']* o 74 -

3.1. Prolongations of 1-forms
Let w € Q! (M), we put:

w®) =l yoT w 9)

w® is a 1-form on TAM. If locally w = w;dz’ then we have:

w? = wpo+ Y @py | da'+ > | D @ Pp, | dx (10)
YEBAa BEBa \pEBA
with
wl(_w) _ wl(v)_’_ Z )\ngy)
vEB 4
11
L R IV (11)
OCEEA

Definition 3.1. The differential form w® defined on TAM is called p-prolongation of w from
M to TAM

Example 3.2. (i) Case where A = D. (see [4])
(a) For the linear map p = 1p : D — R, jly = ~(0) the local expression of wr) s
given by:

w®) = w,dx’

The 1-form w®) coincide with the vertical lift of w from M to T'M.
(b) For p = pp as defined in example 2, we have py = 0 and p; = 1, so

ow; .. g
wPp) = T;kadm’ + w;dd"

The 1-form w®*) coincide with the complete lift of w from M to TM.
(ii) Case where A = Jj(R*,R). For the linear map p = <% : jig — 2Da(g(t))|t=0 we have
py = 0 for v # o and p, = 1. So using the equation (2.2) we deduce that:

w(s) = @i + > wgafﬁ)dx}; = > wgafﬁ)datfg
1<[Bl<r 0<|Bl<r

Thus w(%) coincide with the a-prolongation of differential form w from M to T} M defined
in [10].

(iii) General case. For the linear map p = ¢§ : j*¢ — 4;D,(¢(2))].=0 with o € B4 and
¢ € C* (R™,R) we have: p, = 0 for v # a and p, = 1. Thus

WD =5 Vdat + 3wl Pz,
BEBA

The differential form w(¢4) coincides with the a-prolongation of differential form defined
in [3].
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3.2. The symplectomorphisms &%, ,, : TAT*M — T*T4M
Let Q be a 2 form on M. It induces the vector bundle morphism QFf : TM — T*M. We put:

(@) = o TA () o (i) (12)

The T4 M-morphism of vector bundles (Qﬁ)(p) :TTAM — T*TAM defines a differential form
Q®) on TAM of degree 2 called p-prolongation of Q from M to T4 M. If locally = Q;jdx Ndx?
then:

QP = Qpoda’ Aded + 3 pa | 3 QT dat A da
a€EBa BEBA (13)
3 (5l
w,BEBA a€EBy

Example 3.3. In the particular case where A = Jjj (Rk,R) and p = ¥ we have:
kY _ ola=B8—p) 5 i J
o) = s dai, A da,
It coincides with the a-prolongation of Q from M to T} M defined in [10].
Example 3.4. If Qj; is a Liouville 2-form on T*M defined in local coordinates system (;vi, 7rj)
by: _
QM =dx' A dﬂ'i,
then we have:
QS\’/’I) = podx’ A dm; + Z Padr’ A AT + Z padf}; A d??_ﬁ (14)
a€Ba a,B€EB
It is clear that d (Qg\f’[)) = 0. Thus the 2-form Qg\Z) defines a presymplectic structure on TAT* M.
It is symplectic form if p is nondegenerate.
Theorem 3.5. The wvector bundle morphisms 5Z,M : TAT*M — T*TAM is a symplecto-
morphism between the pre-symplectic manifolds (TAT*M, Qg{?) and (T*TAM7 QTAM). Where
Qpayy is a Liowville 2-form on T*TAM
Proof. The expression in local coordinate of Liouville 2-form on T*TAM is given by:
Qpay =da’ Ndm+ Y dTl, A dr?
a€EBA

() @ra) = % o (7 ohnr) nd (72 oeh o)
aceBaU

dz' Nd (pom + Z paﬂ'?> + Z PadTly ATl "
a€EBy B,a€BA
podat Admi+ Y padat NdFE + Y padTy A dES TP

a€By B,a€Ba

Thus (51/)1,1\4) w (Qpap) = Qg\’}).
|

Remark 3.6. (i) In particular, when p = ¢! we obtain the results of [2].
(ii) When (4, p) is a Weil-Frobenius algebra, the bundle 747T* M has a canonical symplectic

structure determined by (527 M) « (Qpay) = Q%)). More precisely, in [9], the authors show

that: for any Weil algebra A the bundle 747 M has the canonical symplectic structure
if and only if A is a Weil-Frobenius algebra.
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