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Abstract

We obtain a Whitney decomposition of a symmetric cone Ω,
analog to that of the positive real line into dyadic intervals [2j , 2j+1).
This gives a natural tool for developing a Littlewood-Paley the-
ory for spaces of functions with spectrum in Ω. Such functions
extend into holomorphic functions on the tube TΩ. We consider
here the mixed norm Bergman spaces Ap,2ν (TΩ), for which we find
a Littlewood-Paley characterization. As a consequence, we obtain
optimal results for the boundedness of the Bergman projector Pν
in Lp,2ν (TΩ). When the projector is unbounded, a precise descrip-
tion of Pν(Lp,2ν ) is also given, as a space of equivalence classes of
holomorphic functions in relation with the dual of Ap

′,2
ν (TΩ).

1 Introduction

Let Ω be an irreducible symmetric cone in Rn, and let

TΩ = R
n + iΩ ⊂ Cn

∗Research partially supported by the European Commission, within the TMR
Network “Harmonic Analysis 1998-2002”.
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be the tube domain based on Ω in the complexified vector space Cn =
R
n+ iRn. Regarding V = R

n as a Euclidean Jordan algebra, we shall
denote

r = rank Ω, ∆(x) = detx, (x|y) = tr(xy), x, y ∈ V,

as in the text [6]. For ν real and 0 < p, q <∞ we define the (mixed-norm
weighted) Bergman space on the tube TΩ ⊂ C

n as the space Ap,qν (TΩ) of
holomorphic functions on TΩ with

‖F‖Ap,qν =

[∫
Ω

[∫
V
|F (x+ iy)|q dx

] p
q

∆(y)ν−
2n
r dy

] 1
p

<∞.

When p = q we just write Apν = Ap,qν . We shall also use the notation

Lp,qν (TΩ) = Lp,q(TΩ,∆(y)ν−
2n
r dxdy). Finally, observe that Ap,qν = {0}

when ν ≤ 2n
r
− 1. In this paper we shall be concerned with the spaces

Ap,2ν (TΩ) and Lp,2ν (TΩ), for which the Plancherel formula in the x-variable
allows a simpler description. For these particular spaces, we have a com-
plete answer to a main question, which we describe now. Let Pν be the
Bergman projector, defined by

Pν : L2
ν(TΩ) −→ A2

ν(TΩ)

f 7−→ Pνf(z) =
∫ ∫

TΩ

Bν(z − w)f(w) ∆(=m w)ν−
2n
r dw.

Here Bν(z−w) is the reproducing kernel of A2
ν(TΩ), with explicit formula

Bν(z − w) = d(ν) ∆−ν
(
z − w
i

)
, z, w ∈ TΩ.

In different papers [1], [5], [4], [2],... the first two authors have considered
this projector for the special case of the light-cone (r = 2):

Ωn =
{
y = (y1, y

′) ∈ Rn : ∆(y) = y2
1 − |y′|2 > 0, y1 > 0

}
,

Let us recall that, even in this case, the problem of finding the exact
range of p, q for which Pν can be boundedly extended from Lp,qν (TΩ) onto
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Ap,qν (TΩ) is still open. The best range known up to now, for the light
cone, was given in [4]. Moreover, it is deduced from the particular case
when q = 2, and related to a generalized Hardy inequality for the wave
operator. In this paper we propose another method than the one in [4] to
determine the exact range of boundedness for the spaces Ap,2ν (TΩ). More
precisely, we show the following theorem, which extends to general sym-
metric cones the content of the previous papers, and gives the behavior
for the critical index.

THEOREM 1.1 Let ν > 2n
r
−1. Then the Bergman Pν can be boundedly

extended from Lp,2ν (TΩ) onto Ap,2ν (TΩ) if and only if p′ν < p < pν := 2(ν−1)
n
r
−1

.

When p ≥ pν , we shall in addition describe the range of the operator
Pν(L

p,2
ν (TΩ)) as a space of holomorphic functions (or equivalence classes of

them) which is strictly larger than Ap,2ν (TΩ). This space can be identified
with the dual of Ap

′,2
ν (TΩ), where now 1 < p′ < p′ν . We can collect these

results in the following

THEOREM 1.2 Let ν > 2n
r
− 1 and p′ν < p <∞. Then there is a space

Cp,2ν (TΩ) of equivalence classes of holomorphic functions in TΩ so that:

1. Pν can be extended as a bounded operator from Lp,2ν (TΩ) onto Cp,2ν (TΩ).

2. (Ap
′,2
ν )∗ ≡ Cp,2ν .

To do all this, we shall use a new idea. We shall exploit the geometry
of a symmetric cone to find an appropriate partition of Ω into “frequency
blocks” {Ej}, where the determinant ∆(ξ) and other related functions
of the cone remain almost constant. This partition reduces to dyadic in-
tervals [2j, 2j+1) for the real positive half-line, which corresponds to rank
one. In this case, we recover the well-known Littlewood-Paley decompo-
sition. So our construction may be seen as a generalization of it. More
precisely, using the reconstruction of holomorphic functions in TΩ with
the Fourier-Laplace transform

F (z) = Lf(z) =
∫

Ω
ei (z|ξ)f(ξ) dξ, z ∈ TΩ, (1.3)
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we shall obtain a new Littlewood-Paley formulation for the norm of the
spaces Ap,2ν (TΩ):

THEOREM 1.4 Let ν > 2n
r
− 1 and 0 < p < pν = 2(ν−1)

n/r−1
, and let {Ej}j

be a Whitney decomposition of Ω. Then, a function F belongs to Ap,2ν (TΩ)
if and only if F = Lf for some f ∈ L2

`oc(Ω) satisfying:

‖f‖bp,2ν :=

∑
j

(∫
Ej
|f(ξ)|2 dξ

) p
2

∆(ξj)
ν−n

r


1
p

<∞. (1.5)

In this case, there is a constant c = c(p, ν) > 0 such that

1

c
‖f‖bp,2ν ≤ ‖F‖Ap,2ν ≤ c ‖f‖bp,2ν . (1.6)

We point out that the critical index pν = 2(ν − 1)/(n
r
− 1) is optimal,

in the sense that no such characterization exists for Ap,2ν (TΩ) if p ≥ pν .
This is related to the fact that the projectors Pν cannot be boundedly
extended to Lp,2ν (TΩ) when p ≥ pν . However, the spaces bp,2ν (Ω) can be
identified with the duals of Ap

′,2
ν above the critical index, which allows to

prove Theorem 1.2.

We insist on the fact that the use of Plancherel Theorem simplifies
the proofs in the case q = 2, and allows to get sharp results. Some of this
work may be generalized to other values of q with a considerable effort,
using a family of FLq multipliers related to the Whitney decomposition
of the cone. A joint work with F. Ricci is in progress in this direction (see
[3]), and provides a Littlewood-Paley description of the spaces Ap,qν (TΩ)
below some critical index. Up to now, these results are not sharp when
q is different from 2. Let us also mention that, even for q = 2, we do not
know how to describe the dual space of Ap,2ν (TΩ) above the critical index
pν .
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2 Whitney decompositions of the cone

The symmetry of Ω, reflected in the corresponding invariant geometry,
will play a central role in our analysis. Most of the properties that we
state without proof here, as well as the notation used, can be found in
[6].

We recall that the vector space V = R
n, containing the cone Ω, can be

regarded as a Euclidean Jordan algebra, say with identity element e. The
cone Ω then becomes the connected component of the set of invertible
elements in V containing e. As usual, the inner product in V will be
denoted by (x|y) = tr(xy).

If G is the identity component of the group of transformations of
the cone, G(Ω), it is also known that there is a subgroup T of G acting
simply transitively on Ω. That is, every y ∈ Ω can be written uniquely
as y = te, with t ∈ T . This gives an identification Ω ≡ T = G/K, where
K is a maximal compact subgroup of G, namely, K = G ∩O(V ) = {g ∈
G : ge = e}.

Therefore, we can regard Ω ≡ G/K as a Riemannian manifold with
the G-invariant metric defined by

〈ξ, η〉y := (t−1ξ|t−1η)

if y = te and ξ, η are tangent vectors at y ∈ Ω. We shall denote by d the
corresponding distance, and by Bδ(ξ) the ball centered at ξ of radius δ.
Note that, for each g ∈ G, the invariance implies Bδ(gξ) = gBδ(ξ).

Let {c1, . . . , cr} be a fixed Jordan frame in V , and V = ⊕1≤i≤j≤rVi,j.
Then one can write T = NA = AN , where the products are semidirect,
N is a nilpotent subgroup, and A is the subgroup of diagonal matrices

A = {P (a) : a =
r∑
i=1

aici, ai > 0}.

P is the quadratic representation of V . This leads to the classical de-
compositions G = NAK and G = KAK (see Chapter VI of [6]).
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Let us denote by ∆1(x), . . . ,∆r(x) the principal minors of x ∈ V ,
with respect to the fixed Jordan frame {c1, . . . , cr} (see Chapter VI of
[6]). Recall that these are invariant under the group N : ∆k(nx) = ∆k(x),
n ∈ N , x ∈ V . Also, for a = a1c1 + . . . + arcr have ∆k(P (a)x) =
a2

1 · · · a2
k ∆k(x). In particular, one can write

Ω = {x ∈ V : ∆k(x) > 0, k = 1, . . . , r}.

The next lemma show us that these quantities remain almost constant
within an invariant ball. (see also [4], [2], for partial results for the light
cone).

LEMMA 2.1 If δ > 0, then there is a constant γ = γ(δ,Ω) > 0 such
that

if d(y, y′) ≤ δ0 ⇒ 1

γ
≤ ∆k(y)

∆k(y′)
≤ γ, k = 1, . . . , r.

PROOF: By invariance of the metric and the forms ∆k under N , we
may assume y′ = P (a)e. Further, since

∆k(y)

∆k(P (a)e)
=

∆k(P (a)−1y)

∆k(e)
,

we may even assume y′ = e. Now, the estimations above and below for
∆k in a ball Bδ(e) follow easily from the continuity of y 7→ ∆k(y), and a
compactness argument.

2

We now prove that the quantities (ξ|y) are also almost constant when
ξ varies inside an invariant ball.

LEMMA 2.2 Let δ > 0, There exists γ = γ(Ω, δ) > 0 such that, for
y ∈ Ω and ξ, ξ′ ∈ Ω with d(ξ, ξ′) ≤ δ, then

1

γ
≤ (ξ|y)

(ξ′|y)
≤ γ. (2.3)
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PROOF: By continuity it suffices to show (2.3) for y ∈ Ω. Using
invariance under G (and the fact that G = G∗), we may assume that
y = e. To show that (ξ′|y) ≤ γ(ξ|y), let us write ξ = kP (a)e, for k ∈ K
and a = a1c1 + . . .+ arcr. Then ξ′ = kP (a)ξ′′, with ξ′′ ∈ Bδ(e). We have

(ξ′|e) = (P (a)ξ′′|e) ≤
√
r‖P (a)‖|ξ′′| ≤ γ‖P (a)‖,

since the euclidean norm is uniformly bounded on the invariant ball
Bδ(e). Now P (a) has eigenvalues a2

i and aiaj, and therefore

‖P (a)‖ ≤
r∑
i=1

a2
i = (P (a)e|e) = (ξ|e). (2.4)

2

Finally, we will need to evaluate the volume of an invariant ball.
Recall that the invariant measure in Ω is given by

meas (B) =
∫
B

∆(y)−
n
r dy, B ⊂ Ω measurable.

It is well known that small balls for two Riemannian structures have
equivalent volume. It follows that, in our context, for all y ∈ Ω and
0 < δ ≤ δ0,

meas (Bδ(y)) = meas (Bδ(e)) ∼ Vol (Bδ(e)) ∼ δn.

Here, the equivalences denoted by “∼” are modulo constants depending
only on Ω and δ0. We point out that this is not the case for δ >> 1, since
the invariant measure is in general not doubling. We shall use this remark
in the proof of the next covering lemma, which is of crucial importance
for the rest of the paper.

LEMMA 2.5 : Whitney Decomposition.
Let 0 < δ ≤ δ0. Then, there exists a sequence of points {ξj}j in Ω

and a family of disjoint sets {Ej}j which cover Ω, such that

(i) one has the inclusion Bδ/2(ξj) ⊂ Ej ⊂ Bδ(ξj);
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(ii) The balls in {Bj} = Bδ(ξj) have the finite intersection property.
That is, there is an integer N = N(δ0,Ω) so that each point in Ω
belongs to at most N of these balls.

DEFINITION 2.6 A sequence of points {ξj}j in Ω with the properties
above will be called a δ-lattice, with associated Whitney decomposition
{Ej}j.

PROOF: We take {ξj}j a maximal subset of Ω (under inclusion) among
those with the property that their elements are distant at least δ from one
another. Let us note B′j the balls Bδ/2(ξj). They are pairwise disjoint,
while, by maximality, the balls {Bj}j cover Ω. Note also that, necessarily,
the set {ξj}j is countable.

For the finite overlapping property, if ξ ∈ ∩Ni=1Bji , then

N⋃
i=1

B′ji ⊂ B(ξ, 3δ/2) .

But for the invariant measure on Ω we will have

N meas (B(e, δ/2)) = meas (∪Ni=1B
′
ji

) ≤ meas (B(ξ, 3δ/2)) = meas (B(e, 3δ/2)).

This, and consideration on the volume, allows to conclude. The sets Ej
are then constructed by simply taking

E1 = B1, . . . , Ej = Bj \ Ej−1, . . .
2

REMARK 2.7 If {ξj}j is a δ-lattice, then so is {ξ−1
j }j. Indeed, this

follows from the fact that y → y−1 is an isometry of the cone (see Chapter
III of [6]). Therefore, Bδ(ξ

−1
j ) = Bδ(ξj)

−1, and the conditions of Lemma
2.5 hold. Note that we can look at the sets {ξj}j and {ξ−1

j }j as a couple
of dual lattices. We will note {E∗j } the corresponding Whitney (dual)
decomposition.

We have that Vol (Ej) ∼ ∆(ξj)
n
r , and Vol (E∗j ) ∼ ∆(ξj)

−n
r . More-

over, all quantities ∆k(ξ) and (ξ|y) are almost constant on Ej or E∗j .

Finally, since (ξ−1
j |ξj) = r, it follows from the previous lemmas that

(y|ξ) ∼ 1 for y ∈ E∗j and ξ ∈ Ej.
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3 Integrals on Ω

The generalized power function in Ω is defined by

∆s(x) = ∆s1−s2
1 (x) ∆s2−s3

2 (x) · · ·∆sr
r (x), s = (s1, s2, . . . , sr) ∈ Cr, x ∈ Ω,

where ∆k are the principal minors with respect to a fixed Jordan frame
{c1, . . . , cr}. Note that, for x = a1c1 + . . .+arcr, then ∆s(x) = as11 · · · asrr .
The next result is the key in all the discretization steps we shall do in
our integrals below. Its proof is a simple consequence of the geometric
lemmas from the previous section.

PROPOSITION 3.1 Let 0 < δ ≤ 1 be fixed, and {ξj}j be a δ-lattice with
associated Whitney decomposition {Ej}j. Then, for every s ∈ Cr, y ∈ Ω,
and for any non-negative function f on the cone, we have

1

C

∑
j

e−γ(y|ξj)∆s(ξj)
∫
Ej
f(ξ)

dξ

∆(ξ)
n
r
≤

∫
Ω
f(ξ)e−(y|ξ)∆s(ξ)

dξ

∆(ξ)
n
r

≤ C
∑
j

e−
1
γ

(y|ξj)∆s(ξj)
∫
Ej
f(ξ)

dξ

∆(ξ)
n
r
,

where γ is the constant in (2.3) and C depends only (and continuously)
on s.

A particular case of the type of integral in the previous proposition
is the gamma function for the cone Ω, defined as follows:

ΓΩ(s) =
∫

Ω
e−(ξ|e) ∆s(ξ)

dξ

∆(ξ)
n
r
, s = (s1, s2, . . . , sr) ∈ Cr. (3.2)

All the properties we need are well-known, and can be found in Chapter
VII of [6]. For instance, this integral converges if and only if <e sj >
(j − 1)n/r−1

r−1
, for all j = 1, . . . , r, being in this case equal to

ΓΩ(s) = (2π)
n−r

2

r∏
j=1

Γ(sj − (j − 1)n/r−1
r−1

), (3.3)
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where Γ is the classical gamma function on R+. We note ΓΩ(s) = ΓΩ(s)
when s = (s, . . . , s). We state separately a slight variant of (3.2) which we
shall use often below. The proof is a simple application of the invariance
under T .

LEMMA 3.4 For y ∈ Ω and s = (s1, s2, . . . , sr) ∈ Cr with <e sj > (j −
1)n/r−1

r−1
, j = 1, . . . , r, then∫

Ω
e−(ξ|y) ∆s(ξ)

dξ

∆(ξ)
n
r

= ΓΩ(s) ∆s(y
−1).

REMARK 3.5 When y ∈ Ω, there is a simple expression for ∆s(y
−1). In-

deed, taking any rotation k0 ∈ K such that k0cj = cr−(j−1), j = 1, . . . , r,
then

∆s(y
−1) = ∆s∗(k0y)−1, where s∗ = (sr, . . . , s1).

Note that we can choose k0 so that k−1
0 = k∗0 = k0. In the particular

case s = (1, . . . , 1) we have ∆(y−1) = ∆(y)−1, by the invariance under
rotations of the determinant.

One may use the previous lemma and Plancherel’s Theorem to show
the following result:

LEMMA 3.6 Let α ∈ R, and define

Iα(y) =
∫
R
n
|∆(x+ iy)|−α dx, y ∈ Ω.

Then, Iα is finite if and only if α > 2n
r
− 1. In this case, Iα(y) =

c(α) ∆(y)−α+n
r .

For computing precisely integrals of the above type (like in formula
(3.3)) one introduces the Gauss coordinates in Ω. They are defined, also
in terms of the Peirce decomposition, as follows (see § VI.3 in [6]). Let

d = dimVij = 2 n/r−1
r−1

and

V + = {u =
r∑
j=1

ujcj +
∑
j<k

ujk : uj > 0, ujk ∈ Rd}.
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We then make the change u ∈ V + 7−→ x = x(u) ∈ Ω, where x(u) =∑r
j=1 xjcj +

∑
j<k xjk with

xj = u2
j + 1

2

j−1∑
k=1

|ukj|2 and xjk = ujujk + 2
j−1∑
`=1

u`ju`k.

The main advantage is that now:

tr(x(u)) =
r∑
j=1

u2
j+

1
2

∑
j<k

|ujk|2 and ∆k(x(u)) = u2
1 · · ·u2

k, k = 1, . . . , r.

After computation of the Jacobian, one obtains the following parametriza-
tion of the integrals:

PROPOSITION 3.7 : see Th VI.3.9 in [6].
If f is a non-negative function in Ω, then∫

Ω
f(x) dx = 2r

∫
V +

f(x(u))
r∏
j=1

u
(r−j)d+1
j du.

With the aid of this result we can compute easily the following inte-
grals. We denote ∆∗1(ξ) = ∆(0,...,0,1)(ξ) = u2

r, if ξ = ξ(u).

LEMMA 3.8 Let gα(ξ) = e−tr (ξ)

∆(ξ)(1+| log ∆∗1(ξ)|)α . Then, gα is integrable if and

only if α > 1.

PROOF: Indeed, using the coordinates in the previous proposition

∫
Ω
gα(x) dx = 2r

∫
(0,∞)r

e−
∑

u2
j

(1 + 2| log ur|)α
r∏
j=1

u
(r−j)d−1
j du1 . . . dur

∫
R
d
e−

1
2
|y|2 dy

= 2r (2π)
d
2

r−1∏
j=1

[
1

2
Γ

(
d(r − j)

2

)] ∫ ∞
0

e−u
2
r

(1 + 2| log ur|)α
dur
ur

,

which is finite if and only if α > 1.
2
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4 The proof of Theorem 1.4

With the geometric properties from the previous sections, the proof of our
theorem will follow from a standard discretization process. The critical
index pν will appear in relation with the range of convergence for the
gamma integral. The following lemma will be taken for granted (see [4]
for a proof in the case of the light-cone, and [7] for general symmetric
cones).

LEMMA 4.1 Let 0 < p, q < ∞ and ν > 2n
r
− 1. Then, the norms

(or quasi-norms) of the spaces Ap,qν (TΩ) are complete. Moreover, the

intersection Ap
′,q′

ν′ ∩Ap,qν is dense in Ap,qν (TΩ) for any p′, q′, ν ′ in the range
above.

4.1 The necessity

We shall show that for F ∈ Ap,2ν (TΩ), then (1.3) and (1.5) hold, even in
the case 0 < p <∞. We assume first that F ∈ A2

ν ∩Ap,2ν , so that by the
Paley-Wiener characterization of A2

ν (see Chapter XIII of [6]) we have

F = Lf for some f ∈ L2(Ω; ∆(ξ)−(ν− 2n
r

) dξ). Then, using the Plancherel
formula and the lemmas in §2, we obtain

‖F‖p
Ap,2ν

=
∫

Ω

[ ∫
R
n
|F (x+ iy)|2 dx

] p
2

∆(y)ν−
2n
r dy

= (2π)
np
2

∫
Ω

[ ∫
Ω
|f(ξ)|2e−2(y|ξ) dξ

] p
2

∆(y)ν−
2n
r dy

≥ c
∑
j

∫
E∗j

[ ∫
Ej
|f(ξ)|2 dξ

] p
2

e−pγ(y|ξj) ∆(y)ν−
2n
r dy

≥ c(p, ν, δ)
∑
j

[
∫
Ej
|f(ξ)|2 dξ ]

p
2

∆(ξj)
ν−n

r
.

We have used the fact that ∆(y) is almost constant on E∗j , and may be
replaced by ∆(ξj)

−1. This shows ‖F‖Ap,2ν ≥ c‖f‖bp,2ν for F ∈ A2
ν ∩ Ap,2ν .
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For general F ∈ Ap,2ν (TΩ) one proceeds by density. Taking a sequence
Fn in A2

ν ∩ Ap,2ν , so that Fn → F in Ap,2ν , we obtain a corresponding
sequence fn so that

∑
j

[
∫
Ej
|(fn − fm)(ξ)|2 dξ ]

p
2

∆(ξj)
ν−n

r
≤ c ‖Fn − Fm‖pAp,2ν .

This implies the existence of f ∈ L2
`oc(Ω) so that ‖f − fn‖bp,2ν → 0 as

n → ∞. Further, by Fatou’s lemma we also obtain that ‖e−(y|·)(f −
fn)‖L2(Ω) → 0, for all y ∈ Ω, and ‖f‖bp,2ν ≤ c‖F‖Ap,2ν . To see that formula
(1.3) holds, note that for every z = x+ iy ∈ TΩ

|F (z)−
∫

Ω
f(ξ)ei(z|ξ) dξ | ≤ |F (z)− Fn(z)| + cy‖e−

1
2

(y|·)(fn − f)‖L2(Ω),

which goes to 0 as n→∞.
2

4.2 The sufficiency

For the sufficiency we take a function f on Ω satisfying (1.5). We shall
show the following inequality

∫
Ω

∣∣∣∣ ∫
Ω
|f(ξ)|2 e−2(y|ξ) dξ

∣∣∣∣ p2 ∆(y)ν−
2n
r dy ≤ c(p, ν)

∑
j

[
∫
Ej
|f(ξ)|2 dξ ]

p
2

∆(ξj)
ν−n

r
.

(4.2)
From here we see that the integral in (1.3) is absolutely convergent for
every z ∈ TΩ, and will define a holomorphic function F on TΩ. Further,
(4.2) together with the Plancherel theorem will give ‖F‖Ap,2ν ≤ c‖f‖bp,2ν ,
completing the proof of the theorem.

We pass to the proof of (4.2). Note this is almost immediate when
0 < p ≤ 2. Indeed, then the power p/2 can go inside the sum and we
obtain: ∫

Ω

∣∣∣∣ ∫
Ω
|f(ξ)|2 e−2(y|ξ) dξ

∣∣∣∣ p2 ∆(y)ν−
2n
r dy ≤
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≤
∫

Ω

∑
j

[
∫
Ej
|f(ξ)|2dξ]

p
2 e−

p
γ

(y|ξj)∆(y)ν−
2n
r dy

= c(p, ν) ΓΩ(ν − n

r
)
∑
j

[
∫
Ej
|f(ξ)|2 dξ ]

p
2

∆(ξj)
ν−n

r
.

We shall assume therefore, that 2 < p < pν . For simplicity in the
notation, we call q = p

2
and q′ = q

q−1
= p

p−2
. We also take a real multi-

index s = (s1, . . . , sr) whose precise value will be chosen below. Then,
an application of Hölder’s inequality gives

I :=
∫

Ω

∣∣∣∣ ∫
Ω
|f(ξ)|2 e−2(y|ξ) dξ

∣∣∣∣ p2 ∆(y)ν−
2n
r dy ≤

∫
Ω

(∑
j

[
∫
Ej
|f(ξ)|2dξ]q e−

2
γ

(y|ξj)∆q
−s(ξj)

)(∑
j

e−
2
γ

(y|ξj)∆q′

s (ξj)
) q
q′

∆(y)ν−
2n
r dy.

Note that, by Proposition 3.1, the sum in the second parenthesis is
bounded by:

c
∫

Ω
e−(y|ξ)∆q′

s (ξ)
dξ

∆(ξ)
n
r

= cΓΩ(q′s) ∆q′s(y
−1) = c(p, s) ∆−q′s∗(k0y),

and is finite whenever q′sj > (j − 1)n/r−1
r−1

, for all j = 1, . . . , r. Inserting
this expression in the integral above we are led to:

I ≤ c
∑
j

[
∫
Ej
|f(ξ)|2dξ]q ∆q

−s(ξj)
∫

Ω
e−

2
γ

(y|ξj)∆−qs∗(k0y)∆(y)ν−
2n
r dy

= c′
∑
j

[
∫
Ej
|f(ξ)|2dξ]q ∆q

−s(ξj)
∫

Ω
e−(y|k0ξj)∆−qs∗(y)∆(y)ν−

n
r

dy

∆(y)
n
r

= c′ ΓΩ(t)
∑
j

[
∫
Ej
|f(ξ)|2dξ]q ∆q

−s(ξj) ∆−t∗(ξj),

where t = −qs∗ + (ν − n
r
, . . . , ν − n

r
), and we need the assumption

tj = −qsr−(j−1) + ν − n

r
> (j − 1)

n/r − 1

r − 1
, for all j = 1, . . . , r.
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Note that −t∗ = qs− (ν − n
r
, . . . , ν − n

r
), so that if we can find sj’s with

the assumptions above the proof of (4.2) will be complete.
Now, for each j = 1, . . . , r, the two assumptions on sj can be written

1

q′
j − 1

r − 1

(
n
r
− 1

)
< sj <

1

q
(ν − n

r
− r − j
r − 1

(n
r
− 1) ).

Using 1
q′

= 1− 1
q
, we see that this is only possible if, for each j = 1, . . . , r,

j − 1

r − 1
(n
r
− 1) <

1

q

(
ν − n

r

)
+

1

q

(
2j − r − 1

r − 1
(n
r
− 1)

)
,

or equivalently, if ν > 2n
r
− 1 and

p

2
= q < min

2≤j≤r

ν − n
r

+ 2j−r−1
r−1

(n
r
− 1)

j−1
r−1

(n
r
− 1)

=
ν − n

r
+ n

r
− 1

n
r
− 1

=
pν
2
.

These are precisely the ranges of p and ν assumed, so the sufficiency is
proved.

2

4.3 The sharpness

To prove the sharpness of the theorem, we let p = pν = 2 ν−1
n/r−1

, and find
a positive function g on Ω such that

‖g‖p
bp,2ν

=
∑
j

(∫
Ej
|g(ξ)|2 dξ

) p
2

∆(ξj)
ν−n

r
<∞

but
I(y) =

∫
Ω
|g(ξ)|2 e−(y|ξ) dξ =∞, ∀ y ∈ Ω.

Indeed, letting g(ξ) = e−(ξ|e)[∆(ξ)(1 + | log ∆∗1(ξ)|)]− 1
2 , the second asser-

tion follows immediately from Lemma 3.8. To see that the series above



16

converges note that, since p = 2 ν−1
n/r−1

> 2, then

‖g‖p
bp,2ν

≤ c
∑
j

∫
Ej

e−
p
2

(ξ|e)

(1 + | log ∆∗1(ξ)|) p2
dξ

∆(ξ)
n
r

∆(ξj)
(n
r
−1) p

2

∆(ξj)
ν−n

r

≤ c′
∫

Ω

e−
p
2

(ξ|e)

(1 + | log ∆∗1(ξ)|) p2
dξ

∆(ξ)
< ∞.

Exactly the same example shows that the statement of the theorem
cannot hold for p ≥ pν .

2

5 The function spaces bp,2ν (Ω) and Cp,2ν (TΩ)

Let 0 < p <∞ and ν ∈ R. We say that a function f ∈ L2
`oc(Ω) belongs to

the space bp,2ν (Ω) whenever the (quasi)-norm ‖f‖bp,2ν in (1.5) is finite. We
point out that these spaces do not depend on the δ-lattice {ξj}j chosen
for their definition. Indeed, this is just a simple consequence of the finite
intersection property in Lemma 2.5.

In this section we shall exploit the properties of bp,2ν (Ω) to obtain new
(and sharp) results for the Bergman spaces Ap,2ν (TΩ). We start by looking
at the Bergman projection and its action into bp,2ν (Ω).

5.1 The Bergman projection on bp,2ν (Ω)

Let us denote by Pν the Bergman projection onto A2
ν alluded to in the

introduction. Recall that the Bergman kernel, which reproduces the
space A2

ν , is given by

Bν(z − w) = c′ν

∫
Ω
ei(z−w|ξ) ∆(ξ)ν−

n
r dξ = d(ν) ∆−ν((z − w)/i),

where the last equality follows from Lemma 3.4 (extended to complex
values of y). The precise value of the constant d(ν) is calculated in
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Chapter XIII of [6]:

d(ν) =
2νr

(4π)n
ΓΩ(ν)

ΓΩ(ν − n
r
)
, if ν >

2n

r
− 1.

Thus, for F ∈ L2
ν(TΩ) we have

PνF (x+ iy) =
∫
V

∫
Ω
Bν(x− u+ i(y+ v))f(u+ iv) ∆(v)ν−

2n
r dvdu. (5.1)

Since PνF ∈ A2
ν(TΩ), it can be written as the Fourier-Laplace transform

of some f ∈ b2
ν(Ω) = L2(Ω; ∆(ξ)−(ν−n/r) dξ):

PνF (x+ iy) =
∫

Ω
ei(x+iy|ξ)f(ξ) dξ, x+ iy ∈ TΩ. (5.2)

A simple Fourier inversion formula in (5.1) and (5.2) gives the following
result.

LEMMA 5.3 Let ν > 2n
r
− 1. The operator Pν regarded from L2

ν(TΩ)
into b2

ν(Ω) has the form:

F 7−→ f(ξ) = cν ∆(ξ)ν−
n
r

∫
Ω
e−(v|ξ)F̂ (ξ, v)∆(v)ν−2n

r dv, ξ ∈ Ω. (5.4)

In (5.4) we are denoting by F̂ (ξ, v) the inverse Fourier transform of
F in the x-variable, for v ∈ Ω fixed:

F̂ (ξ, v) =
1

(2π)n

∫
V
e−i(x|ξ)F (x+ iv) dx.

We use equality (5.4) to extend the definition of Pν as an operator
(densely) defined on Lp,2ν (TΩ), and taking values in bp,2ν (Ω). The main
result in this section is then the following theorem. As usual 1

p
+ 1

p′
= 1.

THEOREM 5.5 Let ν > 2n
r
− 1 and p′ν < p < ∞. Then, Pν can be

extended as a bounded operator from Lp,2ν (TΩ) into bp,2ν (Ω).
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PROOF:
It suffices to show the theorem for 2 ≤ p < ∞. Indeed, once this is

done, and using the identification Ap,2ν (TΩ) ≡ bp,2ν (Ω) in Theorem 1.4, we
shall obtain that Pν :L

p,2
ν (TΩ)→ Ap,2ν (TΩ) is bounded for all 2 ≤ p < pν .

Since the projector Pν is self-adjoint, this range will extend automatically
to p′ν < p < pν . But again, the identification in Theorem 1.4 gives the
boundedness of Pν :L

p,2
ν (TΩ)→ bp,2ν (Ω) for p > p′ν .

Therefore, we consider 2 ≤ p < ∞ and F ∈ Lp,2ν (TΩ) ∩ L2
ν(TΩ), and

look at the function f in (5.4) whose Fourier-Laplace transform equals
PνF . We shall show that ‖f‖bp,2ν ≤ c‖F‖Lp,2ν . First of all, by the Cauchy-
Schwarz’s inequality, for all ξ ∈ Ω we have

|f(ξ)|2 ≤ ∆(ξ)2(ν−n
r

)
∫

Ω
e−(v|ξ)|F̂ (ξ, v)|2∆(v)ν−

2n
r dv

∫
Ω
e−(v|ξ)∆(v)ν−

2n
r dv

= ΓΩ

(
ν − n

r

)
∆(ξ)ν−

n
r

∫
Ω
e−(v|ξ)|F̂ (ξ, v)|2∆(v)ν−

2n
r dv.

Therefore, calling Aj(v) =
∫
Ej
|F̂ (ξ, v)|2 dξ we can write

‖f‖p
bp,2ν

=
∑
j

(∫
Ej
|f(ξ)|2 dξ

) p
2

∆(ξj)
ν−n

r

≤ cΓΩ

(
ν − n

r

) p
2 ∑

j

∆(ξj)
(ν−n

r
) p

2

∆(ξj)
ν−n

r

(∫
Ω
e−

1
γ

(v|ξj)Aj(v)∆(v)ν−
2n
r dv

) p
2

.

Using Hölder’s inequality with p
2
≥ 1 we can majorize the last integral

with(
· · ·

) p
2

≤
∫

Ω
Aj(v)

p
2 ∆(v)ν−

2n
r dv

(∫
Ω
e−

(p/2)′
γ

(v|ξj)∆(v)ν−
2n
r dv

) p/2

(p/2)′

= cΓΩ

(
ν − n

r

) p
2
−1

∆(ξj)
−(ν−n

r
)( p

2
−1)

∫
Ω
Aj(v)

p
2 ∆(v)ν−

2n
r dv.

Thus,

‖f‖p
bp,2ν

≤ cΓΩ

(
ν − n

r

)p−1 ∑
j

∫
Ω
Aj(v)

p
2 ∆(v)ν−

2n
r dv
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≤ c′
∫

Ω

∑
j

Aj(v)


p
2

∆(v)ν−
2n
r dv

≤ c′′
∫

Ω

(∫
V
|F (x+ iv)|2 dx

) p
2

∆(v)ν−
2n
r dv = ‖F‖p

Lp,2ν
.

By density of Lp,2ν ∩ L2
ν on Lp,2ν (TΩ) the theorem follows.

2

As an immediate consequence, as we already said, we obtain the
boundedness of Pν on Lp,2ν (TΩ) for p′ν < p < pν . To finish the proof
of Theorem 1.1, it is sufficient to prove the sharpness of this result. It is
given at the end of this section.

5.2 Duality in bp,2ν (Ω) and Ap,2
ν (TΩ)

The space bp,2ν (Ω) can be identified with `pw(L2(Ej)), where w = {wj} is
the weight given by wj = ∆(ξj)

−(ν−n
r

), via the correspondence

f ∈ bp,2ν (Ω) 7−→ {f |Ej} ∈ `pw(L2(Ej)).

Therefore, we have the following duality result:

LEMMA 5.6 Let ν ∈ R, 1 < p <∞ and 1
p

+ 1
p′

= 1. Then (bp,2ν )∗ = bp
′,2
ν ,

with the duality pairing

〈f, g〉 =
∑
j

∫
Ej
f(ξ) g(ξ)

dξ

∆(ξj)
ν−n

r
,

for f ∈ bp′,2ν and g ∈ bp,2ν .

A consequence of the previous lemma and Theorem 1.4 is that the
spaces Ap,2ν (TΩ) are reflexive whenever 1 < p < pν . Further, one may
identify (Ap,2ν )∗ with bp

′,2
ν . During the rest of this section we shall find a

more explicit expression for (Ap,2ν )∗ as a space of holomorphic functions.
To begin with, we shall give a meaning to the Fourier-Laplace trans-

form Lf(z), z ∈ TΩ, for functions f ∈ bp,2ν , when p belongs to a certain
“good” range.
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LEMMA 5.7 Let ν > 2n
r
− 1. Then, the integral in (1.3) converges

absolutely for all f ∈ bp,2ν (Ω) whenever 0 < p < p̃ν = 2(ν−1)
(n
r
−2)+

. In this

case, Lf(z) defines a holomorphic function on the tube TΩ.

PROOF:
It suffices to show that in the range above∫

Ω
e−(e|ξ) |f(ξ)| dξ <∞. (5.8)

Consider first the case when 0 < p ≤ 2. Then

∫
Ω
e−(e|ξ) |f(ξ)| dξ ≤

(∫
Ω
e−(e|ξ) |f(ξ)|2

∆(ξ)α
dξ

) 1
2 ( ∫

Ω
e−(e|ξ) ∆(ξ)α dξ

) 1
2

≤ cΓΩ(α + n
r
)

1
2

∑
j

(
∫
Ej
|f(ξ)|2 dξ) p2
∆(ξj)

α p
2

 1
p

.

Now, choosing α = 2
p
(ν − n

r
) we see that the above expression is finite

when α > −1, which is always the case if ν > 2n
r
− 1.

Suppose now that 2 ≤ p < ∞. Then, for some real number α to be
chosen below we have∫

Ω
e−(e|ξ) |f(ξ)| dξ ≤ c

∑
j

(∫
Ej
|f(ξ)|∆(ξ)α

dξ

∆(ξ)
n
r

)
e−

1
γ

(e|ξj) ∆(ξj)
n
r
−α

≤ c′

∑
j

( ∫
Ej
|f(ξ)|∆(ξ)α

dξ

∆(ξ)
n
r

)p  1
p
∑

j

e−
p′
γ

(e|ξj) ∆(ξj)
p′(n

r
−α)

 1
p′

≤ c′′

∑
j

(
∫
Ej
|f(ξ)|2 dξ)

p
2

∆(ξ)(n
r
−2α) p

2


1
p [∫

Ω
e−(e|ξ) ∆(ξ)p

′(n
r
−α) dξ

∆(ξ)
n
r

] 1
p′

.

Now, the integral on the right coincides with ΓΩ(p′(n
r
− α)), so for the

finiteness of the above expression we require(
n

r
− α

)
p′ >

n

r
− 1 and

(
n

r
− 2α

)
p

2
= ν − n

r
.
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After a simple manipulation one sees this is equivalent to

1

2

n

r
− 1 <

ν − 1

p
. (5.9)

When the left hand side is positive we obtain the range 2 ≤ p < 2(ν−1)
n
r
−2

.

When n ≤ 2r one easily sees that (5.9) is verified for all p ≥ 2.
2

REMARK 5.10 The range of p given in the previous lemma is sharp
for the absolute convergence of the integral in (1.3). This can be easily
verified with the aid of Lemma 3.8, as we did in the last part of the
previous section. Note further that 2 ≤ pν < p̃ν .

REMARK 5.11 In addition, the index p̃ν has the remarkable property
that:

Bν(z + ie) ∈ Lp′,2ν (TΩ) ⇐⇒ 0 < p < p̃ν .

This can be easily verified with the help of Lemma 3.6. An immedi-
ate consequence is that Pν cannot be boundedly extended to Lp,2ν (TΩ)
outside the range p̃′ν < p < p̃ν . Indeed, one may test with F (z) =

χQ(ie)(z)∆(=m z)−ν+ 2n
r , where Q(ie) is a closed polydisk in Ω centered

at ie. Then, the mean value property for (anti)-holomorphic functions
gives

PνF (z) = cν Bν(z + ie), z ∈ TΩ.

Since Bν(z + ie) only belongs to Lp,2ν (TΩ) when p > p̃′ν , we get the
condition p > p̃′ν . The corresponding condition p < p̃ν follows from the
symmetry of Pν .

We can now define a space of holomorphic functions on TΩ, whenever
0 < p < p̃ν :

Bp,2
ν (TΩ) =

{
Lf : f ∈ bp,2ν (Ω)

}
,

with norm ‖Lf‖Bp,2ν (TΩ) = ‖f‖bp,2ν (Ω). Since L : bp,2ν (Ω) → H(TΩ) is

continuous and one-to-one, the expression ‖Lf‖Bp,2ν is actually a (quasi)-

norm, and Bp,2
ν (TΩ) a (quasi)-Banach space. Further, note that, when
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n
r
≤ 2, then p̃ν = ∞, and therefore Bp,2

ν (TΩ) = L(bp,2ν ) is well-defined in
the whole range 0 < p <∞.

For the cases n
r
> 2 and when p ≥ p̃ν , the definition of Bp,2

ν (TΩ)
must be done in terms of classes of equivalence. We shall denote by 2

the differential operator 2 = ∆( ∂
∂z

). We normalize it according to the
identity:

∆( ∂
∂z

)ei(z|e) = ∆(z)ei(z|e), z ∈ TΩ.

We now let ` = `(ν, p) be the smallest non-negative integer such that

` >
n/r − 2

2

(
1− p̃ν

p

)
.

This choice of ` is taken so that p < p̃ν+`p = p̃ν + 2`p
n/r−2

, and therefore,

functions in Bp,2
ν+`p(TΩ) can always be defined by means of the Fourier-

Laplace transform. Thus, it makes sense to consider as an extension of
the previous class the spaces:

Bp,2
ν (TΩ) :=

{
F ∈ H(TΩ) : 2`F ∈ Bp,2

ν+`p(TΩ)
}
.

These spaces are not null, as it follows from the existence of solutions to
PDE’s with constant coefficients in convex domains (see Theorem 9.4 in
[8]). In general, however, ‖F‖Bp,2ν := ‖2`F‖Bp,2

ν+`p
is only a semi-norm, so

we will have to quotient with the space

J` =
{
F ∈ H(TΩ) : 2`F = 0

}
.

We shall denote this new space of classes of equivalence by

Cp,2ν (TΩ) = Bp,2
ν (TΩ)/J`, for ` = `(ν, p),

and define its norm as ‖F‖Cp,2ν := ‖2`F‖Bp,2
ν+`p

.

We collect the main properties of the spaces Cp,2ν in the next proposi-
tion.

PROPOSITION 5.12 Let ν > 2n
r
− 1. Then:
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1. If 0 < p < p̃ν, then Cp,2ν = Bp,2
ν . In fact, if F ∈ Bp,2

ν and for some
m ≥ 1 we have 2mF = 0, then F = 0.

2. If 0 < p <∞ and m ≥ `(ν, p), then

Im : Cp,2ν −→ bp,2ν
F 7−→ ∆−m(ξ)L−1(2mF )(ξ)

is an isomorphism of (quasi)-Banach spaces.

3. If 0 < p <∞ and m ≥ 0, then

2m: Cp,2ν −→ C
p,2
ν+mp

is an isomorphism of (quasi)-Banach spaces.

PROOF:

1. This follows by the Fourier-Laplace representation. Indeed, if F (z) =
Lf(z) ∈ Bp,2

ν , then

2mF (z) =
∫

Ω
ei(z|ξ) ∆m(ξ) f(ξ) dξ

(at least in the sense of distributions). So, if 2mF = 0, it follows
that f = 0.

2. The result is elementary for 0 < p < p̃ν , since when F (z) = Lf(z) ∈
Bp,2
ν we have

∆−m(ξ)L−1(2mF )(ξ) = f(ξ), m ≥ 0,

so one just uses the definition of Bp,2
ν = L(bp,2ν ). The general case

p ≥ p̃ν can be easily reduced to this one by definition of the spaces
Cp,2ν , and using that

g(ξ) −→ ∆m(ξ) g(ξ)

is an isomorphism from bp,2ν onto bp,2ν+mp.
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3. For m ≥ `(ν, p), the fact that 2m is well-defined and injective is an
immediate application of 2 above and the definition of the spaces.
Let us see that the correspondence is onto. If F ∈ Bp,2

ν+mp(TΩ)

and F = Lf , then ∆`−m(ξ)f(ξ) ∈ bp,2ν+`p. Here we have chosen
` = `(ν, p), and therefore, p < p̃ν+`p. Thus, we can say that

F1(z) = L(∆`−m f)(z) ∈ Bp,2
ν+`p and 2m−`F1(z) = Lf(z) = F (z).

Now, we invoke the existence theorem for PDE’s to find G ∈ H(TΩ)
so that 2`G = F1. Clearly, G ∈ Cp,2ν and 2mG = F .

Finally, the general case m ≥ 0, can be easy reduced to the previous
one by the definition of the spaces involved.

2

LEMMA 5.13 Let ν > 2n
r
− 1 and 0 < p <∞. Then

2:Ap,2ν (TΩ) −→ Ap,2ν+p(TΩ) (5.14)

is bounded and injective.

PROOF: The boundedness is not difficult to show from the Cauchy
integral formula for derivatives. A standard argument can be found in
[4] (see Proposition 6.1 there). For the injectivity one uses the same
argument we gave in the proof of (1) of the previous proposition.

2

An immediate corollary is then the following:

COROLLARY 5.15 Let ν > 2n
r
− 1 and 0 < p <∞. Then, Ap,2ν (TΩ) ↪→

Cp,2ν (TΩ).

PROOF: In §4.1 we showed the (continuous) inclusion L−1(Ap,2ν ) ⊂ bp,2ν ,
for all 0 < p <∞. Thus, at least when 0 < p < p̃ν we have Ap,2ν (TΩ) ↪→
L(bp,2ν ) = Bp,2

ν (TΩ). The general case 0 < p < ∞, follows immediately
from the last lemma and the definition of the spaces Cp,2ν .

2
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We can now state the main result in this section, which concerns the
dual of the space Ap,2ν (TΩ), when 1 < p < pν .

Given ν > 2n
r
− 1 and 0 < p < ∞, we let γ(ν, p) be the smallest

non-negative integer so that

γ(ν, p) >
n/r − 1

2

(
1− pν

p

)
.

Note that γ(ν, p) is chosen so that p < pν+γp. In particular, for all
γ ≥ γ(ν, p) we have

F ∈ Cp,2ν (TΩ) =⇒ 2γF ∈ Ap,2ν+γp(TΩ).

Indeed, this follows from Theorem 1.4 and Proposition 5.12.
Now we shall consider 1 < p < ∞, γ ≥ γ(ν, p′) and define, for every

F ∈ Cp′,2ν (TΩ), the functional

Φγ
F (G) =

∫ ∫
TΩ

∆γ(=mw) 2γF (w)G(w) ∆ν− 2n
r (=mw) dw, G ∈ Ap,2ν (TΩ).

Note that with our assumptions ∆γ(=mw) 2γF (w) ∈ Lp
′,2
ν (TΩ), and

therefore, Φγ
F belongs to (Ap,2ν )∗. Further, by Proposition 5.12 we also

have
‖Φγ‖ ≤ ‖2γF‖

Ap
′,2
ν+γp

≤ C ‖F‖Cp′,2ν
.

THEOREM 5.16 Let ν > 2n
r
− 1, 1 < p < pν and γ ≥ γ(ν, p′). Then

Φγ : Cp′,2ν (TΩ) −→ (Ap,2ν (TΩ))∗

F 7−→ Φγ
F

is an (anti-linear) isomorphism of Banach spaces.

PROOF:
In view of the previous it suffices to show that Φγ is surjective. Let

us therefore take Φ ∈ (Ap,2ν (TΩ))∗. Then, we can define

Φ̃(g) := Φ(Lg), g ∈ bp,2ν (Ω).
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¿From Theorem 1.4 it follows that Φ̃ ∈ (bp,2ν )∗ and ‖Φ̃‖ ≤ c ‖Φ‖ (it is here
where we need 1 < p < pν). Thus, by Lemma 5.6 there exists f̃γ ∈ bp

′,2
ν

such that ‖f̃γ‖bp′,2ν
= ‖Φ̃‖ and

Φ̃(g) =
∑
j

∫
Ej
f̃γ(ξ)g(ξ)

dξ

∆(ξj)
ν−n

r
, g ∈ bp,2ν . (5.17)

We define

fγ(ξ) = f̃γ(ξ) ∆γ(ξ)

∑
j

∆(ξ)

∆(ξj)
χEj(ξ)

ν−nr ∈ bp′,2ν+γp′(Ω)

Then, letting Fγ(z) = Lfγ(z) and G(z) = Lg(z), we can write (5.17) as

Φ̃(g) =
∫

Ω
∆−γ(ξ) fγ(ξ) g(ξ)

dξ

∆(ξ)ν−
n
r

= c0

∫ ∫
TΩ

∆γ(=mw)Fγ(w)G(w) ∆ν− 2n
r (=mw) dw,

where the constant c0 > 0 appears from Plancherel and Fubini’s Theo-
rems. Now, Fγ ∈ Ap

′,2
ν+γp′ and therefore by Proposition 5.12 there exists

a function (actually a whole class) F ∈ Cp′,2ν with 2γF = c0 Fγ. This
implies

Φ(G) = Φ̃(g) = Φγ
F (G), ∀ G = Lg ∈ Ap,2ν (TΩ),

and hence Φ = Φγ
F . Further,

‖F‖Cp′,2ν
≤ c1 ‖2γF‖

Ap
′,2
ν+γp′

≤ c2 ‖fγ‖bp′,2
ν+γp′

≤ c3 ‖f̃γ‖bp′,2ν
≤ c4 ‖Φ‖,

establishing the theorem.

2
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5.3 Extensions of the Bergman projector Pν

We already proved that the Bergman projector

PνF (z) =
∫ ∫

TΩ

Bν(z − w)F (w) ∆(=mw)ν−
2n
r dw, z ∈ TΩ,

originally defined in L2(TΩ), can be boundedly extended to Lp,2ν (TΩ) at
least when p′ν < p < pν . In this section we shall show that, as a densely
defined and symmetric operator, Pν does not admit continuous extensions
to Lp,2ν (TΩ) for p outside this range.

On the other hand, we proved in Theorem 5.5 that passing to the
frequency domain one can regard Pν as bounded operator taking values
into bp,2ν (Ω). The main task in this section is to show that Pν can also be
seen as an operator taking values in the spaces of holomorphic functions
Cp,2ν we introduced below.

First of all, note that the kernel Bν(z − ·) ∈ Lp
′,2
ν , for all p < p̃ν , and

therefore, the integral defining PνF (z), when F ∈ Lp,2ν (TΩ), converges
absolutely. Further, we know from Theorem 5.5 and the identification
Bp,2
ν (TΩ) = L(bp,2ν ) that Pν :L

p,2
ν (TΩ) → Bp,2

ν is bounded when p′ν < p <
p̃ν . Thus, at least in this range, we have obtained a natural bounded
extension of Pν taking values in a space of holomorphic functions.

When p ≥ p̃ν there is also a natural extension, but one needs some
more care to describe it, since the integral defining PνF (z) is not neces-
sarily convergent. However, if we wish to define PνF as an equivalence
class in Cp,2ν , it suffices to determine 2`PνF , when ` = `(ν, p). The obvi-
ous definition, that extends the original projector, is then the following:

2`PνF (z) := cν+`

∫ ∫
TΩ

Bν+`(z − w) f(w) ∆(=mw)ν−
2n
r dw, z ∈ TΩ,

This integral is absolutely convergent, since our choice of ` = `(ν, p)
guarantees Bν+`(z+ie) ∈ Lp′,2ν (TΩ) (see Lemma 3.6). Following the same
lines as in §5.1 one writes the frequency representation of this operator:

L−1(2`PνF )(ξ) = c(ν, `) ∆(ξ)ν+`−n
r

∫
Ω
e−(v|ξ) F̂ (ξ, v) ∆(v)ν−2n

r dv, ξ ∈ Ω.
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Then, a new use of Theorem 5.5 gives ∆−`L−1(2`PνF ) ∈ bp,2ν and

‖PνF‖Cp,2ν = ‖∆−`L−1(2`PνF )‖bp,2ν ≤ C ‖F‖Lp,2ν (TΩ).

Thus, the operator Pν :L
p,2
ν → Cp,2ν is well-defined and bounded when

p′ν < p <∞.
We claim something more, which we already stated as a theorem in

the introduction.

THEOREM 5.18 Let ν > 2n
r
− 1 and p′ν < p < ∞. Then, Pν can be

extended as a bounded operator from Lp,2ν (TΩ) onto Cp,2ν (TΩ).

PROOF:
In view of the previous comments, we just need to show that Pν(L

p,2
ν (TΩ)) =

Cp,2ν . Let F ∈ Cp,2ν ≡ (Ap
′,2
ν )∗. Then, for γ = γ(ν, p), the functional

G ∈ Ap
′,2
ν 7→ Φγ

F (G) extends (by the Hahn-Banach Theorem) continu-
ously to Lp

′,2
ν (TΩ). Thus, there exists ϕ ∈ Lp,2ν (TΩ) so that

Φγ
F (G) =

∫ ∫
TΩ

∆γ(=mw) 2γF (w)G(w) ∆ν− 2n
r (=mw) dw

=
∫ ∫

TΩ

ϕ(w)G(w) ∆ν− 2n
r (=mw) dw.

Now, for each z ∈ TΩ, we test with

Gz(w) := Bν+`(w − z) ∈ Lp′,2ν (TΩ),

to obtain:

2`Pν(ϕ)(z) = cν+`

∫ ∫
TΩ

ϕ(w)Bν+`(z − w) ∆ν− 2n
r (=mw) dw

= cν+`

∫ ∫
TΩ

∆γ(=mw) 2γF (w)Bν+`(z − w) ∆ν− 2n
r (=mw) dw

= c′ν+`

∫
Ω

∫
Ω

(L−12γF )(ξ) ei(z|ξ) ∆(ξ)ν+`−n
r e−2(v|ξ) dξ∆γ+ν− 2n

r (v) dv

= c
∫

Ω
∆−γ+`(ξ) (L−12γF )(ξ) ei(z|ξ) dξ,
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where in the middle equality we have used Parseval and the formula for
L−1Bν+`(·+ z). Now, since 2`F ∈ Bp,2

ν+`p, we must have

(L−12γF )(ξ) = ∆γ−`(ξ) (L−12`F )(ξ).

Thus, it follows that 2`Pν(c
−1 ϕ) = 2`F , establishing the theorem.

2

This ends the proof of Theorem 1.2. It remains to prove that the
Bergman projection is unbounded outside the range p′ν < p < pν . By
Remark 5.11, we already know that it is unbounded for p ≥ p̃ν . Using
the last theorem as well as Proposition 5.12, we also know that, if it is
bounded for some p such that p′ν < p < p̃ν , then Ap,2ν (TΩ) identifies with
Bp,2
ν = L(bp,2ν ). Since Theorem 1.4 is sharp, this means that p < pν . The

condition p > p′ν follows by symmetry.
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