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THE MIXTURE PROBLEM

L. P. FOTSO & J. P. NZALI

RESUME. Dans ce papier, nous introduisons le probléme du mélange qui concerne le placement des étudiants composant
simultanément plusieurs épreuves d’examens dans une ou plusieurs salles de classe. Le but visé est de séparer les étudiants
composant la méme épreuve de sorte qu’il y ait un mazimum de siéges entre toult groupe de deux d’entre euz; ces siéges
devant étre utilisés autant que possible pour placer les étudiants composant d’autres épreuves. Afin d’éviter le probléme
associé & l’arrangement géométrique des siéges dans les salles, nous supposerons les siéges numérotés consécutivement et
placés de facon linéaire. Dans le probléme du mélange, nous nous intéressons & un entier non-négatif p, appelé degré de
mélange, que nous essayerons de mazimiser et qui représente le nombre de siéges entre deuz étudiants composant le méme
eramen. Pour simplifier la notation, nous introduisons un entier positif ¢ = p + 1, qui représente la différence entre des
numéros de siéges et que nous appelons ”la séparation minimum?”. Nous appelons m le nombre de siéges, s le nombre
d’étudiants, n le nombre d’examens et C; le nombre d’étudiants composant l’ezamen 1. Nous montrons d’abord que la
m—t

séparation mazimale est le quotient entier ¢* = lmJ ou t est le nombre d’entrées dans la suite Cp,...,Cph—1 ayant la

valeur C = max,_1>;>0(Ci). Si ¢* <p+1 il n’y a pas de mélange de degré p. En supposant ¢* > p+1, nous construisons
la fonction de place;ze_nt F:S — M, qui place U’étudiant k sur le siége F(k). M et S sont respectivement des ensembles
de numéros de siéges et de numéros d’étudiants. L’algorithme dérivé est assez simple pour étre exécuté manuellement en
mizant un jeu de cartes d’une certaine fagon.

ABSTRACT. In this paper we introduce the "mizture problem” which concerns seating students taking several different
ezaminations simultaneously in one or more classrooms. The aim of the problem is to separate students taking the same
examination with as many intervening seats as possible either left empty or occupied by students taking other examinations.
To circumvent problems associated with the geometrical arrangement of seats in classrooms, we assume that seats are
numbered consecutively and arranged in a line. In this mizture problem, we want to mazimize a non-negative integer
p, called the degree of mixture, which represents the number of intervening seats between two students taking the same
eramination. However, to simplify the notation, we use a positive number ¢ = p + 1 to represent the difference between
seat numbers. We call it “the minimum separation”. We take m to be the number of seats, s the numbers of students,
n the number of exams, and C; the number of students taking exam i. We first show that the mazimum separation that
can be achieved is the integral quotient gx = ['g—:” where t is the number of entries in sequence Cy,...,Cp—1 having the

value C = maz,_1>;>0(Ci). If ¢* < p+ 1 there is no p-mizture. Assuming ¢* > p + 1, we construct a seating function
F : S — M, that a_sszgns student k to seat F(k). M and S are the sets of indices for seats and students respectively.
We show by construction that the derived algorithm is simple enough to be executed manually by shuffling a deck of cards
according to certain rules.

1. INTRODUCTION

Where classrooms are overcrowded, students may cheat during exams by copying from their neighbors
and so they are often spread into several classrooms in such a way that there is at least one empty seat
between any two adjacent students taking the same exam. The examination period must thus extend
over several weeks. In the worst case, it overlaps with the begining of the next semester. To avoid the
?waste” of empty seats we reformulate the seating of students as the mixture problem.
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This problem concerns seating students taking several different exams simultaneously in one or more
classrooms. Its aim is to separate students taking the same examination with as many seats as possible,
with intervening seats empty or having students taking other examinations. To circumvent problems
associated with the spatial arrangement of seats in classrooms, we make the simplifying assumption that
the seats are numbered consecutively and are placed in a single line. In addition, students taking the
same exam should be separated by as many other seats as possible.

In this problem, we want to maximize a nonegative integer p, called the degree of mixture, which
represents the number of intervening seats between students taking the same exam. However, to simplify
the notation, we shall use the positive number ¢ = p+1 , which is the difference between two seat numbers
and we call it the minimum separation. Thus, students sitting next to each other have a separation ¢ = 1.

Section 2 gives two possible formulations of the problem. Section 3 elaborates a solution to the
problem. In this section, we prove the main theorem of this paper and present an algorithm to construct
the seating function F' : S — M that assigns to student k seat F'(k). We also provide a graph theory
oriented algorithm which constructs a colored linear graph such that, given any two vertices of the same
color, there are at least p vertices of distinct colors between them. In section 4 we show how the algorithm
constructed for the seating function F' can be executed manually by shuffling a deck of cards in a certain
way. Section 5 is the conclusion and section 6 is the references. In the Appendices, we illustrate a version
of the seating function algorithm coded in the BASIC programming language.

2. Two POSSIBLE FORMULATIONS OF THE PROBLEM

2.1. A Non Graph Theory Formulation. In the mixture problem we are given the following quanti-
ties:
(i) A positive integer m, called the number of seats. The set of indices representing the seats is
M:{OJ 7m_1}

(ii) A positive integer s < m called the number of students. The set of indices representing the
students is S = {0,--- ,s — 1}.

(iii) A positive integer n < s, called the number of exams. The set of indices representing the exams
isN={0,---,n—1}.

(iv) A sequence of positive integers Cy,...,Cp—_1, where C; is the number of students taking exam i.
We require that 327" C; = 5. We number the students so that the first Cy students take exam
0, the next C; students take exam 1 and so on, until the last C,,_; students who take exam n — 1.
We call this assignment the exam function £ : S — N and it states that each student k € S takes
exam E(k) € N, E(k) is the smallest integer such that k < EE:((';) C;. In this arrangement, the

k2
same student taking more than one exam cannot take them both at the same time.
Using these definitions, the function F' : S — M, called the seating function, is constructed which assigns
student k to seat F'(k). We show that this function is injective and so two or more students will never be
allocated to the same seat. To make sure that students taking the same exam are separated by at least
q seats, the following condition must be satisfied:

] ,/‘%SO <|F(@) - F(j)| < g = E@) # E(j) (Seating Condition)
‘L,J

2.2. A Graph Theory Formulation. We construct a graph where vertices are the m available seats.
To simplify the problem definition we assume that the seats are linearly arranged, with an edge between
any two adjacent seats. It is a linear graph. We want to place students on seats such that two students
sitting on adjacent seats do not take the same exam. This is a kind of coloring a linear graph. The
number of colors to be used is the number n of the different exams taken. Let color i be attributed to
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exam ¢ and C; be the number of students taking exam i. The seats of students taking exam 4 have color
i.
Although the final result is a colored linear graph, our problem is more complex than the classical graph
coloring problem. A coloring of an undirect graph G = (S, A) where S is the set of vertices and A the
set of edges is a function C : S — N such that given any pair of vertices u,v € S, if C(u) = C(v) then
the edge (u,v) does not belong to A [Cormen, 1994].

The complexity of our problem originates from the fact that it has two new constraints and one new
objective. The added objective is to maximize the number of vertices of different colors that separate
two vertices of the same color. The new constraints are:

(i) The number of vertices to color with a given color i is determined by the number C; of students
writing exam 4;

(if) The number of colors used n is determined by the number of exams scheduled to be taken at the
same time.

Without these added constraints and objective, the linear graph obtained could be considered as a linked
list and thus contains a 2-coloration graph. i.e., we can color the list with two colors: elements with even
indices are colored using one color and elements with odd indices use the other color [Cormen, 1994].

The problem, as formulated, does not always have a solution. In the following section, we find the
maximum separation ¢*. From the definition of the problem there is a solution if ¢* > 2. When this
condition is satisfied, we can elaborate two alternative algorithms for constructing a solution.

3. THE SOLUTION

Define C = max;en(C;), and let ¢ be the number of entries in sequence Cy,...,Cpr—1 having this
maximum value. Our aim is to find the maximum separation ¢* that can be achieved when we are given
m and the sequence Cy,...,C,_1, and have to construct the seating function F' : S — M, in order to

achieve this separation.

THEOREM 1. The maximum separation q* that can be achieved is the integral quotient:

—1
= \‘%J (Mazimum Separation)
PROOF: Without loss of generality, we order the sequence {C;} so that Co > ... > C,_;. From the
definition of ¢, we see that Cy = C; = --- = Cy_; = C, where C' = max;eny C; and if t < n, then

Ci1>Cpand Cy > --- > C,_1. While ¢* is the quotient, let r be the remainder obtained when m — ¢
is divided by C' —1,s0 m —t = ¢*(C — 1) +r. Then

m=t+¢"(C—-1)+r> ZC,- >tC, so ¢"(C—1)+r>t(C—1).
ieN
But, ¢* and t are integers, and 0 < r < C' — 1 because it is the remainder when dividing by C — 1, giving
q* > 1. This fact is needed in the proof below.

The students taking exam 0 must span at least (C'— 1)g* + 1 seats because adjacent pairs of students
taking the same exam have separation ¢* or more. The students taking exam 1 must also span at least
(C —1)g* + 1 seats, but since they can’t be the same seats, the span of students taking the two exams
must be at least (C'—1)g* + 2 seats, etc. This can be achieved by interleaving, which allows the students
taking exams 0,1,...,t — 1 to sit in consecutive seats, and producing what is clearly the minimum span
of (C'—1)g* +1 seats. Since we know that ¢* > ¢, interleaving the first ¢ exams of size C is clearly possible
using (C — 1)g* + t seats, but it is not possible using fewer.

Note that if ¢* < 2, the problem has no solution. That is, when ¢* < 2, it is not possible to place
students such that any two students writing the same exam are not on adjacent seats.
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3.1. A Non-Graph-Theory Algorithm For Constructing a solution : Algorithm F. In the
mixture problem, the decision maker specifies the degree of mixture p(p > 1) and therefore, the minimum

separation ¢ = p 4+ 1. Using the problem data, we compute the maximum separation ¢* = [TC”—:” If
q* > q = p+ 1 there is a p-mixture. If ¢* < ¢ = p + 1, there is a ¢*-mixture with at most ¢* — 1 degree
of mixture and the problem of p-mixture has no solution. For example, if p = 1 and ¢* < 2, there is at
most 0 degree of mixture, i.e. no mixture.

Here we assume ¢* = ¢ = p + 1 and our purpose is to define the seating function F' : M — S. To do
this we partition the line of seats (designated by 0,1,...,m — 1) into C segmeents. The first r segments,
if any, are each of length ¢* + 1, the next C'—r — 1 segments are each of length ¢*, and the last segment
is of length ¢, which we know is less than or equal to ¢*. Thus, the segment never increases in length as
we proceed along the line.

The rules for constructing F' are the following;:

1. Place the first students in the first seat of the first segment. Thus F(0) = 0.

2. After seating any student, seat the next student in the first available seat of the next segment, if
possible.

3. If no seat is available in the next segment, place the next student in the first available seat of the first
segment.

Since all segments except the last have lengths that are either ¢* 4+ 1 or ¢*, when rule 2 is followed
the separation between consecutive students is large enough to allow them take the same exam. The C'
students taking any one of the first ¢ exams will occupy seats in all C' of the segments. These exams are
therefore interleaved as described at the begining of the proof. After this the last segment will be full
and have the no more seats available.

If there are additional exams Cy, ..., ), they will have size C — 1 or less. If Cy = C' — 1, the students
taking this exam will occupy seats in all C' — 1 segments. The same will be true for any other exams of
size C'—1. There will always be seats available in the first C' — 1 as long as C'— 1 or more students remain
to be assigned seats so that consecutive students (whether taking the same exam or not) will either sit
in consecutive segments or in the first and last segments and thus have separation of ¢* or more. Since
m < s, all students will be assigned seats.

It is important to note in this proof, first that students taking exam i € {0,...,¢ — 1} will all occupy
the ith position in each of the C segments 0, ...,C — 1, and second that students taking any exams i > ¢
of size C'— 1 will occupy the ith position in each of the first C'— 1 segments 0, ..., C — 2. In this way the
proper separation will be maintained. However, students taking any exam i of size less than C' — 1 may
occupy positions that differ by 1 between different segments. This fact causes no difficulty since these
positions are separated by at least one segment not containing exam i. The exam does not use all the
first C — 1 segments.

This algorithm executes in order n(m/q*) time when it successfully implements F. It has been suc-
cessfully implemented at the University of Yaounde I(Cameroon) in the Faculty of Arts and Letters and
in the Faculty of Science.

EXAMPLE 1. We illustrate the algorithm by constructing F'. Suppose m = 11 and s = 10, with Cy = 3,
C1=3,C=2,C3=2. Thenwe haven=4,C =3,t=2, ¢* = [%J =4, andr =1. The 11 seats
are thus partitioned into 3 segments of length 5, 4 and 2 as shown in figure 1. Let x;; denote student j
of class 1.

Seg. 1 Seg.2 Seg.3
0 1 2 3 41 5 6 7 8 9 10
Zo1 | 11 | T21 | T31 Zo2 | T12 | T22 | T32 | To3 | T13

Figure 1: arrangement of students on different seats
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Figure 1 shows the set of 3 segments (first line of the table). Seats are numbered from 0 to 10 (second line
of the table). Seg.1 has seats number 0 and 4; Seg.2 seats are numbered from 5 to 8; and Seg.3 has seats
number 9 and 10. The first student of the class 0, xo1, is placed on the first empty seat (seat number 0)
of Seg.1 with respect to rule 1. Rule 2 allows us to place xga and xo3 on the first empty seats of Seg.2
and Segq.3 respectively. At this stage, all the students of class 0 are seated and all the first seats of the 3
segments are occupied. We then continue with students of class 1 by placing x11 on the second seat of the
first segment which is the first empty seat of the next segment (seat number 1). Next, we place x12 on the
second seat of the second segment and x13 on the second seat of the third segment. At this level, we have
placed all students of class 1. The first student of the class 2, x21, is placed on the first empty seat of the
next segment, which is seat number 2 of the first segment. The second student of class 2, xa2, is placed
on the first empty seat of the second segment. The first student of the class 3, x31, should be placed on
the first empty seat of the next segment but it has no more empty seats. Rule 3 is then applied to place
the student on seat 8, the first empty seat of the first segment. The second student, x32, is placed on seat
8, the first empty seat of the second segment. At this point, all students of the four classes are sited and
the algorithm stop. Seat number / remains empty.

Note that to have the minimum separation equals the mazimum separation, we must introduce empty
seats. We could eliminate these empty seats by compacting the placement so that students are shifted
from the tail to the head of the list. Thus, in example 1, xgo should be assigned to seat 4, x12 to seat 5,
Too to seat 6, x3o to seat 7, xo3 to seat 8, and x13 to seat 9. When we compact the placement:

minimum separation = mazimum separation — 1

and the mizture still holds if ¢* were strictly greater than 2.

3.2. A Graph Theory Algorithm For Constructing a solution : Algorithm H. Let L; be the
list of students taking exam i. Color elements of L; with color . Without loss of generality, suppose the
L;,i=0,...,n—1, be such that length (L;)<length(L;) for j > i; length(L;) is a function that returns
the length of list L;. Now let L be the concatenation of the L; starting from Lo to L,_; in decreasing
order of length. Note that the length of Ly is equal to C specified above. Given that the maximum
separation ¢* = ¢ = p+ 1, we want to construct a linear colour graph where the vertices are the students,
each colored with the color of the exam he is writing, and there is an edge between two students if they
are sitting next to each other. Furthermore, that graph should be such that, given any two vertices of
the same colour, there are ¢ vertices of different colors that separate them.

Let Yy denote the set of the first C' elements of L (i.e. Yo = {L(1),...,L(C)}). Yi the set of the
next C' elements of L and so on until we cover all the elements of L. If the last set of Y;’s has less than
C — 1 elements add fictive students colored with an unused color and so make up to C' — 1 elements. The

necessary condition implies that there are ¢ such sets. Consider the vertex graph G = (0<.g lYi, &)
<i<n—

where vertices are isolated (i.e. there is no edge between any pair of elements of Y;’s) elements of the
union of the Y;’s. We construct a Hamiltonian path for G such that for any given pair of vertices with
the same color on the path, there are ¢ vertices of distinct colors between them as folows:
i) From i = 1, draw an arc from the ith element of Y to the ith element of Y], an arc from the ith
element of Y7 to the ith element of Y5,..., an arc from the ith element of Y;_; to the ith element
of Yy, and an arc from the ith element of Y; to the (i+1)th element of Y;.

ii) From this (i+1)th element of Yp, repeat the process with ¢ =i + 1 until all the vertices of G are
visited.
The resuting Hamiltonian path is the linear colored graph required. Fictive students correspond to
empty seats when placing the students. The placement is straightfoward when seats are considered
lineary arranged:

Place the student represented by the first vertex of the Hamiltonian path on the first seat.
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Place the student represented by the second vertex of the Hamiltonian path on the second seat
and so on until the student represented by the second vertex of the Hamiltonian path on the
second seat and so on until the student represented by the last vertex on the path is placed on
the next available seat.

Although the placement function is linear with respect to s, the total number of student writing exams,
this algorithm is more complex because we have to do s colorings, s/C' set constructions, and at least s
arc drawings to obtain the Hamiltonian path before starting the placement.

EXAMPLE 2. We reuse example 1 where m =11, n =4, Cy =3, C1 =3,Cy,=2,C3=2,t =3 and
q* = 4. As indicated earlier, let x;; represent student j writing exam ¢ and let a; represent fictive student
j. Then

Lo = {x01, %02, 03}, L1 = {®11, %12, 213}, L2 = {x21, 222} and Ls = {x31,232};
Yo = {wo1, %02, w03}, Y1 = {w11, 212,713}, Yo = {@o1, 022,231} and Y3 = {w32,0a:}.

G = ({zo1, o2, Tos } U {z11, T12, 13} U {21, T22, 231 } U {X32,01 }, D).
Figure 2 shows the resulting Hamiltonian path.

Zo3 Z13 Z31

Figure 2: Hamiltonian path of graph G

4. ANOTHER VIEWPOINT

The algorithm described in the above proof is simple enough to be carried manually. One can do
it by shuffling a deck of cards as described below. Again, we assume that Cy > --- > C,,_; and that
szaXiech' =Co == thl-

1. One begins with a deck of m blank cards placed face down. The first Cy cards have the number 0
written on their faces, the next C; cards have the number 1 written on them, and so on until we
have similarly written numbers up to n—1 on the first s cards. If there are many additional cards
because m > s, then those cards will be at the bottom of the deck and have the word ”empty”
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written on them.

2. The top cards (labeled 0) is removed from the deck, turned over, and placed on the table. Then
the next card is removed from the deck, turned over, and placed to the right of the first card.
This process is continued until C' cards have been placed consecutively on the table. These are
the buttom cards of C' future piles, each pile corresponding to a segment as described in section
3.1.

3. We now continue removing cards from the top of the deck, turning them over and placing them
on consecutive piles until all the C' piles contain ¢ cards each.

4. This process is continued using up the rest of the deck. However, cards are only placed on the
first C' — 1 piles and and the rightmost pile is not added to.

5. The deck is reassembled by picking up the consecutive piles and placing them; in order, one above
the next so the leftmost pile is at the buttom and the rightmost at the top. The entire deck is
them turned over so that the deck of cards is face down again.

6. This deck of cards is now taken to the classroom, and the cards are removed from the top of the
desk and placed on consecutive seats. The number appearing on the cards indicate which exam
should be taken by the student sitting in that seat.

5. CONCLUSION

In this paper, we study the problem of placement of students writing several exams in one or more

classrooms, in such way that seats allocated to any two students writing the same exam are separated
by at least one seat. This problem differs from the classical problem of graph coloring problem by the
introduction of two news constraints: (1) The number of vertices to color with a given color is imposed, (2)
The number of colors to be used is equally imposed. In addition, there is a new goal: The maximization
of the number of vertices with different colors that must separate two vertices of the same color.
We first show that the maximum separation ¢* is the integer part of the quotient (m —t)/(C — 1) where
m is the number of available seats, C' is the maximum of C;‘s where C; is the number of student writing
exam i, and ¢ is the number of Cj;‘s, such that C; = C. Assuming the minimum separation equals ¢*
the maximum separation, we define a placement function F' that allocates seat F(k) to student k. We
propose two alternative placement algorithms. The first one constructs the seating function in time
n(m/q*) where n is the number of different exams. The second one is more complex and uses a kind of
graph coloring and the Hamiltonian path concept to construct a linear color graph.
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APPENDIX 1: A BASIC implementation algorithm F: Program MIXTURE

© 00N O O w

10
11
12
13
15
16
20
30
32
35
40
45
50
52
55
60
70
80

CLS: PRINT " Mixture Program ":PRINT

’ Max Number of seats = 200

’ Max Number of exams to be written simultaneously at the same time =10
’ Max frequency for an exam = 100

> seg(i,1) = beginning of seg i, seg(i,2)= first free seat,

’ seg(i,3) = last seat of this segment

> eti$ indicates the label associated to each exam

>’ Exam 1 is labeled A, exam 2 B etc...

> An empty seat will be indicated by a star (*)

DATA =*,A,B,C,D,E,F,G,H,I,J

DIM A(200), CL(10), SEG(100,3), ETI$(10)

FOR I=0 TO 10: READ ETI$(I): NEXT I ’label setting
INPUT "number of seats:" ;M

INPUT "number of classes:" ;N:PRINT

s=0 ’ number of students

FOR I=1 TO N

PRINT " class frequency ";I;" :";:INPUT CL(I)
S=S+CL(I) ’ cumuli of number of students
NEXT I

IF S>M THEN PRINT " =— - -> Not enough seats for all": STOP
’- - Sort the frequencies of classes - -

FOR I=1 TO N-1

FOR J=I+1 TO N

IF CL(I)<CL(J) THEN

B=CL(I):CL(I)=CL(J):CL(J)=B:X$=ETIQ$(I):ETIQ$(I)=ETIQ$(J) :ETIQ$(J)=X$

90

100
110
120
130
140
150
160
170
175
180
200
205
207
210
220
230
240
245
250
260
270
280
285
290
300
301
302
304
306

NEXT J

NEXT I

C=CL(1) ’ class with the highest frequency
T=1

FOR I=2 TO N

IF CL(I)=CL(I-1) THEN T=T+1 ELSE GOTO 160
NEXT I

Q=FIX((M-T)/(C-1))

IF Q<2 THEN PRNT " - -> No solution :":STOP
’ - - there is at least one solution - -
R=(M-T)-(C-1)"@Q

J=0 ’ Number of the first seat

IF R=0 THEN GOTO 250

> - - Initialize the heading r segments - -
FOR I=0 TO R-1
SEG(I,1)=j:SEG(I,2)=J:SEG(I,3)=J+Q

J=J+Q-1

NEXT I

> - - Initialize the intermidiary segments - -
FOR I=R TO C-2
SEG(I,1)=J:SEG(I,2)=J:SEG(I,3)=J+Q-1

J=J+Q

NEXT I

> - - Initialize the last segment - -
SEG(I,1)=J:SEG(I,2)=J:SEG(I,3)=J+T-1
PRINT:PRINT " value of q=:";Q

’ - - Print the constitued segments - -
PRINT" segmentation"

FOR I=0 TO C-1 ’ c = number of segments
T=SEG(I,3)-SEG(I,2)+1

57
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307
310
315
325
330
340
350
360
370
400
410
420
490
500

L. P. FOTSO, J. P. NZALI

PRINT "Size of the segment N ";I;" : ";T; " :";
PRINT SEG(I,1);"-";SEG(I,2);"-";SEG(I,3)
NEXT I

> - - - - Place students in the segments - - -

K=0: 1I=0

FOR J=1 TO N ’ Treatment loop for the exam

FOR L=1 TO CL(J) ’ Treatment loop for these students
A(I)=J ’Place the students

SEG(K,2)>SEG(K,3) THEN K=0 ’> If it is full, skip to the first segment
I=SEG(K,2) ’ first free seat in the segment

NEXT L

NEXT J

PRINT: PRINT " - - - - Result - - - -":PRINT

FOR I=0 TO M-1:J=A(I):PRINT ETIQ$(J)," - ";:NEXT I
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APPENDIX 2: Sample executions of Programm MIXTURE

The Mixture Programm
Number of Seats:? 15
Number of classes:? 3
Number of student in class 1 7
Number of student in class 2 4
Number of student in class 3 :7 3
Value of g=: 2
segmentation
Size of segment N 0 : 3 0-0-2
Size of segment N 1 : 3 3-3-5
Size of segment N 2 : 2 6 -6-7
Size of segment N 3 : 2 8-8-9
Size of segment N 4 : 2 10 - 10 - 11
Size of segment N 5 : 2 12 - 12 - 13
Size of segment N 6 : 1 14 - 14 - 14
- - - Result - - -
A-B-C-A-B-*-A-B-A-B-A-C-A-C-A
Ok

Figure 3: Students of class 1, 2 and 3 are colored with the letter A, B and C respectively. The star symbol ‘*’ represents
an empty seat

The Mixture Programm
Number of seats:? 20
Number of classes:? 2

Number of student in class 1 :7 15
Number of student in class 2 :7 4
- - - No solutionm :

Break in 170
0k

Figure 4: This example illustrates the case where the mizture is not feasible.

The Mixture Programm
Number of seats:? 30
Number of classes:? 4

Number of student in class 1 :7 21
Number of student in class 2 :7 15
Number of student in class 2 :7 13
Number of student in class 2 :7 7

- - —> Not enough seats for all
Break in 52
Ok

Figure 5: This last example shows the situation where there are no enough seats to place all the students.

Computer Science Department, Faculty of Science, BP.812 Yaoundé, Cameroun
E-mail address: 1pfotsoQuycdc.uninet.cm, jpnzali@uycdc.uninet.cm



