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ABSTRACT 

This thesis deals with the dynamical characterization of autonomous electrical circuits 

based on the shunted Josephson Junction (JJ). Two models of JJ are used. A linear resistive-

capacitive-inductance shunted junction (LRCLSJ) model and a linear resistive and capacitive 

shunted junction model (LRCSJ) model. Each of those junction models is used in a Colpitts-like 

CLC circuit made of two capacitors, an inductance with its internal resistor though operating at low 

frequencies. The circuits proposed display Hopf bifurcation, periodic oscillations, chaotic as well as 

hyperchaotic attractors. The electronic implementation of these circuits using OrCAD-PSpice 

software is presented to confront the results of the numerical simulations. A good qualitative 

agreement is revealed by comparing the analog and numerical simulation results. The 

microcontroller implementation is presented in the LRCLSJ model, by using an Arduino UNO 

board. The results obtained are in good agreement with the numerical simulation results. The partial 

and total control of the amplitude of its signals are studied by introducing two additional parameters 

in one of the proposed circuits. This work contributes to the understanding of complex behaviors 

occurring in autonomous electrical circuits based on the shunted JJ.  

 

Keywords: Josephson junction, chaotic attractor, hyperchaotic oscillator, Hopf bifurcation, 

electronic simulation, microcontroller implementation, partial and total amplitude controls.
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RÉSUMÉ 

Cette thèse traite de la caractérisation dynamique de circuits électriques autonomes basés 

sur la Jonction de Josephson (JJ) shuntée. Deux modèles de JJ sont utilisés dans ce travail : un 

modèle de jonction shuntée linéaire résistive-capacitive-inductive (LRCLSJ) et un modèle de 

jonction shuntée linéaire résistive-capacitive (LRCSJ). Chacun de ces modèles de jonction est 

utilisé dans un circuit CLC de type Colpitts composé de deux condensateurs, d'une inductance et 

de sa résistance interne, mais fonctionnant à basse fréquence. Les différents circuits proposés 

présentent des bifurcations de Hopf, des oscillations périodiques et des attracteurs chaotiques et 

hyperchaotiques. L'implémentation électronique de ces circuits à l'aide du logiciel OrCAD-PSpice 

est présentée pour confronter les résultats des simulations numériques. Un bon accord qualitatif est 

révélé en comparant les résultats des simulations analogiques et numériques. La simulation par 

microcontrôleur pour le modèle LRCLSJ est faite en utilisant une carte Arduino UNO. Les résultats 

obtenus sont en bon accord avec les résultats de la simulation numérique. Le contrôle partiel et 

total de l'amplitude de ses signaux est étudié en introduisant deux paramètres supplémentaires dans 

un des circuits proposés. Ce travail contribue à la compréhension des comportements complexes 

se produisant dans les circuits électriques autonomes basés sur la JJ shunté.  

Mots clés : Jonction de Josephson, attracteurs chaotiques, oscillateur hyperchaotique, 

bifurcation de Hopf, simulation électronique, simulation par microcontrôleur, 

contrôles partiel et total d’amplitude
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GENERAL INTRODUCTION 

The dynamical study of electrical circuits is of vital interest for the understanding of certain 

phenomena in many fields of science and technologic, such as physics, chemistry, biology, and 

engineering. Many problems in these domains are related to nonlinear self-excited oscillators [1,2]. 

Two self-sustained oscillators based on JJ will be investigated in this thesis. Many researchers have 

studied Josephson junction (JJ) devices because they are very good candidates commonly exploited 

for the implementation of complex systems with specific applications [3-7]. 

Since the first full description of a chaotic system by Edward Lorenz through a set of three 

coupled first-order ordinary differential equations (ODEs) [8], a tremendous interest in developing 

deterministic chaos theory has boosted research in various directions. The quest for the simplest 

autonomous chaotic circuit has continuously arisen for various reasons [9-18]. One of the main 

reasons is that they can be used in many applications such as radar and sonar [19], secure chaotic 

communications [20], robotics [21], or random number generator [22]. A simplest autonomous 

circuit should minimize both the number of physical components and idealized elements in its 

mathematical model [23]. Chaos in superconducting JJ has been studied by many researchers [24-

29]. Over the last three decades, the simplest chaotic circuits have been identified in circuits from 

five down to two components [9-18]. The simplest autonomous chaotic circuits in [9-18] required 

a passive or active nonlinear physical component. A two-element autonomous circuit has been 

realized using a nonlinear current-controlled meminductor [10]. One has assisted in the search for 

chaos and fractals in human and social and economic sciences [8, 30, 31], natural sciences [32–

34], environmental sciences [35, 36], or medicine [37–39]. Applications of nonlinear sciences in 

various branches of engineering such as mechanics and mechatronics [40], electronics [41-43], 

optics, and telecommunication [44] have been reported, to name some. In ref. [11], a capacitor and 

a memristor have been required to obtain chaotic signals. Experimental evidence of chaotic signals 

in a circuit made of a junction field-effect transistor (JFET) and a tapped coil has been brought out 

by [12]. In ref. [13], a three-element autonomous circuit has been realized using a nonlinear active 

memristor. A four-component Chua's circuit proposed in [14] used an active nonlinear resistor. The 

authors of [15] demonstrated chaotic signals in a circuit made of one resistor, two capacitors, and 

an operational amplifier (Op-Amp) working in its nonlinear regime. Piper and Sprott introduced 
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two simple autonomous chaotic circuits using only op-amps and linear time-invariant passive 

components [16]. In [17, 18], three five-component autonomous chaotic circuits of a jerky type 

made of two capacitors, one resistor, one capacitor, one JFET, and one Op-Amp working in the 

linear regime have been proposed. With this increasing interest in a branch of science that is 

complex and somehow mathematically demanding, some researchers even expressed the view to 

see this science be taught earlier, say at the undergraduate level, for better dissemination. In this 

regard, [45] proposed a paper entitled Introducing chaotic circuits in an undergraduate electronic 

course. This thesis was reduced to showing visual proof of chaos in two simple electronics circuits. 

Later on, another author published a paper on Introducing nonlinear time series analysis in 

undergraduate courses [46]. This other contribution was not related to electronic circuitry. Recently 

[47] and [48] proposed approaches conciliating simple circuits and enough details that could 

explain chaos at the undergraduate level, including hyperchaos. However, the justification of 

hyperchaos in their circuits was partly due to the appearance of virtual impedances generally known 

as parasitic capacitors (or inductors) that occur at high frequencies in PN-junctions of 

semiconductor materials but disappear at low frequencies. These virtually present but physically 

absent impedances could make their circuits models non-realistic enough for undergraduates to 

understand hyperchaotic evidence in such circuits because equivalent circuits of active electronic 

components at high frequency may not have been taught yet. Because they need more than three 

energy tanks, autonomous hyperchaotic circuits generally result from modified chaotic circuits [49-

51], coupling and synchronization of chaotic circuits [52–54], circuits with delay-line or analog 

development from mathematical equations [55], or even driving 3D systems to higher complexity 

[56,57]. Since the pioneering work of Chua [12], it is also known that chaotic circuits are nonlinear 

element (NLE) dependent. Such elements appear in circuits in the form of nonlinear resistances 

viewed as a single component (the example of a tunnel diode [58] or as a sub-circuit known as 

negative resistance [15,59]). They can also be encountered as nonlinear capacitors [60], or 

nonlinear inductors such as ferromagnetic inductors [61–64] and Josephson junctions (JJ) [65–67] 

or memristors [27,11]. With the rapid development in fabrication technology and low- (or high-) 

temperature superconducting materials, the investigations on JJ have attracted much attention due 

to its potential applications, such as voltage standards and microwave devices [70-72].  
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In this work, we will consider an NLE of the JJ type for its potential importance in 

engineering. It is present in quantum computation, where it contributes as superconducting 

quantum bits in quantum two-level systems. In microwave oscillators and digital electronics, its 

capacity to quickly change in bistable voltage state enables the realization of ultra-fast switching 

electronic components [73–76]. It is also used as voltage-controlled oscillators or magnetic field 

sensors for application in medical engineering, material science, geophysics, etc [73,77]. An 

interesting autonomous circuit based on JJ [78] indicates that the authors could control chaos using 

delayed linear feedback. We choose this model circuit as a candidate to compensate for the 

limitation mentioned above concerning the circuits in Refs [47] and [48]. Delay-line can be very 

cumbersome [79]. Thus, we propose replacing this with very simple nondelayed linear feedback 

that can be easier to implement. The new circuit recalls the chaotic single op-amp jerk circuit of 

Ref [81], where the predominant active component is made of a field-effect transistor with short-

circuited gate-source electrodes that became a piece-wise NLE. Notwithstanding its simplicity 

compared to [78,79], it harbors hyperchaotic signals resulting from the contribution of the JJ 

described by its linear resistive-capacitive-inductive shunted junction (LRCLSJ) model, where its 

counterpart [80] with the same number of physical impedances generates chaos. The present work 

will provide additional tools to justify hyperchaos in autonomous circuits with less than four 

physical linear capacitors and/or inductors and operating at low frequency.  

    Inspired by [16-18], this thesis also proposes a five-component autonomous circuit made of two 

capacitors, one resistor, one inductor, one Op-Amp working in its linear regime, and a JJ described 

by a linear resistive and capacitively shunted JJ model. A JJ is a quantum mechanical device made 

by sandwiching a thin layer of insulating material between two layers of superconducting material 

[23, 82]. Moreover, it has been demonstrated recently that the differential equations derived from 

complex electronic circuits can be implemented in microcontrollers to generate real electronic 

signals similar to the ones that can be delivered by the electronic circuits made of discrete or analog 

electronic components [81, 83-87]. Because of the high-frequency working regime of the 

Josephson junction, one can think of considering this is free of noise method to generate complex 

electrical signals.  

In the framework of this thesis, we aim to: 
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  demonstrate that a simple five-components autonomous circuit made of a Colpitts 

oscillator in which a Josephson junction is added can generate chaos and hyperchaos; 

 simulate electronically the analog equivalent circuit derived from the equations describing 

the autonomous Colpitts-Josephson junction like circuit;  

 simulate by microcontroller the differential equations of the circuits and compare with the 

results obtained numerically and confront results to those obtained by numerical 

simulation; 

 realize the microcontroller simulation based on differential equations discretized and 

inserted appropriately in a microcontroller program; 

 analyse the electronic implementation to use the electronic simulation for partial and total 

amplitude controls of a proposed LCC-JJ-Op amp circuit. 

The present work is divided into three chapters. Chapter one is devoted to the literature review 

on JJ, their applications, and the electronic oscillators generating complex behaviors. We will 

conclude this chapter by highlighting the problems to be solved in the thesis.  

In Chapter Two, the methods used are presented. We explain the mathematical, and 

numerical methods used to solve nonlinear differential equations. We also explain the analog and 

microcontrollers simulation methods. 

In chapter three, we present the results obtained. We end the thesis with a general 

conclusion
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CHAPTER 1: LITERATURE REVIEW 

1.1. Introduction 

This chapter provides an overview of the literature and some generalities on electrical 

circuits based on some nonlinear electrical components and the problem statement. Section 1.2 

presents the generalities on nonlinear electrical circuits. Section 1.3 deals with some models of JJ 

and their applications, while section 1.4 will give more details on electric circuits based on some 

electrical nonlinear components. The problem statement of the thesis will be underlined in section 

1.5. Section 1.6 will conclude the chapter. 

1.2. Generalities on Josephson Junction (JJ): models and 

applications 

1.2.1. Definition of a Josephson Junction 

A Josephson junction is created by sandwiching a skinny layer of a nonsuperconducting 

material between two layers of superconducting material. The devices area unit was named in 

reconnaissance Brian Josephson, who foretold in 1962 that pairs of superconducting electrons may 

"tunnel" throughout the no superconducting barrier from one superconductor to the other. He 

conjointly foretold the precise variety of the present and voltage relations for the junction. 

Experimental work confirm later on that he was right, and Josephson was awarded the 1973 honor 

in Physics for his work. In a Josephson junction, the nonsuperconducting barrier separating the 

two superconductors should be skinny [88]. If the barrier is stuff, it is to get on the order of thirty 

angstroms thick or less. If the barrier is another metal (nonsuperconducting), it should be the 

maximum amount as many microns thick. Till an important current is reached, a supercurrent will 

flow across the barrier; lepton pairs will tunnel across the barrier with no resistance. However, 

once the important current is exceeded, another voltage can develop across the junction. That 

voltage can depend upon time that is, it is an AC voltage. This successively causes a lowering of 

the junction's important current, inflicting even a lot of traditional current to flow and a larger AC 

voltage.  
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We consider the Josephson Junction with two superconductors of the same kind separated 

by an insulator as shown in figure 1.1 and that no magnetic field is present. The object of the 

insulator is to separate the superconductors and leave open a way of coupling them by tunneling. 

Assuming that the temperature is low enough, so that, it can be considered that all electrons are 

associated together in Cooper pairs. Hence, since the motion of the electrons is correlated, we will 

use 1  to represent their motion on one side of the insulating barrier and 2  to represent the motion 

on the other side of the insulating barrier. 

 

Figure 1.1 : JJ with two superconductors of the same kind separated by an insulator [88] 

 

Let us assume that when the insulator is very thick so that both superconductors can act 

independently, then ψ1 and ψ2 satisfy Schrodinger-like equations 

1
1 1 0ih H

t





  


, (1.1) 

2
2 2 0ih H

t





  


, (1.2) 

where 1H  and 2H  are operators and represent the energy on the two sides of the insulating barrier. 

We consider the situation where the insulating barrier is not going thick so that the Cooper pairs 

are prevented from tunneling from one superconductor to the other.  

This coupling will then be allowed by modifying the Schrodinger equations, 

1
1 1 1ih H C

t


 


  


, (1.3) 
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2
2 2 2ih H C

t


 


  


, (1.4) 

where C  is a constant depending upon the material of the insulating barrier and its thickness as 

well. Since we are interested in the response of the Josephson junction to an applied voltage, so let 

us connect a potential difference V across the junction. If the charge of a Cooper pair is 2q e , 

then 

1 2 0H H qV   .   (1.5) 

 

If zero of potential energy is halfway between the two superconducting regions, then we have 

 

1
1 1

2

qV
ih C

t


 


  


, (1.6) 

2
2 2

2

qV
ih C

t


 


  


, (1.7) 

 

The wave function can be written in terms of an amplitude and a phase as follows, 

 

exp( )i i iiP  , (1.8) 

where 
2

i i  measures the density of a charge. Substituting equation (1.8) into equations (1.6) 

and (1.7) and separating real and imaginary parts, we get 

 

1 22 ( ) sinh C     , (1.9) 

2 1( )h P P qV  , (1.10) 

where Δ is the phase difference and is represented by 

 

2 1P P   . (1.11) 

Since the rate at which the charge density begins to change should be proportional to the current 

density, therefore, we may have equation from (1.2) that, 

 

0 sinJ J  . (1.12) 
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From equations (1.10) and (1.11), we get qV  

qV
h qV or

h
    , (1.13) 

and hence by integrating equation (1.11), we find 

0

0

( ) ( )

t
q

t V t dt
h

     . 
(1.14) 

Combining equations (1.12) and (1.14), we get a general expression for the current density in a JJ 

given by following equation. 

0 0

0

sin ( )

t
q

J J V t dt
h

 
   

 
 . 

(1.15) 

Figure 1.2 illustrates the basic structure of one Josephson junction in a large series array; 

the junction is an overlap between two superconductors’ thin films that are separated by a thin 

oxide barrier. The Josephson Effect [89, 90] is the remarkable effect of superconductivity, a 

macroscopic quantum phenomenon that appears at very low temperatures in some metals. In the 

superconductor state, the electrons attract two by two and form pairs, called Cooper Pairs [91]. The 

Josephson Effect is associated with the passage of these pairs by tunnel effect [92], through an 

insulating barrier placed between two superconductors, called Josephson Junction (figure 1.2b) 

(Superconductor-Insulator-Superconductor junction "S-I-S Josephson Junction"). 

  

(a)                                                                               (b) 

Figure 1.2 : Basic structure of Josephson Junction (JJ) [93] 

1.2.2. Importance of Josephson effect 

The Josephson effects are so important that they represent the quantum effects operating on 

a microscopic scale. To see the quantum effects on a macroscopic scale, we will be required to 
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have many particles in the same state, for example, photons are bosons and so we can get a man of 

them in the same state. Electrons are, however, fermions that must obey the Pauli principle. Hence 

it appears to be impossible to see the quantum effects of electrons on a macroscopic scale. 

However, in certain sense, the Cooper pairs having total spin zero do act like bosons and we can 

get several in the same state, which implies that it is possible to observe the quantum effects of 

superconductivity on a macroscopic scale. 

 

1.2.3. Josephson junction models 
In the literature, there are two main electrical rate-equations of JJ: Resistor and capacitor 

shunted JJ (RCSJJ) model, and resistor, capacitor, and inductive shunted JJ (RCLSJJ) model.  

Recently, researchers have been extending chaos and nonlinear dynamics to Josephson 

junctions, particularly at the nanoscale, as these devices find applications as ultra-high-frequency 

oscillators, mixers, and filters that are of much use to encrypted telecommunication, information-

protection intentions, and chaos-secured networks [20, 94]. Chaos has been observed in both theory 

and experiment in superconducting junctions and numerous models have been proposed, among 

which is the shunted resistive–capacitive–inductive Josephson junction (RCLSJ) [25, 95]. The 

latter is an extension of the semi-classical well-known RCSJ model [26, 98] and is receiving 

attention for the modeling structures used in millimeter-wave technology. These two models of JJ 

are presented as follows. 

1.2.3.1. Resistive-capacitive shunted junction (RCSJ) model 

The different RCSJ models are represented in the figure below. 

                   

(a)                                                                                            (b)                             

Figure 1.3 : Schematic representation of, (a) the LRCSJ model, (b) the NRCLSJ model [4,67] 

‘(V) 
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The circuit of figure 1.3(a) consists of the external current source I , the capacitor C , the 

linear resistor R , and the JJ element connected in parallel. A voltage V  is developed across the 

JJ by applying the Kirchhoff law, the following equations are obtained: 

 

2

h d

e dt








, 

(1.16) 

J

dV V
C I I

dt R
  


, 

(1.17) 

where V  is the voltage across the JJ, h  is the Planck constant, t is the time, e  is the electron charge, 

sinJ JCI I   is the JJ current, and 2 1    is the phase difference. By introducing the following 

parameters: 

1/2 2

0 0, ( ) / , (2 / ) , 2 / 2 / 0C JC JC C Ct t i t I I eI hC V eC hI and eR CI h            , 

The set of Eqs. (1.16, 1.17) can be normalized as: 

d
V

dt


 , 

(1.18) 

( ) / sin( )C

dV
i t V

dt
    , 

(1.19) 

where C  is the capacitance of JJ. 

 

The current-voltage (I-V) characteristic of the junction in figure 1.4 at a particular 

temperature T (in Kelvin) shows hysteresis (see figure 1.4) at a critical current IC, where Rn is the 

junction normal state resistance and Rsg is the subgap resistance. JCI  the junction critical current,   

is the phase difference of the superconducting order parameter across the junction, R is the junction 

resistance and C is the junction capacitor. The complex dynamics in JJ arise due to the hysteresis 

in the current-voltage characteristic.  

The modeling of the NRCSJ model (see figure 1.3(b)) is done in the same way. In NRCSJ and 

NRCLSJ models, a nonlinear resistance replaced the parallel linear resistance of the LRCSJ and 

LRCLSJ models, where the voltage-dependent junction resistance is defined by Eq. (1.20) and gV  

is gap junction voltage. Whan et al. [26, 97] approximated the I-V characteristic as a step function 

between two junction resistances, which agrees with their experimental results.  



LITERATURE REVIEW  

  
 

Doctorate Thesis/PhD  11 Ybriss Joël Monkam © Year 2024 

( )
n g

sg g

R if V V
R V

R if V V

   
 

   
. 

The intrinsic junction shunt nonlinear resistance 𝑅(𝑉) is modeled by a piecewise nonlinear resistor 

as shown in figure 1.4 below: 

 

Figure 1.4 : Current-voltage characteristics at a temperature 𝑇 (in Kelvin) of the intrinsic junction 

shunt resistance 𝑅(𝑉) [100] 

 

The theoretical analysis and microcontroller implementation of the linear resistor-capacitor 

shunted Josephson junction model was studied by Ngatcha et al. [99], when the external current 

source is, firstly, considered as a DC, then secondly as an AC. These authors have shown that the 

rate-equations describing the linear resistive, capacitive shunted Josephson junction model have 

two or no equilibrium points relying on the external direct current source. They analyzed the 

stability of the two equilibrium points of the LRCSJJ model. They also showed that the increase of 

the capacitance of JJ led to an increase in the hysteresis loop of current-voltage curves. For given 

modulation parameters of external current source, linear resistor, capacitor shunted Josephson 

junction model displayed two different shapes of chaotic attractors, periodic attractors, limit cycle, 

and excitable mode. The existence of chaotic behaviors was confirmed by microcontroller results 

obtained from the microcontroller implementation of the linear resistor-capacitor shunted 

Josephson junction model.  

 

(1.20) 
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1.2.3.2. Resistive-capacitive-inductance shunted junction (RCLSJ) model 

The RCLSJ has been found to show complex and chaotic behavior crucially depending on 

the choice of system parameters. In the literature, we can find, the linear resistive-capacitive- 

inductance shunted junction (LRCSJ) model, nonlinear resistive-capacitive- inductance shunted 

junction model, and the NRCLSJ model [100–102]. The first two models show chaotic behaviors 

when driven by an external sinusoidal signal [77] while the NRCLSJ model generates chaotic 

oscillation with external dc bias only [117–119]. For large inductance, the NRCLSJ model behaves 

as a relaxation oscillator [25]. The NRCLSJ model [100, 101] is used to simulate JJ, resulting in a 

fairly good agreement with the experiment. The RCSJ model, however, fails to reproduce 

significant features on experimental 𝐼-𝑉 curves when the shunt of the JJ contains an inductance 

component [26, 104]. According to the results of these researchers, we will use the LRCSJ model 

in this thesis. 

In their work [27], the authors, Sifeu Takougang Kingni et al consider the NRCLSJ model 

where the nonlinear resistance 𝑅(𝑉) is replaced by a linear resistance 𝑅. In figure 1.5(a), the shunted 

nonlinear resistance in figure 1.5(b) is replaced by a linear resistor 𝑅. The JJ is represented by the 

supercurrent channel 𝐼𝐶. 𝐼 is the bias current applied to the JJ and 𝐶 is the junction capacitance. A 

current 𝐼𝑆 flows through the shunt inductance 𝐿𝑆 and its internal resistance 𝑅𝑆. 

                      

(a)                                                                                                   (b) 

Figure 1.5: Schematic representation of, (a) the NRCLSJ model, and (b) the LRCLSJ model [26] 



LITERATURE REVIEW  

  
 

Doctorate Thesis/PhD  13 Ybriss Joël Monkam © Year 2024 

The application of the Kirchhoff laws to the circuit of Figure 1.5(a) leads to the following differential 

equation: 

'
sinC S

dV V
I C I I

dt R
    , 

(1.21a) 

'

S
S S S

dI
V L R I

dt
  , 

(1.21b) 

'2

d
V

e dt


 , 

(1.21c) 

where 𝜙 denotes the phase difference of JJ and V the voltage across it.  

 

Using the dimensionless variables, 

0

0

2
; ; ; ' ; .S C

S C S C

eR It
V x R I I y I z t w

w h


            

(1.22) 

 

The dimensionless set of this system can be rewritten as 

1
( sin )R

C

x i y x z


    , 
(1.23a) 

1
( )

L

y x y


  , 
(1.23b) 

z x , (1.23c) 

with    

22 2
; ; ; .S S C S C

R C L

C

R eCR I eL I I
i

R h h I

 
       

(1.24) 

  Processing as in the case of figure 1.5(a), the mathematical equations governing the dynamics in 

figure 1.5(b) are given by the equation system below: 

1
( ( ) sin );

1
( );

;

C

L

x i y g x x z

y x y

z x






   




 

 



 

with the expressions of the parameters given by: 

(1.25) 
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22 2
; ; .S C S C

C L

C

eCR I eL I I
i

h h I

 
   

 

The nonlinear function ( )g x is defined by: 

( )

gS

n S C

gS

Sg S C

VR
if x

R R I
g x

VR
if x

R R I





 
 



. 

In the ref [100], the authors investigated the dynamics of the LRCLSJ model by considering 

the effect of parameters on the system’s behavior, to see if it can exhibit some of the dynamical 

behaviors of the NRCLSJ model. After investigation, the simulations show that for 𝑖 < 1.0 the 

trajectories of the system converge to one of the equilibrium points 𝐸1,2 while, for 𝑖 > 1.0, the 

trajectories of the system display periodic or complex behaviors. It is interesting to note that, for 𝑖 

> 1.0, they also found regular spiking, intrinsic bursting, fast-spiking, and periodic bursting in the 

junction when the capacitive parameter 𝛽𝐶 is kept fixed at 𝛽𝐶 = 0.007, while the dc bias 𝑖, the 

inductive 𝛽𝐿, and resistive 𝛽𝑅 parameters are varied. 

1.2.4. Applications of Josephson junctions 

The Josephson result has found wide usage, as an example within the following areas 

[67, 105]: 

 SQUIDs, or superconducting quantum interference devices, area unit sensitive 

magnetometers that operate via the Josephson result. They are wide employed in science and 

engineering.  

 In preciseness science, the Josephson result provides an associate in Nursing precisely 

duplicable conversion between frequency and voltage. Since the frequency is already outlined 

exactly and much by the atomic number 55 commonplace, the Josephson result is employed, 

for many sensible functions, to present the quality illustration of a V, the Josephson voltage 

commonplace. 

(1.26) 

(1.27) 
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 Single-electron transistors area units are typically created of superconducting materials, 

permitting users to be a product of the Josephson result to attain novel effects. The ensuing 

device is named a "superconducting single-electron transistor". 

 The Josephson result is additionally used for the foremost precise measurements of 

elementary charge in terms of the Josephson constant and von Klitzing constant that is 

expounded to the quantum Hall result.  

 RSFQ digital physics relies on shunted Josephson junctions. during this case, the junction 

shift event is associated with the emission of 1 magnetic flux quantum 1/2e.h that carries the 

digital information: the absence of shift is love zero, whereas one shift event carries a one.  

 Josephson Junctions area unit integral in superconducting quantum computing as qubits 

like in a very flux qubit or others schemes wherever the section and charge act because the 

conjugate variables  

 Superconducting tunnel junction detectors (STJs) might become a viable replacement for 

CCDs (charge-coupled devices) to be used in very astronomy in a few years. These devices 

are unit effective across a good spectrum from ultraviolet to infrared, and conjointly in x-rays. 

The technology has been tried out on the William Herschel Telescope within the SCAM 

instrument.  

 Quiterons and similar superconducting shift devices. 

 Josephson effect has also been observed in SHeQUIDs, the superfluid helium analog of 

a dc-SQUID. 

 

 

1.3. Electrical oscillators generating complex behaviors 

1.3.1. Generalities 

Nonlinear electronic circuits have attracted appreciable attention because they can provide 

powerful experimental and analytical platforms for people to understand dynamic behaviors in 

physics [106], engineering [107, 108], electronic [109], and neurology [110]. Considering that a 

simple nonlinear electronic circuit can serve as a paradigm for a better understanding of bifurcation 

https://en.wikipedia.org/w/index.php?title=SHeQUID&action=edit&redlink=1
https://en.wikipedia.org/wiki/Superfluid
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and chaos, it is a significant research topic to simplify chaotic circuits by minimizing the number 

of dynamic elements and physical components [16,111-114].  

The design of chaotic oscillator circuits has been a subject of increasing interest during the 

past few years because of the possible applications of chaos in several areas and particularly in 

communication. As an active topic of research, it has advanced significantly due to the pioneering 

contributions made by many authors [115–120]. The main thrust of this research is to discover new 

chaotic oscillator circuits and to further study the dynamics responsible for the generation of chaos 

in these circuits [115, 121, 122]. In the past three decades, a variety of nonlinear electronic 

oscillator circuits consisting of either real nonlinear physical devices such as nonlinear diodes, 

capacitors, inductors, and resistors or devices constructed with ingenious piecewise linear circuit 

elements [123] have been utilized as truth black boxes to explore different properties of chaotic 

dynamics. In particular, both autonomous and nonautonomous piecewise linear circuits have 

emerged as simple yet powerful experimental and analytical platforms for understanding 

bifurcation and chaos [115,124–126]. The nonautonomous circuits used by several authors 

[117,127–133] for this purpose are of second-order and incorporate the nonlinear element in terms 

of the well-known Chua’s diode which exhibits two negative slopes in its I-V characteristic. 

Though its nonlinear behavior is mathematically tractable, its electronic implementation, using 

discrete components requires two op-amps and six linear resistors. Later, Lacy [131] proposed a 

simple nonautonomous circuit designed with a reduced number of nonlinear elements. In his 

circuit, he used one op-amp, three linear resistors, and two Zener diodes, and hence the total number 

of elements is reduced to six compared to two op-amps and six linear resistors in the case of Chua’s 

diode. As the breakpoints depend on the total negative resistance of the circuit [121], the 

introduction of the Zener diode in this circuit sets the breakpoints at ±1,0 V. One of the present 

authors has already studied bifurcation and chaos in various simple second-order dissipative 

nonautonomous electronic circuits with Chua’s diode as the nonlinear element [122,132]. In that 

study, he has reported quasiperiodicity, period-adding, Farey’s sequences, intermittency, band-

merging, etc. Very recently, Kurt [134] introduced numerically, a nonautonomous model of the 

nonlinear sub-circuit involving a nonautonomous Chua’s diode (without minimizing the number 

of elements), which indicates the behavior of a nonlinear resistor and enhances the complexity of 

the standard Chua’s diode. Thus, generating a new nonlinear chaotic electronic circuit with a 

reduced number of elements and with a new piecewise nonlinearity and further, understanding the 
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underlying physical mechanism has become an important and interesting topic of research in recent 

years [113]. Statistically speaking, nonautonomous circuits, one of the main forms of chaotic 

circuits, contain fewer dynamic elements than autonomous chaotic circuits since externally driven 

signals can replace a dynamic element or an oscillating unit in autonomous chaotic circuits [113].  

Many autonomous chaotic circuits and non-autonomous nonlinear circuits can also exhibit 

many interesting dynamical phenomena [135-137]. Hyperchaotic systems appeared in many 

important fields of physics, engineering, and computer sciences, such as laser physics, control, 

flow dynamics, liquid mixing, electronic circuits, secure communications, and information 

sciences [138-140]. 

In 1982, Gibbon and McGuinnes studied and stated the real and complex Lorenz equations 

in rotating fluids and lasers [141]. While, in 1983, Fowler et al. introduced complex Lorenz 

equations and their relevance to physical systems [142]. Zeghlache and Mandel proposed complex 

nonlinear equations for detuned lasers [143]. The complex character of the state variables and 

parameters follows from purely physical considerations [144; 145]. Complex state variables (or 

quantities) are found in equations of problems in laser physics and thermal convection of liquid 

flows where the electric field and atomic polarization amplitudes are complex quantities, see [144, 

146]. The real and imaginary parts of these variables can display chaotic and hyperchaotic 

dynamics. Mahmoud et al. [145] introduced complex Chen and Lü systems and studied their 

dynamics. The complex Lorenz, Chen, and Lü systems do not exhibit hyperchaotic dynamics. 

Therefore, one wishes to propose complex systems that display hyperchaotic behaviors. Special 

cases of complex systems have been studied in the recent literature. A system with more than one 

positive Lyapunov exponent is called a hyperchaotic system. The dynamics of hyperchaotic 

systems are complicated and rich in the sense that they exhibit chaotic and hyperchaotic behaviors 

as well as periodic and quasi-periodic solutions for wide and narrow ranges of system parameters. 

For example, chaotic behavior and chaos control for a class of complex partial differential 

equations have been studied in [147]. 

 

To have a complex dynamic as chaos and a possible hyperchaos in electrical circuits, there 

must be a nonlinear element in the circuit, i.e., the element with a nonlinear current-voltage 

characteristic, for example, nonlinear resistor, nonlinear capacitor, nonlinear inductor, memristor, 

diode, JJ, and many others. The simple examples of electric circuits where chaos appears are the 
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Van der Pol oscillator, and Chua's circuit [148]. Both circuits have one nonlinear element which is 

the nonlinear resistor. We will present some examples of circuits with complex behaviors in this 

section. 

1.3.2. Some nonlinear electrical components and their use to generate complex 

behavior 

 

1.3.2.1. Nonlinear resistor, the modified Van Der Pol–Duffing oscillator and the modified 

Chua’s circuit 

 

a) Nonlinear resistor 

                                                           
(a)                                                     (b) 

Figure 1.6: (a) Nonlinear resistor symbol.  (b) Physical realization of the nonlinear resistor [149] 

 

The physical realization of the nonlinear resistance for the MVDPD oscillator is shown in figure 1.6) 

[150, 151]. The operational amplifier (Op-Amp) mounted with the resistors R1, R2, and R3 realizes a 

piecewise-three region-linear resistance with a domain of negative resistance responsible of the birth 

of free oscillations, while the set of 10 signal diodes is used to introduce symmetrical nonlinearities 

in the current-voltage characteristics of the global nonlinear resistance which can therefore be 

approximated by a cubic function of the form.  The I–V characteristic of the nonlinear resistor (NLR) 

is approximated by the cubic polynomial.  

3( ) ( 0, 0).I V t aV bV with a b    
 

Such a nonlinear element can be physically constructed using a set of diodes and an operational 

amplifier [152, 153]. 

 

(1.28) 

NLR 
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b) Modified Van Der Pol–Duffing (MVDPD) oscillator 

 

 

Figure 1.7: Electrical model of the MVDPD oscillator [149] 

 

The modified Van der Pol–Duffing oscillator (MVDPD) is an improved model of an 

autonomous chaotic system introduced by King and Gaito in 1992 [149].  The authors proved in 

this work that the system has a chaotic dynamic.  

By applying Kirchhoff’s laws to the equivalent circuit of figure 1.7, we obtain the following 

set of differential equations: 
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(1.29) 

Note that since the parameter l is in general cancelled with the offset current of the op-amp, we 

further cancel it from our equations. With the selection of parameters m = 100, a = 0.35, b = 300 

and c = 0.2, the MVDPD circuit has chaotic oscillations with a one-dimensional Lyapunov 

exponent kmax = 0.96. The initial values are chosen to be (x1(0), y1(0), z1(0)) = (0.2, 0.4, 0.5). 

[149]. 

 

NLR 
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c) Modified Chua’s circuit 

 

Figure 1.8: The normal Chua oscillator [149] 

 

Figure 1.8 is derived from the well-known and famous Chua’s circuit [178] where the 

nonlinear element (commonly called Chua’s diode) is implemented using two diodes only, in 

addition to an op-amp and some resistors. Several other practical implementations of a Chua’s 

diode characterized by a five-segment piecewise- linear current-voltage characteristic has been 

proposed [155]. An implementation of Chua’s circuit with a cubic nonlinearity was first described 

by Zhong [180]. The advantages of cubic nonlinearity are that it requires no absolute-valued 

functions, it is smooth, and thus more suitable for mathematical calculations. Physically, the 

original Chua’s circuit does not involve any resistor in series with the inductor. This resistor 

appears in the Chua’s oscillator of [157]. The current-voltage characteristics of the nonlinear 

resistance are given by: 

 

3

2 2( ) Ci V v a V b V   . (1.30) 

 

The modified Chua’s circuit oscillator can thus be described by the following equations: 
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(1.31) 

 

In order to obtain the so-called double scroll attractor which is specific to the family of 

Chua’s circuits, we use the same selection of parameters as in ref [158], that is, a = 10, b = 16 and 

c = 0.143. The initial values as (x2(0), y2(0), z2(0)) = (0.1, 0.3, 0). The associated one-dimensional 

Lyapunov exponent is kmax = 0.26. The chaotic attractor obtained is displayed in as shown in ref 

[149]. 

 

1.3.2.2. The field-effect junction transistor (JFET) and the Single Op-Amp–Based Jerk 

Circuit 

 

a) The junction field-effect transistor (JFET) 

 

 

Figure 1.9: a) N-channel JFET; b) P-channel JFET [183] 

 

A JFET is a three terminal semiconductor device in which current conduction is by one type of 

carrier i.e., electrons or holes. The JFET was developed about the same time as the transistor but it 

came into general use only in the late 1960s. In a JFET, the current conduction is either by electrons 

or holes and is controlled through an electric field between the gate electrode and the conducting 

channel of the device. The JFET has high input impedance and low noise levels [159, 160]. A JFET 

consists of a p-type or N-type silicon bar containing two PN junctions at the sides. The bar forms 

the conducting channel for the charge carriers. If the bar is of N-type, it is called n-channel JFET 
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(Figure 1.9a), and if the bar is of P-type, it is called a P-channel JFET (Figure 1.9b) The two PN 

junctions forming diodes are connected internally and a common terminal called gate is taken out. 

Other terminals are source and drain taken out from the bar as shown [159, 160]. Thus a JFET has 

essentially three terminals, gate (G), source (S), and drain (D). The voltage VGS applied to the Gate 

controls the current flowing between the Drain and the Source terminals. VGS refers to the voltage 

applied between the Gate and the Source while VDS refers to the voltage applied between the Drain 

and the Source. Because a Junction Field Effect Transistor is a voltage controlled device, “NO 

current flows into the gate!” then the Source current (IS) flowing out of the device equals the Drain 

current flowing into it and therefore (ID = IS). 

The Drain current is zero when VGS = VP. For normal operation, VGS is biased to be somewhere 

between VP and 0. Then we can calculate the Drain current, ID for any given bias point in the 

saturation or active region as follows: 

2

1 GS
D DSS

P

V
I I

V

 
  

 
, 

were IDSS is a maximum saturation current. 

 

b) Single Op-Amp–Based Jerk Circuit 

 

(1.32) 
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Figure 1.10: Schematic representation of the jerky oscillator. The nonlinear element is made of a 

JFET with the gate (G) and the source (S) electrodes short-circuited [161] 

 

Figure 1.10 is based on a single Op-Amp as the only idealized component and carries a minimal 

number of five components. The key component of this oscillator circuit is a junction field-effect 

transistor operating in its triode region, which provides a nonlinear resistor of antisymmetrical 

current-voltage characteristic, emulating a Colpitts-like chaotic circuit. In their work, the authors 

proposed a simple system, which jerk function, although a bit complicated, resembles that of 

Chua’s circuit aside from some parameters and has the sensible advantage to be governed by a 

Piese Wise Nonlinear (PWL NL) equation that can be used to perform exact analytical works. 

These equations govern the circuit depicted in figure 1.10 an oscillator with one Op-Amp, one 

junction field-effect transistor (JFET), two capacitors C1 and C2, and one coil L with internal 

resistance R. 

Let us consider RJ ≈ 750 Ω to be the JFET small-signal resistance and VT ≈ −0.66 V to be the JFET 

gate-source voltage [62]. An appropriate choice of parameters, namely, α = C1/C2, β=RJ
2 C1/L, and 

γ = R/RJ, as well as I = VT ϕ(y)/RJ, VC1 = xVT, VC2 = yVT , IL = zVT/RJ, and t = RJC1τ, reveals the state 

equations of the circuit, obtained through application of Kirchhoff’s laws. 
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(1.33) 

 

The necessary Nonlinear transistor (NLT) in the system for chaos is made of the PW NL form of 

the JFET current-voltage characteristic. 

1
,

K K

K
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V if V V
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V if V VR
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(1.34) 

 

VCk, k = 1, 2, is the voltage difference at the electrodes of capacitor Ck, and IL is the current flowing 

through the coil L. With some mathematical manipulations, it can be shown that (1.33) can be 

transformed into the jerk form 

 



LITERATURE REVIEW  

  
 

Doctorate Thesis/PhD  24 Ybriss Joël Monkam © Year 2024 

( ) ( ) ( )y y y y y
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

 
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 
, 

(1.35) 

 

Put in its PW NL form as: 

 

( ) (1 ) 1
,
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(1.36) 

with three parameters , , and   and the PW NL term  

1
( ) .

1 1

y if y
y

if y


 
 
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(1.37) 

The authors of this work have shown, through mathematical tools such as the bifurcation diagram 

and the maximum Lyapunov exponent, the existence of complex behavior in this circuit. 

 

1.3.2.3. Memristor and memristive oscillator circuits 

 

a) Memristor 

The memristor is represented by the following diagram: 

                       

(a)                                                                                                    (b) 

Figure 1.11: (a) Representation of the memristor, (b) Equivalent circuit of the memristor [162] 

 

According to [163], the equivalent realization circuit of the memristor is depicted in Figure. 1.11(b), 

which is mathematically modeled as: 
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where v and i  are the voltage and current at the input terminal of the memristor with memductance 

0( )W v , respectively. 0v  is the voltage across the integral capacitor C0, and g is the total gain of 

the two multipliers M1 and M2. 

 

b) Memristive oscillator circuit 

 

Figure 1.12: Second-order nonautonomous inductor-free memristive chaotic circuit. (a) Circuit 

schematic diagram [162] 

Figure 1.12 represents the schematic diagram of a non-autonomous second-order memristive 

circuit. The proposed circuit is physically realizable and only consists of a capacitor C1, a resistor 

R, a sinusoidal voltage source Sv , and a voltage-controlled W.  

The proposed circuit in figure 1.12 has only two dynamic elements, which are the capacitor C1 and 

the active voltage controlled memristor with memductance 0( )W v , corresponding to two state 

variables of 1v  and 0v , respectively. Thus, the proposed circuit in figure 1.12 can be modeled as: 

(1.38) 
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where  sin 2Sv A ft , and A is the amplitude and f indicates the frequency. 

 

Compared with the non-autonomous memristive circuits in [135-137], this circuit is a 

second-order and inductor-free realization with a simplified topological structure outstandingly. A 

memristor is a nonlinear circuit element, which is used to realize the nonlinearity of the circuit in 

figure 1.12. this simple circuit has dynamical behaviors of limit cycles with different periodicities 

and chaotic attractors with three different topological structures. The numerical results obtained in 

this literature work emulate the striking dynamical features of period and chaos emerging from the 

proposed circuit. The authors showed that their circuit can generate chaotic attractors with three 

different topological structures, which implies that the proposed circuit is chaotic genuinely. 

 

1.3.2.4. Nonlinear condenser and nonlinear Duffing oscillator 

a) Nonlinear condenser  

In most experimental and theoretical works, the Duffing electrical nonlinearity in an electronic 

circuit is introduced via a varicap diode. We present here a simple device for which the Charge-

Voltage (C-V) characteristic is like that of the varicap diode (see Figure 1.13). 

 

Figure 1.13: Model of the nonlinear condenser [164] 

(1.39) 
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The C-V characteristic is then given as 
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Other models of nonlinear elements can be found in some classical books such as [165]. 

 
 

b) The RLC circuit with nonlinear capacitor 

In 2007, J. B. Mogo and P. Woafo [166] studied an electromechanical device with a pendulum 

arm. The electrical part of their proposed device is shown in the Figure 1.14 below:  

 

Figure 1.14: Schematic of electromechanical device [166] 

The pendulum depicted in Figure 1.14 is a thin rod interdependent with a plate, on which electrical 

windings are applied. Connected to an electric circuit, its oscillations are due to the electromagnetic 

force resulting from two identical and repulsive permanent magnets. This setup is a system with 

two degrees of freedom: the charge q of the nonlinear condenser and the angular displacement   

of the pendulum. We will focus on just the electrical part of the Figure 1.14.  

The electric oscillator used to drive the pendulum is an RLC series circuit with sinusoidal excitation 

0( ) cose v    ( 0v  and   being, respectively, the amplitude and frequency, and   the time). 

Denoting the forced mesh current i in the RLC circuit, as shown in Figure 1.14, applying 

Kirchhoff’s rules, we find: 

( ) ( )C

di
L Ri V q e

dt
   ,              

(1.40) 

(1.41) 

(1.42) 
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where L (di / dt), Ri, and Vc (q) are the voltages across the inductance L, the resistor R, and the 

nonlinear capacitor C, respectively. In our electromechanical model, the electrical nonlinear term 

is introduced by considering that the voltage of the capacitor is a nonlinear function of the 

instantaneous electrical charge q of the following form: 

3

3

0

1
( )CV q q a q

C
  , 

where C0 is the linear value of C and a3 is the nonlinear coefficient depending on the type of 

capacitor used. This form of Vc (q) is typical of nonlinear reactance components such as varactor 

diodes, widely used in electrical engineering especially to design, for example, parametric 

amplifiers, upconverters, mixers, low-power microwave oscillators, etc. [167].  Inserting Eq. (1.43) 

in Eq. (1.42), the electric part of the model is described by the following nonlinear differential 

equation: 

2 33 0 cos( )e

a vR
q q q q

L L L
      , 

where 
2

01/e LC   is the resonance frequency of the electric oscillator, and overdots denote 

derivatives with respect to dimensional time  . 

The numerical simulation in this work shows that the system can lead to complex dynamical 

behaviors such as multiperiodic and chaotic states. It was observed that without the cubic 

nonlinearity, the system rarely shows a chaotic behavior with the chosen parameters. It is also 

found that there are various routes to chaos (such as sudden transition and period doubling 

transition) with several kinds of periodic windows. 

 

1.4. Problem statement of the thesis 

The analysis and modeling of nonlinear electrical circuits are of great interest for their 

dynamical responses. The dynamics of such circuits can be as simple and/or complex depending 

on the number of degrees of freedom and the type of nonlinear element they contain. Some rich 

dynamical behaviors, such as chaos and hyperchaos [168, 169], hyperchaotic multi-wing attractors 

[146, 147], coexisting multiple attractors [148, 149], hidden attractors [174], complex transient 

chaos and hyperchaos [136, 175], chaotic and hyperchaotic beats [135, 137], to mention a few, 

(1.43) 

(1.44) 
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have been revealed from many nonlinear electric circuits constituted of some nonlinear component 

like memristor, diode, nonlinear resistor, nonlinear capacitor, nonlinear inductor, and many others. 

But less studies have been conducted using a JJ with other nonlinear electronic components. 

Motivated by those considerations the first problem we solve in this thesis is the analysis 

of the behavior of electrical circuits based on a particular nonlinear element which is the JJ. 

This study is scientifically new, since apart from the two works of Noel Freddy Fotie Foka et al 

[176, 192], most nonlinear electrical circuits are much more made of nonlinear elements such as a 

diode, memristor, and nonlinear resistors, capacitors, inductors, and others. These researchers have 

investigated the dynamical features and the digital implementation of a microcontroller JJ neuron 

model driven by a thermal signal and have obtained dynamics, namely, the chaos in their circuit. 

One of the particularities of the circuits studied in this thesis is that in addition to chaotic dynamics, 

they can also generate hyperchaotic dynamics which can offer a vast field of application. It was 

thus a question for us to propose electrical circuits able to generate chaotic and hyperchaotic 

dynamics at high-frequency thanks to the Josephson Junction. 

The second problem to be solved in this thesis is to propose an autonomous nonlinear 

circuit based on the JJ. We will therefore try to introduce the JJ, as the only non-linear element 

(NLE), in a circuit and to make it oscillate without an external variable while hoping to obtain 

complex dynamics such as chaos and hyperchaos. 

A microcontroller simulation of the circuit with JJ based on the mathematical 

equations governing their dynamics will be our third problem. 

The JJ is a difficult component to find and manipulate in the optimal conditions of 

experimentation, but the analogical study is feasible. Thus, the fourth and last problem to be 

solved is to realize the analog circuits, starting from the mathematical equations of the 

studied physical systems. Finally, we will make a partial and total control of the amplitude of 

an electric circuit. 

 

1.5. Conclusion 

This chapter was developed to permit an understanding of the concepts which will be used 

in this thesis. The first part of the chapter talked about the literature review on JJ and its different 

electrical models. Secondly, we presented a review on nonlinear electrical circuits able to have 
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complex behaviors such as chaos and more particularly hyperchaos which are important for secure 

communications. We continued our analysis by doing a brief review on electric circuits based on 

some electrical nonlinear components. We also presented some essential works carried out in the 

literature. This presentation has allowed us to highlight the problems of the thesis.  

The next chapter will be devoted to mathematical formalisms, numerical, analog, and 

 microcontroller simulation methods used to analyze the dynamical states of the electric circuits 

proposed in this work.             



METHODOLOGY  

  
 

Doctorate Thesis/PhD  31 Ybriss Joël Monkam © Year 2024 

CHAPTER 2: METHODOLOGY 

2.1. Introduction 

This chapter deals with the different methods used in this thesis which are organized as 

follows. In section 2.2, mathematical formalisms will be presented. This concerns the stability 

analysis of equilibrium points and the Routh-Hurwitz criteria have been elaborated to choose the 

one better adapted in the frame of this work. Another approach using numerical methods has been 

presented in section 2.3 because these theoretical methods can present some limitations in the 

analysis of nonlinear differential equations characterized by complex dynamic behaviors such as 

Chaos/hyperchaos. In this section, we will present chaos and hyperchaos characterization and 

Circuit analysis methods. Sections 2.4 is consecrated to electronic components, analog simulation 

method, and Principe of microcontroller simulation. In this section, we present some electronic 

components and the analog operations that will allow us to build electronic circuits mimicking the 

differential equations of an oscillator. Even though computers and software are used for 

simulations, analog circuits can provide concrete and accurate results for real applications.  The 

last section is devoted to the conclusion. 

 

2.2. Mathematical formalisms 

2.2.1. Stability analysis of equilibrium points 
Dynamical systems deal with systems that evolve. The term "system" refers to a set of state 

variables (whose value evolves with time) and the interactions between them. Their evolution over 

time is both causal and deterministic. For a deterministic evolution, the dynamic system can be 

modeled in two distinct ways, namely 

- Continuous evolution in time, represented by a system of ordinary differential equations in the 

following form:  

 1 ( , , )X f t X C ,        

where C is a column matrix characterizing the parameters of the system. 

 A discrete evolution in time. In this case, the time is a discrete variable and the system of 

equations is then presented in the following form: 

(2.1) 
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1 ( , , )n n n nX f t X C  .        

The stability of a dynamic system represents the property that a dynamic system has to 

remain in the same state despite small perturbations. Thus a system will be said to be stable when 

it returns to its initial state (which we assume to be a fixed point) after having undergone small 

perturbations and unstable in the opposite case. In other words, if we apply a perturbation to a fixed 

point, the Taylor expansion to the first order ( )F X  is written: 

0 0 0 0( ) ( ) ( ) ( ) ( )F X X F X J X X o X J X X       . 

where 0( )J X  is the Jacobian matrix F calculated at the point 0X . 

  

0

0( ) i

j X

F
J X

X

 


 
 
 

. 

The solution is written in the form: 

 ( ) expi i ii
X t a C t  . 

It appears that the fixed point is stable if and only if all the eigenvalues of J  are with a 

negative real part. In this case, the perturbation decreases exponentially and the system returns to 

the equilibrium position. If one of the eigenvalues has a zero real part, the system is marginally 

stable (it does not move away). If at least one of the eigenvalues has a strictly positive real part, 

then the system is unstable since the perturbation tends to grow over time. In phase space, the 

representative point moves away from the fixed point in the direction of the corresponding 

eigenvector. The imaginary parts can be zero or not inducing an oscillation. 

We classify the fixed points according to the real part of the eigenvalues i   

 If i , ( ) 0iR    , the fixed point is stable. 

 If i , ( ) 0iR   , the fixed point is unstable. 

 If i , ( ) 0iR    and j , ( ) 0jR    the fixed point is a saddle point (unstable), 

(2.4) 

(2.2) 

(2.3) 

(2.5) 
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where the i  represent the eigenvalues of the matrix J , the iC  corresponding eigenvectors ia  , and 0X

depend on the initial conditions. In general, the i  are complex and the exponential involves two 

contributions: The real part ( )iR   leads to a contraction or a dilation X depending on whether it is 

negative or positive. 

2.2.2. Routh-Hurwitz criterion 

The Routh-Hurwitz criterion is one of the important criteria that give necessary and 

sufficient conditions for all of the roots of the characteristic polynomial (with real coefficients) to 

lie in the left half of the complex plane. To derive the stability regions of a dynamical system, some 

conditions must be respected. In case the Routh-Hurwitz criterion as stated in Theorem 2.2.2.1 is 

satisfied, then any solution of the differential equation converges towards the investigated fixed 

point. 

Theorem 2.2.2.1. Routh-Hurwitz criterion.  

Given the polynomial obtained from the Jacobean matrix of a given system around one of its fixed 

points, 

1

0 1 1( ) ... ,n n

n nP a a a a   

                     

where the coefficients ai are real constants, 0,..., ,i n  define the n Hurwitz matrices using the 

coefficients ai of the characteristic polynomial: 

1 1( )H a ,  1 0

2

3 2

a a
H

a a

 
  
 

,

1 0

3 3 2 1

5 4 3

0a a

H a a a

a a a

 
 

  
 
 

, and 

1 0

3 2 1 0

5 3 2 1

0 0 ... 0

... 0

... 0

.. .. .. .. ... 0

.. .. .. .. ... ...

0 0 0 0 ...

n

n

a a

a a a a

a a a a
H

a

 
 
 
 

  
 
 
  
 

, 

where 0ja   if j n . 

(2.6) 

(2.7) 
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All the roots of the polynomial ( )P   are negative or have a negative real part if and only if the 

determinants of all the Hurwitz matrices are positive: 

det( ) 0, 1,2,...,jH j n  .                          

As the dynamical equations studied in this thesis are of five and six order, regarding the Theorem 

2.2.2.1, the Routh-Hurwitz criteria will be written as 

1 2 3 4 5 6det( ) 0, det( ) 0, det( ) 0, det( ) 0,det( ) 0, det( ) 0.H H H H H and H               

It is worth mentioning that there exists a corollary (necessary conditions but not sufficient) to 

Theorem 2.2.2.1, which helps to conclude more rapidly on the stability of the analyzed fixed points; 

it is stated as follows:  

 Corollary 2.2.2.1.1. Suppose the coefficients of the characteristic polynomial are real. If all of the 

roots of the characteristic polynomial equation (2.6) are negative or have a negative real part, 

then the coefficients 0, 1,2,...,ia for i n  .  

In this thesis, the Routh-Hurwitz criterion and its corollary are used to analyze the stability of all 

the proposed mathematical models. 

 

2.3. Numerical methods 

Numerical methods are based on an algorithm that is implemented through computers to 

solve different types of problems. Computers enable us to approximate the solutions to analytically 

intractable problems, and also to visualize those solutions. In this thesis, solutions (numerical 

integration of x˙ = f(x)) to each of our nonlinear dynamical systems will be investigated through 

the fourth-order Runge-Kutta algorithm. 

(2.8) 

(2.9) 
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2.3.1.  Fourth-order Runge-Kutta method for ordinary differential equations 

2.3.1.1. Implementation for the first-order differential equation 

All this thesis is based on the analysis of nonlinear dynamical (chaotic and hyperchaotic) 

solutions in electronic circuits. Henceforth, only numerical integration of our nonlinear differential 

equations ( ( , )x f t x ) can enable us to well approximate the solutions of analytically intractable 

problems, and also visualize those solutions. The accommodate algorithm is that of fourth-order 

Runge-Kutta. Indeed, among the plethora of numerical integration methods, the fourth-order 

Runge-Kutta offers a good balance between computational cost, stability, and efficiency [44]. The 

solution 1nx   in terms of nx  and nt  is given by the following scheme: 

 1 1 2 3 4

1
2 2 ,

6
n nx x k k k k       

with,  

 

1

2 1

3 2

4 3

( , ),

, ,
2 2

, ,
2 2

, ,

n n

n n

n n

n n

k f t x

h h
k f t x k

h h
k f t x k

k f t h x hk



 
   

 

 
   

 

  

 

where h  represents the step of integration and nt  the time sampling at thn iteration. All the 

numerical analysis and further investigations in this thesis will be first based on the fourth-order 

Runge-Kutta numerical integration of each of our systems (defined by the set of autonomous 

ordinary differential equations only). 

 

2.3.1.2. Implementation for the m-order differential equation  

In the case of an m-order differential equation, we have: 

                      
 

2 1

2 1

( )

0 0

, , , , ,

.

m m

mm m

k
k

k

d y dy d y d y
f t y

dt dt dt dt

d y
t y

dt





  
  

  





 ,                                               

(2.10) 

(2.12)

0 

(2.11) 
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With successive variables change, the equation (2.12) can be written under the following form: 

                  

 

 

 

 
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 
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0 0 0 1 2 10
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1 1 0 1 2 1
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1
2 2 0 1 2 12

1

2
1 1 0 1 2 11

1
0 1 2 1
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0 0 0

, , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , ,

( ) ,

m

m

m

m

m
m m mm

m

m
m mm

k
k

kk

d y
u y f t u u u u

dt

dudy
u f t u u u u

dt dt

dud y
u f t u u u u

dt dt

dud y
u f t u u u u

dt dt

dud y
f t u u u u

dt dt

d y
t u t y

dt










  




  

  

  

  

 

  

.

1, 2,3, , 1 .k m


















  


                                    

 

With this general vectorial form, iterations can be performed to determine all the values of y  and 

its derivative at a different time separated by the time step h  using: 

                          
      

1 2 43

1
2 ,

6

k k k k

k ku t h u t L L L L                                    

where  
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     

     

     

1 0 1 1

0 1 1

1 1 1
2 0 1 1

0 1 1

2 2 2
3 0 1 1

0 1 1

3 3 3
4 0 1 1

, , , , ,

, , , , ,
2 2 2 2

, , , , ,
2 2 2 2

, , , , .
2 2 2 2

k

k m

m
k

k m

m
k

k m

m
k

k m

L hf t u t u t u t

L L Lh
L hf t u t u t u t

L L Lh
L hf t u t u t u t

L L Lh
L hf t u t u t u t















   
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     

 

 
     

 

 
     

 

                         

  This generalized form can also serve to solve numerically first-order coupled ODEs. 

 2.3.2. Numerical tools for characterizing the dynamical states of non-linear 

systems 

 

(2.13)

0 

(2.14)

0 

(2.15)

0 
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2.3.2.1. Time series 

For as long as scientist have been recording data, time has been a crucial factor. In time 

series analysis, time is a significant variable of the data. Times series analysis helps us study our 

world and learn how we progress within it. 

Time series analysis is a specific way of analyzing a sequence of data points collected over 

an interval of time. In time series analysis, analysts record data points at consistent intervals over 

a set period rather than just recording the data points intermittently or randomly. However, this 

type of analysis is not merely the act of collecting data over time. What sets time series data apart 

from other data is that the analysis can show how variables change over time. In other words, time 

is a crucial variable because it shows how the data adjusts throughout the data points as well as the 

final results. It provides an additional source of information and a set order of dependencies 

between the data. Time series analysis typically requires a large number of data points to ensure 

consistency and reliability. An extensive data set ensures you have a representative sample size 

and that analysis can cut through noisy data. It also ensures that any trends or patterns discovered 

are not outliers and can account for seasonal variance. Additionally, time-series data can be used 

for forecasting-predicting future data based on historical data. 

 

2.3.2.2. Phase portraits 

The region of the phase space towards which the trajectories of a dissipative dynamical system 

converge is called an "attractor". Attractors are geometrical shapes that characterize the long-term 

evolution of dynamical systems. There are four types of attractors: a point, a torus, a limit cycle, 

and a more complex fractal-like structure [212]. 

 The "fixed point" attractor is a point in the phase space towards which the trajectories tend and 

is, therefore, a constant stationary solution, 

 The "limit cycle" attractor is a closed trajectory in phase space towards which the trajectories 

tend. It is therefore a periodic solution of the system,  

 The "torus" attractor represents the motions resulting from two or more independent 

oscillations which are sometimes called quasi-periodic motions,  

 Strange attractors are much more complex than the others. 
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 2.3.2.3. Bifurcation diagrams 

Another set of concepts useful for the analysis of dynamical systems is the theory of bifurcation. A 

bifurcation diagram shows the values visited or approached asymptotically (fixed points periodic 

orbits, or chaotic attractors) by a system as a function of the system control parameter. In dynamics 

systems, the bifurcation diagram provides model transitions and instabilities as some control 

parameters are varied [44]. This concept refers to the study of changes in the behavior of a system 

when its parameters change. Bifurcation means a qualitative change in the dynamics of the system 

that results from the change of one of the parameters of the system. They are several methods used 

to obtain the bifurcation diagrams. One way is to keep the same initial conditions for all the 

iterations of the control parameters. This method is suited to track parallel branches existing in 

systems. Another method consists of considering the final state at each iteration as initial conditions 

for the next iteration. This method is following the real experiment as initial conditions are 

changing when a control parameter is varying. 

For example, the destabilization of a stable equilibrium, the appearance or disappearance 

of a cycle or an attractor, and many others. The value for which the bifurcation occurs is called the 

bifurcation point. There are several types of bifurcation. We can mention among others: 

- The flip bifurcation or period splitting: 

This bifurcation occurs when one of the eigenvalues of the system is equal to 1 . A cycle of order 

k  which undergoes this bifurcation will change its nature and create a cycle of order 2k  of the same 

nature.  

- The fold bifurcation or node-col: 

In this type of bifurcation, two equilibrium points exist (one is stable and the other is unstable) 

before the bifurcation. After the bifurcation, no equilibrium exists. 

- The Hopf bifurcation:  

A Hopf bifurcation occurs when a periodic solution cycle or limit cycle surrounding an equilibrium 

point emerges or disappears when a parameter   varies. When a stable limit cycle surrounds an 
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unstable equilibrium point, it is called a supercritical Hopf bifurcation. If the limit cycle is unstable 

and surrounds a stable equilibrium point, it is called a subcritical Hopf bifurcation. 

Moreover, some stable solutions like quasiperiodic oscillations can be misinterpreted from 

the bifurcation diagram as they are represented with dense points like chaos/hyperchaos solutions. 

Let us also note that hysteresis dynamics are tracked using this method by superimposing two sets 

of data corresponding respectively to increase and decrease values of the control parameter. Even 

though the bifurcation diagram helps to distinguish stable (periodic) solution areas from unstable 

(chaotic) ones; it doesn’t provide any information about the kind of dynamic (chaos or hyperchaos) 

that is present in unstable areas.  

Lyapunov exponents and phase portraits are some additional tools required to conclude the 

dynamics of the investigated system. 

 

2.3.2.4. Lyapunov’s exponent 

To gain the most information from a dynamical system, one should look for its maximum 

Lyapunov exponent. Chaotic behavior is illustrated by a positive maximum Lyapunov exponent. 

 The evaluation of the maximum Lyapunov exponent can be done by observing the evolution 

of small perturbations of the system during its evolution over time. Thus, for a positive maximum 

Lyapunov exponent, a stretch occurs when initially neighboring points are separated: this is chaos. 

Moreover, for a negative exponent, there is a contraction or approach that characterizes a unique 

oscillatory or static state: this is regularity; and finally, for a zero exponent, we have a set of quasi-

periodic waveforms: this is the torus. 

The bifurcation is obtained from the numerical simulation. Under the same conditions, the chaotic 

behavior of the system can be characterized by using the Lyapunov exponent. Two methods exist 

to achieve this, the first is to perform the spectral calculation of the Lyapunov exponent for all 

dimensions of the system. This method consists in performing the one-dimensional calculation of 

the Lyapunov exponent whose plot specifies the zones of chaos and/or hyperchaos in a merged 

way. In the present case, the second method can be considered. 
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Thus, if we perturb the system by introducing small variations on each of its axes, i.e.

1 2 3 4, , , ,..., n     , with n the degree of the system, such that: 

1 1 1

2 2 2

3 3 3

4 1 4

,

,

,

,
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.n n n

x x

x x

x x

x y

x x











 

 

 

 



 

 

Then, the maximum Lyapunov exponent will be defined by:

 max 1 2 3 4

1
lim ln ... .n
x t

     


     
 

Furthermore, this maximum one-dimensional Lyapunov exponent λmax can be calculated using 

the following general formula:  

1

max

0

1
lim ln ( ) ,

m

i
x

i

f x
m







 
 

with m the number of iterations 

 

( ) ,i Jf x M u   

where MJ is the Jacobian matrix associated with the system and u is the local variable used to 

describe the dynamics of this system in the vicinity of the equilibrium point. 

There are two possible cases: 

 0   : In this case, we distinguish two sub-cases for which the oscillatory states are stable: 

 Case where 0  . 

In this case, we have regular oscillations 

 Case where 0.   

In this case, we have a toric orbit made up of a set of quasi-periodic waveforms. 

 0   : In this case, we have a toroidal orbit made of a set of quasi-periodic waveforms, which 

materializes the presence of a chaotic state. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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Note that the combination of the bifurcation diagram and the maximum Lyapunov exponent is an 

efficient tool to study the behavior (chaotic or not) of a dynamic system. The bifurcation diagram 

allows accounting for the qualitative state of the system while the maximum Lyapunov exponent 

allows accounting for the state of the system quantitatively. For this purpose, we will place the 

graph of the maximum Lyapunov exponent below the bifurcation diagram in all our work. 

 

2.3.2.5. Lyapunov’s spectrum 

Another characterization tool that is always combined with the bifurcation diagram is the 

Lyapunov exponent (LE) spectrum. It is a more objective and quantitative measure than others. A 

characteristic feature of chaotic motion is the extreme sensitivity of the motion to small changes in 

initial conditions. For a chaotic motion, adjacent trajectories diverge exponentially, whereas for a 

regular motion trajectory is asymptotically stable and separate only linearly in time.  

 The rate of divergence of adjacent trajectories can be quantified conveniently in terms of 

Lyapunov exponents, which measure the mean rate of this exponential separation and describe the 

asymptotic stability properties of a trajectory. Unlike some other methods which only compute the 

largest Lyapunov exponent, the algorithm of [177] calculates the full spectrum of the Lyapunov 

exponents and thus allows one to distinguish between chaotic attractors marked by only one 

positive exponent and hyperchaotic attractors characterized by more than one positive exponent. 

Also, it contains more information about the dynamics than does the largest exponent by itself. 

Considering that each exponent can be negative, zero, or positive, that their sum cannot be positive 

for a bounded system, and that at least one exponent must be zero (this means that the trajectory 

always remains localized in time on a strange attractor) except for point attractors, there are five 

possible combinations for a four-dimensional state space. Table 1 shows the classification of 

attractors and the corresponding dynamics in a four-dimensional system (which is the focus of this 

thesis) in terms of LE [178]. 

Table 2.1: Lyapunov’s exponents of different types of attractors for four-dimensional flow [178] 

λ1 λ2 λ3 λ4 Attractor Dimension (DKY) Dynamic 
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- - - - Equilibrium point 0 Static 

0 - - - Limit cycle 1 Periodic 

0 0 - - Attracting 2-torus 2 2D Torus 

0 0 0 - Invariant torus 1 or 2 3D Torus 

+ 0 - - Strange ]2;3[ Chaotic 

+ + 0 - Strange >3 (noninteger) Hyperchaotic 

 

2.3.3. Hardware and software 

During this work, we used a laptop computer running Windows 10 operating system and 

three major software: Fortran, MATLAB, Arduino UNO, Maple, OrCAD PSpice, Proteus, and 

Arduino. 

 

2.4. Analog and microcontroller simulation methods 

2.4.1. Analog simulation method 

Analog simulations are based on the properties of certain electronic components and they 

are built from, voltage multipliers, integrators, inverters, and adders built from an operational 

amplifier, resistor, and capacitor. All these blocks are designed with a basic electronic component 

called an operational amplifier. We firstly present the ideal type of operational amplifier that will 

be used in this work. Then we present some analog operations that we will use to build those analog 

circuits and the voltage multipliers. 

 

2.4.1.1 Analog simulation operations 

 

 Ideal Operational amplifiers  
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Operational amplifiers are linear devices that have all the properties required for nearly 

ideal DC amplification and are therefore used extensively in signal conditioning, filtering, or to 

perform mathematical operations such as add, subtract, integration and differentiation. 

An Operational Amplifier, or op-amp for short, is fundamentally a voltage amplifying device 

designed to be used with external feedback components such as resistors and capacitors between 

its output and input terminals. These feedback components determine the resulting function or 

“operation” of the amplifier and under the different feedback configurations whether resistive, 

capacitive, or both, the amplifier can perform a variety of different operations, giving rise to its 

name of “Operational Amplifier”. 

 

Figure 2.15: Circuit symbol of an ideal Op-amp 

An Operational Amplifier is a three-terminal device that consists of two high impedance inputs. 

One of the inputs is called the Inverting Input, marked with a negative or “minus” sign, (–). The 

other input is called the Non-inverting Input, marked with a positive or “plus” sign (+). 

A third terminal represents the operational amplifier's output port which can both sink and source 

either a voltage or a current. In a linear operational amplifier, the output signal is the amplification 

factor, known as the gain of the amplifier (A) multiplied by the value of the input signal, and 

depending on the nature of these input and output signals, there can be four different classifications 

of operational amplifier gain. 

 Voltage – Voltage “in” and Voltage “out” 

 Current – Current “in” and Current “out” 
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 Transconductance – Voltage “in” and Current “out” 

 Transresistance – Current “in” and Voltage “out” 

Since most of the circuits dealing with operational amplifiers are voltage amplifiers, we will limit 

the tutorials in this section to voltage amplifiers only, (Vin and Vout). 

The output voltage signal from an Operational Amplifier is the difference between the signals being 

applied to its two individual inputs. In other words, an op-amps output signal is the difference 

between the two input signals as the input stage of an Operational Amplifier is a differential 

amplifier as shown below. 

 Op-amp Parameter and Idealised Characteristic 

 Open Loop Gain, (Avo) is Infinite  

The main function of an operational amplifier is to amplify the input signal and the more open-

loop gain it has the better. Open-loop gain is the gain of the op-amp without positive or negative 

feedback and for such an amplifier the gain will be infinite but typical real values range from about 

20,000 to 200,000. 

 Input impedance, (ZIN) is Infinite  

Input impedance is the ratio of input voltage to input current and is assumed to be infinite to 

prevent any current from flowing from the source supply into the amplifier's input circuitry ( IIN = 

0 ). Real op-amps have input leakage currents from a few pico-amps to a few milli-amps. 

 Output impedance, (ZOUT) is Zero 

 The output impedance of the ideal operational amplifier is assumed to be zero acting as a perfect 

internal voltage source with no internal resistance so that it can supply as much current as necessary 

to the load. This internal resistance is effectively in series with the load thereby reducing the output 

voltage available to the load. Real op-amps have output impedances in the 100-20kΩ range. 

 Bandwidth, (BW) is Infinite  

An ideal operational amplifier has an infinite frequency response and can amplify any frequency 

signal from DC to the highest AC frequencies so it is therefore assumed to have infinite bandwidth. 

With real op-amps, the bandwidth is limited by the Gain-Bandwidth product (GB), which is equal 

to the frequency where the amplifier's gain becomes unity. 

 Offset Voltage, (VIO) is Zero  



METHODOLOGY  

  
 

Doctorate Thesis/PhD  45 Ybriss Joël Monkam © Year 2024 

The amplifier's output will be zero when the voltage difference between the inverting and the 

non-inverting inputs is zero, the same or when both inputs are grounded. Real op-amps have some 

amount of output offset voltage. From these “idealized” characteristics above, we can see that the 

input resistance is infinite, so no current flows into either input terminal (the “current rule”) and 

that the differential input offset voltage is zero (the “voltage rule”). It is important to remember 

these two properties as they will help us understand the workings of the Operational 

Amplifier concerning the analysis and design of op-amp circuits. 

We know now that an Operational amplifier is a very high gain DC differential amplifier that uses 

one or more external feedback networks to control its response and characteristics. We can connect 

external resistors or capacitors to the op-amp in many different ways to form basic “building 

Blocks” circuits such as Inverting, Non-Inverting, Voltage Follower, Summing, Differential, 

Integrator, and Differentiator type amplifiers. 

An “ideal” or perfect operational amplifier is a device with certain special characteristics 

such as infinite open-loop gain AO, infinite input resistance RIN, zero output resistance ROUT, 

infinite bandwidth 0 to ∞, and zero offsets (the output is exactly zero when the input is zero). There 

are a very large number of operational amplifier ICs available to suit every possible application 

from standard bipolar, precision, high-speed, low-noise, high-voltage, etc, in either standard 

configuration or with internal Junction FET transistors. Operational amplifiers are available in IC 

packages of either single, dual, or quad op-amps within one single device. The most commonly 

available and used of all operational amplifiers in basic electronic kits and projects is the industry 

standard μA-741. 

            

(a)                                               (b)                                                               (c) 
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Figure 2.16: The Op-amp 741, a) Circuit symbol, b) Datasheet, c) Integrated circuit [180]. 

 

 Inverting Operational Amplifier 

The Inverting Op-Amp configuration is one of the simplest and most commonly used op-

amp topologies 

 

Figure 2.17: Inverter circuit with Op-Amp. 

 

In this Inverting Amplifier circuit, the operational amplifier is connected with feedback to produce 

a closed-loop operation. When dealing with operational amplifiers there are two very important 

rules to remember about inverting amplifiers, these are: “No current flows into the input terminal” 

and “V1 always equals V2”. However, in real-world0 op-amp circuits, both of these rules are 

slightly broken. 

This is because the junction of the input and feedback signal (X) is at the same potential as the 

positive (+) input which is at zero volts or ground then, the junction is a “Virtual Earth”. Because 

of this virtual earth node, the input resistance of the amplifier is equal to the value of the input 

resistor, Rin and the closed-loop gain of the inverting amplifier can be set by the ratio of the two 

external resistors. 

We said above that there are two very important rules to remember about inverting Amplifiers or 

any operational amplifier for that matter and these are. 
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 No Current Flows into the Input Terminals 

 The Differential Input Voltage is Zero as V1 = V2 = 0 (Virtual Earth) 

Then by using these two rules we can derive the equation for calculating the closed-loop gain of 

an inverting amplifier, using first principles. 

Current (i) flows through the resistor network as shown. 

 

Figure 2.18: Internal representation of inverter circuit with Op-Amp 

,in out

in f

V V
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R R


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therefore,  

2 2 ,in out
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so,  
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 
   
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and as 

0 0
,

fin out out

in f in in

RV V V
i

R R R V

 
      

the closed Loop Gain (AV) of an Inverting Amplifier is given as, 

,
fout

V

in in

RV
A

V R
    

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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and this can be transposed to give outV  as: 

.
f

out in

in

R
V V

R
 

 

 

 Non-inverting Operational Amplifier 

 

Figure 2.19: Non-inverting circuit with Op-Amp.  

 

In this configuration, the input voltage signal, (Vin) is applied directly to the non-inverting (+) input 

terminal which means that the output gain of the amplifier becomes “Positive” in value in contrast 

to the “Inverting Amplifier” circuit we saw in the last tutorial whose output gain is negative in 

value. The result of this is that the output signal is “in-phase” with the input signal. 

Feedback control of the non-inverting operational amplifier is achieved by applying a small part of 

the output voltage signal back to the inverting (–) input terminal via an RF – R2 voltage divider 

network, again producing negative feedback. This closed-loop configuration produces a non-

inverting amplifier circuit with very good stability, a very high input impedance, Rin approaching 

infinity, as no current flows into the positive input terminal, (ideal conditions) and a low output 

impedance, Rout as shown below. 

(2.28) 
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In the previous Inverting Amplifier tutorial, we said that for an ideal op-amp “No current flows 

into the input terminal” of the amplifier and that “V1 always equals V2”. This was because the 

junction of the input and feedback signal (V1) is at the same potential. 

In other words, the junction is a “virtual earth” summing point. Because of this virtual earth node, 

the resistors, RF and R2 form a simple potential divider network across the non-inverting amplifier 

with the voltage gain of the circuit being determined by the ratios of R2 and RF as shown below. 

 

Figure 2.20: Equivalent Potential Divider Network in non-inverting amplifier. 

 

Then using the formula to calculate the output voltage of a potential divider network, we can 

calculate the closed-loop voltage gain (AV) of the non-inverting Amplifier as follows: 

2
1

2

.out

F

R
V V

R R



 

Ideal summing point :  

1 .inV V  

Voltage Gain (AV) is equal to: 

2

2

.out F
V

in

V R R
A

V R


 

 

(2.29) 

(2.30) 

(2.31) 
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Then the closed-loop voltage gain of a Non-inverting Operational Amplifier will be given as: 

2

1 .out F
V

in

V R
A

V R
  

 

We can see from the equation above, that the overall closed-loop gain of a non-inverting amplifier 

will always be greater but never less than one (unity), it is positive and is determined by the ratio 

of the values of RF and R2. 

If the value of the feedback resistor RF is zero, the gain of the amplifier will be exactly equal to one 

(unity). If resistor R2 is zero the gain will approach infinity, but in practice, it will be limited to the 

operational amplifier's open-loop differential gain, (AO). 

We can easily convert an inverting operational amplifier configuration into a non-inverting 

amplifier configuration by simply changing the input connections as shown. 

 

 Voltage Follower (Unity Gain Buffer) 

 

  

Figure 21: The voltage Follower circuit with Op-Amp. 

 

If we made the feedback resistor, Rƒ equal to zero, (Rƒ = 0), and resistor R2 equal to infinity, 

(R2 = ∞), then the resulting circuit would have a fixed gain of “1” (unity) as all the output voltage 

(2.32) 
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is fed back to the inverting input terminal (negative feedback). This configuration would produce 

a special type of the non-inverting amplifier circuit called a Voltage Follower, also known as a 

“unity gain buffer”. 

As the input signal is connected directly to the non-inverting input of the amplifier the output signal 

is not inverted resulting in the output voltage being equal to the input voltage, thus out inV V . This 

then makes the voltage follower circuit ideal as a constant voltage source or voltage regulator 

because of its input to output isolation properties. 

The advantage of the unity gain voltage follower configuration is that it can be used when 

impedance matching or circuit isolation is more important than voltage or current amplification as 

it maintains the input signal voltage at its output terminal. Also, the input impedance of the voltage 

follower circuit is extremely high, typically above 1MΩ as it is equal to that of the operational 

amplifier's input resistance times its gain (Rin x AO). The op-amps output impedance is very low 

since an ideal op-amp condition is assumed so is unaffected by changes in load. 

 

 The summing Amplifier circuit 

The Summing Amplifier is another type of operational amplifier circuit configuration that 

is used to combine the voltages present on two or more inputs into a single output voltage. 

 

Figure 2.10: Adder circuit with Op-Amp.  
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In this simple summing amplifier circuit, the output voltage, (
outV ) now becomes proportional to 

the sum of the input voltages, V1, V2, V3, etc. Then we can modify the original equation for the 

inverting amplifier to take account of these new inputs thus: 

31 2
1 2 3F

in in in

VV V
I I I I

R R R

 
      

 
, 

Inverting equation: 

F
out in

in

R
V V

R
  , 

then,  

1 2 3
F F F

out

in in in

R R R
V V V V

R R R

 
    

 
. 

However, if all the input impedances, (Rin) are equal in value, we can simplify the above equation 

to give an output voltage of: 

 1 2 3 ... .F
out

in

R
V V V V etc

R
      

We now have an operational amplifier circuit that will amplify each input voltage and produce an 

output voltage signal that is proportional to the algebraic “SUM” of the three individual input 

voltages V1, V2, and V3. We can also add more inputs if required as each input “sees” their 

respective resistance, Rin as the only input impedance. 

This is because the input signals are effectively isolated from each other by the “virtual earth” node 

at the inverting input of the op-amp. A direct voltage addition can also be obtained when all the 

resistances are of equal value and RF is equal to Rin. 

Note that when the summing point is connected to the inverting input of the op-amp the circuit will 

produce the negative sum of any number of input voltages. Likewise, when the summing point is 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
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connected to the non-inverting input of the op-amp, it will produce the positive sum of the input 

voltages. 

 

 The integrator Amplifier 

The integrator Op-amp produces an output voltage that is both proportional to the amplitude and 

duration of the input signal 

 

Figure 2.11: The integrated circuit with Op-Amp. 

 

Operational amplifiers can be used as part of a positive or negative feedback amplifier or 

as an adder or subtractor type circuit using just pure resistances in both the input and the feedback 

loop. But what if we were to change the purely resistive (RF) feedback element of an inverting 

amplifier with a frequency dependant complex element that has a reactance, (X), such as a 

Capacitor, C. What would be the effect on the op-amps voltage gain transfer function over its 

frequency range as a result of this complex impedance. By replacing this feedback resistance with 

a capacitor, we now have an RC Network connected across the operational amplifiers feedback 

path producing another type of operational amplifier circuit commonly called an Op-amp 

Integrator circuit as shown below. 

As its name implies, the Op-amp Integrator is an operational amplifier circuit that performs 

the mathematical operation of Integration, that is we can cause the output to respond to changes in 

the input voltage over time as the op-amp integrator produces an output voltage that is proportional 
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to the integral of the input voltage. In other words, the magnitude of the output signal is determined 

by the length of time a voltage is present at its input as the current through the feedback loop 

charges or discharges the capacitor as the required negative feedback occurs through the capacitor. 

When a step voltage, Vin is firstly applied to the input of an integrating amplifier, the uncharged 

capacitor C has very little resistance and acts a bit like a short circuit allowing maximum current 

to flow via the input resistor, Rin as potential difference exists between the two plates. No current 

flows into the amplifier's input and the point X is virtual earth resulting in zero output. As the 

impedance of the capacitor at this point is very low, the gain ratio of XC/RIN is also very small 

giving an overall voltage gain of less than one, (voltage follower circuit). 

As the feedback capacitor, C begins to charge up due to the influence of the input voltage, its 

impedance Xc slowly increases in proportion to its rate of charge. The capacitor charges up at a 

rate determined by the RC time constant, (τ) of the series RC network. Negative feedback forces 

the op-amp to produce an output voltage that maintains virtual earth at the op-amp’s inverting 

input. 

We know from the first principles that the voltage on the plates of a capacitor is equal to the charge 

on the capacitor divided by its capacitance giving Q/C. Then the voltage across the capacitor is 

output Vout therefore: -Vout = Q/C. If the capacitor is charging and discharging, the rate of change 

of voltage across the capacitor is given as: 

1
; 0 .out

C C x out out

dVQ dQ
V V V V V

C dt C dt
         

But dQ/dt is electric current and since the node voltage of the integrating op-amp at its inverting 

input terminal is zero, X = 0, the input current I(in) flowing through the input resistor, Rin is given 

as: 

0
.in in

in

in in

V V
I

R R


   

The current flowing through the feedback capacitor C is given as: 

.out out
f

dV dV CdQ dQ
I C C

dt Cdt dt dt


     

(2.37) 

(2.38) 

(2.39) 
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Assuming that the input impedance of the op-amp is infinite (ideal op-amp), no current flows into 

the op-amp terminal. Therefore, the nodal equation at the inverting input terminal is given as: 

1.in out in
in f

in out in

V dV C V dt
I I

R dt V R C
       

From which we derive an ideal voltage output for the Op-amp Integrator as: 

0 0

1
.

t t

out in in

in in

dt
V V dt V

R C R C
     

To simplify the math’s a little, this can also be re-written as: 

1
.out inV V

j RC
   

Where: ω = 2πƒ and the output voltage outV  is a constant 1/RC times the integral of the input 

voltage Vin concerning time. 

Thus the circuit has the transfer function of an inverting integrator with the gain constant of -1/RC. 

The minus sign (–) indicates a 180o phase shift because the input signal is connected directly to the 

inverting input terminal of the operational amplifier. 

 

 The Differentiator Amplifier 

The basic operational amplifier differentiator circuit produces an output signal which is 

the first derivative of the input signal 

(2.40) 

(2.41) 

(2.42) 
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Figure 2.12: The Differentiator circuit with Op-Amp. 

 

Here, the position of the capacitor and resistor have been reversed and now the 

reactance, XC is connected to the input terminal of the inverting amplifier while the 

resistor, Rƒ forms the negative feedback element across the operational amplifier as normal. This 

operational amplifier circuit performs the mathematical operation of differentiation, that is it 

“produces a voltage output which is directly proportional to the input voltage’s rate-of-change 

concerning time. In other words, the faster or larger the change to the input voltage signal, the 

greater the input current, and the greater will be the output voltage change in response, becoming 

more of a “spike” in shape. As with the integrator circuit, we have a resistor and capacitor forming 

an RC Network across the operational amplifier and the reactance (Xc) of the capacitor plays a 

major role in the performance of an Op-amp Differentiator. The input signal to the differentiator is 

applied to the capacitor. The capacitor blocks any DC content so there is no current flow to the 

amplifier summing point, X resulting in zero output voltage. The capacitor only allows AC-type 

input voltage changes to pass through and whose frequency is dependent on the rate of change of 

the input signal. 

At low frequencies, the reactance of the capacitor is “High” resulting in a low gain (RF/Xc) and 

low output voltage from the op-amp. At higher frequencies, the reactance of the capacitor is much 

lower resulting in a higher gain and higher output voltage from the differentiator amplifier. 

However, at high frequencies, an op-amp differentiator circuit becomes unstable and will start to 

oscillate. This is due mainly to the first-order effect, which determines the frequency response of 

the op-amp circuit causing a second-order response that, at high frequencies gives an output voltage 
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far higher than what would be expected. To avoid this the high-frequency gain of the circuit needs 

to be reduced by adding a small value capacitor across the feedback resistor Rƒ. 

Since the node voltage of the operational amplifier at its inverting input terminal is zero, the 

current, i flowing through the capacitor will be given as: 

in FI I  and .out
F

f

V
I

R
   

The charge on the capacitor equals Capacitance times Voltage across the capacitor 

inQ C V  . 

Thus the rate of change of this charge is: 

,indVdQ
C

dt dt
  

but dQ/dt is the capacitor current, i 

,in out in
in F

f

dV V dV
I C I C

dt R dt
      

from which we have an ideal voltage output for the op-amp differentiator is given as: 

.in
out f

dV
V R C

dt
    

Therefore, the output voltage outV  is a constant fR C  time the derivative of the input 

voltage Vin concerning time. The minus sign (–) indicates a 180o phase shift because the input 

signal is connected to the inverting input terminal of the operational amplifier. 

One final point to mention, the Op-amp differentiator circuit in its basic form has two main 

disadvantages compared to the previous operational amplifier integrator circuit. One is that it 

suffers from instability at high frequencies as mentioned above, and the other is that the capacitive 

input makes it very susceptible to random noise signals and any noise or harmonics present in the 

source circuit will be amplified more than the input signal itself. This is because the output is 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 
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proportional to the slope of the input voltage so some means of limiting the bandwidth to achieve 

closed-loop stability is required. 

 

 Voltage multipliers 

In this thesis, we will use the AD633JN multipliers, but let’s note that there are several 

categories of voltage multipliers. The design of such a circuit requires resistors of equal value. This 

is not easy to realize technically. However, there are discrete components like the AD633 (and its 

equivalents) which are voltage multipliers. This circuit works with symmetrical power supplies of 

values between ±8V and ±18V with a typical value of ±15V. Its average consumption is 4mA, and 

its output is permanently short-circuited proof. With a bandwidth of one MHz, a differential input 

impedance of 10M and a voltage swing of ±11V, the dynamic characteristics of this circuit are 

excellent. Its pinout, which also serves as a symbol, and its actual structure are shown in figure 

2.13a. 

                                        

(a)                                                                                    (b) 

Figure 2.22: The voltage multiplier type AD633JN series: a) Datasheet b) Integrated circuit [180]. 

The transfer function of a voltage multiplier circuit is given by the following relationship: 

 

  1 2 1 2
,

ref

x x y y
w z

V

 
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where W represents the output voltage of the multiplier whereas the quantities are denoted by 

1, 2 1, ,x x y and 2y  representing the input voltages of the multiplier. z  is an additional input 

generally connected to the ground. Vref is scaling voltage whose value is 10 V. 

(2.47) 
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2.4.1.2. Analog simulation equipment  

 The real simulation by microcontroller carried out in this work required some materials 

such as Arduino UNO board, oscilloscope, multimeter, computer, connection cables, and test board 

on which we built the R-2R circuit for the conversion of digital signal coming out from Arduino 

into an analog signal that can be viewed in the oscilloscope.  

It is very important to know how to use a test plate and to understand the principles of use. 

It is very useful to make electronic assemblies without soldering.  The test plate is used with straps 

(single-stranded copper wires) of different sizes and lengths. The ends of the straps must be stripped 

for about 1 cm. All the points of the same column of the power bus (in red and blue on the diagram) 

are connected. All the points of a half-line are connected. 

 

 A multimeter (sometimes called a universal controller)  

It is a set of electrical measuring devices in a single box, usually consisting of a voltmeter, 

an ammeter, and an ohmmeter. The voltmeter and ammeter functions are available in DC and AC 

(see figure 2.18(e)). 

 

 Oscilloscope, or oscillograph 

It is a measuring instrument designed to visualize an electrical signal, most often variable 

over time. It is used by many scientists to visualize either electrical voltages or various other 

physical quantities previously transformed into voltage using an adapted converter or sensors. The 

rendering curve of an oscilloscope is called an oscillogram. The main purpose of an oscilloscope 

is to measure and display voltage as a function of time. They are widely used for 

electrical/electronic design, testing, and debugging of most objects that work with electricity. In 

this thesis, we used Rigol digital oscilloscope (see figure 2.18(a)). 

 Arduino Uno board module  
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The Arduino Uno module is a board based on the ATmega328 microcontroller with the 

following specifications: a power jack used to supply the needed voltage, a 16 MHz quartz used as 

a crystal oscillator, an ICSP header used to load programs, 14 digital pins which can be set as input 

or output, 6 analog inputs and 6 digital pins which can be used as PWM outputs, a USB connection 

for communication with computer via the open-source Arduino 1.6.11 software Integrated 

Development Environment (IDE), and a reset button (see Figure. 2.1.8(d)) [85]. The programming 

language used here in the Arduino software IDE is the “C/Arduino”, which is very closed and 

compatible with the “C” programming language. 

 The computer  

It is used to program the mathematical equations governing the dynamics of the oscillator. 

The result of the resolution is exported in hexadecimal and then uploaded to the Arduino board 

through a USB cable (see figure 2.18(c)). 

The images of these materials are shown in the following figure. 

             

(a)                                          (b)                                                 (c) 

   

                                   (d)                                                                (e)                                             (f) 
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Figure 2.23: Materials use in this work: (a) Rigol digital oscilloscope; (b) Test board; (c) Computer; 

(d) Arduino Uno uboard; (e) Mutimeter; (f) Connection cables. [85, 180] 

 

2.4.1.3. Electronic circuit simulators 

The Analog simulation principle is universal and its elementary operations are direct 

consequences of physics laws [218]. Among these elementary operations we have: summation, 

multiplication, and integration. To design these operations, one needs to combine the basic 

electrical components such as resistors, capacitors, operational amplifiers, and analogs multiplier. 

An electronic circuit simulator is a simulation software for modeling circuit operation and is an 

invaluable analysis tool, which uses mathematical models to replicate the behavior of an actual 

electronic circuit or device. Due to its highly accurate modeling capability, many Colleges and 

Universities use this type of software for the teaching of electronics technicians and electronics 

engineering programs. The most well-known analog simulator is SPICE and many software 

simulations have integrated this analog simulator; among them, P-SPICE, MultiSIM, and so on. In 

the thesis, we are going to use P-SPICE software. 

2.4.2. Microcontroller simulation method 

The microcontroller simulation procedure is to discretize the set of equations describing the 

dynamics of each of our oscillators, and then program the nonlinear differential equations through 

the RK4 method, using the software Arduino compiler or mikroC which are both similar to C and 

C++. The program is then inserted in the Arduino which delivers its output signal through the 

converter R-2R resistors network placed at its output ports. Then the real electrical signal is 

visualized in the oscilloscope.  

The Arduino Uno module board has been used in this thesis because of its simplicity and 

precision. The Arduino Uno module is a board based on the ATmega328 microcontroller with the 

following specifications: a power jack used to supply the needed voltage, a 16 MHz quartz used as a 

crystal oscillator, an ICSP header used to load programs, 14 digital pins which can be set as input or 

output, 6 analog inputs and 6 digital pins which can be used as PWM outputs, a USB connection for 



METHODOLOGY  

  
 

Doctorate Thesis/PhD  62 Ybriss Joël Monkam © Year 2024 

communication with computer via the open-source Arduino 1.8.5 software Integrated Development 

Environment (IDE), and a reset button. The programming language used here in the Arduino software 

IDE is the “C/Arduino”, which is very closed and compatible with the “C” programming language.  

 

Figure 2.24: Illustration of the experimental method. 

In this work, we use the Arduino Uno platform and R-2R ladder resistors network connected 

on a breadboard, which is acting as a DAC (digital to analog converter) with resistors 1 5R k    

and 2 2 5R k    respectively. The platforms communicate each with a computer via a USB 

connection. The outputs of the R-2R resistors network are connected to the two channels X and Y of 

the Rigol DS1052E digital oscilloscope as shown in figure 2.19. These channels receive the analog 

signals after their conversion through the R-2R network. Special jacks have been designed to directly 

connect all the 8 pins of digital inputs/outputs D0 to D7 of the Port D to the R-2R resistors network. 

The digital calculations performed by the microcontroller are sent to Port D which is connected to the 

R-2R network. The R-2R networks in turn convert the digital signals into analog signals; transmit 

them to the oscilloscope which displays them. As soon as the programs are loaded, the computer plays 

the role of the power supply, providing a voltage of 5 V and a maximum current of 40 mA. Each 

Arduino is connected to a computer separately if another observation is needed (velocity). In so 

doing, each platform will be able to freely call its needed current.  
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 The 8 pins of digital inputs/outputs D0 to D7 of the Port D are set as a digital output. Through 

a simple four order Runge-Kutta discretization, a program is written in C / Arduino language to 

perform calculations of the time trace, or time derivative if needed. The constants of the differential 

equations, the initial conditions, and the variables are all defined in the discretization program 

code. The nonlinear dynamical states of the oscillators are calculated inside the microcontroller 

before being displayed on the Rigol digital oscilloscope. The block diagram appears in Figure 9. 

The equations are discretized using the fourth-order Runge-Kutta method and then inserted into 

the microcontroller using the mikroC language. With the R-2R resistors network, the conversion 

from digital to analog signal takes place and analog signals are sent to the oscilloscope.  Some 

details on this scheme can also be seen in Refs. [81, 83-86].   

  

  

 

     Figure 2.25: Block diagram for the microcontroller simulation. 

This method of the study of nonlinear dynamical systems had advantage because of its 

simplicity in generating real electrical signals which cannot be obtained from the classical numerical 

simulation or which can be obtained using expensive and more complex experimental set-ups from 

the electronic circuits with analogic and discrete electronic components. The goal is to mimic the 

behavior of our systems (oscillators) and to have at the microcontrollers output electrical signals 

similar to those obtained using analog circuits. 

 

2.5. Conclusion 

This chapter has presented the mathematical formalisms needed for theoretical 

investigations and the numerical methods used to integrate the ordinary differential rate equations 

of an autonomous system. We started by presenting the stability analysis of equilibrium points and 

the Routh-Hurwitz criteria. After that, the numerical methods and some computational techniques 

both used to solve the ODEs and to characterize the dynamical behavior of the system have been 
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described. Finally, we carried out the presentation of some electronic components, the analog 

simulation method, and the microcontroller simulation principle. The  

next chapter focuses on the results and discussions.
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CHAPTER 3: RESULTS AND DISCUSSION 
 

 

3.1. Introduction 
 

In this chapter, we present, analyze and discuss the results obtained in our thesis. Section 

3.2 will be devoted to the Generation of chaos and hyperchaos in the Colpitts-Josephson junction-

like circuit. In this part, we will present the electric circuit and derivation of equations, the 

numerical simulations, electronic implementation, and the microcontroller real implementation of 

the Colpitts-Josephson junction-like circuit. Section 3.3 will focus on amplitude control and 

electronic implementation of the LCC-JJ-Op amp circuit. In this section, we will firstly present the 

analytical and numerical analysis. Then the electronic implementation and partial and total 

amplitude controls will be presented. Finally, Section 3.4 will be devoted to the conclusion. 

 

3.2. Chaos and hyperchaos in Colpitts-Josephson junction-

like circuit 

3.2.1. Colpitts-Josephson junction like circuit and mathematical description 

Figure 3.1 depicts the electronic circuit under study here. It consists of one operational amplifier, 

two capacitors C1, and C2; one inductor L with internal resistor R, and a JJ diode. The Op-amp is 

considered ideal; thus it operates as a linear component. The only nonlinear element in the circuit 

is therefore the JJ. The model use here is given in chapter 1 (see figure 1.5(a)). It is made of the 

following component: one linear resistor 𝑅J, one capacitors CJ, and one shunt LS, with internal 

resistor RS. The current that flows through LS is names 𝐼𝑆. 
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Figure 3.1: Electric circuit of CLC single operational amplifier-based oscillator with JJ nonlinearity 

The application of the Kirchhoff’s laws to the circuit of Figure. 3.1 leads to the following 

differential equations:  
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

   (3.1) 

where JV , 
1CV , and 

2CV  are the electric voltage respectively across the Josephson junction, the 

capacitor C1, and the capacitor C2; 𝐼L is the current flowing through the inductance 𝐿. φ denotes the 

quantum phase difference between the two superconductors.  One can observe a symmetry in the 

system of equations (3.1) since it remains the same when inversing the signs of different variables.  

Using the following dimensionless variables: 
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(3.2) 

and after some mathematical manipulations, Eq. (3.1) can be rewritten as follows: 
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        (3.3) 

System (3.3) has a symmetry under the following transformation: 

1 2 3 4 5 6 1 2 3 4 5 6( , , , , , ) ( , , , , , ),S x x x x x x x x x x x x        

3.2.2. Equilibrium points and their stability analysis 

When the time derivatives in Eq. (3.3) are put to zero, the system presents two equilibrium 

points: 1(0,0,0,0,0,0)E  and 2(0,0,0,0,0, )E  . The characteristic equation of system (3.3) evaluated 

at the equilibrium point E1 is:   

6 5 4 3 2 1

11 12 13 14 15 16 0a a a a a a            ,     (3.4) 

where the expressions of 1 ( 1; 2; 3; 4; 5; 6)ia i   are worth : 
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 (3.5) 

with 3 1/ .L   

At the equilibrium point E2, the characteristic equation is    

6 5 4 3 2 1

21 22 23 24 25 26 0a a a a a a            ,      (3.6) 

with the expressions of 2 ( 1; 2; 3; 4; 5; 6)ia i   given below: 
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(3.7) 

with 3 1/ .L   

The application of the Routh–Hurwitz conditions shows that all roots of Eqs. (3.4) and (3.6) have 

negative real parts if and only if 1 0 ( 1; 2; 3; 4; 5; 6)ia i  , and 2 0 ( 1; 2; 3; 4; 5; 6)ia i  . Then 

all the discriminants of Routh are therefore strictly positive.  
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   In this work, we consider the effect of the varying parameters R and C1 on the system as shown 

in Figure 3.2, and we keep all other parameters fixed at 0.55CI mA ; 35JC pF ; 0.061JR   ;   

2 47.4C nF ; 0.8L pH .  

 
 

(a) (b) 

Figure 3.2: Stability boundaries of equilibrium point 1(0,0,0,0,0,0)E : (a) in parameter space 

spanning R  and 1C , and (b) the plot of initial condition 
*

6x  versus  R   with 1 10C nF . 

By varying the capacitor 1C  from 0  to 50nF  and the resistor R  from 49 10   to 

13 10  , which corresponds to varying the value of 2  from 12.0000  to 311.2022 , the stability 

of the equilibrium point 1(0,0,0,0,0,0)E  appears as depicted in Figure 3.2(a). Here “black color” 

represents the unstable zone while “gray color” corresponds to the stable zone of the equilibrium 

point 1E . Also in Figure 3.2(b), the “thick line” represents the values of R  for which the 

equilibrium point 1E  is unstable, and the “slimline” represents the values of R  for which the 

equilibrium point 1E  is stable. Furthermore, Figure 3.2(b) shows the existence of Hopf bifurcation 

at 20.2289 ( 311.2022)R     where the equilibrium point 1E  changes its stability. For 

20.2200 ( 299.1021)R    , system (3.3) displays a limit cycle while for 
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20.2300 ( 312.7000)R    , the trajectories of system (3.3) converge to the equilibrium point 

1E  (not shown). Repeating a similar stability analysis around the equilibrium point 2(0,0,0,0,0, )E 

, we found out that it is unconditionally unstable. 

3.2.3. Numerical simulations: chaos and hyperchaos 

       To uncover the dynamical behavior of a system (3.3), the Lyapunov spectra and its 

corresponding bifurcation diagram versus the resistor embedded into the dimensionless parameter 

2  are plotted in Figure 3.3.  

Figure 3.3 presents the Lyapunov spectra (Figure 3.3(a)), the corresponding bifurcation 

diagram (Figure 3.3 (b)) and the maximal Lyapunov diagram (Figure 3.3(c)) where the maxima (in 

black dots) and the minima (red dots) are represented as a function of 2  varying from 12  to 408

. When the 2  varies from 12.0000  to 299.1021 , the bifurcation diagram of  1x   exhibits chaotic 

and hyper-chaotic regions interspersed with periodic windows. For 2299.1022 408.0000  , the 

state of non-oscillations is observed in the system. These dynamics are confirmed by the Lyapunov 

spectra (Figure 3.3 (a)) and could, later on, be observed by plotting the attractor for different values 

of the control parameter 2  or R in the experimental case. 

 

(a) 
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Figure 26: (a) Lyapunov spectra of system (3.3) for the outputs 1 to 4 as a function of the parameter 

2  ; (b) Corresponding bifurcation diagram displaying the local maximum (in black color) and local 

minimum (in red color) of 1x  as a function of 2  ; (c) Corresponding maximum Lyapunov diagram 

for      1 2 30 0 0 0.01x x x   ,    4 50 0 0.001x x  ,  6 0 0x  , and parameter 1 10C nF  and 

0.8L pH . 

In order to see the signature of hyperchaotic behavior in system (3.3), a zoom of Figure 

3.3(a) depicts two positive Lyapunov exponents 1  (blue color) and 2  (red color) for some 

windows space of 2 200   illustrated in Figure 3.4. Thus, system (3.3) presents a 2D 

hyperchaoticity (two positive Lyapunov exponents) even though it is a 6D system (6 degrees of 

freedom). It is worth mentioning that Lyapunov exponents 5  and 6  are not plotted because they 

have very large negative amplitudes compared to that of the four others. 

(b) 

(c) 
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Figure 27: Zoom of the Lyapunov spectra of figure 3.3(a) to show places with two positive Lyapunov 

exponents 

 

Examples of phase portraits are plotted for hyperchaotic and chaotic signals at 2 13.60   

respectively 2 149.55   in Figure 3.5. 
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Figure 3.28: Phase portraits in the plane 2 4( , )x x  and 1 3( , )x x for a hyperchaotic attractor (Figure 

3.5 (a) for 2 13.60  ) and chaotic attractor (Figure 3.5 (b) for 2 149.55  ) 

3.2.4. Electronic implementation  

3.2.4.1. Generating the sine nonlinearity  

      Let us consider Figure 3.6 (a). Introducing this circuit in OrCAD PSpice simulator and varying 

the continuous voltage V from 0 V to 25 V with a step of 0.001 V, Figure 3.6 (b) has been obtained. 

It clearly shows the sine function.  The circuit in figure 3.6 (a) will thus be used to generate the 

Josephson junction nonlinear term.  

 

 

 

Figure 29: a) Electric circuit with analogic sine function; b) Analog sine function curve with R=1 kΩ 
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The SIN block is an analogic sine function incorporated in OrCAD PSpice as a component. 

It receives a signal at its input and returns the sine of that signal at its output.     

 

3.2.4.2. OrCAD-PSpice electronic simulation results  

We develop in Figure 3.7 an electronic implementation of the five-component autonomous JJ-

based circuit derived from its mathematical description in Eq. (3.3) using the integrated approach 

based on operational amplifiers [184, 185].  

 

Figure 3.7: Analog circuit of the Colpitts-Josephson junction-like circuit 

Figure 3.7 consists of eighteen resistors (from R1 to R18), an analogical sinus function, and five 

reverser circuits built using operational amplifiers and two identical resistors R0 for each. The 

variables 1 2 3 4 5, , , ,x x x x x , and 6x  are represented by the voltages across the capacitors of the 

different integrators. All these capacitors are identical because they have the same value. Therefor, 

we can write C1 = C2 = C3 = C4 = C5 = C6 = C. By applying Kirchhoff’s laws to the electronic 

circuit of Figure 3.7, its state equations can be derived as follows:  
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By identification between the Eqs. (3.3) and (3.8), we can define the values of the eighteen resistors 

mentioned above: 

1 2 3 4 5

1 0 2 0 0 2 0 3 0 1 0

6 10 7 8 9 11 12

2 0 0 2 0 1 0 2 0

0
13 14 15 16 17 18

1 0 1 0 0 2 0 0 0

1 1 1 1 1
; ; ; ; ;

1 1 1 1
; ; ; ;

1 1 1
; ; ; ; .L

R R R R R
Cw Cw u Cw Cw Cw

R R R R R R R
Cw u Cw Cw Cw

u
R R R R R R

Cw Cw u Cw Cw Cw

    

   



  

    

      

     

 

According to the values of parameters used for the numerical simulations, the values of the resistors 

from 1R  to 18R  are given in Table 3.1. 

Table 3.1: Values of resistors for the analog Colpitts-Josephson junction-like circuit with 
4

0 10  , 

100C nF  and 0 1u V  

Resistors Values (Ω) Resistors Values (Ω) 

R1 561.26 R6 = R7 = R8 = R10 = R11 = R12 47.97 

R2 10.12 R13 = R14 668.67 

R3 10.12 
R15 varying with control parameter 2  

73.56 

R4 13.70 k R16 = R17 1.25 G 

R5 = R9 2.66 k R18 = R0 1.00 k 

(3.9) 

(3.8) 
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Figure 3.8 presents the phase portraits obtained from the analog circuit from Figure 3.7 by using 

the OrCAD-PSpice.  One finds a good qualitative agreement between the PSpice results and 

numerical simulation results (see figure 3.9). 
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Figure 30: OrCAD-PSpice phase portrait of hyper-chaotic and chaotic attractors in the planes (VC2, 

IL) for: (a) 2 13.60   and (b) 2 149.55   
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3.2.5. Microcontroller implementation of the Colpitts - Josephson junction 

circuit  

The RIGOL digital oscilloscope curves are displayed instantly after the programs have been 

loaded. This gives a very high speed in obtaining the experimental results. The manipulations only 

require programming and loading into the microcontrollers. All data from the experimental 

simulations can be stored in the RIGOL digital oscilloscope and saved in a USB key for processing 

purposes.   Figure 3.9 presents some time traces of the signals observed in the oscilloscope.  It 

presents the time evolution of the signal x2 in the case of hyperchaotic and chaotic dynamics.  The 

corresponding phase portraits are displayed in Figure 3.10. To plot these phase portraits, we 

collected the temporal evolution of the data and used MATLAB software.  

     

Figure 31 : Time evolution of the hyperchaotic signal 2x  (Figure 3.9 (a) for 2 13.6  ) and that of the 

chaotic dynamics (Figure 3.9 (b) for 2 149.55  ). 

To produce a phase portrait showing this dynamic, we have to use two microcontrollers 

Arduino Uno board. The first Arduino Uno board connected to the X channel is responsible for 

visualizing the time trace, while the second, linked to the Y channel, is responsible for visualizing the 

time derivative 

 

(a) (b) 
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Figure 32: Phase portraits 2 4( , )x x  obtained from the microcontroller simulation: (a) hyperchaotic 

signal for 2 13.6    and (b) chaotic attractors for 2 149.55  . 

3.3. Amplitude control and electronic implementation of the 

Colpitts Josephson junction Op amp circuit 

3.3.1. Mathematical and numerical simulation of the Colpitts Josephson 

junction Op amp circuit 

The LCC-JJ-Op amp circuit is presented in figure 3.11 

 

Figure 3.11: The schematic representations of Colpitts Josephson junction Op amp. 

The circuit of figure 3.11 is made of: a single operational amplifier, two capacitors C1, and 

C2; one inductor L with internal resistor R, and an LRCSJ model of JJ presented in Figure 1.3 of 

(a) (b) 
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chapter 1. The Op-amp is considered ideal, so it operates as a linear component. The application of 

Kirchhoff’s laws to the circuits of Figure 3.11 leads to the following differential equations:  

1 22
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2 2 2
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J J J J
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dt R C C C C C C
  

  
 

 

(3.10a) 

2 2

2 ) sin
C C

J C L

J

dV V
C C I I

dt R
        

 

(3.10b) 

2 ) sinJ J
J C L

J

dV V
C C I I

dt R
        

 

(3.10c) 

1 2
( ),L

C C L

dI
L V V RI

dt
     

 

(3.10d) 

.
2

J

d
V

e dt


  

 

 

(3.10e) 

Here, φ (phi) represents the quantum phase difference between the two superconductors 

constituting the Josephson junction and the critical current IC. JV , 
1CV , and 

2CV are the respective 

electrical voltages at the boundaries of the Josephson junction. C1, C2, and 𝐿 are the capacitors and 

the inductance building the physical resonant energy tanks of the oscillator, with 𝐼L the current 

flowing through 𝐿. 

 

By inserting the following new variables and parameters in the set of Eqs. (3.10): 

 
1 21 2 3 4 5 0

0

2
; ; ; ; ; ;J C

C J C C J C J J C L C

eR I
V x R I V x R I V x R I I x I x t w

w h


               

2
1 1 2 1 2 1 1 12

1 1 2

; ; ; ;
2 ( ) 2

J

J J J C C

CC R h h

C C R e C C R I eLI
       

 
       


, 

after some mathematical manipulations, the set of Eqs. (3.10) can be written as: 

(3.11) 
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1 1 3 5 2 4( sin( )) ,x x x x     
(3.12a) 

2 1 2 5 4( sin( ) ),x x x x     
(3.12b) 

3 1 3 5 4( sin( ) ),x x x x     
(3.12c) 

4 1 1 2 2 4( ) ,x x x x      
(3.12d) 

5 3.x x  
(3.12e) 

 

The LCC-JJ-Op amp circuit described by system (3.12) has symmetry under the following 

transformation: 1 2 3 4 5 1 2 3 4 5( , , , , ) ( , , , , )S x x x x x x x x x x      . This system has two equilibrium 

points: E1 (0,0,0,0,0)  and E2 (0,0,0,0, ) . The characteristic equation of system (3.12) evaluated at 

the equilibrium point E1 is:   

5 4 3 2

1 2 3 4 5 0a a a a a          ,                       (3.13) 

where the expressions of the ( 1; 2; 3; 4; 5)ia i  are given below: 

1 1 12 ,Ja R R    

2

2 2 1 1 1 1 1( ) (1 2 ) ,Ja R R           

2

3 1 1 1 2 1 1 1 1 1( 2 ) (1 ) ,Ja R R              

2 2

4 1 2 1 1 1 1 1 1( )( ) ,Ja R R           

2

5 1 1 1 2( ).a       

 

 

 

                                                             (3.14) 
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Based on the Routh–Hurwitz conditions, Eq. (3.13) has all roots with negative real parts if and only 

if: 0 ( 1; 2; 3; 4; 5)ia i  and all discriminant of Routh greater than zero. The stability diagram of 

the equilibrium point E1 versus the resistor R and the capacitor C1 is shown in Figure 3.12.  

  

(a) (b) 

Figure 33 : (a) Stability diagram of the equilibrium point E1 in parameter space spanning R and C1. 

(b) Stability diagram of the steady-state
*

5x (the initial condition of variable 5x ) associated with the 

equilibrium point E1 versus R for C1 = 0.1 nF. The other parameters are set to Ic = 0.55 mA; CJ  = 35 

pF; RJ  = 0.061 Ω; C2 = 10 nF;  L = 0.8 pH. 

The black color respectively grey color represents the unstable respectively the stable zone of the 

system around the critical point. The equilibrium point E1 can be stable or unstable depending on 

the resistor R and the capacitor C1, as shown in Figure 3.12(a). According to the stability analysis 

of the equilibrium point E1 as a function of the resistor R in figure 3.12(b), E1 is unstable for

6.038R   . The equilibrium point E1 changes its stability at 6.038R    for which system (3.12) 

has either Hopf bifurcation or transcritical bifurcation. It is important to note that by varying the 

capacitor C1 from 
57 10 pF  to 1 nF and the resistor R from 

352 10   to 7 Ω, the equilibrium 

point E2 is always unstable. 

Theorem: System (3.12) has a Hopf bifurcation at the equilibrium point E1 when the resistor R 

crosses the critical value 6.038R   . 
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Proof: Substituting 0i   (with 0 0  and 2 1i   ) into Eq. (3.13), then separating real and 

imaginary parts leads to: 

2 2

01 2 4 2 02 2 4 2

1 1
2 4 2 2 4 2 .

2 2
a a a or a a a         

                         (3.15) 

 

By substituting 01  in Eq. (3.13), the value of critical the point R = 6.038999998 H  is figured 

out. Meanwhile by substituting 02 in Eq. (3.13) leads to the negative value of the critical point

R  = - 6.038999998 H  . This latter case is not interesting because it is not possible to have a 

negative resistance in the reality. By considering the case with 01 and differentiating both sides of 

Eq. (3.13) concerning R, it follows that: 

4 3 2 2

1 1 1 1 1 1 1 1

4 3 2

1 2 3 4

( ) (2 ) ( (1 ) ) ( )

5 4 3 2

J J J JR R R Rd

dR a a a a

         

   

   


   
, 

                        (3.16) 

 

then  

, 0

1 3 2 4

2 2

3 4

Re 0,

HR R iw

h h h hd

dR h h



 

  
   
  
 

 

                        (3.17) 

  

with
4 2 3 4 2 3

1 1 0 3 0 2 2 0 4 0 3 0 2 0 4 4 1 0 3 0 1 1, , 5 3 , 4 2 , ,Jh b w b w h b w b w h w a w a h a w a w b R           

2

2 1 1 3 1 1 1 4 1 12 , (1 ) , .J J Jb R b R b R         Since the Jacobian matrix of system (3.12) at 

the equilibrium point E1 has two purely imaginary eigenvalues and the real part of the eigenvalue 

satisfies 

, 0

Re 0

HR R iw

d

dR 



 

 
  
 
 

, all the conditions for the Hopf bifurcation to occur are verified. 

Therefore, system (3.12) has a Hopf bifurcation at E1 when R 6.038H   , and a periodic solution 

will exist in a neighborhood of the point RH. When R < RH, system (3.12) exhibits a limit cycle 
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whereas, for R > RH, the trajectories of system (3.12) converge to the equilibrium point E1 (not 

shown).  

In order to know the dynamical behavior of the system (3.12), the Lyapunov spectra and its 

corresponding bifurcation diagram versus the resistor R are plotted in figure 3.13.   

 

 

(a) 

 

 

(b) 

 

Figure 34: Lyapunov spectra as a function of resistor R(Ω) (a) and the corresponding bifurcation 

diagram displaying the local maxima (b) of 1x  as a function of resistor R for C1=0.1 nF and L=0.8 

pH. 
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When resistor R varies from 0.052 Ω to 6.038 Ω, the bifurcation diagram of figure 3.13(b) 

exhibits reverse period doubling to chaotic and hyper-chaotic regions interspersed with periodic 

windows. For 6.038 7.000R    , there is no oscillation in the circuit.  These dynamics are 

confirmed by the Lyapunov spectra (Figure 3.13 (a)) and can be verified by the plot of the attractor 

for different values of the control parameter R. To see the two positive Lyapunov exponents of fig. 

13a, which confirms the existence of hyperchaotic behavior, the zoom of this figure is illustrated 

in figure 3.14.  

 

 

Figure 35: Zoom of the Lyapunov spectra of Figure 3.13 (a). 

 

The phase portraits of hyperchaotic and chaotic attractors for specific values of the resistor

R are presented in Figure 3.15. 
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Figure 3.15: Hyperchaotic and chaotic attractors in the plane ( 2x , 4x ) and ( 3x , 5x ):   

(a) for R=61.78x10-2 Ω; and (b) for R= 1.50 Ω 

 

LCC-JJ-Op amp circuit exhibits hyperchaotic attractors for R=61.78x10-2 Ω and chaotic 

attractors for R = 1.50 Ω, as shown in figure 3.15. Another bifurcation diagram of 1( )x   versus C1 

when L = 0.8 pH; R = 1.5 Ω is plotted (not shown). This bifurcation diagram reveals similar 

dynamical behaviors illustrated in figure 3.13. 

(a) 

(b) 
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3.3.2. OrCAD-PSpice simulation of the Colpitts Josephson junction Op amp 

circuit 

The electronic implementation of the LCC-JJ-Op amp circuit is implemented in this section. The 

circuit of Figure 3.16 is obtained from the set of Eqs. (3.12) using an integrated approach based on 

operational amplifiers [184, 185].  

 

Figure 3.16: Analog circuit of the Colpitts Josephson junction Op amp circuit 
 

Figure 3.16 consists of thirteen resistors (from R1 to R13), an analogical sinus function, and 

five inverter circuits made of one operational amplifier with two identical resistors named R0. The 

variables 1 2 3 4 5, , , andx x x x x are represented by the voltages across the capacitor of the different 

integrators. The SIN block is the same described previously in 3.2.4.1. All the capacitors in Figure 

3.16 are identical: 1 2 3 4 5 6 .C C C C C C C       By applying Kirchhoff’s circuit laws to the 

electronic circuit of figure 3.16, its circuital equations can be derived as follows: 
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4
1 3 5

1 0 2 0 3 0

1 1
sin( ) ,

x
x x x

R C R C R C  
    

 

(3.18a) 

2 2 5 4

4 0 5 0 6 0

1 1 1
sin( ) ,x x x x

R C R C R C  
     

 

(3.18b) 

3 3 5 4

7 0 8 0 9 0

1 1 1
sin( ) ,x x x x

R C R C R C  
     

 

(3.18c) 

4 1 2 4

10 0 11 0 12 0

1 1 1
,x x x x

R C R C R C  
     

 

(3.18d) 

5 3

13 0

1
.x x

R C
  

 

(3.18e) 

 

By identification between the set of Eqs. (3.12) and the set of Eqs. (3.18), the following expressions 

are obtained: 

1 2 3 4 5 6 7 8 9

1 0 2 0 1 0

10 11 12 13

1 0 2 0 0

1 1 1
; ; ;

1 1 1
; ; .

R R R R R R R R R
C C C

R R R R
C C C

     

    

        

   

 

 

                             

(3.19) 

 

Following the values of different parameters in system (3.12), the values of the 13 resistors (R1 to 

R13) are recorded in Table 3.2 below. 

Table 2.2: Values of resistors of the Colpitts Josephson junction Op amp circuit with 0  = 104 and 

C= 100 nF. 
 

Resistors Values (Ω) Resistors Values (Ω) 

R1 = R2 312.20 R10 = R11 668.67 

R3 89172.20 R12 varying with control parameter R 

 R4 = R5 = R6 = R7 = R8 = R9 31210.30 R13= R0 1000.00 
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The circuit of Figure 3.16 is investigated, and the phase portraits obtained from ORCAD PSPice 

software are illustrated in Figure 3.17. 
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Figure 36: OrCAD-PSpice phase portrait of hyper-chaotic and chaotic attractors in the planes (
2CV , 

IL) and ( JV , φ) for (a) R = 61.78x10-2 Ω and (b) R = 1.50 Ω 

The hyperchaotic attractor is presented in Figure 3.17(a), while the chaotic attractor is presented in 

Figure 3.17(b). From Figure 3.17, one can note a qualitatively good agreement between the PSpice 

results and numerical simulation results (see Figure 3.15). 
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3.3.3. Partial and total amplitude controls of Colpitts Josephson junction Op 

amp circuit 

In the literature, the partial and total amplitude controls are reported in a few chaotic 

oscillators [186–190].  They are of great interest for some engineering applications where the 

desired amplitude level can be achieved. The amplitude of the attractors of the LCC-JJ-Op amp 

circuit can be adjusted partially or totally.  

3.3.3.1. Partial amplitude control 

The state variable 1x  appears only in the fifth equation of the set of Eqs. (3.12) and its 

amplitude can be changed by inserting a boosting controller γ into system (3.12) as follows: 

1 1 3 5 2 4( sin( )) ,x x x x     (3.20a) 

2 1 2 5 4( sin( ) ),x x x x     (3.20b) 

3 1 3 5 4( sin( ) ),x x x x     (3.20c) 

4 1 1 2 2 4(( ) ) ,x x x x        (3.20d) 

5 3.x x  (3.20e) 

The system (3.20) has two equilibrium points 11( ,0,0,0,0)E   and 12 ( ,0,0,0, )E   . The local 

stability of E12 ( ,0,0,0, )   reveals that it is unconditionally unstable. The local stability of E11

( ,0,0,0,0)  reveals that system (11) has a Hopf bifurcation when the resistor R passes through 

the critical value R  = 6.038999998 H  . So the stability of equilibrium points E11 and E12 are 

independent of boosting controller γ. To check the partial amplitude control of the system (3.20), 

the plot of the average values of the state variables 1x , 2x , 3x , 4x  and 5x versus boosting controller 

γ is shown in figure 3.18.  
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Figure 37: (Color online) The average values of the state variables 1x (black), 2x (blue), 3x (red), 4x

(yellow), and 5x (green) versus boosting controller γ for R = 0.6178 Ω. 

It is shown in Figure 3.18 that the average of the state variable 1x decreases, and the other 

four state variables ( 2x , 3x , 4x , and 5x ) remain unchanged when the boosting controller γ is 

varied. The phase portraits and time series of the state variable 1x of the system (3.20) are depicted 

in Figure 3.19 for different values of the boosting controller γ.  

 
 

Figure 38: (Colour online) Phase portraits in the plane ( 1x , 2x ) and time series of the signal 1x of 

system (3.20) for R = 0.6178 Ω and different values of control parameter γ: γ = −10 (black), γ = 1 

(blue) and γ = 12 (red); Initial conditions 1x (0) = 0.02, 2x (0) = 0.01,  3x (0) = 0.01, 4x (0)=0.01, 5x

(0) = 0.001. 
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The amplitude of the chaotic signal 1x  is boosted from a bipolar signal to a unipolar signal when 

increasing the boosting controller γ as shown in Figure 3.19. 

 

3.3.3.2. Total amplitude control 

LCC-JJ-Op amp circuit also has the feature of total amplitude control by inserting the 

changing variables: 1 1 2 2 3 3; ; ;x x x x x x     4 4 5 5 .x x and x x    We precise 

that the introduction of the variable epsilon (ε) is an amplitude scaling. The parameter ε remains in 

the sinusoidal terms as shown in the following system (3.21): 

1 1 3 5 2 4( sin( )) ,x x x x       (3.21a) 

2 1 2 5 4( sin( ) ),x x x x       (3.21b) 

3 1 3 5 4( sin( ) ),x x x x       (3.21c) 

4 1 1 2 2 4( ) ,x x x x      (3.21d) 

5 3.x x  (3.21e) 

The system (3.21) has two equilibrium points 21(0,0,0,0,0)E  and 22 (0,0,0,0, )E  . The 

local stability of 22 (0,0,0,0, )E   reveals that it is unconditionally unstable. Otherwise, the local 

stability of 21(0,0,0,0,0)E  reveals that system (3.21) has a Hopf bifurcation when the resistor R 

passes through the critical value R  = 6.038999998 H  . So the stability of equilibrium points E21 

and E22 are independent of the boosting controller ε. The phase portraits of the system (3.21) are 

depicted in Figure 3.20 for different values of the control parameter ε.  
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Figure 39 : (Colour online) Phase portraits in the planes ( 1x , 2x ), ( 2x , 4x ) and ( 3x , 5x ) of system 

(12) for R = 0.6178 Ω and different values of control parameter ε: ε =0.5 (black), ε =1.5 (blue) and 

ε=2 (red); Initial conditions 1x (0) = 0.02, 2x (0) = 0.01, 3x (0) = 0.01, 4x (0) = 0.01, 5x (0) = 0.001 

As shown in Figure 3.20, the amplitude of signal signals 1x , 2x , 3x , 4x , and 5x  are 

adjusted simultaneously by the control parameter ε. The control parameter ε adjusts the amplitudes 

of the attractors for a small value (for ε = 0.5, the amplitudes are small) to large values (for ε = 2, 

the amplitudes are large).  

3.4. Conclusion 

In this chapter, we have studied the analysis of a five-component autonomous circuit with 

the nonlinear and active element a Josephson junction diode that is described by the linear resistive–

capacitive–inductance shunted junction model. We have also studied the analysis and electronic 

implementation of an LCC-Josephson Junction-operational amplifier circuit. The circuits studied 

here provides additional tools to justify hyperchaos in autonomous circuits with less than four 

physical linear capacitors and/or inductors, and operating at low frequency. We presented the 

dynamical behaviors obtained by numerically simulations. These results were confirmed by 

electronically implementing the proposed circuit in OrCAD-PSPICE software. This can have an 

impact on the applications of nonlinear electrical signals such as in chaos cryptography, random 

number generation and mechatronic technology
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GENERAL CONCLUSION 

This thesis dealt, firstly, with the analysis of a five-component autonomous circuit with the 

nonlinear and active element of a Josephson junction diode that is described by the linear resistive–

capacitive–inductance shunted junction model. Then, with the analysis and electronic 

implementation of an LCC-Josephson Junction-operational amplifier circuit. In the first part, the 

proposed circuit consists of one operational amplifier, two capacitors, a Josephson junction, and 

one inductance with its internal resistors. Meanwhile, in the second part, we have the same circuit 

only without the inductance. The stability of the equilibrium points of the different proposed 

circuits was studied using the Routh-Hurwitz criterion. It was found that the two circuits display 

Hopf bifurcation, periodic oscillations, chaotic, and hyperchaotic oscillations. While many JJ-

based circuits displaying hyperchaos are the result of delay coupling or synchronization of two or 

more single chaotic circuits, the present case is a simple stand-alone one with a Colpitts linear 

resonator [161]. Its electronic implementation was carried out in OrCAD-PSpice software and a 

good qualitative agreement was shown between the numerical and analog results. The partial and 

total amplitude controls were achieved by adding two new parameters described in the second 

proposed circuit.  The microcontroller used in this work appeared like a good way to display real 

electronic signals from nonlinear dynamical systems. The circuit studied here provides additional 

tools to justify hyperchaos in autonomous circuits with less than four physical linear capacitors 

and/or inductors, and operating at low frequency.  This can have an impact on the applications of 

nonlinear electrical signals such as in chaos cryptography, random number generation, and 

mechatronics technology. This work can have applications in telecommunication for the encryption 

of information. This will be possible at the normal temperature range for the analog and 

microcontroller models. But it could also be possible at a low-temperature range for material 

Josephson junction. In this case, one has in mind the present quest for quantum computers.  
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EXTENSIONS AND FUTURE WORK 

In this work, we have obtained some interesting results that have opened interesting 

perspectives for future investigations. For future works, we plan especially: 

 The construction of an electrical circuit of sine function which will allow realizing the circuit 

of JJ. This will allow us to realize experimentally the different circuits proposed in this thesis. 

 The use of different proposed chaos/hyperchaos electrical circuits for the encryption of 

information. 

 To exploit the complex high-frequency signals of these circuits for the modulation of 

semiconductors, and finally 

 The use of these autonomous non-linear circuits as a power supply in electromechanical  

        systems (EMS).
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