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ABSTRACT 

Peanut (Arachis hypogea L.) is globally known for its nutritional richness and culinary 

versatility. However, limited genetic diversity and underutilization of genetic resources are 

significant hurdles to peanut breeding progress. Interspecific hybridization and genetic 

diversity assessments using suitable characterization methods offer promising solutions to 

these challenges. This study aimed to explore both rapid germplasm screening for quality traits 

and identify favourable wild QTL linked to yield traits. Near-infrared spectroscopy (NIRS), 

coupled with chemometrics, was employed to assess germplasm variability in 680 samples. 

This included a core collection of 300 varieties and three sets of 133 (Fleur11 x ISATGR 278-

18) genotypes from an interspecific population. Evaluation was conducted in Mbalmayo and 

Bafia, Cameroon, and Nioro, Senegal. NIR elemental spectra were gathered on six subsets of 

seeds in each sample after three rotation scans, with a spectral resolution of 16 cm-1 over the 

range of 867-2530 nm. Spectra were processed using principal component analysis (PCA) and 

partial least squares-discriminant analysis (PLS-DA). As results, a huge variability was found 

between varieties and genotypes within and between environments at multiple wavelengths, 

particularly at 1723 nm. associated with oil content and fatty acid composition. PCA revealed 

substantial chemical diversity, clustering varieties and genotypes into four groups 

corresponding to sample sets. The core-collection displayed the highest genetic variation 

compared to interspecific genotypes within the environment. Environmental factors 

significantly impacted seed composition, with Bafia showing the greatest variation, followed 

by Mbalmayo and Nioro, using the same interspecific population. A PLS-DA model achieved 

99.6% accuracy in classifying seed samples by environmental origin. Further exploration 

assessed phenotypic variability, estimated broad-sense heritability, and evaluated trait 

correlations for yield-related traits. Data collected in Cameroon at Marou, Mbalmayo, and 

Bafia utilised 133 interspecific genotypes along with a recurrent parent.  Observations showed 

morphological variability in qualitative traits, including plant growth habit (semi-erect to 

prostrate to fully erect) and pod constriction and beak (ranging from slight to prominent and 

slight to deep, respectively). Conversely, based on mean values, moderate to high levels of 

phenotypic variation were detected for quantitative traits across different environments. 

Notably, genotype 11_28_10 consistently demonstrated superior performance and pooled data, 

followed by 11_28_20 for 100-pod and seed weight, pod and seed length, and width. Analysis 

of variance (ANOVA) confirms significant genotype variability among interspecific genotypes 

for all traits.  
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Broad-sense heritability estimates ranged from moderate to high, suggesting a strong genetic 

influence on the traits studied. Association analysis reveals several positive and significant trait 

correlations, highlighting potential avenues for trait improvement. Exploration into wild 

genomic regions (QTLs) associated with yield-related traits revealed insights. Utilising 133 

BC2F4 lines, a genetic map comprising 1,450 loci across 20 linkage groups is constructed, 

spanning a total length of 1,358.02 cM, with an average distance of 2.21 cM between flanking 

markers. A total of 44 putative QTLs were detected on 17 linkage groups for 14 yield traits. 

Among these QTLs, four were newly identified loci that had not been previously mapped. 

Notably, 20 of the putative QTLs (45%) were associated with an increase in the phenotypic 

value of the trait and were linked to alleles from the wild relative. Thirteen out of the 44 QTLs 

were classified as major QTLs (>10% phenotypic variance explained), indicating their 

potential significance for marker-assisted selection (MAS) pending confirmation across 

diverse environments.  

Keywords: DArT, intact-seed, NIRS, nutritional, QTL identification, Peanut, PLS-DA 
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RÉSUMÉ 

La cacahuète (Arachis hypogea L.) est mondialement connue pour sa richesse 

nutritionnelle et sa polyvalence culinaire. Cependant, la diversité génétique limitée et la sous-

utilisation des ressources génétiques constituent des obstacles significatifs au progrès de 

l'amélioration de la cacahuète. L'hybridation interspécifique et les évaluations de la diversité 

génétique à l'aide de méthodes de caractérisation adaptées offrent des solutions prometteuses à 

ces défis. Cette étude visait à explorer à la fois le criblage rapide du germoplasme pour les traits 

de qualité et à identifier les QTL sauvages favorables liés aux traits de rendement. La 

spectroscopie proche infrarouge (NIRS), associée à la chimiométrie, a été utilisée pour évaluer 

la variabilité du germoplasme dans 680 échantillons. Cela comprenait une collection de base 

de 300 variétés et trois ensembles de 133 génotypes (Fleur11 x ISATGR 278-18) d'une 

population interspécifique. L'évaluation a été réalisée à Mbalmayo et Bafia, au Cameroun, et à 

Nioro, au Sénégal. Les spectres élémentaires proches infrarouges ont été recueillis sur six sous-

ensembles de graines dans chaque échantillon après trois rotations, avec une résolution 

spectrale de 16 cm-1 sur la plage de 867 à 2530 nm. Les spectres ont été traités à l'aide de 

l'analyse en composantes principales (PCA) et de l'analyse discriminante en moindres carrés 

partiels (PLS-DA). En résultat, une énorme variabilité a été trouvée entre les variétés et les 

génotypes à l'intérieur et entre les environnements à de multiples longueurs d'onde, 

particulièrement à 1723 nm, associée à la teneur en huile et à la composition en acides gras. 

L'ACP a révélé une diversité chimique substantielle, regroupant les variétés et les génotypes 

en quatre groupes correspondant aux ensembles d'échantillons. La collection de base a affiché 

la plus grande variation génétique par rapport aux génotypes interspécifiques dans 

l'environnement. Les facteurs environnementaux ont impacté significativement la composition 

des graines, Bafia montrant la plus grande variation, suivie de Mbalmayo et Nioro, en utilisant 

la même population interspécifique. Un modèle PLS-DA a atteint une précision de 99,6% dans 

la classification des échantillons de graines par origine environnementale. Une exploration 

supplémentaire a évalué la variabilité phénotypique, estimé l'héritabilité au sens large et évalué 

les corrélations entre les traits liés au rendement. Les données collectées au Cameroun à Marou, 

Mbalmayo et Bafia ont utilisé 133 génotypes interspécifiques ainsi qu'un parent récurrent. Les 

observations ont montré une variabilité morphologique dans les traits qualitatifs, notamment 

l'habitude de croissance des plantes (semi-érigée à prostrée à complètement érigée) et la 

constriction et le bec des gousses (allant de légère à proéminente et légère à profonde, 

respectivement). 
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 En revanche, sur la base des valeurs moyennes, des niveaux de variation phénotypique 

modérés à élevés ont été détectés pour les traits quantitatifs dans différents environnements. 

Notamment, le génotype 11_28_10 a régulièrement démontré une performance supérieure et 

des données regroupées, suivi par 11_28_20 pour le poids de 100 gousses et de graines, la 

longueur et la largeur des gousses et des graines. L'analyse de variance (ANOVA) confirme 

une variabilité significative des génotypes parmi les génotypes interspécifiques pour tous les 

traits. Les estimations d'héritabilité au sens large ont varié de modérées à élevées, suggérant 

une forte influence génétique sur les traits étudiés. L'analyse d'association révèle plusieurs 

corrélations positives et significatives entre les traits, mettant en évidence des pistes 

potentielles pour l'amélioration des traits. L'exploration des régions génomiques sauvages 

(QTL) associées aux traits liés au rendement a révélé des insights. En utilisant 133 lignées 

BC2F4, une carte génétique comprenant 1 450 locus répartis sur 20 groupes de liaison est 

construite, couvrant une longueur totale de 1 358,02 cM, avec une distance moyenne de 2,21 

cM entre les marqueurs de flanquement. Au total, 44 QTL putatifs ont été détectés sur 17 

groupes de liaison pour 14 traits de rendement. Parmi ces QTL, quatre étaient des loci 

nouvellement identifiés qui n'avaient pas été précédemment cartographiés. Notamment, 20 des 

QTL putatifs (45%) étaient associés à une augmentation de la valeur phénotypique du trait et 

étaient liés à des allèles du parent sauvage. Treize des 44 QTL ont été classés comme des QTL 

majeurs (>10% de variance phénotypique expliquée), indiquant leur importance potentielle 

pour la sélection assistée par marqueurs (SAM) en attendant confirmation dans des 

environnements divers. 

 

Mots-clés : Arachide, sélection, graines intactes, NIRS, nutrition, DArT, identification QTL. 
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INTRODUCTION 

Peanut or groundnut (Arachis hypogaea L.) is an oilseed legume crop belonging to the 

Leguminosae family and Arachis genus (Krapovickas and Gregory, 1994). The genus contains 

about 81 species, mostly diploids (2n = 2x = 20), taxonomically divided into nine sections 

(Krapovickas and Gregory, 1994; Valls and Simpson, 2005). Peanut is allotetraploid (2n = 4x 

= 40) with an AABB genome, originating from a single hybridization event followed by 

chromosome doubling between  A. duranensis (A-genome) and A. ipaensis (B-genome), about 

3,500 years ago  (Kochert et al., 1996; Seijo et al., 2004; Moretzsohn et al.,  2013; Lu et al., 

2018). Its genome size is approximately 2.7 billion base pairs (2.7 Gb) (Bertioli et al., 2019;  

Zhuang et al., 2019). This large genome size contributes to the complexity of the plant and the 

challenges faced in breeding and genetic engineering efforts. 

The crop, originating in South America, has spread worldwide and is cultivated in over 

100 countries across tropical and subtropical regions (Krapovickas and Gregory, 1994; Burow 

et al., 2009; Bertioli et al., 2011). It covers about 31 million hectares (Mha) area in 2022, with 

a global production of approximately 54 million tons (MT) and an average yield of about 1.8 

tons per hectare (t/ha) (FAOSTAT, 2024). The major producing regions are Asia 32 MT and 

Africa 17 MT which together account for 29 Mha representing 95 % of the global peanut 

cultivated areas in the world. Together, Asia (58%) and Africa (32%) accounted for about 90% 

of the world's production, with China 18 MT, India 10 MT and Nigeria 4MT being the top 

three largest producing countries in 2022 (FAOSTAT, 2024). Peanut productivity significantly 

varies among regions, with Africa having the lowest mean yield of around 1 t/ha compared to 

Asia (2.6 t/ha) and America (3.7 t/ha) (FAOSTAT, 2024). The low peanut yields observed in 

many countries are related to rainfed and low-input growing conditions.  

Peanut is a significant vegetable oilseed crop, with over 60 % of global peanut production 

being crushed for the extraction of oil for both edible and industrial uses (Janila et al., 2013,   

2016). It was ranked fourth in oilseed production, following soybean, rapeseed, and sunflower 

seed. (Statista, 2023). The total vegetable oil production in this period was approximately 217 

million tons (MT), with peanut ranking sixth at 6.5 MT. Palm oil held the top position at 76 

MT, followed by soybean (60 MT), rapeseed (31 MT), sunflower seed (18.6 MT), and palm 

kernel (8.8 MT). 
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Nutritionally, peanut offer high-quality edible oil, protein, carbohydrates, vitamins, and 

minerals. The nutritional composition of peanuts varies, with the edible oil content ranging 

from (34-56%), protein (22-30%) and carbohydrates (10-25%) (Nigam, 2014; Nawade et al., 

2018; Desmae et al., 2019). It has previously been observed that the high oleic acid content of 

peanut oil offers health benefits, including cholesterol reduction and combating inflammatory 

diseases (Pandey et al., 2014b; Bonku and Yu, 2020). The other research suggests that peanut 

consumption may lower the risk of type 2 diabetes in women (Jiang, 2002). Additionally, 

peanut is economically important as a cash crop and plays a vital role in agriculture, aiding in 

soil fertility through nitrogen fixation in crop rotation systems (Janila et al., 2013, 2016).  

The demand-supply gap for food grains is continuously increasing due to the ever-

growing global population, which is projected to expand to 9.6 billion by 2050 (Rajwade et al., 

2015; Alhashim and Anandhi, 2022). This escalating population presents a serious challenge, 

as current trends in yield increases may not be sufficient to cope with the growing demand. It 

has been projected that global food production needs to increase by over 70% by 2050 in order 

to meet the anticipated demands. However, the productivity of peanut has not been able to be 

sufficiently enhanced due to various production constraints affecting the crop. These 

constraints include drought, pests, diseases, and environmental changes. Furthermore,the oil 

content of seeds, shelf life, aroma, flavour and cooking quality are all affected by these 

constraints (Bakal and Arioglu, 2019;  Bakal, 2020; Parilli-Moser et al., 2022). In response to 

this pressing issue, peanut breeders have to enhance peanut productivity as well as seed 

composition-related traits such as oil and protein content and fatty acid composition to meet 

the projected demands.  

The cultivated peanut has low genetic diversity due to its origin and reproductive 

isolation from its wild diploid relatives owing to ploidy differences (Kochert et al., 1996; 

Bertioli et al., 2011; Pandey et al., 2014a; Stalker,  2017).This narrow genetic base, coupled 

with low utilization of genetic resources, has been a major limiting factor for peanut breeding 

globally. To address narrow genetic diversity, the strategy of interspecific hybridization has 

been adopted to introduce diverse genetic traits from wild species into the cultivated gene pool 

(Fonceka et al., 2009; Kumari et al., 2014; Nguepjop et al., 2016).  In addition, to resolve the 

issues of ploidy differences, synthetic compatible tetraploids have been developed (Simpson et 

al., 1993; Favero et al., 2006; Mallikarjuna et al., 2010) from diploid wild relatives that 

exhibited a high level of genetic variation (Barkley et al., 2007; Bechara et al., 2010) with 

potential trait variation that may be useful in peanut breeding through interspecific cross. 
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Additionally, various genetic approaches, such as Advance Backcross Quantitative Trait Loci 

(AB-QTL) and Chromosome Segment Substitution Lines (CSSL), are currently being applied 

to broaden the genetic base of cultivated peanut by introgressing chromatin from wild relatives 

into elite lines (Fonceka et al., 2012b; Tossim et al., 2020). Such wild polymorphisms have the 

potential to further improve peanut quantitative traits. 

 Likewise, genetic diversity assessment and the detection of promising genotypes are 

fundamental to germplasm utilization and management in breeding strategies to support food 

security. To facilitate the investigation of large germplasm, it is reasonable to begin by 

examining subsets of germplasm that embody appropriate diversity and of manageable size, 

such as core collections (Brown, 1989) or interspecific population (Gimode et al., 2020)  

derived from wild x elite crosses, using appropriate characterization procedures.  

The improvement of quantitative traits largely depends on the magnitude of genetic 

variability and the extent to which its determining traits are heritable. Although significant 

efforts have been devoted to characterizing cultivars and germplasm collections for disease 

resistance and agronomic traits and for the most important agronomic traits  (Upadhyaya, 2005; 

Upadhyaya et al., 2006, 2011; Mallikarjuna et al., 2012; Kumari et al., 2014), less is known 

about quality traits (Grosso et al., 2000; Bianchi-Hall et al., 1993). This is primarily due to the 

phenotyping of these traits by chemical studies, which is expensive in terms of both direct 

monetary input and human labour, time ‐ consuming and destructive  (Nawade et al., 2018; 

Davis et al., 2021).  

Efforts to improve the knowledge of seed attributes might be supported by rapid and non-

destructive tools. These include modified refractive index, capacitance sensor (Kandala et al., 

2008), hyperspectral imaging (Huang et al., 2014; Rabanera et al., 2021), and near infrared 

(NIR) (Govindarajan et al., 2009; Tao et al., 2019;  Davis et al., 2021; Wang et al., 2022; 

Panero et al., 2018, 2022). Among these, NIR-based methods are rapid, making it possible to 

analyse large number of samples. Some works previously described the feasibility of near 

infrared spectrometers to achieve some quick prediction of various peanut chemical 

compounds  (Li et al., 2019 ; Yu et al., 2020 ; Bilal et al., 2020; Liu et al., 2022).  

Moreover, some scholars have already applied machine learning as promising statistical 

methods to assist humans in the modelling and analysis of complex spectral data (Song et al., 

2018; Fordellone et al., 2020) in many research fields, including seed quality detection, 

genotyping of cultivars (Panero et al., 2018, 2022), varieties identification (Wang and Song, 
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2023; Xu et al., 2023). and classification (Sampaio et al., 2021; Singh et al., 2023; Tian et al., 

2023).  

Apart from developing and characterizing interspecific genotypes, the identification of 

Quantitative Trait Loci (QTL) and valuable wild QTL alleles is vital for enhancing peanut yield 

traits, with synthetic tetraploids serving as a reservoir of beneficial alleles. This is particularly 

crucial, as direct phenotypic selection in plant breeding is labour-intensive, costly, and time-

consuming (Watson et al., 2019). To overcome the constraints of phenotypic selection, several 

studies have used  marker-assisted selection (MAS) in peanut as a potential tool to achieve 

desirable results in crops with the help of molecular markers (Chu et al., 2011; Huang et al., 

2019; Nawade et al., 2019; Shasidhar et al., 2020). 

Despite the limited genetic diversity within cultivated peanut, several studies have 

reported QTLs for yield component traits (Chen et al., 2016, 2017;  Luo et al., 2017,  2018; 

Liang et al., 2018),  and  seed quality traits (Shasidhar et al., 2017;  Liu et al., 2020;  Sun et 

al., 2021;  Guo et al., 2021). However, developing populations utilising wild relatives is crucial 

to broadening the genetic background of elite varieties. 

To date, only six synthetic tetraploid peanuts have been used to develop mapping 

populations to dissect the genomic segments of wild relatives of peanut for various important 

quantitative traits, such as disease resistance  (Burow et al., 2014; Khera et al., 2019;  Kumari 

et al., 2020), oil content and fatty acid composition (Wilson et al., 2017), as well as yield 

component traits (Fonceka et al., 2012a, 2012b; Sambou et al., 2017). These studies have shown 

that about half of the QTL positive effects were associated with alleles of the wild parent, 

highlighting the synthetic tetraploid’s potential as a reservoir of useful alleles for peanut 

breeding. This emphasizes the significance of the synthetic-derived population, particularly in 

introducing favourable alleles into cultivated parents. However, further comprehensive studies 

are necessary to fully understand and harness this potential. It is also crucial to consider the 

impact of environmental factors and genetic variations on complex traits. Therefore, it’s 

important to note that QTLs identified at a specific location may not universally apply to 

different environmental conditions.  

The current study emphasizes a non-destructive approach utilizing NIR spectroscopy to 

explore the environmental and genetic influences on germplasm variability using intact peanut 

seed spectra without the need for chemical.   
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Furthermore, we aimed to detect favourable exotic QTL alleles for the improvement of 

yield-traits using an advanced backcross (AB-QTL) approach population derived from the 

crosses of Fleur 11 and ISATGR 278-18. 

Therefore, this study aimed to address the following research questions: 

questions: 

✓ How effective is NIRS in screening peanut core-collection and interspecific 

populations for seed composition? 

✓  What is the extent of phenotypic variability observed for yield-related traits 

within an interspecific population, and are these traits heritable with identifiable 

correlations? 

✓ What genomic regions are associated with yield-related traits in this population? 

Identifying top-performing lines or varieties for desired traits can lead to new varieties 

or serve as a source of beneficial wild alleles for trait enhancement. Additionally, pinpointing 

genomic regions associated with these traits can aid in marker-assisted selection. 

Three hypotheses can be formulated from this study: 

✓ NIRS will demonstrate a high level of effectiveness in screening peanut core-

collection and interspecific population for seed composition; 

✓ There is significant phenotypic variability for yield-related traits within an 

interspecific population, and these traits exhibit heritability with identifiable trait 

correlations; 

✓ Specific genomic regions (QTL) will be found to be significantly associated with 

various yield-related. 

The general objective of the present study was to explore both, rapid germplasm 

screening for quality traits, and the favorable wild QTL linked to yield traits. 

The specific objectives of this study are: 

✓ To screen peanut core-collection and interspecific population for quality traits;  

✓ To assess phenotypic variability, heritability and trait correlations for yield-

related traits in an interspecific population; 

✓ To identify wild genomic regions (QTLs) associated with yield-related traits.  
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CHAPTER I. LITREATURE REVIEW 

I.1. Peanut crop 

I.1.1. Origin, distribution and centres of diversity 

The origin of cultivated peanut is believed to be in the region of southern Bolivia and 

northwestern Argentina. It's theorized that peanut originated as a hybrid species in these areas 

(Radhakrishnan et al., 2022b; Massa et al., 2024). The domestication of cultivated peanut is 

estimated to has occurred around 3,500 to 7,000 years ago in the region spanning southeastern 

Bolivia, northwestern Argentina, and southern Brazil (Raj et al., 2022; Pan et al., 2023). 

Archaeological evidence suggests that indigenous communities in these regions cultivated 

peanut and incorporated them into their diets and cultural practices  (Ambika et al., 2022; 

Phung et al., 2023). After its domestication in South America (Ambika et al., 2022; Pan et al., 

2023), peanut spread throughout the continent (Hancock, 2022). Spanish and Portuguese 

explorers played a crucial role in introducing peanut to Europe, Africa, and Asia during the 

16th and 17th centuries (Hancock, 2022; Smith & Reeves, 2023). Peanut was introduced to 

Europe, Africa, and Asia through these explorations, becoming a significant crop in various 

parts of the world.  

Peanut exhibit significant genetic diversity, which is evident in several identified gene 

centres across South America. Bolivia is recognized as the primary centre, with additional 

secondary centres located in the Guarani region (Paraguay-Parana), Goias, and Mina Gerais 

regions of Brazil (Tocantins, Sao Francisco), Rondona and northwest Mato Grosso in Brazil 

(south Amazon), Peru (upper Amazon and west coast), and northeast Brazil (Foncéka et al., 

2013; Singh and Nigam, 2016), further highlighting the plant’s genetic diversity and 

adaptability. These centres contribute to the plant's genetic variability and adaptability, as 

documented by various. In Africa, peanut has become integral to local agriculture and diets, 

establishing the continent as a tertiary centre of diversity for the crop (Singh and Nigam, 2016). 

This widespread cultivation emphasizes its importance and adaptation across different African 

regions. 

I.1.2. Taxonomy and gene pool 

Peanut, scientifically known as Arachis hypogaea (L.), belongs to the genus Arachis, 

which is a member of the. legume family Fabaceae (Leguminosae))  (Zahran & Tawfeuk, 

2019; Ogbole et al., 2023). 
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The genus comprises  about 81 species, mostly diploids (2n = 2x = 20), classified into 

nine sections based on morphological characteristics, cytological study, geographic 

distribution, and cross-compatibility (Stalker,2017; Pandey et al., 2020b). These sections 

include Trierectoides, Erectoides, Procumbentes, Rhizomatosae, Heteranthae, Coleorhizae, 

Extranervosae, Triseminatae, and Arachis. Section Arachis contains cultivated peanut (A. 

hypogaea) and another 30 wild species (Stalker,2017). Most of these species are diploid (2n = 

2x = 20) with metacentric chromosomes of similar size (genomes A, B, F. and K); one species 

(A. glandulifera) is diploid with an asymmetric karyotype (genome D), and three can be 

considered dysploidy (2n= 2x= 18) (Krapovickas and Gregory 1994; Valls and Simpson 2005). 

The single wild tetraploid species, A. monticola, is very closely related to A. hypogaea (Lu and 

Pickersgill, 1993), probably sharing the same origin, and it is considered A. hypogaea’s 

immediate tetraploid ancestor (Seijo et al., 2007). 

The most frequent of the genome types among the species is the A genome, characterized 

by the presence of a chromosome pair of reduced size and strongly condensed centromeric 

bands (Seijo et al. 2004). The next most frequent genome type is B, lacking a small 

chromosome pair and with chromosomes showing a lower degree of centromeric DNA 

condensation. Genome types F and K were formerly considered B genome species; recent 

classification was based on rDNA loci and the presence of strongly condensed centromeric 

bands in most chromosomes (Robledo and Seijo, 2010). Phylogenies based on DNA sequence 

data strongly support the validity of these genome divisions (Moretzsohn et al., 2004, 2013; 

Milla et al., 2005). 

Based on cross-compatibility, the genetic diversity of the genus Arachis is classified into 

four gene pools (Janila et al., 2013; Fonceka et al., 2013; Nigam, 2014; Abady et al., 2021a). 

These gene pools play a significant role in understanding the genetic diversity and potential for 

breeding new peanut varieties. The primary gene pool consists of cultivated peanut, the 

secondary gene pool includes closely related wild species, and the tertiary and quaternary gene 

pools encompass other species with varying degrees of cross-compatibility. The secondary 

gene pool of A. hypogaea includes its most closely related wild species, which can be utilised 

for peanut crop improvement. 

Peanut is an allotetraploid with an AABB genomic constitution (2n = 4x = 40), and its 

genome size is approximately 2.7 billion base pairs (2.7 Gb) (Bertioli et al., 2019; Zhuang et 

al., 2019). This genomic constitution likely originated from a single hybridization event 

between two diploid progenitors, Arachis duranensis and Arachis ipaensis, which donated the 
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A and B sub-genomes, respectively (Bertioli et al., 2019; Zhuang et al., 2019). Genetic, 

cytogenetic, phylogeographic, and molecular evidence supports the notion that these two 

diploids are the most likely progenitors of cultivated peanut (Kochert et al., 1996; Burow et 

al., 2009; Moretzsohn et al., 2004,  2013; Ramos et al., 2006; Seijo et al., 2004,  2007).  

Morphological variation in cultivated peanut led to divide it into two subspecies, 

hypogaea and fastigiata, and six botanical varieties (Stalker, 2017; Al-Khayri et al., 2019). 

These subspecies are distinguished by patterns of reproductive and vegetative branching, as 

well as pod morphology. Subspecies hypogaea is further divided into two botanical varieties: 

hypogaea (virginia) and hirsuta. Subspecies fastigiata is also divided into four botanical 

varieties: fastigiate (Valencia), vulgaris (Spanish), peruviana, and aequatoriana. 

Despite the high morphological diversity, different origins for the two subspecies were 

proposed, supported by partial reproductive isolation (Singh and Moss, 1982; Lu and 

Pickersgill, 1993). However, further investigation using molecular data contradicted this 

hypothesis. The genetic variability observed among commercial cultivars and landraces of 

peanut is relatively low, leading to the general acceptance that peanut is an allotetraploid of 

recent and single origin (Halward et al., 1993; Kochert et al., 1996; Milla et al., 2005). This 

conclusion was reached after examining molecular data and understanding the genetic 

relationships between different peanut varieties. 

 

 

Fig. 1.The taxonomic arrangement of subspecies and botanical varieties (Stalker, 2017). 



9 

I.1.3. Botany and morphology 

Understanding the botanical characteristics of peanuts is essential for advancing 

agricultural research and development. Peanut, known for its unique geocarpic reproductive 

habit, have fertilized ovaries that develop underground into pods (Harbau & Sanusi, 2023). The 

plant's pinnately compound leaves feature four leaflets symmetrically arranged on both the 

main stem and side branches (IBPGR and ICRISAT, 1992; Raj et al., 2022; Radhakrishnan et 

al., 2022a). These leaflets are typically ovate or elliptical, with smooth or slightly waxy 

margins and a cuticle that minimizes water loss. 

 Peanut growth habits, crucial for cultivation strategies, encompass various types: 

procumbent-1, procumbent-2, decumbent-1, decumbent-2, decumbent-3, and erect (Fig. 3) 

(IBPGR and ICRISAT, 1992;  Upadhyaya & Gowda, 2009; Kayam et al., 2017; Janila et al., 

2018; Kumari et al., 2020; Fang et al., 2023). Branching patterns, such as alternate, sequential, 

irregular with flowers on the main stem, and irregular without flowers on the main stem (Fig.4), 

further influence agricultural practices (IBPGR, 1992; Ntare et al., 2008; Upadhyaya & 

Gowda, 2009; Janila et al., 2018).  

 

Fig. 2. Part of peanut (IBPGR and ICRISAT, 1992). 

 

 

a b c d 
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Fig. 3. Peanut growth habits (Upadhyaya & Gowda, 2009; Janila et al., 2018). 

 

Fig. 4. Peanut branching patterns (Ntare et al., 2008; Janila et al., 2018). 
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Peanut flowers are self-pollinating and arranged in inflorescences along the stem. They vary in 

colour from orange to yellow. After fertilization, the ovary elongates into a sturdy peg, which 

descends into the soil and develops into the mature pod (Nigam, 2014; Raj et al., 2022; 

Radhakrishnan et al., 2022a). Peanut plants have a well-developed taproot system that can 

extend up to 135 cm deep, accompanied by prostrate stems that can reach lengths of up to 60 

cm (Harbau & Sanusi, 2023). 

I.1.4. Production 

Peanut is an important legume crop cultivated across more than 100 countries (Fig. 5), 

encompassing approximately 30 million hectares (Mha) of land, with global production 

reached around 54 million tons (MT) and an average yield of 1.8 tons per hectare (t/ha) 

(FAOSTAT, 2024). Asia stands as the primary peanut-producing region worldwide, with China 

and India being major contributors, yielding 18 MT and 10 MT, respectively. Africa follows 

closely, with Nigeria and Sudan as significant producers, yielding 4 MT and 2.5 MT, 

respectively (FAOSTAT, 2024). While Asia and Africa collectively dominate global peanut 

cultivation area and production, Africa faces challenges in achieving high yields compared to 

Asia and the Americas, with an average yield of 1 t/ha lagging behind Asia's 2.6 t/ha and 

America's 3.6 t/ha. Although Africa covers 56% of the global peanut-growing area, it 

contributes only 30% to global production. In contrast, Asia covers 39% of the global peanut-

growing area but produces 59.6% of the global output, with China significantly impacting 

higher yields. The Americas, led by the United States, contribute 9.9% of global production 

from just 1.5% of the global peanut-growing area. 

Over the past six decades, there has been a noticeable increase in global peanut 

productivity, with the global yield average rising from 800 kg/ha in 1965 to 1797 kg/ha in 

2020. Africa has also shown improvement, with the average yield increasing from 609 kg/ha 

in 1983 to 1078 kg/ha in 2006. Countries like Cameroon and Ethiopia have experienced 

significant growth in both cultivated area and production. For instance, Cameroon observed a 

rise in peanut yield from 234 kg/ha in 1989 to a peak of 1747 kg/ha in 2006, while Ethiopia 

witnessed an increase from 456 kg/ha in 1998 to 1807 kg/ha in 2020. 
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Fig. 5. Worldwide distribution of peanut production in 2022 (FAOSTAT, 2024). 

As peanut ranks among the major vegetable oilseed crops, over 60% of global peanut 

production is crushed to extract oil for both edible and industrial uses, while 40% is used in 

food and other applications (Janila et al., 2013, 2016). According to Statista (2023), peanut oil 

production increased from 5.5 million tons in 2012-2013 to 6.5 million tons in 2022-2023, with 

an average production of 6.4 million tons during the latter period. In the same year, total 

vegetable oil production reached approximately 217 million tons (MT), with peanut oil ranking 

sixth in terms of production volume at 6.5 million tons. The leading vegetable oils by 

production were palm oil at 76 million tons, followed by soybean oil at 60 million tons, 

rapeseed oil at 31 million tons, sunflower seed oil at 18.6 million tons, and palm kernel oil at 

8.8 million tons. 

As the global population is projected to expand from 7.2 billion to 9.6 billion by 2050, 

the demand-supply gap for food grains continues to increase (Pandey et al., 2016). This 

challenge necessitates an increase in global food production by over 70% by 2050 to ensure a 

hunger-free society with nutritious food (Rajwade et al., 2015; Pandey et al., 2016; Alhashim 

and Anandhi, 2022). The projected rise in global demand for peanut and its related products 

underscores the need to enhance production and productivity. Meeting this demand requires 

maximizing efforts to develop improved high-yielding cultivars resistant to major stresses and 

possessing high seed quality traits through the integration of genomic tools with peanut 

improvement. 
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I.1.5. Importance  

Peanut is valued for its versatility and widespread utility across different regions 

worldwide.  Primarily grown for its vegetable oil, constitutes a significant source of nutrition 

and health benefits (Davis et al., 2016; Abady et al., 2021b). Its seed contains approximately 

34 to 56% oil, 22 to 30% protein, and 10 to 25% carbohydrates. Moreover, it boasts a wealth 

of micronutrients vital for various bodily functions, including vitamin E, K, and B complex, 

folic acid, niacin, antioxidants, and biologically active polyphenolics such as flavonoids and 

isoflavones. Additionally, peanut offer an abundance of essential minerals like calcium, 

phosphorus, magnesium, zinc, and iron, all of which contribute to their nutritional value and 

potential health benefits (Harch et al., 1995; Janila et al., 2013, 2016;  Desmae et al., 2019). 

With their high energy content from oil and protein, peanuts can serve as an alternative to 

calorie-dense foods like red meat, aiding in calorie reduction. 

Peanut oil is rich in various fatty acids, comprising approximately 12 different types. 

Among these, oleic and linoleic acids dominate, collectively making up nearly 80% of the oil's 

composition. However, palmitic acid, a saturated fatty acid, also plays a significant role, 

contributing approximately 10% to the total fatty acid content (Davis et al., 2016; Nawade et 

al., 2018). Additionally, minor fatty acids such as stearic, arachidic, eicosenoic, behenic, 

lignoceric, and gadoleic acids are present, making up about 10% of the total fatty acid content 

(Davis et al., 2016; Nawade et al., 2018).  

Furthermore, peanut oil with high levels of oleic acid exhibits nearly 10 times greater 

auto-oxidative stability compared to linoleic acid-rich oils (Nawade et al., 2018). This 

enhanced stability enables heating at high temperatures without smoking, facilitating faster 

cooking and reducing oil absorption during cooking. Additionally, oils high in oleic acid impart 

a pleasant aroma and contribute to the prolonged shelf life of peanut products. Consuming 

peanut products rich in oleic acid has been associated with several health benefits, including 

cholesterol reduction, tumor suppression, inflammation alleviation, blood pressure regulation, 

and improved lipid and glucose levels. (Pandey et al., 2014b; Nawade et al., 2018; Bonku and 

Yu, 2020). Studies also suggest a potential risk reduction of type 2 diabetes and cognitive 

enhancement in healthy young adults through regular peanut consumption (Jiang, 2002). In 

another study involving 63 healthy young adults, it was found that regular consumption of 

peanut and peanut butter may enhance memory function and stress response (Parilli-Moser et 

al., 2022).  
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Beyond oil extraction, peanut is consumed in diverse forms (Fig. 6) such as raw, roasted, 

boiled, or processed into peanut butter, catering to varied culinary preferences and dietary 

needs. (Janila et al., 2013; Abady et al., 2021b). This versatility extends to their role in 

supporting small-scale producers by generating revenue and contributing to foreign currency 

earnings through exports. As legumes, peanut contribute to soil improvement by biologically 

fixing nitrogen, enhancing soil fertility sustainably. Additionally, peanut haulm serves as 

valuable livestock feed, offering essential nutrients like protein, lipids, minerals, and 

carbohydrates, particularly beneficial in regions with limited grazing lands (Janila et al., 2013, 

2016).     

 

Fig. 6. Importance of peanut, a) peanut halum, b). peanut shell, c) peanut butter, d) fried 

peanut, e) peanut oil, f) roasted peanut) boiled peanut and h) peanut source (Janila et al., 

2013; Abady et al., 2021b). 

However, it is important to acknowledge the potential health risks associated with peanut 

consumption. One significant concern is the prevalence of peanut allergies, which can manifest 

as mild to severe symptoms, including anaphylaxis (Bonku and Yu, 2020). Another critical 

issue is aflatoxin contamination, a toxic compound produced by mold that  poses serious health 

risks such as liver damage and cancer development (Yu et al., 2019).  
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I.2. Targeted traits for peanut improvement 

In peanut cultivation, genetic improvement targets various traits to meet diverse regional 

needs (Fig.7). These include yield-related traits, resistance to diseases and pests, drought 

tolerance, and quality enhancements for consumers and industries (Janila et al., 2013, 2016; 

Vishwakarma et al., 2017). Factors such as growing seasons, producer requirements, consumer 

preferences, market demands, and industrial specifications influence the selection of these 

traits. 

Yield-contributing traits such as pod yield per plant, number of pods per plant, shelling 

percentage, and 100-seed weight are crucial for maximizing productivity. Additionally, traits 

like peg strength, pod morphology (including reticulation, beak, and constriction), kernel shape 

and colour, fresh seed dormancy, and blanching ability are vital considerations to meet the 

needs of farmers, processors, and market demands. (Janila et al., 2016). In rainfed regions, 

early maturity is pivotal to aligning the crop cycle with the duration of the rainy season, 

ensuring harvest before the onset of the dry season to mitigate drought-related risks.  

In regions like Asia and Africa (Janila et al., 2016), where peanut is primarily used for 

oil production, increasing oil content is a crucial target trait for advanced breeding programs. 

The specific intended use of peanut plays a significant role in determining the key traits that 

are essential for the breeding process. These traits include low oil and high protein contents for 

food consumption, high oil content for oil production, and a high oleic/linoleic fatty acid ratio 

for enhanced shelf-life of products derived from peanuts. (Teres et al., 2008; Vassiliou et al., 

2009; Carrillo et al., 2012; Parilli-Moser et al., 2022). Breeding programs focused on 

improving shelf-life often prioritize achieving a high oleic/linoleic fatty acid ratio as the target 

trait. This emphasis is supported by research indicating that a higher oleic acid content and a 

lower linoleic acid content led to a more stable oil that is less prone to oxidation and rancidity.  

For example, high-oleic acid content offers significantly greater auto-oxidative stability 

compared to linoleic acid, contributing to prolonged shelf life for peanut products and, 

consequently, enhancing human nutrition (Nawade et al., 2018; Desmae et al., 2019; Davis et 

al., 2021). By targeting traits such as high oleic/linoleic fatty acid ratios in peanut breeding 

programs, researchers and breeders aim to develop varieties that not only meet the specific 

needs of different markets but also offer improved product quality, extended shelf life, and 

enhanced nutritional benefits.  
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Fig. 7. Traits improved using genomic assisted breeding in peanut (Vishwakarma et al., 2017). 

I.3. High-throughput phenotyping techniques in peanut seed quality traits  

The two main factors restricting peanut breeding internationally are the limited genetic 

base of cultivated peanut and the inadequate exploitation of genetic resources. Thus, wide 

hybridization is a practical method for introducing potential diversity from wild species into 

the cultivated gene pool (Simpson et al., 1993; Fávero et al., 2006; Mallikarjuna et al., 2010). 

Likewise, the use of germplasm in breeding techniques to improve food security depends 

critically on the assessment of genetic diversity and the identification of promising genotypes. 

To facilitate the investigation of large germplasm collections, it is reasonable to start by 

examining customized sets of germplasm that exhibit appropriate diversity and are of 

manageable size. Two common types of such customized sets are core collections and 

interspecific populations derived from wild × elite crosses. 
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Although significant efforts have been made to target traits in peanut for characterizing 

cultivars and germplasm collections for simple traits and for the most important agronomic 

traits (yield and resistance to pests and diseases) (Upadhyaya et al., 2002, 2005, 2006, 2011; 

Mallikarjuna et al., 2012; Kumari et al., 2014), less is known about various quality traits 

(Bianchi-Hall et al., 1993; Grosso et al., 2000). This is mainly due to the fact that the 

phenotyping of these traits, regularly based on chemical surveys, is expensive in terms of both 

direct monetary input and human labour, time-consuming, complex, and irreversibly 

destructive. Another main factor limiting chemical studies are the difficulties to analyse many 

samples, each requiring many seeds (Nawade et al., 2018; Davis et al., 2021). 

The currently employed chemical-based seed quality analysis methods include Soxhlet 

extractor (Shasidhar et al., 2017), nuclear magnetic resonance (NMR) (Pandey et al., 2014b; 

Liu et al., 2020; Guo et al., 2021), high-performance liquid chromatography (HPLC) and gas 

chromatography (GC) (Lin et al., 2016; Shasidhar et al., 2017). These methods may provide 

accurate results in laboratories, but the procedures are usually time-consuming, sample-

destructive, expensive, and require skilled personnel to perform, which make them impossible 

for large-scale non-destructive screening detection. On the other hand, high-throughput 

phenotyping (HTP) techniques have revolutionized the study of plant traits by allowing 

researchers to collect large amounts of data in a short period. These include modified refractive 

index, capacitance sensor (Kandala et al., 2008), hyperspectral imaging (Huang et al., 2014;  

Rabanera et al., 2021) and near infrared spectroscopy (NIRS) (Govindarajan et al., 2009; Davis 

et al., 2021; Tao et al., 2019). These techniques have been widely applied to various crops, 

including peanut, to assess seed quality traits.  

Among HTP, NIR-based methods are the most rapid, make it possible to analyse large 

numbers of samples and for peanut breeders, an added benefit with NIR is that the method can 

be non-destructive. In the case of peanut, NIRS allowed for the efficient evaluation and 

selection of peanut germplasm based on various quality traits, such as oil content, protein 

content, fatty acid composition (Sarvamangala et al., 2011; Bansod et al., 2015; Lin et al., 

2016; Shasidhar et al., 2017; Sun et al., 2021; Davis et al., 2021) , moisture content 

determination (Govindarajan et al., 2009) and to detect aflatoxin (Tao et al., 2019). Moreover, 

a number of studies have also applied machine learning as promising statistical methods to 

assist humans in the modelling and analysis of complex spectral data (Wang and Song, 2023; 

Xu et al., 2023) in many research fields including seed quality detection, varieties 

identification(Singh et al., 2023) and classification (Shang et al., 2023; Tian et al., 2023). 
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I.4. Peanut genetic resources 

The genetic resources of the peanut plant play a crucial role in the improvement of peanut 

cultivars, as they provide valuable genetic variation for desirable traits. These resources are 

preserved in gene banks worldwide and serve as reservoirs of useful genes for current and 

future breeding programs. The peanut crop is blessed with large germplasm collections 

maintained in various institutions across the globe (see: Pandey et al., 2012). At ICRISAT, 

India holds the largest collection, with 15,445 accessions from 93 countries. This is followed 

by the National Bureau of Plant Genetic Resources (NBPGR) with 14,585 accessions, and the 

Directorate of Groundnut Research (DGR) of the Indian Council of Agricultural Research 

(ICAR) with 9,024 accessions in India. Additionally, the Oil Crops Research Institute (OCRI) 

of the Chinese Academy of Agricultural Sciences (CAAS) holds 8083 accessions, and the 

Crops Research Institute of the Guangdong Academy of Agricultural Sciences maintains 4,210 

accessions in China. In the United States, the Plant Genetic Resource Conservation Unit 

(PGRCU) at Griffin, U.S. Department of Agriculture (USDA) holds 9,024 accessions, while 

North Carolina State University (NCSU) maintains 1,146 accessions. Furthermore, 

EMBRAPA-CENARGEN holds 1,200 accessions, and the Instituto Agronomico de Campinas 

maintains 2,140 accessions in Brazil. Finally, National Institute of Agricultural Technology 

(NIAT) in Argentina holds 3,640 accessions, and Texas A&M University (TAMU) in the USA 

holds 1,200 accessions, along with the Northeast Botanical Institute (NEBOI) in Argentina 

maintaining 472 accessions (Pandey et al., 2012). 

The challenge of selecting appropriate lines from a large number of cultivated accessions 

can be addressed through the use of core collections, which are subsets typically containing 

10% of the entire collection (Brown, 1989). For instance, core collections have been developed 

in various regions, such as the 1,704 core collection at ICRISAT, the U.S. core collection with 

831 accessions (Holbrook et al., 1993), and the Chinese core collection with 576 accessions 

(Jiang et al., 2008). 

However, the size of these core collections can still be unwieldy for breeders to fully 

exploit. To address this, 'mini-core collections' have been developed, representing 10% of the 

core collections and 1% of the entire germplasm collection. These smaller collections consist 

of 184, 112, and 298 accessions at ICRISAT (Upadhyaya et al., 2002), USDA/ARS (Holbrook 

and Dong, 2005), and in China (Jiang et al., 2010), respectively.  
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Additionally, a global composite collection of 1,000 accessions was created, and a reference 

set of 300 genetically diverse accessions was further characterized using 21 SSR markers 

(Upadhyaya et al., 2006). In addition to germplasm collections that represent naturally 

occurring variation, amphiploids and autotetraploids (Mallikarjuna et al., 2010), over 3400 

targeting‐induced local lesions in genomes (TILLING) populations (Knoll et al., 2011), 

multiparent advanced generation intercross (MAGIC) populations (Janila et al., 2013; Pandey 

et al., 2020b), and chromosome segment substitution (CSSL) lines (Tossim et al., 2020) have 

been developed and form important resources of groundnut breeding. 

I.5. Use of wild relatives in peanut improvement 

Utilising wild relatives in peanut improvement presents a promising avenue for 

addressing key production constraints and enhancing long-term sustainability in agriculture. 

Diversity studies employing molecular markers have revealed that cultivated peanut exhibits a 

low level of genetic diversity due to its origin and reproductive isolation from wild diploid 

species, primarily stemming from differences in ploidy level (Herselman et al., 2004). The 

limited genetic variability in cultivated germplasm poses challenges for peanut improvement 

to tackle key production constraints such as drought, environmental changes, and diseases. In 

contrast, wild peanut relatives demonstrate high genetic diversity and harbour valuable alleles 

for enhancing resistance, abiotic stress tolerance, yield potential, seed quality traits, and long-

term sustainability amid climate change and evolving agricultural challenges (Upadhyaya et 

al., 2011; Stalker, 2017). Consequently, peanut breeders have increasingly focused on 

incorporating new alleles from wild species into cultivated peanut to broaden its genetic base 

and unlock genetic potential. Two primary pathways have been described for introducing 

alleles from wild species into cultivated peanuts: the hexaploidy pathway and the tetraploid 

pathway (Simpson, 2001). 

In the hexaploidy pathway, breeders directly cross a given diploid species with A. 

hypogaea, resulting in a triploid (3x = 30) sterile hybrid that can be doubled to the hexaploidy 

(6x = 60) level through colchicine treatment. Despite cytological instability, successful efforts 

have introgressed alleles from wild diploid species into cultivated peanut, enhancing resistance 

to diseases and pests. Notable successes include the release of cultivars such as 'Spancross' and 

'Tamnut 74', developed from crosses between A. hypogaea and A. monticola (Fonceka et al., 

2013).  
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Similarly, germplasm lines resistant to rust and late leaf spot have been released from crosses 

between A. hypogaea and A. cardenasii (Stalker, 2017; Motagi et al., 2022). Among these lines, 

GPBD 4, resistant to rust and late leaf spot, was released by crossing ICGV 86855, an 

interspecific derivative between A. hypogaea and A. cardenasii, with KRG1, an early maturing 

line from Argentina (Gowda et al., 2002). 

The tetraploid pathway in peanut breeding has significantly advanced through the 

creation of amphidiploids, which are tetraploid plants developed from hybridizations between 

different Arachis diploid species. Autotetraploids (AAAA) or allotetraploids (BBBB) produced 

through colchicine treatment are cross-compatible with cultivated peanut and usable in 

introgression programs. Simpson et al. (1993) pioneered this pathway by creating the first 

amphidiploid from a three-way cross between A. cardenasii and A. diogoi. From this cross, 

commercial cultivars such as COAN, NemaTam, Tifguard, Webb, TifN/V OL, Georgia 14N, 

Tifguard and TifN/V OL have been relased (Simpson et al., 2013, Holbrook et al., 2017;  

Motagi et al., 2022). Additional amphidiploids, coded as AiAd, developed from hybridization 

between A. ipaensis and A. duranensis, have contributed to expand genetic diversity in the 

Arachis genus (Favero et al., 2006). Mallikarjuna et al. (2010) also developed 17 new 

amphidiploid genotypes through hybridization between different species of section Arachis. 

These amphidiploids have served as valuable resources for breeding programs, enabling the 

creation of cultivars with enhanced disease resistance and oil composition. Despite the promise 

of incorporating wild alleles, the process of introgressing useful traits presents challenges due 

to tight linkages between beneficial and undesirable traits, necessitating multiple backcrossing 

cycles to recover desirable traits. 

Recent advancements, including the use of synthetic tetraploids and next-generation 

sequencing (NGS), have significantly improved the integration of peanut wild relatives in 

breeding programs. Synthetic amphidiploids have expanded genetic diversity in the Arachis 

genus and facilitated the creation of cultivars with improved disease resistance and oil 

composition. Synthetic amphidiploids such as TxAG-6, AiAd, ISATGR 1212, ISATGR 265, 

ISATGR 278-18, and ISATGR52B have been key in evaluating the genetic potential of wild 

species and mapping QTL regions (Fonceka et al., 2012a, b; Nguepjop et al., 2016; Wilson et 

al., 2017; Sambou , 2017; Khera et al., 2019; Kumari et al., 2020).  
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Molecular marker-based approaches such as Advance Backcross Quantitative Trait Loci (AB-

QTL) and Chromosome Segment Substitution Lines (CSSL) are currently being utilised to 

broaden the genetic base of cultivated varieties, facilitate the introgression of desirable traits 

from wild relatives into elite lines and to map QTL (Fonceka et al., 2012a, 2012b; Tossim et 

al., 2020). 

I.6. Quantitative trait loci (QTLs) mapping  

A QTL is a genomic region that is responsible for the quantitative variation of a trait. A 

quantitative trait is a measurable attribute based on the combined activity of one or many genes 

and their interactions with the environment, which can vary between individuals over a given 

range to generate a continuous distribution of phenotypes (Collard et al., 2005). Quantitative 

trait loci mapping is a statistical method used for identifying responsible genes, understanding 

variation mechanisms, determining how many QTL contribute significantly to the trait, 

determining how much variation is due to additive, dominant. and epistatic effects, and 

determining the nature of the genetic correlation between different traits in a genomic region 

(Andersen and Torp, 2002). It helps breeders understand the genetic basis of complex traits by 

identifying the genetic variants (QTL) that contribute to the trait variation. The steps involved 

in biparental QT mapping are presented in (Fig.  8). 

 

Fig.  8. Steps involved in biparental QTL mapping (Kassie et al., 2023). 
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I.6.1. Molecular markers 

Molecular markers (DNA) are genes or DNA sequences with known chromosome 

locations that play crucial roles in plant breeding. They confirm hybrid identities, track 

introgressed chromosomal segments, and solve the problem of linkage drag (Singh and Singh, 

2015; Nayak et al., 2017; Nadeem et al., 2018; Kumawat et al., 2020; Vishwakarma et al., 

2022). These markers have been used in several genetic studies, including trait mapping and. 

most importantly. molecular marker-assisted breeding.  

The early generation DNA markers Restriction Fragment Length Polymorphisms 

(RFLPs) (Halward et al., 1993; Burow et al., 2001), Random Amplified Polymorphic DNAs 

(RAPDs) (Garcia et al., 2005), and Amplified Fragment Length Polymorphisms (AFLPs) 

(Milla, 2003) were initially used for genetic mapping in peanut. However, due to their limited 

number and associated limitations, researchers have increasingly turned to microsatellite or 

simple sequence repeat (SSR) markers, which have been extensively utilized in genetic and 

QTL mapping studies (Varshney et al., 2009; Pandey et al., 2012; Fonceka et al., 2013; Pandey 

et al., 2014a; Vishwakarma et al., 2017; Desmae et al., 2019). Moreover, single-nucleotide 

polymorphism (SNP) markers (Zhou et al., 2014; Xiaojing et al., 2014; Bertioli et al., 2014; 

Liang et al., 2017; Liu et al., 2020; Sun et al., 2021) and diversity array technology (DArT) 

markers (Vishwakarma et al., 2016; Shashidhar et al., 2017; Khera et al., 2019) have been 

incorporated, significantly expanding the repertoire of available molecular markers for peanut 

genetic and breeding applications.  

I.6.2. Genetic map 

Genetic or linkage mapping involves arranging markers in order, indicating their relative 

distances, and assigning them to linkage groups based on recombination values from pairwise 

combinations (Andersen and Torp, 2002;  Collard et al., 2005). This technique facilitates the 

identification of chromosomal locations harbouring genes and Quantitative Trait Loci (QTLs) 

linked to traits of interest. By determining the relative positions and distances of these markers, 

scientists gain insights into the genetic basis of traits and can enhance breeding strategies.  

I.6.2.1. Diploid genetic map 

I.6.2.1.1. Genetic maps for AA-genome 

In the development of genetic maps for the AA-genome in peanut, various populations 

including F2, F5, F6, and BC1F1 have been utilised, alongside marker systems such as RFLP, 
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AFLP, RAPD, SSR, and SNP (Halward et al., 1993; Milla, 2003; Moretzsohn et al., 2005; 

Leal-Bertioli et al., 2009; Nagy et al., 2012). The initial map, based on RFLP markers, 

employed an F2 population from a cross between A. stenosperma and A. cardenasii, yielding 

117 loci across 11 linkage groups covering 1,063 cM. Subsequent maps, utilizing AFLP and 

SSR markers, expanded marker diversity and map coverage (Halward et al., 1993). The first 

AFLP-based map was created using the F2 population developed from A. kuhlmannii x A. 

diogoi (Milla, 2003). This map consisted of 102 markers grouped into 12 linkage groups and 

spanned 1068.1 cM. The first peanut SSR-based map was created for an F2 population resulting 

from a hybrid between A. duranensis and A. stenosperma (Moretzsohn et al., 2005). A diploid 

backcross population derived from the same parents was also used to compute a linkage map 

(Garcia et al., 2005). One hundred and sixty-seven RAPD and 39 RFLP loci were mapped into 

11 linkage groups, spanning 800 cM. The 39 RFLP markers were common to the F2-based 

map of Halward et al. (1993) and were used to establish correspondences between both maps.  

The first peanut SSR-based map was constructed for an F2 population derived from a 

cross of two diploid species with A genomes, A. duranensis and A. stenosperma (Moretzsohn 

et al.2005). One hundred and seventy loci were mapped into 11 linkage groups covering 1,231 

cM of total map distance. New markers were added to this map, resulting in 369 loci, including 

188 microsatellites, 80 anchors and 35 resistance gene analogue (RGA) markers, mapped into 

ten linkage groups, as expected for diploid species of Arachis (Leal-Bertioli et al., 2009).  

Another genetic map, created using an F2 population derived from the cross (A. 

duranenis x A. duranensis), employed a combination of markers such as 971 SSRs, 221 single-

stranded DNA conformation polymorphism (SSCP) markers, and 1,127 SNPs mapped on 10 

linkage groups (Nagy et al., 2012). Later, three more genetic maps were constructed using the 

F5 and F6 generation with the SSR, SNP, transposable element (TE), resistance gene analog 

(RGA)  and anchor markers of the population generated from a cross between A. duranensis 

and A. stenosperma (Bertioli et al., 2014; Leal-Bertioli et al., 2016). These maps contain 

597,384 and 502 markers on 544,705.10 and 1004.1 cM map distance respectively. 

I.6.2.1.2. Genetic maps for BB-genome 

For the BB-genome in peanut, only three genetic maps have been reported. The first map, 

comprising 149 SSR loci across 11 linkage groups and spanning 1,294 cM, was developed 

from an F2 population resulting from a cross between A. ipaensis (KG30076) and A. magna 

(KG30097) (Moretzsohn et al., 2009).  
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The other genetic map was constructed with 449 SSR loci using again a F2 population derived 

from the cross A. batizocoi (PI298639) x A. batizocoi (PI468327)  ( Guo et al., 2012). Later in 

the F6 generation a map was constructed on 10 LGs of 461 cM with 798 loci (Shirasawa et al., 

2013). 

I.6.2.2. Genetic maps for tetraploid (AABB) genome 

Genetic maps for the AABB-genome in peanuts have been developed using various 

mapping populations, including F2, BC1F1, BC2F1, BC2F4, and recombinant inbred lines 

(RILs), and employing marker systems such as AFLP, SRAP, SSR, SNP, and DArT markers 

(Garcia et al., 1995; Herselman et al., 2004; Varshney et al., 2009; Ravi et al., 2011; Zhou et 

al., 2014; Vishwakarma et al., 2016; Shashidhar et al., 2017). Initial efforts utilizing RAPD 

and RFLP markers resulted in the construction of genetic maps spanning 800 cM of genomic 

distance (Garcia et al., 1995). The next genetic map was constructed using AFLP markers, 

which resulted in the development of a partial map with only 12 AFLP marker loci (Herselman 

et al., 2004).  

SSR markers have gained popularity in peanut genetic mapping, leading to the 

construction of several genetic maps. The first SSR-based map, developed from a Recombinant 

Inbred Line (RIL) population derived from TAG 24 x ICGV 86031, consisted of 135 SSR loci 

after screening 1,145 SSR markers (Varshney et al., 2009). Subsequently, this map was 

expanded to include 191 SSR loci across 20 linkage groups, covering 1,785 cM of the genome 

(Ravi et al., 2011). Most genetic maps have been constructed using RIL populations (Khedikar 

et al., 2010; Sarvamangala et al., 2011). Utilising the NGS-based ddRADseq technique, Zhou 

et al. (2014) provided a well-saturated map with 1685 marker loci, including 1621 SNPs and 

64 SSR markers, spanning 1447 cM with an average distance of 0.9 cM. Additionally, the use 

of DArT and DArTseq genotyping resulted in the development of three genetic maps using F2 

populations, comprising 854 loci (ICGV 07368 x ICGV 06420), 1152 loci (ICGV 00350 x 

ICGV 97045), and 1435 loci (ICGV 06420 x Sun Oleic 95R) (Vishwakarma et al., 2016; 

Shashidhar et al., 2017). 

The first genetic map for the tetraploid genome of Arachis was established using a 

backcross population (BC1) with the amphidiploid TxAG-6 as the donor parent and A. 

hypogaea cv. Florunner as the recurrent parent (Burow et al., 2001). Another map was 

developed from a synthetic amphidiploid (A. ipaënsis × A. duranensis) crossed with Fleur 11, 

resulting in 88 BC1F1 individuals (Fonceka et al., 2009).  
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This population yielded an SSR-based linkage map with 298 markers across 21 linkage groups, 

covering a total distance of 1,843.7 cM. Additionally, a genetic map spanning 1792 cM was 

constructed using the recurrent parent Fleur 11 with ISATGR52B (Sambou , 2017). Recently, 

three more genetic maps were constructed, with two derived from crosses between ICGV 

91114 × ISATGR 1212 and ICGV 87846 × ISATGR 265-5A, containing 258 loci (1415.7 cM 

map length with a map density of 5.5 cM/loci) and 1043 loci (1500.8 cM map length with a 

map density of 1.4 cM/loci), respectively (Khera et al., 2019). The third linkage map utilized 

a population from crosses between ICGS 76 x ISATGR 278-18, consisting of 114 loci spanning 

746.15 cM, with an average inter-marker distance of 6.55 cM (Kumari et al., 2020). In 

summary, various genetic maps for diploid, tetraploid, and integrated genomes have been 

reviewed in previous studies (Pandey et al., 2012; Fonceka et al., 2013; Pandey et al., 2014a; 

Vishwakarma et al., 2017; Desmae et al., 2019). 

I.6.2.3. Integrated genetic maps 

Dense genetic linkage maps offer numerous applications in genetics and breeding, 

including trait mapping, marker-assisted breeding, and map-based cloning (Shirasawa et al., 

2013; Pandey et al., 2014a). To maximize the mapping of marker loci, integrating data from 

multiple individual genetic maps into a consensus map is essential. Consensus maps offer 

several advantages, including mapping numerous marker loci onto a single map, determining 

marker stability across populations and genomes, and facilitating comparative genomic studies 

among related species.  

Six integrated genetic maps have been developed for peanut, combining data from 2 to 

16 mapping populations (Table 1) (Hong et al., 2010; Sujay et al., 2012.;  Gautami et al., 

2012a, b; Qin et al., 2012; Shirasawa et al., 2013). These maps provide comprehensive 

coverage of the peanut genome and offer insights into chromosomal rearrangements and gene 

duplication. For instance, the first integrated genetic map, based on three RIL populations, 

contained 175 marker loci across 22 linkage groups, covering 885.4 cM (Hong et al., 2010). 

Subsequent integrated maps expanded marker coverage, with one map comprising 225 SSR 

loci over a total distance of 1,152.9 cM (Sujay et al., 2012). Another integrated map 

incorporated data from three populations, featuring 293 marker loci distributed across 20 

linkage groups, spanning a genome distance of 2,840.8 cM  (Gautami et al., 2012b). The third 

integrated map was  constructed by Qin et al. (2012) based on two mapping populations with 

324 marker loci on 21 linkage groups covering a 1,352 cM genome distance.  
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Efforts to enhance marker density and number have led to the development of a reference 

consensus map, integrating data from 11 mapping populations, including one BC population 

and 10 RIL populations (Gautami et al., 2012a). This reference map comprises 897 marker 

loci, predominantly SSRs, mapped onto 20 linkage groups, covering a total distance of 

3,607.97 cM with an average map density of 3.94 cM. Moreover, the INT map, constructed 

using 16 populations from diploid and tetraploid species, exhibits the highest resolution of 0.7 

cM/locus and a genetic distance of 2651 cM with 3693 loci on 20 linkage groups (Shirasawa 

et al., 2013).  

Table 1.Summary of Integrated maps 

Population LGs Total map 

distance (cM) 

Marker 

loci 

Marker References 

3 Population 22 885.4 175 SSR (Hong et al., 2010) 

2 Population 20 1,152.90 225 SSR (Sujay et al., 2012). 

3 Population 20 2,840.80 293 SSR  (Gautami et al., 2012b) 

2 Population 21 1,352 324 SSR (Qin et al., 2012) 

11 Population 20 3,607.97 897 SSR, CAPS (Gautami et al., 2012a) 

16 Population 20 3693 2651 SSR, TE (Shirasawa et al., 2013) 

I.6.3. Statistical methods and limitation of QTL mapping 

Statistical methods for family-based mapping include 1)single-marker analysis 

(SMA)(Sarvamangala et al., 2011; Wilson et al., 2017) used for initial QTL mapping in 

biparental populations. It identifies QTL based on the difference between the average 

phenotypes of different genotype groups without using information about genetic distances in 

the linkage map. 2) Interval mapping (IM)(Lander and Botstein, 1989) is based on maximum-

likelihood parameter estimation and regression. It efficiently estimates the effect and position 

of a QTL within two flanking markers.3) Composite interval mapping (CIM) is used to 

overcome the limitation of IM method, which is less accurate for analysing multiple QTL 

simultaneously. 4.Inclusive composite interval mapping (ICIM)(Singh and Singh, 2015; Xu et 

al., 2017) (4) and multiple interval mapping (MIM) (5) are an extension of interval mapping to 

multiple QTL, tends to be more powerful and precise than CIM in identifying QTL and allows 

the simultaneous estimation of multiple QTL with epistasis.  

 



27 

A large number of software packages are available for parental mapping including 

PLABQTL(Sarvamangala et al., 2011), Win QTLcartographer (2.5) (Pandey et al., 2014b; 

Huang et al., 2015; Chen et al., 2016; Khedikar et al., 2017;Guo et al., 2021), IciMapping (Liu 

et al., 2020; Bomireddy et al., 2022), R/Qtl (Fonceka et al., 2012a) ,Mapchart(Pandey et al., 

2020a), QTLNetwork-2.0 (Pandey et al., 2014b; Nian et al., 2019). 

The accuracy of any QTL mapping technique depends on several factors, including the 

statistical method's capacity to locate and estimate the genetic effect of the QTL, the type and 

size of the mapping population, the genetic and heritability of the trait, the number and 

contribution of each QTL to the total variance, their interactions, their distribution over the 

genome, the number and distance between consecutive markers, and the percentage of cis-

regulatory elements (Asíns, 2002) and in such case, the ploidy and meiotic behaviour in peanut. 

Along with these accuracy criteria, QTL analysis has limitations like the other techniques. 

Some of these limitations include the inability to detect all loci, the number of QTL detected, 

their precise position, and their effects are subject to statistical error. Major QTL are often 

missed and epistatic effects and QTL environmental interactions (Würschum, 2012) are found 

in some cases. QTL mapping is often time-consuming, requires in-depth knowledge about the 

function and genomics of the trait of interest and has high cost of genotyping and phenotyping. 

The development of the mapping population, the limited number of recombination 

events, large QTL size and low mapping resolution (>10 cM) are some of the challenges in 

biparental QTL mapping. In much cases, more experiments are needed to confirm the results 

of QTL mapped (Pascual et al., 2014; Huang et al., 2015a).However, by using consistent QTL 

that have been mapped, it is expected that the next-generation crop varieties could be developed 

with enhanced quality traits, better yield and disease resistance. 

I.6.4. Quantitative trait loci mapping in peanut 

Quantitative trait loci (QTL) mapping has emerged as a crucial tool in peanut genetics 

and breeding, despite the narrow genetic diversity and the segmental tetraploid nature of 

cultivated peanut. A wide range of quantitative or metric traits in peanut, including those 

related to yield and yield components traits, flowering, seed dormancy, quality and nutritional 

traits, resistance to viral, bacterial, and fungal diseases and physiological traits have been 

subjected to QTL mapping (as reviewed in: Pandey et al., 2012; Vishwakarma et al., 2017; 

Desmae et al., 2019; Pandey et al., 2020b; Kassie et al., 2023). 

 



28 

In the following later sections, QTL for yield related traits and seed quality traits have been 

discussed in detail. and the QTL mapped to date have been reviewed by Kassie et al., (2023). 

In subsequent sections, the focus narrows to a detailed discussion of QTL associated with yield-

related traits and seed quality traits. 

I.6.4.1. Mapping QTL for seed quality traits 

 Important Key quality traits in peanut, such as oil, protein, and sugar content, along with 

fatty acid (FA), amino acid, and carbohydrate composition, can be assessed through 

biochemical analysis of the peanut kernel. Among these, the concentration of oleic acid is 

particularly significant due to its impact on the shelf life of peanut products and its health 

benefits (Nawade et al., 2018). In particular, the concentration of oleic acid is one of the most 

important quality traits because it can increase the shelf life of peanut products and is beneficial 

for human health (Vassiliou et al., 2009; Pandey et al., 2014b). 

Several studies have reported QTL mapping for traits related to oil and protein content, 

as well as fatty acid composition in peanuts, using biparental mapping populations such as F2, 

RIL, and BC segregating populations (Sarvamangala et al., 2011; Pandey et al., 2014b; Wang 

et al., 2015; Huang et al., 2015b; Shashidhar et al., 2017; Wilson et al., 2017; Hu et al., 2018; 

Nian et al., 2019; Liu et al., 2020; Sun et al., 2021; Guo et al., 2021). For instance, a mapping 

population of 146 recombinant inbred lines (RILs) generated from a cross of TG26 x GPBD4 

revealed QTL for protein, oil, oleic, and linoleic acid content, as well as for the oleic acid to 

linoleic acid ratio (Sarvamangala et al., 2011). As the authors have mentioned, GPBD4 has 

early maturity, high yield, high pod growth rate, desirable pod and kernel features, high oil and 

protein content, and an optimum oleic/linoleic acid (O/L) ratio, whereas TG26 is a semi-dwarf, 

erect cultivar with a high linoleic acid content. Although the genetic map has low coverage (45 

SSR markers on 8 linkage groups), the authors reported 17 QTLs on 4 genomic regions, 

including 2 major QTLs for protein content.  

Similarly, major QTLs for oil content, oleic acid, linoleic acid, and the ratio of oleic acid 

to linoleic acid were mapped using two genetic maps developed from RIL populations derived 

from the crosses between Sun Oleic 97R and NC94022 and between Tifrunner and GT-C20 

(Pandey et al., 2014b). Two major QTLs for oil content on chromosomes A05 and A08 and 11 

major QTL for oleic acid, linoleic acid, and the ratio of oleic acid to linoleic acid on the 

homoeologous chromosomes A09 and B09 were first mapped.  
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Furthermore, utilising  the same mapping populations developed by Pandey et al. (2014b ), 16 

major QTLs were identified on B04 and A09/B09 for palmitic acid, stearic acid, arachidic acid, 

gadoleic acid, behenic acid, and lignoceric acid content (Wang et al., 2015). Additionally, 1 

major QTL for oil content on chromosome B03 was detected, explaining 14.36% of the 

phenotypic variance (Huang et al., 2015b).  

Notably, 23 major QTL on 11 genomic regions were identified, explaining 10.4% to 41% 

of the phenotypic variance for oil content and fatty acid composition (Shasidhar et al., 2017). 

In a high-resolution genetic map from a cross between high and normal oleic cultivars, 29 

major QTL were mapped for oleic and linoleic acid content, as well as the oleic to linoleic acid 

ratio, on chromosomes A03 and A09/B09 (Hu et al., 2018).   

Recent studies have further elucidated QTL associated with oil content, revealing 14 

major QTL on A05, A06, A08, B06, and B10, explaining up to 27.19% PEV, from the three 

mapping populations derived from Xuhual13 and Zhonghua6, Yuhual15 and W1205, and 

Zhonghua10 and ICG12625 (Liu et al., 2020; Sun et al., 2021; Guo et al., 2021).  Major QTL 

associated with protein stearic acid, behenic acid, and arachidic acid contents were mapped on 

chromosomes A05, A06, and A08 (Sun et al., 2021). The locations of the seed quality QTL on 

chromosomes were located in Fig. 9. 

We performed a comparative QTL analysis using data from the studies above in order to 

gain more insight into the genome-wide distribution of kernel-quality QTL and to document 

the most consistent ones for future use in marker-assisted breeding. The map location of the 

QTL is presented in Fig. 9, and the detailed data of all the 413 quality-related QTL that have 

been mapped to date are found in (Kassie et al., 2023). We found that QTLs for the quality trait 

are mainly clustered on chromosomes A05, A08, and A09 for the A genome, and B04, B08, 

and B09 for the B genome.  For instance, many QTL for oil and protein content as well as fatty 

acid compositions (arachidic, arachidonic, behenic, stearic, palmitic, linoleic and oleic) 

colocalized on chromosome A05 and were consistent among environments in Fig. 9. 

Furthermore, QTLs for oleic acid, linoleic acid, and the oleic/linoleic ratio from different 

studies were found in common genomic regions on chromosomes A05, A08, B04 and B09. In 

chromosome B09, the common QTL are closely linked to markers ahFAD2B and SNP markers, 

Marker2575339 or Marker239598 (Pandey et al., 2014b; Hu et al., 2018). The AhFAD2B 

QTL, on chromosome B09, explained up to 57 % of phenotypic variation of oleic acid or 

linoleic acid content.  
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Similarly, the AhFAD2A and Marker4391589 or Marker4463600 on chromosome A09, are 

common among studies and explained up to 29 % of phenotypic variation (Pandey et al., 

2014b; Hu et al., 2018). Additionally, AhMXZ190701 was discovered to be tightly linked to a 

major and stable QTL on A08 for oil content (Pandey et al., 2014b; Liu et al., 2020). These 

consistent markers, AhMXZ190701, ahFAD2B, ahFAD2A, Marker2575339 or 

Marker2379598, have been used for QTL validation and MAS of quality traits  (Zhao et al., 

2016;  Liu et al., 2020).  

Likewise, several QTLs for arachidic, behenic, stearic, palmitic, linoleic and oleic acid 

and oil content, mapped in three studies, were linked to the marker RN34A10 on chromosome 

A7 (Fig. 9) (Pandey et al., 2014b; Wang et al., 2015). Furthermore, consistent QTL among 

traits and environments were also reported. A QTL mapping study on four environments, 

among the 110 QTL related to nine quality traits, 36 pleiotropic QTL were associated with two 

or more traits and showed consistent effects in more than one environment (Sun et al., 2021). 

As a conclusion, of the total main effect QTL that have been discovered to date for oil content, 

four stable QTL that were tightly linked to SSR and SNP markers were located on the 15.0- to 

21.7-Mb, 6.4- to 10.9-Mb,, 99.15- to 108.29-Mb, and 6.3- to 7.8-Mb regions of A05 

(Sarvamangala et al., 2011; Pandey et al., 2014b; Sun et al., 2021; Guo et al., 2021), 

respectively. A stable QTL linked to SNP markers bin1572-bin1581, in the interval of 0.5 cM 

spanned by A05, corresponding to a 6.3–7.8 Mb physical region of chromosome A05 (Sun et 

al., 2021), is the same as that reported (Pandey et al., 2014b) for the flanked markers GM1878 

and GM1890, which were mapped to the approximately 6.4-10.9 Mb region of A05.  

The two stable and major QTL with 13.51-22.59% PVE linked with SSR markers 

(Ai06B29452), 136.42-137.05 Mb, and  located on with 9.18-12.55% PVE, linked AGGS2133-

1 were identified on B06 and B10 (Guo et al., 2021).The two stable QTL tightly linked to SNP 

markers AhMXZ190701- AhEXZ283046 (Liu et al., 2020), and bin2782 and bin2787 (Sun et 

al., 2021), were closely located on a 39.9-43.8 Mb and a 37.0-38.2 Mb on chromosome A08, 

respectively. This suggests the reproducibility of the QTL in different studies. Generally, 4 

stable and major QTL referring to oil content were located from 6.3 to 108.29 Mb on A05, 2 

QTL37.0-39.9 Mb on A08 and the other 2 on A06, and A10. These consistent QTL within and 

across studies can be used in breeding special-purpose peanut cultivars. However, some QTL 

need to be validated with fine mapping considering their position on chromosomes that differed 

from different studies, probably due to the genetic material, large QTL intervals and statistic 

imprecisions. 
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Fig. 9. Schematic map of known QTL related to quality traits in peanut (Sarvamangala et al., 

2011;  Pandey et al., 2014b; Wang et al., 2015; Wilson et al., 2017; Shasidhar et al., 2017; Hu 

et al., 2018; Liu et al., 2020; Sun et al., 2021; Guo et al., 2021). 
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I.6.4.2. QTL mapping for yield component traits 

In the peanut breeding program, enhancing pod yield is important to meet the food 

demands of a growing global population. QTL mapping is a key tool utilised to achieve this 

objective. This section discusses the identification of QTL linked to yield component traits 

using SSR and SNP markers, primarily with F2 and recombinant inbred lines (RILs). 

Furthermore, the identification of QTL using DArT markers in addition to SSR and SNP 

markers using backcross populations will be discussed in detail in the following section. 

A significant number of main effect QTL (approximately 292) (Table.2) have been 

mapped for traits such as pod weight, hundred-seed weight, pod and seed length, width, and 

pod number using F2 (Huang et al., 2015b; Chen et al., 2016) and RIL (Chen et al., 2017; 

Khedikar et al., 2017; Luo et al., 2017, 2018; Liang et al., 2018; Chavarro et al., 2020) mapping 

populations. For instance, 44 QTL were identified for 100 pod weight, explaining up to 38.15 

% of the phenotypic variance on A05, A06, A07, A08, A09, B03, B04, B05, A07 , B08 and 

B10 (Huang et al., 2015b; Chen et al., 2017; Luo et al., 2017, 2018). Moreover, around 35 

QTL were reported for 100 seed weight on A02, A03, A04, A05, A06, A07, A08, B02, B03, 

B04, B05, B06 and B08, explaining 5.68 to 35. 9% of phenotypic variance (Huang et al., 2015; 

Chen et al., 2017; Khedikar et al., 2017; Liang et al., 2018). Additionally, 6 SSR markers were 

found to be associated with major, consistent, and stable QTL for pod length, pod width, and 

100 pod weight on chromosomes A05, A07, A09, and B05 (Luo et al., 2017, 2018).   

Beyond seed and pod traits, QTL for flowering, plant height, and fresh seed dormancy 

were also identified. For flowering, 30 QTL were reported with varying phenotypic variance 

explained ranging from 1.15 to 21.82 % (Khedikar et al., 2017; Wang et al., 2020). In the case 

of plant height, 71 main affect QTL were identified (Faye et al., 2015; Huang et al., 2015; 

Chen et al., 2017; Khedikar et al., 2017; Lv et al., 2018), up to 26.27% of the phenotypic 

variance. Co-localization of QTL for various traits was observed, indicating potential 

pleiotropic effects. Several QTL associated with plant architecture, such as growth habit and 

plant height, co-localized with those associated with flowering (Lv et al., 2018; Li et al., 2019). 

As well, the QTL of yield components, such as hundred pod weight, pod weight, and pod length 

(Luo et al., 2017, 2018) were co-localized on chromosomes A05 and A07. Overall, QTL 

mapped related to agro-morphological traits include QTL related to plant architecture, 

flowering, fresh seed or seed dormancy, and yield component traits.  
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To conclude, for pod and seed-related traits such as pod width, pod length, and 100 pod weight, 

six stable, consistent and major genomic regions have been reported on A05, A07, A09 and 

B05 (Luo et al., 2017, 2018) with co-located genomic regions.  

The co-localized interval on A07 was located on 5.7 cM (0.06-1.54 Mb) and harboured 

the major QTL for pod length, pod width, and 100-pod weight ranging 17.97-43.62 % of 

phenotypic variations by the flanking markers AhTE0025 and AHGS1836. On A05,the co-

localized interval was located on 1.3 cM  (99.50-99.78 Mb) explained 17.97-43.62 % of 

phenotypic variations by the flanking markers Ad05A20262 and AHGA160418 (Luo et al., 

2018). For these traits, three more major QTLs co-located in a about 2.47 Mb genomic region 

of the A05 with (13.75-26.68% PVE) by the flanking markers A05A1430-A05A1601 traits 

(Luo et al., 2017). Moreover, three major QTL commonly detected  for pod length and seed 

length on A05 with up to 26.11% PEV  (Chen et al., 2016). Many major and stable QTL 

detected on A05 in different studies for oil content and seed and pod related traits suggest it 

may harbour important genes controlling these traits, which can be used in marker assisted 

breeding. 

As for the pod shape, 10 QTL for pod beak and 7 for pod constriction were reported, 

explaining 17.4% of the phenotypic variance on chromosomes A02, A07, A08, A09, A10, B01, 

B02, and B06 Fonceka et al. (2012a) using advanced population. In a subsequent study, Patil 

et al. (2018) employed a recombinant inbred line (RIL) population and identified a significant 

QTL for pod constriction on chromosomes B05 and B07. Mondal and Badigannavar (2019) 

further expanded this knowledge, pinpointing four QTLs for pod beak and two for pod 

constriction on chromosomes A08, B03, B07, and B08, with a cumulative phenotypic variation 

explained (PVE) of 8.89%. Recently, Zhang et al. (2023) reported on the genetic architecture 

of these traits, uncovering 10 QTLs for pod beak and 3 for pod constriction on chromosomes 

A02, A03, A05, and B06. These collective findings contribute to a deeper understanding of the 

genetic basis underlying pod morphology in peanut. These authors reported one stable and 

major QTL region with pleiotropic effects was mapped on A02 with 0-4.473 cM genetic 

distance. Overall, QTL mapping has revealed valuable genomic regions associated with agro-

morphological traits, offering opportunities for marker-assisted breeding to enhance peanut 

yield related traits. 
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I.6.4.3. QTL Mapping involving synthetic tetraploid wild derivatives 

The employment of synthetic tetraploid wild derivatives in peanut breeding has proven 

indispensable for the genetic mapping of various traits such as disease resistance, drought 

tolerance, agronomic characteristics, and oil quality. Advanced backcross (AB) mapping 

populations, including BC2F1, BC3F1, BC2F3, BC4F3, BC3F2, and BC3F6, have been 

instrumental in this endeavour, genotyped using markers like RFLP, DArT, and SSR. For 

instance, Burow et al. (2014) constructed a linkage map utilising a backcross population 

involving 'Florunner' and synthetic ‘TxAG-6', identifying seven QTL associated with root-knot 

nematode resistance. Wilson et al. (2017) reported 29 QTL linked to oil content and fatty acid 

composition using BC3F6 generations of the same population, genotyped with SSR markers, 

with two major and stable QTL explaining up to 31% of phenotypic variance.  

Furthermore, Fonceka et al. (2012a) developed an AB population from a cross between 

the cultivated parent ‘Fleur 11’ and an amphidiploid AiAd, leading to the identification of 82 

QTL associated with traits related to plant architecture, domestication, and yield components 

under water-limited and well-watered conditions. Using the same resource, Fonceka et al. 

(2012b) identified 42 QTL for four morphological traits using 122 chromosome segment 

substitution lines. Using the same recurrent parent, Sambou (2017) also detected 38 QTL using 

the BC2F4 mapping population derived from the cross of the recurrent parent Fleur 11 with a 

different male parent (ISATR52B), underlying traits such as days to 50% flowering, plant 

architecture, yield-related characteristics, pod, and seed morphology. According to the 

aforementioned studies, it was observed that approximately half of the identified QTL with 

positive effects were attributed to alleles inherited from the wild parent. This underscores the 

significance of peanut wild relatives as a reservoir of beneficial alleles for breeding purposes.  

Similarly, Khera et al. (2019) identified 15 QTL in ICGV 8764 x ISATGR 265-5A and 

35 QTL in ICGV 91114 x ISATGR 1212, with favourable alleles derived from both wild and 

recurrent parents.  Recently, Kumari et al. (2020) utilized an advanced backcross mapping 

population derived from a cross between ICGS 76 and synthetic amphidiploid ISATGR 278-

18, identifying 24 QTL linked to plant height, shelling percentage, total pod weight, and disease 

resistance.  

In summary, the use of synthetic tetraploid wild derivatives in peanut breeding has 

facilitated alien chromatin introgression, eased genetic and meiotic analyses, and enabled the 

detection of QTL for numerous economically important traits.  
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Despite challenges such as hybrid fertility and linkage drag, these efforts have resulted in the 

identification of QTL associated with critical traits such as drought tolerance, disease 

resistance, yield, and seed quality, thereby advancing peanut breeding efforts.  

Table 2. Main effect QTL reviewed for yield related traits of peanut (Kassie et al., 2023)                                         

Traits studied QTL identified Phenotypic variance 

explained (%) 

Plant height 77 0.01–26.7 

Hundred pod weight 48 3.33–38.15 

Days to flowering 31 1.15–21.82 

Pod weight 20 7.7–29.7 

Pod length 52 1.25–26.46 

Pod width 54 5.1–43.63 

Seed length 32 3.03–20.8 

Seed width 33 2.21–23.7 

Harvest index 15 11.0–18.1 

Hundred seed weight 42 5.68–35.9 

Haulm weight 11 2.9–33.36 

Total biomass 15 4.34–22.39 

Growth habit 48 4.55–27.14 

 

I.6.5. Marker assisted selection 

Phenotypic selection in plant breeding is a traditional method that involves selecting 

plants based on their phenotypic traits (Watson et al., 2019; Hasan et al., 2021. This process is 

labor-intensive, costly, and time-consuming due to the need for multiple cycles of backcrossing 

and the difficulty of introgressing several traits into a single parent. Furthermore, phenotypic 

selection is less efficient for quantitative traits that are often under selection. Marker-assisted 

selection (MAS) is an alternative approach that utilises molecular linked to genes or QTLs 

associated with target traits and use these markers to screen and select individuals in breeding 

populations (Vishwakarma et al., 2022; Kumari et al., 2024). The success of MAS depends on 

several factors, including the degree of association between the molecular marker and the target 

gene, the number of individuals that can be analysed, the genetic background into which the 

target gene has to be transferred, linkage disequilibrium in the plant population to be selected, 
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and a known linkage phase between the marker and the target gene ( Collard and Mackill, 2008; 

Vishwakarma et al., 2022):. The efficiency of MAS can be increased by using markers flanking 

the target gene instead of a single linked marker  (Song et al., 2023). 

According to the research by Hospital et al. (1992) and Vishwakarma et al. (2022) 

suggested that the moderate distance between a marker and an interesting trait for efficient 

marker-assisted selection should be within 5 cM. Mohan et al. (1997) proposed that marker(s) 

should co-segregate with the desired trait or be closely linked, with a distance of 1 cM or less. 

The efficiency of MAS is enhanced and may be more efficient than traditional selection under 

the following circumstances, as defined by Vishwakarma et al. (2022): 1) the trait under 

selection has a low heritability; 2) the presence of tight linkage between QTL and marker 

(<5cM); 3) in earlier generations of selection prior to fixation of alleles at or near marker loci 

and recombinational erosion of marker QTL associations; 4) when large sample sizes for 

mapping and selecting QTL are used to improve estimates of QTL alleles. Markers very closely 

linked to the target genes or even located within the gene can greatly enhance the use of MAS 

in advanced generations, where the linkage disequilibrium becomes smaller. Different 

molecular approaches are used in MAS, including marker-assisted backcrossing (MABC), 

marker-assisted QTL or gene pyramiding (MAQP), and marker-assisted recurrent selection 

(MARS). 

I.6.5.1. Marker-assisted backcrossing (MABC) 

Marker-assisted backcrossing (MABC) is a pivotal technique in modern plant breeding 

aimed at integrating specific genes or quantitative trait loci (QTLs) from a donor parent into a 

recurrent parent (RP) (Singh and Singh, 2015; Kumawat et al., 2020; Vishwakarma et al., 

2022). It is invaluable when the recurrent parent lacks essential genes for traits like disease 

resistance, yield, or quality. By iteratively crossing the donor with the recurrent parent and 

selecting for target genes or QTLs associated with desired traits, it facilitates the introduction 

of desirable characteristics into elite cultivars. The primary objectives of MABC encompass 

several crucial aspects: first, the transfer of desired traits, such as disease resistance or high 

yield, from the donor plant to the recurrent parent through successive crosses and selection for 

the target gene or QTL. Second, the recovery of the genetic background of the recurrent parent 

to ensure progeny closely resemble it, except for carrying the desired trait. Third, the removal 

or minimization of unwanted donor genetic material, which may be linked to undesirable traits, 

is a phenomenon known as linkage drag (Singh and Singh, 2015; Kumawat et al., 2020; 

Vishwakarma et al., 2022). 
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Molecular markers play a pivotal role in assisting selection during MABC to achieve 

these objectives. Foreground selection involves utilising molecular markers linked to the target 

gene or QTL for indirect selection, enabling breeders to identify plants carrying both the marker 

and the target gene/QTL without extensive phenotypic evaluation. Background selection 

employs codominant molecular markers distributed throughout the genome to track the 

proportion of recurrent parent alleles, aiding in the progressive recovery of the recurrent parent 

genome. Recombinant selection utilises codominant markers located on flanking regions of the 

target gene/QTL to identify recombinant individuals, thereby removing undesirable donor 

segments while retaining the desired trait. 

Illustratively, utilising marker-assisted backcrossing, rust and leaf spot (LIS) resistant, 

and high oleic acid content peanut lines were successfully developed. In efforts to develop rust 

and leaf spot (LIS) resistance lines, crosses were conducted involving the variety GPBD-4 with 

three susceptible varieties: ICGV 9114, JL 24, and TAG 24 (Varshney et al., 2014). This 

breeding approach was guided by specific SSR markers linked to major QTLs, including 

IPAHM103, GM2079, GM1536, and GM2301, associated with rust and LIS resistance in the 

GPBD-4 cultivar.  Kolekar et al. (2017 furthered this endeavour by crossing GPBD-4 with 

TMV 2, utilizing disease resistance markers such as GM2009, GM2079, GM2301, GM1839, 

and IPAHM103, resulting in the development of two rust and LIS resistance lines, TMG-29 

and TMG-46. Additionally, Shasidhar et al. (2020) employed several SSR markers, including 

IPAHM103, GM1536, GM2301, GM2079, SEQ8D09, and GM1009, for the selection of rust 

and LIS resistance lines in populations derived from GJG-9, GG-20, and GJGHPS-1 with 

GPBD-4. 

A variety of high oleic acid peanut lines were developed through strategic breeding 

approaches. Twenty-four high-oleic introgressed lines were achieved by crossing 'Yuhua 15', 

'Yuanza 9102', 'Yuhua 9326', and 'Yuhua 9327' with Kainong 176 and KN 176, known for their 

high oleic acid content (Huang et al., 2019). Furthermore, 46 BC3F4 and 41 BC2F4 high oleic 

acid lines were reported, originating from crosses involving parent lines GJG 9, GG 29, and 

GJGHPS, with the high oleic acid variety 'Sun Oleic 95R' (Shasidhar et al., 2020). Notably, 

the recent development of the high-oleic-acid line 'YH61' stands as a testament to the 

continuous advancements in peanut breeding methodologies. 'YH61' was created through the 

crossing of 'huayu22' with the high-oleic-acid donor 'KN176', followed by four generations of 

backcrossing (Tang et al., 2022). 
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These efforts underscore the efficacy of marker-assisted breeding techniques in 

enhancing the oleic acid content of peanut varieties, thereby contributing to the diversification 

and improvement of peanut cultivars with enhanced nutritional profiles and commercial value. 

I.6.5.2. Marker-assisted recurrent selection 

Marker-assisted recurrent selection (MARS) is a breeding technique that utilises 

molecular markers to assist in the selection of plant genotypes carrying specific genes or 

quantitative trait loci (QTL) of interest (Collard et al., 2005). This approach has gained 

popularity in plant breeding due to its ability to improve precision, reduce phenotyping costs, 

decrease cycle time, and generate superior genotypes within a population. The process of 

MARS begins by identifying molecular markers that are closely linked to the target genes or 

QTLs. Once the tightly linked markers have been identified, breeders can use them as 

diagnostic tools to identify plants carrying the desired QTLs. After identifying plants carrying 

the target QTLs, controlled pollination is performed to create progeny lines with a favourable 

combination of QTLs from both parents. By strategically crossing selected individuals, 

breeders aim to enhance the expression of desirable traits and accumulate multiple favourable 

QTLs within a single genotype (Gokidi et al., 2016).  

I.6.5.3. Marker assisted QTL Pyramiding 

Marker-assisted QTL pyramiding is a valuable technique in plant breeding, involving the 

simultaneous integration of multiple genes or quantitative trait loci (QTL) from different 

parental lines into a single genotype using molecular markers ( Xu et al., 2012; Chukwu et al., 

2019; Gautam et al., 2020). The process of marker-assisted gene pyramiding entails two 

essential steps: gene fixation and pyramiding. Gene fixation ensures that target genes are in a 

homozygous state, while pyramiding accumulates all target genes into a single genotype, 

enabling the development of lines with multiple beneficial traits (Servin et al., 2004).  

This methodology has been successfully applied in peanut breeding to develop genotypes 

resistant to nematodes and rich in high oleic acid content (Chu et al., 2011). In this process, the 

nematode-resistant cultivar 'Tifguard' was crossed with two high-oleic parents, Georgia-02C 

and Florida-07. The resulting BC3F2 plant progenies underwent confirmation for 

homozygosity of the target alleles, ensuring the presence of both nematode resistance and high 

oleic acid content. Gene pyramiding has also been employed in peanut to enhance aflatoxin 

resistance and yield components (Jin et al., 2023). 
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CHAPTER II. MATERIAL AND METHODS 

II.1. Materials 

II.1.1. Study area 

Experiments were conducted in four different locations across two countries: Maroua in 

2019, Mbalmayo and Bafia in 2021 in Cameroon (Fig. 10), and Nioro in 2021 in Senegal, all 

under rain-fed conditions. The characteristics of each environment are detailed in Table 3. 

These locations were selected to capture environmental diversity, considering various criteria 

such as ecology (including climate and vegetation), the traditional practice of peanut 

cultivation, and economic factors.  

Maroua is a tropical savanna environment with sandy clay vertisol soils (Kenga et al., 

2005). This environment experiences an equatorial climate of the Sudano-Sahelian type, 

characterised by high temperatures averaging around 35°C and an annual rainfall of 

approximately 800 mm. Bafia is one of the main areas of peanut production in Cameroon. It is 

located in tropical savanna and has yellow vertisol soil (Temga et al., 2021) and an equatorial 

climate of the Sudano-Guinean type with an average temperature of 25.1°C and annual rainfall 

of 1500 mm. Mbalmayo is located in the tropical forest of Cameroon and has ocher vertisol 

soil (Temga et al., 2021) with a bimodal humid-forest rainfall climate with an average 

temperature of 26.5°C and rainfall of 2402.8 mm.  

Nioro is located in the South of the Senegalese peanut basin and has a Sahelian semi-

humid ecology with Deck Dior soil, a leached ferruginous tropical soil (Bogie et al., 2018). 

The annual rainfall is 758 mm with an average temperature of 30 °C. The fields at Bafia and 

Mbalmayo were one-year fallow land after maize cultivation by farmers and were cleared and 

plowed for the study. The previous crop at Nioro was millet. The experiments in Bafia and 

Mbalmayo were conducted during one of the two rainy seasons from April-July, while Maroua 

was conducted during rainy seasons from July- October, at the Research Institute for 

Agricultural Development. Whereas the Nioro experiment was done during the rainfall season 

between July and October, at the Research Station of the National Agricultural Research 

Centre. 
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Table 3. Characteristics of the field environments (Kenga et al., 2005; Bogie et al., 2018; 

Temga et al., 2021). 

Characteristics  Maroua Bafia Mbalmayo Nioro 

Country Cameron Cameron Cameron Senegal 

Location Maroua Bafia Mbalmayo Nioro 

Ecology type Tropical 

savanna 

Tropical savanna  Tropical forest  Sahelian 

Climate Type 

Name 

Sudano-

Sahelian 

equatorial 

Sudano-Guinean 

equatorial 

 Humid-forest 

bimodal rainfall  

Sahelian 

semi-humid 

Temperature (°C) 35 25.1 26.5 30 

Rainfall (mm) 800  1500 2402.8 758 

Soil type Vertisol Yellow vertisol  Ocher vertisol  Deck Dior  

Previous crop Millet and 

sorghum 

Maize  Maize  Millet 

Experimental 

period 

July - October April-July April-July July - 

October 

 

 

Fig.10. Location of study area in Cameroon (World Resource Institute, 2020). 
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II.1.2. Plant materials 

Two distinct genetic materials were used in this study as in Supplementary Tables 1 and 

2 of  Kassie et al.(2024): an interspecific advanced backcross QTL (AB-QTL) population of 

133 genotypes and a core collection of 300 African cultivars. The AB-QTL population of 133 

BC2F4 derivatives was developed from the initial interspecific cross using Fleur11 as recurrent 

cultivated parent and the wild synthetic tetraploid ‘ISATGR 278-18’(Nguepjop et al., 2016). 

The cultivated parent used, Fleur 11, is an elite Spanish-type variety, widely cultivated in West 

Africa. The wild parent, ISATGR 278-18 is derived from a cross between A. batizocoi ICG 

13160 (GKBSPSc 30082, PI 468328) and A. duranensis ICG 8138 (GKP 10038, PI 262133) 

(Mallikarjuna et al., 2010). The CS16 variety and the cultivated parent Fleur11, also included. 

The African core collection of 300 cultivars was defined based on breeder’s knowledge and on 

diversity data from a collection of 1050 accessions (breeding lines and landraces) held by 10 

breeding programs in East, Southern and West Africa (Conde et al., 2023). 

II.2. Methods 

II.2.1. Field experimental design 

The same experimental design, following common agricultural practices from sowing to 

harvest, was implemented in each of the four environments. An alpha-lattice design employed 

by  Mohammed et al. (2019), Pankaj et al. (2022) and Bedru et al. (2024), was utilised with 3 

replications and 10 blocks per replication (Fig. 11) . Each plot comprised rows spanning 3 

meters, where 10 plants of the same genotype were sown per row. Plants were spaced 30 cm 

apart within the same row and 50 cm apar between adjacent rows or different genotypes  

according to (IBPGR and ICRISAT (1992),  Upadhyaya & Gowda (2009) and Fonceka et al. ( 

2012a). Prior to planting, the seeds were treated with benomyl 10% and carbofuran 20%) to 

safeguard against parasitic attacks, with manual sowing of one seed per hill at a depth of 4 cm. 

Following standard cultural practices, a mineral fertilizer (6-20-10) was applied at a rate 

of 150 kg/ha 20 days after sowing (Fonceka et al., 2012a). Weed control was managed 

manually during vegetative development. Harvesting was conducted at 95 days post-sowing, 

followed by a one-month period of free-air drying as per groundnut descriptors IBPGR and 

ICRISAT (1992) and Upadhyaya & Gowda (2009) . Upon completion of the pod-drying stage, 

pods from each plant were separated from the haulms, stored, and subsequently dehulled. 
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Fig. 11. Field layout of alpha Lattice experimental design for advanced backcross population 

(AB) and core collections (CR) 

II.2.2. Screening peanut core-collection and interspecific population for quality traits 

using NIRS  

II.2.2.1. Whole seed sample preparation 

 Whole seeds from the pods of the three agronomic replicates of each genotype were 

combined into specific samples, stored in biodegradable plastic bags, and labelled according 

to their respective names and environments. Therefore, intact seeds for each sample used in 

near-infrared (NIR) analysis were obtained from pods of 25-30 harvested plants of each 

genotype. 

Out of the expected 699 samples, we discarded 21 that had fewer than 100 seeds: 3 from 

Bafia, 9 from Mbalmayo, and 9 from the core collection. Finally, a total of 680 samples of 

intact seeds were grouped into four sets based on genetics and environments: one set 

comprising 291 samples from African cultivars in Nioro, and three sets of interspecific 

genotypes (130 samples for Bafia, 124 samples for Mbalmayo, and 135 samples for Nioro, 

which included the 133 genotypes, the CS16 variety, and the cultivated parent Fleur11, 

commonly used as check varieties in Nioro). All samples sealed in hermetic plastic bags were 

conveyed to the laboratory and kept at ambient temperature prior to spectra acquisition. 
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II.2.2.2. NIR spectra acquisition  

The NIR spectra acquisition process involved generating a reference database. Prior to 

recording the spectra, a gold reference was utilised. Spectra were then obtained from six subsets 

of each of the 680 samples, serving as replicates to reduce uncertainties arising from potential 

seed heterogeneity. Specifically, six random samples were taken from each sample to create 

biological and analytical replicates, ensuring coverage of the entire sample. The seeds from 

each subset were loaded into a ring cup with an internal diameter of 5 cm, and the six subsets 

of each sample were measured sequentially (Janila et al., 2018). Spectra for each subset were 

collected after three rotation scans, with a spectral resolution of 16 cm-1, covering the range of 

3952-11528 cm-1 (867-2530 nm), using the Tango spectrometer from Bruker (Manley & 

Baeten, 2018).  

II.2.3. Phenotypic variability, heritability, and trait correlations in an interspecific 

population for yield-related traits 

Phenotypic data collection involved recording three qualitative and twelve quantitative 

traits at one or more sites. Except plant growth habit, days to 50% flowering, and main stem 

height, all traits were recorded after harvest. The mean phenotypic value for each trait per 

genotype was calculated on a per-plant basis by dividing the total number of plants per 

genotype by the number of plants evaluated using descriptors for groundnut (IBPGR and 

ICRISAT, 1992). Details of each trait measurement are provided below:  

Plant growth habit  

▪ The plant growth habit (scale) was recorded at the podding stage on a 1-6 scale, where 

1= procumbent 1, 2= procumbent 2, 3= decumbent 1, 4= decumbent 2, 5= decumbent 

3, and 6= erect.  

Pod beak and constriction  

▪ Pod beak (scale) and constriction (scale) were evaluated on 30 pods using a scale of 0, 

3, 5, 7, and 9 based on groundnut descriptors.  

Days 50 % flowering 

• The number of days from sowing and flowering of at least 50 % of plants was 

evaluated. 
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Plant height 

• Main stem height (cm) was recorded 60 days after sowing, measured from plant collar 

to apex. 

Pod morphology 

▪ Pod length (mm) and width (mm) were measured on 30 pods using a calliper with digital 

a display.  

Seed morphology 

▪ Seed length (mm) and width (mm) were evaluated on 30 seeds using a calliper with a 

digital display.  

Yield components 

• Yield components were determined at all sites based on pod, haulm, harvest index, and 

seed dry mass. The process involved weighing the total biomass to determine the total 

biomass per plant (g). Pods were then removed and weighed to calculate the total pod 

weight per plant (g). Haulm weight per plant (g) was derived by subtracting the total 

pod weight from the total biomass. The process involved weighing the total biomass to 

determine the total biomass per plant (g). Pods were then removed and weighed to 

calculate the total pod weight per plant (g). Haulm weight per plant (g) was derived by 

subtracting the total pod weight from the total biomass. The harvest index (%) was 

computed as the percentage of pod weight to total biomass. 

• Next, 100 pods were randomly sampled and weighed (g) to determine the weight of 100 

pods. All seeds from these 100 pods were weighed, and mature seeds were separated 

and counted. The weight of 100 seeds (g) was calculated by dividing the weight of 

mature seeds by the number of mature seeds, then multiplying by 100. 

II.2.4. Identification of QTL associated with yield trait 

II.2.4.1. DNA extraction and library construction 

For trait-marker discovery analysis, two-week-old leaves from 133 samples were sent to 

the Integrated Genotyping Service and Support (IGSS) platform, now known as SEQART 

AFRICA located at Biosciences Eastern and Central Africa (BecA-ILRI) Hub in Nairobi, for 

DNA extraction and Genotyping.  DNA extraction was performed using the Nucleomag 96 

plant genomic DNA extraction kit, employing the modified cetyltrimethylammonium bromide 

(CTAB) extraction method as outlined by Singh and Singh (2015).  
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The extracted genomic DNA ranged from 50 to 100 ng/μL. DNA quality and quantity were 

checked on 0.8% agarose. Subsequently, libraries were constructed according to Kilian et al.( 

2012) and Alam et al. (2018). DArTSeq complexity reduction method through digestion of 

genomic DNA and ligation of barcoded adapters followed by PCR amplification of adapter-

ligated fragments. 

II.2.4.2. Sequencing and genotyping 

Libraries were sequenced using single-read sequencing runs for 77 bases on the 

HiSeq2500 platform, following the protocol outlined by Kilian et al. (2012). The IGSS 

platform utilises a genotyping by sequencing (GBS) DArTseq™ technology, which enables 

rapid, high-quality genome profiling, even from complex polyploid genomes. DArTseq 

markers scoring was achieved using DArTsoft14 which is an in-house marker scoring pipeline 

based on algorithms detailed in Kilian et al., 2012. Two types of DArTseq markers were scored, 

SilicoDArT and SNP markers, both assessed as binary values representing presence (1) or 

absence (0) of the respective marker sequence within the sample's genomic representation. 

These markers were aligned to a model reference genome (Bertioli et al., 2019) to identify their 

chromosomal locations. 

II.2.5. Data analysis 

II.2.5.1. Quality traits 

II.2.5.1.1. Principal component analysis (PCA) 

R software (R Core Team, 2021) with rchemo (Brandolini-Bunlon, et al., 2023) and rnirs 

packages (Lesnoff, 2021) were used to visualize raw spectra and perform data analysis. PCA 

was performed over the spectral range selected from 1000 to 2500 nm to describe variability 

across varieties and interspecific genotypes within and between environments.  

PCA is a multivariate unsupervised statistical method able to project multivariate data 

and describe relevant trends in the analysed dataset (Manley & Baeten, 2018; Sampaio & 

Brites, 2021; Phuc et al., 2023). PCA can also reveal variables with loading that determine 

some inherent structure of the data, which can be interpreted in chemical terms. The reduction 

of the number of variables is achieved by making a linear combination of the original variables, 

which yields the so-called principal components (PC) that are decorrelated with each other. 

The PCA analysis was carried out on pre-treated spectra.  
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The full spectra underwent preprocessing to enhance the signal by reducing uncontrolled 

variations such as noise and baseline through Savitsky Golay (SavGol) and derivative 

techniques (Manley & Baeten, 2018; Li et al., 2019; Sampaio and Brites, 2021).  In this study, 

the PCA results considered included (i) the score plot to visualize the sample projection on 

each PC and (ii) the loading plot to assess the influence of wavelength on each PC. PCA thus 

aids in emphasizing and interpreting variables, highlighting all relevant differences among 

genotypes within and between environments.  

II.2.5.1.2. Mahalanobis distance Analysis 

After conducting PCA, Mahalanobis distance was calculated to assess the distances 

among the 6 sample replicates for each sample. These distances were determined in units of 

standard deviations from the centre (mean) of the dataset. Initially, the Mahalanobis distances 

were computed individually for the 6 replicates of each sample. Subsequently, the distances 

were averaged for each sample, and Mahalanobis distances were recalculated based on these 

average values. 

II.2.5.1.3. Sample classification using PLS-DA modelling on NIR spectra  

PLS-DA was used for classifying varieties and interspecific genotypes by modelling and 

predicting genotype-specific spectra based on genetic and environmental origin. The data were 

split using the Duplex method (Snee, 1977) into a train set (N=541, 201, 108, 106, 126 

respectively for Core population, AB-QTL Bafia, AB-QTL Mbalmayo, AB-QTL Nioro) and a 

test set (N=139, 42, 32, 31, 34 respectively for the previous populations), maintaining the same 

proportionality within each group. The train set was used to train the model, while the test set 

was used to evaluate its performance. 

Prior to applying PLS-DA algorithms, the train set spectra were pre-processed by 

standard normal variate (SNV),Detrend, Savitsky Golay Filter and derivative and their 

combination (Manley & Baeten, 2018; Li et al., 2019; Sampaio and Brites, 2021). The best 

preprocessing was selected according to the error of classification by cross validation (2 K-fold 

group repeated 20 times) and the number of latent values was fixed. Then these parameters 

were used to build the PLS-DA model and applied on test set spectra. The resulting confusion 

matrix of a model was further evaluated to assess the model's performance using the following 

metrics for each group and for all (Recal & Demirel, 2021; Goodwin et al., 2022; Phuc et al., 

2023). 
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- Recall (sensitivity): Proportion of samples of a specific class predicted by the model as 

belonging to that class (Recall=TP/(FN+TP)).  

- Specificity: Number of samples predicted correctly to be in the negative class out of all 

the samples in the dataset that actually belong to the negative class 

(Specificity=TN/(FP+TN)). 

- Precision: proportion of correct predictions among all predictions for a particular class 

(Precision=TP/(TP+FP)). 

- Accuracy: number of samples correctly classified out of all samples present in the test 

set (Accuracy=(TP+TN)/(TP+FN+FP+TN)). 

- False-negative rate (FNR): proportion of false negatives (FNR=FN/(TP+FN)). 

- False-positive rate (FPR): proportion of false positives (FPR=FP/(TN+FP)). 

- F1-score: Harmonic mean of precision and recall (F_1 score= (2 x Recall x 

Precision)/(Recall+Precision)). 

True positive (TP) refers to a sample belonging to the positive class being classified correctly. 

True negative (TN) refers to a sample belonging to the negative class being classified correctly. 

False positive (FP) refers to a sample belonging to the negative class but being classified 

wrongly as belonging to the positive class. False negative (FN) refers to a sample belonging to 

the positive class but being classified wrongly as belonging to the negative class. Model 

performances were evaluated by their classification accuracy, which was calculated as the ratio 

of the number of correctly classified samples to the total number of samples. 

II.2.5.2. Phenotypic data analysis 

II.2.5.2.1. Analysis of variance 

Phenotypic data analyses for each environment were conducted using the R statistical 

programming language (R Core Team, 2021). Basic statistical analyses, such as mean and 

range calculations, were performed for each trait. The data collected were subjected to analysis 

of variance (ANOVA) following the method of Kuznetsova et al. (2017) to estimate the genetic 

and replication effects on each trait within each environment. This was done following a 

standard linear model with genotype, replication, block, and interaction effects:  

Yijk = μ + Gi + rj + bjk + eijk 

Where: Yijk = observed value for a given trait, μ = mean of the population, Gi = genotype 

effect, rj = replication effect, bjk = block within replication effect, and eijk = residual error. 
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II.2.5.2.2. Broad sense heritability  

To assess and quantify the genetic variability among the interspecific lines, heritability 

in broad sense (H2) was computed from the ANOVA following the method as outlined in 

Essandoh et al. (2022) as follow:  

H2 =((MSG-MSE)/r)/ ((MSG-MSE)/r +(MSE/r)) 

            Where: 

MSG= mean square of genotype 

 MSE= mean square of residual or environment 

r= the number of replications. 

II.2.5.2.3. Phenotypic correlation 

Phenotypic correlation analysis was conducted using Pearson's method to assess the 

relationship between traits across different environments, following the methodology 

suggested by Miller et al. (1958). Best linear unbiased predictors (BLUP) were extracted from 

the alpha lattice  model for each genotype and trait at lme4 R package (Bates et al., 2015) and 

used for trait corelation assessment and QTL analysis.   

II.2.5.3. Molecular data analysis 

II.2.5.3.1. Construction of a genetic linkage map 

Genotyping data obtained from the BC2F4 population was used for carrying out genetic 

linkage analysis using Joinmap software (Van Ooijen, 2006). Genotyping data for a total of 

16,279 SNPs has been generated using DArT markers. These DArT SNP markers were 

renamed with the prefix 'Ah_' and chromosome name where 'Ah' stands for Arachis hypogaea, 

followed by physical position such as Ah01_492746 refereed to the research reported by Khera 

et al. (2019) and Pandey et al. (2020). Initially, the raw SNPs were filtered based on MAF =5.0 

and missing calls of 30 %. After filtration, a total of 12,230 SNPs were retained for further 

analysis. The Chi-square (X2) test was applied to the 12,230 SNPs to remove the distorted SNP 

markers. Finally, a set of 1,450 SNP markers was used for the construction of the genetic map. 

The identical markers were removed using the function remove identical. The individual 

linkage group for each chromosome of a tetraploid peanut was constructed at LOD threshold 

3.0. The unmapped loci that do not show any linkage with SNP markers in a particular linkage 

group were considered as distorted and not mapped forcefully in the resulting linkage group. 

The intermarket distance was calculated by dividing the map length by the total number of SNP 
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loci mapped. In each linkage group, the intermarket distance was set to be less than 50 cM to 

avoid large genome intervals during QTL analysis. Kosambi mapping function was used to 

estimate the genetic distances and to convert the recombination frequencies into map distances 

in centimorgans (cM) (Kosambi, 2016).  

II.2.5.3.2. QTL analysis  

The QTL mapping was performed using the BLUPs value of each trait in each 

environment, Maroua, Mbalmayo and Bafia, together with a refined genetic map and genotypic 

data. Thus, marker-trait association analyses were conducted to investigate QTLs that are 

associated with the 15 traits in 123 BC2F4 lines. The inclusive composite interval mapping 

(ICIMADD) method (Meng et al., 2015) implemented in QTL IciMapping software v4.1.0.0  

was used to detect QTL and estimate their phenotypic effects. QTLs with a positive or negative 

additive effect for a specified trait imply that the increase in the phenotypic value of the trait is 

contributed by the alleles from the recurrent parent, Fleur11, and wild parent, ISATGR 278-

18, respectively. In order to indicate the presence of a significant QTL effect for each trait and 

get more information about QTL, the threshold method, LOD ≥ 2.5, value at type I error 5 %, 

was determined using 1000 permutation times. The specific parameters were set as: for 

detecting additive QTL, Step was 1.0 cM and PIN was 0.001. QTL were declared major if the 

phenotypic variance explained was >10% and minor when the variance explained was less than 

10 % (Collard et al., 2005).  

The final high-resolution linkage map for the major effect QTL was generated using the 

linkage map view package in R software (Ouellette et al., 2018). QTL for different traits were 

considered co-located, when their positions with significant LOD scores were located in the 

same marker intervals. The name of QTL was designated with an initial letter "q" (abbreviation 

of QTL), followed by the capital letters to designate the respective trait and, then, the 

chromosome number. This QTL nomenclature was referenced in the research report by Luo 

and Chen et al. (2017). Similarly, if more than one QTL for the same trait were identified, we 

added another number on the basis of the relative position of QTLs on the chromosome. 
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CHAPTER III. RESULTS AND DISCUSSION 

III.1. RESULTS 

III.1.1. Screening peanut core-collection and interspecific population for quality traits 

using NIRS 

III.1.1.1. Spectra profiles and quality control 

From the raw spectra, eleven relevant absorbance peaks were observed around the 

wavelengths of 929, 1033, 1465, 1763, 2306, 2350 and 2510 nm, with four wide spectral peaks 

appearing close to 1210, 1723, 1932 and 2140 nm (Appendix. II.). Only 2 of 4080 spectra 

(0.04%), were identified as an outlier and were discarded for analyses.  PCA was performed to 

check the effect of date on spectra acquisition, and no cluster related to date was found 

(Appendix III). With few exceptions, the Mahalanobis distance among the six subsets of each 

sample was consistent among samples (Fig. 12). Thus, the spectra graph is presented in Fig. 13 

as the average absorption of each sample from the six replicated spectra.  

 

Fig. 12. Plot showing Mahalanobis distance among the six subsets of each sample of four 

populations. Each dot represents one spectrum. MD Details of 40 samples (B) is figured from 

the 4080 spectra (A) for a better MD visualization among the 6 spectra of each sample. 
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III.1.1.2. Genetic variability and environmental impact on intact-seed composition 

The mean absorbance spectra of varieties and interspecific genotypes, according to their 

environment, are presented in Fig. 13. A huge variation of absorbance along the spectra was 

observed among varieties and interspecific genotypes within and between environments. Four 

absorbance strata, superimposed on each other, were observed for all wavelengths from 1000-

2500 nm (Fig. 13A).  

 

Fig. 13. NIRS spectra of intact-seed according to genetic and environment origin of samples 

without treatment (A) and after Stavisky Golay filter with derivative 2 pre-processing (B).   
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Each spectra group corresponds to each of the four studied sets. The widest stratum 

corresponded to the set of the core collection while the three other strata were each specific to 

the three sets of the interspecific population, each from one of the three studied environments, 

Bafia, Mbalmayo and Nioro (Fig. 13A). The absorbance range of interspecific population was 

highest in Bafia followed by Mbalmayo and Nioro, pointing out the effect of environmental 

factors on chemical composition of seeds. 

III.1.1.3. Pretreatment effects on spectra 

 The absorbance spectra pre-treated by Savitzky-Golay filter with a window width of 15 

points and the first derivative are shown in Fig. 13B. In contrast to raw data, the absorbance 

range of the interspecific population, particularly from Mbalmayo, was highest, at the relevant 

peak of 1723 and 1932 nm wavelengths (Fig. 13B). As expected, this indicates that the 

pretreatments eliminated physical effects due to seed dimension, surface of seed, etc., with 

consequences on light diffusion. In contrast to raw data, the absorbance range of the 

interspecific population was highest at the 1723 and 1932 nm wavelengths, particularly at 

Mbalmayo (Fig. 13B). Furthermore, a huge MD, from 1 to 8, was found among varieties and 

genotypes in one hand and among the 3 environments in the second hand, with the highest 

value from Mbalmayo compared to other environments (Fig. 14). 

 

 Fig. 14. Plot showing Mahalanobis distance among varieties and interspecific genotype. 
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III.1.1.4. Principal component analysis  

The first 5 PC represent 98 % of the total variability with the values 60.5, 17.0, 15.5, 3.6 

and 1.6, respectively. The 4 PC were presented as PC1/PC2 and PC3/PC4 score plots in (Fig. 

16). As expected, these figures show greater variability in the core collection and less 

variability in the other groups. The PC3/PC4 plot makes it easy to distinguish the 4 seed lots. 

These plots showed that samples from different genetic and environmental origins are able to 

be well clustered and that they have great potential to be correctly identified. Loading plots 

showing how each variable correlates with PC are shown in (Fig. 15). The first loading 

indicates that the regions around 1900 and 2150 nm have a higher influence on PC1.Likewise, 

regions around 1210, 1720 and 2300 nm are more related to PC2. For PC3, the region around 

2400 nm seems to be more important. And PC4 is more related to 1400, 1800, 1950 and 2150 

nm region.  

 

Fig.15. PCA loading plots for the fourth first PCs showing how each variable correlate to each 

PC for wavelength.  
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III.1.1.5. Discrimination of genetically related interspecific genotypes among  

              environments 

The score plots show that data could be grouped into four clusters, with overlapping main 

clusters at the margin, some interspecific genotypes and varieties superimposed, particularly, 

at the Nioro environment-set cluster (Fig. 16). The two most separated environments in the 

plane, determined by plot scores, were Mbalmayo and Bafia. Variation of seed constituents 

was widest in Bafia, followed by Mbalmayo and Nioro. With few exceptions, all interspecific 

genotypes from Mbalmayo have high positive values at the PC3 compared to the other 

environments. This suggests that Mbalmayo environment positively increases the seed traits 

associated with PC3. Finally, the African varieties studied in one environment added genetic 

variability to the environmental variability, resulting in a wide range of differences. 

 

Fig. 16. PCA visualization of core varieties and interspecific genotypes among environments. 

PCA 2-dimensional score plots of PC2 and PC1 (A) and PC3 and PC4 (B) using NIRS spectra.  

African varieties are labelled in black. interspecific AB-QTL genotypes from Bafia, Mbalmayo 

and Nioro, environments are labelled in red, green and blue, respectively. 
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III.1.1.6. Classification based on intact-seed spectra 

A PLS-DA model was developed, and the classification results of the model are shown 

in Table 4. The classification accuracy on the test set was 99.6% with correctly classified 

instances of the 4 samples sets, i.e., African varieties in one environment and the interspecific 

genotypes from the 3 environments (Table 4). Interestingly, the confusion matrix achieved for 

the two sets, Bafia and Nioro shows 100% of instances classified correctly with 100% at both 

sensitivity and specificity. These two sets do not show incorrect instances, even in the model 

generated when all other sets are considered, thus confirming that their intact-seed composition 

is very different from each other and from those of the other intact-seed samples. These results 

suggest that NIRS combined with machine vision is a very promising tool for the classification 

of peanut genotypes, depending on each combination of the genetic and environmental origins, 

that determine plant nutritional availability. 

Table 4. Confusion matrix showing classification performance of PLS-DA model applied to 

test set sample (N=139, Class 1: Core, Class 2: AB-QTL Bafia, Class 3: AB-QTL Mbalmayo, 

Class 4: AB-QTL Nioro). 

 Predicted 

  1 2 3 4 Actual 
 

Accuracy Precison Recall F1-score 

Actual 1 41 0 0 0 42 
 

0.993 0.976 1.000 0.988 

  2 0 32 0 0 32 
 

1.000 1.000 1.000 1.000 

  3 1 0 31 0 31 
 

 0.993 1.000 0.969 0.984 

  4 0 0 0 34 34 
 

1.000 1.000 1.000 1.000 
 

Pred 41 32 32 34 139  

  

 

 

Accuracy 0.996 

Specificity 0.998 

Recall 0.993 

Precision 0.993 

Proportion of false-negatives 0.007 

Proportion of false-positives 0.007 
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III.1.2. Phenotypic variability, heritability, and trait correlations in an interspecific 

population for yield-related traits 

III.1.2.1. Phenotypic variability  

Phenotypic variability across environments was observed, with all yield-related data 

combined showing a continuous normal or almost-normal distribution (Fig. 17). The 

phenotypic range of variation was moderate to high for all quantitative traits, except for days 

to 50% flowering in each environment (Appendix. II). Plant growth habit (GH) exhibited 

morphological variation ranging from semi-erect to the ground to totally erect. A similar range 

of variation was observed for pod beak (PB) and pod constriction (PC), ranging from slight to 

prominent and from slight to deep, respectively. Except for growth habit (GH), pod beak (PB), 

and pod constriction (PC), the mean population values for all other quantitative traits tended to 

be skewed toward the phenotypic value of the recurrent parent, Fleur11, for pooled data (Fig. 

17), across three environments. These mean ranges were observed to be: plant height: 10.71 to 

18.25, total biomass: 38 to 65.5, pod weight: 7.22 to 13.84, haulm weight: 31.31 to 52.13, 

harvest index: 16.63 to 27.67, hundred pod weight: 65.47 to 80.13, hundred seed weight: 34.08 

to 40.4, pod length: 23.27 to 26.74, pod width: 10.6 to 11.69, seed length: 11.57 to 12.8, seed 

width: 6.9 to 7.76. The range of variation in each environment is presented in Appendix IV.   

When comparing the phenotypic performance of each genotype across all three 

environments and combined data, an interspecific line, 11_28_10, consistently outperformed, 

followed by 11_28_20, for hundred pod weight, hundred seed weight, pod length, pod width, 

seed length, and seed width. Despite many genotypes showing high mean values outside of the 

cultivated parent's mean value, they were not consistently performing for many traits across all 

environments. Almost all studied traits showed moderate to high phenotypic variation, 

indicating transgressive segregation for these traits. Analysis of variance (ANOVA) showed 

significant differences (P < 0.001) among BC2F4 lines in each environment (Table 5) for all 

traits except for hundred pod weight (HPW) and pod width (PW) (P<0.05) at Mbalmayo and 

Bafia, respectively.   
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Fig. 17. The frequency distribution of yield-related traits among interspecific genotypes and 

the recurrent parent, Fleur11. The presence of an arrow sign indicates the position of the 

recurrent parent within the distribution. 
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III.1.2.2. Broad sense heritability 

Moderate (025) to high (0. 99) broad sense heritability estimates were observed for all 

studied traits. The heritability was relatively high for most traits at Maroua, possibly due to the 

smaller phenotypic variance and reduced environmental influence on trait expression (Table 

5). Briefly, the heritability estimates were observed for days to 50% flowering (D50%F) (0.58), 

plant height (PH) (0.59-0.69), total biomass (TB) (0.62-0.64), pod weight (PWT) (0.59-0.69), 

halum weight (HaW) (0.51-0.63), harvest index (HI) (0.54-0.77), 100 pod weight (HPW) (0.25-

0.63), 100 seed weight (HSW) (0.56-0.61), pod length (PL) (0.54-0.84), pod width (PW) (0.39-

0.89), seed length (SL) (0.52-0.8), seed width (SW) (0.44-0.8),  pod constriction (PC) (0.71-

0.85) and pod beak (PB) (0.66-0.79). 

III.1.2.3. Phenotypic correlations 

The correlation between traits is shown in Table 6.   Of these significant associations, 9 

associations were negative, and 30 significant associations were positive. Among yield 

contributing traits, TB showed strong positive correlations with PL (r=0. 29***), PWT (r=0. 

57***), HaW (r=0. 93***), and positive with HPW (r=0. 25**), HSW (r=0. 26**) and PW 

(r=0. 2**), however, it was negatively correlated with HI (r=-0. 39***). HI was also negatively 

correlated with HaW (r=-0. 57***). Pod weight (PWT) positive corelated with PL (r=0. 

41***), HaW (r=0. 38***), HI (r=0. 33***), HSW (r=0. 24**) and PW (r=0. 21*). The four 

pod and seed traits, PL, SL, HPW and HSW, had significant positive associations between each 

other. These, PL with SL (r=0. 41***), HSW (r=0. 4***) and HPW (r=0. 28***), SL with 

HSW (r=0. 32***) and HPW (r=0. 22**), and HPW with (r=0. 5***) suggest that these traits 

tend to vary together. Similarly, positive correlations were also revealed between each pair of 

the following traits: PW with SW (r=0.41***), HSW (r=0.48***) and HPW (r=0.57***), SW 

with HPW(r=0.3***) and HSW(r=0.37***) and HSW with HSW (r=0.57***), suggesting 

possible co-regulation or interdependence between these traits. PC was positively correlated 

with PB (r=0.49***), and SL (r=0.29***). Whereas, PB with SW (r=-0.33***), and PW (r=-

0.5***) were negatively correlated. PL and HSW were positively correlated with all traits 

except PL with PW and SW, and HSW with PC and HI, indicate their strong influence on 

overall plant productivity and seed quality. 
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Table 5. Summary statistics of traits in the three environments 

D50%F: days to 50% flowering, PH: plant height, GH: growth habit, PB: pod beak, PC: pod constriction, PL: pod length, PW: pod width, SL: 

seed length, SW: seed width, TB: total biomass, PWT: pod weight, HaW: haulm weight, HPW: hundred pod weight, HSW: hundred seed weight, 

F: f calculated, Pr: probability value (p<0.001=***, p<0.01=** and p<0.05=*), Env: environment and H2=broad sense heritability. 

 

 

. Maroua Mbalmayo Bafia 

Traits Mean F Pr H2 Mean F Pr H2 Mean F  Pr H2 

GH         4.66 3.41 <0.001*** 0.71         

D50%F         27.00 2.30 <0.001*** 0.58         

PH 12.32 234 <0.001*** 0.99 16.41 2.45 <0.001*** 0.59         

TB 67.24 2.62 <0.001*** 0.62 39.21 2.70 <0.001*** 0.63 50.25 2.78 <0.001*** 0.64 

PWT 16.34 2.45 <0.001*** 0.59 9.22 2.51 <0.001*** 0.60 7.920 3.28 <0.001*** 0.69 

HaW 51.20 2.70 <0.001*** 0.63 30.12 2.04 <0.001*** 0.51 43.90 2.18 <0.001*** 0.54 

HI 27.12 3.80 <0.001*** 0.74 24.23 2.17 <0.001*** 0.54 15.27 3.00 <0.001*** 0.67 

HPW 76.94 2.70 <0.001*** 0.63 69.59 1.33 0.027* 0.25 72.59 2.20 <0.001*** 0.55 

HSW 34.86 2.30 <0.001*** 0.57 35.52 2.27 <0.001*** 0.56 39.45 2.53 <0.001*** 0.61 

PL 25.00 6.08 <0.001*** 0.84 25.29 2.60 <0.001*** 0.73 24.67 2.18 <0.001*** 0.54 

PW 11.49 7.79 <0.001*** 0.89 10.98 2.44 <0.001*** 0.59 11.09 1.67 0.002** 0.39 

SL 12.34 6.83 <0.001*** 0.86 11.88 2.88 <0.001*** 0.65 12.02 2.12 <0.001*** 0.52 

SW 6.95 4.66 <0.001*** 0.80 7.71 1.75 <0.001*** 0.44 7.120 2.11 <0.001*** 0.50 

PC 3.85 6.63 <0.001*** 0.85 4.60 4.96 <0.001*** 0.80 4.590 3.44 <0.001*** 0.71 

PB 4.87 4.76 <0.001*** 0.79 5.33 4.23 <0.001*** 0.77 5.290 2.97 <0.001*** 0.66 
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Table 6. Pearson correlations for yield component traits evaluated over 3 environments. 

                    0.49 *** PC 

         0.29*** 0.16 SL 

                 0.12  -0.05 0.08 HI 

            
 

 0.17*  0.41***  0.32*** 0.24 ** PL 

             0.41***  0.33***  0.14 -0.02 -0.07 PWT 

           0.38***  0.19*  -0.57***  0.09  0.01 -0.2*  HaW 

         0.97***  0.57***  0.29***  -0.39***  0.1  0.00 -0.21* TB 

       0.2**  0.15  0.21**  0.13  0.02 0.12  -0.23** -0.5***  PW 

     0.57***  0.25**  0.2**  0.16  0.28*** 0.00  0.22**  -0.19* -0.26** HPW 

   0.5***  0.48***  0.26**  0.19*  0.24**  0.4***  0.02  0.32***  -0.02 0.18* HSW 

 0.37***  0.3***  0.41***  0.12  0.16   0.15  0.18  0.09 0.14  -0.08  -0.33*** SW 

HSW HPW PW TB HaW PWT PL HI SL PC PB   

Values with *, ** and *** implies significant at p = 0.05, p < 0.01 and p < 0.001 respectively. HPW: hundred pod weight, HSW: hundred seed 

weight, PW: pod width, TB: total biomass, HaW: halum weight, PWT: pod weight, PL: pod length, SL: seed length, HI: harvest index, PC: pod 

constriction, PB: pod beak and SW: seed width. 

 



61 

III.1.3. Identification of QTL associated with yield traits 

III.1.3.1. Linkage map construction 

A genetic linkage map was constructed (Table 7) containing 1,450 DArT SNP loci. 

spans a total length of 1,358.02 cM, with an average distance of 2.21 cM between adjacent 

markers on 20 linkage groups (LGs). The number of markers per linkage group varies from 5 

to 254, averaging 72.5 markers per group. The LGs ranged from 36.07 to 112.47 cM in length, 

with average inter-marker distances of 0.37 to 8.73 cM, and 5 LGs contained over 100 marker 

loci. Among the linkage group, Ah18 was the shortest, with 49 loci spanning 36.07 cM, while 

Ah02 was the longest group, with 59 loci spanning 112.47 cM. A Chromosome, Ah16 

contained the fewest markers with 5 loci, whereas Ah08 had the highest density with 254 loci. 

The highest marker density of 2.68 SNPs/cM was observed on Ah04, while Ah13 displayed 

the lowest marker density of 0.11 SNPs/cM. 

Table 7 . Summary of the genetic map constructed. 

Linkage 

group 

Number of SNPs 

Mapped 

Map 

distance(cM) 

Inter -marker distance 

(cM) 

Ah01 211 87.07 0.41 

Ah02 59 112.47 1.91 

Ah03 63 85.69 1.36 

Ah04 112 41.78 0.37 

Ah05 26 37.37 1.44 

Ah06 117 59.32 0.51 

Ah07 16 32.58 2.04 

Ah08 254 109.39 0.43 

Ah09 203 85.55 0.42 

Ah10 91 99.49 1.09 

Ah11 33 79.46 2.41 

Ah12 34 68.61 2.02 

Ah13 9 78.59 8.73 

Ah14 57 90.89 1.59 

Ah15 14 42.58 3.04 

Ah16 5 37.64 7.53 

Ah17 43 45.8 1.07 

Ah18 49 36.07 0.74 

Ah19 44 73.56 1.67 

Ah20 10 54.11 5.41 

Total 1450 1,358.02 2.21 
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III.1.3.2. QTL identification 

The QTL analysis revealed that at least one QTL was detected for each of the analysed 

traits, except for pod beak. A total of 44 main effects QTLs were identified for 14 yield-traits, 

scattered across 17 different linkage groups (LGs), as summarised in Table 8 and Appendix V. 

Notably, no QTLs were detected on Ah04, Ah12 and Ah16.  

Days to 50% flowering: - 

• Four QTLs were identified for the days to 50% flowering (D50%F). These QTLs 

namely qD50%FAh01, qD50%FAh10.1, qD50%FAh10.2 and qD50%FAh14 were 

detected on Ah01, Ah10 and Ah14, individually explaining 4.33-7.05% of the 

phenotypic variance. In all cases, the alleles associated with flowering precocity 

belonged to the cultivated parent, Fleur11.  

Plant architecture: - 

▪ Plant height (PH) and growth habits (GH) are the most important plant architecture 

traits. In total, six QTLs were identified on 5 LGs. Among these, two QTLs, qGHAh03 

and qGHAh06 on Ah03 and Ah06 respectively, were detected for GH. Both QTL 

exhibited phenotypic values associated with alleles from the recurrent parent. 

Additionally, four QTLs, namely qPHAh01.1, qPHAh01.2, qPHAh15, and qPHAh17 

located on Ah01, Ah15, and Ah17, were identified for PH. Except for qPHAh01.2, the 

positive contribution was linked to alleles of ISATGR 278-18. These three QTLs 

collectively explained 28.27% of the phenotypic variance.  

Yield related traits: - 

▪ Ten QTLs were identified for the most important pod and seed traits, including pod 

weight (PWT), hundred pod weight (HPW) and hundred seed weight (HSW). Among 

these, four QTLs for HPW (qHPWAh01, qHPWAh05, qHPWAh08, and qHPWAh13) 

were detected on Ah01, Ah05, Ah08, and Ah13, explaining 7.49% to 15.39% of the 

phenotypic variance. Notably, qHPWAh05 showed increased HPW associated with 

ISATGR 278-18 alleles, while the other three QTLs were linked to Fleur11 alleles, 

collectively contributing 38.4% to the phenotypic variance. For HSW, five QTLs were 

identified, all showing positive contributions from the recurrent parent, Fleur11. 

Additionally, a single QTL, qPWTAh01, was found for PWT on Ah01, with the PWT 

increase linked to ISATGR 278-18 alleles.  
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It was noted that three QTLs (qHPWAh01, qHSWAh11 and qHSWAh17) appear to be 

novel and have not been previously reported. 

Table 8. Summary of detected QTL 

Traits Evt LG C1 PS C2 PEV% LOD ADD Parent 

D50%F MB 1 56.50 57 57.50 7.05 2.64 -0.07 ISATGR 278-18 
 

D50%F MB 10 40.50 41 41.50 4.33 2.63 -0.22 ISATGR 278-18 
 

D50%F MB 10 45.50 46 54.50 5.86 3.14 -0.27 ISATGR 278-18 
 

D50%F MB 14 61.50 62 65.50 6.26 2.78 -0.33 ISATGR 278-18 
 

GH MB 3 74.50 75 75.50 9.10 2.62 0.30 Fleur 11 

GH MB 6 46.50 50 51.50 6.56 2.57 0.29 Fleur 11 

PH MR 1 72.5 73 73.5 6.10 2.79 0.16 Fleur 11 

PH MB 1 20.50 21 21.50 9.42 3.70 -0.64 ISATGR 278-18 
 

PH MB 15 5.50 7 9.50 8.77 3.33 -1.11 ISATGR 278-18 
 

PH MB 17 31.50 32 32.50 10.08 2.72 -0.53 ISATGR 278-18 
 

TB MB 7 22.50 23 25.50 9.86 2.73 2.80 Fleur 11 

PWT  BF 1 82.5 86 86 12.73 3.6 -1.14 ISATGR 278-18 
 

HaW MR 19 59.5 60 60.5 7.56 2.72 2.48 Fleur 11 

HaW MB 7 22.50 24 25.50 10.06 2.76 0.90 Fleur 11 

HaW BF 1 2.5 4 4.5 3.67 3.47 -0.07 ISATGR 278-18 
 

HaW BF 2 41.5 42 42.5 10.19 7. 96 4.26 Fleur 11 

HaW BF 18 0 2 2.5 2.86 2.7 -0.37 ISATGR 278-18 
 

HaW BF 19 60.5 61 61.5 7.96 4.8 -5.12 ISATGR 278-18 
 

HI MR 2 82.5 84 85.5 9.13 2.97 -4.75 ISATGR 278-18 
 

HI MB 18 31.50 32 33.50 9.37 2.57 1.86 Fleur 11 

HI BF 8 88.5 89 91.5 17.56 7.5 -2.22 ISATGR 278-18 
 

HI BF 14 15.5 18 20.5 5.13 2.7 -1.71 ISATGR 278-18 
 

HI BF 14 46.5 48 48.5 4.71 2.5 -1.92 ISATGR 278-18 
 

HPW MR 13 6.5 11 16.5 12.32 2.51 3.95 Fleur 11 

HPW MB 1 21.50 22 22.50 10.69 2.84 0.70 Fleur 11 

HPW MB 8 56.50 57 57.50 15.39 3.36 0.63 Fleur 11 

HPW BF 5 4.5 8 8.5 7.49 2.66 -1.09 ISATGR 278-18 
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Traits Env. LG C1 PS. C2 PVE% LOD ADD Parents  

HSW      MR  3         56.5        57         57.5       8.73        2.66       0.04    Fleur11 

HSW MR 11 20.5 22 23.5 10.7 3.66 0.01 Fleur11 

HSW BF 8 88.5 89 91.5 10.17 2.99 0.27 Fleur11 

HSW BF 13 8.5 12 16.5 6.95 4.08 2.45 Fleur11 

HSW BF 17 0 1 3.5 8.52 2.92 1.15 Fleur11 

PL MB 14 5.50 6 8.50 6.07 2.82 1.05 Fleur11 

PW BF 11 42.5 44 44.5 8.58 5.36 -0.14 ISATGR 278-18 

SL MB 14 42.50 44 47.50 11.19 3.07 0.33 Fleur11 

SL BF 1 21.5 22 22.5 7.74 5.12 -0.01 ISATGR 278-18 
 

SL BF 6 26.5 27 27.5 7.24 4.63 0.26 Fleur11 

SL BF 8 28.5 29 29.5 14.53 6.7 0.03 Fleur11 

SL BF 9 80.5 81 81.5 4.80 2.8 0.13 Fleur11 

SL BF 18 3.5 4 4.5 7.66 2.74 0.19 Fleur11 

SW MR 19 0 2 6.5 9.16 2.54 -0.25 ISATGR 278-18 

SW MR 20 50.5 54 54 8.84 3.05 -0.20 ISATGR 278-18 

SW BF 1 2.5 4 4.5 7.04 2.67 0.09 Fleur11 

PC BF 17 6.5 7 8.5 11.49 4.12 0.48 Fleur11 

D5%F: Days to 5% flowering, GH: Growth habit, PH: Plant height, TB: Total biomass, PWT: 

Pod weight, HaW: Haulm weight, HI: Harvest index, HPW: Hundred pod weight, HSW: 

Hundred seed weight, PW: Pod width, PL: Pod length, SL: Seed length, PC: Pod constriction, 

SW: Seed width, LGs: Linkage groups, CI: Confidence interval, PS: Position, PVE: Phenotypic 

variance explained and ADD: Additive. 

▪ Moreover, a total of 12 QTLs explaining 2.86% to 17.56% of the phenotypic variance 

were detected for three other yield traits: total biomass (TB), haulm weight (HaW), and 

harvest index (HI) mapped across 8 LGs. Specifically, qTBAh07 for TB, qHaWAh01, 

qHaWAh02, qHaWAh07, qHaWAh18, qHaWAh19.1and qHaWAh19.2 were 

identified for HaW, while qHIAh02, qHIAh08, qHIAh14.1, qHIAh14.2 and qHIAh18 

were associated with HI mapped on Ah01, Ah02, Ah07, Ah08, Ah14, Ah18 and Ah19. 

Among these QTLs, qTBAh07, qHaWAh02, qHaWAh07, qHaWAh19.1, and qHIAh18 

showed increased phenotypic values for their respective traits linked to the recurrent 

alleles. 
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Pod morphology: - 

▪ A total of 3 QTLs were detected for traits related to pod constriction (PC), pod length 

(PL) and pod width (PW) spread over 3 different LGs (Ah11, Ah14, and Ah17). 

These QTLs individually explained 6.07% to 11.49% of the phenotypic variance 

(Table 8). For a QTL, qPWAh11 the amphidiploid alleles contributed with the 

increase pod width. 

Seed morphology: - 

▪ The QTL analysis for seed morphology revealed six QTL for seed length (SL) and 

three QTL for seed width (SW) mapped on 8 LGs. These QTLs, qSLAh01, qSLAh06, 

qSLAh08, qSLAh09, qSLAh14, qSLAh18, qSWAh01, qSWAh19 and qSWAh20, 

explained between 4.8% to 14.53% of the observed phenotypic variance. For 

qSLAh01, qSWAh19 and qSWAh20 the favourable alleles were associated with the 

wild parent alleles. Out of 44 detected QTLs linked with yield-traits, 13 were major 

(PVE >10%) linked with PH, PWT, HaW, HI, HPW, HSW and SL(Fig.18). Among 

the 13 major QTLs, qPWTAh01, qPHAh17 and qHIAh08, favourable alleles were 

from ISATGR 278-18. The stability of the QTL is an important parameter 

determining the utility of QTLs. Among the 13, QTL for HaW, HPW, HSW and SL 

were detected stable across two environments.  

III.1.3.3. Co-localization of QTL 

The co-localization of QTLs for different traits in the study provided valuable insights 

into the genetic control of key agronomic traits in peanut. Five genomic regions were identified 

to contain co-localized QTLs for different traits, with two QTLs co-mapped on Ah01, Ah07, 

Ah08, and Ah13 showing pleiotropic effects or tight linkage.  On Ah01, a 2.5-4.5 cM region 

(Ah01_200647 - Ah01_1334363) carried co-localized QTLs for haulm weight (HaW) and seed 

width (SW) at Bafia (BF). Another co-mapped QTL on the same LG, between 21.5-22.5 cM 

(Ah01_4928888-Ah01_4929547), clustered for seed length (SL) and hundred pod weight 

(HPW) at Bafia (BF) and Mbalmayo (MB), explaining 7.74 and 10.69% PVE, respectively. 

On Ah07, a co-mapped QTL for total biomass (TB) and HaW was identified at 22.5-25.5 

cM (Ah07_79222318 - Ah07_9653368) at MB. On Ah08, a major QTL was found at 88.5-91.5 

cM (Ah08_48931192 - Ah08_49571607) exhibiting pleiotropic effects on harvest index (HI) 
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and hundred seed weight (HSW), explaining 17.56 and 10.17% PVE, respectively. 

Additionally, a QTL on Ah13 flanked by markers Ah13_6340341 - Ah13_6420673 mapped at 

position 6.5-16.5 cM was co-localized for HSW (BF) and HPW at Maroua (MR) with 6.95–

12.32% PVE respectively.  

Out of 10 co-localized QTLs, qTBAh07 and qHaWAh07, and qHSWAh13 and 

qHPWAh13 were expected given the strong positive correlations between these co-localized 

traits (Table 8), indicating the existence of pleiotropic effects of a single gene or tight linkage. 

However, qHaWAh01 and qSWAh01, and qHIAh08 and HSWAh08 were not phenotypically 

correlated, as well as the allele derived from ISATGR 278-18 increased the value of haulm 

weight and harvest index but decreased the value of hundred seed weight and seed width  

 

Fig.18. Genomic location of major QTLs. q: QTL, HPW: hundred pod weight, HaW: halum 

weight, HI: harvest index, PH: plant height, PWT: Pod weight, SL: seed length, HSW: hundred 

seed weight PC: pod constriction, BK: Bokito/Bafia, MB: Mbalmayo, MR: Maroua and 1, 2. 

7, 8, 11, 13,14 and 17 related to Ah01-Ah17. 
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III.2. DISCUSSION 

This study aimed to employ a non-destructive extraction method to screen peanut 

germplasms for seed quality traits, while simultaneously assessing phenotypic variability and 

identifying genomic regions or QTL associated with yield-related traits.  

III.2.1. Screening peanut core-collection and interspecific population for quality traits 

This part of the study aimed to assess the potential of near infrared spectroscopy 

(NIRS) for rapid screening of germplasm variability using intact seeds from 300 cultivars of 

an African core-collection and 133 genotypes of an interspecific population. These samples 

were field-evaluated in three environments across two countries. We conducted PCA analysis 

for genotype discrimination and developed a PLS-DA based prediction model to classify 

varieties and genotypes. Subsequently, we discussed the efficacy of NIR spectroscopy as a tool 

for fast and non-destructive characterization of large germplasm in various environments, 

within both intra and interspecific breeding contexts. 

III.2.1.1. NIR as tool for rapid and non-destructive large samples assessment in peanut 

Peanut is an important oilseed and the need to characterize peanut germplasm is essential 

as the demand for peanut is increasing continuously in various end product applications. 

According to the rapid and non-destructive attributes of the NIR, a total of 6 days was required 

to obtain all spectra of the six subsets of intact-seed of the 680 samples. The low level (0.04%) 

of outlier spectra on the global data set was considered as a good foundation for analysis. From 

raw spectra, eleven major peaks were observed around the wavelengths 929, 1033, 1210, 1465, 

1723, 1763, 1932, 2140, 2306, 2350 and 2510 nm. The region around 1210, 1763, 2306 and 

2350 nm could all be assigned to fatty acids or oil content, of which the spectral position in 

agreement with earlier studies by Govindarajan et al. (2009), Sundaram et al. (2010) and Tao 

et al. (2019).  

The spectral peak around 2140 nm would likely result from the absorbance of proteins. 

The absorbance peak around 1465 nm might be related to the O-H overtone bond. The sharp 

peak around 1932 nm was due to the strong absorption of water contained in peanut kernels 

(Govindarajan et al.,2009; Sundaram et al., 2010; Tao et al.,2019).  

III.2.1.2. Germplasm variability and environment impact on seed chemical composition  

A wide genetic variation was found among varieties and interspecific genotypes within 

environments.  
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The magnitude of the genetic influence among varieties and genotypes suggested that 

nutritional related traits were amenable to improvement through intra and interspecific 

breeding (Huang et al., 2019;  Nawade et al., 2019; Shasidhar et al., 2020). An environmental 

effect on seed compounds was highlighted by using the same interspecific population, thorough 

3 environments. The largest variation was found in Bafia, followed by Mbalmayo and Nioro. 

Bafia in savanna and Mbalmayo in forest, grown under yellow and ocher vertisol, respectively 

in Cameroun while Nioro in Sahel in Senegal exhibited leached ferruginous soil. The 

interaction between all agroecological scenarios (climate, vegetation and soil) and spatial 

factors create a complex system of environments that affect peanut plant growth and 

development, leading to a discrimination among genotypes within and between environments. 

As previously reported by chemical studies, seed composition is influenced by 

environment but also has a strong genetic component. The variation of oil composition has 

been related to temperature (Harris and James, 1969), planting date (Andersen and  Gorbet, 

2002), location and soil moisture (Holaday and Pearson, 1974; Young et al., 1974), 

photoperiod (Dwivedi et al.,2000), market grade (Mozingo et al., 1988) and genotype (Harris 

and James, 1969; Worthington and Hammons, 1977; Holaday and Pearson, 1974; Norden et 

al., 1987; Mozingo et al., 1988; Harch et al., 1995; Gimode et al.,2020). However, with 

multiple environmental factors mentioned above, it is difficult to decipher factors underlining 

variation in this study. Likewise, identifying suitable peanut genotypes for global ecological 

zones remains a challenging task due to the significant genotype variability across 

environments. Finally, the African varieties studied in one environment added genetic 

variability to the environmental one, resulting in a wide range of variability.  

III.2.1.3. Pattern of genetic variability of interspecific population in comparison to core- 

collection 

According to the spectra profiles and PCA plot, the genetic pattern of interspecific 

population covers, remarkably half of the spectrum of the core-collection, that turned out to be 

largest, as we expected. Interestingly, we found specific genetic variation among interspecific 

genotypes that was not subtle cover by the core-collection at the common Nioro environment. 

Interspecific genotypes with positive value on the main PCA axis were recorded as promising 

genotypes for quality traits. As early reported, three introgression lines with elevated 

Oleic/Linoleic profiles were found using chemical survey of 77 Peanut interspecific lines 

(Gimode et al.,2020), showing the results of wild genes. The genotypes recorded in study could 

be recommended for further breeding for developing suitable varieties.  



69 

In this respect, evaluation of the segregating interspecific population could further ease the 

discovery of QTL and valuable wild genes that contribute to improved seed quality. 

III.2.1.4. Classification of varieties and interspecific genotypes using PLS-DA modelling 

A PLS-DA model was successful developed from seed spectra to classify varieties and 

genotypes according to their genetic and environmental origin. A robust prediction accuracy 

of 99.6% was achieved. The confusion matrix achieved for the two environments, Nioro and 

Bafia shows 100% of instances classified correctly with 100% at both sensitivity and 

specificity. This confirm that their seed chemical composition was very different from each 

other and from those of the other seed samples. These results suggested that PLS-DA model 

could be used to classify peanut genotypes depending on the combination of the genetic and 

environment origins of seeds, which influence plant nutritional properties. In further studies, 

the current model would be confronted to wide others breeding populations in different 

environment to predict genetic and environment origin and nutritional content of whole seeds. 

III.2.2.  Phenotypic variability, heritability, and trait correlations in an interspecific 

population for yield-related traits 

 One of the aims of this study was to assess phenotypic variability among 133 BC2F4 

interspecific genotypes, with a particular emphasis on estimating heritability and determining 

trait associations for yield traits. 

III.2.2.1. Phenotypic variability 

The study revealed significant genetic differences among the 133 genotypes of the 

interspecific BC2F4 population, indicating rich phenotypic diversity. This diversity, 

demonstrated across all quantitative traits except days to 50% flowering, aligns with an 

approximately normal distribution, indicative of a polygenic inheritance model. This model is 

particularly suited for QTL analysis, as highlighted by previous studies (Singh & Singh, 2015; 

Getahun, 2021). Moreover, qualitative traits displayed morphological variation, suggesting 

control by multiple genes with minor effects. For instance, the qualitative trait of plant growth 

habit (GH) exhibited a spectrum of morphological variations, ranging from semi-erect to the 

ground to completely erect. Similar variability was observed for pod beak (PB) and pod 

constriction (PC), ranging from slight to prominent and slight to deep, respectively. These 

findings align with previous research by Fonceka et al. (2012a) and Sambou et al. (2017), 

further highlighting the polygenic nature of these traits.  
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The presence of transgressive segregation underscores the potential of introgression 

breeding to broaden the genetic base of cultivated crops. Certain lines within the studied 

population surpassed the original parent in performance, indicating promising targets for 

breeding endeavours. In this study, across the three environments studied, significant 

phenotypic variability persisted, emphasizing the strong influence of both environmental 

factors and genotype responses. Hence, yield-related traits of peanut are strongly determined 

by environmental factors and different genotypes, which may react differently to 

environmental factors. 

Introgression breeding, involving the transfer of desirable genes from wild germplasm 

into cultivated parental backgrounds, presents a unique avenue for enhancing genetic diversity 

and improving crop traits. Previous studies, such as that by Sharma et al. (2013), have 

underscored the role of hybridization and introgression in generating phenotypic variability 

and developing improved crop varieties. In this study, high rates of segregation were observed 

based on mean values of yield traits, with certain advanced backcross lines exhibiting superior 

traits compared to the cultivated parent. Consistently outperforming in all environments and 

pooled data, 11_28_10 emerged as a notable line, followed by 11_28_20, across various yield-

related traits such as hundred pod weight, hundred seed weight, pod length, pod width, seed 

length, and seed width. Transgressive segregation was evident, with mean values of certain 

traits falling beyond the ranges defined by the parent line Fleur11. Despite some 

inconsistencies across environments and traits, most traits exhibited significant degrees of 

transgressive segregation among genotypes. This finding was also reported by Faye et al. 

(2015), Chen et al. (2017), Khedikar et al. (2017), Liang et al. (2018), Huang et al. (2015b) 

and Chen et al. (2016), using RIL population, Fonceka et al. (2012a), and Sambou  (2017) with 

BC population, who reported transgressive segregant yield component traits in various 

populations of peanut. 

 ANOVA analysis revealed highly significant phenotypic variations (P<0.001) among 

the 133 BC2F4 lines for most traits, further indicating the substantial contribution of genomic 

regions or QTL from the wild relative of cultivated peanut to yield-related traits. This 

underscores the potential of harnessing genetic traits from wild relatives in breeding programs 

aimed at improving peanut yield.  
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III.2.2.2. Broad sense heritability  

Broad-sense heritability estimation offers insight into the proportion of transmissible 

genetic variation relative to total variation under specific environmental conditions, providing 

valuable information for selection decisions (Falconer and Mackay, 1996). Traits exhibiting 

higher broad-sense heritability across diverse environments or seasons are more reliably 

selectable in breeding programs, as they are primarily governed by genetic factors. Elevated 

heritability values indicate a substantial influence of additive genetic effects on the target traits.  

In this study, a range of heritability values was observed across different traits and 

experimental environments, suggesting varying degrees of genetic and environmental 

influence on trait expression. Notably, moderate to high broad-sense heritability (0.39-0.89) 

was observed for most traits, with exceptions such as relatively low heritability (0.25) for 

hundred pod weight at Mbalmayo and very high heritability (0.99) for plant height at Maroua. 

These findings are consistent with previous research by Fonceka et al. (2012a), Huang et al. 

(2015), Chen et al. (2017, 2018), Luo et al. (2017, 2018), who reported high heritability for 

traits such as hundred pod and seed weight, pod and seed length, and width (0.63-0.95). 

 The high broad-sense heritability values (up to 0.84) for these traits, including in this 

study, indicate that genetic factors predominantly govern the observed variation, with minimal 

influence from environmental factors. This suggests the potential for progress through selection 

strategies. Across the three environments, broad-sense heritability values exceeding 0.57 in 

Maroua were notable, likely due in part to the uniform environmental conditions at the onset 

of the experiment. 

Similarly, moderate to high heritability estimates (0.51-0.74) were observed in this study 

for traits such as haulm weight, harvest index, pod weight, and total biomass, consistent with 

findings by (Fonceka et al., 2012a; Faye et al., 2015). Plant height, a trait closely linked to 

plant architecture, lodging resistance, biomass, yield, and mechanized harvesting adaptability 

in crops like peanut (Lv et al., 2018), exhibited moderate to high broad-sense heritability (0.43-

0.89), as reported by previous studies (Fonceka et al., 2012a; Huang et al., 2015b; Khedikar et 

al., 2017; Lv et al., 2018). These results underscore the complexity of trait heritability, which 

fluctuates with varying environmental conditions. Consequently, breeding lines selected based 

on performance in one location may not necessarily perform optimally in another environment. 
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III.2.2.3. Phenotypic correlation  

Correlation analysis provides insight into the indirect selection of quantitative traits by 

assessing the degree and direction of association between them. In this study, 39 significant 

associations were identified, with 9 being negative and 30 being positive. For instance, total 

biomass and haulm weight exhibited a highly positive correlation (0.97***), consistent with 

findings by Fonceka et al. (2012a) (0.95***) and Sambou  (2017) (0.93***). Additionally, 

significant positive associations were observed between total biomass and pod weight 

(0.57***), hundred seed weight and hundred pod weight (0.57***), pod width and hundred 

pod weight (0.5***), hundred pod weight and hundred seed weight (0.5***), pod constriction 

and pod beak (0.49***), and pod width and seed width (0.48), among others. Conversely, 

negative significant associations were noted between harvest index and haulm weight (-

0.57***), harvest index and total biomass (-0.39***), pod beak and pod width (-0.5***), and 

pod beak and seed width (-0.33***), consistent with previous studies by Fonceka et al. (2012a) 

and Faye et al. (2015), who reported negative correlations between harvest index with total 

biomass and halum weight.  

Although significant positive associations were observed between traits such as hundred 

pod and seed weight, and pod and seed length, no significant correlations were found between 

pod length and pod width, and seed length and seed width. However, previous studies have 

reported positive correlations among these traits (Fonceka et al., 2012a; Huang et al., 2015b; 

Chen et al., 2016, 2017; Luo et al., 2017, 2018). Notably, pod length and hundred seed weight 

exhibited significant correlations with most studied traits, suggesting their regulatory roles in 

other yield traits. Significant positive correlation was also reported between pod constriction 

with pod length and pod beak in the current study by (Fonceka et al., 2012a; Zhang et al., 

2023), as this study confirms that pod constriction significantly positively correlated with pod 

beak, pod length and seed length, and, pod beak positively correlated with pod length whereas 

significant negatively correlated with pod width and seed width. 

Strong positive correlations between yield-related traits suggest the involvement of 

common genes or pathways at the molecular level, potentially sharing genomic regions. 

Conversely, negative correlations imply independent inheritance of these traits. Utilizing these 

strong positive correlations can aid in simultaneous trait improvement through modern 

breeding approaches. 
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III.2.3. Identify genomic regions (QTLs) associated with yield- traits 

This study aims to identify genomic regions (QTLs) associated with yield-contributing 

traits in peanut, which are complex and influenced by multiple genes, modifiers, and 

environmental factors. Understanding the genetic control behind these traits is crucial for 

marker-assisted selection (MAS), which has proven successful in enhancing traits such as rust 

and late leaf spot resistance and increasing oleic acid content (Chu et al., 2011; Kolekar et al., 

2017; Shaidhar et al., 2020). 

Despite challenges posed by limited genetic diversity within cultivated peanut 

germplasm due to its monophyletic origin and polyploid nature, wild peanut species harbour 

valuable traits that could enrich cultivated varieties (Upadhyaya et al., 2011). However, 

transferring genes from wild relatives faces hurdles like ploidy differences and the risk of 

unwanted traits (Burow et al., 2001; Kumari et al., 2014). Synthetic tetraploids, merging wild 

relatives with cultivated peanuts, have overcome these challenges, expanding the gene pool 

(Simpson et al., 1993; Favero et al., 2006; Mallikarjuna et al., 2010). 

Amphidiploids have enabled exploration of wild peanut genetics, revealing many 

positive QTL effects from wild alleles (Fonceka et al., 2012a, 2012b; Sambou , 2017).  

Therefore, this study utilizes an interspecific backcross population (BC2F4) derived from the 

cross between recurrent parent Fleur11 and the amphidiploid ISATGR 278-18. Through 

genotyping with Diversity Array Technology (DArT) and DArTseq, QTLs associated with 

yield-related traits were mapped across three distinct peanut cultivation environments in 

Cameroon, aiming to identify chromosomal regions linked to these traits and tap into beneficial 

alleles from wild species.  

III.2.3.1. Linkage map  

In genetics research, creating linkage maps is crucial for understanding gene inheritance 

and its connection to specific traits. In our study, we constructed a linkage map using 1,450 

DArT markers, covering 1,358.02 cM with an average distance of 2.21 cM between adjacent 

markers across 20 linkage groups.  

Previous peanut AB-QTL studies have utilized various populations and crosses to 

effectively map genetic loci. For instance, the first tetraploid genetic map in peanut, involving 

the amphidiploid (cultivated ‘Florunner’ x synthetic ‘TxAG-6’), incorporated 370 RFLP loci 

across 23 linkage groups (Burow et al., 2001).  
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Similarly, the second map, based on an AB-QTL population derived from a cross between 

cultivated tetraploid and synthetic amphidiploid [(Fleur 11 x (A. duranensis V14167 x A. 

ipaensis KG30076)] x 4), mapped 147 loci (Fonceka et al., 2009). Additionally, the synthetic 

amphidiploid ISATGR 278–18 (A. duranensis ICG 8138 x A. batizocoi ICG 13160) crossed 

with the recurrent parent ICGS 76 produced a linkage map with 114 microsatellite SSR markers 

spanning 746.15 cM (Kumari et al., 2014). More recent studies have constructed two AB-

populations, (ICGV 91114 x ISATGR 1212 and ICGV 87846 x ISATGR 265-5A), with 258 

loci (1,415.7 cM map length and map density of 5.5 cM/loci) and 1,043 loci (1,500.8 cM map 

length with map density of 1.4 cM/loci), respectively (Khera et al., 2019). These populations 

derived from wide crosses exhibit high polymorphism rates compared to those from within 

cultivated genotypes, indicating the introgression of novel alleles from the wild parent into the 

cultivated parent. This introgression results in a more diverse and potentially adaptive genetic 

background.  

In our study, both the number of loci and the density of the genetic map surpass those of 

previous genetic maps based on SSR and DArT markers in peanuts, as reported by several 

researchers (Foncéka et al., 2009; Sambou , 2017; Wilson et al., 2017; Khera et al., 2019; 

Kumari et al., 2020). In BC populations, marker loci ranged from 114 to 330, with a density of 

5.5 to 6.6 cM. Other studies utilizing F2 and RIL populations (Pandey et al., 2014b; Huang et 

al., 2015b; Chen et al., 2016, 2017; Shaidar et al., 2017) reported marker loci ranging from 

206 to 854, with marker density between 4 and 9 cM. The increased marker density in our 

genetic map provides more detailed insights into the studied traits, enabling more accurate QTL 

mapping and identification of closely linked markers for marker-assisted selection.  

While the density of our map aligns relatively closely with those published by Shirasawa 

et al. (2013), Chen et al. (2017), Luo et al. (2018), Lv et al. (2018), Hu et al. (2018), Chavarro 

et al. (2020), and Pandey et al. (2020a), it is less dense compared to high-density genetic maps 

used for QTL identification of yield, oil quality traits, and disease resistance (Luo et al., 2017; 

Shaidar et al., 2017; Han et al., 2018; Li et al., 2019; Khera et al., 2019; Liu et al., 2020; Sun 

et al., 2021; Guo et al., 2020), with marker density ranging from 0.45 to 1.6 cM/locus. 

When comparing our map to previously published maps of cultivated peanut, the length 

was smaller, except for relatively similar studies (Chen et al., 2017; Wilson et al., 2017; Luo 

et al., 2018; Lv et al., 2019; Li et al., 2019). This suggests a higher level of genetic linkage 

between markers, indicating a more efficient and informative genetic map for QTL mapping 

and gene discovery.  
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These high-density genetic maps, including ours, facilitate anchoring QTLs to the physical 

map, enable the identification of QTLs in narrow physical intervals, closely linked flanking 

markers, provide a better understanding of genetic architecture and candidate gene information, 

and facilitate marker-assisted selection. 

III.2.3.2. QTL identification 

Our study identified a total of 44 QTLs associated with 14 yield component traits across 

three environments. These findings offer invaluable insights into the genetic underpinnings of 

peanut yield and lay the groundwork for discussing the implications of the identified QTLs for 

peanut breeding programs. Notably, approximately 45% of the detected QTL positive effects 

were attributed to alleles from the wild relative, ISATGR278-18, highlighting the potential of 

integrating wild germplasm in peanut breeding efforts to enhance yield-related traits. These 

QTLs positively influenced several valuable yield traits, including plant height (8.77-10.08%), 

total pod weight (12.73%), halum weight (2.86-9.13%), harvest index (4.71-17.56%), 100 pod 

weight (7.49%), pod width (8.58%), seed length (7.74%) and seed width (8.84 and 9.16%). 

 In this study, three QTLs associated with qualitative traits such as plant growth habit 

(GH) and pod constriction (PC) were identified on chromosomes Ah03, Ah06, and Ah17. The 

recurrent parent contributed favourable alleles that increased the expression of these traits, 

resulting in moderate pod constriction and an erect growth habit. This observation aligns with 

findings reported by Foncéka et al. (2012a) and Sambou  (2017), who also utilized the same 

recurrent parent, indicating a consistent genetic basis for these traits across different studies. 

The collective contribution of favourable alleles to the recurrent parent in our study and above 

authors underscores the potential role of specific genomic regions in shaping plant growth habit 

and pod constriction in peanut. On the other hand, the identification of 4 QTLs for days to 50% 

flowering on Ah01, Ah10, and Ah14, predominantly contributed by the wild parent leading to 

longer days of flowering. A QQTL mapped on Ah10in this study confirmed by Khedikar et al. 

(2017). 

A total 13 major QTLwere detected, however, no consistency for QTLs across 

environments it may be due to presence of high environmental influence in in the experimental 

sites. Exception for harvest index, 100-seed weight, and seed length, which had six QTLs 

mapped on LGs Ah08/Ah18, Ah03/Ah13, and Ah08/Ah18, respectively, all remaining traits 

were identified on non-homeologous chromosomes.  
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Despite an equal distribution of QTLs between peanut A and B genomes (24 and 20 QTLs, 

respectively), the presence of QTLs on non-homologous chromosomes for the same traits 

suggests genetic complexity and potential epistatic interactions influencing trait expression. 

This phenomenon indicates the involvement of multiple genetic loci and pathways in 

controlling the expression of these traits, leading to the localization of QTLs on different 

chromosomes. Similarly, previous studies (Fonceka et al., 2012a; Huang et al., 2015b; Sambou 

, 2017) have reported that more than 96% of QTLs are mapped in non-homologous regions. 

Non-homeologous QTL locations may result from the absence of segregating alleles in one 

genome compared to the other or from natural and/or human-driven selection of different genes 

in the two subgenomes contributing to variation in the same trait (Fonceka et al., 2012a). These 

results may also be explained by the differential control of gene expression in subgenomes 

and/or by the movement of genes resulting in the disruption of collinearity, as a consequence 

of interspecific hybridization.  

In this study, no QTLs were identified on LGs Ah04, Ah12, and Ah16. This absence 

could be attributed to several factors, including the lack of wild chromosome introgressions on 

these particular LGs due to strong disequilibrium within the population. Additionally, it's 

possible that there is a lack of polymorphic genes located in the cited LGs that are associated 

with the variations of the studied traits. This suggests that these genomic regions may not 

harbour genetic variation relevant to the traits under investigation in the specific population 

studied. 

Comparing the QTLs detected in the present study to those identified in other studies for 

the same trait, it's evident that QTLs for hundred-seed weight are distributed across multiple 

linkage groups in the peanut genome. Previous studies (Fonceka et al., 2012a; Huang et al., 

2015b; Faye et al., 2015; Khedikar et al., 2017; Sambou, 2017; Chen et al., 2017; Liang et al., 

2018; Khera et al., 2019; Pandey et al., 2020) have reported QTLs for hundred-seed weight on 

LGs Ah02, Ah03, Ah04, Ah05, Ah06, Ah07, Ah08, Ah09, Ah12, Ah13, Ah14, Ah15, Ah16, 

Ah18, and Ah19. In our study, five QTLs were identified for hundred-seed weight, located on 

chromosomes Ah03, Ah08, Ah11, Ah13, and Ah17. Notably, the QTLs identified on Ah11 and 

Ah17 were novel discoveries. Interestingly, a QTL for this trait was reported in close genomic 

proximity on chromosome Ah13 by Khedikar et al. (2017), linked by the SSR marker 

'ahFAD2A-TC5D06. Additionally, Huang et al. (2015), Sambou (2017), and Khera et al. 

(2019) also reported the presence of five QTLs on Ah13, further emphasizing the importance 

of this genomic region and suggesting the potential presence of important genes influencing 

hundred-seed weight.  
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The clustering of QTLs for hundred-seed weight on certain linkage groups, particularly Ah13, 

across multiple studies suggests that this region may harbour crucial genes or genetic elements 

regulating this trait. Further investigation of these genomic regions could lead to the 

identification of candidate genes underlying hundred-seed weight and facilitate their utilization 

in peanut breeding programs aimed at enhancing seed yield and quality. 

Similarly, among the four QTLs mapped for hundred-pod weight (HPW) on 

chromosomes Ah01, Ah05, Ah08, and Ah13, one QTL (qHPWAh01) was not previously 

detected and may represent a novel QTL. The presence of a QTL on chromosome Ah05 is 

noteworthy, as it has been associated with important genes for hundred-pod weight, with one 

QTL from our study and 21 from earlier studies (Sambou , 2017; Luo et al., 2017, 2018; Chen 

et al., 2017) reported in this region. For seed width, three QTLs were detected in the present 

study, mapped on chromosomes Ah01, Ah19, and Ah20. In contrast, previous studies (Fonceka 

et al., 2012a; Huang et al., 2015b; Chen et al., 2016, 2017; Sambou, 2017) have reported 33 

QTLs located on chromosomes Ah01, Ah02, Ah03, Ah05-Ah13, Ah15, Ah16, and Ah19. 

Therefore, the identification of a QTL on Ah20 in our study represents a novel finding for this 

trait. Notably, for newly mapped QTL of seed width (HSW), an increase in the phenotypic 

value of the trait was associated with alleles from the wild parent. This suggests that wild 

germplasm may harbour favourable alleles for this trait and highlights the potential utility of 

wild relatives in peanut breeding programs aimed at improving seed width. 

In this study, QTL for other important yield traits, including plant height, total biomass, 

pod weight, harvest index, and haulm weight, were mapped on Ah01, Ah02, and Ah07. These 

findings align closely with consistent QTL reported by Ravi et al. (2011), Gautami et al. 

(2012a), Fonceka et al. (2012a), and Faye et al. (2015). Overall, our study provides 

comprehensive insights into the genetic architecture of peanut yield and highlights the potential 

utility of wild germplasm in peanut breeding efforts.  

III.2.3.3. Co-localization of QTL 

Our QTL analysis unveiled significant co-localization of QTLs within five genomic 

regions: Ah01, Ah07, Ah08, and Ah13, each hosting two QTLs. These findings offer valuable 

insights into understanding yield components and accelerate Marker-Assisted Selection (MAS) 

breeding in peanuts. The observed co-localizations underscore the interdependence among 

yield traits, with pleiotropic QTLs emerging as pivotal genetic determinants shaping these traits 

within our BC2F4 population.  
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This highlights the presence of pleiotropic QTLs containing multiple tightly linked, trait-

specific genes or genes influencing multiple traits, as discussed by Chen et al. (2017) and 

Chavarro et al. (2020). 

For instance, within the 2.5-4.5 cM region on Ah01, two co-localized QTLs governing 

haulm weight and seed width were identified, prevalent at the Bafia (BF) location. Similarly, 

on Ah01, the QTL flanked by markers Ah01_4928888-Ah01_4929547 in LG Ah01 (21.5-22.5 

cM) was found to be co-located for seed length and hundred-pod weight at both BF and 

Mbalmayo (MB), explaining 7.74% and 10.69% PVE, respectively. Previous study has 

reported similar findings for seed length and hundred-pod weight on Ah13 between 91-135 cM 

(Sambou, 2017). Likewise, another co-mapped QTL for total biomass and haulm weight was 

detected on Ah07 at 22.5-25.5 cM, observed primarily at MB, which explained 9.86% and 

10.06% PVE, respectively. Consistent results were reported by Fonceka et al. (2012a), linking 

haulm weight and total biomass with the same marker, gi-0385_A, on Ah07 within 0-31 cM 

distance. Notably, a major QTL mapped on Ah08 (88.5-91.5 cM) exhibited pleiotropic effects 

for harvest index and 100-seed weight, elucidating 17.56% and 10.17% PVE, respectively. 

Furthermore, in our study, 100-pod and seed weight were co-located on Ah13, flanked by 

Ah13_6340341 - Ah13_4226296, spanning a 10 cM distance, supported by findings from 

Huang et al. (2015) and Sambou (2017), with SSR markers HAS0738_AHGS1788 and 

TC1E06_B-RN12H01_B, respectively. Additionally, the colocation of 100-pod and seed 

weight was detected on Ah12 by Fonceka et al. (2012a), associated with TC1B02_B SSR 

marker within the 0-10.9 cM distance. 

Traits demonstrating strong positive correlation, sharing the same chromosomal location, 

and exhibiting the same additive effect due to genetic linkage suggest their inheritance as a 

unit. This implies that the observed strong positive correlation between these traits likely stems 

from their close physical proximity on the same chromosome, being passed down together due 

to genetic linkage. 
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CHAPTER IV. CONCLUSION, RECOMMENDATIONS AND   

PERSPECTIVEES 

IV.1. CONCLUSION 

In this study, we aimed to explore the potential of NIR combined with chemometric 

techniques for the rapid assessment of peanut germplasm. We also assessed phenotypic 

variability, estimated broad-sense heritability, and examined phenotypic correlations among 

interspecific genotypes for yield-related traits. Additionally, our objectives included the 

identification of beneficial genomic regions, or QTLs, associated with these yield traits in wild 

peanut specie.  

To assess the potential of NIR for rapid germplasm screening for seed quality traits, we 

employed whole seeds from both a core-collection and an interspecific population, evaluated 

in three different environments. NIR spectroscopy proved to be an efficient and non-destructive 

tool for characterizing large germplasm collections across multiple environments. The rapid 

acquisition of spectra, requiring only six days for 680 samples, underscores its practicality for 

high-throughput analysis.  

Our analysis of spectra and multivariate techniques revealed wide genetic variation 

among core-collection and interspecific genotypes, both within and between environments. 

While the core-collection exhibited the widest genetic diversity, specific variations were also 

observed among interspecific genotypes not covered by the core-collection. This suggests the 

potential for discovering new sources of diverse nutritional polymorphisms from wild 

derivatives. Furthermore, our study highlighted significant environmental impacts on seed 

composition within the interspecific population, with the largest variation observed in Bafia, 

followed by Mbalmayo and Nioro. We developed a robust PLS-DA model that accurately 

classified whole seed samples according to their environments.  

Overall, NIR coupled with chemometric techniques proved useful for accurately 

assessing and distinguishing whole seeds within different environments. This approach not 

only facilitates rapid and non-destructive discrimination of peanut germplasms but also avoids 

the use of reagents and minimizes harmful residue generation, thereby ensuring environmental 

preservation. Based on our findings, this capability could facilitate predictions of intact-seed 

nutritional content and enhance the utilization of germplasm in breeding programs. 
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 For the assessment of phenotypic variability, estimation broad sense heritability and trait 

correlation for yield traits, the study elucidated significant phenotypic variability among 133 

genotypes, with almost all quantitative traits exhibiting an approximately normal distribution, 

indicative of a polygenic inheritance model suitable for QTL analysis. The persistence of 

significant phenotypic variability across three environments emphasized the combined impact 

of environmental factors and genotype responses on peanut yield-related traits. ANOVA 

analysis further confirmed substantial phenotypic variations among the BC2F4 lines, 

highlighting the noteworthy contribution of genomic regions or QTL from wild relatives in 

enhancing peanut yield. This study has identified moderate to high heritability values across 

traits and environments underscored the considerable genetic influence on trait expression. 

Correlation analysis identified 39 significant associations, with notable high significant 

positive correlations included total biomass with haulm weight, total biomass with pod weight, 

and hundred seed weight with hundred pod weight, among others. Positive associations were 

also found between traits like hundred pod weight, hundred seed weight, pod length, pod width, 

seed length and seed width each other. Strong positive correlations suggest shared genetic 

factors or pathways 

 To identify beneficial wild genomic regions, or QTLs, associated with yield traits, a 

high-resolution genetic map using SNP markers obtained through the DArTseq platform was 

constructed. It comprises 1,450 marker loci distributed across 20 linkage groups (LGs), 

covering a map distance of 1,358.02 cM, with an average marker density of 2.21 cM. Through 

QTL analysis, we identified a total of 44 QTL across 17 linkage groups, associated with 14 

economically important yield traits across three different environments. Notably, four of these 

QTLs represent new loci that had not been previously mapped. Among the 44 QTLs identified, 

13 were found to have a major effect (>10% phenotypic variance explained), suggesting their 

potential significance in peanut breeding programs through marker-assisted selection (MAS). 

Interestingly, our findings revealed that 20 out of the 44 QTLs (45%) showed an increase in 

the phenotypic value of the trait associated with alleles from wild relatives. This observation 

underscores the positive contribution of wild peanut species in peanut improvement efforts.  
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IV.2. RECOMMENDATIONS 

• Due to the high phenotypic variability observed among environments for the studied 

traits, it is advisable to characterize this material for drought and foliar diseases 

resistance to identify potential sources of variation. 

• The identified lines showing promising quality and yield traits should undergo testing 

across multiple locations and over multiple years to ensure their reliability and 

suitability for future breeding efforts. 

• Recommended lines should be utilized in the development of mapping populations to 

precisely identify the genomic regions associated with the observed favourable 

chemical traits, facilitating targeted breeding efforts. 

• Advanced lines that have not shown consistency for many traits across environments 

should undergo evaluation in different locations over multiple years to assess their 

stability and performance under diverse conditions. 

• Further studies are necessary in multiple locations and over several years to validate 

the QTLs identified in the present study, ensuring their robustness and reliability for 

guiding breeding programs. 

IV.3. PERSPECTIVEES 

The observed genotypic variations among varieties and genotypes based on NIRS 

spectra suggest that nutritional traits could be enhanced through intra and interspecific 

breeding. Achieving breeding goals based on seed composition is feasible, given the influence 

of both environmental factors and genetic effects from different varieties and interspecific 

derivatives on seed chemical compounds. Despite the broad core-collection, significant genetic 

variation exists among interspecific genotypes not covered by it, implying the presence of 

untapped genetic diversity, possibly originating from wild relatives Varieties and interspecific 

lines identified in this study exhibited favourable spectra profiles, indicating their potential as 

valuable genetic materials for developing suitable varieties.  Moreover, our identification of 

QTLs associated with enhanced phenotypic values from wild relatives highlights the valuable 

contribution of wild peanut species to peanut improvement efforts. This perspective 

underscores the potential for integrating wild germplasm into breeding programs to enhance 

genetic diversity and ultimately improve peanut yield and quality traits. 
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APPENDICES 

Appendix I. The logical framework of the thesis 

General 

objective 

Specific 

objectives 

Materials and Methods Results Conclusions 

To explore 

both, rapid 

germplasm 

screening for 

quality traits, 

and the 

favourable 

wild QTL 

linked to 

yield-traits 

 

1. 

To screen 

peanut core-

collection and 

interspecific 

population 

for quality 

traits; 

The evaluation was conducted at Mbalmayo 

and Bafia in Cameroon and Nioro in 

Senegal. 

 

133 AB genotypes long Fleur11 and 300 

African core collections, were evaluated   

 

NIRS spectra were acquired from 680 

samples from four sets. 

 

The spectra were acquired on six subsets of 

each sample after three rotation scans. The 

spectral resolution was 16 cm^-1 over the 

spectral range of 3952-11528 cm^-1 (867–

2530 nm). 

The acquired spectra were processed using 

principal component analysis (PCA) coupled 

with partial least squares discriminant 

analysis (PLS-DA) 

Eleven absorbance peaks were observed at 

specific wavelengths: 929 nm, 1033 nm, 1210 

nm, 1465 nm, 1723 nm, 1763 nm, 1932 nm, 

2306 nm, 2350 nm, 2140 nm, and 2510 nm. – 

 

A huge variation of absorbance was 

observed among the varieties and AB 

lines within and between environments. 

The strata were ordered   core-collection, 

Bafia, Mbalmayo and Nioro.  

PCA was performed and the first 3 PCs 

represent 93 % of the total variability. 

A PLS-DA model classified samples-

based environment and genetic origin 

with 99.6% prediction accuracy. 

 

 

NIRS screened the 

germplasm rapidly 

because the only 6 days 

were needed to obtain the 

all spectra of 680(680 x 

6) samples. 

 

Based on the NRIS 

spectra and PCA result, a 

wide variability of the 

seed composition was 

found within and between 

environments indicating 

seed composition affected 

by environment and 

genetic materials. 

 

A PLS-DA model was 

developed with a strong 

classification accuracy. 
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General 

objective 

Specific 

objectives 

Materials and Methods Results Conclusions 

To explore 

both, rapid 

germplasm 

screening for 

quality traits, 

and the 

favourable 

wild QTL 

linked to yield-

traits 

 

 

2. 

To assess 

phenotypic 

variability, 

heritability, 

and trait 

correlations 

in an 

interspecific 

population 

for yield-

related traits 

 

Evaluated at Maroua, Bafia  

and Mbalmayo.  

 133 AB genotypes and Fleur11. 

were used. 

A total of 15 yield related traits, 

were collected. 

An analysis of variance 

 (ANOVA) was performed to 

 estimate the genetic and 

 replication effects  

on each trait under each 

environment.  

Broad sense heritability (H2)  

was computed from ANOVA. 

Relationships between traits 

were estimated by the Pearson 

correlation coefficients. 

 

Moderate to high phenotypic variability was 

observed for all quantitative traits. 

The plant growth habit (GH) showed morphological 

variation from semi-erect to the ground to totally 

erect. A similar variation was observed for pod 

construction (PC) and pod beak (PB) from slight to 

prominent and from slight to deep, respectively.  

 

Two AB lines were recorded based on the mean 

values of for HPW, HSW, PL, PW, SL and SW. 

Analysis of variance (ANOVA) showed significant 

differences at (P < 0.001) for 13 traits and at (P < 

0.05) for 2 traits. Moderate to high) heritability was 

estimated for all traits. 

 

The highest positive and significant association 

were estimated between (TB and HaW), (TB and 

PWT, PW and HPW), (HPW and HSW) and (PC 

and PB). 

  

 

The ANOVA result 

showed significant among 

the AB lines, highlighting 

the segregation of these 

traits. 

-The computed broad 

sense heritability showed 

moderate to high 

confirmed the impact 

environment condition for 

quantitative traits. 

 

The main yield related 

traits such as 100 pod and 

seed weight, and pod and 

seed length were corelated 

each other. 
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General 

objective 

Specific 

objectives 

Materials and Methods Results Conclusions 

To explore 

both, rapid 

germplasm 

screening for 

quality traits, 

and the 

favourable 

wild QTL 

linked to yield-

traits 

 

 

3. 

To identify 

wild 

genomic 

regions 

(QTLs) 

associated 

with yield-

related traits 

-Evaluated at Maroua, Bafia and 

Mbalmayo.  

 -133 AB lines. were used. 

-A total of 15 yield related traits, were 

collected. 

-Genomic DNA was extracted from 20-

day-old leaves using CTAB extraction 

method.  

-Silico DArT markers and SNP 

markers were scored. 

-A total of 1,450 SNP markers were 

used for construction of a genetic map. 

-It is constructed using Joinmap 

software. 

-QTL was analysed for 15 yield traits 

in QTL IciMapping software v4.1.0.0. 

-The final high resolution linkage map 

for major effect QTL was generated 

using LinkageMap view pakage in R 

software. 

 

-The genetic map was constructed contained 

1,450 SNPs markers with a total length of 

1,358.02 cM and 2.21 cM distance between 

adjacent markers on 20 linkage groups. 

 

A total of 44 main effect -QTL were detected 

for 14 traits except pod beak on 17 LGs.  

Four QTL new were mapped related to 100 

pod and seed weight and seed width.  

 

Of 44 QTL, 13 were mapped as major effect 

for eight chromosomes for 8 traits such as: 100 

pod and seed weight, halum weight, harvest 

index, seed length, pod weight, plant height 

and, pod constriction. 

 

 

  

 

A total of 20 QTL were 

identified to  

increase phenotypic 

value from wild parent. 

 

 This indicates the 

positive contribution of 

the wild relatives in 

peanut improvement 
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Appendix II. Raw spectra with two (arrows) (A) and without (B) non-atypical intact-seed spectra.  

 

 

A 
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Appendix III. PCA 2-dimensional score plot of PC2 versus PC1 for the date of spectral acquisition.  
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Appendix IV. The variability of yield related traits mean value in each environment. 

Traits                                                Environments  
 

Maroua Mbalmayo 
 

Bafia 

Range Mean Range Mean Range Mean 

Plant height (PH) (cm) 6.00–19.33 12.32 11.08–20.33 16.41   

Total biomass (TB) (g) 20–111.67 67.24 20.33–59.00 39.21 13.5–89 50.25 

Pod weight (PWT) (g) 6.67–27.33 16.34 3.33–16 9.22 3.00–16 7.92 

Halum weight (HaW) (g) 11.33–95.67 51.2 15–45 30.12 12.00–76 43.9 

Harvest index (HI) (ratio) 12.00–46 27.12 12.00–37.00 24.23 5.00–28 15.27 

Hundred pod weight (HPW) (g) 59.67–91.33 76.94 49.00–90 69.59 46–95 72.59 

Hundred seed weight (HSW) (g) 29.67–41.33 34.86 26.00–44.33 35.52 27.00–50.5 39.45 

Pod length (PL) (mm) 21.06–29.33 25. 21.82–28.73 25.29 21.51–28.29 24.67 

Pod width (PW) (mm) 10.36–12.73 11.49 9.69–12.25 10.98 8.75–12.8 11.09 

Seed length (SL) (mm) 10.96–13.93 12.34 10.53–12.79 11.88 10.29–13.85 12.02 

Seed width (SW) (mm) 6.13–7.81 6.95 6.69–8.46 7.71 5.88–8.77 7.12 
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Appendix V. Genetic linkage map showing the location of main effect QTLs identified using inclusive composite interval mapping (ICIM) for 

14 yield related traits among the BC2F4 lines. 
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D50%F: days to 50% flowering, GH: growth habit, PH: plant height, HPW: hundred pod weight, HSW: hundred seed weight, TB: total biomass, HaW: halum 

weight, PWT: pod weight, PL: pod length, PW: pod width, SL: seed length, HI: harvest index, PC: pod constriction, SW: seed width, MR: Maroua, MB: 

Mbalmayo, BF: Bafiya and q:QTL.  
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A B S T R A C T

Peanut is a worldwide oilseed crop and the need to assess germplasm in a non-destructive manner is important for
seed nutritional breeding. In this study, Near Infrared Spectroscopy (NIRS) was applied to rapidly assess germ-
plasm variability from whole seed of 699 samples, field-collected and assembled in four genetic and environment-
based sets: one set of 300 varieties of a core-collection and three sets of 133 genotypes of an interspecific pop-
ulation, evaluated in three environments in a large spatial scale of two countries, Mbalmayo and Bafia in
Cameroon and Nioro in Senegal, under rainfed conditions. NIR elemental spectra were gathered on six subsets of
seeds of each sample, after three rotation scans, with a spectral resolution of 16 cm-1 over the spectral range of
867 nm to 2530 nm. Spectra were then processed by principal component analysis (PCA) coupled with Partial
least squares-discriminant analysis (PLS-DA). As results, a huge variability was found between varieties and ge-
notypes for all NIR wavelength within and between environments. The magnitude of genetic variation was
particularly observed at 11 relevant wavelengths such as 1723 nm, usually related to oil content and fatty acid
composition. PCA yielded the most chemical attributes in three significant PCs (i.e., eigenvalues >10), which
together captured 93% of the total variation, revealing genetic and environment structure of varieties and ge-
notypes into four clusters, corresponding to the four samples sets. The pattern of genetic variability of the
interspecific population covers, remarkably half of spectrum of the core-collection, turning out to be the largest.
Interestingly, a PLS-DA model was developed and a strong accuracy of 99.6% was achieved for the four sets,
aiming to classify each seed sample according to environment origin. The confusion matrix achieved for the two
sets of Bafia and Nioro showed 100% of instances classified correctly with 100% at both sensitivity and speci-
ficity, confirming that their seed quality was different from each other and all other samples. Overall, NIRS
chemometrics is useful to assess and distinguish seeds from different environments and highlights the value of the
interspecific population and core-collection, as a source of nutritional diversity, to support the breeding efforts.

* Corresponding author. CIRAD, UMR AGAP Institut, Montpellier, France.
E-mail address: joel.romaric.nguepjop@cirad.fr (J.R. Nguepjop).

Contents lists available at ScienceDirect

Oil Crop Science

journal homepage: www.keaipublishing.com/en/journals/oil-crop-science

https://doi.org/10.1016/j.ocsci.2024.03.003
Received 18 January 2024; Received in revised form 7 March 2024; Accepted 12 March 2024
Available online 15 May 2024
2096-2428/© 2024 the Oil Crop Research Institute, Chinese Academy of Agriculture Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Oil Crop Science 9 (2024) 132–141

mailto:joel.romaric.nguepjop@cirad.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocsci.2024.03.003&domain=pdf
www.sciencedirect.com/science/journal/20962428
http://www.keaipublishing.com/en/journals/oil-crop-science
https://doi.org/10.1016/j.ocsci.2024.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ocsci.2024.03.003
https://doi.org/10.1016/j.ocsci.2024.03.003


1. Introduction

Peanut is an annual oilseed crop cultivated globally on 36.18 million
hectares of area in the world, yielding 71.68 million metric tons of pods
in 2020 (FAOSTAT, 2020). As a functional food, peanut seed contains
34% – 56% oil, 22% – 30% protein, 10% – 25% carbohydrates, and
0.05% – 1% of various secondary metabolites, beneficial to human
health, such as vitamin E, K and B complex, folic acid, niacin, and min-
erals (Ca, P, Mg, Zn, and Fe) (Desmae et al., 2019; Harch et al., 1995;
Janila et al., 2013; Parilli-Moser et al., 2022). The main production
constraints of the crop include drought, pests, diseases, and environ-
mental changes. The oil content of seeds, shelf life, aroma, flavor and
cooking quality are all affected by these constraints. Consequently, seed
quality traits are targets in genetic breeding (Nawade et al., 2018; Parmar
et al., 2022; Tang et al., 2022).

Peanut (Arachis hypogaea L.) is an autogamous species, allotetraploid
(AABB genome; 2n ¼ 4x ¼ 40) with narrow genetic base (Burow et al.,
2009; Simpson et al., 2001). The narrow genetic diversity coupled with
low utilization of genetic resources are the major factors limiting peanut
breeding. Thus, interspecific hybridization is currently used as a realistic
strategy for introgressing prospective diversity from wild species into the
cultivated gene pool (Favero et al., 2006; Fonceka et al., 2012a, 2012b;
Mallikarjuna et al., 2011b; Tossim et al., 2020). Likewise, genetic di-
versity assessment and the detection of promising quality-related geno-
types are fundamental to germplasm utilization and management in
breeding strategies to support food security. To facilitate the investiga-
tion of large germplasm, it is reasonable to begin by examining subsets of
germplasm that embody appropriate diversity and of manageable size,
such as core collections or interspecific populations derived from wild �
elite crosses, using appropriate characterization procedures.

Although significant efforts have been devoted to characterizing
germplasm for simple traits and for the most important agronomic traits
(yield and resistance to pests and diseases) (Fan et al., 2020; Kumari
et al., 2014; Mallikarjuna et al., 2011a; Upadhyaya, 2005; Upadhyaya
et al., 2011), less is known about quality traits across environments
(Grosso et al., 2000; Wang et al., 2023). This is mainly due to the fact that
these traits are quantitative and multigenic, with low heritability, and
strong genotype environment interactions (Grosso et al., 1994; Isleib
et al., 2008). Moreover, the phenotyping of these traits, regularly base on
chemical survey, is expensive in terms of both direct monetary input and
human labor, time-consuming, complex, and irreversibly destructive.
Another main factor limiting chemical studies are the difficulties to assess
many samples, each requiring many seeds (Davis et al., 2021; Nawade
et al., 2018). Efforts to improve the knowledges of seed attributes might
be supported by rapid and non-destructive tools. These include modified
refractive index, capacitance sensor (Kandala et al., 2008), hyperspectral
imaging (Huang et al., 2014; Rabanera et al., 2021) and near infrared
(NIR) spectroscopy (Davis et al., 2021; Govindarajan et al., 2009; Tao
et al., 2019; Wang et al., 2022). Among these, NIR-based methods are
rapid, make it possible to analyze large number of samples. Moreover,
some scholars have already applied machine learning as promising sta-
tistical methods to assist humans in the modeling and analysis of complex
spectral data (Fordellone et al., 2019; Song et al., 2018) in many research
fields including seed quality detection, genotyping of cultivars (Panero
et al., 2022), varieties identification (Panero et al., 2018, 2022; Wang
and Song, 2023; Xu et al., 2023) and classification (Sampaio et al., 2021;
Singh et al., 2023; Tian et al., 2023). Some works previously described
the feasibility of near infrared spectrometers to achieve some quick
prediction of various peanut chemical compounds (proximal components
and secondary metabolites) (Bilal et al., 2020; Li et al., 2019; Liu et al.,
2022; Yu et al., 2020). In this paper, we focused on the non-destructive
approach by NIR spectroscopy to investigate the environment and the
genetic contribution of germplasm variability from intact-peanut-seed
spectra without chemical references.

In this study, NIR spectroscopy was applied and coupled with che-
mometrics to assess germplasm variability from peanut intact-seed of a

core-collection and of an interspecific population field-evaluated in three
different environments. The objectives were specifically to i) perform a
rapid NIRmeasurement on seeds and check the quality of spectra data, ii)
assess genetic variation of varieties and genotypes from seed spectra, iii)
study the pattern of genetic variability of the interspecific population in
comparison to the core-collection, iv) potentially discriminate geneti-
cally related interspecific genotypes within and between environments
by developing a classification model using PLS-DA.

2. Materials and methods

2.1. Genetic materials

Two distinct genetic materials were used in this study: an interspecific
advanced backcross QTL (AB-QTL) population of 133 genotypes and a
core collection of 300 cultivars. The AB-QTL population of 133 BC2F4
derivatives was developed from an interspecific cross, using Fleur11 as
recurrent cultivated parent and the wild synthetic tetraploid ‘ISATGR
278-18’ (Nguepjop et al., 2016). The cultivated parent, Fleur 11, is an
elite Spanish-type variety, widely cultivated in West Africa. The wild
parent, ISATGR 278-18 is derived from a cross between A. batizocoi ICG
13160 (GKBSPSc 30,082, PI 468328) and A. duranensis ICG 8138 (GKP
10038, PI 262133) (Mallikarjuna et al., 2011b). The core collection of
300 cultivars was defined based on the knowledge of breeders and on
diversity data from a collection of 1050 accessions (breeding lines and
landraces) held by 10 breeding programs in East, Southern and West
Africa (Conde et al., 2023). The detailed information of the 300 varieties
of the core-collection and the 133 genotypes of the population are pre-
sented in the Supplementary Tables 1 and 2, respectively.

2.2. Trials environment and field experimental design

Whole seed used were collected from field experiments. Experiments
were conducted in 3 different locations in 2 countries, Mbalmayo and
Bafia in Cameroon and Nioro in Senegal, under rainfall conditions in
2021. The 3 locations were chosen to meet environmental differences,
based on different criteria, largely based on ecology (climate and vege-
tation) and tradition of peanut cultivation and crop rotation (Table 1).
Bafia is one of the main areas of peanut production in Cameroon. It is
located in tropical savanna and has yellow vertisol soil (Temga et al.,
2021) and equatorial climate of the Sudano-Guinean type with an
average temperature of 25.1 �C and annual rainfall of 1500 mm. Mbal-
mayo is located in the tropical forest of Cameroon and has ocher vertisol
soil (Temga et al., 2021) with a bimodal humid-forest rainfall climate
with an average temperature of 26.5 �C and rainfall of 2402 mm. Nioro is
located in the South of the Senegalese peanut basin and have Sahelian

Table 1
Characteristics of the field environments.

Trial
Environments

Bafia Mbalmayo Nioro
Country Cameroon Cameroon Senegal
Location Bafia Mbalmayo Nioro
Peanut
cultivation

þþþþ þþþ þþþþþ

Ecology type Tropical savanna Tropical forest Sahelian
Climate type Sudano-guinean

equatorial
Humid-forest
bimodal rainfall

Sahelian semi-
humid

Temperature
(�C)

25.1 26.5 30.0

Rainfall (mm) 1500 2403 758
Soil type Yellow vertisol Ocher vertisol Deck-Dior (leached

ferruginous)
Previous crop Maize Maize Millet
Experiment
period

April–July April–July July–October
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semi-humid ecology with a Deck Dior soil, a leached ferruginous tropical
soil (Bogie et al., 2018), and annual rainfall of 758 mm and average
temperature of 30 �C. The fields at Bafia and Mbalmayo were one-year
fallow land after maize cultivation by farmers and were cleared and
plowed for the study. The previous crop at Nioro was millet. The ex-
periments in Bafia and Mbalmayo were conducted during one of the two
rainy seasons from April–July, while the Nioro experiment was done
during the rainfall season between July and October, at the Research
Station of National Agricultural Research Center.

The same experimental design with common agricultural practices,
from sowing to harvest, were used in each of the 3 environments. Within
each environment, an alpha-lattice design was used with 3 replications,
with 10 elementary plots within blocks. A plot consisted of rows of 3 m
long on which 10 plants of the same genotype were sown with a spacing
of 30 cm between plants on the same row, and 50 cm between two
adjacent rows. The seeds were treated with Granox (captafol 10%,
benomyl 10%, and carbofuran 20%) before planting to protect them
against parasitic attacks and one seed per hill was sown manually at 4 cm
depth. According to usual cultural practice, one hundred and fifty kg/ha
of mineral fertilizer (6-20-10) were added 20 days after sowing.
Throughout the vegetative development, weeds were manually har-
vested. The harvest was done at 95 days after sowing, followed by free-air
drying for one month. At the end of the pod-drying stage, pods of each
plant were separated from haulms, stored and dehulled.

2.3. Whole seed sample preparation

Whole seeds from pods of the three agronomic replicates of each
genotype were bulked into one specific sample, stored in plastic bag, and
labelled according to their respective name and environment. Thus, seeds
of each sample for NIR analysis came from pods of 25–30 harvested
plants of each genotype. From the expected 699 samples, we discarded
21 who had less than 100 seeds, 3 from Bafia, 9 from Mbalmayo and 9
from the core-collection. Finally, a total of 680 samples of seed were
assembled in four genetic- and environment-based sets: one set of the 291
samples from cultivars from Nioro and three sets of the interspecific
genotypes (130 samples for Bafia, 124 samples for Mbalmayo, 135
samples for Nioro, including the 133 genotypes and the CS16 variety and
the cultivated parent Fleur11, both commonly used as check varieties in
Nioro). All sample sealed in hermetic plastic bags were conveyed to the
laboratory and kept at ambient temperature prior to spectra acquisition.

2.4. NIR spectra acquisition

Spectra acquisition was performed to generate a reference database.
Prior to recording spectra, a gold reference was used. Spectra were then
acquired on six subsets of each 680 samples. The six subsets of each
sample were used, as six replicates, to minimize uncertainties due to the
hypothetical heterogeneity of seed. Specifically, seeds of each sample,
were six-fold randomly sampled to provide biological and analytical
replicates, from each other to cover the whole sample. Seeds of each
subset were then loaded in the ring cup with an internal diameter of 5 cm
and the six subsets of each sample were measured in sequence. Spectra of
each of the six subsets were gathered after 3 rotation scans with a spectral
resolution of 16 cm�1 over the spectral range of 3952 cm-1

– 11528 cm�1

(867 nm – 2530 nm), using Tango spectrometer from Bruker. At the end,
each sample was analyzed in six replicates, and the mean spectra were
used for data analyses.

2.5. Statistics and PCA analysis

R software (R Core Team, 2021) with rchemo (Brandolini-Bunlon,
et al., 2023) and rnirs packages (Lesnoff, 2021) were used to visualize
raw spectra and perform data analysis. PCA over the spectral range
selected from 1000 nm to 2500 nm was applied to describe variability
according to the varieties and interspecific genotypes within and

between environments. PCA is a multivariate unsupervised statistical
method able to project multivariate data and describe relevant trends in
the analyzed dataset. PCA can also reveal variables with loading that
determine some inherent structure of the data, which can be interpreted
in chemical terms. The reduction of the number of variables is achieved
by making a linear combination of original variables, which yields the
so-called principal components (PC) that are decorrelated with each
other. PCA was conducted on the pretreated spectra. The full whole
spectra have been pre-processed to improve the signal by reducing un-
controlled variations as noise and baseline through Savitsky Golay
(SavGol) and derivative.

Mahalanobis distance was computed after PCA to check the 6 repli-
cates distances for each sample. The Mahalanobis distances were deter-
mined in units of standard deviations from the center (mean) of the
dataset. The 6 replicates were averaged or each sample, and the Maha-
lanobis distances were computed again.

In this study, the following PCA results were considered (i) the score
plot, to visualize the projection of the sample on each PC; and (ii) the
loading plot, to evaluate the influence of wavelength, on each PC. Thus,
PCA allows emphasizing and interpreting variables and all relevant dif-
ferences among genotypes within and between environments.

2.6. Classification using PLS-DA modeling on NIR spectra

PLS-DA was used to classifying varieties and interspecific genotypes
thorough modeling and prediction of genotype-specific spectra, accord-
ing to genetic and environmental origin. Data have been split by Duplex
method (Snee, 1977) into train set (N ¼ 541, 201, 108, 109, 126
respectively for Core population, AB-QTL Bafia, AB-QTL Mbalmayo,
AB-QTL Nioro) and test set (N ¼ 139, 42, 32, 31, 34 respectively for the
previous populations) in each group (to keep the same proportionality).
The train set was used to train the model, while the test set is used to
evaluate its performance. Prior to applying PLS-DA algorithms, the train
set spectra were pre-processed by SavGol filter and derivative. The best
preprocessing was selected according to the error of classification by
cross validation (2 K-fold group repeated 20 times) and the number of
latent values was fixed. Then, these parameters were used to build the
PLS-DA model and applied on test set spectra.

The resulting confusion matrix of each model were further evaluated
to assess the model's performance using the following metrics for each
group and for all.

- Recall (the proportion of samples of a specific class that have been
predicted by the model as belonging to that class; also known as
sensitivity)

RECALL¼ TP
FN þ TP

- Specificity (The number of samples predicted correctly to be in the
negative class out of all the samples in the dataset that actually belong
to the negative class.)

SPECIFICITY ¼ TN
FPþ TN

- Precision (the proportion of correct predictions among all predictions
for a particular class)

PRECISION¼ TP
FP

- Accuracy (the number of samples correctly classified out of all the
samples present in the test set)
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ACCURACY ¼ TPþ TN
TPþ FN þ FPþ TN

- the proportion of false-negatives (FNR)

FNR¼ FN
TPþ FN

- the proportion of false-positives (TNR)

TNR¼ TN
FPþ TN

- the F1-score (the harmonic mean of precision and recall)

F1score¼ 2TP
2TPþ FPþ FN

True Positive (TP) refers to a sample belonging to the positive class
being classified correctly. True Negative (TN) refers to a sample
belonging to the negative class being classified correctly. False Positive
(FP) refers to a sample belonging to the negative class but being classified
wrongly as belonging to the positive class. False Negative (FN) refers to a
sample belonging to the positive class but being classified wrongly as
belonging to the negative class. Model performances were evaluated by
their classification accuracy, which was calculated as the ratio of the
number of correctly classified samples to the total number of samples.

3. Results

3.1. Spectra profiles and quality control

From the raw spectra, eleven relevant absorbance peaks were
observed around the wavelengths of 929 nm, 1033 nm, 1465 nm, 1763
nm, 2306 nm, 2350 nm and 2510 nm, with four wide spectral peaks
appearing close to 1210 nm, 1723 nm, 1932 nm and 2140 nm (Fig. S1).
Quality control of spectra was performed to identify atypical spectra and
to check variation among the six subsets of each samples. As results, 2 of
4080 spectra (0.04%), were identified as an outlier (Fig. S1) and were
discarded for analyses. PCA was performed to check the effect of date on
spectra acquisition and no cluster related to date was found (Fig. S2),
indicating that there were stable lab conditions during the 6 days of
spectra acquisition. With few exceptions, the Mahalanobis distance (MD)
among the 6 subsets of each sample was consistent among the 680
samples (Fig. 1). Thus, the spectra graph was presented in Fig. 2 as the
average absorption of each sample from the 6 replicated spectra.

3.2. Genetic variability and environmental impact on intact-seed
composition

The mean absorbance spectra of varieties and interspecific genotypes,
according to their environment are presented in Fig. 2. A huge variation
of absorbance along the spectra was observed among varieties and
interspecific genotypes within and between environments. Four spectra
group, superimposed on each other, was observed for all wavelength

Fig. 1. Plot showing Mahalanobis distance among the six subsets of each sample of four populations. Each dot represents one spectrum. MD Details of 40 samples (B)
is figured from the 4080 spectra (A) for a better MD visualization among the 6 spectra of each sample (dotted line: distance cutoff - Chi-squared distribution for
Standard Deviation squared (Brandolini-Bunlon, et al., 2023)).
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from 1000 nm to 2500 nm (Fig. 2 A). Each spectra group corresponds to
each of the four studied sets. The widest spectra group corresponded to
the set of the core collection while the three other ones were each specific
to the three sets of the interspecific population, each from one of the 3

studied environments, Bafia, Mbalmayo and Nioro (Fig. 2 A). The
absorbance range of interspecific population was highest in Bafia fol-
lowed by Mbalmayo and Nioro, pointing out the effect of environmental
factors on chemical composition of seeds.

Fig. 2. NIR spectra of intact-seed according to genetic and environment origin of samples without treatment (A) and after Stavisky Golay filter with derivative 2 pre-
processing (B). Spectra of varieties of the core collection are labelled in black. Spectra of interspecific AB-QTL genotypes from Bafia, Mbalmayo and Nioro, envi-
ronments are labelled in red, green and blue, respectively.

Fig. 3. Plot showing Mahalanobis distance among varieties and interspecific genotypes Each dot on the plot represents a variety or genotype. Varieties of the core
collection are labelled in black. Interspecific AB-QTL genotypes from Bafia, Mbalmayo and Nioro, environments are labelled in red, green and blue, respectively
(dotted line: distance cutoff - Chi-squared distribution for Standard Deviation squared (Brandolini-Bunlon, et al., 2023)).
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3.3. Pretreatments effects on spectra

Different spectra pretreatments, SNV, Detrend and SavGol were
applied in the raw spectra since spectral measurements can be affected by
many factors leading to interference (light diffusion, scattering, …) with
consequence observed as additive and multiplicative effects on raw
spectra data. As example, the absorbance spectra pre-treated by SavGol
filter with a window width of 15 points and first derivative was shown in
Fig. 2B. As expected, the pretreatments eliminated physical effects due to
seed dimension, surface of seed, etc., with consequences on light diffu-
sion. Thus, from pretreated spectra, a hugeMD variation, from 1 to 8, was
found among varieties and genotypes (Fig. 3). Likewise, a distinct MD
was found between 3 environments with a highest value at Mbalmayo
followed by Bafia and Nioro.

3.4. Principal component analysis

PCA was performed using pretreated spectra after Savitzky-Golay
filter with a window width of 15 points and first derivative. The first 5
PC represent more than 95% of the total variability with the values 60.5,
17.0, 15.5, 3.6 and 1.6, respectively. The PC1/PC2 and PC3/PC4 score
plots are shows in Fig. 5. As expected, these figures show greater vari-
ability in the core collection and less variability in the other groups. The
PC3/PC4 plot allows to distinguish easily the 4 seed lots. These plots
showed that samples from different genetic and environmental origins
are able to be well clustered and that they have great potential to be
correctly identified.

Loading plots showing how each variable correlates with PC are
shown in Fig. 4. The first loading indicates that the regions around 1900
nm and 2150 nm have a higher influence on PC1. Likewise, regions
around 1210 nm, 1720 nm and 2300 nm seemedmore related to PC2. For
PC3, the region around 2400 nm seemed to be more important. PC4 was
more related to 1400 nm, 1800 nm, 1950 nm and 2150 nm regions. The
varieties and interspecific genotypes demonstrating contrasted scores in
the top PCs were recorded (Fig. S3) and could be used further in peanut
breeding programs.

3.5. Discrimination of genetically related interspecific genotypes among
environments

The score plots illustrated that data could be grouped into four clus-
ters, with overlapping the main clusters at the margin, with some inter-
specific genotypes and varieties superimposed, particularly, at the Nioro
environment-set cluster (Fig. 5). The twomost separated environments in
the plane determined by plot scores were Mbalmayo and Bafia. With few
exceptions, all interspecific genotypes from Mbalmayo exhibited high
positive values at the PC3 compared to the other environments. This
suggests that Mbalmayo environment might positively increases the seed
traits associated with PC3. Finally, the African varieties studied in one
environment added genetic variability to the environmental variability,
resulting in a wide range of differences.

3.6. Classification based on whole seed spectra

A PLS-DA model was developed and the classification results of the
model were shown in Table 2. The classification accuracy on the test set
was 99.6% with correctly classified instances of the 4 samples sets i.e.
African varieties in one environment and the interspecific genotypes
from the 3 environments (Table 2). Interestingly, the confusion matrix
achieved for the two sets, Bafia and Nioro shows 100% of instances
classified correctly with 100% at both sensitivity and specificity. These
two sets did not show incorrect instances, even in the model generated
when all other sets were considered, thus confirming that their seed
composition seemed very different from each other and from those of the
other seed samples. These results showed that NIRS combined with
discrimination analysis based on PLS regression is a simple and efficient
tool for the classification of peanut genotypes, depending on each com-
bination of the genetic and environment origins, which determine plant
nutritional availability.

4. Discussion

The efficiency of NIR spectroscopy, as tool for fast and non-
destructive large germplasm characterization in multi-environment
were later discussed under the umbrella of breeding in intra and inter-
specific context.

Fig. 4. PCA loading plots for the fourth first PCs showing how each variable correlate to each PC for wavelength.
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Peanut is an important oil seed crop and the need to characterize
peanut germplasm is essential as the demand for peanut is increasing
continuously in various end product applications. According to the rapid
and non-destructive attributes of the NIR, a total of 6 days was required
to obtain all spectra of the six subsets of seed of 680 samples. The low
level (0.04%) of outlier spectra on the global data set was considered as a
good basis for analysis. Typical spectra observed in this study were in
accordance with those reported in past studies. From raw spectra, eleven
major peaks were observed. The region around 1210 nm, 1720 nm, 1763
nm, 2306 nm and 2350 nm could be assigned to fatty acids or oil content,
which are generally considered as major components of peanut kernels
(Govindarajan et al., 2009; Sundaram et al., 2009; Tao et al., 2019). The
spectral peak around 2140 nmwould likely result from the absorbance of
proteins. The absorbance peak around 1465 nm might be related to the
O–H overtone bond. The sharp peak around 1932 nm was due to the
strong absorption of water contained in peanut kernels (Govindarajan
et al., 2009; Sundaram et al., 2009; Tao et al., 2019). In the future,
predictive models will be developed for nutritional content of peanut
seeds.

A wide genetic variation was found among varieties and interspecific
genotypes within environments. An environmental effect on seed com-
pounds was highlighted by using the same interspecific population,
thorough 3 environments. The largest variation was found in Bafia, fol-
lowed by Mbalmayo and Nioro. Bafia in savanna andMbalmayo in forest,
grown under yellow and ocher vertisol, respectively in Cameroun while
Nioro in Sahel in Senegal exhibited leached ferruginous soil. The inter-
action between all agroecological scenarios (climate, vegetation and soil)

and spatial factors create a complex system of environments that affect
peanut plant growth and development, leading to a discrimination
among genotypes within and between environments. As previously re-
ported by chemical studies, seed composition is influenced by environ-
ment but also has a strong genetic component. The variation of oil
composition has been related to temperature (Harris and James, 1969),
planting date (Andersen and Gorbet, 2002), location and soil moisture
(Holaday and Pearson, 1974; Young et al., 1974), photoperiod (Dwivedi
et al., 2000), market grade (Mozingo et al., 1988) and genotype (Gimode
et al., 2020; Harch et al., 1995; Holaday and Pearson, 1974; Norden et al.,
1987; Worthington and Hammons, 1971). However, with multiple
environmental factors mentioned above, it is difficult to decipher factors
underlining variation in this study. Likewise, identifying suitable peanut
genotypes for global ecological zones remains a challenging task due to
the significant genotype variability across environments. Finally, the
African varieties studied in one environment added genetic variability to
the environmental one, resulting in a wide range of variability.

According to the spectra profiles and PCA plot, the genetic pattern of
interspecific population covers, remarkably half of the spectrum of the
core-collection, that turned out to be largest, as we expected. Interest-
ingly, we found specific genetic variation among interspecific genotypes
that was not subtle cover by the core-collection at the common Nioro
environment. Interspecific genotypes with positive value on the main
PCA axis were recorded as promising genotypes for quality traits. These
genotypes could be recommended for further breeding for developing
suitable varieties. In this respect, evaluation of the segregating inter-
specific population could further ease the discovery of QTL and valuable

Fig. 5. PCA visualization of core varieties and interspecific genotypes among environments. PCA 2-dimensional score plots of PC2 and PC1 (A) and PC3 and PC4 (B)
using NIRS spectra. Each dot on the plot represents a variety or genotype. Varieties of the core collection are labelled in black. Interspecific AB-QTL genotypes from
Bafia, Mbalmayo and Nioro, environments are labelled in red, green and blue, respectively.

Table 2
Confusionmatrix showing classification performance of PLS-DAmodel applied to test set sample samples (N¼ 139, Class 1: Core, Class 2: AB-QTL Bafia, Class 3:
AB-QTL Mbalmayo, Class 4: AB-QTL Nioro).

Predicted

1 2 3 4 Actual Accuracy Precison Recall F1-score

Actual 1 41 0 0 0 42 0.993 0.976 1.000 0.988
2 0 32 0 0 32 1.000 1.000 1.000 1.000
3 1 0 31 0 31 0.993 1.000 0.969 0.984
4 0 0 0 34 34 1.000 1.000 1.000 1.000
Pred 41 32 31 34 139

Accuracy 0.996
Specificity 0.998
Recall 0.993
Precision 0.993
Proportion of false-negatives 0.007
Proportion of false-positives 0.002
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wild genes that contribute to improved seed quality.
A PLS-DA model was successful developed from seed spectra to

classify varieties and genotypes according to their genetic and environ-
mental origin. A robust prediction accuracy of 99.6% was achieved. The
confusion matrix achieved for the two environments, Nioro and Bafia
shows 100% of instances classified correctly with 100% at both sensi-
tivity and specificity. This confirm that their seed chemical composition
was very different from each other and from those of the other seed
samples. These results suggested that PLS-DA model could be used to
classify peanut genotypes depending on the combination of the genetic
and environment origins of seeds, which influence plant nutritional
properties. In further studies, the current model would be confronted to
wide others breeding populations in different environment to predict
genetic and environment origin and nutritional content of whole seeds.

Breeding programs need germplasm diversity with extreme values for
any nutritional trait. The magnitude of the genetic influence among va-
rieties and genotypes suggested that nutritional related traits were
amenable to improvement through intra and interspecific breeding.
Nowadays, the availability of NIR data, might accelerate the utilization of
germplasm and genetic diversity both in breeding programs. The
observed genotypic variations and their variability across environments
have deep implications for breeding programs. It seems feasible to ach-
ieve a fruitful goal in breeding on the basis of seed composition, because
both the environmental effects found in the different locations and the
genetic effects of the different varieties and interspecific derivatives in-
fluence the seed chemical compounds. Interestingly, even if the core-
collection turned out to be the widest, a huge, specific and subtle ge-
netic variation was found among interspecific genotypes, that was not
covered by the 300 varieties. This offers the possibility of discovering
new sources of diverse nutritional polymorphisms from wild derivatives.
As early reported, three introgression lines with elevated Oleic/Linoleic
profiles were found using chemical survey of 77 interspecific lines
(Gimode et al., 2020). Interspecific hybridization has recently played an
important role in accessing useful alleles from the wild (Favero et al.,
2006; Mallikarjuna et al., 2011b; Simpson, 2001). We recorded varieties
and interspecific lines with favorable spectra profiles. Thus, those po-
tential chemotypes, with favorable chemical profiles could be further
evaluated and promoted as a valuable genetic material to develop suit-
able varieties. Moreover, the comprehension of the genetic and envi-
ronments determinants of nutritional traits might help in marker-assisted
selection, accelerating the breeding of superior varieties tailored for
specific environments and end-user demands.

5. Conclusion

The present study was carried out to investigate the potential of NIR
coupled with chemometric to rapidly assess peanut germplasm from
whole seed of a core-collection and an interspecific population, field-
evaluated in 3 environments. This paper describes the NIR inputs to
control breeding populations and assess germplasm variability, as we
expected before the genetic studies. A wide variability of seed com-
pounds was observed in the given germplasm, within and between en-
vironments, as revealed by spectra and multivariate analysis. A PLS-DA
model was developed with a strong classification accuracy, aiming to
properly predict each whole seed sample according to environment.
These results indicate that NIR coupled with chemometric seem useful to
accurately assess and distinguish intact-seed within different environ-
ments, that would ease further prediction of intact-seed nutritional
content and utilization of germplasm in breeding programs.
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Abstract: Quantitative Trait Loci (QTL) mapping has been thoroughly used in peanut genetics
and breeding in spite of the narrow genetic diversity and the segmental tetraploid nature of the
cultivated species. QTL mapping is helpful for identifying the genomic regions that contribute
to traits, for estimating the extent of variation and the genetic action (i.e., additive, dominant, or
epistatic) underlying this variation, and for pinpointing genetic correlations between traits. The aim
of this paper is to review the recently published studies on QTL mapping with a particular emphasis
on mapping populations used as well as traits related to kernel quality. We found that several
populations have been used for QTL mapping including interspecific populations developed from
crosses between synthetic tetraploids and elite varieties. Those populations allowed the broadening of
the genetic base of cultivated peanut and helped with the mapping of QTL and identifying beneficial
wild alleles for economically important traits. Furthermore, only a few studies reported QTL related
to kernel quality. The main quality traits for which QTL have been mapped include oil and protein
content as well as fatty acid compositions. QTL for other agronomic traits have also been reported.
Among the 1261 QTL reported in this review, and extracted from the most relevant studies on QTL
mapping in peanut, 413 (~33%) were related to kernel quality showing the importance of quality in
peanut genetics and breeding. Exploiting the QTL information could accelerate breeding to develop
highly nutritious superior cultivars in the face of climate change.

Keywords: QTL mapping; quality traits; interspecific; genetic; breeding; peanut

1. Introduction

Peanut (Arachis hypogaea L.) is a grain legume mainly grown in the tropics, subtropics,
and warm temperate regions of the world. The genus Arachis originated in South America
and all of its species produce their fruit underground [1]. Peanut is a self-pollinated,
segmental allotetraploid [2,3], with 2n = 4x = 40 chromosomes [3,4]. It is an oilseed crop
with global importance to food and nutritional security and a source of livelihood for
millions of smallholder growers of Asia and Sub-Saharan Africa. World production of
peanut was approximately 54 million metric tons (MT) harvested from 30 million hectares
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(Mha) in 2020. China is the world’s largest producer with 18 million metric tons (MT). Africa
accounts for 32 % of worldwide production and the annual production and harvested area
were 17 MT and 17.43 Mha, respectively, in 2020 [5]. Peanut ranked fifth among vegetable
oilseed crops in terms of edible oil production (6.26 MT), preceded respectively by sunflower
seed (21.56 MT), rapeseed (27.85 MT), soybean (57.74 MT), and palm (72.77 MT) [6].

Peanut is a major oilseed crop used for a variety of purposes, such as direct con-
sumption of the seed (kernel), which can be eaten raw, roasted, boiled, or processed into
confectionary and peanut flour for flavor enhancement, or crushed to edible oil. Nutri-
tionally, it is a source of high-quality edible oil (35–60%), protein (22–30%), carbohydrates
(10–25%), vitamins (E, K, and B complex), and minerals (Ca, P, Mg, Zn, and Fe) [7]. Peanut
oil contains about 12 different kinds of fatty acids (FAs), with oleic acid (C18:1) and linoleic
acid (C18:2) accounting for nearly 80% of the total [8]. The presence of relative proportions
of various FAs affects the nutritional quality, flavor, and shelf-life of peanut seeds and
products. The high linoleic acid content in peanut oil induces low oxidative and frying
stability, resulting in rancidity, off-flavors, and short shelf life in produced foods [8,9].
Compared to a normal ratio, a high oleic-to-linoleic ratio leads to longer shelf-life and im-
proved flavors [10]. The main consumption and production constraints of the crop include
drought, pests, diseases, and environmental changes. These constraints have an impact on
the content of oil and protein present, as well as the oil’s composition, which also has an
indirect impact on the oil’s shelf life, aroma, flavor, cooking quality, and cooking time [4].

According to genetic, cytogenetic, phylogeography, and molecular data, the cultivated
peanut, A. hypogaea is an allotetraploid, derived from hybridization between the diploids,
A. duranensis (A genome) and A. ipaensis (B genome) [3,11]. These two species are members of
the section Arachis [12]. Molecular analysis has shown that cultivated peanut has a limited
polymorphism at the DNA level due to the crop origin, from single to a few hybridization
events and the transition from diploid to tetraploid [1]. Various studies have revealed that
wild relatives harbor high levels of genetic variation [13,14] that can be used for improving
cultivated peanut. Several accessions of those species have been used to board the genetic
diversity of cultivated peanut in different studies for a variety of traits including abiotic
stress [15], disease resistance [16,17], oil content, and composition [18].

Chromatin introgression of a tiny fraction of the wild species genome while main-
taining the genome background of the cultivated peanut is a means to discover the most
untapped wild genes/alleles. As several authors have mentioned, direct gene transfer from
wild diploid species has been hampered by ploidy differences, fertility barriers caused
by species incompatibilities, linkage drag of desirable wild alleles with those conferring
agronomically unadopted traits and, finally, difficulties in confirming hybrid identities and
tracking introgressed segments [16,19,20]. These issues have been partly resolved by the
production of synthetic allotetraploid that can be crossed with cultivated peanut [21–23].
as well as a number of molecular markers and genomics tools to ease introgression and
genetic analysis [24]. GPBD 4, Span cross, Tamnut 74, TxAG 7, COAN, NemaTAM, and
Tifguard are improved germplasm/cultivars that were developed using genes from wild
Arachis species [13,24]. Among them, GPBD4 resulting from a cross between A. hypogaea
and A. cardenasii derived introgression line has been widely used for improving disease
resistance in a variety of breeding programs [25].

Mapping quantitative trait loci (QTL) and identifying markers that are linked to target
traits are important steps toward accelerating the rate of genetic gains in breeding pro-
grams. QTL mapping is a routine technique used to identify genetic loci governing traits
of interest [26]. QTL mapping in family-based populations requires (i) the development
of appropriate mapping population and traits phenotyping; (ii) selection of appropri-
ate molecular marker(s) and generation of molecular data with an adequate number of
uniformly-spaced polymorphic markers; (iii) construction of genetic linkage maps to locate
QTL using statistical programs.

The success of QTL mapping depends on the size of the mapping populations and the
quality of the genotyping and phenotyping data. The availability of a tremendous number
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of genomic resources, including molecular markers, and genetic and physical maps have
greatly eased the mapping of QTL and/or genes [27,28]. Many QTL have been reported
for seed and pod-related traits [15,29–35], fresh seed or seed dormancy [36–40], nutritional
quality traits [18,41–47], drought resistance [48–50], and disease resistance [51–56], pro-
viding potential tools for peanut improvement. However, few QTL are being effectively
utilized in peanut improvement programs to produce elite cultivars.

The general aim of this paper is to review the recently mapped QTL in peanut, with a
particular emphasis on traits related to kernel quality. Genome-wide distribution of QTL
and their effective use in innovative schemes of marker-assisted selection (MAS) in peanut
breeding are discussed.

2. Mapping Populations of QTL in Peanut

Genetic mapping populations are required for marker–trait associations both for
oligogenic and polygenic traits. Genetic mapping can be broadly divided into two types:
(i) family-based mapping, which is conducted on offspring of biparental or multiparent
crosses, and (ii) natural population-based mapping, also known as association or linkage
disequilibrium mapping, which is conducted on unrelated natural populations [26].

2.1. Family-Based Mapping Populations

The biparental mapping population is a kind of family-based mapping population
created by crossing two parents that differ on the target of interest [57]. F2 [29,36,43,55,58],
backcrosses (BC) [15,18,59–63], recombinant inbred lines (RIL) [44–50], chromosome seg-
ment substitution lines (CSSL) [64–66], and near-isogenic lines (NIL) [67] are the examples
of biparental mapping populations. In peanut, F2, RIL, advanced backcross (AB) popula-
tions, and CSSL have been used for QTL mapping (Figure 1). The relative simplicity of
construction, the high QTL detectability, and the low rate of linkage disequilibrium decay
within chromosomes are the three main benefits of biparental populations. However, there
are two main limitations of biparental populations: a lack of mapping precision due to
the limited amount of effective recombination that occurs during population development
and low genetic diversity because of the genetic bottleneck caused by the selection of
two founders [68].

To overcome the limitations of biparental populations, multiparental mapping pop-
ulations have been created; these populations increase the recombination rates and the
genetic pool, leading to higher-resolution genetic maps [68–70]. Usually, they are suitable
for high-resolution QTL mapping, although they also have some limitations, such as labor-
intensive crossing, managing large population sizes, being time-consuming, and requiring
significant investments in phenotyping and genotyping (Table 1). Nested association map-
ping (NAM) and multi-parent advanced generation inter-crossing (MAGIC) [71], are the
two most important multiparent mapping populations [68]. Four NAM populations, ICGV
91114 and 22 genotypes, and ICGS 76 and 21 genotypes, using Florida-07 and Tifrunner as
common parents with eight genotypes, were developed at ICRISAT and by USDA ARS
and the University of Georgia (UGA), respectively [69,70,72]. Using the last two popula-
tions, a total of 42 SNP markers linked with 100-pod weight and 100-seed weight were
detected [73]. Three MAGIC populations also were developed by crossing eight parental
genotypes targeting multiple traits, including fresh seed dormancy, oil content, aflatoxin,
and drought resistance [69]. Despite the discovery of QTL mainly using linkage analysis,
natural population-based mapping has also been used in a couple of studies [74–80]. It is
discussed in the next section.
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Table 1. Advantages and disadvantages of populations used in peanut mapping.

Populations Advantages Disadvantages References

BC
- Useful for the introgression of wild

chromatin and specific genes/QTL
- Easy analysis

- Time requirement to construct in such cases
- Estimating dominance effects is impossible
- Not suitable for Meiotic behavior analysis

[15,59,60]

F2

- Require less time to construct
- Impossible to determine the degree of

dominance and additive effects
- Easy analysis
- Suitable for Meiotic behavior analysis

- Precision is low
- Temporary nature
- It is not repeated across years and locations

[2,43,55,58]

NIL

- Suitable for fine mapping
- Useful for tagging the gene
- Highly reliable and accurate statistically
- Suitable for quantitative and qualitative

trait tagging

- It takes time to construct
- Not suitable for whole linkage mapping
- Problem of linkage drag

[67]

RIL

- Abundance of recombination
- Immortality: replicable throughout

locations and years
- Very useful in identifying tightly

linked markers

- Impossible to estimate dominant effects
- Time requirement: many seasons and

generations are needed for
the development

[44–50]

CSSL

- Immortality: replicable throughout
locations and years

- Very useful in identifying tightly
linked markers

- Time requirement: many seasons and
generations are needed for
the development

[65]

NAM or
MAGIC

- Several alleles than biparental populations
- Several QTL segregating than

biparental populations
- Rapid fine mapping
- Useful for candidate

- Time to construction/establish
- Require more markers than biparental
- Require larger population than biparental

[69–73]

Natural

- Available collections
- High diversity
- Natural recombination
- When LD limited, Precise mapping

- Time to construction/establish
- Require more markers than biparental and

MAGIC or NAM population
- Population structure
- Spurious association
- When high LD, coarse mapping
- Rare alleles poorly identified

[74–80]
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Figure 1. Derivation of biparental and other populations used for peanut. F2 [29,36,43,55,58],
BC2F2 [15], BC1F1 [59], BC2F4 [60–62], BC2RIL [18], BC2F1 [63], RIL [44–48], CSSL [64–66], NIL [67]
MAGIC [69,71], NAM [69,70,73], Natural population [74–78].

2.2. Natural-Based Mapping Populations

Natural population-based mapping is a method of mapping QTL that takes advantage
of historic linkage disequilibrium to link phenotype to genotype by sampling distantly
related individuals. However, the method comes with limitations: it is predominantly influ-
enced by unknown population structure, leading to spurious associations, and also requires
very large samples to have sufficient power to detect genomic regions of interest [74–76].
Natural population-based mapping utilizes diverse germplasm sets with high variability
for economically important traits in a crop species with the advantages, in such cases, of
high resolution and high allelic richness, with no investment in crossing. The main steps in
natural population-based mapping include (i) collection of a sample population including
elite cultivars, landraces, wild relatives, and exotic accessions; (ii) phenotyping target traits,
estimation of broad-sense heritability, genotyping the population; (iii) quantification of
LD extent of the selected population; (iv) identification of the influence of population
structure and kinship; and (v) testing the association between genotype and phenotype
using appropriate statistical approaches and validation of detected QTL [26,28].

Using this approach, several QTL have been reported in peanut. Two functional single
nucleotide polymorphism (SNP) markers for two fatty acid desaturases (FAD2 for oleic acid,
linoleic acid, and oleic-to-linoleic ratio) were found by phenotyping for quality traits and
genotyping of the US “Mini Core Collection” using 81 SSR markers [74]. A total of 50 SSR
markers linked with oil content, protein content, oleic to linoleic acid ratio, and fatty acid
concentrations, with phenotypic variation explained (PVE) from 5.81 to 47.45 percent, were
detected using 300 genotypes. Additionally, 12 QTL that linked to seed length and seed
width, explaining phenotypic variance from 11.81 to 30.09 percent were also detected using
these genotypes [75]. The other 107 significant SNP markers underlying pod weight, pod
length, pod width, seed length, seed width, and 100-pod weight and 100-seed weight [76,79]
were discovered using 158 and 250 genotypes, respectively. Similarly, 12 QTL associated
with oil content were identified using 292 accession numbers [78], and 253 loci controlling
oil content, protein content, oleic to linoleic acid ratio, and fatty acid composition were
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identified [77,80] using 120 and 250 genotypes, respectively. Among all the genotypes that
have been used as a mapping population, more than 50% are from core collections. QTL
that have been mapped for important quantitative traits, particularly utilizing a biparental
approach, have been discussed in the next sections.

3. Molecular Markers for Linkage and QTL Mapping

A major application of molecular markers is the construction of linkage maps required
for QTL mapping and marker-assisted breeding. Past molecular markers used in peanut
include RFLP, RAPD, and AFLP. The first RFLP-based map for Arachis was created with
117 loci [81]. The first tetraploid RFLP-based genetic map was developed with 370 loci
using an advanced population [60]. RAPD and RFLP markers were used to create a genetic
linkage map using an interspecific diploid BC population derived from A. stenosperma
x (A. stenosperma x A. cardenasii) [59]. In this study, 167 RAPD and 39 RFLP loci were
mapped to 11 linkage groups, covering 800 cM. AFLP markers were also used to find
DNA markers linked to aphid resistance and to construct a partial genetic linkage map of
cultivated peanut [82]. Currently, the most commonly used molecular markers in peanut
include SSR, SNP, and DArT. In 2009, the first genetic map based on SSR markers was
constructed with 135 loci [83]. In the same year, 298 loci were mapped in 21 linkage groups,
spanning a total map distance of 1843.7 cM in an advanced backcross population [84].
Among many SSR-based maps, these were developed for populations derived from TG26
and GPBD4, Sun Oleic 97R, NC94022, Tifrunner and GT-C20, and amphidiploid ‘’TxAG-6‘’
and ‘’Florunner”, to locate the genomic region underlying seed quality traits [18,41,42]. The
maps contain 45 to 378 SSR loci spanning 671.1 to 2487.4 cM distance. In addition, with
these maps, approximately 33 SSR-based genetic maps have been developed to date to
identify the genomic areas responsible for disease resistance, drought resistance, yield, and
yield component traits as reviewed previously [7,27,72].

SNP are the most common molecular markers in the genome, and they can be analyzed
with high-throughput genotyping techniques. The first SNP-based genetic map in peanut
was created with 1621 SNPs and 64 SSR markers on 20 linkage groups [85]. Aiming at
oil and protein content and oil composition, three linkage maps were constructed with
2266–4561 SNP loci spanning a total map length ranging from 2032.39–2586.37 cM derived
from Huayu28 and P76, Xuhua 13 and Zhonghua 6, and Yuhua 15 and W1202 [44,45,47],
on 20 linkage groups. To date, SNP-based maps have been presented in peanut [7,27,72].
By using DArT markers, five genetic maps were constructed using F2 and advanced
backcross populations. A genetic map using the F2 population derived from ICGV 00350
and ICGV 97045 has 1152 loci spanning a map distance of 2423.12 cM and a map density of
2.96 cM/loci developed [36]. A total of 854 (ICGV 07368 and ICGV 06420) and 1435 (ICGV
06420 and SunOleic 95R) marker loci were used to create two genetic maps, with total
map distances of 3526 and 1869 cM, respectively [43]. The other two additional genetic
maps, with 253 DArT and five SSR loci, and 1035 DArT and eight SSR loci, covering
1415.7 and 1500.8 cM of map length, respectively, were created using advanced backcross
populations [63].

The availability of genome sequencing for peanut speeds up the development of
different types of genotyping platforms/assays, including Kompetitive Alelle Specific
PCR (KASP) assays, Golden Gate assays, Vera-code assays, micro-array-based markers,
next-generation sequencing (NGS)-based markers, genotyping by sequencing (GBS), InDel
markers and Affymetrix axiom SNP array. All these genotyping platforms are SNP-based
since SNP markers are considered markers of choice and are amenable to high-throughput
genotyping for several applications including QTL mapping.

4. Mapping of QTL

A QTL is a genomic region that is responsible for the quantitative variation of a
trait. A quantitative trait is a measurable attribute based on the combined activity of
one or many genes and their interactions with the environment, which can vary between
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individuals over a given range to generate a continuous distribution of phenotypes [86].
QTL mapping is important for identifying responsible genes, understanding variation
mechanisms, determining how many QTL contribute significantly to the trait, determining
how much variation is due to additive, dominant and epistatic effects, and determining
the nature of the genetic correlation between different traits in a genomic region [87]. The
steps involved in biparental QTL mapping are presented (Figure 2). To date, quantitative or
metric traits in peanut include traits related to yield and yield component traits, flowering,
agro-morphology, seed dormancy, quality and nutritional traits, and resistance to viral,
bacterial, and fungal diseases.
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4.1. Mapping QTL for Seed Quality Traits

Important quality traits that can be assessed by biochemical analysis of the peanut
kernel include oil, protein, and sugar content, as well as fatty acid (FA), amino acid, and
carbohydrate composition. The proportion of different FAs, such as saturated, monounsat-
urated, and polyunsaturated (PUFA), present in the oil determines the nutritional quality,
flavor, and shelf life of both peanut kernels and products [8]. In particular, the concentration
of oleic acid is one of the most important quality traits because it can increase the shelf life
of peanut products and is beneficial for human health [88].

QTL mapping for traits related to oil and protein content as well as fatty acid com-
position in peanut has been reported [41–43,45–47,89]. Furthermore, QTL for unsaturated
FA and the oleic acid to linoleic acid ratio [44], as well as QTL for saturated fatty acid
composition [90], were also reported. A mapping population of 146 recombinant inbred
lines (RILs) generated from a cross of TG26 x GPBD4 was used to discover QTL for protein,
oil, oleic, and linoleic acid content, and for the oleic acid to linoleic acid ratio [41]. As the
same authors have mentioned, GPBD4 has a desirable combination of early maturity, high
yield, high pod growth rate, desirable pod and kernel features, high oil, and protein con-
tent, and an optimum oleic/linoleic acid (O/L) ratio, whereas TG26 is a semi-dwarf, erect
cultivar with high linoleic acid content. Although the genetic map has low coverage (45 SSR
markers on eight linkage groups), the authors reported 17 QTL on four genomic regions,
including two major QTL for protein content. Likewise, several QTL were identified using
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two genetic maps developed from RIL populations derived from the crosses between Sun
Oleic 97R and NC94022 and between Tifrunner and GT-C20 [42]. They found two major
QTL for oil content on chromosomes A05 and A08 and 11 major QTL for oleic acid, linoleic
acid, and the ratio of oleic acid to linoleic acid on the homeologous chromosomes A09 and
B09. Using these mapping populations, 16 major QTL on B04 and A09/B09 were identified
for palmitic acid, stearic acid, arachidic acid, gadoleic acid, behenic acid, and lignoceric
acid content [90]. One consistent QTL for oil content was mapped on chromosome B03,
explaining 14.36% of phenotypic variance [89]. Likewise, two genetic maps were developed
using two F2 mapping populations, one for fatty acid composition (FA-population, ICGV
06420 x Sun Oleic 95R) and the other for oil content (OC-population, ICGV 07368 x ICGV
06420) [43], with 1435 and 854 SNP loci spanning 1869 and 3526 cM distances, respectively.
In these two maps, 23 major QTL were identified on 11 genomic regions; 2 for oil content
and 21 for fatty acid composition variation, explaining up to 41% of PEV.

Another high-resolution genetic map, with 2334 SNP markers and a total length of
2586.37 cM, was constructed using a RIL population developed from the cross between
high- and normal oleic cultivars [44]. The authors reported 29 major QTL for oleic and
linoleic acid content as well as oleic to linoleic acid ratio, explaining 10 to 57.6% of the
phenotypic variance, which were mapped on chromosomes A03 and A09/B09.

More recently, 14 major QTL involving oil content on A05, A06, A08, B06, and B10, ex-
plaining up to 27.19% PEV, were discovered from the three mapping populations derived from
Xuhual13 and Zhonghua6, Yuhual15 and W1205, and Zhonghua10 and ICG12625 [45–47].
Moreover, major QTL associated with protein stearic acid, behenic acid, and arachidic acid
contents were mapped on chromosomes A05, A06, and A08 [47]. The locations of the chromo-
somes where the aforementioned QTL are located are shown in Figure 3.

We performed a comparative QTL analysis using data from the studies above in
order to gain more insight into the genome-wide distribution of kernel-quality QTL and
to document the most consistent ones for future use in marker-assisted breeding. The
map location of the QTL is presented in Figure 3 and the detailed data of all the 1261 QTL
reported in this review, including information on the 413 quality-related QTL are found
in Supplementary Table S1. Except for chromosome B01, QTL related to quality traits are
mapped on 19 out of the 20 peanut chromosomes. We found that QTL for quality traits
are mainly clustered on chromosomes A05, A08, and A09 for the A genome, and B04,
B08, and B09 for the B genome. For instance, many QTL for oil and protein content as
well as fatty acid compositions (arachidic, arachidonic, behenic, stearic, palmitic, linoleic,
and oleic) co-localized on chromosome A05 and were consistent among environments
(Figure 3 and Supplementary Table S1). Furthermore, QTL for oleic acid, linoleic acid, and
the oleic/linoleic ratio from different studies were found in common genomic regions on
chromosomes A05, A08, A09, B04, and B09. In chromosome B09, the common QTL are
closely linked to markers ahFAD2B and SNP markers, Marker2575339 or Marker239598.
The AhFAD2B QTL, on chromosome B09, explained up to 57% of phenotypic variation
of oleic acid or linoleic acid content [42,44]. Similarly, the AhFAD2A and Marker4391589
or Marker4463600 on chromosome A09, are common among studies and explained up
to 29% of phenotypic variation [42,44]. Additionally, AhMXZ190701 was discovered to
be tightly linked to a major and stable QTL A08 for oil content [42,45]. These consistent
markers, AhMXZ190701, ahFAD2B, ahFAD2A, Marker2575339, or Marker2379598 have
been used for QTL validation and MAS of quality traits [45,91]. Likewise, several QTL
for arachidic, behenic, stearic, palmitic, linoleic, and oleic acid and oil content, mapped
in three studies are linked to the marker RN34A10 on chromosome A7 (Figure 3) [42,90].
Furthermore, consistent QTL among traits and environments were also reported. From
a QTL mapping study on four environments, among the 110 QTL related to nine quality
traits, 36 pleiotropic QTL were associated with two or more traits and showed consistent
effects in more than one environment [47].
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Figure 3. Schematic map of known QTL related to quality traits in peanut. The QTL detected are distributed over the GLs of the A genome, named from A1 to A10,
and those of the B genome named from B1 to B10 indicated by gray-colored segments. Locus names related to the QTL are shown on the right of each GL. The QTL
detected for each trait are indicated by colors in the legend. The peaks of the QTL are respectively indicated circles. The size of the circles is proportional to the
phenotypic variance of the trait indicated by the authors.
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The consistent QTL identified for peanut quality traits, thanks to published studies,
reviewed here can be used in breeding special-purpose peanut cultivars. However, some
QTL need to be validated with fine mapping considering their positions on chromosomes
differed in different studies, probably due to the genetic material, large QTL intervals, and
statistical imprecisions.

4.2. Mapping QTL for Agro-Morphological Traits

In order to meet the food needs of a growing world population, the main goal of
the plant breeding program has been to increase pod yield. In this paper, SSR, SNP, and
DArT markers linked to agro-morphological traits utilizing various mapping populations,
including F2, BC2F1, BC2F3, BC3F2, BC4F3, and recombinant inbred lines (RILs), have been
discussed. Given this, a total of 266 main-effect QTL were mapped for pod- and seed-related
traits: 100-seed weight, 100-pod weight, pod weight, pod length, pod width, seed length,
seed width, and pod number, using F2 [36,89] and RIL [31–35,92,93] populations. A total
of 44 QTL for 100-pod weight were identified, explaining up to 38.15% of the variance on
chromosomes A05, A07, A08, B02, B03, B07, and B08, as well as homeologous chromosomes
A07 and B07 [30,31,89]. On chromosomes A02, A03, A04, A05, A06, A07, A08, B02, B03,
B04, B05, B06, and B08 with A05 and B05 homoeologous loci, 35 QTL were reported with
5.68 to 35. 9% phenotypic variance explained linked with 100-seed weight [31,32,89]. These
05A1430-A05A1601, A05A1344-A05A1562, and A05A1430-A05A1601 major and stable SSR
markers increased pod length, pod width, and 100-pod weight by 27.84, 14.12, and 26.82%,
respectively [30]. Similarly, major QTL for pod weight and seed weight were reported [35].

Along with traits related to seeds and pods, QTL for flowering, plant height, and fresh
seed dormancy were also identified. A total of 30 QTL were reported, ranging in PVE from
1.15 to 21.82%, which underlie the days for 50% flowering and the first days of flowering,
using three genetic maps created from TAG 24 x GPBD 4, and TAG 24 x ICGV 86031 [32,94].
For plant height, 71 main-effect QTL [32,92,95], were identified, accounting for up to 26.27%
of the phenotypic variance. Several main-effect QTL linked to seed dormancy or fresh
seed dormancy in peanut have recently been reported to explain up to 71.21% of the
phenotypic variance using F2 and RIL populations [36–40]. For fresh seed germination,
QTL were detected on seven homoeologous chromosomes, which are in both A and B
genomes with one major stable marker [38]. The co-localization of QTL for the studied traits
was reported. Several QTL associated with plant architecture as growth habit and plant
height co-localized with those associated with flowering [96]. Moreover, the QTL of yield
components, such as 100-pod weight, pod weight, and pod length [30,33], 100-pod weight,
100-seed weight, and pod weight [29,32], were co-localized on chromosomes A05 and A07.
Overall, the QTL mapped related to agro-morphological traits include QTL related to plant
architecture, flowering, fresh seed or seed dormancy, and yield component traits.

In this review, QTL underlying drought resistance traits were also highlighted. For
these drought resistance traits, shoot dry weight, transpiration efficiency, leaf area, transpi-
ration rate, transpiration, and SPAD chlorophyll meter readings (SCMR), 127 QTL were
discovered with the phenotypic explained variation ranging from 4.2 to 22.09% [48–50].
From a field experiment using well-watered and water-limited treatments a total of 13 QTL,
individually explained 10.4%–20.1% of the phenotypic variance, were significant for the
stress tolerance indices (STI): two for total biomass on chromosomes B06 and A05, one for
pod weight on chromosome A05, one for seed weight on chromosome A05, two for haulm
weight on chromosomes A02 and A05, two for 100 pod weight on chromosomes B02 and
B05, and two for 100 seed weight on chromosome A05. In most cases, the STI-related QTL
co-localized with the yield component-related trait for which they were calculated [15].
Main-effect QTL reviewed for the important traits are found in Table 2.



Genes 2023, 14, 1176 11 of 23

Table 2. Main-effect QTL reviewed for the important traits of peanut.

Quality-Related Traits

Traits Studied QTL Identified Phenotypic Variance Explained References

Oil content 80 0.76–27.19 [18,41–43,46,47,89,90]
Protein content 22 0.76–26.99 [41,47]
Oleic acid 58 0.13–57.56 [18,41–44,47]
Linoleic acid 54 0.17–57.56 [18,41–44,47]
Oleic/linoleic acid ratio 32 1.04–43.41 [18,41,42,44]
Palmitic acid 32 0.3–34.35 [43,47,90]
Arachidic acid 32 0.13–36.93 [18,43,47,90]
Stearic acid 31 0;13–78.6 [18,47,90]
Behenic acid 32 0.76–26.99 [18,43,47,90]
Eicosanoid 1 0.2 [18]
Lignoceric acid 15 2.89–12.61 [43,90]
Gadoleic acid 16 2.55–15.11 [90]
Arachidonic acid 8 0.76–26.99 [47]

Agro-Morphological-Related Traits

Traits Studied QTL Identified Phenotypic Variance Explained References

Plant height 77 0.01–26.7 [15,32,92,95]
Hundred-pod weight 48 3.33–38.15 [15,30,31,33]
Fresh seed/seed dormancy 54 69.3–74.7 [36–40]
Days to flowering 31 1.15–21.82 [15,32,94]
Pod weight 20 7.7–29.7 [15,35,48,92]
Pod length S2 1.25–26.46 [15,30,31,33,89]
Pod width 54 5.1–43.63 [15,29–31,33,89]
Seed length 32 3.03–20.8 [15,35,48]
Seed width 33 2.21–23.7 [15,29,31]
Harvest index 15 11.0–18.1 [15,49,50]
Hundred-seed weight 42 5.68–35.9 [15,31,34,63,89,92]
Haulm weight 11 2.9–33.36 [15,48,92]
Pod number 24 3.91–14.2 [15,32,93]
Total biomass 15 4.34–22.39 [15,48,50]
Growth habit 48 4.55–27.14 [15,64,96]

Drought-Tolerance-Related Traits

Traits Studied QTL Identified Phenotypic Variance Explained References

Shoot dry weight 16 4.2–22.09 [49,50]
Transpiration efficiency 27 4.47–18.12 [48–50]
Leaf area 26 5.0–16.2 [48,50]
Transpiration rate 13 4.3–17.3 [50]
Transpiration 16 4.36–18.17 [48,49]
SPAD chlorophyll meter
readings (SCMR) 29 4.00–19.53 [48]

Stress Tolerance Index 13 10.4–20.1 [15]

Pest- and Disease-Related Traits

Traits Studied QTL Identified Phenotypic Variance Explained References

Nematode 7 1.3–22.18 [17]
Leaf spot 80 1.7–50.9 [51,53–55,62,63,97]
Bacterial wilt 3 0.12–0.22 [58]
Rust 34 7.24–48.7 [52,55,62,63]
Smut 10 7.24–11.4 [56]

4.3. Mapping QTL for Disease Resistance Traits

The most efficient and environmentally friendly way to fight against pests and diseases
to control yield losses is to develop disease-resistant cultivars by finding the responsible
QTL or genes. For these particular important quantitative traits, 134 QTL were reviewed
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using RFLP, SSR, SNP, and DArT markers with F2, BC2F1, BC3F1, BC2F4, and RILs, map-
ping populations. Of the 134 QTL, 82 have been found to be linked to resistance to late leaf
spot, early leaf spot, rust, smut, and bacterial wilt using F2 [55,58], and RILs [51–54,56,97],
mapping populations with SSR and SNP markers. Using 103 RIL genotypes derived from a
cross between JS17304-7-B and JS1806, 10 QTL underlying smut resistance were identified
with a phenotypic variance of up to 11.4% [56]. A total of 12 main-effect QTL linked to
rust resistance traits were identified in a RIL population [52,55]. From a RIL mapping
population derived from Tamrun 0L07 and Tx964117, eight QTL were identified as linked
to leaf spots that explained phenotypic variance ranging from 8 to 20% [97]. Similarly,
36 QTL that linked early and late leaf spots were discovered using a 192 RIL population
produced from a hybrid of Florida-7 x GP-NCWS16 cultivars [53,54]. Three minor effects
of QTL explaining up to 0.26% PEV for bacterial wilt were discovered using the mapping
population derived from the cross of Yueyou 92 and Xinhuixiaoli [58]. Given this review,
QTL linked to disease resistance traits have been mapped on all linkage groups except A04
and B07 having resistance QTL from the donor parents on A02/B02, A03, B03, and B05 for
late leaf spot, rust, and smut [53–56]. Homoeologous QTL were discovered on A05/B05 for
late leaf spot [53,54], and on A02/B02 for rust [55]. QTL on A02, B03, and A05 are common
among studies and common for both disease and yield component traits, which is also
supported by their strong genetic correlation.

4.4. QTL Mapping Using Interspecific Synthetic Tetraploids

From the reported relevant studies, we found that several interspecific populations
have been used for QTL mapping in peanut. Those populations are developed from crosses
between synthetic tetraploids and elite varieties and allowed the broadening of the genetic
base of cultivated peanut and helped with the mapping of QTL and identifying wild bene-
ficial alleles for economically important traits. Indeed, cultivated peanut has low genetic
variation due to its origin in a single hybridization event between two diploid species,
followed by chromosomal doubling and crossing barriers with wild diploid species [60,98].
The low genetic variability for traits of importance and polyploidy is a bottleneck to peanut
improvement. The primary gene pool of peanut includes mainly tetraploids such as culti-
vars, advanced breeding lines, and landraces of A. hypogaea, as well as A. monticola [22,87].
This gene pool is cross-compatible, allowing fertile hybrids to be produced. The secondary
gene pool, on the other hand, consists of wild diploid species (2n = 2x = 20) [24,27], which
possess desirable alleles for several economically important traits, such as biotic and abiotic
resistance. Despite rich diversity with desirable alleles, the use of wild relatives has been
limited in breeding programs because of ploidy differences with cultivated peanut [1,27].
However, the ploidy level difference-induced bottleneck has been solved using interspe-
cific synthetic allotetraploids [22,23,60]. The effect of polyploidization and hybridization
on various traits in Arachis interspecific synthetic tetraploids has been studied [20,62].
Wild chromatin introgression into cultigen from the synthetic tetraploid increase DNA
polymorphism helping to map QTL by using the AB-QTL or CSSL analysis [15,17,18,63,98].

To the best of our knowledge, six synthetic tetraploids have been used to date for
QTL mapping of traits related to disease resistance, drought resistance, agronomic traits,
and oil quality traits utilizing BC2F1, BC3F1, BC2F3, BC2F4, BC3F2, BC4F3, and BC3F6
mapping populations (Figure 1). A total of seven QTL were identified from BC3F1 in the
population developed from cultivated “Florunner” and synthetic TxAG-6 for root-knot
nematode resistance using RFLP markers [17]. Using the BC3F6 generations of the mapping
population developed from the aforementioned parents genotyped using SSR markers,
29 QTL associated with oil content, six fatty acid traits, and the oleic to linoleic acid ratio
were detected on 20 genomic regions [18]. Of the 20, two are major and stable and linked
to oil content and the oleic to linoleic acid ratio with phenotypic variance explained at
17–21 and 13–31% PEV, respectively. Another genetic mapping based on SSR markers
was performed using a cross between the cultivated variety “Fleur 11” and the synthetic
tetraploid AiAd derived from A. ipaensis x A. duranensis, the two diploid ancestors of the
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cultivated [84]. The advanced backcross populations (BC2F3 and B3F2) from this cross
were utilized for QTL mapping of flowering date, pod weight, pod number, seed number,
pod size, seed size, pod maturity, and biomass under well-watered and water-limited
treatments, yielding a total of 95 QTL [15]. About half of the QTL positive effects were
associated with alleles of the wild parent, highlighting that peanut wild relatives represent
a reservoir of useful alleles for peanut breeding. In addition, by using BC4F3 (CSSL) lines
from the same cross, the authors also found 42 QTL mapped for plant growth habits, the
height of the main stem, plant spread, and flower color [64]. Likewise, using the same
recurrent cultivated parent, Fleur 11 with a different synthetic parent ISATR52B, 38 QTL
were identified underlying the flowering date, plant architecture, yield-related, pod, and
seed morphology traits on 16 chromosomes [61]. They found that almost 50% of the positive
QTL effects were associated with alleles of ISATR52B.

Furthermore, 28 QTL explaining 6.7–50.9% PEV linked to 100-seed weight, oleic to
linoleic acid ratio, and late leaf spot and rust resistance were identified from the two
interspecific populations derived from ICGV 8764 x ISATGR 265-5A and ICGV 91114 and
ISATGR 1212 genotyped with SSR and DArT markers spanning 1415.7–1500.8 cM map
length [63]. Seven QTL for late leaf spot and rust resistance and one for the oleic to linoleic
acid ratio, with phenotypic variance explained up to 9.7 and 14.8 on chromosomes A01, A07,
and A08, were found in the population derived from ICGV 91114 X ISATGR 1212. In the
population derived from ICGV 8764 XISATGR 265-5A, three QTL were found for each trait
for the oleic to linoleic acid ratio and 100-seed weight, up to 47% phenotypic variance, and
14 QTL were found for late leaf spot and rust resistance, up to 50.9% phenotypic variance.
Of the 28 QTL, three contributed favorable alleles from wild genomic segments. In an effort
to enhance foliar disease resistance, a cross between ICGS 76 and synthetic amphidiploid
ISATGR 278-18 has been recently revealed [62]. In this population, 14 and 10 QTL associated
with late leaf and rust resistance, up to 38.58% PEV, respectively, were identified.

Overall, synthetic tetraploids are used for alien chromatin introgression into cultivated
peanut by resolving polyploidy differences and easing genetic and meiotic analyses and
QTL detection for numerous economically important traits despite constraints, such as
hybrid fertility and linkage drag.

4.5. Clustering of QTL of Quality and Agronomic Traits

Of the 1261 main-effect QTL reviewed here, we identified relevant QTL related to quality
traits that clustered with QTL of agronomic traits. For instance, the QTL of oil content
associated with the SSR marker IPAHM103 on chromosome A3 with a PEV of 7.1–10.2%
for oil content [41] is the same identified for rust resistance with a PEV of 6.9–55.2% [51]
and late leaf spot resistance. Likewise, the SSR marker PM36 mapped for oil content in
several studies [18,41] was identified in the QTL regions of pod and seed weight and shelling
percentage in chromosome 5 in various studies [15,30,31,33].

As far as the oil quality traits are concerned, QTL (TC6H03–TC11A04, TC5A07–IPAHM395,
and TC3A12–PM433) were common for both oleic and linoleic acid, which is also supported by
their strong negative correlation [41]. Consistent QTL, ahFAD2A and ahFAD2B, IPAHM372-
ahFAD2A, GM1840-ahFAD2B, and GNB377-ahFAD2A linked oleic acid, linoleic acid, and
O/L ratio [42]. In addition to the SSR markers linked for oil quality traits, SNP markers
Marker2575339 and Marker2379598 in B09 and Marker4391589 and Marker4463600 in A09 were
associated with oleic acid, linoleic acid, and the ratio of oleic acid to linoleic acid (O/L) [44]. A
major and stable QTL on A05, flanked by the markers bin1572 and bin1573 on 0–0.5 cM was
detected and showed a negative additive effect on oil, palmitic, stearic, arachidic, and behenic
acid content and positive additive effects on protein, oleic, arachidonic acid [47]. These stable
oil-related QTL on A05 is quite common to a stable and major genomic region on A05 that
has been reported for pod and seed-related traits in several studies [30,33]. The co-localized
interval on A05 was located on 1.3 cM (99.50–99.78 Mb) by the flanking markers Ad05A20262
and AHGA160418 and harbored the major QTL for pod length, pod width, and 100-pod weight
with 17.97–43.62% of phenotypic variations [33]. For these traits, from another QTL mapping,
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three more major QTL co-located in about 2.47 Mb genomic region of the A05 with 13.75 to
26.68% PVE by the flanking markers A05A1430-A05A1601 [30]. Moreover, three major QTL
common for pod length and seed length on A05 with up to 26.11% PEV were identified [29].
The cluster of many major QTL detected on A05 in different studies for oil content and seed or
pod-related traits suggests it may harbor important genes controlling these traits, which can be
used, simultaneously in marker-assisted breeding. This clustering also suggests linked QTL of
these distinct traits or QTL with pleiotropic effects. Thus, breeding for an agronomic trait may
indirectly, positively, or negatively affect a quality-related trait.

4.6. Statistical Methods and Limitations of QTL Mapping in Peanut

QTL are, by definition, merely significant statistical associations between genotypic
values and phenotypic variability among the segregating progeny. Statistical methods
for family-based mapping include (i) single-marker analysis (SMA) used to identify QTL
according to the difference between the average phenotypes of different genotype groups
without linkage map; (ii) interval mapping (IM) based on maximum-likelihood param-
eter estimation and regression, which efficiently estimates the effect and position of a
QTL within two flanking markers; (iii) composite interval mapping (CIM), to overcome
such limitations of the IM method; (iv) inclusive composite interval mapping (ICIM) and
(v) multiple interval mapping (MIM), an extension of IM, that tends to be more powerful
and precise than CIM in identifying QTL and allows the estimation of multiple QTL with
epistasis. A large number of software implementing the above methods are used in peanut,
including R/qtl, QTL Cartographer, and ICIM Mapping [15,28,30,33,34].

From most studies reviewed here, QTL mapping technique accuracy depends on
several factors, including the statistical method’s capacity to locate and estimate the genetic
effect of the QTL, the type and size of the mapping population, the genetic and heritability
of the trait, the number and contribution of each QTL to the total variance, their interactions
and their distribution over the genome. In addition, the ploidy coupled with mixed
meiotic behavior is not yet considered in QTL detection and may affect the accuracy of
QTL mapping in peanut. Along with these accuracy factors, QTL analysis has limitations
like other techniques. Some of these limitations include the inability to detect all loci, the
number of QTL detected, their precise position, and their effects are subject to statistical
error. Major QTL are often missed and epistatic effects and QTL environmental interactions
are found in some cases. QTL mapping is often time-consuming and labor-intensive,
requires in-depth knowledge about the function and genomics of the trait of interest, and
incurs high costs for genotyping and phenotyping. The large size of QTL and the low
resolution of mapping greater than 10 cM in size are some of QTL mapping’s population
specificities. In many cases, more experiments are needed to confirm the results of QTL
mapping. However, by using consistent QTL that have been mapped, it is expected that
the next-generation crop varieties could be developed with enhanced quality traits, better
yield, and disease resistance.

5. Toward More Effective Use of Marker Assisted Selection (MAS) and QTL in Peanut

One of the current challenges in peanut is to use QTL of interest to accelerate genetic
improvement. Considering the constraints of phenotypic selection—labor-intensive, costly,
and time-consuming—MAS has emerged as a potential tool to achieve rapid results with
the help of molecular markers and QTL of interest in plant breeding [99,100]. There are
different molecular approaches used under the umbrella of MAS, such as marker-assisted
backcrossing (MABC), gene pyramiding, MARS, and GS [101,102]. Some of the innovative
applications of MAS including combined MAS, marker-directed phenotyping, inbred or
pure-line enhancement, single large-scale MAS, breeding by design, and Mapping As You
Go (MAYG) have been published previously [103,104]. Here, some schemes of MAS have
been highlighted and may be useful for peanut breeding.
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5.1. Marker-Assisted Backcross Selection (MABC)

MABC is a technique that can be used to incorporate one or more QTL from a donor
parent (DP) to a recurrent parent (RP), which is a superior variety but lacking the target
trait. Four to six generations of backcrossing are required to introduce the QTL into an
elite cultivar and recover the recurrent parent [103,105]. Foreground selection, recombinant
selection, and background selection are the three basic steps in marker-assisted backcrossing.
In foreground selection, the desired plant is chosen using markers linked to the target QTL.
Random markers across the entire genome can be used to screen the recurrent parent
genome in the background selection context [103–105]. Recombinant selection is a kind of
foreground selection that aims to remove the DP genome flanking the target QTL to avoid
the linkage drag brought on by the close linkage of some undesirable traits with the target
trait from the DP. MABC has been used in peanut breeding. Two BC3F1 lines, TMG-29 and
TMG-46, have shown enhanced resistance over the highly susceptible TMV 2 peanut variety
of late leaf spot (LLS) and rust-resistant genotypes using resistant donor “GPBD 4” [106].
According to [107], the backcrossing lines that were created by introducing the two mutant
alleles, ahFAD2A and ahFAD2B, into the high oil content breeding line ICGV06100 showed
a 97% increase in oleic acid content in comparison to the recurrent parent. A total of
22 BC3F4 and 30 BC2F4 introgression lines for rust and late leaf spot resistance, as well
as 46 BC3F4 and 41 BC2F4 for high oleic acid, were created by crossing the donor rust
resistance parent, GPBD 4, with three susceptible peanut cultivars (GJG 9, GG 20, and
GJGHPS 1) in order to develop rust-resistance and late leaf-spot-resistance and a high oleic
acid content genotypes [108]. Recently, the high-oleic-acid BC4F6 line “YH61” was created
after four backcrossing of “huayu22” with the donor “KN176” with a high-oleic-acid
content [109]. Furthermore, chromosome segment substitution lines [64,65], near-isogenic
lines [67], and AB-populations [15,17,18,61–63] use, in such cases, MABC approaches and
all facilitate genetic analysis, QTL introgression, and variety development in a simultaneous
manner. MABC strategy can be more effectively used for introgression of major-effect QTL
controlling different economically important traits to develop improved varieties.

5.2. Marker-Assisted Recurrent Selection (MARS)

In marker-assisted recurrent selection (MARS), plant genotypes are selected with the
help of molecular markers that have been linked to the genes or QTL of interest. Once
markers that are tightly linked to QTL of interest have been identified breeders use specific
DNA marker alleles as a diagnostic tool to identify plants carrying the QTL [86], the chosen
individuals that have QTL of interest are then subjected to controlled pollination to create
lines that have the best possible complement of QTL from both parents [101,110]. This
scheme is less used and may be useful for developing breeding material displaying QTL
for targeted breeding traits. MARS is more suitable for introgression of minor-effect QTL
controlling different important traits.

5.3. Marker-Assisted QTL Pyramiding (MAQP)

Pyramiding is the simultaneous integration of several QTL from multiple parents
into a single genotype to create superior lines and varieties [101,102,111]. Marker-assisted
QTL pyramiding can speed up the process by lowering the number of generations that the
researchers must evaluate to ensure that they have the desired QTL combination [112]. The
QTL pyramiding method consists of two fundamental steps: the QTL fixation step, which
aims to fix the target QTL into a homozygous state, and the pyramiding step, which aims
to accumulate all the target QTL into a single genotype known as the root genotype [113].
This breeding technique was used in peanut to develop nematode resistance and high
oleic gene-containing genotypes [114]. It is expected that the next-generation crop varieties
could be developed with enhanced quality traits, disease resistance, and better yield by
using MAQP.
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5.4. Genomic Selection (GS) by Using Know QTL

GS is a promising method for genetic improvement of complex traits that are regulated
by many QTL, each of which has a small or main effect [72]. In addition to promising to
address complex traits, the GS strategy offers the benefit of shortening the selection cycle
and eliminating lengthy phenotyping by favoring superior lines based on the prediction of
the genomic-estimated breeding values (GEBV). When phenotype data and information on
markers known to be associated with known QTL were combined to calculate estimated
breeding values (EBVs), the gains from selection in plant breeding experiments increase
significantly [102]. In the same way, the targeted QTL were accumulated at a much higher
frequency when known QTL were included in the GS model as compared to when the
standard ridge regression was applied. Several factors, including the size of the training
population and its constitution/structure, precision, and quality of phenotyping, marker
density, and trait heritability, have an effect on the prediction accuracy of GS [102]. This
approach has not yet been applied in peanut and could be helpful for peanut breeding by
using both cultivated and wild relatives and known QTL in prediction models.

5.5. Combined MAS and Marker-Directed Phenotyping for Quality Traits

In comparison to MAS or phenotypic screening alone, MAS combined with marker-
directed phenotyping increases genetic gain and may help identify undiscovered QTL [115].
This combined selection aids in the selection of traits when phenotyping is more expensive
than genotyping. In most cases, there is a low level of recombination between QTL and
marker, which means we cannot entirely rely on markers for selecting desirable phenotype
traits. However, it will help reduce the number of plants to be evaluated, which reduces
the cost of phenotyping. One of the successful examples to explain this scheme is the rice
primary QTL sub 1, which controls submergence tolerance [116]. This scheme may be
useful, mainly for quality traits in peanut such as fatty and amino-acid acid composition
where phenotypic screening is costlier than marker genotyping.

6. Use of Mapped QTL in Peanut Genetic and Breeding

For the over 1261 QTL reviewed here, to the best of our knowledge, only less than 10 have
been used in peanut breeding programs. The current challenge is to use validated mapped
QTL for peanut breeding for the fast-track development of improved varieties. The common
QTL found between different studies and different genetic materials, and those with high
positive effects, as reported above, can be mobilized in the breeding program by making sure
to identify the beneficial QTL allele and combining the ability of the parents. In addition,
using mapped QTL for breeding requires fine mapping, QTL and markers validation, and
marker-assisted selection. QTL validation often needs cross-verification of QTL in different
populations or/and different environments and fine mapping. Marker verification needs
testing of molecular markers in germplasm and identifying polymorphic markers. Polymor-
phic markers around the validated QTL could be used for an indirect selection to strengthen
conventional breeding. We expect that the QTL, once validated, are deployed in molecular
breeding programs aimed at enhancing targeted traits in peanut through MAS, genomic
selection (GS), or holistic and innovative schemes.

7. Use of Lines with Beneficial QTL Alleles for Fast QTL Introgression and
Variety Development

QTL analysis from the above studies identified QTL alleles with favorable effects
on peanut breeding. Likewise, AB-QTL analysis identified several introgression lines
with good agronomic, oil quality, and disease-resistance traits. In addition, AB-QTL and
CSSL lines, in common cases, are designed to map and facilitate QTL introgression from
unadapted germplasms such as landraces and wild species into elite lines [117]. There
are several advantages such as the simplicity of mapping the population in phenotypes
to the recurrent parent and reducing, in the process, deleterious alleles from the donor
parent, the possibility of epistasis, and linkage drag. After QTL mapping, only one or
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a few generations are needed for identifying QTL-NILs [118]. Several AB-QTL popula-
tions [15,17,18,63], CSSL [64,65], and NIL [67] have been developed in peanut. Beneficial
QTL alleles, carried by AB-QTL lines or CSSL have been identified and, could be utilized
through introgression into the genetic backgrounds of cultivars used by producers. In some
cases, AB-QTL, CSSL, or NIL outperformed cultivated varieties and meet market needs.
Thus, they could be directly promoted as a new variety. For instance, recently in Senegal,
six new varieties, Rafet car, Tosset, Komkom, Jambar, Yakaar, and Raw Gadu with high
yield profiles were homologated from CSSL [64], 12CS_031, 12CS_069, 12CS_120, 12CS_068,
12CS_037, 12CS_028, respectively, derived from the cross between “Fleur11” and the wild
synthetic tetraploid AiAd (A. duranensis and A. ipaensis). The next decade will see heavy
use of these kinds of lines for the development of new varieties.

8. Conclusions and Perspectives

The chromosomal or genomic regions known as QTL are responsible for variation in a
quantitative phenotype. Finding genomic regions with QTL, estimating the effect of the
QTL on the quantitative trait, determining how much of the trait’s variation is due to a
specific region, and discovering the gene action linked to the QTL are the objectives of QTL
mapping. In this paper, we have reviewed 1261 QTL that govern economically important
traits for peanut breeding that have recently been mapped through diverse sources of
mapping populations including F2, recombinant inbred lines, advanced backcross popula-
tions, chromosome segment substitution lines, and nested association mapping (NAM) or
multiparent advanced generation inter-crossing (MAGIC) populations, as well as a variety
of molecular markers. Protein content, oil content, fatty acid composition, yield, yield
component, drought resistance, and pest and disease resistance are considered significant
and important quantitative traits. Various limitations of QTL mapping have been discussed,
and the solutions proposed to overcome them are the constant development of molecular
platforms, new genetic materials such as introgression lines that help in mapping the small
effects, and sophisticated bioinformatics that can handle polyploidy issues and mixed mei-
otic behavior, false-positive results or statistical errors. Introgression of validated mapped
QTL alleles, fruitfully associated with preferred traits, into the genetic background of the
elite varieties is a current challenge for peanut breeding. Integration of high throughput
phenotyping and new-generation phenomics tools with MAS could greatly accelerate
progress in peanut genetic improvement. The present review discusses the current status
and future scope of using mapped QTL for breeding purposes in peanut, which will cause
not only an increase in the rate of developing climate-resilient superior cultivars but also
help in providing vegetable oil and proteins to the growing human population worldwide.
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