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Abstract

In this Thesis, we study the dynamics of waves propagation in a dynamical system

modelled by a chain of coupled pendulum pairs, where each pendulum is connected to the

nearest neighbours in the longitudinal and transverse directions.

Firstly, we generate a nonlinear supratransmission phenomenon in the model. By con-

sidering the angular displacement of one chain proportional to the other, we derive the

homoclinic supratransmission threshold amplitude using the two-dimensional map ap-

proach which is in agreement with the numerical one, in the case where only one chain

is driven. We also consider the case where both chains are driven and perform numeri-

cally the supratransmission threshold amplitude of the two chains in the case of the same

driven frequency while the phonon amplification is obtained when both lattices are driven

with frequencies in different bands. The actual work extends the deep understanding of

supratransmission phenomenon in discrete coupled pendulum systems.

Secondly, we investigate the MI phenomenon in the same model. Based on the ob-

tained equation describing the dynamics of the model, we derive the coupled discrete

nonlinear Schrödinger equation using the multiple scale method. We use the obtained

coupled discrete nonlinear Schrödinger equation to study the possibility of modulational

instability. The linear stability analysis leads us to obtain the growth rate of the MI. It

reveals that the instability growth rate and MI band are dramatically affected by the

transverse coupling parameter. Finally, we use the MI analysis to study the dynamics of



Abstract xvi

the generated unstable pane wave solutions numerically. This confirms that the existence

of MI in the lattice leads to the break up of wave into periodic localized pulses which have

the shape of soliton-like objects.

Finally, we investigate the wave propagation phenomenon in the model. Based on the

obtained equation describing the dynamics of the model, we derive the linear dispersion

relation which helps us to identify fast-mode as the mode on which we will be focused.

Since the obtained discrete simultaneous equation has not been extensively studied in

the literature, we assume that the two lines of the model are proportional to each other.

We use the rotating wave approximation method to derive a NLS equation governing

the propagation of waves in the network. Depending on the choice of wave number, we

deduce that the system supports bright and hole soliton solutions. We use the obtained

bright soliton as the initial condition for numerical computation which demonstrates the

significant role of the transverse coupling parameter in the system. That is, it affects the

behaviour of the forward bright soliton generated in the system. The lattice allows gen-

erated gain and loss phenomena during the propagation of the waves.

Keywords: Nonlinear supratransmission, Coupled pendulum pairs, Soli-

tons, Rotating wave approximation, NLS equation, Multiple scale method,

Modulational instability, Transverse coupling term, Coupled discrete nonlin-

ear Schrödinger equation.
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Résumé

Dans cette thèse, nous étudions la dynamique de la propagation des ondes dans un

système dynamique modélisé par une chaîne de pendules couplés reliée par des ressorts

de torsion, où chaque paire est accrochée sur une chaîne horizontale commune.

Tout d’abord, nous générons le phénomène de supratransmission nonlinéaire dans le

modèle. En tenant compte que le déplacement angulaire d’une chaîne est proportionnel à

l’autre, nous déduisons l’amplitude seuil de supratransmission homoclinique en utilisant

le "2D map" qui est en accord avec les résolutions numériques; dans le cas où une seule

chaîne est excitée. Nous considérons aussi le cas où les deux chaînes sont excitées et

trouvons numériquement l’amplitude seuil de supratransmission des deux chaînes pour la

même fréquence d’excitation tandis qu’une amplification du phonon est obtenue lorsque

les deux chaînes sont excitées avec des fréquences prises dans différentes bandes. Le présent

travail étend une compréhension du phénomène de supratransmission dans les systèmes

couplés discrets.

Deuxièmement, nous étudions le phénomène d’instabilité modulationnelle(IM) dans le

même modèle. Se servant de l’équation obtenue en décrivant la dynamique du modèle,

nous déduisons une équation couplée discrète de Schrödinger nonlinéaire en utilisant la

méthode des échelles à pas multiple. Nous utilisons l’équation couplée obtenue pour étudier

le phénomène d’instabilité modulationnelle. L’analyse de la stabilité linéaire nous permet

d’obtenir le spectre de gain de l’IM. Il révèle que le spectre de gain de l’instabilité et les



Résumé xviii

bandes de l’IM sont considérablement affectées par le paramètre de couplage transversal.

Enfin, nous utilisons l’analyse de l’IM pour étudier la dynamique des solutions d’ondes

planes instables générées numériquement. Ceci confirme que l’existence de l’IM dans le

réseau conduit à la génération des trains d’impulsion périodiques localisés qui ont la forme

d’un soliton.

Enfin, nous étudions le phénomène de propagation des ondes dans le modèle. Utilisant

l’équation décrivant la dynamique du modèle, nous déduisons la relation de dispersion

linéaire qui nous aide à identifier le "mode rapide" comme le mode dans lequel nous

serons focalisés. Puisque le système d’équation discret obtenu n’a pas été suffisamment

étudié dans la littérature, nous supposons que les deux lignes du modèle sont proportion-

nelles. Nous utilisons la méthode d’approximation des ondes rotatives pour déduire une

équation de Schrödinger nonlinéaire qui régit la propagation des ondes dans le réseau.

Selon le choix du nombre d’onde, nous déduisons que le système génère des solitons "bril-

lants" et "sombres". Nous utilisons le soliton brillant obtenu comme condition initiale

pour le calcul numérique; Ce qui démontre le rôle important du paramètre de couplage

transversal dans le système. C’est-à-dire qu’il affecte le comportement du soliton brillant

généré dans le système. La chaine génère un phénomène de perte et de gain au cours de

la propagation des ondes.

Mots-clés: Supratransmission nonlinéaire, Paire de Pendule couplé, Soli-

tons, Approximation d’onde rotative, Equation discrète de Schrödinger non-

linéaire, Méthode des échelles à pas multiple, Instabilité modulationnelle,

Paramètre de couplage transversal, Equation couplée discrète de Schrödinger

nonlinéaire.
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General introduction

Within the past three decades, wave transmission in dispersive nonlinear media has

become an increasingly important research field. The concept of soliton discovered by

Zabusky Krustal [1] and the recurrence observation of wave propagation in the dynam-

ics of a medium designed by Fermi-Pasta-Ulam [2] play a great role in understanding

the phenomenon. The phenomenon has been studied in many dispersive discrete nonlin-

ear media such as in nonlinear magnetic meta materials [3], in nonlinear transmission

line [4], in nonlinear electrical network [5–8], in nonlinear acoustic meta material [9], in

dusty plasma crystals [10, 11], in molecular chains [12]. These systems bear many in-

teresting features whose applications extend to different aspect of life [13–15], nonlinear

optics [16–19], plasma physics [20], biophysics [21]. One of the mostly used model was the

chain of coupled pendulum.

Coupled pendulum models and their properties are fundamental in theoretical physics

and can be used to model many interesting phenomena such as intrinsic localized modes

in lattices [22,23], solitons in Josephson junctions [24] and fluid mechanics [25–27], DNA

in dynamics to crystal structure of solid states [28], among many other [29, 30]. From

different point of view, the chain of coupled pendula has been studied for more than

three decades. The majority of research has focused on the chains of single coupled pen-

dula. Stabilization of solitons in coupled nonlinear pendula with simultaneous external

and parametric excitations was studied numerically [31]. Numerical approximations were
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General introduction 2

employed in this paper in order to demonstrate that the use of external and parametric

excitations simultaneously enables the transformation of a zero attractor soliton solution

to a periodically stable one. In [32] the authors show that, the pinning of the soliton on a

"long" impurity expands dramatically its stability region whereas "short" defects simply

repel solitons producing effective partition in arrays of parametrically driven pendulum

chains. Another example of recent studies can be found in [33–35] where existence and

stability of discrete breathers have been addressed numerically.

The previous underlying studies were interesting and worth investigating. However,

the authors considered in majority single coupled pendulum chains, which limit the us-

ability of their obtained results to only one-dimensional phenomena, whereas there are

many physical phenomena which cannot be properly understood within the one dimen-

sional framework. Nevertheless, many interesting coupled ladders have been studied up to

now from different points of view. For example, in continuous limit, spatial and temporal

soliton [36], and breathers [37] were realized in the PT-symmetric coupler with gain in

one waveguide and loss. Also, discrete solitons were generated in a PT-symmetric ladder-

shaped optical array consisting of a chain of waveguides with gain coupled to a parallel

chain of waveguides with loss in [38]. Moreover, a novel multicomponent discrete system

which is PT-symmetric as the previous has only quite recently appeared in the litera-

ture [39–41]. In [39] coupled pendulum chains under parametric PT-symmetric driving

force were studied. Here, the authors consider a chain of coupled pendulum pairs, where

each pendulum is connected to the nearest neighbors in the longitudinal and transverse

directions. The common strings in each pair are modulated periodically by an external

force. In the limit of small coupling and near the parametric resonance, they derived a

novel system of coupled PT-symmetric discrete nonlinear Schrödinger equations, which

has Hamiltonian symmetry but no phase invariance. By using the conserved energy, they
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found the parameter range for the linear and nonlinear stability of the zero equilibrium.

Numerical experiments illustrated how the destabilization of the zero equilibrium takes

place when the stability constraints are not satisfied. Compared to the works in [36, 37],

the authors considered different couplings between the two pendulums in a pair and that

the model is Hamiltonian but not phase invariant. This coupling describes interactions

between the two pendulums connected to each other by a common horizontal string. We

have been inspired by the model proposed in [39] and this model lead us to

many interesting physical phenomena.

Moreover, at the beginning of the 21st century, it appeared in the literature an ex-

otic phenomenon called nonlinear supratransmission. The pioneers of this phenomenon

namely; Geniet and Leon discovered that a nonlinear system possessing a naturally forbid-

den bandgap can transmit the energy of a signal with a frequency lying in that forbidden

band [42]. They named the process nonlinear supratransmission. The fact that the driv-

ing frequency was taken in the forbidden band was not sufficient, the process occurred

at a well-defined predictable amplitude called a threshold amplitude. For more than two

decades, the NST phenomenon has been studied up to now from different points of view

in various physical systems, such as, in sine-Gordon chains [43–46], in Josephson junc-

tion [47,48], in Bragg media [49], in discrete nonlinear electrical transmission lines [50–54],

in the Fermi-Pasta-Ulam model [55–58], among many other [59–67]. The majority of re-

search on this phenomenon was done on single chains or single-component systems. Even

when studied on a multicomponent system, it was rarely a discrete Sine-Gordon one. For

example, in [68], supratransmission phenomenon was studied in multicomponent noninte-

grable nonlinear systems. Nevertheless, despite all these studies, to the best of our knowl-

edge, no attention was paid to the gap transmission in transversely connected nonlinear

pendulum pairs. Therefore, the first purpose of this thesis is to address a way to
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generate a gap transmission in a novel multicomponent discrete system that

is the chain of coupled pendulum pairs, where each pendulum is connected to

the nearest neighbours in the longitudinal and transverse directions.

Also, the examination of the development of MI has been found in a horizontally

shaken pendulum chain [69]. The destructive interference of MI has been studied in [70].

It is important to point out that, discrete MI attracted attention in diverse branches of

physical and biological science due to its numerous applications [71–73]. In the domain of

MI on discrete systems, the majority of research has been devoted to single-component

systems. But, discrete MI analysis has not yet been used in the context of transversely

connected nonlinear pendulum pairs. Thus, the second goal of this thesis is to

investigate analytically and numerically the discrete MI which leads to the

generation of localized solitary waves in the Model.

Additionally, up to now, the investigations that deal with the direction in which the

wave envelope will evolve in the lattice have not yet shown. Then, we lastly aim to

broaden the understanding of two dimensional coupled pendulum networks as

propagating media. Specifically, we investigate the dynamics of the transverse coupling

parameter in the model.

The outline of this thesis is structured as follow :

• In the first chapter, an overview on pendulum chains, supratransmission phenomenon,

and MI is presented.

• The second chapter consists on the mathematical description of the network and the

setting up of nonlinear equation governing the evolution of wave. we also present some

numerical and analytical technics used to analyze and solve the problematic of the thesis.

• It follows with the third chapter in which we summarize the findings of this thesis

through characterization of analytical results and direct simulations.

Ph.D thesis in Fundamental Mechanics and Complex Systems by KAMDOUM KUITCHE Alex ⋆UY1/FS⋆



General introduction 5

• It ends by a general conclusion which summarizes the main results obtained and

gives perspectives for future investigations.
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Chapter I

Literature review

1.1 Introduction

The study of oscillatory or vibrational processes is of paramount importance in the analysis

and understanding of many natural phenomena. This study has great interest in the most

varied branches of physics, engineering, biology, etc. Thus, a system that can present

certain natural phenomena is the chain of nonlinear pendulums. This chapter is devoted

to generalities which bring out the main concepts that are encountered in our thesis. It

is organized as follows: Section 1.2 deals with the overview on pendulum chains, Section

1.3 is devoted to the overview on supratransmission phenomenon, also, in Section 1.4 the

generalities on MI are provided. Finally, the last section concludes this chapter.

1.2 Overview on pendulum chains

1.2.1 Pendulum: Definition and history

In physics, a pendulum is a solid body that can oscillate around a fixed point or axis and

which, removed from its equilibrium position, returns to it by oscillating under the effect

of a force, for example, gravity. The word pendulum given by Huygens (1629-1695) comes

from the Latin "pendere", which means "to hang".

There are many types of pendulum, each having a particular interest. They have
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been or are used in experiments aimed at highlighting a physical phenomenon (such as

isochronism) or for metrological purposes. Thus pendulums were the first gravimeters,

that is, the first physical systems capable of measuring the acceleration due to gravity g

(1659). They were also used to measure time and were at the origin of the first modern

clocks. There are also some famous pendulums such as Foucault’s pendulum (1851), which

highlighted the daily rotation of the Earth. All pendulums are subjected to the laws of

mechanics. However, it is necessary to distinguish the simple pendulum, which is an ideal

representation of the possible simplest pendulum, and the physical pendulum which is a

more real representation.

1.2.2 Array of coupled pendulums

In the past few years, there were several studies focused on the dynamic behavior of

coupled nonlinear oscillators and the most used model is the array of coupled pendulums.

This model and its properties are used to investigate many physical phenomena like

the propagation of solitons. The soliton is a wave that has an energy localized in space

or time and that is extremely stable in the presence of disturbances. It generally moves

without changing its form or its characteristics. In the field of hydrodynamics for example,

tsunamis and rogue waves are well known as manifestations of solitons. Solitons are caused

by an association of nonlinear and dispersive effects in the propagating medium. Coupled

pendulum models are typical examples of these dispersive nonlinear media and have been

studied for more than thirty years and from different points of view. In what follow, we

present a model of coupled pendulums chain.

The experimental device of a chain of pendulums represented on Fig. 1.1 was carried

out to experimentally analyze the propagation of a soliton. Let us consider the chain

of coupled pendulums depicted in Fig. 1.2, where only pendulums numbers n− 1, n and
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n+1 are represented. The pendulums oscillate around a common axis and two consecutive

pendulums are connected by a torsional spring.

Figure 1.1: Experimental representation of a chain of coupled pendulums [74].

Figure 1.2: Chain of pendulums with common axis, coupled by torsional springs [75].

Note θn the angular deviation of the pendulum n from its equilibrium position. The

Hamiltonian of the system is the sum, on all the loops of the chain, of three contributions

:

H =
N∑
n=1

I

2

(
dθn
dt

)2

+
C

2
(θn − θn−1)

2 +mgl (1− cos θn) . (1.1)

In this equation, The first term corresponds to the kinetic energy of rotation of the
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pendulums, where I is the moment of inertia of the pendulum with respect to the axis.

The second term represents the elastic potential energy of the coupling between two

neighbouring pendulums provided by the torsional springs of stiffness constant C, while

the last term describes the gravitational potential energy of the pendulum. Noting l the

distance to the axis of its center of gravity, m its mass and g the acceleration due to

gravity.

From Halmiton’s equations, the equation governing the motion of the nth pendulum

is

d2θn
dt2

− ω2
1 (θn+1 + θn−1 − 2θn) + ω2

0 sin θn = 0, (1.2)

where, ω2
1 = C

I
and ω2

0 = mgl
I

. The solution of the latter equation depends on the boundary

conditions. For large amplitudes, Eq. 1.2 exhibits soliton solutions. These solitons can be

of "Kink" type visualized in Fig. 1.3 or "Breather" type visualized in Fig. 1.4.

Figure 1.3: Image of a moving Kink soliton in a chain of coupled pendulums [76].

By decreasing the coupling constant C, we could observe a soliton of "Breather" type

which is not very frequent.

Additionally, the chain of coupled pendulums has been studied by many seekers and

seems to describe numerous interesting physical phenomena. namely;
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Figure 1.4: Image of a moving Breather soliton in a chain of coupled pendulums [77].

⋆ The stabilization of solitons in coupled nonlinear pendulums with simultaneous ex-

ternal and parametric excitations has been studied in [31] where the authors show how

the existence and stability domains of solitons are modified when the coupled pendulums

are simultaneously subjected to external and parametric excitations.

⋆ The notion of impurity was also tested numerically [78] on an array of 128 pen-

dulums. The parametric excitation was studied numerically by Alexeeva et al. [32] and

experimentally by Chen et al. [79]. The authors showed that "long" impurities can extend

the region of stability of the system and "short" impurities are responsible of oscillatory

instabilities.

⋆ Alexander et al in [69] consider theoretically the behavior of a chain of planar rigid

pendulums suspended in a uniform gravitational field and subjected to a horizontal pe-

riodic driving force applied to the pendulum pivots, characterize the motion of a single

pendulum, by finding bistability near the fundamental resonance and near the period-3

subharmonic resonance. they examine the development of modulational instability in a

driven pendulum chain and find both a critical chain length and a critical frequency for

the appearance of the instability. they study the breather solutions and show their connec-
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tion to the single-pendulum dynamics and extend their analysis to consider multifrequency

breathers connected to the period-3 periodic solution, showing also the possibility of stabil-

ity in these breather states. And Finally they examine the problem of breather generation

and demonstrate a robust scheme for generation of on-site and off-site breathers.

⋆ It has been realized in [80, 81] that the parametrically driven coupled pendula can

be analytically studied by using Hamiltonian systems of the dNLS type in the presence

of gains and losses. Such systems are simultaneously Hamiltonian and PT -symmetric,

where the parity (P ) and time-reversal (T ) symmetries were used first to characterize the

non-Hermitian Hamiltonians [82] and have now been widely observed in many physical

experiments [83,84].

Our purpose in this thesis is to study any additional phenomena beyond the

findings presented up to now on the chains of coupled pendula pairs connected

to the nearest neighbors in the longitudinal and transverse directions.

1.3 Overview on supratransmission phenomenon

The behavior of a nonlinear system excited by an external sinusoidal driving and the

bifurcation of the energy transmission into the system were deeply studied by Geniet and

Leon [42, 43]. The Floquet theorem [85] states that, for linear waves in a periodic struc-

ture, a forbidden gap of frequency exists. The frequency gap between acoustic and optical

branches in the vibration modes of a diatomic chain well embodies this picture. Waves

with frequency within this forbidden range exponentially vanish in the medium (evanes-

cent waves). It is not the case in discrete nonlinear lattices if the amplitude exceeds a

threshold value. In nonlinear systems excited by plane waves, the appearance of gap soli-

tons [98] and the localization of energy due to nonlinear instability are matter of many
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systems [87]. If the nonlinear medium, characterized by a forbidden band gap, is irradiated

to one end by a sinusoidal drive, with frequency within the gap, the energy transmission

can be supported. This phenomenon is called nonlinear supratransmission and is nowa-

days reported in several other contexts, from Bragg media (coupled mode equations in

Kerr regime) [49,88], coupled-wave-guide arrays (nonlinear Schrödinger model) [89], opti-

cal waves guide arrays [60], Fermi-Pasta-Ulam model [55], Klein-Gordon (KG) electronic

network [90], chains of coupled oscillators [24], discrete inductance-capacitance electrical

line [51] to generic multicomponent nonintegrable nonlinear systems [68]. NLS results

from an instability of the evanescent wave profile created by the driving that manifests

itself above a threshold amplitude. Today this threshold has been obtained in single com-

ponent systems by making use of the explicit solution of the model equation and seeking

its maximum allowed amplitude at the boundary. Each of the above systems can be mod-

elled by a nonlinear equation in which a supratransmission threshold amplitude has been

obtained. In the following, we present some nonlinear equations describing a remarkable

property of the nonlinear chains to sustain NST.

1.3.1 Supratransmission in sine-Gordon equation

Geniet and Leon had performed a first experimental realization of NST phenomenon by

considering a model for the mechanical chain of pendula coupled by harmonic torque. In

this subsection, we present a short summarized of the first result published on NST. (see

Refs. [42,43] for details).

Let us consider the chain of N coupled pendulums depicted in Fig. 1.2, where only

pendulums numbers n−1, n and n+1 are represented. The pendulums are quasi-identical

of mass m and oscillate freely around a common axis with their engeinfrequeny ω0. Two

consecutive pendulums are connected by a torsional spring given place to the frequency
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ω1.

The equation of motion for the nth pendulum which describe the dynamics of the wave

in the chain therefore takes the following form:

d2θn
dt2

− ω2
1 (θn+1 + θn−1 − 2θn) + ω2

0 sin θn = 0. (1.3)

The model can be further simplified by scaling time using the natural frequency,

t→ t/ω0
, to reach the dimensionless form,

d2θn
dt2

− c2 (θn+1 + θn−1 − 2θn) + sin θn = 0, (1.4)

on a semi-infinite line n > 0 with given initial-boundary value problem, namely the data of

the driving boundary θ0(t), the initial positions θn(0), initial velocities θ̇n(0) and boundary

condition at the chain end. When one end of the chain is sinusoidally driven with weak

amplitude, the linear dispersion relation ω(k) is given by

ω2 = 1 + 2c2(1− cos k). (1.5)

This dispersion relation corresponds to a typical bandpass filter with a gap defined by

1 and a cut-off frequency ω2
max = 1 + 4c2. The chain will be submitted to an external

harmonic forcing θ0(t) = A sinΩt on a medium initially at rest. For a frequency Ω in

the phonon band, quasi-linear waves are generated in the medium and, for large enough

amplitude A, these waves will undergo Benjamin-Feir instability hence creating localized

excitations. These nonlinear modes have a very important role in the large time asymptotic

properties of a nonlinear system and are suspected to be responsible for turbulent-like

behavior. Restricting the study to the case of angular frequencies in the forbidden band

gap, namely Ω < 1, the linear theory lead to the evanescent wave while the nonlinear one

give rise to a static breather with threshold amplitude given by

Athr = 4arctan

[
c

Ω
arccosh

(
1 +

1− Ω2

2c2

)]
. (1.6)
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Eq. 1.6 gives the supratransmission threshold amplitude in sine-Gordon chain. The supra-

transmission threshold had been checked numerically by the full integration of Eq. 1.4 with

the following initial boundary conditions

θ0(t) = A sinΩt, θn(0) = 0, θ̇n(0) = AΩe−λn, (1.7)

with λ = arccosh
(
1 + 1−Ω2

2c2

)
.

The initial velocities are those of an evanescent wave such as to partly avoid the shock

wave generated by vanishing initial velocities (the same results, but time consuming, are

obtained for vanishing initial velocities and a driving amplitude smoothly growing from

the value 0 to A).

When the driving frequency Ω lying between the forbidden gap and the driving am-

plitude A is slightly beyond the threshold amplitude, NST occurs, i.e, the medium starts

to transmit energy by means of nonlinear mode generation. If however, Ω lies in the for-

bidden gap and the driving amplitude is just less than the threshold amplitude the chain

exhibits an evanescent wave. Thus, no energy flows in both chains. These results have also

been obtained experimentally as depicted in Fig. 1.5.

Figure 1.5: Picture of a breather generated in a mechanical pendula chain driven at one

end at a frequency in the forbidden band gap [42].

The approach stems from the existence of a breather solution of the model equation,
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allowing to determine the threshold amplitude. Then a fundamental question is the de-

pendence of nonlinear supratransmission on some integrability property of the equation.

To give an indication to that preoccupation, Geniet and Leon have performed numerical

simulations of the nonlinear Klein-Gordon chain

1.3.2 Supratransmission in Klein-Gordon equation

The Klein-Gordon equation or sometimes Klein-Gordon-Fork equation is a relativistic 

wave equation, related to the Schrödinger equation. This equation was proposed in 1926 

by Oskar Klein and Walter Gordon to describe the spinless relativistic electron. It was 

also used to describe relativistic composite particles, like pion. Geniet and Leon obtained 

Klein-Gordon equation by using the Taylor truncated expansion of the above sine-Gordon 

equation (Eq. 1.4) as follow

θ̈n − c2 (θn+1 + θn−1 − 2θn) + θn −
1

3!
θ3n +

1

5!
θ5n = 0, (1.8)

the fifth order is kept to ensure a confining potential at large θn. By solving this system

of Klein-Gordon chain with the boundary driving of Eq. 1.7, Geniet and Leon [42] have

obtained NST in the lower forbidden band gap. After these pioneer studies on NST,

many authors have performed up to now the phenomenon within others equations and

from different ways as in the next subsections.

1.3.3 Supratransmission in DNLS equations

DNLS equations constitute an important class of lattice models that are of great interest

in their own right [91], and also find direct applications to the description of arrays of

waveguides in nonlinear optics [92] where the first set of experimental realization had

been done [93] using a set of parallel semiconductor waveguides made on a common
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substrate [94]. It was predicted [95,96] that the DNLS equation may also serve as model of 

Bose-Einstein condensates (BECs) trapped in a strong optical lattice, which was confirmed 

by experiments [97] in photonic band gap materials [98], the mechanism of generation of 

gap solitons had been understood due to the result obtained on supratransmission by 

Geniet and Leon [42]. It was then necessary to suggest experimental setup to analyze 

whether or not gap transmission scenario takes place in the case of the DNLS equation 

and then to make predictions concerning the corresponding nonlinear process in coupled 

optical waveguides arrays [92]. 

 To bring an answer to this preoccupation, Ramaz Khomeriki [60] proposed a conditions 

for which the optical waveguide array becomes transparent with respect to the beam 

injected into the single boundary waveguide if the beams intensity exceeds a certain 

threshold. 

 Also, Togueu et al [99] considered a system of waveguide arrays described by the 

following DNLS equation with Kerr nonlinearity

i
dbn
dτ

+ C (bn+1 + bn−1) + γ|bn|2bn = 0 (1.9)

where bn is the electromagnetic wave amplitude in the nth waveguide, C is the coupling

constant, γ the nonlinear coefficient and τ is the propagation variable. To observe the

nonlinear band-gap transmission, one edge of the waveguide is driven with the following

boundary condition:

b0 = Bei∆τ , (1.10)

where B is the amplitude of the injected beam and ∆ is the angular frequency. They have

shown for the first time that, supratransmission threshold can be induced by the homo-

clinic orbit in the DNLS equation. The obtained homoclinic thresholds was in agreement

with the numerical ones even for small values of the coupling constant inducing a strongly
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discrete aspect of the waveguide. This result help them to predict that, the homoclinic gap

threshold can be generalized for other more complicated discrete systems which exhibit

NST.

1.3.4 Supratransmission Induced by noise effect

The stochastic resonance features may undoubtedly be of great importance for informa-

tion transmission in telecommunications. In order to investigate model supporting NST,

Yamgoué et al. [50] were the first to generate gap transmission by using noise effect. The

authors considered the electrical nonlinear lattice of Fig. 1.6, in which Ls and Lp are linear

inductors while Cb is a nonlinear capacitor.

Figure 1.6: Schematic representation of the electrical line [50].

Applying Kirchhoff’s laws to the array’s elements at sites n− 1, n and n+ 1; and as-

suming that the capacitor-voltage characteristic of the nonlinear capacitor Cb is Cb(Vn) =

C0(1 − αVn + 3βV 2
n ), one can establish that the voltage Vn is governed by the Eq. 1.11

which models a nonlinear dispersive transmission line

d2Vn
dt2

+ ω2
0Vn − u20(Vn+1 + Vn−1 − 2Vn) =

d2

dt2
(αV 2

n − βV 3
n ), (1.11)

where ω0 = (LsC0)
−1/2, u0 = (LpC0)

−1/2.

The array is driven at its left-end by

V0(t) = A cosωt+ η0(t), (1.12)

Ph.D thesis in Fundamental Mechanics and Complex Systems by KAMDOUM KUITCHE Alex ⋆UY1/FS⋆



Chapter I: Literature review 18

which corresponds to a sinusoidal signal of amplitude A and pulsation ω corrupted by

an additive white noise η0(t). By assuming the noise as a gaussian distribution which is

characterized by its root mean square amplitude, they have numerically investigated the

influence of noise on the propagation in a discrete nonlinear electrical transmission line.

They show that an additive noise to a periodic signal of frequency higher than the natural

cutoff frequency of this system can trigger soliton generation in the medium hence NST.

Additionally, the same effect was obtained by Bodo et al. [100] in a sine-Gordon chain

driven sinusoidally at one end. They show that, noise induces breather generation with a

given probability depending on the noise intensity.

1.3.5 Supratransmission Induced by waves collisions

The generation of NST phenomenon has been performed for the first time in 2013 by

Togueu et al. [101] by the boundary driven bi-inductance dispersive nonlinear transmission

line. They numerically performed a way to produce a supratransmission phenomenon in

the Salerno equation describing the dynamics of modulated waves in a discrete nonlinear

transmission lattice by showing that gap transmission is possible with driven amplitude

below the threshold due to the collision of different plane waves coming from both edges of

the line. They considered that, one of the two plane waves has a frequency in the forbidden

gap, and another has a frequency in the allowed phonon band. During collision, the wave

in the allowed band was considered as a perturbation of the ones in the forbidden gap.

1.3.6 Supratransmission in Multicomponent Systems

NST has been studied from different points of view. Most of the studies on the phenomenon

was focused on single-component systems. Even when studied on multicomponent systems,

it was rarely a discrete one. For example, Anghel et al. generated NST in a multicomponent
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nonintegrable nonlinear system models by a birefringent medium in permanent regime,

namely, assuming perfect frequency matching. In this case, degenerated spatial three-wave

model reduces to [102,103]

i∂zψ + α
2
∂2xψ − δψ + ϕ2 = 0,

i∂zϕ+ α
2
∂2xϕ+ ψϕ∗ = 0,

(1.13)

where ϕ(x, z) [respectively ψ(x, z)eδz] is the scaled static envelope of the signal wave with

frequency ω and wave number k (respectively second harmonic at frequency ω′ = 2ω

and wave number k′) and δ is the mismatch wave number in the propagation direction z

defined by k′ = 2k − δ. Last, x is the transverse direction and α = 1 + δ/k′ by definition.

The system of equation 1.13 is subject to the boundary condition

ψ(0, z) = Ae2iz, ϕ(0, z) = Beiz, (1.14)

where A and B are the driving amplitudes.

In order to generate NST, The authors develop a method based on an asymptotic solu-

tion obtained by asymptotic series expansion, which provides an accurate NST threshold

prediction. As NST requires driving in the forbidden band, the linear evanescent wave is

the natural keystone upon which to build the series.

Throughout, all these studies on NST have been performed on a single discrete models

and continuous multicomponent systems. Up to now, no attention was paid on discrete

multicomponent systems. The first question that motivated this study is: Can NST occur

in a discrete multicomponent systems?

Another purpose of this thesis is to perform a way to create supratrans-

mission in discrete multicomponent systems. that is for example in 2D sine-

Gordon lattices.
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1.4 Overview on MI

MI is a universal process that is inherent to most nonlinear wave systems in nature.

Because of MI, small amplitude perturbations that originate from noise on top of a ho-

mogeneous wave front grow rapidly under the combined effect of non-linearity and disper-

sion [104,105]. In the fields of nonlinear optics and fluid dynamics, modulational instability

or sideband instability is a phenomenon whereby deviations from a periodic waveform are

reinforced by non-linearity, leading to the generation of spectral sidebands and the even-

tual breakup of the waveform into a train of pulses [104, 106, 107]. The phenomenon was

first discovered and modelled for periodic surface gravity waves (Stokes waves) on deep

water by T. Brooke Benjamin and Jim E. Feir, in 1967 [108]. Therefore, it is also known

as the Benjamin-Feir instability. It is a possible mechanism for the generation of rogue

waves [109,110]. MI only happens under certain circumstances. The most important con-

dition is anomalous group velocity dispersion, whereby pulses with shorter wavelengths

travel with higher group velocity than pulses with longer wavelength [106, 111]. There

is also a threshold power, below where no instability will be seen [106]. The instabil-

ity is strongly dependent on the frequency of the perturbation. At certain frequencies, a

perturbation will have little effect, while at other frequencies, a perturbation will grow

exponentially. Random perturbations will generally contain a broad range of frequency

content, and so will cause the generation of spectral sidebands which reflect the under-

lying gain spectrum. The tendency of a perturbing signal to grow makes MI a form of

amplification. Recent theoretical and experimental works have proven that MI can also

occur with partially spatially incoherent light [112–114]. The implication of this result

is that MI can appear in almost any weakly correlated nonlinear wave system. Fig. 1.7

illustrates the modulational instability phenomenon in incoherent waves.
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Figure 1.7: Photograph of progressive wave trains illustrating the incoherent wave breaking

into incoherent signals due to instability [79].

Moreover, it should be borne in mind that, there has been great interest in the ap-

plication of MI in single coupled pendulum chains. For example, the examination of the

development of MI has been found in a horizontally shaken pendulum chain [69]. Also,

the destructive interference of MI has been studied in [70]. It is important to point out

that, discrete MI attracted attention in diverse branches of physical and biological science

due to its numerous applications [71–73]. In the domain of MI on discrete systems, the

majority of research has been devoted to single-component systems. To the best of our

knowledge, no attention was paid to discrete MI analysis in the transversely connected

nonlinear pendulum pairs.

The last purpose of this thesis is to perform MI in a novel discrete multi-

component system.

1.5 Conclusion

In this chapter, we provide in the first section the background on pendulum chains and

their applications. In the second section, we point out some generalities about NST in
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many models among which the coupled pendulum chains, the electrical transmission line...

And finally, we dedicate the last section to literature review of MI phenomenon. All the

concepts and dynamical systems studied in this chapter help us to define our goals which

are to perform a way to create supratransmission in 2D sine-Gordon lattices, to inves-

tigate MI phenomenon in the same model and to investigate the direction in which the

wave envelope will evolve in the lattice. In the next section, we shall present the differ-

ent analytical and numerical simulation approaches used to tackle the different purposes

stated in this chapter.
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Mathematical description of the model - Methods and

materials

2.1 Introduction

This chapter presents a brief overview on the techniques used to solve the open problems

stated in chapter 1. In this chapter, we present graphically the model and the mathemat-

ical modelling. Also, the theoretical and numerical methods which can be used to achieve

our goals are depicted. The chapter is closed by a conclusion.

2.2 Mathematical description of the model

We consider a chain of coupled pendulum displayed in Fig.2.1, where each pendulum is

connected to the nearest neighbours in the longitudinal and transverse directions. The

positive parameters C and D describe couplings between the nearest pendula in the lon-

gitudinal and transverse directions, respectively.

The Lagrangian in absence of damping for a chain of N pendula can be written as

follows:

L =
N∑
n=1

1

2

(
ẋ2n + ẏ2n

)
+cos(xn)+cos(yn)−

1

2
C(xn+1 − xn)

2−1

2
C(yn+1 − yn)

2−1

2
D(xn − yn)

2,

(2.1)

where (xn, yn) correspond to the angles in each pair of the two pendula, dots denote
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Figure 2.1: (Courtesy of Prof D. E. Pelinovsky) A graphical illustration for the chain of

coupled pendula [39] where each pendulum is connected to the nearest neighbours in the

longitudinal and transverse directions.

derivatives with respect to time t, n ∈ Z and t ∈ R.

Using the Euler-Lagrange’s equations, the equations of motion for the nth pendulum

in both directions take the following form:
ẍn − C (xn+1 − 2xn + xn−1)−D (yn − xn)+ sin(xn) = 0,

ÿn − C (yn+1 − 2yn + yn−1)−D (xn − yn)+ sin(yn) = 0.

(2.2)

Equation (2.2) is related to the energy function

H (xn, yn) =
N∑
n=1

1
2
(ẋ2n + ẏ2n)− cos(xn)− cos(yn) + 1

2
C(xn+1 − xn)

2 + 1
2
C(yn+1 − yn)

2

+1
2
D(xn − yn)

2.

(2.3)

In order to derive the linear dispersion relation of the model which serves as a reference

and provides basic information on the propagation of the plane waves, we can readily

define the nth site of the lattice as a two-component vector (xn, yn) and seek a solution
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Figure 2.2: Graphs of linear dispersion relation for C = 4. (a) the red (top) curve repre-

sents the fast mode branch while the curve generated by the slow mode branch is in blue

(bottom). (b) 2D Representation of linear dispersion relation, where we have five zones

namely; (1): lower forbidden band, (2): lower ”pseudo-gap”, (3): allowed band, (4): upper

”pseudo-gap”, (5): true upper forbidden band.
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in the form of plane waves:

(xn, yn) = (γ, δ) ei(kn−ωt), (2.4)

with |γ| ≪ 1, |δ| ≪ 1. ω and k are respectively the angular frequency and wave number.

Substituting Eq. (2.24) into the linearized form of Eq. (2.2), we get a linear dispersion

relation of the following form:

ω4 −
[
8Csin2

(
k
2

)
+ 2 (D + 1)

]
ω2 + [8C (D + 1)] sin2

(
k
2

)
+ 16C2sin4

(
k
2

)
+ (2D + 1) = 0.

(2.5)

Since Eq. (2.5) is biquadratic with respect to ω, there may exist two possible modes ω1(k)

and ω2(k) given in the following:

ω2
p = 4Csin2

(
k

2

)
+ (D + 1) + (−1)pD, (p = 1, 2) ; (2.6)

Fig.2.2 (a) depicts the modes ω1(k) and ω2(k) given by Eq. (2.6) as a function of wave

number k and the transverse coupling coefficient D. One can identify the lower and upper

cutoff frequencies given respectively at k = 0, ω0p =
√
(D + 1) + (−1)pD and at k = π,

ωmaxp =
√
4C + (D + 1) + (−1)pD. Due to the linear cross-coupling, an analogy can be

found with the two electrical transmission lines coupled by a linear capacitor [115–119].

Fig. 2.2 (b) depicts the variation of ω01,2 and ωmax1,2 as a function of coupling in the

transverse direction. In the same spirit with refs. [115, 116], we can allow our model to

exhibit slow and fast mode obtained by setting p = 1 and p = 2 respectively at the cut-off

frequencies. The angular frequency ω of the slow-mode is within the interval [ω01, ωmax1],

and that of the fast-mode within the range [ω02, ωmax2]. Both branches are separated by

an upper ”pseudo-gap”(zone 4) of thickness ∆ω1 = ωmax2 − ωmax1 > 0. The slow mode

branch starts at ω01 and that of the fast mode at ω02 when k = 0. Both branches are

separated by a lower ”pseudo-gap” (zone 2) of thickness ∆ω2 = ω02 − ω01 > 0. Indeed,
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∆ω1 and ∆ω2 are not the true forbidden bands. The true forbidden bands correspond

to zone 1 (true lower forbidden band) and zone 5 (true upper forbidden band) of Fig.

2.2 (b). Observing Fig. 2.2 (b), one can observe in zones 2 and 4 that, when D increases

(decreases), the width of the "pseudo-gaps" increases (decreases); the width of the allowed

band (zone 3) decreases (increases) as the coupling between the nearest pendula in the

transverse direction D increases (decreases).

Figure 2.3: Linear dispersion law curve for C = 4. Blue lines represent the cut-off frequen-

cies of the fast-mode and the red ones represent the cut-off frequencies of the slow-mode.

Also, For values of k taken in the first Brillouin zone, Fig. 2.3 represents the evolution

of the angular frequency for the two directions and for different values of transverse

coupling. At D = 2C, the intersection between the upper pseudo-gap and the lower

pseudo-gap or the intersection between the lower forbidden gap of the fast-mode and

the upper forbidden gap of the slow-mode starts (zone 4). In Fig. 2.3, it is seen that,

the bandwidth of the allowed angular frequencies (zone 3) decreases as the coupling D

between the nearest pendula in the transverse direction increases. This means that, the
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linear coupling parameter D contributes to increase the network effects on the wave during

its motion.

2.3 The discrete nonlinear Schrödinger model and so-

lutions

To the best of our knowledge, no analytical solution of Eq. (2.2) has been reported, due to

its discrete aspect. To overcome this situation, we will firstly expand sin(xn) and sin(yn)

in Taylor series up to the third order, and assuming yn = λxn for some real number λ.

Then, Eq. (2.2) turn to


ẍn − C (xn+1 − 2xn + xn−1)−D (λ− 1)xn + xn − 1

6
x3n = 0,

λẍn − λC (xn+1 − 2xn + xn−1)−D (1− λ) xn + λxn − λ3 1
6
x3n = 0.

(2.7)

The above two equalities are equivalent if and only if λ fulfill λ (λ− 1) = (1− λ) and

λ2 = 1, which has solutions λ = ±1. When λ = 1, the two lines are in phase i.e the

system reduces to an uncoupled one or to a single chain as the Klein-Gordon chain found

in [42]: this correspond to the slow-mode. In the case where λ = −1, the two lines becomes

coupled : This correspond to the fast-mode. In the following, we are going to be focused

on the case where λ = −1 such as to take into account the transverse coupling parameter.

Thus, Eq. (2.7) lead to a single discrete equation given by

ẍn − C (xn+1 − 2xn + xn−1) + ω2
gxn − βx3n = 0, (2.8)

where ω2
g = 2D + 1 and β = 1

6
.

In order to derive the linear dispersion relation of Eq. (2.8), we can seek for a solution

Ph.D thesis in Fundamental Mechanics and Complex Systems by KAMDOUM KUITCHE Alex ⋆UY1/FS⋆



Chapter II: Mathematical description of the model - Methods and materials 29

in the form of plane waves

xn = A0e
i(kn−ωt) + c.c., (2.9)

where c.c. stands for complex conjugate, ω and k are respectively the angular frequency

and wave number. Substituting Eq. (2.9) into linearized form of Eq. (2.8), we get a linear

dispersion relation of the following form

ω2 = ω2
g + 4Csin2

(
k
2

)
. (2.10)

The obtained dispersion relation of Eq. (2.10) corresponds to the fast mode of the one

of Eq. (2.6) which admits the same lower cutoff frequency at k = 0 (ωmin = ωg) and the

same upper cutoff frequency at k = π (ωmax =
√
ω2
g + 4C). Hence, Eq. (2.8) will be used

to investigate wave propagation.

Figure 2.4: Curve of group velocity relation

The group velocity relation associated with the wave packet is defined by

Vg =
dω

dk
=
C

ω
sin (k) (2.11)

The graphical representation of Eq. (2.10) shows the increase in the frequency when the

wave number increases. This involves the positive values of the group velocity given by
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Eq. (2.11) in the first Brillouin zone [see Fig. 2.4] which shows the variation of group

velocity in terms of wave number for some fixed values of transverse coupling parameters.

The group velocity decreases when the transverse coupling parameter D increases. So,

this transverse coupling parameter can be used to control the magnitude of generated

waves.

The mathematical model of Eq. 2.8 is less straightforward to tackle directly. For this

reason, we are going to use the rotating wave approximation to derive the nonlinear

Schrödinger equation describing the motion of modulated waves in the network of Fig.

2.1. This approximation allows us to consider the solution of Eq. 2.8 in the form

xn = ε [ψ (X, τ) exp (−iθn) + ψ∗ (X, τ) exp (iθn)] , (2.12)

in which the asterisk denotes complex conjugation, θn = ωt − kn is the rapidly varying

phase, ε is a positive small parameter (0 < ε ≤ 1), ψ is an unknown (continuous) slowly

varying envelope function depending on the slow scale X = ε (n− vgt), and τ = ε2t. In

the following, we are going to use this expansion

xn±1 = ε

(
ψ ± ε

∂ψ

∂X
+ ε2

∂2ψ

∂X2

)
exp (±ik) exp (−iθn) + c.c, (2.13)

where c.c. stands for the complex conjugate.

Inserting Eqs. (2.12) and (2.13) into Eq. (2.8) yield to different equations as power

series of ε. Firstly, by keeping the terms proportional to ε exp (−iθn) and ε2 exp (−iθn),

we obtain respectively, the dispersion relation and group velocity related to the fast-mode

studied above. Finally, by keeping the terms proportional to ε3 exp(−iθn), we obtain the

following one-dimensional nonlinear Schrodinger evolution equation for ψ (X, τ)

i
∂ψ

∂τ
+ P

∂2ψ

∂X2
+Q|ψ|2ψ = 0, (2.14)
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with the dispersion coefficient (P ) and nonlinear coefficient (Q) defined by

P =
C cos k − V 2

g

2ω
, (2.15)

Q =
1

4ω
. (2.16)

Actually, we focus our attention on the analytical computation of the exact representation

Figure 2.5: Dependence of the product PQ in term of the wave number and for D = 0.1,

D = 1.2, and D = 1.9

of the solution of Eq. (2.14). In fact, it is well known in [120] that NLS equation supports

different types of solution depending on the sign of the product of the nonlinear coefficient

Q and the the linear dispersion coefficient P . That is, if PQ > 0, the NLS equation admits

a bright soliton solutions, whereas for PQ < 0, it supports a dark or hole soliton solutions.

Fig. 2.5 depicts the dependence of the product of dispersive and nonlinear coefficients in

term of the wave number for some fixed values of transverse coupling parameter D. It

appears that, in the first Brillouin zone, the increase of D leads to the expansion of the

width of wave numbers for which bright soliton prevails and to the reduction of the one

for which dark solitons occur. Merely, the increase of the transverse coupling parameter
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extend the domain of existence of bright solitons. In the following, we will be focused on

the case where PQ > 0 i.e on the bright soliton solutions of Eq. (2.14). This solution is

given as in [3, 10,120] by

ψ (X, τ) = γsech [ρ (X − V τ)] exp i (KX − Ωτ) . (2.17)

Based on the above equation, the expression of the solution of Eq. (2.8) can be easily

written as

xn ≃ x0sech [ερ (n− vgt)] cos (kn− Ω0t) , (2.18)

in which ρ = γ
√∣∣ Q

2P

∣∣, Ω = K2−ρ2
2

, x0 = 2ερ

√∣∣∣2PQ ∣∣∣, and Ω0 = ω+2ε2ΩP . Equation (2.18)

is a modulated bright pulse signal solution of the network Eq. (2.8) whose characteristic

parameters, namely the amplitude, the velocity, the inverse width and the frequency are

x0, V , ρ and Ω0.

The bright soliton solution of Eq. (2.8) will be used in the next chapter in section 3.4 as

initial condition for the full numerical integration of Eq. (2.2) to investigate the behavior

of the solitary wave during its propagation while moving from one line to another.

2.4 Two dimensional map (A map approach)

Due to the high discrete aspect of Eq. (2.2), it will be difficult to obtain an analytical

threshold of the model. It is why we are going to use Eq. (2.8) which is identical to a

one-dimensional lattice modelling a simple mass and spring chain where the time periodic

solution can be obtained by assuming the harmonic solution xn = uncos(ωt) (see Refs.

[121, 122]). Inserting the latest harmonic solution into Eq. 2.8, and by keeping the terms

proportional to cos (ωt), we obtain a steady state equation in the form :

αun + C (un+1 − 2un + un−1) + βu3n = 0, (2.19)
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with α = ω2 − 2D − 1 and β = 1
8
.

Following the way developed in Refs. [99, 121–130] the two dimensional map corre-

sponding to the previous steady state equation can be written as

un+1 =
(
2− α

C

)
un −

β

C
u3n − vn , vn+1 = un. (2.20)

In order to confirm whether the driving frequency will be taken in the lower forbidden band

as aforementioned at the beginning of this section, we are going to study the fixed points of

the 2D map (Eq. (2.20)). To do so, we consider that, un+1 = un−1 = un = vn+1 = vn = u.

Then, Eq. (2.20) leads to

u0 = 0 and u± = ±
√

8 (2D + 1− ω2). (2.21)

u± exists if and only if 2D + 1− ω2 > 0 that is, for ω <
√
2D + 1. This confirms the

fact that, the lower forbidden band of Fig.2.3 is the zone where gap transmission takes

place. Thus, we are going to be focused on the true lower forbidden band (zone 1 Fig. 2.3

(b)).

2.5 The coupled discrete nonlinear Schrödinger model

In order to study the possibility of MI in coupled pendulum chains, we use the multiple

scales method on Eq. (2.2) to derive the coupled discrete nonlinear Schrödinger (dNLS)

equation using the algorithm in [31]. For that purpose, we make the following assumption,

where ω0 ≈ 1 and ε is a small fixed parameter:

ω ≈ ω0

(
1− ε2

2

)
, ω2 ≈ ω2

0 (1− ε2), C ≈ ε2c, and D ≈ ε2d.
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By expanding sin(xn) and sin(yn) in Taylor series up to the third order, Eq. (2.2) can be

written as: 
ẍn − C(xn+1 − 2xn + xn−1)−D(yn − xn) + xn − 1

6
x3n = 0

ÿn − C(yn+1 − 2yn + yn−1)−D(xn − yn) + yn − 1
6
y3n = 0.

(2.22)

The angular displacements of the nth resonator in the two directions can be expressed

as:

xn(T ) = 2ε
[
ψn(T )e

−iωt + ψ̄n(T )e
iωt

]
, (2.23)

yn(T ) = 2ε
[
ϕn(T )e

−iωt + ϕ̄n(T )e
iωt

]
, (2.24)

where T = ε2

2
t and, ψn and ϕn are unknown complex functions. Therefore, substituting

Eqs. (2.23) and (2.24) into Eq. (2.22), keeping the terms proportional to e−iωt and ε3, and

by choosing τ = ω0T , Eq. (2.22) becomes:
i∂ψn

∂τ
− ψn + c(ψn+1 − 2ψn + ψn−1) + d(ϕn − ψn) + 2|ψn|2ψn = 0

i∂ϕn
∂τ

− ϕn + c(ϕn+1 − 2ϕn + ϕn−1) + d(ψn − ϕn) + 2|ϕn|2ϕn = 0.

(2.25)

For d = 0, Eq. (2.25) reduces to a single discrete nonlinear Schrodinger equation obtained

in [31] with neither excitations (f = 0 and h = 0) nor damping(γ = 0). Therefore,

the system of Eq. (2.25) becomes equivalent to an uncoupled system of dNLS equations,

which have many applications in physics, including nonlinear optics. For d ̸= 0, Eq. (2.25)

can be considered as the coupled discrete nonlinear Schrödinger equation with neither

excitations nor damping. In the optics context, the system describes two arrays of optical

waveguides with Kerr nonlinearity and nearest-neighbor interactions [131]. The d term

realizes a cross-phase linear coupling between the two arrays of optical waveguides. Here,
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we have shown that, the coupled pendulum pairs can be described by a coupled discrete

nonlinear Schrödinger equation from which we will study the possibility of modulational

instability in the next section.

2.6 Discrete MI analysis

The MI phenomenon is considered as one of the first steps leading to the localization

of energy in a nonlinear network [132]. It is a means of producing intrinsic localized

modes in the system through the modulation of a plane wave. This phenomenon is based

on the linearization of a disturbing wave of very low amplitude compared to the initial

plane wave and it is revealed in a system when certain specific conditions are reached

or respected. The process of creating these localized structures will be detailed in this

section. In order to determine the conditions of the instability or stability of the plane

wave, we will investigate the evolution of a small perturbation that could affect the plane

wave.

2.6.1 Linear instability

To proceed further, let the following exact plane-wave solution of Eqs. (2.26) and (2.27)

be the solutions of Eq. (2.25). That is

ψn = λ0e
i(qn−ωτ), (2.26)

ϕn = µ0e
i(qn−ωτ), (2.27)

where q is the wave number, ω the angular frequency, λ0 and µ0 are respectively the

constant amplitudes of the vibrational angular displacements ψn and ϕn. Substituting

Eqs. (2.26) and (2.27) into Eq. (2.25), we arrive to this relation
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ω − 1 + c(2 cos(q)− 2) + d(µ0

λ0
− 1) + 2|λ0|2 = 0

ω − 1 + c(2 cos(q)− 2) + d(λ0
µ0

− 1) + 2|µ0|2 = 0.

(2.28)

The two equations of Eq. (2.28) are compatible if d(µ0
λ0

− 1) + 2|λ0|2 = d(λ0
µ0

− 1) + 2|µ0|2.

By considering both λ0 and µ0 to be reals, one get a relation between the two amplitudes

λ0 and µ0 as follows:

µ0 =
d

2λ0
. (2.29)

Thus, the nonlinear dispersion relation of the mode corresponding to the coupled chains

is given as :

ω = 1 + d− c(2 cos(q)− 2)− 2(λ0
2 + µ0

2). (2.30)

2.6.2 Modulational instablity gain

MI is a mechanism from where soliton can form during confrontation between nonlinear

and dispersions term. We employed the plane waves with small perturbations as follows:

ψn = (λ0 + λn(τ))e
i(qn−ωτ), (2.31)

ϕn = (µ0 + µn(τ))e
i(qn−ωτ). (2.32)

Substituting Eqs. (2.31) and (2.32) into Eq. (2.25), making use of the dispersion rela-

tions of Eq. (2.30), and after some mathematical computations, we obtain the following

linearized set of coupled discrete differential equations for the perturbations λn and µn:


i∂λn
∂τ

+ ceiqλn+1 + ce−iqλn−1 + 2λ20(λn + λ∗n) + dµn − (2c cos(q) + 2µ2
0)λn = 0

i∂µn
∂τ

+ ceiqµn+1 + ce−iqµn−1 + 2µ2
0(µn + µ∗

n) + dλn − (2c cos(q) + 2λ20)µn = 0

,

(2.33)
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where * denotes complex conjugate. Furthermore, the above simultaneous equation admits

solutions of the form

λn = α1 cos(Qn− Ωτ) + iα2 sin(Qn− Ωτ), (2.34)

µn = β1 cos(Qn− Ωτ) + iβ2 sin(Qn− Ωτ), (2.35)

where Q and Ω are respectively the wave number of the perturbation and the correspond-

ing propagation frequency of the modulation. Substituting Eqs. (2.34) and (2.35), into the

coupled set, Eq. (2.33) yields a pair of coupled equations that can be written in matrix

form as follows:



4λ20 +D1 Ω−D2 d 0

Ω−D2 D1 0 d

d 0 4µ2
0 +D3 Ω−D2

0 d Ω−D2 D3





α1

α2

β1

β2


=



0

0

0

0


, (2.36)

where,

D1 = 2c cos(Q) cos(q)− ρ,

D2 = 2c sin(Q) sin(q),

D3 = 2c cos(Q) cos(q)− σ,

σ = 2c cos(q) + 2λ20,

ρ = 2c cos(q) + 2µ2
0.

(2.37)

The solutions of the system of Eq. (2.36) are non-trivial. Given that the determinant of

4× 4 matrix is zero, then, we obtain the dispersion relations given by :

Ω+
± = D2 ± 1

2

√
χ1 + 2

√
16χ2 + 8χ3 + χ4,

Ω−
± = D2 ± 1

2

√
χ1 − 2

√
16χ2 + 8χ3 + χ4,

(2.38)
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with

χ1 = 8D1λ0
2 + 8D3µ0

2 + 4 d2 + 2D1
2 + 2D3

2,

χ2 = 4 d2µ0
2λ0

2 +D1
2λ0

4 − 2D1D3µ0
2λ0

2 +D3
2µ0

4 + d2D1µ0
2 + d2D1λ0

2,

χ3 = 2 d2D3µ0
2 + 2 d2D3λ0

2 +D1
3λ0

2 −D1
2D3µ0

2 −D1D3
2λ0

2 +D3
3µ0

2,

χ4 = 4 d2D1
2 + 8 d2D1D3 + 4 d2D3

2 +D1
4 − 2D1

2D3
2 +D3

4.

(2.39)

The dispersion relation of Eq. (2.38) determines the condition for stability of the

plane waves with the wave number q in the network. However, our interest is the complex

solutions of Ω. To have such result, χ1 + 2
√
16χ2 + 8χ3 + χ4 or χ1 − 2

√
16χ2 + 8χ3 + χ4

should be less than zero. MI occurs when wave number possesses a non zero imaginary part

leading to an exponential growth of the perturbed amplitudes λn(τ) and µn(τ) which set

off the generation of localized modes in the transversly coupled chains. Therefore, the MI

gain is the imaginary part of the propagation frequency of the modulation. It is calculated

using the formula

G(Q) = |Im(Ω)| . (2.40)

2.7 Numerical methods

Numerical solution of ordinary differential equations is the most important technique in

continuous time dynamics. Since most ordinary differential equations are not soluble ana-

lytically, numerical integration is the only way to obtain information about the trajectory.

Many different methods have been proposed and used in an attempt to solve accurately

various types of ordinary differential equations. However there are a handful of meth-

ods known and used universally namely; Runge-Kutta, Adams-Bashforth and Backward

Differentiation Formula methods. All these methods discretize the differential system to

produce a discrete system of equation or map. The methods obtain different maps from
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the same differential equation, but they have the same aim; that the dynamics of the map

should correspond closely to the dynamics of the differential equation. In this work, we

use the Runge-Kutta algorithm.

The fourth order Runge-Kutta is a much more locally accurate method. Let us suppose

that we have an equation of the form

dU

dt
= f(t, U), (2.41)

with initial condition with initial condition U(t0) = U0. Then if we know Un and set

t = (n− 1)h, the value of Un+1 is given by the sequence of operations

Un+1 = Un +
1

6
(L1 + 2L2 + 2L3 + L4), (2.42)

where L1, L2, L3 and L4 are the coefficients of the fourth order Runge-Kutta given by the

system below



L1 = h f(t, Un)

L2 = h f(t+ h
2
, Un + L1

2
)

L3 = h f(t+ h
2
, Un + L2

2
)

L4 = h f(t+ h, Un + L3),

(2.43)

where h is the normalized integration time step. This method is very widely favored as:

• It is easy to use and no equations need to be solved at each stage;

• It is highly accurate for moderate h values;

• It is a one step method i.e. Un+1 only depends on Un;

• It is easy to start and easy to code.
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In the special case when f(t, U) = f(t), we have

U(t) =

t∫
t0

f(t)dt+U0, (2.44)

and the task of evaluating this integral accurately is called quadrature. To solve any

differential equation with the fourth order Runge-Kutta algorithm, we need to put it into

the standard form given by Eq. 2.41.

Today, this method is not a secrecy for anybody such that certain software as Matlab

implemented it as solver. In order to approximate solutions of the time dependent 2D

discrete equation 2.2 describing the dynamics of our model, we can also use directly

ODE45 solver of MATLAB which is the combination of 4th and 5th Runge-Kutta method.

2.8 Hardware and software

As machine support during this thesis work, we used a Laptop computer running Windows

10 Pro operating system and two major softwares: Matlab for data analysis and Maple

for integral calculus.

2.9 Conclusion

This chapter is devoted to the presentation of analytical and numerical methods used to

model the chain of coupled pendulum pairs, where each pendulum is connected to the

nearest neighbours in the longitudinal and transverse directions. Using all these methods

and materials, we are now able to follow this study and obtain different results that will

help us to achieve our goals. The results are presented in chapter 3.
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Results and discussion

3.1 Introduction

This chapter presents the main results obtained in this thesis using both analytical and

numerical methods presented in chapter II. It is subdivided into three parts, dealing with

the nonlinear gap transmission in transversely connected nonlinear pendulum pairs, the

wave propagation in transversely connected nonlinear pendulum pairs, and the MI in

transversely connected nonlinear pendulum pairs.

3.2 Nonlinear gap transmission in transversely connected

nonlinear pendulum pairs

Nonlinear gap transmission also known as nonlinear supratransmisssion is a phenomenon

whereby a nonlinear system possessing a natural forbidden bandgap can transmit the

energy of a signal with a frequency belonging in that band. The process occurs at a

well defined predictable threshold amplitude. Therefore, its finding is fundamental. Here,

we are going to use the 2D map approach to determine the aforementioned threshold

amplitude before generating a nonlinear supratransmission phenomenon.

Generally, on the chain of longitudinally coupled pendula, the nonlinear supratrans-

mission phenomenon appears in the lower forbidden band [42]. In the similar way, the
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zones under consideration will be zones 1 of Fig. 2.3 (b) which has been confirmed in

section 2.4. When the angular frequency is lying in zone 2, it is within the forbidden

band of the fast mode and the allowed phonon band of the slow one while in zone 1, it is

the forbidden band of both modes. Can the angular frequency with a value taken in the

forbidden bands produce nonlinear bandgap transmission in our model? The answer to

this question will be found in sections 3.2.1 and 3.2.2. Before, it is worth noting that the

transverse and longitudinal coupled chains studied do not have two wave vectors as the

two dimensional lattice [133].

3.2.1 Supratransmission threshold

The homoclinic tangle progression of the 2D map (Eq. (2.20)) while varying the dispersion

coefficient C and transverse coupling D is displayed in Fig. 3.1 for ω = 0.8 belonging to

the true lower forbidden band. The details of the construction can be found in Ref. [127].

The dispersion coefficient increases from left to right in the first line of the Fig 3.1 while

the transverse coupling D is constant: The homoclinic intersections start with the much

richer structure to one homoclinic solution which can be associated with the continuous

solution.

The transverse coupling D increases from left to right in the second line of the Fig

3.1 while the dispersion coefficient C is constant: we can observe the inverse effect of the

first line. The richer structure of homoclinic connection increases with a constant trans-

verse coupling. It had been demonstrated in ref. [99] that the case of the rich homoclinic

connection corresponds to the case where the frequency is far from the cutoff frequency

while one homoclinic solution corresponds to the frequency close to the cutoff frequency.

However, in the supratransmission phenomenon, good transmission is ensured when the

frequency is close to the cutoff frequency. To be in agreement with this fact, we consider
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Figure 3.1: (First line) Homoclinic tangle progression of the 2D map Eq. (2.20) as a

function of dispersion coefficient C for D=0.1 and ω = 0.8: the dispersion coefficient

increases from left to right; (Second line) Homoclinic tangle progression of the 2D map

Eq. (2.20) as a function of transverse coupling D for C=4 and ω = 0.8: the transverse

coupling increases from left to right.

Figure 3.2: Homoclinic connection of the 2D map Eq. (2.20) for D = 0.1, C = 4, and

ω = 0.8. Red line corresponds to the supratransmission threshold amplitude.
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the main homoclinic connection of the 2D map (2.20) for D = 0.1, and C = 4 as depicted

in Fig. 3.2. In a similar way as in Ref. [99], we obtain the homoclinic supratransmission

threshold amplitude equal to 3.013 (red line of Fig. 3.2).

In the next section 3.2.2, the obtained threshold will be verified by numerical simula-

tions.

3.2.2 Numerical experiments

In this section, numerical studies are carried out on the discrete coupled pendulum pairs

of Fig. 2.1 by integrating Eq. (2.2) with a small transverse coupling parameter D = 0.1

and longitudinal coupling parameter C = 4. The chains will be submitted to the following

boundary driving conditions:

x0(t) = A cos(ω1t) and y0(t) = B cos(ω2t), (3.1)

where A(B) and ω1(ω2) are respectively the driving amplitude of the x−chain(y−chain)

and the driving frequency of the chains. The external driving amplitudes A and B are

gradually given from zero to their maximum values so as to avoid initial shock. In the

followings, we will be considered three cases :

• Only one chain is driven. The driving conditions (3.1) become :

x0(t) = A cos(ω1t) and y0(t) = 0. (3.2)

When the driving frequency belongs to the allowed band, a small driving amplitude

(A = 0.0001) will produce an energy flow in both chains as illustrated in Fig. 3.3.

One can see in the same figure the transfer of intensity from x− chain to y− chain.
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Figure 3.3: Graphs showing the evolution of the coupled chain with respect to time for

the driving angular frequencies of the two chains ω = 1.8 and the driving amplitude

A = 0.0001. The first line corresponds to the behavior of x − chain and the second line

corresponds to the behavior of y − chain. One can see the intensity transmits to remote

sites in the both chains

The threshold amplitude obtained from the homoclinic connection of the two-dimensional

(2D) map (2.20) (see Fig. 3.2) is Ath = 3.013 for the driven frequency ω = 0.8 lying

in the true lower forbidden band. In order to validate this homoclinic supratran-

mission threshold, we consider two values of A around the value of Ath that is one

slightly below and another slightly above and we get the following observations

namely; When the amplitude is just less than 3.013 that is A = 3.012 each chain

exhibits an evanescent wave as represented in Fig. 3.4. Thus, no energy flows in both

chains. When the amplitude is slightly beyond the homoclinic threshold amplitude
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of x − chain that is A = 3.014, an energy suddenly flows in x − chain and energy

even if it is small is transmitted in the form of a wave in y− chain (see the bottom

panel of Fig. 3.5). Then, both chains generate soliton solutions as displayed in Figs.

3.5.

Figure 3.4: Graphs showing the evolution of the coupled chain with respect to time for

the driving angular frequencies of the two chains ω = 0.8 and the driving amplitude

slightly below the threshold A = 3.012 < Ath. The up panel corresponds to the behavior

of x− chain and the down panel corresponds to the behavior of y − chain.

• The two chains are driven at the origin. The driven boundary conditions are given

by Eq. (3.1) with A and B different to zero. For this case, the numerical threshold

amplitude for each chain becomes smaller than the above homoclinic threshold am-

plitude. Due to the difficulty to obtain a common analytical threshold amplitude

for each chain, we find it numerically and get it for both chains and for the same
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Figure 3.5: Graphs showing the evolution of the coupled chain with respect to time for

the driving angular frequencies of the two chains ω = 0.8 and the driving amplitude

slightly above the threshold A = 3.014 > Ath. The up panel corresponds to the behavior

of x− chain and the down panel corresponds to the behavior of y − chain.
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values of driving frequency in the lower forbidden band (ω = 0.8), Ath = 2.563

and Bth = 2.563. We observe that when the amplitudes are less than 2.563 each

chain exhibits an evanescent wave as represented in Fig. 3.6. When the amplitudes

are slightly beyond the threshold amplitudes, the supratransmission phenomenon

occurs as displayed in Fig. 3.7.

Figure 3.6: Graphs showing the evolution of the coupled chain with respect to time for the

driving angular frequencies of the two chains ω = 0.8 and the driving amplitudes slightly

below the threshold A = 2.562 < Ath and B = 2.562 < Bth. The up panel corresponds to

the behavior of x− chain and the down panel corresponds to the behavior of y − chain.

• The two chains are driven at the origin with different frequencies. Here, x − chain

is driven with ω1 = 1.2 taken in the allowed band and the driving amplitude A=0.9

while y− chain is driven with ω2 = 0.9 and amplitude B=3.0 below the homoclinic

threshold. One would normally observe an evanescent wave in the y − chain but
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Figure 3.7: Graphs showing the evolution of the coupled chain with respect to time for the

driving angular frequencies of the two chains ω = 0.8 and the driving amplitudes slightly

above the threshold A = 2.564 > Ath and B = 2.564 > Bth. The up panel corresponds to

the behavior of x− chain and the down panel corresponds to the behavior of y − chain.
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curiously, the intensity transmits to remote sites as seen in Fig. 3.8. That is due to

the collision between the travelling wave from the phonon band (x− chain) and the

evanescent wave from the bandgap (y − chain) because of the transverse coupling

of the chains.

Figure 3.8: Graphs showing the evolution of the coupled chain with respect to time for the

driving angular frequency of the x − chain ω1 = 1.2 and the driving amplitudes A=0.9.

y − chain is driven with ω2 = 0.9 and the driving amplitude B=3.0 (below amplitude

threshold). The up panel corresponds to the behavior of x − chain and the down panel

corresponds to the behavior of y − chain.

The same phenomenon has been observed in discrete electrical lattice [101] but with

both left and right edges excited. The phenomenon is also qualitatively identical

to the amplification of phonons by phonons on the basis of a nonlinear band-gap

transmission process as in Refs. [134] and the amplification of magnetic pulses by an

electric field with a frequency close to the band edge of the magnetic branch [135].

Besides the transmission of binary information and the detection of the weak signal,

which are part of the applications of the supratransmission phenomenon, the results of

this work enriched the applications in the case where the signal amplifier in lattice could

be avoided by using an input signal in another lattice transversally coupled by the original
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lattice.

3.3 MI in transversely connected nonlinear pendulum

pairs

As we have seen in section 2.6 of chapter 2, modulational instability (MI) qualitatively

refers to the ability for an excitation that propagates to be able to split into packets

of energy (isolated pulses) and is of great interest in several areas of physics. In this

section, we check by means of numerical methods the theoretical analysis made in section

2.6 concerning discrete MI. However, the appearance of this phenomenon of MI only

occurs when certain conditions (linking the wave vectors of the initial plane wave q to the

disturbance Q) are respected.

Now, we investigate the behavior of the MI gains G+ and G− or MI zones by playing on

the values of the transverse coupling parameter d. The MI gains exhibit two bands namely,

the stable band and the unstable band. It is worth noting that, the unstable zone of the

MI corresponds to the generation of modulated plane wave solutions. That is, in unstable

regions, the plane waves are supposed to be broken up into trains of solitary waveforms or

pulses, or it is considered as stable when the wave numbers q and Q belong to the stability

bands. In Figs. 3.9, 3.10 and 3.12, we have fixed c = 4, λ0 = 0.6, and varied the transverse

coupling parameter respectively as d = 0.1, d = 0.5, and d = 1.5. The transverse coupling

parameter appears to dramatically impact the instability features. That is, it influences the

stability and instability zones as well observed in the left panel of those figures. There, the

regions surrounded by bright greenish areas represents the unstable band while the dark

bluish areas indicate the regions of stability. Thus, it is observed that, for the instability

growth rate G+, when one increases the transverse coupling parameter, the amplitude of
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Figure 3.9: (left panel): Growth rate of MI gain associated with solutions G+ and G− of

equation 2.40 versus the wave numbers Q and q for the parameters d = 0.1, c = 4, and

λ0 = 0.6. (Right panel): Regions of stability in the (q,Q) plane are indicated by the dark

bluish area(s) and the regions of modulational instability in the (q,Q) plane are indicated

by the area(s) surrounded by bright greenish color.
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the gain increases as we can clearly observe on the left panel of Fig. 3.11 while the stable

bands decrease and the MI regions increase as clearly shown in Fig. 3.12. Hence, the

chances of observing MI in the lattice reduce with a decrease in the transverse coupling

parameter. On the other hand, for the instability growth rate G−, when one increases

the transverse coupling parameter, the amplitude of the gain increases slightly as we can

clearly observe on the right panel of fig. 3.11 while the stable bands and the MI regions

slightly change. Also, it can be clearly observed that the MI gains are symmetric with

respect to q = 0. Therefore, it has been shown that, the instability growth rate and MI

band are dramatically affected by the transverse coupling parameter.

Figure 3.10: (left panel): Growth rate of MI gain associated with solutions G+ and G−

of Eq. (2.40) versus the wave numbers Q and q for the parameters d = 0.5, c = 4, and

λ0 = 0.6. (Right panel): Regions of stability in the (q,Q) plane are indicated by the dark

bluish area(s) and the regions of modulational instability in the (q,Q) plane are indicated

by the area(s) surrounded by bright greenish color.
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Figure 3.11: Growth rate of MI gain for different values of the transverse coupling pa-

rameter d versus the wave number of the perturbation Q for q = π
100

. Where the other

parameters are: c = 4, λ0 = 0.6. We observe that, the MI gain spectrum is symmetric

with respect to Q = 0.

In Fig. 3.11, the behavior of the amplitude of MI growth rate for carrier waves versus

the wave number of perturbation Q for the wave number q = π
100

with four values of

transverse coupling parameter d has been displayed. It is observed in Fig. 3.11 that,

the instability growth rate G+ is significantly sensitive to the transverse coupling term.

For d = 0.1, the dynamics of the network displays a very weak growth rate amplitude.

Whereas, the instability growth rate G− does not change considerably with the transverse

coupling term. Also, it is important to point out that, for Q = π, the amplitude of MI

gain is maximum.

In the left panel of Figs 3.9, 3.10 and 3.12, the unstable regions of MI are clearly

depicted; consequently, the plane wave solutions of the transversely coupled pendulum

chains model become unstable. Hence, the dynamics of the generated unstable plane

wave solutions will be studied numerically in the next paragraph.

In order to check the validity of the linear stability analysis which does not tell us

anything about the behavior of the propagation of the slowly modulated waves when the

instability grows, we perform some numerical investigations of the equation of motion
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Figure 3.12: (left panel): Growth rate of MI gain associated with solutions G+ and G−

of Eq. (2.40) versus the wave numbers Q and q for the parameters d = 1.5, c = 4, and

λ0 = 0.6. (Right panel): Regions of stability in the (q,Q) plane are indicated by the dark

bluish area(s) and the regions of modulational instability in the (q,Q) plane is indicated

by the area(s) surrounded by bright greenish color.
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Eq. (2.2). This numerical simulation is done in order to understand the dynamics of the

transversely connected nonlinear pendulum chains under MI in the nonlinear regime.

To this end, it is carried out by integrating the full Eq. (2.2) using a fourth order

Runge Kutta scheme with normalized time step ∆t = 10−8. We consider the number of

sites N in the n direction to be equal to 200 with periodic boundary conditions such as

to avoid the wave reflection at the end of the line. In accordance with Eqs. 2.31 and 2.32,

the initial modulated plane waves with slightly modulated amplitudes introduced are in

this form

xn(t = 0) = λ0 [1 + 0.01 cos(Qn)] cos(qn); ẋn(t = 0) = λ0ω [1 + 0.01 cos(Qn)] sin(qn)

yn(t = 0) = µ0 [1 + 0.01 cos(Qn)] cos(qn); ẏn(t = 0) = µ0ω [1 + 0.01 cos(Qn)] sin(qn)

,

(3.3)

with the set of wave numbers q and Q taken in a given unstable zones of Figs. 3.9, 3.10,

and 3.12 obtained from the linear stability analysis and the wave frequency ω calculated

from the dispersion relation of Eq. (2.30).

We introduce in the network the initial conditions of Eq. (3.3) by considering different

values of the transverse coupling term. Firstly, for d = 0.1, we choose a wave with q =

π
100
rad perturbed at wave number Q = 0.911πrad belonging to the unstable region of

Fig. 3.9. Using these parameters, we obtained Fig. 3.13 which illustrates the generation

of localized pulses in the cause of the MI. We can clearly see that the initial solution

tends to disintegrate during propagation, which leads to the break up of the wave into a

periodic localized pulses or envelope soliton train. It is important to point out that, the

wave displayed an oscillating and breathing behaviour and each component of the train

has the shape of a soliton-like object; this is due to the existence of MI in the network.

We display in Fig. 3.14, the spatiotemporal evolution of amplitudes for d = 1.0 by

choosing a wave with q = π
100
rad perturbed at wave number Q = 0.911πrad belonging to

Ph.D thesis in Fundamental Mechanics and Complex Systems by KAMDOUM KUITCHE Alex ⋆UY1/FS⋆



Chapter III: Results and discussion 57

Figure 3.13: Spatiotemporal evolution of the amplitudes of the initial plane waves which

break into a wave train having the shape of a soliton due to the MI manifestation in a

transversely connected nonlinear pendulum chains as predicted analytically, for d = 0.1,

c = 4, λ0 = 0.6, q = π
100
rad and Q = 0.911πrad. (top panel): 3D representation, (down

panel): 2D representation.

Ph.D thesis in Fundamental Mechanics and Complex Systems by KAMDOUM KUITCHE Alex ⋆UY1/FS⋆



Chapter III: Results and discussion 58

the unstable region (not shown here) where the envelope pulses also emerge due to the

existence of MI. Thus, the localization in time is observed. For d=1.5 the number of local-

ization solution in time increases as illustrated in Fig. 3.15. Hence, Transversely connected

nonlinear pendulum pairs can be convenient tools for the study of wave propagation in

nonlinear dispersive media.

Figure 3.14: Spatiotemporal evolution of the amplitudes of the initial plane waves which

break into a wave train having the shape of a soliton due to the MI manifestation in a

transversely connected nonlinear pendulum chains as predicted analytically, for d = 1.0,

c = 4, λ0 = 0.6, q = π
100
rad and Q = 0.911πrad. (top panel): 3D representation, (down

panel): 2D representation.

Ph.D thesis in Fundamental Mechanics and Complex Systems by KAMDOUM KUITCHE Alex ⋆UY1/FS⋆



Chapter III: Results and discussion 59

Figure 3.15: Spatiotemporal evolution of the amplitudes of the initial plane waves which

break into a wave train having the shape of a soliton due to the MI manifestation in a

transversely connected nonlinear pendulum chains as predicted analytically, for d = 1.5,

c = 4, λ0 = 0.6, q = π
100
rad and Q = 0.911πrad. (top panel): 3D representation, (down

panel): 2D representation.
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3.4 Wave propagation in transversely connected non-

linear pendulum pairs

Now, to consolidate the validity of analytical results, let us proceed to study numerically

the evolution of the previous bright soliton in the network of Fig. 2.1. In this section, we

report the results of the numerical experiments performed on the exact discrete equation

(2.2) of the network. We use the Ode45 solver of Matlab with periodic boundary conditions

using the following parameters γ = 1, ε = 0.02, and C = 4.

For a given value of wave number k depending of the domain of each soliton (see Fig.

2.5), we evaluate the angular frequency ω using the dispersion relation of Eq. (2.10), the

nonlinear coefficient Q, the dispersion coefficient P and other soliton’s parameters given

just after Eq. (2.18). Similarly, the number of cells for both lines is chosen to be equal to

1001.

For the effectiveness of the investigations, we consider different values of the transverse

coupling parameter so as to examine its effect on the progression of the solitary wave from

one line to another. for this purpose, let us consider two cases depending on the input

signal or initial conditions applying on each line.

• Firstly, as initial condition, we take as the input signal the profile of the bright

soliton for the x− line such

xn(0) ≃ x0sech (ερn) cos (kn) , (3.4)

and consider that at t = 0, y − line is at rest, that is

yn(0) ≃ 0. (3.5)

With zero velocity (k=0 rad/cell), we obtain Fig. 3.16. The no transverse coupling

case (D=0) is depicted in the first line: Ones can observe the localization of the
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wave in the x− line while no wave is propagating in the y− line. For the transverse

coupling parameter different to zero (second and third line of Fig. 3.16), we observe

the localization in both x− and y − lines. The remarkable phenomenon here is the

fact that, for a given time, the wave exists in the x-line while simultaneously, there

is no wave in the y− line. This is similar to the gain and loss phenomenon observed

in the optical waveguide arrays [136]. Despite the fact that only one chain is excited,

there is an alternative transfer of energy between both lines. What is the behavior

of the lattice for the nonzero group velocity? Fig. 3.17 displays the spatiotemporal

evolution of the wave for k = 0.5 rad/cell. It is well seen in this figure in the first

line (D=0) that, no wave is propagating in the y − line as expected. For D = 0.01

(second line) the energy transfer from the x − line to the y − line is observed and

the gain and loss phenomenon is observed. The same phenomenon is obtained for

D = 0.1. This is in agreement with the first idea of the construction of the lattice in

Fig. 2.1 by Destyl et al. [39]. For a large value of the transverse coupling constant

as it can be seen in Fig. 3.18, we observe that, the wave introduced at the origin at

t = 0 exhibits some nonlinear distortions of the envelope when time grows. Then,

the fission of the initial wave occurs with time as shown in that figure.

• Secondly, considering the fact that yn = −xn (as shown in section 2.3 i.e the two

lines are out of phase) as initial condition, we take as the input signal the profile of

the bright soliton for the x− line such

xn(0) ≃ x0sech (ερn) cos (kn) , (3.6)

and consider that at t = 0, y − line is the opposite of x− line, that is

yn(0) ≃ −x0sech (ερn) cos (kn) . (3.7)

Following the initial conditions of Eqs. (3.6) and (3.7), we obtain Fig. 3.19. We
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Figure 3.16: Space time evolution plot of angles xn (left panel) and yn (right panel)

showing the behavior of the bright soliton with zero velocity (k=0) in the network.
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Figure 3.17: Space time evolution plot of angles xn (left panel) and yn (right panel)

showing the propagation of the bright soliton for k = 0.5 in the network.
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Figure 3.18: Space time evolution plot of angles xn (left panel) and yn (right panel)

showing the propagation of the bright soliton in the network with large transverse coupling

parameter.

Figure 3.19: Space time evolution plot of angles xn (left panel) and yn (right panel)

showing the propagation of the bright soliton in the network with the initial conditions

given by Eqs. (3.6) and (3.7).
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observe the propagation of the wave on the right-hand side. As both chains are

excited, the loss on the x − line is compensated by the gain of the y − line and

vice versa. The compensation of the loss by the gain in both chains induces the

coherency of the waves during the propagation.

3.5 Conclusion

In this chapter, we have created a way to generate NST in a 2D sine-Gordon equation that

is in the equation governing a transversely connected nonlinear pendulum pairs. Secondly,

we have shown that the model can exhibit the gain and loss phenomenon and can also

be used to investigate wave propagation in nonlinear dispersive media. The condition

for which the network can exhibit modulational instability is also determined. We have

observed a good agreement between analytical calculations and numerical simulations.

The main results will be summarized in the next section.

Ph.D thesis in Fundamental Mechanics and Complex Systems by KAMDOUM KUITCHE Alex ⋆UY1/FS⋆



General conclusion

In this thesis, we have considered nonlinear discrete coupled pairs of pendulum chains

connected to the nearest neighbours in the longitudinal and transverse directions.

This novel model has been used to investigate the nonlinear supratransmission phe-

nomenon in the common lower forbidden bandgap of the two pendulum chains. We used

Euler-Lagrange’s equations to derive the equation governing the motion for the nth pendu-

lum in both directions. We used the obtained equation to look into the supratransmission

threshold amplitude. To do so, we have employed the two-dimensional map approach to

determine the amplitude and the numerical result to confirm the validity of the obtained

homoclinic supratransmission threshold amplitude for the case where only one chain was

driven. We also numerically performed the supratransmission threshold amplitude in the

case where the two chains were driven.

Besides, in order to study the existence of MI in the model, the multiple scale method

was used to derive the coupled discrete nonlinear Schrödinger equation. By carrying out

the linear stability analysis we have calculated and plotted the growth rate of the MI. It

has been revealed that both the gain and the MI bands are sensitive to the transverse

coupling term. Therefore, with the results obtained from MI analysis, we predicted the

formation of the periodic localized solitons in the network. Thus, numerical simulations

of MI have been carried out and let to the generation of periodic localized pulses in

the system. We have observed that the transverse coupling term has an influence on the
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localization of envelope pulses.

Finally, we obtained the corresponding linear dispersion law describing the small am-

plitude waves of the network. We allowed our model to exhibit two modes of propagation

of waves namely, the fast- and the slow-mode. The slow-mode was equivalent to the case

of a single chain where as the fast one was not. This let our attention to be focused only

on the fast-mode. Moreover, by considering the fact that the two chains of the model are

proportional, we obtained a single equation which obeyed the linear dispersion relation

of the fast mode. Afterwards, applying the rotating wave approximation method on the

obtained single equation, we have shown that the generalized coordinate of the system

is governed by a nonlinear Schrödinger equation. We deduced that, the obtained NLS

equation supports bright and dark or hole solitons as solutions. Due to the fact that,

the transverse coupling parameter had the same effects on each soliton, we focused our

attention only on bright soliton. We used the obtained bright soliton as initial conditions

for numerical investigation to follow the progression of the generated waves in the net-

work from one line to the other when varying the transverse coupling parameter. From

the interesting results obtained in this work, we saw clearly that, the transverse coupling

plays a significant role in the model of the nonlinear coupled pendulum lines and could

be used to generate the gain and loss phenomenon.

From the interesting results obtained in this work, we can say that transversely con-

nected nonlinear pendulum chains can be convenient tools for studying wave propagation

in dispersive nonlinear media. It opens up the possibility of additional mathematical

analysis on discrete simultaneous equation describing the dynamics of discrete multicom-

ponent systems and opens the way to understanding supratransmission phenomenon in

multicomponent discrete systems.

Another interest in the future will be to see the effect of transverse direction with
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common string [137] on the nonlinear bandgap phenomenon and to characterize breathers

(periodic or quasi-periodic solutions) of the model and to see how existence and stability

of such solutions is related to the nonlinear stability of the zero equilibrium.
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In this work, we generate a nonlinear supratransmission phenomenon in a chain of coupled pendulum pairs,
where each pendulum is connected to the nearest neighbours in the longitudinal and transverse directions. By
considering the angular displacement of one chain proportional to the other, we derive the homoclinic
supratransmission threshold amplitude using the two-dimensional map approach which is in agreement with
the numerical one; in the case where only one chain is driven. We also consider the case where both chains
are driven and perform numerically the supratransmission threshold amplitude of the two chains in the case
of the same driven frequency while the phonon amplification is obtainedwhen both lattices are driven with fre-
quencies in different bands. The actualwork extends the deep understanding of supratransmission phenomenon
in discrete coupled pendulum systems.

© 2022 Elsevier Ltd. All rights reserved.
Keywords:
Nonlinear supratransmission
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Solitons
1. Introduction

At the beginning of the 21st century, it appeared in the literature an
exotic phenomenon called nonlinear supratransmission. The pioneers
of this phenomenon namely; Geniet and Leon discovered that a nonlin-
ear system possessing a naturally forbidden bandgap can transmit the
energy of a signal with a frequency lying in that forbidden band [1].
They named the process nonlinear supratransmission. The fact that
the driving frequency was taken in the forbidden band was not suffi-
cient, the process occurred at a well-defined predictable amplitude
called a threshold amplitude.

For more than two decades, the nonlinear supratransmission phe-
nomenon has been studied up to now from different points of view in
various physical systems, such as, in sine-Gordon chains [2–5], in Jo-
sephson junction [6,7], in Bragg media [8], in discrete nonlinear electri-
cal transmission lines [9–13], in the Fermi-Pasta-Ulam model [14–17],
amongmany other [18–26]. The majority of research on this phenome-
non was done on single chains or single-component systems. Even
when studied on a multicomponent system, it was rarely a discrete
Sine-Gordon one. For example, in [27], supratransmission phenomenon
was studied in multicomponent nonintegrable nonlinear systems.

Moreover, knowing that the supratrasnsmission phenomenon oc-
curs at a well-defined threshold amplitude, its prediction is fundamen-
tal importance for physical applications. Nowadays, this threshold has
A. Kamdoum Kuitche),
oo.fr (T. Kanaa),
been obtained in single-component systems by making use of explicit
solution of the model equation, and looking for its maximum allowed
amplitude at the boundary [2,11,13,28] or byusing saddle-node bifurca-
tion [29]. Other ways to investigate this amplitude threshold are the
nonlinear response manifold technique [30], and the two dimensional
(2D) map approach [31]. Also, when the model equation is intractable,
a method based on an asymptotic solution obtained by asymptotic se-
ries expansion can be developed [27]. Nevertheless, despite all these
studies, to the best of our knowledge, no attention was paid to the gap
transmission in transversely connected nonlinear pendulum pairs.

In this work, we address a way to generate a gap transmission in a
novel multicomponent discrete system which has only quite recently
appeared in the literature [32]. The model studied here is the chain of
coupled pendulum pairs, where each pendulum is connected to the
nearest neighbours in the longitudinal and transverse directions. The
equation governing this chain has the feature that, it is a discrete simul-
taneous one.

The rest of the paper is organized as follows: In Section 2, we present
themathematical model and the linear dispersion relation. In Section 3,
we derive from the mathematical model the value of threshold ampli-
tude. In Section 4, we numerically integrate the full governing equation
of our model. Finally, a conclusion is given in Section 5.

2. Mathematical description of the model

Inspired by the model presented in [32], we consider a chain of
coupled pendulum displayed in Fig. 1, where each pendulum is con-
nected to the nearest neighbours in the longitudinal and transverse di-
rections.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.112196&domain=pdf
https://doi.org/10.1016/j.chaos.2022.112196
mailto:kamdoumkuitchealex@yahoo.com
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mailto:ctchawa@yahoo.fr
https://doi.org/10.1016/j.chaos.2022.112196
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/chaos


Fig. 1. (Courtesy of Prof D. E. Pelinovsky) A graphical illustration for the chain of coupled pendula [32]where each pendulum is connected to the nearest neighbours in the longitudinal and
transverse directions. The positive parameters C and D describe couplings between the nearest pendula in the longitudinal and transverse directions, respectively. The positive parameters
C and D describe couplings between the nearest pendula in the longitudinal and transverse directions, respectively.
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The Lagrangian in absence of damping for a chain of N pendula can
be written as follows:

L ¼
XN
n¼1

1
2

_x2n þ _y2n
� �

þ cos xnð Þ þ cos ynð Þ

−
1
2
C xnþ1−xnð Þ2−1

2
C ynþ1−yn
� �2

−
1
2
D xn−ynð Þ2;

ð1Þ

where (xn,yn) correspond to the angles in each pair of the two pendula,
dots denote derivatives with respect to time t.

Using the Euler-Lagrange's equations, the equations of motion for
the nth pendulum in both directions take the following form:

€xn � C xnþ1 � 2xn þ xn � 1ð Þ � D yn � xnð Þ þ sin xnð Þ ¼ 0,

€yn � C ynþ1 � 2yn þ yn � 1
� � � D xn � ynð Þ þ sin ynð Þ ¼ 0:

8>>><
>>>:

ð2Þ

In order to derive the linear dispersion relation of the model which
serves as a reference and provides basic information on the propagation
of the plane waves, we can readily define the nth site of the lattice as a
two-component vector (xn,yn) and seek a solution in the form of plane
waves:

xn, ynð Þ ¼ γ, δð Þei kn � ωtð Þ, ð3Þ

with |γ|≪ 1, |δ|≪ 1.ω and k are respectively the angular frequency and
wave number.

Substituting Eq. (3) into the linearized formof Eq. (2),we get a linear
dispersion relation of the following form:

ω4 � 8C sin 2 k
2

� �
þ 2 Dþ 1ð Þ

� 	
ω2 þ 8C Dþ 1ð Þ½ � sin 2 k

2

� �

þ16C2 sin 4 k
2

� �
þ 2Dþ 1ð Þ ¼ 0:

ð4Þ

Since Eq. (4) is biquadratic with respect to ω, there may exist two
possible modes ω1(k) and ω2(k) given in the following:

ω2
p ¼ 4C sin 2 k

2

� �
þ Dþ 1ð Þ þ � 1ð ÞpD, p ¼ 1, 2ð Þ: ð5Þ

Fig. 2(a) depicts the modes ω1(k) and ω2(k) given by Eq. (5) as a
function of wave number k and the transverse coupling coefficient D.
One can identify two lower cut-off mode frequencies at k= 0 given by
2

ω01 ¼ 1,

ω02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2D

p
,

ð6Þ

and two upper cut-off frequencies at k = π given by

ω max 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C þ 1

p
,

ω max 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C þ 2Dþ 1

p
:

ð7Þ

Fig. 2(b) depicts the variation of ω01,2 and ωmax1,2 as a function of
coupling in the transverse direction. An analogy with the electrical
transmission line [33,34] allows identifying the slow mode branch and
the fast mode ends at k = π by ωmax1 and ωmax2 respectively. The
angular frequency ω of the slow-mode is within the interval
[ω01,ωmax1], and that of the fast-mode within the range [ω02,ωmax2].
Both branches are separated by an upper “pseudo-gap”(zone 4) of
thickness Δω1 = ωmax2 − ωmax1 > 0. The slow mode branch starts at
ω01 and that of the fast mode at ω02 when k = 0. Both branches are
separated by a lower “pseudo-gap” (zone 2) of thickness Δω2 = ω02

− ω01 > 0. Indeed, Δω1 and Δω2 are not the true forbidden bands.
The true forbidden bands correspond to zone 1 (true lower forbidden
band) and zone 5 (true upper forbidden band) of Fig. 2(b). Observing
Fig. 2(b), one can observe in zones 2 and 4 that, when D increases
(decreases), the width of the “pseudo-gaps” increases (decreases); the
width of the allowed band (zone 3) decreases (increases) as the
coupling between the nearest pendula in the transverse direction D
increases (decreases).

Generally, on the chain of longitudinally coupled pendula, the non-
linear supratransmission phenomenon appears in the lower forbidden
band [1]. In the same way, the zones under consideration will be
zones 2 and 1 (to be confirmed in the next section). When the angular
frequency is lying in zone 2, it is within the forbidden band of the fast
mode and the allowed phonon band of the slow one while in zone 1,
it is the forbidden band of both modes. Can the angular frequency
with a value taken in the forbidden bands produce nonlinear bandgap
transmission in our model? The answer to this question will be found
in the next sections. Before, it is worth noticing that the transverse
and longitudinal coupled chains studied don't have two wave vectors
as the two dimensional lattice [35].

3. Supratransmission threshold

To the best of our knowledge, no analytical solution of Eq. (2) has
been reported, due to its discrete aspect. Then, it will be difficult to ob-
tain an analytical threshold of themodel. To overcome this situation,we
will firstly expand sin(xn) and sin(yn) in Taylor series up to the third
order. Then, Eq. (2) turn to



Fig. 2.Graphs of linear dispersion relation forC=4. (a) the red (top) curve represents the fastmode branchwhile the curve generated by the slowmode branch is in blue (bottom). (b) 2D
Representation of linear dispersion relation, wherewe have five zones namely; (1): lower forbidden band, (2): lower “pseudo-gap”, (3): allowed band, (4): upper “pseudo-gap”, (5): true
upper forbidden band. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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€xn � C xnþ1 � 2xn þ xn � 1ð Þ � D yn � xnð Þ þ xn � 1
6
x3n

� �
¼ 0,

€yn � C ynþ1 � 2yn þ yn � 1
� � � D xn � ynð Þ þ yn � 1

6
y3n

� �
¼ 0:

8>>>>><
>>>>>:

ð8Þ

Secondly, considering the angular displacement of x− chain propor-
tional to that of y− chain, mathematically expressed as yn= λxn, where
λ is the constant of proportionality, Eq. (8) becomes:

€xn � C xnþ1 � 2xn þ xn � 1ð Þ � D λ � 1ð Þxn þ xn � 1
6
x3n ¼ 0,

λ€xn � λC xnþ1 � 2xn þ xn � 1ð Þ � D 1 � λð Þxn þ λxn � λ3

6
x3n ¼ 0:

8>>>><
>>>>:

ð9Þ

The two equations of this simultaneous equation are identical if and
only if λ=± 1.When λ=1, the effect of transverse coupling parame-
ter vanishes. The equationwill become theKlein-Gordon found in [1]. In
the following, we are going to be focused on the case where λ = − 1
such as to take into account the transverse coupling parameter. Thus,
Eq. (9) lead to a single discrete equation given by

€xn � C xnþ1 � 2xn þ xn � 1ð Þ þ 2Dþ 1ð Þxn � 1
6
x3n ¼ 0, ð10Þ

which is identical to a one-dimensional lattice modelling a simple mass
and spring chain where the time periodic solution can be obtained by
assuming the harmonic solution xn = un cos (ωt) (see Refs. [36,37]).
Inserting the latest harmonic solution into Eq. 10, and by keeping the
terms proportional to cos(ωt), we obtain a steady state equation in
the form:

αun þ C unþ1 � 2un þ un � 1ð Þ þ βu3
n ¼ 0, ð11Þ

with α = ω2 − 2D − 1 and β ¼ 1
8.

Following the way developed in Refs. [31,36–45] the two dimen-
sional map corresponding to the previous steady state equation can be
written as

unþ1 ¼ 2 � α
C

� �
un � β

C
u3
n � vn, vnþ1 ¼ un: ð12Þ
un
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Fig. 3. (First line) Homoclinic tangle progression of the 2D map Eq. (12) as a function of disper
right; (Second line) Homoclinic tangle progression of the 2Dmap Eq. (12) as a function of transv
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In order to confirm whether the driving frequency will be taken in
the lower forbidden band as aforementioned at the end of Section 2,
we are going to study the fixed points of the 2D map (Eq. (12)). To do
so, we consider that, un+1 = un−1 = un = vn+1 = vn = u. Then,
Eq. (12) leads to

u0 ¼ 0 and u� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 2Dþ 1 � ω2ð Þ

q
: ð13Þ

u± exists if and only if 2D + 1 − ω2 > 0 that is, for ω <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dþ 1

p
.

This confirms the fact that, the lower forbidden band of Fig. 2 is the
zone where gap transmission takes place. Thus, we are going to be
focused on the true lower forbidden band (zone 1 Fig. 2(b)). In the
following, we will consider ω = 0.8 belonging to the true lower
forbidden band.

The homoclinic tangle progression of the 2D map (Eq. (12)) while
varying the dispersion coefficient C and transverse coupling D is
displayed in Fig. 3 for ω = 0.8. The details of the construction can be
found in Ref. [42]. The dispersion coefficient increases from left to
right in the first line of the Fig. 3 while the transverse coupling D is con-
stant: The homoclinic intersections start with themuch richer structure
to one homoclinic solutionwhich can be associatedwith the continuous
solution. The transverse coupling D increases from left to right in the
second line of the Fig. 3 while the dispersion coefficient D is constant:
we can observe the inverse effect of the first line. The richer structure
of homoclinic connection increaseswith a constant transverse coupling.
It had been demonstrated in ref. [31] that the case of the rich homoclinic
connection corresponds to the case where the frequency is far from the
cutoff frequency while one homoclinic solution corresponds to the fre-
quency close to the cutoff frequency. However, in the supratransmission
phenomenon, good transmission is ensuredwhen the frequency is close
to the cutoff frequency. To be in agreement with this fact, we consider
the main homoclinic connection of the 2D map (12) for D = 0.1, and
C = 4 as depicted in Fig. 4. In a similar way as in Ref. [31], we obtain
the homoclinic supratransmission threshold amplitude equal to 3.013
(red line of Fig. 4). In the next section, the obtained threshold will be
verified by numerical simulations.

4. Numerical experiment

In this section, numerical studies are carried out on the discrete
coupled pendulum pairs of Fig. 1 by integrating Eq. (2) with a small
un
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erse coupling D for C= 4 andω=0.8: the transverse coupling increases from left to right.



Fig. 4.Homoclinic connection of the 2Dmap Eq. (12) forD=0.1, C=4, andω=0.8. Red
line corresponds to the supratransmission threshold amplitude. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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transverse coupling parameter D = 0.1 and longitudinal coupling pa-
rameter C= 4. The chains will be submitted to the following boundary
driving conditions:

x0 tð Þ ¼ A cos ω1tð Þ and y0 tð Þ ¼ B cos ω2tð Þ, ð14Þ
Fig. 5.Graphs showing the evolution of the coupled chainwith respect to time for thedriving an
line corresponds to the behavior of x− chain and the second line to the behavior of y − chain

5

where A(B) and ω1(ω2) are respectively the driving amplitude of the x
− chain(y − chain) and the driving frequency of the chains. The
external driving amplitudes A and B are gradually given from zero to
their maximum values so as to avoid initial shock. In the followings,
we will be considered three cases:

• Only one chain is driven. The driving conditions (14) become:

x0 tð Þ ¼ A cos ω1tð Þ and y0 tð Þ ¼ 0: ð15Þ

When the driving frequency belongs to the allowed band, a small
driving amplitude (A = 0.0001) will produce an energy flow in both
chains as illustrated in Fig. 5. One can see in the same figure the transfer
of intensity from x − chain to y − chain.

The threshold amplitude obtained from the homoclinic connection
of the two-dimensional (2D) map (12) (see Fig. 4) is Ath = 3.013 for
the driven frequency ω = 0.8 lying in the true lower forbidden band.
In order to validate this homoclinic supratranmission threshold, we
consider two values of A around the value of Ath that is one slightly
below and another slightly above and we get the following
observations namely; When the amplitude is just less than 3.013 that
is A = 3.012 each chain exhibits an evanescent wave as represented
in Fig. 6. Thus, no energy flows in both chains. When the amplitude is
slightly beyond the homoclinic threshold amplitude of x − chain that
is A = 3.014, an energy suddenly flows in x − chain and energy even
if it is small is transmitted in the form of a wave in y − chain (see the
bottom panel of Fig. 7). Then, both chains generate soliton solutions as
displayed in Fig. 7.

• The two chains are driven at the origin. The driven boundary condi-
tions are given by (14) with A and B different to zero. For this case,
the numerical threshold amplitude for each chain becomes smaller
gular frequencies of the two chainsω=1.8 and the driving amplitude A=0.0001. Thefirst
. One can see the intensity transmits to remote sites in the both chains.



Fig. 6. Graphs showing the evolution of the coupled chain with respect to time for the driving angular frequencies of the two chainsω=0.8 and the driving amplitude slightly below the
threshold A= 3.012 < Ath. The up panel correspond to the behavior of x − chain and the down panel to the behavior of y − chain.

Fig. 7. Graphs showing the evolution of the coupled chain with respect to time for the driving angular frequencies of the two chainsω=0.8 and the driving amplitude slightly above the
threshold A= 3.014 > Ath. The up panel correspond to the behavior of x − chain and the down panel to the behavior of y − chain.
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Fig. 8.Graphs showing the evolution of the coupled chain with respect to time for the driving angular frequencies of the two chainsω=0.8 and the driving amplitudes slightly below the
threshold A= 2.562 < Ath and B = 2.562 < Bth. The up panel correspond to the behavior of x − chain and the down panel to the behavior of y − chain.

Fig. 9. Graphs showing the evolution of the coupled chain with respect to time for the driving angular frequencies of the two chainsω=0.8 and the driving amplitudes slightly above the
threshold A= 2.564 > Ath and B = 2.564 > Bth. The up panel correspond to the behavior of x − chain and the down panel to the behavior of y − chain.
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Fig. 10. Graphs showing the evolution of the coupled chain with respect to time for the
driving angular frequency of the x − chain ω1 = 1.2 and the driving amplitudes A =
0.9. y − chain is driven with ω2 = 0.9 and the driving amplitude B = 3.0 (below
amplitude threshold). The up panel correspond to the behavior of x − chain and the
down panel to the behavior of y − chain.
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than the above homoclinic threshold amplitude. Due to the difficulty
to obtain a common analytical threshold amplitude for each chain,
we find it numerically and get it for both chains and for the same
values of driving frequency in the lower forbidden band (ω = 0.8),
Ath = 2.563 and Bth = 2.563. We observe that when the amplitudes
are less than 2.563 each chain exhibits an evanescent wave as
represented in Fig. 8. When the amplitudes are slightly beyond the
threshold amplitudes, the supratransmission phenomenon occurs as
displayed in Fig. 9.

• The two chains are driven at the origin with different frequencies.
Here, x − chain is driven with ω1 = 1.2 taken in the allowed band
and the driving amplitude A = 0.9 while y − chain is driven with
ω2 = 0.9 and amplitude B = 3.0 below the homoclinic threshold.
One would normally observe an evanescent wave in the y − chain
but curiously, the intensity transmits to remote sites as seen in
Fig. 10. That is due to the collision between the travelling wave from
the phonon band (x − chain) and the evanescent wave from the
bandgap (y − chain) because of the transverse coupling of the
chains. The same phenomenon has been observed in discrete
electrical lattice [28] but with both left and right edges excited. The
8

phenomenon is also qualitatively identical to the amplification of
phonons by phonons on the basis of a nonlinear band-gap transmis-
sion process as in Refs. [46] and the amplification of magnetic pulses
by an electric fieldwith a frequency close to the band edge of themag-
netic branch [47].

Besides the transmission of binary information and the detection of
the weak signal, which are part of the applications of the supratrans-
mission phenomenon, the results of this work enriched the applications
in the case where the signal amplifier in lattice could be avoided by
using an input signal in another lattice transversally coupled by the
original lattice.

5. Conclusion

In this paper, we have considered nonlinear discrete coupled pairs of
pendulum chains connected to the nearest neighbours in the longitudi-
nal and transverse directions. This novel model has been used to inves-
tigate for thefirst time the nonlinear supratransmission phenomenon in
the common lower forbidden bandgap of the two pendulum chains.We
used Euler-Lagrange's equations to derive the equation governing the
motion for the nth pendulum in both directions. We used the obtained
equation to look into the supratransmission threshold amplitude. To do
so,we have employed the two-dimensionalmap approach to determine
the amplitude and the numerical result confirmed the validity of the ob-
tained homoclinic supratransmission threshold amplitude for the case
where only one chain was driven. We also numerically performed the
supratransmission threshold amplitude in the case where the two
chains were driven. This work opens the way to understanding
supratransmission phenomenon in multicomponent discrete systems.
Another interest in the future will be to see the effect of transverse di-
rectionwith common string [48,49] on the nonlinear bandgap phenom-
enon.
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Abstract In this work, we investigate the modulational instability (MI) phenomenon in a chain of coupled pendulum pairs, where
each pendulum is connected to the nearest neighbors in the longitudinal and transverse directions. Based on the obtained equation
describing the dynamics of the model, we derive the coupled discrete nonlinear Schrödinger equation using the multiple scale
method. We use the obtained coupled discrete nonlinear Schrödinger equation to study the possibility of modulational instability.
The linear stability analysis leads us to obtain the growth rate of the MI. It reveals that the instability growth rate and MI band are
dramatically affected by the transverse coupling parameter. Finally, we use the MI analysis to study the dynamics of the generated
unstable plane wave solutions numerically. This confirms that the existence of MI in the lattice leads to the breakup of wave into
periodic localized pulses which have the shape of soliton-like objects.

1 Introduction

In the 1960s, it has been discovered in the literature an exotic phenomenon called modulational instability (MI). It is widely believed
that the phenomenon was first discovered and modeled for periodic gravity waves in deep water by Brooke Benjamen and Jim Feir in
1967 [1]. However, spatial MI of high-power lasers in organic solvents was observed in 1965 [2] and the mathematical derivation of
MI was published in 1966 [3]. Up to now, MI is a widespread and well-known type of instability that has appeared in most nonlinear
wave systems in nature such as nonlinear electrical transmission lines [4–9], molecular chains [10–14], Frenkel–Kontorova [15], dark
matter halos [16], model neural models [17, 18], plasma waves [19], optical fibers [20], hydrodynamics waves [21], Bose–Einstein
condensates [22–24], and biological systems [25, 26]. The aforementioned phenomenon is due to the interplay between nonlinearity
and dispersion or diffraction and is characterized by small amplitude and phase perturbations growing exponentially. Moreover, this
interplay can help the generation of spectral sidebands and the eventual breakup of the waveform into a train of pulses [27, 28]. That
is, MI can be considered a suitable precursor to the formation of soliton trains. One of the systems in nature in which the interplay
between nonlinearity and dispersion can exist is the coupled pendulum model.

Coupled pendulum models and their properties are fundamental in theoretical physics and can be used to model many interesting
phenomena such as the intrinsic localized modes in lattices [29, 30], solitons in Josephson junction [31] and fluid mechanics [32–34],
among many others [35–37]. Moreover, there has been great interest in the application of MI in single-coupled pendulum chains.
For example, the examination of the development of MI has been found in a horizontally shaken pendulum chain [38]. Also, the
destructive interference of MI has been studied in [39]. It is important to point out that discrete MI attracted attention in diverse
branches of physical and biological science due to its numerous applications [40–42]. In the domain of MI on discrete systems, the
majority of research has been devoted to single-component systems.

Nevertheless, many interesting coupled ladders have been studied up to now from different points of view. For example, in
continuous limit, spatial and temporal soliton [43] and breathers [44] were realized in the PT-symmetric coupler with gain in one
waveguide and loss. Also, discrete solitons were generated in a PT-symmetric ladder-shaped optical array consisting of a chain
of waveguides with gain coupled to a parallel chain of waveguides with loss in [45]. Moreover, a novel multicomponent discrete
system which is PT-symmetric as the previous has only quite recently appeared in the literature [46–48]. In [46], coupled pendulum
chains under parametric PT-symmetric driving force were studied. Here, the authors consider a chain of coupled pendulum pairs,
where each pendulum is connected to the nearest neighbors in the longitudinal and transverse directions. The common strings in
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Fig. 1 (Courtesy of Prof D. E.
Pelinovsky) A schematic
representation of the coupled
pendulum pairs. Where each
pendulum is connected to the
nearest neighbors in the
longitudinal and transverse
directions by a common string

each pair are modulated periodically by an external force. In the limit of small coupling and near the parametric resonance, they
derived a novel system of coupled PT-symmetric discrete nonlinear Schrödinger equations, which has Hamiltonian symmetry but
no phase invariance. By using the conserved energy, they found the parameter range for the linear and nonlinear stability of the
zero equilibrium. Numerical experiments illustrated how the destabilization of the zero equilibrium takes place when the stability
constraints are not satisfied. Compared to the works in [43, 44], the authors considered different couplings between the two pendulums
in a pair and that the model is Hamiltonian but not phase invariant. This coupling describes interactions between the two pendulums
connected to each other by a common horizontal string. Inspired by the model proposed in [46], A. Kamdoum Kuitche et al. [49]
generate a nonlinear supratransmission phenomenon in that chain of coupled pendulum pairs. To the best of our knowledge, no
attention was paid to discrete MI analysis in the transversely connected nonlinear pendulum pairs.

In this work, we investigate analytically and numerically the discrete MI which leads to the generation of localized solitary waves
in the chain of the coupled pendulum pairs, where each pendulum is connected to the nearest neighbors in the longitudinal and
transverse directions.

The paper is organized as follows: In Sect. 2, we present the mathematical model and implement the multiple scale method
to derive the coupled nonlinear Schrödinger equation of the model. In Sect. 3, we perform the analytical framework in which we
analyze the linear stability and display the MI gain as a function of the frequency of infinitesimal modulation perturbations. Then,
in Sect. 4, we numerically integrate the full governing equation of our model to check the validity of the predictions found by linear
stability analysis. Finally, Sect. 5 concludes the work.

2 Hamiltonian and coupled nonlinear Schrödinger equation of the model

The model considered in this work is a chain of coupled pendulums displayed in Fig. 1 [46], where each pendulum is connected to
the nearest neighbors in the longitudinal and transverse directions by a common horizontal string. The positive parameters C and D
describe couplings between the nearest pendulums in the longitudinal and transverse directions, respectively.

The model of Fig. 1 comprises of two degrees of freedom xn(t) and yn(t) which represent the angular displacements in each pair
of the pendulums site n with respect to their equilibrium positions. The Hamiltonian in the absence of damping for a chain of N
pendulums of the model that describes the dynamics of the whole network is written as

H �
N∑

n�1

1

2

(
ẋ2
n + ẏ2

n

) − cos(xn) − cos(yn) +
1

2
C(xn+1 − xn)

2 +
1

2
C(yn+1 − yn)

2 +
1

2
D(xn − yn)

2, (1)

where dots denote derivatives with respect to time t. From Hamilton’s equations, the equation governing the motion of the nth
pendulum in both directions takes the following form:

⎧
⎨

⎩

ẍn − C(xn+1 − 2xn + xn−1) − D(yn − xn) + sin(xn) � 0

ÿn − C(yn+1 − 2yn + yn−1) − D(xn − yn) + sin(yn) � 0.

(2)

In order to study the possibility of MI in coupled pendulum chains, we use the multiple scale method on Eq. (2) to derive the coupled
discrete nonlinear Schrödinger (DNLS) equation using the algorithm in [50]. For that purpose, we make the following assumption,
where ω0 ≈ 1 and ε is a small fixed parameter:

ω ≈ ω0

(
1 − ε2

2

)
, ω2 ≈ ω2

0

(
1 − ε2

)
, C ≈ ε2c, and D ≈ ε2d .

By expanding sin(xn) and sin(yn) in Taylor series up to the third order, Eq. (2) can be written as:
⎧
⎨

⎩

ẍn − C(xn+1 − 2xn + xn−1) − D(yn − xn) + xn − 1
6 x

3
n � 0

ÿn − C(yn+1 − 2yn + yn−1) − D(xn − yn) + yn − 1
6 y

3
n � 0.

(3)

The angular displacements of the nth resonator in the two directions can be expressed as:

xn(T ) � 2ε
[
ψn(T )e−iωt + ψ̄n(T )eiωt

]
, (4)

123
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Fig. 2 (left panel): Growth rate of MI gain associated with solutions G+ and G− of Eq. 21 versus the wave numbers Q and q for the parameters d � 0.1,
c � 4, and λ0 � 0.6. (Right panel): Regions of stability in the (q, Q) plane are indicated by the dark bluish area(s), and the regions of modulational instability
in the (q, Q) plane are indicated by the area(s) surrounded by bright greenish color

yn(T ) � 2ε
[
φn(T )e−iωt + φ̄n(T )eiωt

]
, (5)

where T � ε2

2 t and, ψn and φn are unknown complex functions. Therefore, substituting Eqs. (4) and (5) into Eq. (3), keeping the
terms proportional to e−iωt and ε3, and by choosing τ � ω0T , Eq. (3) becomes:

⎧
⎨

⎩

i ∂ψn
∂τ

− ψn + c(ψn+1 − 2ψn + ψn−1) + d(φn − ψn) + 2|ψn |2ψn � 0

i ∂φn
∂τ

− φn + c(φn+1 − 2φn + φn−1) + d(ψn − φn) + 2|φn |2φn � 0.

(6)

For d � 0, Eq. (6) reduces to a single discrete nonlinear Schrodinger equation obtained in [50] with neither excitations ( f � 0 and
h � 0) nor damping(γ � 0). Therefore, the system of Eq. (6) becomes equivalent to an uncoupled system of DNLS equations,
which have many applications in physics, including nonlinear optics. For d �� 0, Eq. (6) can be considered as the coupled discrete
nonlinear Schrödinger equation with neither excitations nor damping. In the optics context, the system describes two arrays of
optical waveguides with Kerr nonlinearity and nearest-neighbor interactions [51]. The d term realizes a cross-phase linear coupling
between the two arrays of optical waveguides. Here, we have shown that the coupled pendulum pairs can be described by a coupled
discrete nonlinear Schrödinger equation from which we will study the possibility of modulational instability in the next section.

3 Modulational instability analysis

In order to determine the conditions of the instability or stability of the plane wave, we are going to investigate the evolution of a
small perturbation that could affect the plane wave.
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Fig. 3 (left panel): Growth rate of MI gain associated with solutions G+ and G− of Eq. (21) versus the wave numbers Q and q for the parameters d � 0.5,
c � 4, and λ0 � 0.6. (Right panel): Regions of stability in the (q, Q) plane are indicated by the dark bluish area(s), and the regions of modulational instability
in the (q, Q) plane are indicated by the area(s) surrounded by bright greenish color

Fig. 4 Growth rate of MI gain for
different values of the transverse
coupling parameter d versus the
wave number of the perturbation
Q for q � π

100 . Where the other
parameters are: c � 4, λ0 � 0.6.
We observe that the MI gain
spectrum is symmetric with
respect to Q � 0

3.1 Linear instability

To proceed further, let the following exact plane wave solution of Eqs. (7) and (8) be the solutions of Eq. (6). That is

ψn � λ0e
i(qn−ωτ ), (7)

φn � μ0e
i(qn−ωτ ), (8)

where q is the wave number, ω the angular frequency, λ0 and μ0 are, respectively, the constant amplitudes of the vibrational angular
displacements ψn and φn . Substituting Eqs. (7) and (8) into Eq. (6), we arrive to this relation

⎧
⎨

⎩
ω − 1 + c(2 cos(q) − 2) + d( μ0

λ0
− 1) + 2|λ0|2 � 0

ω − 1 + c(2 cos(q) − 2) + d( λ0
μ0

− 1) + 2|μ0|2 � 0.
(9)
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Fig. 5 (left panel): Growth rate of MI gain associated with solutions G+ and G− of Eq. (21) versus the wave numbers Q and q for the parameters d � 1.5,
c � 4, and λ0 � 0.6. (Right panel): Regions of stability in the (q, Q) plane are indicated by the dark bluish area(s), and the regions of modulational instability
in the (q, Q) plane are indicated by the area(s) surrounded by bright greenish color

The two equations of Eq. (9) are compatible if d( μ0
λ0

− 1) + 2|λ0|2 � d( λ0
μ0

− 1) + 2|μ0|2. By considering both λ0 and μ0 to be reals,
one get a relation between the two amplitudes λ0 and μ0 as follows:

μ0 � d

2λ0
. (10)

Thus, the nonlinear dispersion relation of the mode corresponding to the coupled chains is given as:

ω � 1 + d − c(2 cos(q) − 2) − 2(λ0
2 + μ0

2). (11)

3.2 Modulational instability gain

MI is a mechanism from where soliton can form during confrontation between nonlinear and dispersions term. We employed the
plane waves with small perturbations as follows:

ψn � (λ0 + λn(τ ))ei(qn−ωτ ), (12)

φn � (μ0 + μn(τ ))ei(qn−ωτ ). (13)

Substituting Eqs. (12) and (13) into Eq. (6), making use of the dispersion relations (11), and after some mathematical computations,
we obtain the following linearized set of coupled discrete differential equations for the perturbations λn and μn :

⎧
⎨

⎩

i ∂λn
∂τ

+ ceiqλn+1 + ce−iqλn−1 + 2λ2
0(λn + λ∗

n) + dμn − (2c cos(q) + 2μ2
0)λn � 0

i ∂μn
∂τ

+ ceiqμn+1 + ce−iqμn−1 + 2μ2
0(μn + μ∗

n) + dλn − (2c cos(q) + 2λ2
0)μn � 0

, (14)

where * denotes complex conjugate. Furthermore, the above simultaneous equation admits solutions of the form

λn � α1 cos(Qn − �τ ) + iα2 sin(Qn − �τ ), (15)
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Fig. 6 Spatiotemporal evolution of the amplitudes of the initial plane waves which break into a wave train having the shape of a soliton due to the MI
manifestation in a transversely connected nonlinear pendulum chains as predicted analytically, for d � 0.1, c � 4, λ0 � 0.6, q � π

100 rad and Q � 0.911π

rad. (top panel): 3D representation, (down panel): 2D representation

μn � β1 cos(Qn − �τ ) + iβ2 sin(Qn − �τ ), (16)

whereQ and � are, respectively, the wave number of the perturbation and the corresponding propagation frequency of the modulation.
Substituting Eqs. (15) and (16), into the coupled set, Eq. (14) yields a pair of coupled equations that can be written in matrix form
as follows:

⎛

⎜⎜⎝

4λ2
0 + D1 � − D2 d 0

� − D2 D1 0 d
d 0 4μ2

0 + D3 � − D2

0 d � − D2 D3

⎞

⎟⎟⎠

⎛

⎜⎜⎝

α1

α2

β1

β2

⎞

⎟⎟⎠ �

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠, (17)

where

D1 � 2c cos(Q) cos(q) − ρ,

D2 � 2c sin(Q) sin(q),

D3 � 2c cos(Q) cos(q) − σ,

σ � 2c cos(q) + 2λ2
0,

ρ � 2c cos(q) + 2μ2
0.

(18)
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Fig. 7 Spatiotemporal evolution of the amplitudes of the initial plane waves which break into a wave train having the shape of a soliton due to the MI
manifestation in a transversely connected nonlinear pendulum chains as predicted analytically, for d � 1.0, c � 4, λ0 � 0.6, q � π

100 rad, and Q � 0.911π

rad. (top panel): 3D representation, (down panel): 2D representation

The solutions of the system of Eq. (17) are non-trivial. Given that the determinant of 4 × 4 matrix is zero, then, we obtain the
dispersion relations given by:

�+± � D2 ± 1
2

√
χ1 + 2

√
16χ2 + 8χ3 + χ4,

�−± � D2 ± 1
2

√
χ1 − 2

√
16χ2 + 8χ3 + χ4,

(19)

with

χ1 � 8 D1λ0
2 + 8 D3μ0

2 + 4 d2 + 2 D1
2 + 2 D3

2,

χ2 � 4 d2μ0
2λ0

2 + D1
2λ0

4 − 2 D1D3μ0
2λ0

2 + D3
2μ0

4 + d2D1μ0
2 + d2D1λ0

2,

χ3 � 2 d2D3μ0
2 + 2 d2D3λ0

2 + D1
3λ0

2 − D1
2D3μ0

2 − D1D3
2λ0

2 + D3
3μ0

2,

χ4 � 4 d2D1
2 + 8 d2D1D3 + 4 d2D3

2 + D1
4 − 2 D1

2D3
2 + D3

4.

(20)

The dispersion relation of Eq. (19) determines the condition for stability of the plane waves with the wave number q in the network.
However, our interest is the complex solutions of �. To have such result, χ1 + 2

√
16χ2 + 8χ3 + χ4 or χ1 − 2

√
16χ2 + 8χ3 + χ4

should be less than zero. MI occurs when wave number possesses a nonzero imaginary part leading to an exponential growth of the
perturbed amplitudes λn(τ ) and μn(τ ) which set off the generation of localized modes in the transversely coupled chains. Therefore,
the MI gain is the imaginary part of the propagation frequency of the modulation. It is calculated using the formula

G(Q) � |Im(�)|. (21)

Now, we investigate the behavior of the MI gains G+ and G− or MI zones by playing on the values of the transverse coupling
parameter d. The MI gains exhibit two bands, namely the stable band and the unstable band. It is worth noting that the unstable
zone of the MI corresponds to the generation of modulated plane wave solutions. That is, in unstable regions, the plane waves are
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Fig. 8 Spatiotemporal evolution of the amplitudes of the initial plane waves which break into a wave train having the shape of a soliton due to the MI
manifestation in a transversely connected nonlinear pendulum chains as predicted analytically, for d � 1.5, c � 4, λ0 � 0.6, q � π

100 rad, and Q � 0.911π

rad. (top panel): 3D representation, (down panel): 2D representation

supposed to be broken up into trains of solitary waveforms or pulses, or it is considered as stable when the wave numbers q and Q
belong to the stability bands.

In Figs. 2, 3 and 5, we have fixed c � 4, λ0 � 0.6 and varied the transverse coupling parameter, respectively, as d � 0.1, d � 0.5,
and d � 1.5. The transverse coupling parameter appears to dramatically impact the instability features. That is, it influences the
stability and instability zones as well observed in the left panel of those figures. There, the regions surrounded by bright greenish
areas represent the unstable band, while the dark bluish areas indicate the regions of stability. Thus, it is observed that for the
instability growth rate G+, when one increases the transverse coupling parameter, the amplitude of the gain increases as we can
clearly observe on the left panel of Fig. 4, while the stable bands decrease and the MI regions increase as clearly shown in Fig. 5.
Hence, the chances of observing MI in the lattice reduce with a decrease in the transverse coupling parameter. On the other hand, for
the instability growth rate G−, when one increases the transverse coupling parameter, the amplitude of the gain increases slightly as
we can clearly observe on the right panel of Fig. 4, while the stable bands and the MI regions slightly change. Also, it can be clearly
observed that the MI gains are symmetric with respect to q � 0. Therefore, it has been shown that the instability growth rate and
MI band are dramatically affected by the transverse coupling parameter.

In Fig. 4, the behavior of the amplitude of MI growth rate for carrier waves versus the wave number of perturbation Q for the wave
number q � π

100 with four values of transverse coupling parameter d has been displayed. It is observed in Fig. 4 that the instability
growth rate G+ is significantly sensitive to the transverse coupling term. For d � 0.1, the dynamics of the network displays a very
weak growth rate amplitude, whereas the instability growth rate G− does not change considerably with the transverse coupling term.
Also, it is important to point out that for Q � π , the amplitude of MI gain is maximum.

In the left panel of Figs. 2, 3 and 5, the unstable regions of MI are clearly depicted; consequently, the plane wave solutions of the
transversely coupled pendulum chains model become unstable. Hence, the dynamics of the generated unstable plane wave solutions
will be studied numerically in the next section.
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4 Numerical analysis of MI

In order to check the validity of the linear stability analysis which does not tell us anything about the behavior of the propagation
of the slowly modulated waves when the instability grows, we perform in the present section some numerical investigations of
the equation of motion (2). This numerical simulation is done in order to understand the dynamics of the transversely connected
nonlinear pendulum chains under MI in the nonlinear regime.

To this end, it is carried out by integrating the full Eq. (2) using a fourth-order Runge–Kutta scheme with normalized time step
�t � 10−8. We consider the number of sites N in the n direction to be equal to 501 with periodic boundary conditions such as
to avoid the wave reflection at the end of the line. In accordance with Eqs. (12) and (13), the initial modulated plane waves with
slightly modulated amplitudes introduced are in this form

xn(t � 0) � λ0[1 + 0.01 cos(Qn)] cos(qn); ẋn(t � 0) � λ0ω[1 + 0.01 cos(Qn)] sin(qn)
yn(t � 0) � μ0[1 + 0.01 cos(Qn)] cos(qn); ẏn(t � 0) � μ0ω[1 + 0.01 cos(Qn)] sin(qn)

, (22)

with the set of wave numbers q and Q taken in a given unstable zones of Figs. 2, 3, and 5 obtained from the linear stability analysis
and the wave frequency ω calculated from the dispersion relation of Eq. (11).

We introduce in the network the initial conditions of Eq. (22) by considering different values of the transverse coupling term.
Firstly, for d � 0.1, we choose a wave with q � π

100 rad perturbed at wave number Q � 0.911π rad belonging to the unstable
region of Fig. 2. Using these parameters, we obtained Fig. 6 which illustrates the generation of localized pulses in the cause of the
MI. We can clearly see that the initial solution tends to disintegrate during propagation, which leads to the breakup of the wave into
a periodic localized pulses or envelope soliton train. It is important to point out that the wave displayed an oscillating and breathing
behavior and each component of the train has the shape of a soliton-like object; this is due to the existence of MI in the network.

We display in Fig. 7 the spatiotemporal evolution of amplitudes for d � 1.0 by choosing a wave with q � π
100 rad perturbed

at wave number Q � 0.911π rad belonging to the unstable region (not shown here) where the envelope pulses also emerge due to
the existence of MI. Thus, the localization in time is observed. For d � 1.5, the number of localization solution in time increases
as illustrated in Fig. 8. Hence, transversely connected nonlinear pendulum pairs can be convenient tools for the study of wave
propagation in nonlinear dispersive media.

5 Conclusion

In this work, we have investigated MI in transversely connected nonlinear pendulum pairs where each pendulum is connected to the
nearest neighbors in the longitudinal and transverse directions. The equations describing the dynamics of the model are obtained
from Hamilton’s equations. Also, in order to study the existence of MI in the model, the multiple scale method was used to derive
the coupled discrete nonlinear Schrödinger equation.

By carrying out the linear stability analysis, we have calculated and plotted the growth rate of the MI. It has been revealed that
both the gain and the MI bands are sensitive to the transverse coupling parameter. Therefore, with the results obtained from MI
analysis, we predicted the formation of the periodic localized solitons in the network. Thus, numerical simulations of MI have been
carried out and let to the generation of periodic localized pulses in the system. We have observed that the transverse coupling term
has an influence on the localization of envelope pulses. Finally, from the interesting results obtained in this work, we can say that
transversely connected nonlinear pendulum chains can be convenient tools for studying wave propagation in dispersive nonlinear
media.
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In this work, we seek to investigate the dynamics of bright soliton in a chain of coupled

pendulum pairs. After deriving the linear dispersion relation from the equation of the model, we

¯nd that among the obtained modes, the fast mode is the one on which we are going to be

focused. Since the discrete simultaneous equation describing the dynamics of the model has not
been extensively studied in the literature, we assume that the two lines of the model are

proportional to each other. We use the rotating wave approximation method to derive a NLS

equation governing the propagation of waves in the network. Depending on the choice of wave

number, we deduce that the system supports bright and hole-soliton solutions. We use the
obtained bright soliton as the initial condition for numerical computation, which demonstrates

the signi¯cant role of the transverse coupling parameter in the system. That is, it a®ects the

behavior of the forward-bright soliton generated in the system. The lattice allows gain and loss
phenomena during the propagation of the waves.

Keywords: Solitons; coupled pendulum pairs; NLS equation; gain and loss phenomenon.

1. Introduction

Within the past two decades, wave propagation in dispersive nonlinear media has

become an increasingly important research ¯eld. The concept of soliton discovered by

Zabusky and Krustal1 and the recurrence observation of wave propagation in the
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dynamics of a medium designed by Fermi–Pasta–Ulam2 play a great role in under-

standing the phenomenon. The phenomenon has been studied in many dispersive

discrete nonlinear media such as in nonlinear magnetic metamaterials,3 in the

nonlinear transmission lines,4–7,9,11–14 in nonlinear acoustic meta material,15 in dusty

plasma crystals,16,17 in molecular chains18 and coupled cantilever array.20–22 These

systems bear many interesting features whose applications extend to di®erent

aspects of life,23–25 nonlinear optics,26–30 plasma physics,31,32 biophysics.34,36,37 One

of the mostly used model was the chain of coupled pendulum.

Interestingly, from di®erent points of view, the chain of coupled pendulums has

been studied for more than three decades to investigate many interesting physical

phenomena like the propagation of solitons.38–40,43,41,42,44–46 For example, stabiliza-

tion of solitons in coupled nonlinear pendulums with simultaneous external and

parametric excitations was studied numerically.47 Numerical approximations were

employed in this paper in order to demonstrate that the use of external and

parametric excitations simultaneously enables the transformation of a zero attractor

soliton solution to a periodically stable one. In Ref. 48, the authors show that the

pinning of the soliton on a \long" impurity expands dramatically its stability region,

whereas \short" defects simply repel solitons, producing e®ective partition in arrays

of parametrically driven pendulum chains. Another example of recent studies can be

found in Refs. 49–51.
The previous underlying studies were interesting and worth investigating. How-

ever, the authors mostly considered single coupled pendulum chains, which limit the

usability of their obtained results to only one-dimensional phenomena. Whereas there

are many physical phenomena, such as the loss and gain phenomena found in

Refs. 52–54, that cannot be properly understood within a one-dimensional framework.

Recently, in Refs. 55–59, a chain of coupled pendulum pairs connected to the nearest

neighbors in the longitudinal and transverse directions has been studied, but until now

investigations that deal with the direction in which the bright soliton envelope will

evolve in each line of the network have not yet shown to the best of our knowledge.

In this paper, our key goal is to widen the understanding of two-dimensional

coupled pendulum networks as propagating media. Speci¯cally, we will be investi-

gating the dynamics of the transverse coupling parameter in a transversely coupled

pendulum pairs. The outline of the paper is organized as follows: In Sec. 2, we present

the mathematical model and the linear dispersion relation. In Sec. 3, we ¯rst show

that the motion of modulated waves in the model can be governed by a nonlinear

Schr€odinger equation and, then, the bright soliton of that equation is derived.

In Sec. 4, we use the bright soliton solution as initial conditions to numerically

integrate the full governing equation of our model. Finally, Sec. 5 concludes.

2. Mathematical Description of the Model

The model under consideration is a chain of coupled pendula displayed in Fig. 1,57

where each pendulum is connected to the nearest neighbors in the longitudinal and

A. Kamdoum Kuitche et al.
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transverse directions. The parameters C and D represent, respectively, the longitu-

dinal and transverse constant coupling.

By applying Euler–Lagrange's equations, the Newton's equations of motion for

the nth pendulum in both directions take the following form:

€xn � Cðxnþ1 � 2xn þ xn�1Þ �Dðyn � xnÞ þ sinðxnÞ ¼ 0;

€yn � Cðynþ1 � 2yn þ yn�1Þ �Dðxn � ynÞ þ sinðynÞ ¼ 0;

�
ð1Þ

where ðxn; ynÞ corresponds to the angles in each pair of the two pendula and the dots

denote derivatives with respect to time t.

The linear dispersion relation corresponding to the Newton's equation (1) can be

studied by linearizing the above equation with respect to ðxn; ynÞ and assuming a

sinusoïdal wave in the form ðxn; ynÞ ¼ ð�; �Þeiðkn�!tÞ, where ! and k are, respectively,

the angular frequency and wave number, j� � 1j and j� � 1j are small amplitudes

of x- and y-chain, respectively. The phonon spectrum of the system is then given by

!2
p ¼ 4Csin2

k

2

� �
þ ðDþ 1Þ þ ð�1ÞpD; ðp ¼ 1; 2Þ: ð2Þ

The lower and upper cuto® frequencies are given, respectively, at k ¼ 0 by

!min p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDþ 1Þ þ ð�1ÞpD

p
; ð3Þ

and at k ¼ � by

!max p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C þ ðDþ 1Þ þ ð�1ÞpD

p
: ð4Þ

Due to the linear cross-coupling, an analogy can be found with the two electrical

transmission lines coupled by a linear capacitor.60–64 In the same spirit with Refs. 58,

60, 61, we can allow our model to exhibit slow and fast modes obtained by setting

p ¼ 1 and p ¼ 2 at the cut-o® frequencies. Therefore, the angular frequency ! of the

slow- and fast-mode are within the intervals !min1 � ! � !max1 and

!min2 � ! � !max2, respectively.

Fig. 1. Schematic representation of the coupled pendulum pairs.57 Each pendulum is connected to the

nearest neighbors in the longitudinal and transverse directions. The positive parameters C and D describe

couplings between the nearest pendula in the longitudinal and transverse directions, respectively.

Source: Courtesy of Prof D. E. Pelinovsky.
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For values of k taken in the ¯rst Brillouin zone, Fig. 2 represents the evolution of

the angular frequency for the two directions and for di®erent values of the transverse

coupling. At D ¼ 2C, the intersection between the upper pseudo-gap and the lower

pseudo-gap or the intersection between the lower forbidden gap of the fast-mode and

the upper forbidden gap of the slow-mode starts (zone 4). In Fig. 2, it is seen that, the

bandwidth of the allowed angular frequencies (zone 3) decreases as the coupling D

between the nearest pendula in the transverse direction increases. This means that,

the linear coupling parameter D contributes to increase the network e®ects on the

wave during its motion. An important remark is that, the slow-mode remains equal

to the case of uncoupled system i.e. a single chain. So, our attention will be focused

only on the fast-mode which is related to the coupling between the two chains.

Also, due to the fact that Eq. (1) is up to now analytically intractable because of

its discrete aspect, let us expand sinðxnÞ and sinðynÞ in Taylor series up to the third

order, and assume the angles are proportional: yn ¼ �xn for some real number �. The

goal of this hypothesis is to solve simultaneously the equation governing the dy-

namics of the model by keeping both coupling parameters (C and D) i.e. the intrinsic

physical design of the mechanical model. Therefore, one has from Eq. (1)

€xn � Cðxnþ1 � 2xn þ xn�1Þ �Dð�� 1Þxn þ xn � 1
6 x

3
n ¼ 0;

�€xn � �Cðxnþ1 � 2xn þ xn�1Þ �Dð1� �Þxn þ �xn � �3 1
6 x

3
n ¼ 0:

8<
: ð5Þ

The above two equalities are compatible if and only if � satis¯es �ð�� 1Þ ¼
ð1� �Þ and �2 ¼ 1, which has solutions � ¼ �1. When � ¼ 1, the two lines are in

phase i.e. the system reduces to an uncoupled one or to a single chain as the Klein–
Gordon chain found in Ref. 65: this corresponds to the slow-mode. In the case where

� ¼ �1, the two lines become coupled, and the angles oscillate in the opposite

Fig. 2. (Color online) Linear dispersion law curve for C ¼ 4. Blue lines represent the cut-o® frequencies of

the fast-mode and the red ones represent the cut-o® frequencies of the slow-mode.

A. Kamdoum Kuitche et al.
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phases: This corresponds to the fast-mode on which our attention is paid. Thus,

Eq. (5) yields

€xn � Cðxnþ1 � 2xn þ xn�1Þ þ !2
gxn � �x 3

n ¼ 0; ð6Þ
where !2

g ¼ 2Dþ 1 and � ¼ 1
6.

In order to derive the linear dispersion relation of Eq. (6), we can seek for a

solution in the form of plane waves

xn ¼ A0e
iðkn�!tÞ þ c:c:; ð7Þ

where c.c. stands for complex conjugate, ! and k are, respectively, the angular fre-

quency and wave number. Substituting Eq. (7) into the linearized form of Eq. (6), we

get a linear dispersion relation in the following form

!2 ¼ !2
g þ 4Csin2

k

2

� �
: ð8Þ

The obtained dispersion relation of Eq. (8) corresponds to the fast mode of the one of

Eq. (2) which admits the same lower cuto® frequency at k ¼ 0ð!min ¼ !gÞ and the

same upper cuto® frequency at k ¼ � (!max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

g þ 4C
q

). Hence, Eq. (6) will be

used to investigate wave propagation.

The group velocity relation associated with the wave packet is de¯ned by

vg ¼
d!

dk
¼ C

!
sinðkÞ: ð9Þ

The graphical representation of Eq. (8) shows the increase in the frequency when the

wave number increases. This involves the positive values of the group velocity given

by Eq. (9) in the ¯rst Brillouin zone [see Fig. 3] which shows the variation of group

velocity in terms of wave number for some ¯xed values of transverse coupling

Fig. 3. (Color online) Curve of group velocity relation.

Bright soliton propagation with loss and gain phenomena
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parameters. The group velocity decreases when the transverse coupling parameter D

increases. So, this transverse coupling parameter can be used to control the magni-

tude of generated waves.

3. The Nonlinear Schr€odinger Model and Solutions

The mathematical model of Eq. (6) is less straightforward to tackle directly. For this

reason, we are going to use the rotating wave approximation to derive the nonlinear

Schr€odinger equation describing the motion of modulated waves in the network of

Fig. 1. This approximation allows us to consider the solution of Eq. (6) in the

following form

xn ¼ "½ ðX; �Þexpð�i�nÞ þ  �ðX; �Þexpði�nÞ�; ð10Þ
where the asterisk denotes complex conjugation, �n ¼ !t� kn is the rapidly varying

phase, " is a positive small parameter ð0 < " � 1Þ,  is an unknown (continuous)

slowly varying envelope function depending on the slow scale X ¼ "ðn� vgtÞ, and
� ¼ "2t. In the following, we are going to use this expansion

xn�1 ¼ "  � "
@ 

@X
þ "2

@2 

@X2

� �
expð�ikÞexpð�i�nÞ þ c:c; ð11Þ

where c.c. stands for the complex conjugate.

Inserting Eqs. (10) and (11) into Eq. (6) yield to di®erent equations as power

series of ". First, by keeping the terms proportional to " expð�i�nÞ and "2 expð�i�nÞ,
we obtain, respectively, the dispersion relation and group velocity related to the fast-

mode studied above. Finally, by keeping the terms proportional to "3 expð�i�nÞ, we
obtain the following one-dimensional nonlinear Schrodinger evolution equation for

 ðX; �Þ

i
@ 

@�
þ P

@2 

@X2
þQj j2 ¼ 0; ð12Þ

with the dispersion coe±cient ðP Þ and nonlinear coe±cient ðQÞ de¯ned by

P ¼ C cos k� v2
g

2!
; ð13Þ

Q ¼ 1

4!
: ð14Þ

Actually, we focus our attention on the analytical computation of the exact re-

presentation of the solution of Eq. (12). In fact, it is well known in Ref. 66 that NLS

equation supports di®erent types of solution depending on the sign of the product of

the nonlinear coe±cient Q and the linear dispersion coe±cient P. That is, if PQ > 0,

the NLS equation admits a bright soliton solutions, whereas for PQ < 0, it supports a

dark or hole soliton solutions. Figure 4 depicts the dependence of the product of

dispersive and nonlinear coe±cients in terms of the wave number for some ¯xed

A. Kamdoum Kuitche et al.
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values of transverse coupling parameter D. It appears that, in the ¯rst Brillouin zone,

the increase of D leads to the expansion of the width of wave numbers for which

bright soliton prevails and to the reduction of the one for which dark solitons occur.

Merely, the increase of the transverse coupling parameter extends the domain of

existence of bright solitons. In the following, we will be focused on the case where

PQ > 0 i.e. on the bright soliton solutions of Eq. (12). This solution is given as in

Refs. 3, 16, 66 by

 ðX; �Þ ¼ �sech½	ðX � V �Þ�expiðKX � ��Þ: ð15Þ
Based on the above equation, the expression of the solution of Eq. (6) can easily be

written as follows:

xn ’ x0sech½"	ðn� vgtÞ� cosðkn� �0tÞ; ð16Þ
where 	 ¼ �

ffiffiffiffiffiffiffiffiffi
j Q
2P j

q
, � ¼ K2�	2

2 , x0 ¼ 2"	
ffiffiffiffiffiffiffiffiffi
j 2PQ j

q
and �0 ¼ !þ 2"2�P . Equation (16)

is a modulated bright pulse signal solution of the network equation (6) whose

characteristic parameters, namely the amplitude, the velocity, the inverse width and

the frequency are x0, V, 	 and �0.

The bright soliton solution of Eq. (6) will be used in the next section as initial

condition for the full numerical integration of Eq. (1) to investigate the behavior of

the solitary wave during its propagation while moving from one line to another.

4. Numerical Experiments

Now, to consolidate the validity of analytical results, let us proceed to study nu-

merically the evolution of the previous bright soliton in the network of Fig. 1. In this

Fig. 4. (Color online) Dependence of the product PQ in term of the wave number and for D ¼ 0:1,

D ¼ 1:2 and D ¼ 1:9.

Bright soliton propagation with loss and gain phenomena
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section, we report the results of the numerical experiments performed on the exact

discrete equation (1) of the network. We use the Ode45 solver of Matlab with pe-

riodic boundary conditions using the following parameters � ¼ 1, " ¼ 0:02 and

C ¼ 4.

For a given value of wave number k depending on the domain of each soliton (see

Fig. 4), we evaluate the angular frequency ! using the dispersion relation of Eq. (8),

the nonlinear coe±cientQ, the dispersion coe±cient P and other soliton's parameters

given just after Eq. (16). Similarly, the number of cells for both lines is chosen to be

equal to 1001.

For the e®ectiveness of the investigations, we consider di®erent values of the

transverse coupling parameter so as to examine its e®ect on the progression of the

solitary wave from one line to another. For this purpose, let us consider two cases

depending on the input signal or initial conditions applying on each line.

. First, as initial condition, we take as the input signal the pro¯le of the bright

soliton for the x-line such that

xnð0Þ ’ x0sechð"	nÞ cosðknÞ; ð17Þ
and consider that at t ¼ 0, y-line is at rest, that is

ynð0Þ ’ 0: ð18Þ

With zero velocity (k ¼ 0 rad/cell), we obtain Fig. 5. The case where the

transverse coupling parameter is zero ðD ¼ 0Þ is depicted on the ¯rst line: One

can observe the localization of the wave in the x-line while no wave is prop-

agating in the y-line. For the transverse coupling term di®erent from zero

(second and third line of Fig. 5), we observe the localization in both x-line and

y-line.

The remarkable phenomenon here is the fact that, for a given time, the

wave exists in the x-line while there is no wave in the y-line. This is similar to

the gain and loss phenomenon observed in the optical waveguide arrays.67

Despite the fact that only one chain is excited, there is an alternative transfer

of energy between both lines. Additionally, what is the behavior of the lattice

for the nonzero group velocity? Figure 6 displays the spatiotemporal evolution

of the wave for k ¼ 0:5 rad/cell. It is well seen on the ¯rst line of this ¯gure for

D ¼ 0 that, no wave is propagating in the y-line as expected. For D ¼ 0:01

(second line), the energy is transferred from the x-line to the y-line and the

gain and loss phenomenon is observed. The same phenomenon is obtained for

D ¼ 0:1. This is in agreement with the ¯rst idea of the construction of the

lattice of Fig. 1 byDestyl et al.57 For a large value of the transverse coupling constant

as can be seen in Fig. 7, we observe that, the wave introduced at the origin at t ¼ 0

exhibits some nonlinear distortions of the envelope when time grows. Then, the

¯ssion of the initial wave occurs with time as shown in that ¯gure.

A. Kamdoum Kuitche et al.
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. Second, considering the fact that yn ¼ �xn (as shown in Sec. 2 i.e. the two lines are

out of phase), as initial condition, we take as the input signal the pro¯le of the

bright soliton for the x-line such that

xnð0Þ ’ x0sechð"	nÞ cosðknÞ; ð19Þ

Fig. 5. (Color online) Space-time evolution plot of angles xn (left panel) and yn (right panel) showing the

behavior of the bright soliton with zero velocity (k ¼ 0) in the network.

Bright soliton propagation with loss and gain phenomena
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and consider that at t ¼ 0, the input signal of the y-line is the opposite of that of x-

line, that is

ynð0Þ ’ �x0sechð"	nÞ cosðknÞ: ð20Þ
Following the initial conditions of Eqs. (19) and (20), we obtain Fig. 8. We observe

the propagation of the wave on the right-hand side. As both chains are excited, the

loss in the x-line is compensated by the gain of the y-line and vice versa.

Fig. 6. (Color online) Space-time evolution plot of angles xn (left panel) and yn (right panel) showing the

propagation of the bright soliton with nonzero velocity (k ¼ 0:5) in the network.

A. Kamdoum Kuitche et al.
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The compensation of the loss by the gain in both chains induces the coherency of

the waves during its propagation.

5. Conclusion

In this work, we were called upon to study wave propagation in a nonlinear discrete

coupled pairs of pendulum chains connected to the nearest neighbors in the longi-

tudinal and transverse directions. We derived from the Euler–Lagrange's equation
the simultaneous equation governing the dynamics of the model. We obtained the

corresponding linear dispersion law describing the small amplitude waves of the

network. We allowed our model to exhibit two modes of propagation of waves

namely; the fast- and the slow-mode. The slow-mode was equivalent to the case of a

single chain whereas the fast one was not. This lets our attention to be focused only

on the fast-mode. Moreover, by considering the fact that the two chains of the model

Fig. 7. (Color online) Space-time evolution plot of angles xn (left panel) and yn (right panel) showing the
propagation of the bright soliton in the network with large transverse coupling parameter.

Fig. 8. (Color online) Space-time evolution plot of angles xn (left panel) and yn (right panel) showing the

propagation of the bright soliton in the network with the initial conditions given by Eqs. (19) and (20).
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are proportional, we obtained a single equation which obeyed the linear dispersion

relation of the fast mode.

Afterwards, applying the rotating wave approximation method on the obtained

single equation,wehave shown that the generalized coordinate of the system is governed

by a nonlinear Schr€odinger equation. We deduced that, the obtained NLS equation

supports bright and dark or hole solitons as solutions.Due to the fact that the transverse

coupling parameter had the same e®ects on each soliton, we focused our attention only

on bright soliton.We used the obtained bright soliton as initial conditions for numerical

investigation to follow the progression of the generated waves in the network from one

line to the other when varying the transverse coupling parameter.

From the interesting results obtained in this work, we saw clearly that, the

transverse coupling plays a signi¯cant role in the model of the nonlinear coupled

pendulum lines and could be used to generate the gain and loss phenomenon. It is

important to notice that, our study can be useful to the better understanding of wave

propagation in discrete multicomponent systems. Also, this work opens up the

possibility of additional mathematical analysis on discrete simultaneous equation

describing the dynamics of discrete multicomponent systems.
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