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E + I : Total evaporation and infiltration losses
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Abstract

Malaria is sensitive to climate, environment and socio-economic conditions; but how these

drivers interact to control malaria transmission is complex and difficult to predict. Under-

standing these relationships is important to develop effective control strategies to reduce

malaria burden. In this work, climate driven dynamical malaria model was used to exam-

ine the impact of climate and population density on malaria incidence in Cameroon using

field observed malaria Parasite Ratio (PR) and Entomological Inoculation Rate (EIR) data.

The evaluation of the ability of a malaria model is made, to simulate the spread of malaria

in Cameroon using rainfall and temperature data from FEWS-ARC2 and ERA-interim re-

spectively. In addition, simulations coupling the model with five results of the dynamical

downscaling of the regional climate model RCA4 are made within two-time frames named

near future (2035-2065) and far future (2071-2100); aiming to explore the potential effects

of global warming on the malaria propagation over Cameroon

Geo-referenced, climate and population data is compared to the results of 103 surveys

points of PR. A limited set of campaigns with a year-long field-survey data of EIR are

examined to determine the seasonality of malaria transmission. Climate-driven simulations

of the VECTRI malaria model are evaluated with this analysis. The model then couples

RCA4 models under RCP4.5 and RCP8.5 scenarios, to predict PR and EIR pattern, and

examines the link with temperature and rainfall.

The model results show that PR peaks at temperatures ranging between 22◦C to 26◦C,

which agrees with recent findings that suggest a lower malaria peak temperature relative

to what has been established in the literature. On the contrary the model estimated daily

minimum amount of rainfall (7 mm day−1) that sustains malaria transmission was higher

than values found in literature. The VECTRI model was able to reproduce the observed PR

patterns, however the peak occurs at slightly higher temperatures than observed, while the

PR peaks at a much lower rainfall rate of 2 mm day−1. Transmission tends to be high in

rural and peri-urban relative to urban centres in both model and observations.

PhD Thesis MBOUNA DJOUDA Amelie



Contents xvi

The EIR follows the seasonal rainfall with a lag of one to two months, and is well re-

produced by the model for most of the study sites. However, for locations near permanent

water sources, where EIR peaks were out of phase with rainfall, VECTRI failed to accurately

predict EIR peak months. The analysis of the malaria projection using PR and EIR, confirm

the impact of temperature and rainfall on malaria incidence. PR and EIR peaks between 26

and 28◦C which agrees with previous studies. The seasonality of transmission is also observed

with EIR pattern.

For each of the scenario under the future climate, the impact of temperature and rainfall

on the evolution of malaria indicators is confirmed. During the historical period (1985-2005),

the model satisfactorily reproduces the observed PR and EIR. Results of projections reveal

that under global warming, heterogeneous changes feature the study area, with localized in-

creases or decreases in PR and EIR. As the level of radiative forcing increases (from 2.6 to 8.5

W.m-2), the magnitude of change in PR and EIR also gradually intensifies. The occurrence

of transmission peaks is projected in the temperature range of 26-28◦C. Moreover, PR and

EIR vary depending on the three agro-climatic regions of the study area. VECTRI still needs

to integrate other aspects of disease transmission, such as population mobility and interven-

tion strategies, in order to be more relevant to support actions of decision and policy makers.

keywords : Malaria, Climate, Cameroon, Parasite Ratio, Entomological Inoculation

Rate, Global warming, RCA4, VECTRI.
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Résumé

Le paludisme est sensible au climat, à l’environnement et aux conditions socio-économiques,

mais la relation avec ces moteurs est encore incertaine et difficile à prédire. Une meilleure

compréhension de cette relation est importante pour développer les stratégies de contrôle

visant a attenuer l’évolution de la maladie. Ce travail utilise un modèle de paludisme, pour

examiner l’impact du climat, de la densité de la population sur l’évolution de la maladie au

Cameroun en utilisant un recueil de données d’enquètes sur la prévalence (PR) de la mal-

adie ainsi que du taux d’inoculation entomologique (EIR). L’évaluation de la capacité d’un

modèle dynamique à simuler la propagation du paludisme au Cameroun a été conduite en

utilisant les données de précipitations et de température de FEWS-ARC2 et ERA-Interim

respectivement. De plus des simulations couplées avec cinq modèles de climats RCA4 sont

realisées dans deux horizons de temps: un futur proche (2035-2065) et un futur lointain (2071-

2100); visant à explorer les éffets potentiels du réchauffement climatique sur la propagation

du paludisme au Cameroun.

Les données de climat et de population sont comparées aux résultats de 103 enquètes

obtenues sur la prévalence (PR) au Cameroun. Des données similaires donnant les valeurs du

taux d’inoculation entomologique (EIR) sont examinées pour évaluer le caractère saisonnier

de la transmission de la maladie. En utilisant les données climatiques, les simulations réalisées

avec le modèle VECTRI sont evaluées. Par la suite, le modèle est couplé aux RCA4 suivant les

scénarios RCP4.5 et RCP8.5, pour prédire l’évolution des paramètres PR et EIR et examiner

le lien avec la température.

L’analyse des résultats du modèle présente le pic de PR à des témpératures d’environ 22◦C

à 26◦C, en accord avec de récents travaux qui ont suggéré une témperature de pointe plus

froide par rapport à la littérature, et à des taux de précipitations de 7 mm jour−1, quelque

peu supérieur aux estimations précédentes. Ce modèle est capable de reproduire de façon

générale l’allure attendue, bien que le pic de transmission se produise à des témperatures

légèrement supérieures à celles observées, tandis que PR culmine à des taux de précipitations
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de 2 mm jour−1 inférieure à la valeur observée. La transmission a tendance à être élevée en

zone rurale et péri-urbaine comparativement aux centres urbains aussi bien pour le modèle

que pour les données d’observations; bien que le modèle soit trop sensible à la population.

L’évolution de l’EIR est en accord avec l’évolution saisonnière des précipitations avec un

décalage d’un à deux mois. Cette évolution a été bien reproduite par le modèle, tandis que

dans les zones proches des rivières permanentes, le cycle annuel de transmission du paludisme

est en déphasage avec des précipitations. L’analyse des projections de PR et de EIR confirme

l’impact spécifique de la température sur l’incidence du paludisme. Le PR et l’EIR culminent

entre 26 et 28 ◦C, résultats en accord avec d’autres travaux menés au Cameroun. De plus,

les zones montagneuses sont moins affectées et la transmission saisonnière est bien observée

avec le paramètre EIR.

Pour chacun des scénarios utilisés relatif au changement climatique, l’impact de la tem-

pérature sur l’évolution des indicateurs de paludisme est confirmé. Pendant la période his-

torique (1985-2005), le modèle reproduit de façon satisfaisante les paramètres PR et EIR. Les

projections futures revèlent des changements hétérogènes caractérisant la zone d’étude, avec

des augmentations et/ou des diminutions localisées de PR et EIR. A mesure que le degré de

forçage radiatif augmente (de 2.6 à 8.5 W.m−2), l’amplitude du changement de PR et EIR

s’intensifie également. L’apparition des pics de transmission est projetée dans la plage de

temperature 26-28◦C. Par ailleurs, PR et EIR varient selon les trois régions agro-climatiques

de la zone d’étude. Le modele VECTRI devrait encore prendre en compte d’autres aspects

de la transmission de la maladie. Aspects tels que la mobilité de la population, les stratégies

d’interventions etc. lesquelles sont susceptibles d’améliorer le modèle VECTRI en le rendant

plus pertinent face aux décideurs politiques.

Mots clés : Paludisme, Climat, Cameroun, Prévalence, Taux d’inoculation entomologique,

Changement Climatique, RCA4, VECTRI.
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General Introduction

Malaria is a common and life-threatening disease that affects many countries in the world

[1]. It remains a major cause of death and sickness in most tropical and subtropical regions.

In 2006, there were an estimated 247 million malaria cases among 3.3 billion people at risk

in the world [1]. Of these cases, 86% were in Africa. Among the estimated 881,000 malaria

deaths, 91% took place in Africa. More importantly, the report indicated that a child dies

every two minutes due to malaria in Sub-saharan Africa (SSA). This highlight the fact that

SSA is most affected by the disease in the world and continues to carry an extremely high

portion of the global malaria burden [2].

Malaria transmission varies in space and time with high endemicity in the tropical and

sub-tropical regions of Africa. Consequently, malaria incidence has been linked to climatic

environmental, and socioeconomic factors [3]. In Cameroon, situated in SSA, the disease

is a major health burden and its climate is suitable for mosquito development and malaria

transmission [4]. Malaria is endemic in Cameroon with children under five (< 5) and pregnant

women being the most vulnerable population [5]. The 2020 world malaria report recorded

an estimatimation of 20 000 number of malaria deaths in Cameroon between 2018 and 2019

[6].

The disease is caused by a parasites which is a protozoan from the genus plasmodium and

transmitted to people through the bites of infected females anopheles mosquitoes [7]. A single

bite by a malaria-carrying mosquito can lead to extreme sickness or death. Malaria starts

with an extreme cold, followed by high fever and severe sweating. These can be accompanied

by joint pain, abdominal pain, headaches, vomiting, and extreme fatigue.

As malaria is climate dependent, drivers like rainfall, temperature, wind speed and relative

humidity are some of the key parameters that influence its transmission [8, 9]. The extent

of vulnerability due to malaria also depends on determinants other than the climate such as
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General Introduction 2

environmental factors, population density or migration [10]. Rainfall and temperature influ-

ence the life cycles of the anopheles mosquito vector and the malarial plasmodium parasite

[2]. The impact of fluctuations in rainfall, temperature or population density, on malaria

incidence, between the different epidemiological pattern observed in Cameroon is still under

study. Improvement in the understanding of how these factors interact to influence malaria

transmission in Cameroon is required to develop and implement effective control strategies.

Some scattered field studies have already been carried out to understand spatio-temporal

variation in malaria transmission over towns and villages in Cameroon. For example, In

Nkoteng village located in the centre region, all year-round intense malaria transmission

were found with peak of transmission during the rainy season [11]. A similar situation was

observed in Ebolakounou and Koundou with seasonal variations in malaria infection among

children under fifteen (< 15) years old [12]. Moreover, a 12-month survey conducted in the

southwest region found malaria transmission to be perennial and rainfall dependent [13].

Although studies have been limited to specific towns and villages in Cameroon regarding

malaria, there are no studies that attempt to use model to predict local or national scale

disease variability. Consequently, there is limited understanding of the impact changes in

parameters such as rainfall, temperature and population density have on malaria incidence

across different epidemiological zones.

An improved understanding of the relationship between the disease and its climate drivers

can contribute to health mitigation and adaptation planning. For this, an appreciation of

the observed relationships between climate and malaria indicators is required. If dynamical

models can account for these relationships then they could be eventually used for targeted

intervention planning. Dynamical models that account for climate parameters are available

[14, 15, 16, 10]. One of the recent, named VECTRI, which can simullate malaria transmis-

sion at both local and regional scales was used to examine impact of climate on malaria

transmission in Cameroon. Specifics goals of the present work are:

• Understanding the links between climate parameters (rainfall, temperature) and pop-

ulation density on malaria incidence in Cameroon.

• Use the VECTRI dynamical malaria model, to check if it is able to reproduce the

links between rainfall, temperature, population density and malaria transmission in

Cameroon.
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• Use VECTRI model coupled to the atmospheric regional climate model RCA4 to ex-

plore the impact of global warming under the Representative Concentration Pathway

(RCP 2.6 and 8.5) on malaria distribution.

One impediment to these goals relates to the availability and reliability of malaria indices

such as lab-confirmed cases, which are also often subject to restricted access for research

purposes. We therefore make use of alternative databases of two malaria indicators, the

parasite ratio (PR) and the entomological inoculation rate (EIR), which are metrics of the

prevalence and the transmission intensity of the disease. For the EIR, a recent released

database is used which contains year-long records of monthly EIR in order to examine

the seasonality of disease transmission. First the relationship between these two malaria

indicators, gridded climate and population density datasets are examined. Finally, VECTRI

driven with temperature and rainfall data from five (5) RCA4 models to investigate future

PR and EIR distribution over Cameroon.

The present dissertation has been subdivided in three chapters. The chapter one litera-

ture review, talks about generalities on malaria with emphasis on Cameroon, the mosquito

and parasite life cycles, and generality on malaria modeling. Chapter two entitled, Study

domain, Data and Methodology presents the VECTRI model, the used data and explains

the methodology applied. Chapter three named Results and Discussions, presents the re-

sults, and discuss them. A conclusion that summarizes the results and gives outlooks for

forthcoming researches, closes the document.
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Chapter one

Literature review

1.1 General overview of malaria in Africa

Malaria is transmitted through bites of infected females Anopheles mosquitoes. Both male

and female feeds on various sources of sugar such as nectar, but female also requires blood

meal which contains the necessary amount of proteins needed to produce eggs for repro-

duction [17]. This explain why only females Anopheles pick-up plasmodium parasite that

transmit the disease. There are almost 465 recognised Anopheles species, but only 70 among

them have the capacity to transmit human malaria [18]. In Africa, Anopheles gambiae, arabi-

ensis and funestus are the most important. Figure 1.1 below presents the global distribution

of dominant anopheles species in Africa. Anopheles mosquitoes are common in the West,

Central, East and South African countries; even in South-Africa, Namibia and Botswana,

anopheles are found in some locations. Countries in the Magreb zone like Algeria, Libya,

Egypt, are anopheles mosquitoes free.

Figure 1.1: Distribution of the three most dominant malaria vectors in Africa [19].
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1.2 Malaria parasite

Malaria is caused by a parasite called Plasmodium. There are more than 120 species of

Plasmodium that infect various groups of vertebrates but only five of them can cause malaria

to Human beings [7]:

• Plasmodium falciparum that predominates in Africa can causes serious form of malaria

infections. Symptoms are usually high temperature, intense nausea, vomiting and di-

arrhoea [20]. The different blood stages in human are characterized by the presence of

slightly smaller and numerous ring stages than the other species.

• Plasmodium vivax, is found mostly in Asia, Latin America, and in some parts of Africa.

It causes benign tertiary malaria which can be identify by headache, nausea, anorexia

and vomiting. Other symptoms include perspiration, shivers and very high tempera-

ture. The parasite has dormant liver stages that can activate and invade the blood

several months after the infecting mosquito bite [21].

• Plasmodium ovale is found predominately in West Africa and in the islands of the

western Pacific. It is biologically and morphologically very similar to Plasmodium vivax.

In humans, these forms rapidly invade the liver and symptoms generally appear 9 days

after the parasite has entered the blood system. The parasite’s replication cycle lasts

approximately 49 hours, causing tertian fever [22].

• Plasmodium malariae found worldwide, it has three-day life cycle. In the human, fol-

lowing introduction into the bloodstream, the liver is rapidly invade and If untreated,

it causes a long-lasting, chronic infection that in some cases can last a lifetime [23].

• Plasmodium knowlesi is found throughout Southeast Asia. The parasite has a 24-

hour replication cycle. Malaria causes by this parasite can rapidly progress from an

uncomplicated to a severe infection in humans, with rapid development of anemia or

renal failure [24].

1.3 Plasmodium life cycle

Plasmodium parasite requires both female Anophele and human as hosts to proceed and

complete its life cycle. The different steps of the cycle are presented on figure 1.2 below.
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Figure 1.2: Life cycle of the malaria parasite. The cycle goes from an infected mosquito to

human host, and from human to the mosquito [25].

During blood meal, an infected female Anophele inoculates sporozoites into the human

bloodstream. The sporozoites take few minutes to an hour to migrate into the liver and

invade their cells [26]. Within the period of 5-15 days depending on the plasmodium specie

(5-9 days in Plasmodium falciparum, 11-13 days in Plasmodium vivax, 10-14 days in Plas-

modium ovale, 15 days in Plasmodium malariae and 9-12 days in Plasmodium knowlesi),

the parasite goes through an asexual multiplication process called schizogony, within the

liver cells (hepatocytes) [27]. The infected hepatocytes are developed into schizonts, which

when mature release the merozoites that will invade the red blood cells (erythrocytes). This

step is known as the exo-erythrocytic stage of the parasite [28]. However, some sporozoites

from Plasmodium vivax and Plasmodium ovale can either result in release of merozoites or

establishment of hypnozoites which cause a latent phase of infection in the liver and can

remain so for years [29].

Within the erythrocytes, merozoites are developed successively to rings, trophozoites and

schizonts that mark the end of the erythrocytic schizogony stage [25]. This continuous repli-

cation process releases other merozoites ready to invade fresh red blood cells. The repeated
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cycle is responsible for the disease, and length for about 48 hours for Plasmodium falci-

parum, Plasmodium vivax and Plasmodium ovale, 72 hours for Plasmodium malariae while

Plasmodium knowlesi takes 24 hours [28] .

As the infection process goes on, some of the young merozoites develop into male and

female gametocytes that circulate in the peripheral blood, and are taken up by uninfected

females Anopheles during blood meal [30]. It marks the onset of the parasite sexual cy-

cle within the mosquito: the sporogonic cycle. Further the gametocytes mature to female

(macrogametocyte) and male (microgametocyte). After fertilization the fusion between them

form zygotes which can takes around 24 hours to be transformed into motile ookinetes, which

invade the midgut wall of the mosquito where they develop into oocysts [7]. From 7 to 30

days depending on the ambient temperature, the oocysts grow, mature and release thousands

of sporozoites which migrate to the mosquito salivary glands. After about a day of residence,

they became highly infective and ready for inoculation into a new human host to perpetuate

the life cycle [27] .

1.4 Anophele mosquito life cycle

To understand malaria transmission, once has to know the different steps of mosquito life

cycle. Anopheles mosquitoes go through four separate and distinct development stages: egg,

larva, pupa, and adult which are presented on figure 1.3.

Figure 1.3: Anophele mosquito life cycle. (Source: Purdue University, Scott Charlesworth)
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1.4.1 Egg stage

Mosquito eggs are laid in slow-moving or stagnant pools of water. Different species of

mosquito prefer different water conditions; some prefer sunlight water bodies, whereas some

prefer more direct sunlight. For instance, Anopheles gambiae the major vector in Africa

known to breed in temporary clean and clear water [31]. Eggs are laid one at a time or

attached together; they are almost transparent when first laid, but gradually darken to

brown or black as they mature. Adult females can lay from 50-200 eggs per oviposition

which takes between 2 and 4 days [7].

1.4.2 Larva stage

Larvae usually hatch from the eggs after a couple of days. They feed on algae, bacteria, and

other aquatic insects and organisms, but themselves can also be eaten by fish, copepods and

other creatures [32]. They live in the water and comes to the surface to breath because they

lack the siphon. Each larva must shed its skin four times, before reaching the stage where

it forms a pupa. This can take between 7 to 14 days, depending on the water temperature

[33].

1.4.3 Pupae stage

The pupa stage is a resting, non-feeding but highly mobile stage. This is the time the

mosquito turns into adult it takes about two days before the adult is fully developed. When

development is complete, the pupa skin splits and the mosquito emerges as an adult [7].

1.4.4 Adult stage

The newly emerged adult rests on the surface of the water for a short time to allow itself

to dry. The wings have to spread out and dry properly before they can fly, and males are

usually first to emerge from the larval habitat. The duration of each stage depends on both

temperature and species characteristics [34]. Male adult mosquitoes usually live for about a

week, feeding on nectar. They also possess very bushy antennae for seeking females to mate

with. Female mosquitoes have specialised mouth parts that allow them to feed on blood;

they require the extra nutrients that blood meal provides in order to lay their eggs. The

lifespan of a female adult depends on a number of environmental factors, but also her ability
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to get sufficient blood meals; in nature, they usually live 1-2 weeks [7]. These growth stages

are strongly influenced by rainfall, temperature, relative humidity, and other environmental

factors.

1.5 Climate impact on malaria transmission

1.5.1 Rainfall

Regarding the transmission process of malaria, rainfall is a crucial parameter for the

mosquito life cycle and for the life span of adult mosquito [35, 36]. The seasonality and

amounts of precipitation may alter the abundance of aquatic habitats, the longevity and

the productivity of the oviposition sites [37, 38]. Rainy seasons thus lead to high disease

incidence than the dry seasons; figure 1.4 presents hotspot of malaria transmission during

dry and wet seasons. Malaria risk surface is more important in figure 1.4 B during wet period

than figure 1.4 A in dry period.

Figure 1.4: Malaria hotspot during dry(A) and wet(B) seasons [39].

A study conducted in Kintampo district in Ghana, found the abundance of Anopheles

vectors to be strongly correlated with rainfall patterns [40]. In Mbita in western Kenya,

high numbers of adults Anopheles were observed from November 2000 to February 2001

following extended rainfall events [41]. A study conducted in coastal south-western Cameroon
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reveals that the density of anopheline species followed trends in rainfall patterns, with peaks

during periods of heavy rainfall between July and September [13]. In Uganda, a study on

epidemic of malaria associated with El Niño event in 1997 reveals that rainfall was positively

correlated with vector density with one month gap [42]. Heavy and exceed rainfall was also

one determinant cause of malaria epidemic that occurred in Ethiopia highlands between

June and December of 1958 [43].

Inversely excessive rain may result in higher water levels, high flow velocities and flooding

of water impoundments which are unfavourable to mosquitoes survival [44]. For instance,

long-term reductions in rainfall in Senegal and Niger were associated with reductions in

breeding sites for Anopheles [37]. In addition, in western Kenya the effect of natural rainfall

on flushing, ejection and mortality of Anopheles gambiae larvae were explored. The results

reveals that immature populations of malaria mosquitoes suffer high losses during rainfall

events [45].

1.5.2 Temperature

Occurrence of malaria vectors is strongly influenced by temperature, although the overall

relationship between development rate of Anopheles and temperature is non-linear [33]. The

aquatic stages of mosquitoes develop faster as temperature increases [46], leading to an

increase in adult turnover, vector density and disease transmission [47].

Laboratory experiments made between 10 and 40◦C, to assess egg to adult anopheles

development rate found the suitable growing temperature range between 16 and 34◦C. Larval

survival is shortest less than 7 days at 10-12◦C and 38-40◦C; and longest for more than 30

days at 14-20◦C [48]. Similar laboratory study also found that the optimum temperature

that leads to high larval survival was 27◦C. At 30◦C survival decreased as density increased

[49]. Precisely for Anopheles gambiae and arabiensis survival to adult was highest at 25◦C

and start to decreased with increasing temperature [50]. Moreover experiments showed that

if Anopheles gambiae pupae is maintained in constant light, the duration of the pupal stage

is a direct function of temperature: It lasts about 2 days at 22◦C but only 1 day at 32◦C

[51]. A more recent work found the rate of development from one immature stage Anopheles

to the next one, increases at higher temperatures to a peak around 28◦C; while high adult

emerge was between 22 and 26◦C [33].
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The minimum temperature required for the development of Plasmodium falciparum and

vivax is approximatley to 18◦C and 15◦C, respectively [38, 52]. Within the mosquito, a

temperature-development model shows that diurnal temperature fluctuation around mean

temperature < 21◦C could speed up parasite development, whereas fluctuation around mean

> 21◦C lead to a slower development [53].

Study conducted in Usambara Mountains of Tanzania, on the sporozoite rate (the pro-

portion of mosquitoes with sporozoites in their salivary glands) during 1997-1998, found the

warmest month mean temperature of 20.6◦C in the Mlalo basin was linked to the malaria

outbreak [54]; indicating that temperature is important for sporozoite development. For

Zimbabwe from 1988-1999, a model-study reported that annual mean values of temperature

(20-22◦C) was a strong positive predictors of increased annual incidence malaria rate whereas

maximum and minimum temperature had the opposite effects [55].

1.5.3 Relative humidity

Relative humidity usually refers to the amount of moisture in the air. Mosquitoes survive

better under conditions of high humidity than low. A study conducted in the Sahel region

of Africa on mosquito desiccation, showed that extremely low levels of relative humidity

were fatal to Anopheles mosquitoes [56]. More importantly, the mosquito life span is greatly

enhanced at relative humidity over 60% thus increasing the chance that the mosquito will

survive sporogony and became infectious to humans [57, 35].

In Senegal for example, during the month of October at the end of rainy season, relative

humidity was found favourable for the development of mosquito vectors [58]. Also in Gambia,

the number of adults Anopheles gambiae that increases towards the end of the dry season,

was found to be linked to the increases of humidity [59]. In India, from 1970 to 2000 it

was noticed that the average relative humidity range from 55 to 80% within the period of

May to October, coincides with the maximum number of positive reported malaria cases [9].

Furthermore in southern China, an average relative humidity of 70-80%, represented one of

the optimum conditions for malaria transmission [60]. Others studies conducted in Kenya

found that, average maximum relative humidity of about 80% (for Ternan and Lunyerere)

and 93% (for Nyalenda) provide favourable conditions for malaria transmission [61].
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1.6 Population density and malaria transmission

Population density is a metric that helps distinguish malaria transmission intensity from

rural, peri-urban and urban settings [62], due to land use patterns, density of households, ac-

cess to basics social and health services and the dilution effect [63]. Low population densities

in rural areas and high population densities in urban areas can influence malaria transmis-

sion substantially [64]. A survey in sub-Saharan Africa found a negative relationship between

mean annual Entomological Inoculation Rates (EIR) and the level of urbanicity; with mean

annual EIR values of 7.1 in the city centres, 45.8 in periurban areas, and 167.7 in rural

locations [63]. Similar study found that urban areas are characterized by low malaria trans-

mission, with the estimated annual EIR in city centres near to zero(0) and high as 54 have

in peri-urban areas [65]. Another study carries out in sub-saharan Africa found the highest

number of annual plasmodium falciparum EIR were in rural zones, precisely in locations with

population less than 100 inhabitants per km2 [62].

Field survey in southern Ghana found high malaria risk (almost 100%) in rural zones per

year than urban areas (15%) [66]. In Tanzania between 2006 and 2014, a study found that

the risk of malaria infection increased away from the city centre: lower parasite prevalence in

administrative units in the city and higher in peri-urban suburbs [67]. A school parasitaemia

survey for children in Ouagadougou in Burkina Faso found that the prevalence malaria rate

were 24.1%, 38.6% and 68.7% in the centre, intermediate and periphery areas, respectively

[68]. A more classification made in Chimoio in Mozambique found that sites with over 9000

people per km2 were classified to be at the highest risk of malaria, those between 6001 to

9000 people per km2 were classified to be at moderate risk, and those with less than 6000

person km2 were classified to be at low risk [69].

Authough urbanisation is generally expected to reduce malaria transmission, the disease

still persists in some African cities, in some cases at higher levels than in nearby rural areas

[70]. For instance in Libreville town in Gabon, malaria transmission level was high and

heterogeneous. The highest EIR was recorded in the most central and urbanized quarter,

while the lowest were noticed in a peripheral area. This decrease of transmission from peri-

urban to urban settings is probably socio-economic dependent [71]. School surveys conducted

in Cotonou found that the prevalence rates of parasitaemia were 2.6% in the centre, 9.0% in

the intermediate and 2.5% in the periphery zones. The reasons of this, might be associated
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with urban transformation and/or a high bed-net usage [72].

1.7 Environmental impact on malaria transmission

1.7.1 Surface elevation

The effect of surface elevation on malaria incidence is important. Increasing in altitude

was related with decreasing mosquito abundance [73]. Breeding Anopheles mosquitoes sites

are more common in lowland than highland [74]. This lower incidence is most likely due to

the decreased temperatures at these altitudes [75, 76]. With every 1000 meters of elevation,

temperature decreases by an average of 6◦C, highland areas are then often inadequate to

support sustained malaria transmission [77]. Temperature in highland zones, low temperature

prevents parasite development in mosquitoes during rains periods; malaria vector abundance

is thus limited [78].

Field study in Tanzania revealed that, EIR were about seven times greater in the lowland

than the highland areas, malaria morbidity was also less prevalent in the highlands than the

lowlands [79]. In Usambara village in North-east Tanzania altitude was negatively associated

with malaria risk with evidence of a malaria infection at a lower elevation [74]. Furthermore,

in Kenya, the overall prevalences of Plasmodium falciparum parasite were significantly higher

in the lowland villages (24%), than in the highland villages (2%) [80]. A study conducted in

Northern Ethiopia, reveals an appreciably greater amount of malaria in villages at altitudes

below 1900 m than above [81].

1.7.2 Permanent water bodies

Water bodies areas are characterised by predominance of water which determines the

nature of soils [82], that can be completely partially or temporarily inundated. Such ar-

eas are likely to serve as potential habitat for water-bound stages of malaria vectors [83].

Malaria burden may indeed rise after impoundment of large bodies especially at the vicin-

ity of humans habitations. Field studies have established the relationship between malaria

transmission and water bodies. For example a study conducted in Ethiopia showed that, the

proximity to water reservoirs was associated with greater disease rates in periods of intense

transmission. The number of positive malaria cases decreases when moving away far from

the reservoirs [84]. More, assessing the impact of construction of micro-dams on the disease
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occurrence, further works proved that the overall incidence of malaria for the villages close

to dams was higher for children under 10 years living in villages within 3 km, than those

living within 8-10 km [85].

In Shri Lanka a field study found that, people living within 750 m of the local stream,

were at much higher risk for malaria than people living further away [86]. Similar study

conducted in Mozambique classified areas with less than 500 m from a water source as high-

risk areas of malaria [69]. Another study conducted in western Kenya demonstrated that the

proximity to terrain with high predicted water accumulation was associated with increased

household-level malaria incidence; most of the reported malaria households were located 280

m closer to regions with very high wetness indices [87]. More higher abundances of adults

Anopheles gambiae and funestus were found along the Yala river valley and more than 80%

of anopheline-positive habitats identified were located within 100 m of the nearest streams

[88]. Furthermore, in an endemic malaria region of Shri Lanka, the imposition of a buffer zone

of 200 m around water bodies from houses, was estimated to lead to a 21% reduction of the

malaria incidence in the overall population and a 43% reduction in the relocated community

[89].

Each water body can be easily identify by its particularities, but the most common one

is the groundwater level that can be near the surface or not [90]. The water in such areas is

also controlled by hydrological processes. Some namely main water bodies are lakes, streams,

rivers, but also swamps: situated within forests and dominated by trees; marshes: frequently

inundated and dominated by emergent herbaceous vegetation; bogs: characterised by wet

spongy, water provided directly from rain; fens: dominated by grasslike plants, water provided

from surfaces and groundwater sources; mangrove: a tidal swamp is sensitive to the cold,

most found in tropics and subtropics regions [88, 90, 91].

1.7.3 Land use change

Some land use changes process are likely to modify the hydrology of an area and cre-

ate new favourable breeding conditions for malaria vectors. For instance, irrigation projects

in endemic areas were noticed to increase the number of breeding habitats, thus malaria

transmission [92]. In India in the 1990s, malaria became endemic and widespread in a popu-

lation of about 200 million, after a poorly constructed irrigation projects improved breeding
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conditions of malaria vectors (Anopheles culcifacies) [93].

Agricultural pratices that combine deforestation and irrigation can increase malaria risk.

In Thailand for example, cassava and sugarcane cultivation led to creation of widespread

breeding grounds for Anopheles minimus [94]. Similar work was conducted in highland area

in Uganda from December 1997 to July 1998 for villages located along papyrus swamps.

The study found that all the measured malaria indices, were on average high near cultivated

swamps [95]. In Ghana, Swampy areas and banana/plantain production at the vicinity of

villages were strong predictors of a high malaria incidence. Precisely, an increase of 10%

of swampy area coverage in the 2 km radius around a village led to a 43% higher malaria

incidence; further each 10% increase of area with banana/plantain production around a

village tripled the risk for malaria [96].

Malaria endemicity was also noticed to follow deforestation process [97]. A study conducted

in the Peruvian Amazon found that biting rates of Anopheles darlingi in deforested areas were

278 times higher than bitting in the forested areas [98]. Distance from human habitations

to high wetness zones were found to account for differences in malaria risk. In Kenya for

instance, 423 malaria case households were located 280 m closer to regions with very high

wetness indices [87]. Further, in Dar es Salaam, a study found a dependance relationship

between the wetness idex and the Plasmodium parasite prevalence [67].

1.8 Malaria in Cameroon

Malaria is a major public health problem in Cameroon. It is an endemic illness and the

leading cause of morbidity and mortality in the country [99]. Its transmission is aggravated

by changes in climate, poverty, and lack of efficient mechanism of control, but also new

parasites strains. Children under five and pregnant women are the most vulnerable pop-

ulation categories accounting 22% of morbidity and mortality risk [99, 5]. The 2000-2010

national health report noticed that malaria was responsible for medical consultation (40 -

45%), morbidity (50%), deaths in children under five (40%), deaths, (30 to 40%), days spent

in hospital (57%) and sick leave (26%) in the country [100, 101]. Moreover, the 2008 World

Health Organisation report, mentioned that Cameroon had an estimated 5 million malaria

cases in 2006, with an average of 100 cases noticed per 1000 inhabitants [99]. Figure 1.5

shows malaria distribution map for Cameroon in 2005 produced by the MARA (Mapping
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Malaria Risk in Africa) project. The map presents the whole country as malaria endemic but

also some marginal endemic zones like Yaounde, and the highland ares (West, South-west

and Adamaoua).

Figure 1.5: Malaria endemicity in Cameroon (Source: MARA project).

1.8.1 Economic costs of malaria in Cameroon

There is an evidence that malaria burden is greatest among the poorest countries in sub-

saharan Africa. It contributes towards national poverty through its impact on foreign direct

investment as tourism, labour productivity and trade [102]. Studies conducted across severals

countries between 1965-1990 period confirm the relationship between malaria and economic

growth [103]. In Cameroon malaria has a noticed socio-economical impact, and can easily

drive affected population to poverty. Indeed It was found to be one major reason of 40% of

household expenses [101]. A study focussed on the direct malaria costs for households in some

African countries, found the highest cost being in urban Cameroon settings comparatively

to others countries [104]. For this purpose, Cameroon government have recently instructed

PhD Thesis MBOUNA DJOUDA Amelie



Literature review 17

the free treatment of uncomplicated malaria cases, for children under five years of age and

pregnant women [100].

1.8.2 Ecological niche profile of malaria vectors in Cameroon

The high incidence of malaria in Cameroon is not surprising, this because Cameroon’s

anopheline fauna is one of the richest in Africa with almost 48 species [105]. But only 13 of

them hold sporozoites that makes infectious; with Anopheles gambiae, Anopheles funestus

and Anopheles arabiensis being the most common across the country [106, 107]. Figure 1.6

that follows represents the global distribution of anopheles species present in Cameroon. In

terms of species distribution, Hamadou et al [108] found Anopheles gambiae alone accounts

for 90% with the remaining 10% made up of Anopheles funestus, arabiensis and others [108].

Figure 1.6: Mapping of malaria vectors distribution in Cameroon. Anophele gambiae is the

most present in the country [109].
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Similar to other Sub-Saharan African countries [8, 110, 58, 111, 112], there is a spatio-

temporal variation in malaria transmission across ecological zones in Cameroon. Specifically

there is:

• The Soudano-Sahelian zone, where Anopheles arabiensis, funestus and gambiae are the

most present;

• The Adamaoua plateau that hold Anopheles gambiae and funestus as majors vectors;

• The South equatorial forest with Anopheles gambiae as major but also Anopheles

moucheti and Anopheles nili along the Sanaga river;

• TheWestern plateau and in Atlantic coast whereAnopheles gambiae is predominant.[113,

108, 109, 114].

1.8.3 Plasmodium parasites in Cameroon

Among the five Plasmodium species known to infect human, four are prevalent in Cameroon.

Namely Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium

ovale [115]. These species are distributed along the major hydro-ecological zones of the coun-

try but Plasmodium falciparum is the most common one [116]. Table 1.1 presents proportion

of human malaria parasites distribution in Cameroon, across the different ecological facies.

Table 1.1: Distribution of the major human malaria parasite species in Cameroon [117].

Ecological facies P. falciparum (%) P. malariae (%) P. ovale (%)

Adamaoua facies 100 0 0

Savanah-forest facies 93.6-98.7 0-6.4 0-1.3

Transition facies 89.8-100 4.3-8.4 0-1.8

Forest facies 62.0-96.3 0.6-3.0 1.1-35.0

Altitude facies 91.5-96.0 1.7-7.0 0-6.8

Coastal facies 97.7-100 0-0.7 0-2.3
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1.8.4 Climate and malaria incidence in Cameroon

Seasonal variations in malaria is highly sensitive to climate variables. The disease is con-

trolled by rainfall, as temperatures are usually within the range that support both mosquito

survival and parasite development [118, 119]. During the onset of monsoon season, tempo-

rary transient ponds and puddles become abundant, and can serves as potential breeding

habitats for malaria vectors [58].

Studies have been carried out to understand this spatio-temporal variation over some

towns and villages in the country. For example, from June 1997 to May 1998, in Koundou and

Ebolakounoua located in the South Cameroon, a rapid increase in the anopheline population

at the beginning of the rainy season was immediately followed by a parallel increase in the

entomological inoculation rate in both villages [120]. The annual EIR value of 31 infective

bites per person, were obtained with peak in the month of May during the rainy period

[121]. In the southwest region of Cameroon, a 12-month survey from August 2001-July 2002

found Anopheles gambiae, funestus and nili to be the human malaria vectors in the areas.

Anopheline density and EIR, were correlated to the rainfall variability during the study

period. Annual EIR values for Tiko, Limbe and Idenau were 287, 160 and 149 infective

bites/person respectively, within July to September, period of intensive rainfall in the areas

[13]. Further, in Nkoteng village located in the Centre region where both Anopheles funestus

and gambiae are present, a survey from February 1999-October 2000 found all year-round

malaria transmission with peaks value of 15.4ib/p/m in June 1999 and 15.7ib/p/m in April

2000, both within periods of higher rainfalls events [11].

Heavy rainfall can also negatively impact malaria occurrence. For instance in Buea munic-

ipality in the Southwest region of Cameroon, within 2010-2014, a negative correlation was

found between malaria incidence and rainfall in July and August during the rainy season.

Meanwhile a positive correlation was found with temperature within the same months. This

is because very high rainfall causes overland flow which then sweeps away mosquito eggs

from the breeding habitats [122].

1.8.5 Human activities and malaria incidence in Cameroon

Human activities like agriculture, water drainage or deforestation are likely to increase

or decrease malaria endemicity in the country. For example an entomological study from
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May 1997-May 1998 were conducted in Ebolakounou (forest area), and Koundou (degraded

forest area) all located within the Mengang district in the South region. The result present

malaria intensity in the degraded forest habitat in Koundou (EIR: 176.1 ib/p/y), 10 times

higher than in the forest habitat in Ebolakounou (EIR: 17.7 ib/p/y). Peaks of transmission

occurred with one month lag time following heavy rainfall events [12]. Another series of

surveys conducted in 386 villages across the ecological zones in the country, reveals that

the distribution of major malaria vectors were strongly affected by the impact of human

activities on the environment [113]; productive ecological niches of mosquitoes were sunlight

exposure, rainfall, evapotranspiration, relative humidity or wind speed dependent.

Agriculture activities may also increase human malaria incidence in Cameroon. For in-

stance Ngom et al, [123] found that rainfall and proximity to urban agricultural activities

are the most important ecological factors accounting for variability in malaria transmission

in Yaounde, with Anopheles gambiae playing a key role in the transmission process. Further-

more a study in Gounougou within a rice cultivated area in the North region, characterised

by a long dry season (from April to November), found high density of Anopheles gambiae,

rufipes, coustani and welcomei species in July, August and second half of September, during

the dry season [124]. A similar study was conducted in the rubber cultivated area of Niete

in south Cameroon. From a total of 1187 Anopheles collected, 35.3% were caught during the

rainy season and 64.7% within the dry season [125]. Malaria in Niete is noticed both in the

dry and rainy season, but with the peak during the dry season, surely because of farming

activities in the zone that increase the Anopheles number at that period.

1.8.6 Inland water bodies and malaria in Cameroon

Local hydrology of an endemic malaria area may impact on Anopheles vectors density.

Permanent water bodies like rivers, lakes, streams etc. or stagnant water around residences

are likely to provide appropriate larval breeding sites in dry periods. For instance, in 1959

the considerably abundance in intensity of Anopheles gambiae noticed during dry season, in

the villages situated along the Sanaga river, were attributed to new breeding sites situated

at the edges of the river [126]. Additional study found that the, mean densities of Anopheles

gambiae were 5 times higher in houses located at 200 m than those at 1.5km from the Sanaga

river [127]. A study conducted in Mbalmayo in the South Cameroon, demonstrated that the

river Nyong and its banks were the most important permanent breeding source for all malaria
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vector a very high vector densities were found very high in the vicinity of the river Nyong,

and rapidly decreased with distance from the river [128].

A similar entomological study were conducted in two communities, Simbock and Etoa,

irrigated by water from the Mefou and Biyeme rivers. The results demonstrated the en-

demicity of malaria during both wet and dry seasons. Individuals in Simbok receive about

1.9 and 1.2 infectious bites per night in the wet and dry season, respectively, whereas those

in Etoa receive 2.4 and 0.4 infectious bites per night, respectively [129]. In Molyko, located

in Southwest Cameroon, a study were conducted among pupil aged 4-15years on environ-

mental factors accounting in malaria occurrence. The results demonstrated that, stagnant

water around residences was associated with significantly higher malaria parasite prevalence,

when compared to those who did not have stagnant water around their home [130].

1.8.7 Urbanisation and malaria in Cameroon

The process of urbanisation is likely to influence malaria transmission in Cameroon. The

2010 national census report estimated that over 52% of the population live in urban areas

and the total urban population has almost doubled in the last 25 years [131]. A study in rural

and semi-urban communities in the Southwest found a high malaria parasitaemia prevalence

in the rural than semi-urban settings. This due to specifics characteristics of rural settings

(predominance of plank houses, absence of health facilities, proximity of animals sheds to

sleeping areas) that may facilitate human-mosquito contacts [132].

In Cameroon, malaria incidences vary across different social groups. For instance, a study

in Molyko among pupils belonging to poor middle and rich classes in 2000 and 2004 showed

that the presence of malaria was significantly associated with the social class of the pupil

[133]. Another comparative study were conducted for pupils in rural Bomaka and Urban

Molyko, both in the Southwest region of Cameroon. Among the overall 33% of malaria preva-

lence, children from Bomaka had higher value (38.51%) than those from Molyko (25.58%)

[130]. Then urbanisation process may influence by reducing malaria endemicity in Cameroon.

1.8.8 Malaria control in Cameroon

Interventions strategies against malaria in Cameroon usually take place at the level of

vectors, with the use of indoor residual sprays and Insecticide Treated Mosquito Nets (ITNs).
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A study in Yaounde and Douala, the two most populated cities in Cameroon investigated

the coverage of various malaria control methods. Their results showed that, environmental

sanitation (76.1%), use of bed nets (69%), insecticide spray/coils (12.3%) and netting of doors

or windows (1.9%) were the methods used for malaria prevention in these cities [134]. But

protection by the use of ITNs is the major government strategies for controlling malaria. For

instance, the National Malaria Control Programme (NMCP) distributed about two millions

of ITNs within the period 2004-2009 in Cameroon, with emphasise on children under 5 years

old and pregnant women [100].

Between 1997 and 1998 in Mbadjock, located in the South, a study were conducted on the

malaria incidence, after about 4,000 impregnated bed nets were distributed to the population.

The results found a significant decrease of mosquito parity rate; 52% before and 46.5% after

bed nets distribution. EIR was also reduced by 74% varying from 124.1 ib/p/y before, to

32.5 ib/p/y after two (2) bed nets distributions sessions [135]. Another study conducted in

the South, in Mbebe village after two bed-nets impregnations sessions in January 1991 and

March 2000. The obtained results demonstrated that the use of ITNs significantly decreases

malaria incidence in the village; Human Biting Rate (HBR) decreases by 60% and EIR by

78% [136].

Nevertheless, the 2006 World Health Organisation survey found that 32% of households

owned a simple mosquito net, 20% an Insecticide Treated Nets (ITN), but only 13% of chil-

dren slept under [1]. The government then came on a scaling-up process of ITN coverage in

2011, in line with the Roll Back Malaria (RBM) program recommendation of universal cov-

erage [137, 138]. The direct impact was then assess in a community in South west Cameroon

between August and December 2013 after the free distribution campaign of ITNs in 2011.

Results showed that, use of ITNs by participants was associated with reduced asexual para-

sitemia prevalence, a measure of malaria endemicity [132].

1.9 Malaria modelling

1.9.1 Overview

Roland Ross was the first to develop a mathematical model of malaria transmission in

1911 [139]. The model was formulated using deferential equations describing the rate of
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transmission between the host-compartments; how the disease is transmitted from vectors to

human hosts and vice versa. In the 1950s further developments were made by Macdonald, in

order to improve Ross’ model. For instance the proportion of infective anopheline (Anopheles

with sporozoites in their glands) bites were added in the equations [140]. Therefore several

modelling works have been conducted based on the Ross-Macdonald model. One of the

most famous, regarding malaria dynamics and immunity is the Garki model [141] and its

improvements [142, 143, 144]. Others studies expanded these first models by using different

approaches like accounting for population density [145, 146] or environmental conditions

[147].

Malaria transmission have been also investigate using severals dynamical models. Many

of these model are driven by climate parameters like rainfall, temperature, humidity and

etc. They may also serve as a predictors for future disease outbreaks [148, 149, 150]. Such

climate-driven malaria models are able to assess each step of the transmission process using

daily data [36] at local or regional scale. For instance, the Liverpool Malaria Model (LMM),

relate the oviposition rate to a 10 day rainfall rate [14].The HYDrology Entomology and

MAlaria Transmission Simulator (HYDREMATS) model developed for Sahelian zones [16]

runs at very high resolution (10 metres) and incorporates land cover and topography data

in simulating breeding pool formation and persistence, and the inter-annual variability in

malaria vector mosquito population. When the model was applied in the Banizoumbou

village in Southwest Niger between 2005 and 2006 wet seasons showed a good agreement with

observations, and was able to predict seasonal mosquito abundance [16]. Another model, the

VECtor-borne disease community model of the International Centre for Theoretical Physics,

TRIeste (VECTRI) [10] accounts for the impact of both climate and human populations.

1.9.2 Malaria modelling in Cameroon

Some modelling works have been conducted for Cameroon at the level of vectors environ-

mental niches. For instance, a survey was conducted in 386 villages covering the full range of

ecological settings of the country in order to model the ecological niche of mosquito vectors.

The distribution of major malaria vectors were found to be strongly influenced by the impact

of humans on the environment. In addition, the productivity of the ecological mosquitoes

niche was link to sunlight exposure, rainfall, evapotranspiration, relative humidity and wind

speed [113]. A malaria-climate and socioeconomic approach discover that, rainfall and prox-
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imity to urban agricultural activities are the most ecological factors associated to malaria

transmission in Yaounde, with Anopheles gambiae playing a key role in the transmission pro-

cess. The disease occurrence was also noticed to be higher all along the small rainy season and

dropped down during the two dry seasons [123]. Another model approach was developed to

define the limits of contemporary malaria transmission. The model uses a basic reproduction

number metric, and the result demonstrated that projections at scale related to population

can potentially deliver adequate highlight on the number of individuals at risk of malaria

infection [151].
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Chapter two

Study domain, Data and

Methodology

2.1 Study domain

2.1.1 Geographical description

The study domain covers central Africa between 1-13◦N and 7-17◦E as presented on figure

2.1. Cameroon territory is our specific point of interest.

Figure 2.1: Study domain, map of Cameroon and boundaries countries. On top, the map

of Africa and position of Cameroon.
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2.1.2 Climate

The area climate varies from humid in the south to arid and hot in the north. Cameroon’s

climate is particularly influenced by the Harmattan and the Atlantic Monsoon winds, and

characterised by two climatic domains. The tropical climatic domain that stretches from the

north and extending to the Sahel zone ( ∼ 8◦ to 13◦N) [152, 153] and the humid equatorial

domain covers the rest of the country ( ∼ 1.5◦ to 8◦N).

The equatorial domain is characterised by heavy rainfall events, with increasing temper-

atures and a degrading vegetation as one moves far from the equator [154]. It presents four

distinct seasons: a major rainy season (March to June), a dry season (July and August),

a minor rainy season (September to November) and a dry season (December to February)

[109, 155]. This domain is also divided in three sub-types. First the guinean type that extends

from the coast and covers the southern plateau with abundant rainfall up to 2200 mm/year

with average temperature of 25◦C [156]. Second, the Cameroonian type which is dominant

in the southern part of the south Cameroon plateau, extending into the east of the country

(with mean temperature of 23◦C and total rainfall below 1500 mm/year). The third one is

the Guinean-sudanese type with longer dry seasons and minimum rainfall [154].

The tropical area that is associated with high temperatures and low rainfall, has one rainy

season (May to October), and one dry season (November to March). The length of these

seasons is likely to change depending on the topographical profile of the area [109, 155].The

domain is also subdivided into three zones. The tropical humid zone in the Adamaoua plateau

(rainfall up to 1500 mm/year and average temperature of 20◦C), the Sudanian zone around

the Benoue basin (rainfall 1200 mm/year and average temperature up to 28◦C), and the

Sahelian zone in the north, identified with its accentuated drought (rainfall less than 900

mm/year and temperature that can reach 33◦C during the long dry season) [152, 156].

2.2 Materials

2.2.1 Climate Data

The mean rainfall and temperature of Cameroon and neighbours countries from 1985

to 2006 (study period) is presented on Fig 2.2. It shows higher rainfall intensity in the

western and coastal part of the country and increasing mean temperature moving to the
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north towards the Soudano-Sahelian zone. These precipitation data are obtained from Famine

Early Warning Systems Network ARC vesion 2 (FEWS-ARC2) [157], while temperature data

is taken from the ECMWF ERA-Interim reanalysis data [158].

(a) Rainfall (mm/day) (b) Temperature (◦C)

Figure 2.2: Map of Cameroon and neighbouring countries showing mean daily rainfall and

temperature from 1985 to 2006.

2.2.2 Malaria Data

Two malaria indicators are used in this study. The parasite ratio (PR) that expresses

the proportion of individuals infected at a given point in time [159]. A publicly available

database of parasite ratio is obtained from the Malaria Atlas Project (MAP) program [140].

The public PR database consists of data collected by individuals researchers or organisations

and published in the literature, which were collected within the MAP program. Table 2.1

presents all the data points used for this work in Cameroon; Consisting of 103 surveys, with

a total of 18011 people tested, with the survey dates ranging from 1985 to 2006.
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Table 2.1: Sites of PR data points used in Cameroon ranged from 1 to 103.

Site Longitude Latitude Reference Site Longitude Latitude Reference

1 11.507 3.872 [160] 53 11.0833 4 [161]

2 13.507 9.398 [162] 54 14.364 4.978 [161]

3 11.899 4.449 [163] 55 13.584 7.324 [161]

4 14.932 10.902 [164] 56 9.3833 4.6666 [161]

5 10.412 5.486 [161] 57 11.116 4.201 [165]

6 10.126 3.797 [161] 58 11.523 3.876 [160]

7 9.238 4.153 [166] 59 9.364 4.07 [13]

8 11.149 4.216 [165] 60 11.033 4.131 [161]

9 11.432 3.717 [167] 61 11.415 3.682 [161]

10 11.526 3.886 [168] 62 12.668 2.664 [169]

11 10.126 3.797 [170] 63 11.483 3.816 [129]

12 10.126 3.797 [170] 64 10.178 5.164 [161]

13 11.502 3.875 [170] 65 9.282 4.167 [133]

14 11.05 4.2 [165] 66 11.449 3.8833 [161]

15 10.15 5.2 [161] 67 8.983 4.234 [13]

16 9.193 4.015 [171] 68 9.509 4.666 [172]

17 13.66667 9.08333 [173] 69 11.615 3.767 [174]

18 8.999 5.184 [161] 70 11.149 4.216 [165]

19 13.584 7.324 [175] 71 13.53333 7.32222 [161]

20 11.483 3.767 [129] 72 11.017 4.134 [165]

21 11.525 3.852 [176] 73 11.05 4.2 [165]

22 14.4333 4.9833 [161] 74 12.63 2.73 [177]

23 9.932 2.351 [178] 75 9.2463 4.4549 [172]

24 10.517 3.85 [161] 76 13.34 2.72 [177]

25 10.118 2.81 [161] 77 11.016 4.2 [165]

26 11.033 4.131 [165] 78 9.441 4.625 [172]

27 9.298 4.166 [179] 79 9.461 4.637 [172]
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Table 2.2: Table 2.1 continued.

Site Longitude Latitude Reference Site Longitude Latitude Reference

28 15.087 10.638 [164] 80 13.52 8.78 [177]

29 9.435 4.634 [180] 81 10.517 5.149 [161]

30 11.483 3.816 [129] 82 11.033 4.131 [161]

31 12.37 4.663 [170] 83 14.26 8.45 [177]

32 9.364 4.07 [171] 84 11.6 3.768 [174]

33 14.2 10.4 [178] 85 9.45 4.501 [172]

34 11.07 4.134 [165] 86 9.455 4.605 [172]

35 14.327 10.594 [181] 87 14.327 10.594 [175]

36 9.45 4 [182] 88 9.299 4.2 [183]

37 15.043 10.878 [164] 89 12.64 2.69 [177]

38 9.705 4.047 [171] 90 9.3833 4.6666 [161]

39 9.238 4.153 [184] 91 9.3305 4.5447 [172]

40 9.238 4.153 [184] 92 9.436 4.639 [172]

41 9.282 4.167 [133] 93 9.451 4.534 [172]

42 9.435 4.634 [185] 94 9.2 4.483 [172]

43 11.016 4.2 [165] 95 12.67 2.43 [177]

44 14.692 6.8333 [186] 96 9.467 4.833 [172]

45 10.05 5.452 [163] 97 12.52 2.77 [177]

46 9.193 4.015 [13] 98 13.53 8.75 [177]

47 11.623 4.444 [187] 99 9.463 4.63 [172]

48 9.932 2.351 [178] 100 9.249 4.466 [172]

49 11.523 3.876 [160] 101 11.116 4.201 [165]

50 9.936 4.956 [188] 102 13.65 8.27 [177]

51 9.193 4.015 [189] 103 14.09 8.29 [177]

52 11.483 3.816 [129]
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The second malaria indicator is the entomological inoculation rate (EIR), which measures

the number of infected bites received per person for a given period of time [140], and as such

is an indicator of the malaria transmission intensity. It is often calculated as the product of

the human biting rate (HBR) and the sporozoite rate. HBR represents the number of bites

per person per day, while the sporozoite rate is the fraction of vector mosquitoes that are

infectious [190]. A new database of monthly EIR values has been constructed from various

sources for all Africa by Yamba et al [191], with the emphasis on long term field studies

lasting at least a year, in order to be able to study the seasonality of malaria transmission.

For Cameroon, the database has recorded 16 sites with validated data presented in table

2.3. The rarity of long-term, continuous monthly EIR records that allow the analysis of

seasonality, necessitates the use of data from 30 years ago, but we reiterate that this has the

advantage that recent upscaling of (sometimes seasonal) interventions does not obfuscate

the analysis. The availability of data for only two years in time precludes any analysis of

longer terms changes in seasonality that may be associated with climate warming which

could potentially be significant [192].
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Table 2.3: Sites of EIR data points for Cameroon. Indicated are sites names, study period

and their geo-referenced locations

Site Location Longitude Latitude Period Reference

1 Sanaga village 11.52 4.92 April 1989-March 1990 [193]

2 Mbebe 10.12 3.38 April 1989-March 1990 [194]

3 Nkol-bikok 11.52 3.87 March 1989-February 1990 [118]

4 Nkol-bisson 11.44 3.86 April 1989-March 1990 [118]

5 Limbe 9.19 4.02 August 2001-June 2002 [13]

6 Tiko 9.35 4.07 August 2001-June 2002 [13]

7 Likoko 9.3 4.39 October 2002-September 2003 [195]

8 Essuke-camp 9.31 4.1 October 2004-September 2005 [196]

9 Ebogo 11.47 3.4 April 1991-March 1992 [197]

10 Simbock 11.3 3.5 January 1999-December 1999 [198]

11 Koundou 12.12 3.9 June 1997-May 1998 [199]

12 Ekombite 11.83 3.12 January 2007-December 2007 [200]

13 Nsimalen-Ekoko 12.12 3.82 April 1991-March1992 [201]

14 Nsimalen-Nkol-mefou 11.58 3.62 April 1991-March1992 [201]

15 Nsimalen-3 11.55 3.72 April 1991-March1992 [201]

16 Ndogpassi 10.08 3.48 January 2011-December 2011 [121]

All database entries have been quality controlled in terms of data collection methodology

and geographical location to ensure continuity across the collection period.

In addition to climate, others factors such as population density, vicinity to permanent

water, socioeconomic conditions, conflict, breakdown in health services, population move-

ments and interventions can influence malaria transmission. However most of the factors are

difficult to account in models due to lack of reliable data to quantify their effect. As long as

these factors are not correlated with spatial or temporal variability of climate, they will act

as a form of noise in the analysis, increasing scatter in the climate-malaria relationships, but

not obscuring them completely if climate is a significant driver of malaria variability. This is

also the case for data inaccuracies and uncertainties in both the climate due to instrument

error and sampling uncertainty [202] and health records. One complication might be if these
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factors influence the trends over the period, but this would most likely be associated with

ramping up of interventions (climate trends are captured in the analysis) and this period

predates the large-scale up of interventions that occurred in Cameroon that could confound

the climate-malaria relationship. In addition, there is no evidence for major changes in vector

distributions during this period, therefore this study assumes that such changes would not

have affected the mean climate-malaria relationships.

PR and EIR data sites are highlighted on Fig 2.3. The majority of surveys points are

located in the west, the far north and east of the country.

Figure 2.3: Map highlighting PR and EIR studies locations.

2.3 Methodology

2.3.1 VECTRI malaria model

VECTRI is a dynamical model, made to use daily time step data and can be flexibly inte-

grated using several resolutions [10]. Its structure is made of links compartments representing
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each step of the transmission process from Anopheles breeding site to human host. The global

scheme account for temperature and rainfall to assess each growth step of mosquitoes, es-

pecially the egg-larvae-pupa development, the gonotrophic and the sporogonic cycles [10].

VECTRI also specify the interaction between host and vector by integrating human pop-

ulation density, in order to estimate daily biting rates. The figure 2.4 shows a schematic

description of the schemes used in VECTRI model.

Figure 2.4: Schematic representation of VECTRI model. The following schemes are high-

lighted: egg-larvae-adult development, sporogonic, gonotrophic cycles and parasite develop-

ment into host [10].

Larvae development scheme

The VECTRI larvae growth rate scheme is based on the pond water temperature (Twat)

and expressed by the following equation:

RL =
Twat − TL,min

KL

. (2.1)

PhD Thesis MBOUNA DJOUDA Amelie



Study domain, Data and Methodology 34

TL,min is the temperature below which larvae grow stops and KL is the coefficient indicating

the degree days required for adult emergence. But there are uncertainty related to the cal-

culation of RL. For instance, KL from laboratory studies was estimated at 90.9 degree days

[203], while linear approximations of the equation, predict a much slower rate of 200 degrees

day [33]. In addition, water temperature relies on the shading, as well as on the geometry of

the pond. In order to avoid these uncertainties VECTRI set the larvae growth rate to have

a cycle of 12 days, independently of Twat [15].

The larvae mortality rate and the vector daily survival are strongly temperature dependent.

VECTRI sets the daily survival rate for larvae (PL,surv0) equals to 0.0825 [15]. But over

population in ponds is able to negatively affect larvae, because of competition for living

resources. The larvae survival rate is then given by equation 2.2:

PL,surv =

(
1− ML

wML,max

)
KflushPL,surv0. (2.2)

ML is the total larvae biomass per unit surface area of a water body,ML,max is the maximum

carrying capacity set to 300 mg m−2 [204, 16] and above a water temperature of TL,max all

larvae die. The flushing effect rate expressed by Kflush usually happen during heavy rainfall

and leads to high larvae losses [205, 45]. The Kflush depends on the larvae fractional growth

state Lf and exponential of rainfall rate Rd.

Kf lush = Lf + (1− Lf )

(
(1−Kflush,∞)e

−Rd
τflush +Kflush,∞

)
. (2.3)

In this equation,Kflush,∞ is the maximum value ofKflush for newly hatched, Rd is the rainfall

rate in mm day−1 and τflush set to 50 mm day−1 describes how quickly flushing increases as

a function of Rd.

Gonotrophic cycle

VECTRI assumes all females vectors are able to find a blood meal in the first night of

searching; but this is set as a tuned parameter since many parameters like use of insecticide

treated nets can slow down the mosquitoes host-seeking process [206]. The egg development
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process begin after the blood meal is taken. The rate is controlled by the local 2 metre tem-

perature (T2m) following the degree day concept, and is presented on the following equation

2.4.

Rgono =
T2m − Tgono,min

Kgono

. (2.4)

Where Kgono = 31.1 K day [207], and Tgono,min = 16 ◦C which is the minimum temperature

that support the gonotrophic cycle [15].

Sporogonic cycle

During blood feeding, malaria parasite can be transfer from the host to vector or vice

versa. The probability of malaria transmission from an infected host to the vector during

blood meal is assume to be constant: Phv = 0.2 relying on [15], and the overall probability

Ph→v is given by:

Ph→v =
Hinf

H
Phv. (2.5)

Hinf and H are respectively infected and total host population densities. Using this equation

assumes that bites are randomly taken. Furthermore the heterogeneity of feeding habits,

related to perennial breeding sites or interventions strategies for example, is also ignored

[208, 209].

At each time step, a proportion of vectors Ph→v get infected and the parasite development

that starts in the midgut, relies on temperature and follows the degree day concept (equation

2.6). Once the sporozoites has invaded the salivary glands, the mosquito becomes infective

to humans and remains so until death.

Rsporo =
T2m − Tsporo,min

Ksporo

. (2.6)

In this equation for temperatures above 18◦C, Ksporo is equal to 111 K day for Plasmodium

falciparum [207]. Tsporo,min equals to 16◦C is the minimum threshold temperature below

which sporogony ceases [15]
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Vector survival

Vector survival relies on air temperature. Higher values tends to increase vector mortality.

The survival rate scheme is given as quadratic function of temperature and presented by these

two schemes: Scheme 1 represented by equation 2.7 [210, 211] and scheme 2 by equation 2.8

[212, 38].

PV,surv1 = Kmar1,0 +Kmar1,1T2m +Kmar1,2T
2
2m (2.7)

Constant values: Kmar1,0 = 0.45, Kmar1,1 = 0.054 and Kmar1,2 = -0.0016

PV,surv2 = exp

(
−1.0

Kmar2,0 +Kmar2,1T2m +Kmar2,2T 2
2m

)
(2.8)

Constant values: Kmar2,0 = -4.4, Kmar2,1 = 1.31 and Kmar2,2 = -0.03

PV,surv1 and PV,surv2 are daily vector survival probability, respectively for scheme 1 and

scheme 2, and T2m is the 2 metre air temperature. VECTRI uses equation 1.8 as its vector

survival based scheme following [213].

Host-vector interaction

VECTRI uniquely incorporates interactions between human host (H) and vectors using

the human biting rate expressed as follows:

hbr =
(
1− e

−H
τzoo

)∑Nsporo
j=1 V (1, j)

H
. (2.9)

The term (1 - e
−H
τzoo ) express the level of vector zoophily and

∑Nsporo
j=1 V(1,j) /H indicate

the ratio of biting vectors to the host population. The factor τ zoo equals to 50 km−2 has

an important impact for rural populations below its. This helps the model avoid to produce

high biting rates and EIR for sparsely populated areas.

The probability of transmission for an infectious vector to the host after a single bite

is given by Pvh. The value is assumed constant and the probability of transmission for

an individual receiving n infections bites is given by
(
1 − (1 − Pvh)

n
)
. The daily overall

transmission probability per person is then express by equation 2.10.
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Pv→h =
∑

∞
n=1GEIRd

(n)
(
1− (1− Pvh)

n
)

(2.10)

GEIRd
is the Poisson distribution for mean EIRd. EIRd is the daily number of infectious

bites by infectious vectors, and calculated as the product of human bitting rate (hbr) and

the circumsporozoite protein rate (CSPR). Equation 2.10 is likely to be modify if one has to

take into account factors as bed nets usage that makes the biting rate to fluctuate. Generally

population host has about 20 days after infection to assume the infective status [214, 215].

Surface hydrology

VECTRI surface hydrology scheme estimates at each time step the fractional coverage in

each grid cell. This fraction is the sum of two parameters:

W = W pond +W perm (2.11)

Wpond represents the fractional pond water coverage due to rainfall events and Wperm is

associated to permanent water bodies such as lakes, rivers, streams, that mosquitoes also

exploit on their edges as breeding sites [41]. In this hydrology scheme, breeding sites are as-

sume to be filled by water after rainfalls events and Wperm is incorporate as tuned parameter

depending on hydrological conditions of the area, this is because its spatial parameterization

is not yet available in the model. The fractional pond coverage in a grid cell is then express

by the following.

dW pond

dt
= Kw

[
P (Wmax −W pond)−W pond(E + I)

]
(2.12)

Where Wmax is the maximum temporary fractional water coverage in a grid cell, Kw is the

pond factor constant that links rainfall to the growth of the pond; P, E and I are respectively:

precipitation rate, constant evaporation and infiltration. Default values of these parameters

as used by VECTRI are presented on table 2.4 that follows.
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Table 2.4: Default constants related to equation 2.12 [10].

Symbol Value Units

Kw 0.001 mm−1

E + I 250 mm day−1

VECTRI hydrology scheme as presented in equation 2.12, ignored some important aspects

such as soil texture, topographical slope, or variation in infiltration and evaporation rate.

Fluctuations in these factors are likely to influenced the stability of the pond [216, 217], and

make VECTRI over or underestimate the pond water fraction.

2.3.2 VECTRI model Setup for the Study

The model used for this work is an open source, the Abdus Salam International Centre

for theoretical physics (ICTP) vector borne disease model (VECTRI), a grid distributed

dynamical model that couples a biological model for the vector and parasite life cycles, to

a simple compartmental Suceptible-Exposed-Infectious-Recovered (SEIR) representation of

the disease progression in the human host. The calculation of PR and EIR is based on equa-

tions 2.9 and 2.10.

The model runs using daily time step temperature and rainfall data, but also accounts

for the population density which is important for the calculation of daily biting rates [10].

The model incorporates several parameterizations schemes for larvae, adult vector and par-

asite development rates, which are both temperature sensitive, as are the larvae and adult

vector daily survival. Larvae survival, especially in the early development stages, is also

impacted negatively by intense precipitation through the inclusion of a flushing effect [45].

The model also allows for over-dispersive biting rates and incorporates a simple treatment of

host immunity [218]. Another feature of the model is that it also includes a simple treatment

of rain-driven pond formation and loss through evaporation and infiltration [219, 220, 221].

VECTRI simulates several parameters that help in assessing malaria incidence. Among them

are the parasite ratio and entomological inoculation rate that we are interested in.

In this study, the model is integrated for 22 years (1985-2006) with a 3 years spin-up

period at 0.03◦ x 0.03◦ resolution. Mean daily precipitation data are obtained from Famine
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Early Warning Systems Network ARC vesion 2 (FEWS-ARC2) [157], available at a spatial

resolution of 0.1◦ x 0.1◦. The daily gridded 2-metre temperature data is taken from the

ECMWF ERA-Interim reanalysis data at 0.75◦ x 0.75◦ spatial resolution [158], which are

then statistically downscaled to the model resolution assuming a lapse rate of 6.5 K km−1

to adjust to the high resolution topography. For each grid cell point, population density is

obtained from AFRIPOP [222], again interpolated to the model resolution using conserva-

tive remapping. AFRIPOP database links informations on contemporary census data across

Africa using geographical longitude and latitude position points.

VECTRI simulated EIR and PR results from, the nearest grid cell to each field survey

location were extracted for comparison. For each field survey of PR, the comparison to

climate variables is made this way. We take the average rainfall and temperature of:

• The second month preceding the study, M(-2);

• The month preceding the study, M(-1);

• The average of the preceding month and the study month, M(-1)+M(0);

• The average of the preceding two months, M(-2)+M(-1).

With this methodology we are accounting the fact that, there is an observed lag from 1 to 2

months between malaria and rainfall peaks and also because PR is a time-integrated; thus

smoothed quantity that reflects climatic conditions over the preceding period [16].

For the time series analysis of EIR, we instead compare directly to the time series of

climate variables for the observed period. As the precise days of surveys were not usually

available (only the month), there is then an uncertainty in the lag of 2 weeks.

2.3.3 Futures projections with VECTRI

Performances of VECTRI with observed temperature and rainfall to simulate malaria

metrics (PR and EIR) are demonstrated but, studies conducted under global warming are

still needed. Yet, such analyses might contribute to a long-term plan for disease prevention,

adaptation and to mitigate the parasite transmission. In this part, we couple VECTRI with

the atmospheric regional climate model RCA4 (VECTRI-RCA4) to address the issue. The

goal here is twofold: first, assess the ability of the combination VECTRI-RCA4 to model
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malaria metrics over Cameroon. Second, explore the impact of global warming under the

Representative Concentration Pathway (RCP) 2.6 and 8.5 on malaria distribution. Through

examination of projections, we hope to portray preliminary aspects of malaria propagation

in a warmer world over Cameroon, as well as to alert decision-makers about the challenges

and opportunities of mitigation. The study area is subdivide for the purpose in three agro-

climatic sub-regions as presented on figure 2.5.

Figure 2.5: Study domain, Highlighted in blue are the three agro-climatic sub-regions:

North Cameroon (NCAM), West Cameroon (WCAM) and East Cameroon (ECAM).

Climate inputs for VECTRI, specifically rainfall and temperature data at 0.44◦ grid spac-

ing are taken from the results of dynamical downscaling of the fourth version of the Rossby

Centre Atmospheric (RCA4) model, participating in the Coordinated Regional Climate

Downscaling Experiment (CORDEX) project. RCA4 was forced with five global climate

models (GCMs) involved in the Coupled Model Intercomparison Project phase 5 (CMIP5;

Taylor et al., 2012). Details of downscaled global climate models (GCMs) are provided in

Table 2.5.
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Table 2.5: Details of GCMs used to force RCA4

Model name Institution Native resolution References

EC-EARTH-ES European community Earth-System 1.125◦ x 1.125◦ [223]

Model Consortium

MPI-ESM-LR Max Planck Institute for Meteorology 1.9◦ x 1.9◦ [224]

MIROC-5 Atmosphere and Ocean Research Institute 1.40◦ x 1.40◦ [225]

NorESM1-M Norwegian Climate Centre 2.5◦ x 1.9◦ [226]

HadGEM2-ES Met Office Hadley Centre 1.875◦ x 1.25◦ [227]

Observed malaria PR data are obtained from the Malaria Atlas Project programme

(MAP) that collects results of individuals researchers or organizers already published in the

literature while EIR is obtained from a recent database for Africa [191].

VECTRI was first integrated from January 1985 through December 2005 using historical

data from the downscaled GCMs which is compared against simulations when VECTRI is

forced by the observation FEWS-ARC2, Famine Early Warning Systems Network ARC ver-

sion 2 ([157]) for rainfall and the reanalysis ECMWF ERA-Interim ([158]) for temperature.

Secondly, the model is integrated under global warming using two Representative Concen-

tration pathway scenarios: the high-mitigated, low-emission RCP2.6, and the low-mitigated,

high-emission RCP8.5 scenarios [228]. Using these two contrasted scenarios enables us to get

an insight into the way each warming level might impact the malaria metrics’ distribution.

Therefore, this offers the possibility to stimulate discussion about the opportunity or not to

mitigate the changing climate.

Population density is taken from AFRIPOP [222] for each grid cell point and to account

for the growth of the population in the malaria simulations. We fixed the population growth

parameter in VECTRI to be equal to the annual population growth rate in Cameroon, which

is 2.6 according to the results of the third National Population Census [131] taking advantage

of the fact that the model is dynamic. VECTRI simulations are performed with a 0.1◦ x 0.1◦

horizontal resolution. Driving data are statistically downscaled to the land model resolution

assuming a lapse rate of 6.5 K.km−1 to adjust to the high-resolution topography.
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Results and Discussions

3.1 Results

3.1.1 Parasite Ratio evaluation

The spatial maps of PR obtained are presented on figure 3.1. The PR value highlighted

here then represent the average of all the points located within the same coordinates.

The maps reveals a very heterogeneous landscape of malaria prevalence, particularly in

the observed surveys, but also in the model. It should be recalled that the surveys are taken

during different years and periods of the year, thus some of the variations are simply due to

changes in the climate at the survey time. Other factors such as interventions and population

movements will also impact prevalence, but will not be reflected in the model simulations.

Concerning the model, some regional biases stand out clearly. For example, the model pro-

duces PR values around 0.5 in the drier and warmer north east of the country, indicating

conditions that are borderline between meso and hyperendemic, while the prevalence in the

observations is far lower, indicating that the model is too sensitive to low rain rates.

To examine the relationship between PR and climate indicators in more details, the survey

data and model results are divided into bins according to the two key climatic drivers of

the disease: mean daily rainfall and temperature as mentioned in the methodology. Figure

3.2 presents the observed and simulated PR function of rainfall and temperature from the

second-month preceding the survey-month. Blue bars are field data while red ones are results

of simulations with VECTRI.
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Figure 3.1: Observed (a) and simulated (b) parasite ratio ranges for Cameroon data points.

The present maps highlight 36 points, which PR values represent the average of all the points

located within the same coordinates
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(a) Observed data

(b) VECTRI model

Figure 3.2: Observed and simulated parasite ratio, function of mean rainfall (mm/day),

temperature (◦C) from the second-month before the survey-month over Cameroon. Panels

plots present how parasite ratio fluctuates with ranges of rainfall and temperature for obser-

vations and simulations. The little bars indicate uncertainty, which for the observations is

based on a statistical test on the proportion given the total number of people surveys in each

bin. For the model the uncertainty measure is the standard deviation of the survey locations

in each bin.
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The field data shows the prevalence as measured by PR, it increases to a values between

22 to 26oC. It then falls off but in still non-zero in the locations with mean temperatures

above 30oC. The relationship with temperature is not smooth, as expected due to the fact

that climate is only one of many external factors that impact the prevalence from location to

location. The model produces a much sharper response to temperature, with low prevalence

in the 18-21oC range, and the peak transmission occurring around 26oC with prevalence far

higher than reported in the survey exceeding 80%. The response in PR to precipitation is

more distinct in the model than observations. The observations reveal an increase in PR

with increasing rainfall to a local maximum at 7 mm day−1. After the peak, PR decreases

with increasing rainfall with the exception of the final bins of 10-13 mm day−1. The model

instead peaks at a lower rainfall rate of 2 mm day−1, reducing thereafter, again with the

exception of the second last, high rainfall bin.

Figure 3.3 presents the observed and simulated PR function of rainfall and temperature

from the month preceding the survey-month. Again blue bars are field data while red ones

are results of simulations with VECTRI.
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(a) Observed data

(b) VECTRI model

Figure 3.3: Same as figure 3.2 but rainfall and temperature data are mean value for the

month preceding the survey-month.
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Field data shows the prevalence increasing to value between from 22 to 26oC and falls

again in the locations with mean temperatures above 30oC. The model response with the

temperature indicates peak of prevalence within 24-26oC but with a prevalence of more than

70% above 30oC. The response to precipitation is less distinct in the model than observations.

The observations reveal an increase in PR with increasing rainfall to a local maximum at

7 mm day−1 and decreases progressively till the finals bins. With the model the peak is

obtained at 2 mm day−1 the prevalence decreases progressively but there is an important

peak at 12 mm day−1.

Figure 3.4 that follow, presents the observed and simulated PR function of rainfall and

temperature, obtained by doing the mean of the survey-month and the preceding month.

Blue bars are field data while red ones are results of simulations with VECTRI.
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(a) Observed data

(b) VECTRI model

Figure 3.4: Same as figure 3.2 but rainfall and temperature data are mean value of the

survey-month and the preceding month.
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With the field data, PR maximises between 20 to 26oC. The model response to the

temperature is more smooth with the peak at 26oC. Rainfall response is more distinct with

the observed data than the model. For field data PR first shows a maximum at 4 mm day−1

with a prevalence value around 50% and decreases progressively till the finals bin where its

presents more important value above 60%, around 12 mm day−1.

Figure 3.5 below, shows the observed and simulated PR function of rainfall and tempera-

ture, obtained by doing the mean value of the preceding two months before the survey-month.

As before blue bars are observed data and red ones are results of VECTRI simulations.

(a) Observed data

(b) VECTRI model

Figure 3.5: Same as figure 3.2 but rainfall and temperature data are mean value of the

preceding two months before the survey-month.
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The observed data presents a maximum prevalence at 22oC while the model peaks at

26oC. Peak obtained with rainfall is at 7 mm day−1 for the field data and at 3 mm day−1

for the model, with a second peak within 11-12 mm day−1.

The PR is compared to population density assigned to three classes of rural (0 to 250

inhabitants per km2); peri-urban (250 to 1000 inhabitants per km2); and urban ( >1000

inhabitants per km2) according to Hay et al [229] (Fig. 3.6). PR reduces with increasing

population, but with the relationship much stronger in the model relative to observations,

a trait that was also observed by Tompkins et al [10] when comparing EIR as a function of

population to the survey data compiled by Kelly-Hope et al [62]. Thus the model appear to

overestimate malaria prevalence in rural locations and underestimate it in urban centres.

Figure 3.6: VECTRI and observed parasite ratio as a function of population density.

3.1.2 Seasonal EIR evaluation

The seasonal changes in monthly EIR for both model and observations for the sixteen (16)

sites are presented on the following figures 3.7, 3.8, 3.9 and 3.10.
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(a) Sanaga villages

4◦92’N, 11◦52’E

(b) Mbebe 3◦38’ N,

10◦12’ E

(c) Nkol-bikok 3◦87’N,

11◦52’E

(d) Nkol-bisson 3◦86’N,

11◦44’E

Figure 3.7: Observed and simulated Entomological Inoculation Rate. The value are given

in infective bites per person per month (ib/p/m).
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(a) Limbe 4◦02’N,

9◦19’E

(b) Tiko 4◦07’ N,

9◦35’E

(c) Likoko 4◦39’N,

9◦3’E

(d) Essuke-camp

4◦1’N, 9◦31’E

Figure 3.8: Observed and simulated Entomological Inoculation Rate. The value are given

in infective bites per person per month (ib/p/m).
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(a) Ebogo 3◦4’N,

11◦47’E

(b) Simbock 3◦5’ N,

11◦3’E

(c) Koundou 3◦9’N,

12◦12’E

(d) Ekombite 3◦12’N,

11◦83’E

Figure 3.9: Observed and simulated Entomological Inoculation Rate. The value are given

in infective bites per person per month (ib/p/m).
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(a) Ndogpassi

3◦48’N, 10◦08’E

(b) Nsimalen-

Nkol-mefou 3◦7’ N,

11◦58’E

(c) Nsimalen-

ekoko 3◦82’N,

12◦12’E

(d) Nsimalen-3

3◦72’N, 11◦55’E

Figure 3.10: Observed and simulated Entomological Inoculation Rate. The value are given

in infective bites per person per month (ib/p/m).

The EIR from the model and survey data clearly follows the rainfall patterns in the

study locations. The 2-months time lag period, after peak of rainfall is identified in Simbock,

Koundou, Ekombite and Ndogpassi. For the others sites, it is the 1-month lag time that is

noticed. In certain locations like Sanaga village, Mbebe, Simbock, or Nsimalen-Nkol-mefou,

the seasonality of EIR is reversed, with second peaks values of EIR occurring during the

relatively dry periods.
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The preceeding figures 3.7, 3.8, 3.9 and 3.10, can be can be resume on figure 3.11 below,

where the observed EIR have been scaled in order to ease the comparison.

(a) Observed EIR (ib/p/m)

(b) Simulated EIR (ib/p/m)

(c) Rainfall (mm/day)

Figure 3.11: Observed (a), simulated (b) monthly mean entomological inoculation rate

and (c) rainfall maps for the 16 EIR sites in Cameroon.
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On figure 3.11 each boxes on the rainfall grill presented at (c), has a correspondent one

on the maps of the observed (a) and simulated (b) EIR.

3.1.3 Forecasting malaria indicators

1. Model evaluation

This section aims at evaluating the ability of the RCA4 model to reproduce the clima-

tology of the study area as well as the VECTRI model to simulate malaria (malaria

metrics) observed data.

• RCA4 model evaluation

We started by investigating whether the atmospheric regional climate model

RCA4 satisfactorily reproduces the climatological mean of the Cameroon rain-

fall and temperature. We investigated the three agro-climatic sub-regions termed

North Cameroon (NCAM), West Cameroon (WCAM) and East Cameroon (ECAM)

(see figure 2.5). We present results based on the ensemble mean of RCM experi-

ments (RCA-EnsMean thereafter).
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Figure 3.12: Seasonality of mean (1985-2005) rainfall (in mm/day, left panels) and tem-

perature (◦C, right panels). The study area is subdivided into three agro-climatic regions:

(a,b) North Cameroon (NCAM, row 1), (c,d) West Cameroon (WCAM, row 2) and (e,f)

East Cameroon (ECAM, row 3). Data used are from RCA4 simulations and the ensem-

ble mean of RCM runs (RCA-EnsMean), and from observed rainfall FEWS-ARC2 (red),

CHIRPS2 (blue). The temperature reference is extracted from the ERA-Interim (cyan) re-

analysis dataset.

Figure 3.12 shows the seasonality of rainfall (left panels) and temperature (right

panels) over the three agro-climatic regions. The grey shade band is the standard

deviation obtained from the FEWS-ARC2 for precipitation, and from the reanal-

ysis ERA-Interim for the temperature. For a given month, a mean rainfall value

greater than the corresponding standard deviation is considered as a clear fail-

ing of the considered experiment. Two peaks are observed for rainfall in WCAM

(3.12a) and ECAM (3.12e) in May and October (highest peak at ∼ 12 mm/day

PhD Thesis MBOUNA DJOUDA Amelie



Results and Discussions 58

and ∼ 9 mm/day respectively), while NCAM experiences a unimodal rainfall

regime, with the peak (∼ 9 mm/day) occurring during August-September months

(3.12c). Although some divergences in terms of rainfall magnitude are noticed be-

tween datasets (more pronounced in NCAM), they all nevertheless vary within

the range of the observed standard deviation. The seasonality of temperature is

also well captured with the highest values in March and the ones in December

for WCAM (Figure 3.12b) and ECAM (Figure 3.12f). Two obvious peaks are

observed within April-May (upto 30◦C) and within November-December (upto

28◦C) for NCAM (Figure 3.12d). RCA-EC-EARTH failed to simulate the tem-

perature for NCAM from April to June (Figure 3.12d); from April to June and

from November to December over ECAM (Figure 3.12f). Overall, the climatolog-

ical annual cycle of both rainfall and temperature are realistically captured over

all subregions. The RCA-EnsMean is quite similar to individual RCM runs and

is well contained in the natural variability of observations. This suggests that the

ensemble mean of experiments is representative of individual simulations and can

be used without changing the conclusion.

Statistical performance measures are summarized in Figure 3.13, through the

Taylor diagram. Three statistical metrics are used, including the root-mean-square

difference (RMSD), the pattern correlation (r) and the standard deviation (STD),

computed between downscaled results and FEWS-ARC2 for precipitation, and

ERA-Interim for temperature used as a point of reference.
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Figure 3.13: Taylor diagrams displaying the statistics of daily precipitation and comparing

RCA4’s experiments and the ensemble mean (RCA-EnsMean) with observations FEWS-

ARC2 (reference field for precipitation). For temperature, the reanalysis ERA-Interim is used

as a point of reference. The first row shows statistical parameters over NCAM, the second

over WCAM and the third over ECAM. The first column displays statistical parameters for

precipitation while the second does so for temperature.

Regarding precipitation statistics, for NCAM and ECAM, RCA4’s experiments

and FEWS-ARC2 clustered but not so close to the reference field with average per-

formances (RMSD < 1; r ∼ 0.90, and STD <0.75). There are fewer performances

of RCA4’s model for WCAM compared to the reference field with 1<RMSD<1.5,

r ∼ 0.90 and 1<STD<1.5. For temperature, RCA4’s runs clustered and out-
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performed (compared to what was observed with precipitation) over the three

agro-climatic regions, with r ∼ 0.90, 0.5<RMSD<1 and STD<0.75.

• VECTRI model evaluation

Figure 3.14 presents how observed PR and EIR (blue lines) fit with simulated

values (red lines) over the different measurement stations. Here, simulated values

are results of the combination VECTRI-RCA-EnsMean, i.e. VECTRI driven by

RCA-EnsMean.

Figure 3.14: Results of combinations of VECTRI-observation (in blue) and VECTRI-RCA-

EnsMean (in red) for PR (left panel) and EIR (right panel), function of rainfall (mm/day)

and temperature (◦C) over Cameroon. The x-axis values represent the station number. The

two panels show how VECTRI forced with observed station measurements compares against

VECTRI forced with RCA-EnsMean.

The results show that, although there are differences between the two experiments,

the shapes of the curves are similar, meaning that the combination VECTRI-RCA-

EnsMean succeeds to detect the signal of individual stations. The differences can

be attributed to differences in rainfall amount and temperature. VECTRI outper-

forms in simulating EIR (right panel) than PR (left panel). It is important to recall

the challenge of assessing model performance over equatorial Africa given obser-

vational uncertainty. Some differences may be associated with inhomogeneities in

station measurements. The fact that the combination VECTRI-RCA-EnsMean

satisfactorily reproduces the signal of variation of PR and EIR in most stations

makes its usage reliable for projection. To get an insight into how the coupling
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VECTRI-RCA-EnsMean simulates the spreading of malaria over the country, we

showed in figure 3.15 the spatial distribution of the PR as modeled by VECTRI-

RCA-EnsMean compared against the monthly observed PR over the period 1985-

2005.

Figure 3.15: Observed (left) and simulated (right) monthly mean of PR for the available

data sites in Cameroon over the period 1985-2005. The PR values represent the average of

all the points located within the same geographical areas of study.

These spatial plots present a varied landscape of malaria PR over the country.

There are some simulated biases in NCAM where PR values are above 0.5 (figure

3.15b which is mostly dry and warm whereas in the observation, (figure 3.15a) the

mean PR is lower. Such a difference could be probably because, VECTRI model

is much more sensitive to low rainfall. For ECAM, the differences in PR between

observed and simulated values are more obvious compared to WCAM. The model

somehow outperforms better in these two areas compared to the NCAM.

2. Projected changes in the malaria metrics
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In this section, we explore the impacts of global warming on the aforementioned

malaria metrics under the optimistic (RCP2.6) and the pessimistic (RCP8.5) scenarios.

Analyses are conducted under two-time frames: the near future (2035-2065) and the

far future (2071-2100), using the combination VECTRI-RCA-EnsMean.

• Changes in the Parasite Ratio (PR)

Figures 3.16 exhibits the monthly mean changes in PR over the near future and

the far future under the high mitigated RCP2.6 scenario.

Figure 3.16: Monthly mean changes in PR under RCP 2.6 scenario. VECTRI model driven

by RCA4-EnsMean for the period 2035-2065 (a) and 2071-2100 (b).

Figure 3.16 presents the PR pattern obtained with RCA-EnsMean, under RCP 2.6

scenario. Results based on individual experiments are presented on the following

figures as follows: figure 3.17 for RCA4-EC-EARTH-ES, figure 3.18 for RCA4-

MPI-ESM-LR, figure 3.19 for RCA4-MIROC5, figure 3.20 for RCA4-HadGEM2

and figure 3.21 for RCA4-NorESM1-M. The PR tends to decrease when VECTRI

is forced with RCA4-EC-EARTH-ES (figure 3.17) experiment with respect to
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other VECTRI-RCA4 runs. Contrastingly, increases instead are expected in the

PR when VECTRI is driven by RCA4-HadGEM2 (figure 3.21).

Figure 3.17: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-EC-EARTH-ES for the period 2035-2065 (a) and 2071-2100

(b).

Figure 3.17 exhibits the monthly mean changes in PR over the near future and

the far future for RCA4-EC-EARTH-ES under RCP2.6 scenario.
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Figure 3.18: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-MPI-ESM-LR for the period 2035-2065 (a) and 2071-2100

(b).

Figure 3.18 exhibits the monthly mean changes in PR over the near future and

the far future for RCA4-MPI-ESM-LR under RCP2.6 scenario.

PhD Thesis MBOUNA DJOUDA Amelie



Results and Discussions 65

Figure 3.19: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-MIROC5 for the period 2035-2065 (a) and 2071-2100 (b).

Figure 3.19 exhibits the monthly mean changes in PR over the near future and

the far future for RCA4-MIROC5 under RCP2.6 scenario.
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Figure 3.20: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-HadGEM2 for the period 2035-2065 (a) and 2071-2100 (b).

Figure 3.20 exhibits the monthly mean changes in PR over the near future and

the far future for RCA4-HadGEM2 under RCP2.6 scenario.
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Figure 3.21: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-NorESM1-M for the period 2035-2065 (a) and 2071-2100

(b).

Figure 3.21 exhibits the monthly mean changes in PR over the near future and

the far future for RCA4-NorESM1-M under RCP2.6 scenario.

Figures 3.22 that follow, shows the monthly mean changes in PR over the near

future and the far future, under the low mitigated RCP8.5 scenario.
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Figure 3.22: Monthly mean changes in PR under RCP 8.5 scenario. VECTRI model driven

by RCA4-EnsMean for 2035-2065 (a) and 2071-2100 (b).

Figure 3.22 presents the PR pattern with RCA-EnsMean as forcing under RCP

8.5 scenario. Results based on individual forcings of VECTRI by RCA4 experi-

ments are highlighted on the following figures: figure 3.23 for RCA4-EC-EARTH-

ES, figure 3.24 for RCA4-MPI-ESM-LR, figure 3.25 for RCA4-MIROC5, figure

3.26 for RCA4-HadGEM2 and figure 3.27 for RCA4-NorESM1-M. The increase

in the PR is strongest when VECTRI is coupled with RCA4-HadGEM2 (figure

3.26).
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Figure 3.23: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-EC-EARTH-ES for the period 2035-2065 (a) and 2071-2100

(b).

Figure 3.23 presents the monthly mean changes in PR over the near future and

the far future for RCA4-EC-EARTH-ES, under RCP8.5 scenario.
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Figure 3.24: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-MPI-ESM-LR, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.24 presents the monthly mean changes in PR over the near future and

the far future for RCA4-MPI-ESM-LR, under RCP8.5 scenario.
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Figure 3.25: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-MIROC5, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.25 presents the monthly mean changes in PR over the near future and

the far future for RCA4-MIROC5, under RCP8.5 scenario.
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Figure 3.26: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-HadGEM2 for the period 2035-2065 (a) and 2071-2100 (b).

Figure 3.26 presents the monthly mean changes in PR over the near future and

the far future for RCA4-HadGEM2, under RCP8.5 scenario.
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Figure 3.27: Monthly estimated PR projecting the fraction of the population being infected.

VECTRI model driven by RCA4-NorESM1-M for the period 2035-2065 (a) and 2071-2100

(b).

Figure 3.27 presents the monthly mean changes in PR over the near future and

the far future for RCA4-NorESM1-M, under RCP8.5 scenario.

Under the high emission scenario RCP8.5 (figure 3.22), obvious differences be-

tween the near (figure 3.22a) and the far (Fig. 3.22b) future appears in the am-

plitude of changes in the PR. The PR generally tends to decrease from March to

July, especially over NCAM and increase during the rest of the year, especially

over WCAM and ECAM.

• Changes in the Entomological Inoculation Rate (EIR)

Figure 3.28 displays maps of monthly mean changes in the EIR pattern when

VECTRI is forced by RCA4-EnsMean under RCP2.6.
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Figure 3.28: Monthly estimated changes in EIR indicating the number of infected bites per

person per month (ib/p/m). This is obtained for the RCP 2.6 scenario from the coupling

VECTRI-RCA4-EnsMean over the periods 2035-2065 (a) and 2071-2100 (b).

Broadly under RCP2.6, EIR is projected to decrease from April to July in NCAM

and during March in WCAM (Figure 3.28a). In the distant future, the EIR is

expected to reduce from March to April, especially over NCAM (Figure 3.28b).

Over WCAM and ECAM subregions, an intensification of EIR is projected from

April to November whereas insignificant changes will occur for December and

January.

For individual RCA4 model simulations, results are shown in the following figures

(Figures 3.29, 3.30, 3.31, 3.32 and 3.33). EIR tends to gradually increase when

VECTRI is forced with RCA4-HadGEM2 (figure 3.32), from June (WCAM and

ECAM) to November with a peak in August-September (NCAM). There is a

decrease in projections using rainfall and temperature from RCA4-EC-EARTH-

ES (figure 3.29) whereas fewer changes are expected in EIR with RCA4-NorESM1-

M (figure 3.33).
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Figure 3.29: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-EC-EARTH-ES, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.29 highlights the monthly mean changes in EIR over the near future and

the far future for RCA4-EC-EARTH-ES, under RCP2.6 scenario.
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Figure 3.30: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-MPI-ESM-LR, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.30 highlights the monthly mean changes in EIR over the near future and

the far future for RCA4-MPI-ESM-LR, under RCP2.6 scenario.
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Figure 3.31: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-MIROC5, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.31 highlights the monthly mean changes in EIR over the near future and

the far future for RCA4-MIROC5, under RCP2.6 scenario.
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Figure 3.32: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-HadGEM2, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.32 highlights the monthly mean changes in EIR over the near future and

the far future for RCA4-HadGEM2, under RCP2.6 scenario.
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Figure 3.33: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-NorESM1-M, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.33 highlights the monthly mean changes in EIR over the near future and

the far future for RCA4-NorESM1-M, under RCP2.6 scenario.

The following figure 3.34 presents maps of monthly mean changes in the EIR

pattern when VECTRI is forced by RCA4-EnsMean under RCP8.5 .
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Figure 3.34: Monthly estimated changes in EIR, indicating the number of infected bites per

person per month (ib/p/m). Results obtained from the coupling VECTRI-RCA-EnsMean

under the RCP8.5 scenario and over 2035-2065 (a) and 2071-2100 (b) periods.

Under RCP8.5, EIR is expected to decrease significantly over almost the en-

tire study area during March and April months and especially over NCAM from

May to June (figures 3.34a and 3.34b ). Conversely, EIR is projected to increase

over WCAM and ECAM from May to November, and over NCAM from July

to November. No particular changes are foreseen over almost the whole country

from December to February, except for a small part of southern Cameroon where

a strengthening of the EIR is noted in December and a weakening in February

over the two projection periods.

Results with the coupling VECTRI-RCA4-EC-EARTH-ES, VECTRI-RCA4-MPI-

ESM-LR, VECTRI-RCA4-MIROC5, VECTRI-RCA4-HadGEM2 and VECTRI-

RCA4-NorESM1-M are presented in Figures 3.35, 3.36, 3.37, 3.38 and 3.39 re-

spectively.
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Figure 3.35: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-EC-EARTH-ES, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.35 shows the monthly mean changes in EIR over the near future and the

far future for RCA4-EC-EARTH-ES, under RCP8.5 scenario.
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Figure 3.36: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-MPI-ESM-LR, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.36 shows the monthly mean changes in EIR over the near future and the

far future for RCA4-MPI-ESM-LR, under RCP8.5 scenario.
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Figure 3.37: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-MIROC5, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.37 shows the monthly mean changes in EIR over the near future and the

far future for RCA4-MIROC5, under RCP8.5 scenario.
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Figure 3.38: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-HadGEM2, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.38 shows the monthly mean changes in EIR over the near future and the

far future for RCA4-HadGEM2, under RCP8.5 scenario.

PhD Thesis MBOUNA DJOUDA Amelie



Results and Discussions 85

Figure 3.39: Monthly estimated EIR that indicates the number of infected bites per person.

VECTRI model driven by RCA4-NorESM1-M, period 2035-2065 (a) and 2071-2100 (b).

Figure 3.39 shows the monthly mean changes in EIR over the near future and the

far future for RCA4-NorESM1-M, under RCP8.5 scenario.

3.2 Discussions

3.2.1 Parasite Ratio

The temperature and rainfall sensitivity to the parasite ratio (PR) data is broadly in line

with earlier work. Favourable temperature ranges that support Plasmodium falciparum par-

asite transmission via Anopheles species, is generally between 18◦C and 33◦C [33]. Simple

models of the temperature impact on the proportion of female adult vectors surviving long

enough for the parasite to complete the sporogonic cycle and permit transmission suggest

that, transmission should peak at temperatures of approximately 28 to 32◦C [38]. Although

these calculations are sensitive to the form of the adult mortality curve used and the tem-

perature relationship with malaria remains poorly constrained. More recently, suggestions

have been made that, accounting for the temperature sensitivity of the vector larvae stages,

results in a cooler peak temperature of around 25◦C [230]. Analysis of malaria indicators in
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Uganda and Rwanda reveals the peaks of malaria transmission occurring at 28◦C and 26◦C

respectively [231], while in Malawi, cases monotonically increa sed with temperature to the

maximum temperature of 28◦C [111]. In Cameroon, we found that the observed (surveyed)

PR is maximum in the 22 to 26oC range, although there is a gap in the survey sampling

in the 27 to 31oC range, and a warmer peak temperature can not be precluded. The model

similarly produces peak PR at 26oC, in agreement with the survey data and previous work.

The precipitation relationship is more complex, with PR maximised in survey data at 7 mm

day−1. Usually moderate rainfall events are suitable for immature mosquitoes to complete

the aquatic development stage, and emerge as adults [45]. Intense rains may cause flooding

and flush out larvae from the habitats leading to a decrease in mosquito density [45, 232].

The survey data appears to be in good agreement with previous studies. In Botswana, cases

peaked at a rainfall rate of approximately 4 mm day−1, in Malawi the peak occurred at a high

value of just over 6 mm day−1 [111] while in Uganda and Rwanda, highest cases numbers are

associated with rainfall between 4 to 6 mm day−1 and 4 to 8 mm day−1, respectively [231].

Available models will find it difficult to reproduce such prevalence survey data perfectly,

due to many simplified assumptions used in malaria models. Even considering the climate-

sensitive life-cycle processes that are accounted for, the model parameters are spatially and

temporally homogeneous. For example, VECTRI hydrological scheme that determine the

pond creation and subsequent loss through evaporation and infiltration are spatially con-

stant, the temperature offset of breeding sites relative to the air temperature also. Moreover,

many processes and factors that affect prevalence are not accounted for at all in the model,

population movements are neglected, same as those of the vectors, no information on inter-

ventions usage, and the model for transmission in the host is extremely simple, neglecting

superinfection and incorporating a very simple treatment of immunity. It could be argued

that the data is not available to improve many of these aspects. That said, it is encouraging

that the model at least manages to reproduce the underlying climate sensitivities revealed

in the survey data.

Concerning the population density relation, PR in the survey data reduces as population

density increases. This agrees with previous work [66], for instance, in Burkina Faso epidemi-

ological profiles and clinical malaria transmission patterns tend to be high in rural compared

to urban environments [44]. A review of entomological studies conducted across sub-Saharan
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Africa countries demonstrated that the higher number of annual Plasmodium falciparum

EIR were reported in rural populations, where population density < 100 inhabitants per

km2. However, low EIR were measured in urban areas where population density > 1000

inhabitants per km2 [62]. This effect is also apparent in the model, but the model appears to

exaggerate the effect, tending to be higher relative to observations for rural settings, while

under predicting PR in urban centres. For example, one survey conducted in central Yaounde

by Quakyi et al [129], with a prevalence of 0.5 to 0.6 revealed in the sampled population of

231 people. The population density in this location exceeds 9000 people km−2 and at such

high densities the model fails to sustain transmission. One key process in such central ur-

ban locations is likely to be population movements, neglected in the model at present, with

many of the cases likely to be imported. Other factors also impacts differences between rural

and urban areas which are challenging to include in the model, for example, urban zones

are associated with low transmission due to factors such as limited available breeding sites,

improved environmental conditions, easy access to control interventions, housing types and

among others [233]. For instance, Cameroon national malaria control programme reported

that bed nets are more used in urban than rural zones [234]. Most of these social and en-

vironmental factors would act to increase disparities between rural and urban transmission,

thus the crucial importance of mobility can not be overlooked. In addition, the fact that the

model neglects superinfection will also act to exaggerate the population density impact. In

the model’s simple SEIR approach, once an infective bite results in successful transmission

event, the host moves to an infective state. The impact of large inoculations of multiple

strains when many infectious bites are recorded is not included, thus that individuals en-

hanced capacity to further transmit the disease is neglected. This would lead to the model

overestimating the population dilution effect.

3.2.2 Entomological Inoculation Rate

In the survey data for the 16 EIR-sites, the EIR closely follows the seasonality of rainfall

with a lag of approximately one month. The EIR maximises in April, May and June while

the second peak is observed in October, November and December. The observed seasonal

variability of EIR agrees with variability in reported malaria cases, with high case numbers

observed during and after rainy seasons [234]. In Nkoteng for example, Cohuet et al [11]

revealed that malaria transmission intensity reaches its peak in April during the rainy season.

In a related study in Niete (South Cameroon), Bigoga et al [125] found a lower EIR during
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dry season (1.09 ibp−1n−1) compared to rainy season (2.3 ibp−1n−1). Similarly, comparing

Simbock and Etoa districts, Quakyi et al [129] found similar difference between rainy and

dry seasons but a high disparity was observed for Etoa. They measured 1.9 ibp−1n−1 and

1.2 ibp−1n−1 for wet and dry seasons, respectively for Simbock and 2.4 ibp−1n−1 and 0.4

ibp−1n−1 for Etoa during the wet and dry season respectively.

The survey data for EIR in Sanaga villages, Mbebe, and Simbock contrasts strongly, and

produces a seasonality of EIR which appears to be completely out of phase with the rainfall,

with EIR at a maximum during the dry season, precisely January to March (for Sanaga

villages and Mbebe) and January (for Simbock), behaviour that VECTRI was unable to

capture. One possible explanation for this disparity could be linked to their geographical sit-

uation and local hydrology. Simbock is located at about 100m from the Mefou river creating

a permanent swamp [198], while Sanaga villages and Mbebe are situated in the vicinity of

the Sanaga river as presented on figure 3.40.

Figure 3.40: Sanaga villages and Mbebe locations, situated at the vicinity of the Sanaga

river.

Rivers can support mosquito breeding by providing permament source of water for aquatic

stage development; which is the case for Anopheles funestus, Anopheles nili and Anopheles

gambiae [194]. Anopheles nili usually breeds among the grass on the edges of the river and

can be a key driver of malaria transmission in such environments [193]. However, the influence

of rivers as potentiel breeding sites is enhanced during the dry season when flow is in the

ability of standing pools leading to the proliferation of ideal breeding sites for Anopheles

vectors [235, 136, 236]. The Mefou river was also found during the dry season, to provide

breeding opportunities for Anopheles funestus within the emergent vegetation in swamps
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along its edges [237]. The Sanaga river particularly undergoes a strong seasonal cycle in

discharge, with flow at a minimum in February to April, with just a small fraction of the

peak discharge during these months as presented on the following figure 3.41

Figure 3.41: Sanaga discharge during dry period [238].

Thus it seems in Sanaga villages and Mbebe, peak in malaria is associated with the

minimum in the Sanaga river flow, and an enhancement in ponding. As this version of

VECTRI does not account for permanent breeding site associated with river systems, with

enhanced ponding in low flow periods, it is not able to reproduce the seasonal cycle in EIR

here.

3.2.3 PR and EIR projections from VECTRI

From figure 3.16a PR is projected to increase throughout the year with emphasis from

October to March over the near future. A similar pattern is observed over the far future

(figure 3.16b), where the PR tends to mostly increase over WCAM and decreases during the

April month in NCAM. The PR is projected to significantly decrease in the distant future

than in the near future.

The above results indicate that global warming would not much change the life cycles of

the Anopheles mosquito and the malaria parasite plasmodium falciparum. Actually, rainfall

creates suitable conditions (availability of ponds) for the mosquitoes breeding process. But

extreme rainfall could negatively impact the productivity of mosquito breeding habitat by
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flushing effect which leads to high mosquito losses ([53]). This is observed in Figures 3.16

and 3.22 from April to September referring to rainfall patterns presents on the following

figures 3.42 and 3.43.

Figure 3.42: Monthly mean rainfall from 2035-2065 (a) and 2071-2100 (b) with RCP 2.6

RCA4-EnsMean.
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Figure 3.43: Monthly mean rainfall from 2035-2065 (a) and 2071-2100 (b) with RCP 8.5

RCA4-EnsMean.

Moreover, PR tends to intensify with temperature values less than 32◦C as presented on

the following figures 3.44 and 3.45.
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Figure 3.44: Monthly mean 2m-temperature from 2035-2065 (a) and 2071-2100 (b) with

RCP 2.6 RCA4-EnsMean.

Figure 3.45: Monthly mean 2m-temperature from 2035-2065 (a) and 2071-2100 (b) with

RCP 8.5 RCA4-EnsMean.

PhD Thesis MBOUNA DJOUDA Amelie



Results and Discussions 93

This is associated with the fact that there is a range of temperatures that allows malaria

transmission. In fact, the temperature is able to create good conditions for malaria vectors

to thrive. Generally, the increase in temperature accelerates vector life cycles and also de-

creases the incubation period of the parasite ([239]). This result is in line with previous

studies conducted over Cameroon. They showed that the temperature suitability range for

Anopheles gambiae and Anopheles funestus is between 20◦C to 29◦C ([240]). Similar results

were reported over the Limpopo Province in South Africa ([241]). However, at a very high

temperature, mortality is high thus reducing transmission ([242]), which corresponds to the

situation expected in NCAM (figure 3.22 from April to July), and previously reported by

[243], and [244].

Changes in EIR presented in figures 3.28 and 3.34 can be explained by the suitable range of

temperature of 18-33◦C ([33]) of the study area as highlighted in figures 3.44 and 3.45. But it

should be recalled that temperatures above 30◦C are prejudicial for anopheles development,

and therefore leading to a decrease in EIR as demonstrated in [245].

EIR pattern is stronger in the far future than in the near future and vice-versa (figures

3.28 and 3.34). In general, the signal of change is stronger under RCP 8.5 than RCP 2.6,

meaning an increased risk with the increased level of the radiative forcing. A similar study

conducted by [246] over India showed that under global warming, malaria transmission is

expected to strengthen together with the duration of the transmission season. The EIR

results also highlight the important role of changes in rainfall and temperature on malaria

incidence and show the seasonality of the disease. Similar work also demonstrated that a

decline in precipitation is beneficial for the growth of the mosquito population, which causes

higher EIR ([247]). Our study also attests to general expectations with regard to the impact

of global warming on the spread of malaria. It is generally accepted that climate change

will affect the spread of malaria as mentioned by [248], but it is also noted that malaria

distribution is impacted by many factors in addition to climate change, including population

mobility, changes in land use, changes in air and water temperatures, and the systematic

increase in preventive interventions which, VECTRI has not yet incorporated and which

should prompt future work.
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This work is an initial exploration of the relationship between Climate and Malaria indi-

cators in Cameroon. The relation between climate and two common malaria indicators of

parasite ratio (PR) and Entomological Inoculation rate (EIR) were examined, using a com-

prehensive of survey data for PR and others surveys for EIR that enabled the seasonality of

transmission intensity to be examined. While many factors can impact malaria transmission,

the established boards relationships of malaria climate drivers were apparent in the survey

data, with PR increasing with temperature until a peak within 22-26oC and thereafter re-

ducing, with peak prevalence occurring at rainfall rates at 7 mm day−1. The analysis also

confirmed previous research regarding the impact of population density, with PR higher in

rural areas relative to urban areas.

The seasonal cycle of the EIR revealed very contrasting behaviour between peri-urban

sites, and rural sites situated closely by the Sanaga or the Mefou river. In the peri-urban

sites, the EIR seasonality closely follows that of the rainfall, with maxima lagging rainfall

peaks by one to two months. Instead, in rural areas the EIR seasonality is out of phase

with rainfall and peaks in March-April when the Sanaga discharge is at its annual minimum,

indicating a strong role for the pooling in the river-bed in providing seasonal breeding sites

for vectors.

The malaria model is able to reproduce some of these broad traits of the malaria transmis-

sion indicators, with a similar relationship between PR and the mean temperatures, while

the prevalence peaks at a lower value of rainfall. The model also reproduces the reduction in

PR with increasing population. In general the model produces a too high contrast between

areas of high and low transmission relative to the surveys, indicating that a mixing effect,

most likely in the form of human migration patterns is lacking in the model in addition to

the lack of superinfection. The model is able to reproduce the seasonality of the EIR only in

the locations where transmission intensity closely follows temporary breeding sites resulting
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directly from rainfall, and it could not produce the dry season peak in the locations near the

Sanaga river where breeding sites occur due to low stream flow and Mefou river as well.

For each of the models used under the two RCP scenarios, the impact of temperature on

the evolution of malaria indicators is established and the seasonality is highlighted for the

PR and EIR metrics. The integration of VECTRI with future climate scenarios reveals a

modulator effect of changes in temperature and rainfall on changes in malaria transmission.

Although factors like population mobility, effective intervention strategies against malaria

are likely to improve VECTRI if they are implemented.

The limitations of this study relates to the fact that temperatures in the study area are

limited to 2m air temperature. There is also a need to reduce uncertainties and errors in the

climate forecasting and the malaria modelling system itself. Thus while there are numerous

simplifications and neglected processes in the model, it would appear that the coupling of the

malaria transmission scheme with a model to represent human population movements [249],

and the improved representation of breeding sites due to permanent and semi-permanent

water sources features such as rivers, lakes and dams should be a priority. The next step

in line of this work is to ascertain how best to incorporate such as model effectively into a

national or regional decision-making process concerning health planning and interventions.

If the model is to be used to aid operational decisions in Cameroon, the use of machine

learning techniques to calibrate the model parameters more effectively will be required, such

as that recently introduced in Tompkins et al [202].
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RESEARCH

Modelled and observed mean and seasonal 
relationships between climate, population 
density and malaria indicators in Cameroon
Amelie D. Mbouna1,2* , Adrian M. Tompkins2, Andre Lenouo3, Ernest O. Asare4, Edmund I. Yamba5 
and Clement Tchawoua1

Abstract 
Background: A major health burden in Cameroon is malaria, a disease that is sensitive to climate, environment and 
socio-economic conditions, but whose precise relationship with these drivers is still uncertain. An improved under-
standing of the relationship between the disease and its drivers, and the ability to represent these relationships in 
dynamic disease models, would allow such models to contribute to health mitigation and adaptation planning. This 
work collects surveys of malaria parasite ratio and entomological inoculation rate and examines their relationship with 
temperature, rainfall, population density in Cameroon and uses this analysis to evaluate a climate sensitive mathemat-
ical model of malaria transmission.

Methods: Co-located, climate and population data is compared to the results of 103 surveys of parasite ratio (PR) 
covering 18,011 people in Cameroon. A limited set of campaigns which collected year-long field-surveys of the 
entomological inoculation rate (EIR) are examined to determine the seasonality of disease transmission, three of the 
study locations are close to the Sanaga and Mefou rivers while others are not close to any permanent water feature. 
Climate-driven simulations of the VECTRI malaria model are evaluated with this analysis.

Results: The analysis of the model results shows the PR peaking at temperatures of approximately 22 °C to 26 °C, 
in line with recent work that has suggested a cooler peak temperature relative to the established literature, and at 
precipitation rates at 7 mm day−1, somewhat higher than earlier estimates. The malaria model is able to reproduce 
this broad behaviour, although the peak occurs at slightly higher temperatures than observed, while the PR peaks at 
a much lower rainfall rate of 2 mm day−1. Transmission tends to be high in rural and peri-urban relative to urban cen-
tres in both model and observations, although the model is oversensitive to population which could be due to the 
neglect of population movements, and differences in hydrological conditions, housing quality and access to health-
care. The EIR follows the seasonal rainfall with a lag of 1 to 2 months, and is well reproduced by the model, while in 
three locations near permanent rivers the annual cycle of malaria transmission is out of phase with rainfall and the 
model fails.

Conclusion: Malaria prevalence is maximum at temperatures of 24 to 26 °C in Cameroon and rainfall rates of approxi-
mately 4 to 6 mm day−1. The broad relationships are reproduced in a malaria model although prevalence is highest at 
a lower rainfall maximum of 2 mm day−1. In locations far from water bodies malaria transmission seasonality closely 
follows that of rainfall with a lag of 1 to 2 months, also reproduced by the model, but in locations close to a seasonal 
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Background
Malaria is a life-threatening disease caused by parasites 
that are transmitted through the bites of infected mos-
quitoes [1]. Globally the disease is present and endemic 
in tropical regions where the climate and hydrological 
conditions are suitable for the vector survival and devel-
opment of the parasite. In Cameroon, malaria has always 
been and still remains a major health problem [2]. It is 
a major endemic illness and the leading cause of mor-
bidity and mortality in the country. Children aged 0 to 5 
and pregnant women are the most vulnerable category 
with a total of 22% of morbidity and mortality risk [3, 4]. 
Moreover the 2000–2010 national health report precise 
that the disease was responsible for medical consulta-
tion (40–45%), morbidity (50%), deaths in children under 
five (40%), deaths in health institutions (30 to 40%), days 
spent in hospital (57%) and sick leave (26%) in the coun-
try [2, 5].

Intervention strategies have recently been increased 
by the national programme to fight malaria, in the form 
of free distribution of insecticide-treated mosquito nets 
(ITNs) and free consultation and treatment of uncom-
plicated malaria in children under 5  years [2]. The high 
incidence of malaria in Cameroon is not surprising due 
to the presence of the three key vectors: namely Anophe-
les gambiae, Anopheles funestus and Anopheles arabiensis 
across the country [6, 7]. In terms of species distribu-
tion, Hamadou et  al. [8] found that An. gambiae alone 
accounts for 90%, with the remaining 10% made up of An. 
funestus and An. arabiensis.

As in other sub-Saharan African countries [9–13], 
there is a spatio-temporal variation in malaria trans-
mission across ecological zones in Cameroon (namely, 
the Soudano-Sahelian zone, the Adamaoua plateau, the 
Savannah-forest, the south equatorial forest, the western 
plateau and the costal zone [14]). The peak transmission 
period is related to the key periods of rainfall with a delay 
of 1 or 2 months for the vector/parasite cycles to amplify, 
as temperatures are usually within the range that support 
both mosquito survival and parasite development [15, 
16]. During the monsoon season, temporary transient 
ponds and puddles become abundant, and can serves as 
potential breeding habitats for malaria vectors [11]. Tem-
peratures are important for regulating the intensity of 
transmission however, as they impact the life cycles and 
mortalities rate of the vector as well as the sporogonic 
cycle of the parasite [17].

While the broad relationships between climate and 
malaria transmission are broadly under-stood, the exact 
nature of is still uncertain. Regarding the temperature 
relationship, earlier work [17] suggested that falciparum 
transmission increased above a threshold of approxi-
mately 18  °C to peak at a temperature of around 28 to 
32  °C, decreasing thereafter due to the higher mortal-
ity of the adult vector. Ermert et al. [18] highlighted the 
large uncertainty of vector mortality at warm tempera-
tures, while more recently, incorporation of new data and 
knowledge of the temperature sensitivity larvae stages of 
the vector has led to the suggestion that the transmission 
peak in fact occurs at considerably cooler temperatures 
[19–21].

In view of this uncertainty, the first aim of this work is 
to relate the malaria prevalence as measured by the para-
site ratio (PR) gathered from a large number of field sur-
veys to the mean climate in each locations in the months 
preceding the field survey, using data mostly gathered 
in the period before the large scale up of interventions. 
While such an analysis can reveal broad time-averaged 
relationships between malaria and climate, it cannot 
inform on the seasonality of the disease. Firstly, the prev-
alence is a time-integrated metric of the disease due to 
slow natural clearance times, with immune individuals 
often having low background parasite counts continu-
ously in endemic areas [22, 23], and additionally field PR 
surveys are isolated in time. A better metric for season-
ality is the transmission rate, as measured by the ento-
mological inoculation rate (EIR), the number of infective 
bites per person per unit time. A newly released database 
of EIR is thus utilized [24], which contains year-long 
records of monthly EIR measurements in order to be 
able to examine the seasonality of disease transmission in 
Cameroon.

Many previous studies have shown how vicinity to 
breeding sites could be a key determinant of hazard of 
exposure to the disease [25–28], but few have studied 
how water proximity may alter the seasonality of dis-
ease transmission. Away from permanent water bod-
ies, one expects the disease transmission to track the 
occurrence of seasonal rains closely, as these provide 
the temporary breeding sites preferred by the vector 
An. gambiae [29, 30], but with a temperature-deter-
mined delay of 1 to 2  months due to the “spin-up” 
amplification of the vector and parasite life cycles [27, 
31]. Vicinity to breeding sites that may form near the 

river the seasonality of malaria transmission is reversed due to pooling in the transmission to the dry season, which 
the model fails to capture.

Keywords: Malaria, Climate, Cameroon, Parasite ratio, Entomological inoculation rate
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edges of permanent water bodies, such as lakes, may 
reduce the seasonal variation of transmission, or may 
even reverse the relationship altogether in the case of 
river systems that are either intermittent or perennial 
but subject to large seasonal flow variations, and that 
may form large-scale pooling during their transition to 
the dry season [32].

In addition to climate, differences in population density 
contribute to the observed variability in malaria transmis-
sion intensity between rural, peri-urban and urban set-
tings [33], due to land use patterns, density of households, 
access to social and health services and the dilution effect 
[34]. Thus, analysis are also made on how population 
density may influence the malaria diagnostics. If the cli-
mate and population link to malaria can be represented in 
dynamical models [35–37], these models can act as useful 
tools to understand how climate trends, extreme seasonal 
anomalies or variability associated with, for example, the 
El Nino southern oscillation, may potentially affect trans-
mission and such models could possibly be used for miti-
gation or adaptation decision support. The second aim of 
this paper is to use the malaria-climate-population analy-
sis to evaluate gridded simulations of malaria transmis-
sion made with dynamical malaria model that accounts 
for both population density and climate.

Methods
Study area and climate data
The study is conducted in Cameroon situated in cen-
tral Africa within 1.5–13° N and 8–17° E with others 
neighbouring countries (Fig.  1). The country climate 
is influenced by the Harmattan and the Atlantic Mon-
soon winds. Cameroon is characterized by two climatic 
domains: the tropical climatic domain that stretches to 
the north, extending into the Sahel zone (~ 8° to 13° N) 
[38, 39] and the humid equatorial domain that covers the 
rest of the country (~ 1.5° to 8° N).

The equatorial domain is characterized by heavy rain-
fall events, with increasing temperatures and a degrading 
vegetation as one moves far from the Equator [40]. It pre-
sents two rainy seasons with abundant rainfall that can 
reach 2200  mm  year−1 and two dry seasons with aver-
age temperature of 25° C [41]. The tropical area, which is 
usually recognized with high temperatures (up to 33 °C) 
and low rainfall (maximum of 1500 mm year−1), presents 
one rainy and one dry season [38, 41]. The mean rainfall 
and temperature of Cameroon and neighbours countries 
from 1985 to 2006 shows higher rainfall intensity in the 
western and coastal part of the country and increasing 
mean temperature moving north towards the Soudano-
Sahelian zone (Fig. 1).

Fig. 1 Map of Cameroon and neighbouring countries showing mean 
rainfall and temperature from 1985 to 2006. a Rainfall (mm/day); b 
temperature (°C)
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Malaria data
Two malaria indicators are used in this study. The para-
site ratio (PR) expresses the pro-portion of individu-
als infected at a given point in time [42]. A publicly 
available database of parasite ratio is obtained from the 
Malaria Atlas Project (MAP) programme [43]. The pub-
lic PR database consists of data collected by individuals 
researchers or organizations and published in literature, 
which were collected within the MAP programme. Since 
there is no continuous measurement of PR, the available 
PR data with georeferenced coordinates are used. The 
location of the PR surveys is given in Fig. 2, which shows 
that the majority of surveys are located in the west or the 
far north, ant east of the country. In total, 103 surveys are 
used, with a total of 18,011 people tested in these sur-
veys, with the survey dates ranging from 1985 to 2006.

All database entries have been quality controlled in 
terms of data collection methodology and geographical 
location to ensure continuity across the 20-year collec-
tion period. In addition to climate, population density 
and vicinity to water, many other factors may influence 
malaria transmission such as socioeconomic condi-
tions, conflict, breakdown in health services, population 
movements and interventions, which are challenging to 
account for, not least due to lack of availability of data. 
As long as these factors are not correlated with spatial 
or temporal variability of climate, they will act as a form 
of noise in the analysis, increasing scatter in the climate-
malaria relationships, but not obscuring them completely 

if climate is a significant driver of malaria variability. This 
is also the case for data inaccuracies and uncertainties in 
both the climate due to instrument error and sampling 
uncertainty [44] and health records. One complication 
might be if these facts lead to slow trends over the period, 
but this would most likely be associated with ramping 
up of interventions (climate trends are captured in the 
analysis) and this period predates the large-scale up of 
interventions that occurred in Cameroon that could con-
found the climate-malaria relationship. In addition, there 
have been entomological studies but none found changes 
is vector distribution during this period, and we assume 
that such changes would thus not have affected the mean 
climate-malaria relationships.

The second malaria indicator is the entomological 
inoculation rate (EIR), which measures the number of 
infected bites received per person for a given period of 
time [43], and as such is an indicator of the malaria trans-
mission intensity. It is often calculated as the product 
of the human biting rate (HBR) and the sporozoite rate. 
HBR represents the number of bites per person per day, 
while the sporozoite rate is the fraction of vector mosqui-
toes that are infectious [45]. A new database of monthly 
EIR values has been constructed from various sources 
for all Africa by Yamba et al. [24], with the emphasis on 
long term field studies lasting at least a year in order to 
be able to study the seasonality of malaria transmission. 
For Cameroon, the database has recorded 16 sites with 
validated data presented in the following Table 1.

The rarity of long-term, continuous monthly EIR 
records that allow the analysis of seasonality, necessitates 
the use of data from 30  years ago, but we reiterate that 
this has the advantage that recent upscaling of (some-
times seasonal) interventions does not obfuscate the 
analysis. The availability of data for only 2 years in time 
precludes any analysis of longer terms changes in season-
ality that may be associated with climate warming which 
could potentially be significant [57]. The EIR data sites 
are highlighted on Fig. 2 below.

VECTRI malaria model
The VECToR borne disease model of ICTP (VECTRI) 
is an open source gridded distributed dynamical model, 
that couples a biological model for the vector and para-
site life cycles, to a simple compartmental Suceptible-
Exposed-Infectious-Recovered (SEIR) representation of 
the disease progression in the human host. The model 
runs using daily time step temperature and rainfall data, 
but also accounts for the population density which is 
important for the calculation of daily biting rates [37]. 
The model incorporates several parameterizations 
schemes for larvae, adult vector and parasite develop-
ment rates, which are both temperature sensitive, as are Fig. 2 Map highlighting all the studies locations
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the larvae and adult vector daily survival. Larvae sur-
vival, especially in the early development stages, is also 
impacted negatively by intense precipitation through the 
inclusion of a flushing effect [58]. The model also allows 
for over-dispersive biting rates and incorporates a sim-
ple treatment of host immunity [59]. Another feature of 
the model is that it also includes a simple treatment of 
rain-driven pond formation and loss through evaporation 
and infiltration [29, 60, 61]. The model allows the user to 
specify a permanent water breeding fraction but this is 
not used in the experiments reported here. VECTRI sim-
ulates several parameters that help in assessing malaria 
incidence. Among them are the parasite ratio and ento-
mological inoculation rate.

In this study, the model is integrated for 22  years 
(1985–2006) with a 3-year spin-up period at 0.03° × 0.03° 
resolution. Mean daily precipitation data are obtained 
from Famine Early Warning Systems Network ARC 
vesion 2 (FEWS-ARC2) [62], available at a spatial resolu-
tion of 0.1° × 0.1°. The daily gridded 2 m temperature data 
is taken from the ECMWF ERA-Interim reanalysis data 
at 0.75° × 0.75° spatial resolution [63], which are then sta-
tistically downscaled to the model resolution assuming a 
lapse rate of 6.5 K km−1 to adjust to the high resolution 
topography. For each grid cell point, population den-
sity is obtained from AFRIPOP [64], again interpolated 
to the model resolution using conservative remapping. 
AFRIPOP database links informations on contempo-
rary census data across Africa using geographical longi-
tude and latitude position points. After the integration is 
complete, the nearest grid cell to each field survey loca-
tion is extracted for comparison. When the comparison 

to climate variables is made, for each field survey of PR, 
the average rainfall and temperature from the preceding 
2 months are used, in order to account for the observed 
lag of 1 to 2  months between malaria and rainfall and 
the fact that PR is a time-integrated and thus smoothed 
quantity that reflects climatic conditions over the preced-
ing period [27]. For the time series analysis of EIR, com-
parisons are made directly to the time series of climate 
variables for the observed period. As the precise days of 
surveys were not usually available, only the month, then 
there is an uncertainty in the lag of 2 weeks.

Results
Parasite ratio evaluation
The spatial maps of PR (Fig.  3) reveals a very heteroge-
neous landscape of malaria prevalence, particularly in 
the observed surveys, but also in the model. It should be 
recalled that the surveys are taken during different years 
and periods of the year, thus some of the variations are 
simply due to changes in the meteorology between sur-
vey times. Other factors such as interventions and pop-
ulation movements will also impact prevalence, but will 
not be reflected in the model simulations. Concerning 
the model, some regional biases stand out clearly. For 
example, the model produces PR values around 0.5 in the 
drier and warmer north east of the country, indicating 
conditions that are borderline between meso and hyper-
endemic, while the prevalence in the observations is far 
lower, indicating that the model is too sensitive to low 
rain rates.

To examine the mean relationship between PR and cli-
mate in more details, the survey and model results are 

Table 1 Sites of EIR data points used in Cameroon

Site Location Longitude Latitude Period References

1 Sanaga village 11.52 4.92 April 1989–March 1990 [46]

2 Mbebe 10.12 3.38 April 1989–March 1990 [47]

3 Nkol-bikok 11.52 3.87 March 1989–February 1990 [15]

4 Nkol-bisson 11.44 3.86 April 1989–March 1990 [15]

5 Limbe 9.19 4.02 August 2001–June 2002 [48]

6 Tiko 9.35 4.07 August 2001–June 2002 [48]

7 Likoko 9.3 4.39 October 2002–September 2003 [49]

8 Essuke-camp 9.31 4.1 October 2004–September 2005 [50]

9 Ebogo 11.47 3.4 April 1991–March 1992 [51]

10 Simbock 11.3 3.5 January 1999–December 1999 [52]

11 Koundou 12.12 3.9 June 1997–May 1998 [53]

12 Ekombite 11.83 3.12 January 2007–December 2007 [54]

13 Nsimalen-Ekoko 12.12 3.82 April 1991–March 1992 [55]

14 Nsimalen-Nkol-mefou 11.58 3.62 April 1991–March 1992 [55]

15 Nsimalen-3 11.55 3.72 April 1991–March 1992 [55]

16 Ndogpassi 10.08 3.48 January 2011–December 2011 [56]
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divided into bins according to the two key climatic driv-
ers of mean rainfall and temperature (Fig.  4). The field 
studies show the prevalence as measured by PR increases 
to a broad maximum from 22 to 26  °C. Prevalence then 

falls off but in still non-zero in the locations with mean 
temperatures above 30oC. The relationship with tem-
perature is not smooth, as expected due to the fact that 
climate is only one of many external factors that impact 
the prevalence from location to location. The model pro-
duces a much sharper response to temperature, with low 
prevalence in the 18–21  °C range, and the peak trans-
mission occurring around 26  °C with prevalence far 
higher than reported in the survey exceeding 80%. The 
response in PR to precipitation is more distinct in the 
model than observations. The observations reveal an 
increase in PR with increasing rainfall to a local maxi-
mum at 7 mm day−1. After the peak, PR decreases with 
increasing rainfall with the exception of the two bins of 
11–13  mm  day−1. The model instead peaks at a lower 
rainfall rate of 2  mm  day−1, reducing thereafter, again 
with the exception of the second last, high rainfall bin.

The PR ratio is compared to population density 
assigned to three classes of rural (0 to 250 inhabitants 
per  km2); peri-urban (250 to 1000 inhabitants per  km2); 
and urban (> 1000 inhabitants per  km2) according to Hay 
et  al. [65]. The results are shown on Fig.  5. PR reduces 
with increasing population density, but with the rela-
tionship much stronger in the model relative to observa-
tions, a trait that was also observed by Tompkins et  al. 
[37] when comparing EIR as a function of population to 
the survey data compiled by Kelly-Hope et al. [33]. Thus, 
the model appears to overestimate malaria prevalence in 
rural locations and underestimate it in urban centres.

Seasonal EIR evaluation
The seasonal changes in monthly EIR for both model and 
observations during the study period for the sixteen loca-
tions as well as rainfall are presented in Fig. 6. The EIR in 
the model follows the patterns in rainfall in the studies 
locations with EIR lagging rainfall peaks by 1 to 2 months 
in each case. It is also the case for the survey data except 
in Ekombitie where the value are higher all year long. In 
certain locations like Sanaga village, Mbebe or Simbock, 
EIR seasonality is reversed, with peaks EIR values occur-
ring during the relatively dry periods.

Discussion
The temperature and rainfall sensitivity of the prevalence 
data is broadly in line with earlier works [66–68]. Favour-
able temperature ranges that support Plasmodium falci-
parum transmission via Anopheles species, is generally 
between 18 and 33 °C [69]. Simple models of the temper-
ature impact on the proportion of female adult vectors 
surviving long enough for the parasite to complete the 
sporogonic cycle and permit transmission suggest that, 
transmission should peak at temperatures of approxi-
mately 28 to 32  °C [70]. Although these calculations are 

Fig. 3 Observed (a) and simulated (b) monthly mean parasite ratio 
values for 36 sites in Cameroon. The PR values represent the average 
of all the points located within the same coordinates
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Fig. 4 Observed and simulated parasite ratio, function of rainfall (mm/day) and temperature (°C) over Cameroon. Panels plots present how parasite 
ratio fluctuates with ranges of rainfall and temperature for observations and simulations. The bars indicate uncertainty, which for the observations 
is based on a statistical test on the proportion given the total number of people surveys in each bin. For the model the uncertainty measure is the 
standard deviation of the survey locations in each bin. a Observed data, b VECTRI model
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sensitive to the form of the adult mortality curve used 
and the temperature relationship with malaria remains 
poorly constrained. More recently suggestions have been 
made that, accounting for the temperature sensitivity 
of the vector larvae stages, results in a cooler peak tem-
perature of around 25 °C [19]. Analysis of malaria indica-
tors in Uganda and Rwanda reveals the peaks of malaria 
transmission occurring at 28  °C and 26  °C, respectively 
[71]. In the Zomba district in Malawi, a study found 
that malaria spread is at peak when temperature is at 
24  °C [72]; while in the whole country cases monotoni-
cally increased with temperature to the maximum tem-
perature sampled of 28 °C [12]. In Cameroon, the analysis 
reveals that the prevalence measured in surveys is max-
imum in the 22 to 26  °C range, although there is a gap 
in the survey sampling in the 27 to 31  °C range, and a 
warmer peak temperature cannot be precluded. The 
model similarly produces peak PR at 26  °C, in approxi-
mate agreement with the survey data and previous work.

The precipitation relationship is more complex, with 
PR maximized in survey data at 7  mm  day−1. Usually 
moderate rainfall events are suitable for immature mos-
quitoes to complete the aquatic development stage, and 
emerge as adults [58]. Intense rains may cause flood-
ing and flush out larvae from the habitats leading to a 
decrease in mosquito density [58, 73]. The survey data 
appears to be in good agreement with previous stud-
ies. In Botswana, cases peaked a rainfall rate of approxi-
mately 4  mm  day−1, in Malawi the peak occurred at a 
high value of just over 6 mm day−1 [12] while in Uganda 
and Rwanda, highest cases numbers are associated with 
rainfall between 4 to 6 mm day−1 and 4 to 8 mm day−1, 
respectively [71].

No model will be able to reproduce such prevalence 
survey data perfectly, a model is necessarily a gross-sim-
plification of reality. Even considering the climate-sensi-
tive life-cycle processes that are accounted for, the model 
parameters are spatially and temporally homogeneous. 
For example, the hydrological parameters that determine 
the pond creation and subsequent loss through evapora-
tion and infiltration are spatially constant, the tempera-
ture offset of breeding sites relative to the air temperature 
also. Moreover, many processes and factors that affect 
prevalence are not accounted for at all in the model, 
population movements are neglected, as are those of the 
vectors, no information on interventions is used, and the 
model for transmission in the host is extremely simple, 
neglecting superinfection and incorporating a very sim-
ple treatment of immunity. It could be argued that the 
data is not available to improve many of these aspects. 
That said, it is encouraging that the model at least man-
ages to reproduce the underlying climate sensitivities 
revealed in the survey data.

Concerning the population sensitivity, PR in the sur-
vey data reduces as population density increases. This 
agrees with previous work [74], for instance, in Burkina 
Faso epidemiological profiles and clinical malaria trans-
mission patterns tend to be high in rural compared to 
urban environments [24]. A review of entomological 
studies conducted across sub-Saharan Africa countries 
demonstrated that the higher number of annual Plasmo-
dium falciparum EIR were reported in rural populations, 
where population density < 100 inhabitants per  km2. 
However,

low EIR were measured in urban areas where popula-
tion density > 1000 inhabitants per  km2 [33]. This sen-
sitivity is also apparent in the model, but the model 
appears to exaggerate the effect, tending to be higher 
relative to observations for rural settings, while under 
predicting PR in urban centres. For example, one sur-
vey was conducted in central Yaoundé by Quakyi et  al. 
[75], with a prevalence of 0.5 to 0.6 revealed in the sam-
pled population of 231 people. The population density in 
this location exceeds 9000 people  km−2 and at such high 
densities the model fails to sustain transmission. One 
key process in such central urban locations is likely to be 
population movements, neglected in the model at pre-
sent, with many of the cases likely to be imported. Other 
factors also impacts differences between rural and urban 
areas which are challenging to include in the model, for 
example, urban zones are associated with low transmis-
sion due to factors such as limited availability of breed-
ing sites, improved environmental conditions, easy access 
to control interventions, housing types and among oth-
ers [76]. For instance, Cameroon National Malaria Con-
trol Programme reported that bed nets are more used in 

Fig. 5 VECTRI and observed parasite ratio as a function of population 
density
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Fig. 6 Observed (a), simulated (b) monthly mean entomological inoculation rate and c rainfall maps for the 16 EIR sites in Cameroon
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urban than rural zones [77]. Most of these latter social 
and environmental impacts would act to increase dis-
parities between rural and urban transmission, thus the 
crucial importance of mobility cannot be overlooked. In 
addition, the fact that the model neglects superinfection 
will also act to exaggerate the population density impact. 
In the model’s simple SEIR approach, once an infective 
bite results in successful transmission event, the host 
moves to an exposed state. The impact of large inocula-
tions of multiple strains when many infectious bites are 
recorded is not included, thus that individuals enhanced 
capacity to further transmit the disease is neglected. This 
would lead to the model overestimating the population 
dilution effect.

In the survey data for the 16 EIR-sites, the EIR closely 
follows the seasonality of rainfall with a lag of approxi-
mately 1  month. The EIR maximizes in April, May and 
June while the second peak is observed in October, 
November and December. The observed seasonal vari-
ability of EIR agrees with variability in reported malaria 
cases, with high case numbers observed during and 
after rainy seasons [77]. In Nkoteng for example, Cohuet 
et  al. [78] showed that malaria transmission intensity 
reaches its peak in April during the rainy season. In a 
related study in Niete (South Cameroon), Bigoga et  al. 
[79] found a lower EIR during dry season (1.09  ibp−1n−1) 
compared to rainy season (2.3  ibp−1n−1). Similarly, 

comparing Simbock and Etoa districts, Quakyi et al. [75] 
found similar difference between rainy and dry seasons 
but a high disparity was observed for Etoa. They meas-
ured 1.9  ibp−1n−1 and 1.2  ibp−1n−1 for wet and dry sea-
sons, respectively for Simbock and 2.4  ibp−1n−1 and 
0.4  ibp−1n−1 for Etoa during the wet and dry season, 
respectively.

The survey data for EIR in Sanaga villages, Mbebe, and 
Simbock contrasts strongly, and produces a seasonality 
of EIR which appears to be completely out of phase with 
the rainfall, with EIR at a maximum during the dry sea-
son, precisely January to March (for Sanaga villages and 
Mbebe) and (for Simbock), behaviour that VECTRI was 
unable to capture. One possible explanation for this dis-
parity could be linked to their geographical situation and 
local hydrology. Simbock is located at about 100 m from 
the Mefou river creating a permanent swamp [52], while 
Sanaga villages and Mbebe are situated in the vicinity of 
the Sanaga river as presented on Fig. 7.

Rivers can and do support vectors at ponds formed 
at their edges, in particular An. funestus, and indeed 
the forested locations typical of these sites have identi-
fied Anopheles nili, An. gambiae and An. funestus as key 
malaria vectors [47]. Anopheles nili usually breeds among 
the grass on the edges of the river and can be a key driver 
of malaria transmission in such environments [46]. How-
ever, when such river systems are not managed, their 

Fig. 6 continued
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impact on breeding sites can sometimes be enhanced 
during the dry season when flow is restricted and a large 
increase in the availability of standing pools can occur, 
constituting a proliferation of ideal breeding sites for 
Anopheles vectors [32, 80, 81]. The Sanaga river par-
ticularly undergoes a strong seasonal cycle in discharge, 
with flow at a minimum in February to April, with just a 
small fraction of the peak discharge during these months 
[82]. Thus, it seems in Sanaga villages and Mbebe, peak 
in malaria is associated with the minimum in the Sanaga 
river flow, and an enhancement in ponding. As this ver-
sion of VECTRI does not account for permanent breed-
ing site associated with river systems, with enhanced 
ponding in low flow periods, it is not able to reproduce 
the seasonal cycle in EIR here.

Conclusion
The relation between climate and two common malaria 
indicators of parasite ratio (PR) and entomological inoc-
ulation rate (EIR) were examined in Cameroon, using a 
comprehensive of survey data for PR and others sur-
veys for EIR that enabled the seasonality of transmission 
intensity to be examined. While many factors can impact 
malaria transmission, the established boards relation-
ships of malaria climate drivers were apparent in the.

survey data, with PR increasing with temperature until 
a peak within 22–26  °C and thereafter reducing, with 
peak prevalence occurring at rainfall rates at 7 mm day−1. 
The analysis also confirmed previous research regarding 
the impact of population density, with PR higher in rural 
areas relative to urban areas.

The seasonal cycle of the EIR revealed very contrast-
ing behaviour between peri-urban sites, and rural sites 
situated closely by the Sanaga or the Mefou river. In the 
peri-urban sites, the EIR seasonality closes follows that 

of the rainfall, with maxima lagging rainfall peaks by 1 to 
2 months. Instead, in rural ones the EIR seasonality is out 
of phase with rainfall and peaks in March–April when 
the Sanaga discharge is at its annual minimum, indicating 
a strong role for the pooling in the river-bed in providing 
seasonal breeding sites for vectors.

The malaria model is able to reproduce some of these 
broad traits of the malaria transmission indicators, with 
a similar relationship between PR and the mean tempera-
tures, while the prevalence peaks at a lower value of rain-
fall. The model also reproduces the reduction in PR with 
increasing population. In general, the model produces a 
too high contrast between areas of high and low trans-
mission relative to the surveys, indicating that a mixing 
effect, most likely in the form of human migration pat-
terns is lacking in the model in addition to the lack of 
superinfection. The model is able to reproduce the sea-
sonality of the EIR only in the locations where transmis-
sion intensity closely follows temporary breeding sites 
resulting directly from rainfall, and it cannot produce 
the dry season peak in the locations near the Sanaga 
river where breeding sites occur due to low rain flow 
and Mefou river as well. Thus, while there are numerous 
simplifications and neglected processes in the model, it 
would appear that the coupling of the malaria transmis-
sion scheme with a model to represent human popula-
tion movements [83], and the improved representation 
of breeding sites due to semi-permanent features such 
as rivers, lakes and dams should be a priority. In general, 
the model produces infectious biting rates that exceed 
those observed, and it is likely that, if the model is to be 
used to aid operational decisions in Cameroon, the use 
of machine learning techniques to calibrate the model 
parameters more effectively will be required, such as that 
recently introduced in Tompkins et al. [44].

Fig. 7 Sanaga villages and Mbebe locations, situated at the vicinity of the Sanaga river
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Abstract
Malaria is a critical health issue across the world and especially in Africa. Studies based on dynamical models helped to 
understand inter-linkages between this illness and climate. In this study, we evaluated the ability of the VECTRI community 
vector malaria model to simulate the spread of malaria in Cameroon using rainfall and temperature data from FEWS-ARC2 
and ERA-interim, respectively. In addition, we simulated the model using five results of the dynamical downscaling of the 
regional climate model RCA4 within two time frames named near future (2035–2065) and far future (2071–2100), aim-
ing to explore the potential effects of global warming on the malaria propagation over Cameroon. The evaluated metrics 
include the risk maps of the entomological inoculation rate (EIR) and the parasite ratio (PR). During the historical period 
(1985–2005), the model satisfactorily reproduces the observed PR and EIR. Results of projections reveal that under global 
warming, heterogeneous changes feature the study area, with localized increases or decreases in PR and EIR. As the level of 
radiative forcing increases (from 2.6 to 8.5 W.m−2), the magnitude of change in PR and EIR also gradually intensifies. The 
occurrence of transmission peaks is projected in the temperature range of 26–28 °C. Moreover, PR and EIR vary depending 
on the three agro-climatic regions of the study area. VECTRI still needs to integrate other aspects of disease transmission, 
such as population mobility and intervention strategies, in order to be more relevant to support actions of decision-makers 
and policy makers.

Keywords PR · EIR · Global warming · RCA4 · VECTRI

Introduction

The World Health Organization (WHO report 2015) reports 
that malaria remains one of the most important killer dis-
eases in the world. Eighty-two percent of the cases and 94% 
of deaths are recorded in Africa. Malaria, therefore, is the 
primary cause of mortality and morbidity in Africa (WHO 

report 2008). This disease is endemic in tropical and sub-
tropical areas, and sub-Saharan African countries continue 
to be the most affected. Specifically in Cameroon, the illness 
is the leading cause of mortality and morbidity with chil-
dren under five and pregnant women being the most affected 
(Bandolo 2012). In 2006, there were approximately 5 million 
cases of malaria in the country (WHO report 2008), making 
the disease the country’s priority health issue.

Malaria is caused by a parasite which is a protozoan from 
the genus plasmodium and transmitted to people through 
the bites of infected female mosquitoes. A single bite by a 
malaria-carrying mosquito can lead to extreme sickness or 
death. Malaria starts with extreme cold, followed by a high 
fever and severe sweating. These can be accompanied by 
joint pain, abdominal pain, headaches, vomiting and extreme 
tiredness.

Malaria disease is very sensitive to climatic conditions, 
and in tropical areas, the disease is prevalent (Bomblies 
and Eltahir 2009), because of the abundance of mosqui-
toes’ breeding sites and favourable weather conditions. The 
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link between climate and malaria is well documented. In 
fact, rainfall and temperature influence the life cycles of the 
anopheles’ mosquito vector as well as the malarial para-
site plasmodium falciparum (Lindsay et al. 2000; Abiodun 
et al. 2018). Temperature determines the length of the mos-
quito cycle and the sporogonic cycle of the malarial para-
site within the mosquito (Hajison et al., 2017; Egbendewe-
Mondzozo et al. 2011). Rainfall provides suitable temporary 
water bodies (breeding sites) for mosquitoes to grow and 
develop (Komen et al 2015; Garske et al. 2013). But extreme 
rainfall appears to be harmful to mosquito development, as 
it flushes out mosquitoes from their aquatic habitat and kills 
them (Paaijmans et al., 2007).

The disease sensitivity to climate can also be demon-
strated using models. In fact, considerable efforts are made 
by scientists by constructing some mathematical models to 
forecast malaria distribution. For instance, Ayanlade et al. 
(2020) demonstrated the modulator effect of rainfall and 
temperature indices on malaria propagation with a high 
Spearman correlation coefficient for rainfall as well as tem-
perature. Ermert et al. (2012) using the Liverpool malaria 
model (LMM) demonstrated the strong influence of changes 
in rainfall and temperature on the malaria distribution in 
various ecological African zones. Diouf et al. (2017) also 
established with the LMM that the risk of malaria trans-
mission is mainly associated with variability in rainfall and 
temperature.

Among studies related to climate change and malaria, Ye 
et al. (2007) found that rainfall and temperature significantly 
influence the malaria’s incidence with emphasis on tempera-
ture. In some West African countries, Diouf et al. (2020) 
demonstrated that the malaria’s high transmission periods 
are directly linked to heavy rainfall events. Malaria ende-
micity would be little affected by climate change (Beguin 
et al. 2011). This suggests that warm temperatures (due 
to global warming) are likely to increase or/and decrease 
malaria in endemic areas. In fact, high temperatures could 
significantly impact growing conditions of the mosquito. 
However, the temperature might not be the only factor as 
the WHO’s report in 1975 highlighted the migration’s effect 
of population from endemic zones to free malaria areas on 
the dynamics of the malaria disease. This aspect is supported 
by previous work by Ngarakana-Gwasira et al. (2016). In 
addition, the impact of global warming on the health is not 
expected to be homogenous across regions as Costello et al. 
(2009) argued.

Numerous studies across Africa (e.g. Peterson 2009, 
Yamana et al. 2016) project a gradual southward shift of 
malaria from the Sahelian zones of the West African, includ-
ing northern Cameroon. This may suggest unfavourable con-
ditions for malaria proliferation by the 2080s (Caminade 
et al. 2014). Other studies demonstrated inconsistencies 
between projected changes in malaria spread and global 

warming, especially over the Sahel (Beguin et al. 2011; 
Escobar et al. 2016).

A study conducted by Asare and Amekudzi (2017) using 
the Abdus Salam International Centre for Theoretical phys-
ics (ICTP) vector borne disease model (VECTRI) also simu-
lated malaria transmission dynamics at both national and 
local scales in Ghana and specified the predominant role of 
rainfall. Mbouna et al. (2019) modelled the malaria distri-
bution over Cameroon using the VECTRI malaria model. 
They showed that malaria prevalence is maximum at tem-
peratures of 24 to 26 °C and rainfall rates of approximately 
4 to 6 mm/day. This rainfall amount features a smaller rate 
in locations far from water bodies and where the transmis-
sion seasonality is close to that of rainfall with a lag of 1 to 
2 months (also found by Diouf et al. 2020), satisfactorily 
simulated by the VECTRI model. The particularity of the 
VECTRI model is that apart from temperature and rainfall, 
it pays particular attention to the human population density’s 
modulator effect on the malaria transmission and distribu-
tion (Caminade et al. 2014).

Although several studies demonstrated the performances 
of VECTRI coupled with temperature and rainfall to simu-
late malaria metrics, studies conducted under global warm-
ing are still needed. Yet, such analyses might contribute to a 
long-term plan for disease prevention, adaptation and miti-
gation of the transmission. Therefore in the present study, 
we use the VECTRI model with the atmospheric regional 
climate model RCA4 (VECTRI-RCA4) to address the issue. 
The goal of the study is twofold: first, assess the ability of 
the combination VECTRI-RCA4 to model malaria metrics 
over Cameroon and, second, explore the impact of global 
warming under the Representative Concentration Pathway 
(RCP) 2.6 and 8.5 on malaria distribution. Through exami-
nation of projections, we hope to portray preliminary aspects 
of malaria propagation in a warmer world over Cameroon, 
as well as alerting decision-makers to the challenges and 
opportunities for mitigation. The paper is organized as fol-
lows: the “Data and methods” section describes the data and 
methods used. The “Results and discussion” section presents 
the obtained results and discusses the key findings. A sum-
mary concludes this work in the “Conclusion” section.

Data and methods

Study area

Our study domain is Cameroon, located over Central Africa 
within latitudes 1.5°N–13°N and longitudes 8°E–17°E, an 
area covering other neighbouring countries as presented in 
Fig. 1.

Cameroon’s climate varies from humid in the south to 
arid and hot in the north. Cameroon’s climate is particularly 



International Journal of Biometeorology 

1 3

influenced by the Harmattan and the Atlantic Monsoon 
winds and is then characterized by two climatic domains, 
namely the tropical and the equatorial domain (Zaroug 
and Reynolds 2006; Molua and Lambi 2007). The area has 
also been subdivided into three agro-climatic sub-regions, 
namely the North Cameroon (NCAM), West Cameroon 
(WCAM) and East Cameroon (ECAM).

VECTRI malaria model

The model used in this work is an open-source, the Abdus 
Salam International Centre for Theoretical Physics (ICTP) 
vector borne disease model (VECTRI). VECTRI is a grid 
distributed dynamical model that couples a biological 
model for the vector and parasite life cycles, to a simple 

Fig. 1  Map of Cameroon and neighbouring countries. Highlighted in blue are the three agro-climatic sub-regions: North Cameroon (NCAM), 
West Cameroon (WCAM) and East Cameroon (ECAM)
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compartmental Susceptible-Exposed-Infectious-Recovered 
(SEIR) representation of the disease progression in the 
human host. VECTRI has the particularity to incorporate 
interactions between the human host (H) and vectors using 
the human biting rate (hbr) expressed as presented in Eq. 1 
as follows (Tompkins and Ermert 2013).

The factor 1-exp(-H/τz00) represents the level of vector 
zoophily. The exponential factor reflects this, with the 
e-folding population density for the effect set to 
τzoo = 50  km−2. The vector status is also bin resolved, con-
sisting of two properties: the gonotrophic and sporogonic 
cycles. It is thus represented as a two dimensional array 
V(Ngono, Nsporo). All vectors in the first gonotrophic bin 
∑Nsporo

j=1
V(1, j) are in the meal-searching step of the model.

The probability of transmission of an infectious vector 
to the host after a single bite is noted as  Pvh. If its value 
is assumed constant, then the probability of transmission 
for an individual receiving n infection bites is given by 
1 − (1 −  Pvh)n. The daily overall transmission probability 
per person is then expressed as in Eq. 2 (Tompkins and 
Ermert 2013):

GEIR is the Poisson distribution for mean entomological 
inoculation rate (EIR). EIR, which is the daily number of 
infectious bites by infectious vectors, is calculated as the 
product of human biting rate (hbr) and circumsporozoite 
protein rate (CSPR). Equation 2 is subject to modification 
if factors such as the use of mosquito nets, which cause 
fluctuations in the biting rate, are to be taken into account. 
Generally, a population host has about 20 days after infec-
tion to assume the infective status (Day et al. 1998). The 
calculation of parasite ratio (PR) and EIR relies on both 
Eqs. 1 and 2 of the VECTRI model. Further information 
on the physical and mathematical formulation is available 
in the supplementary material.

(1)hbr =
(

1 − e
−H

!zoo

)

∑Nsporo

j=1
V(1, j)

H

(2)P
!→h =

∑∞

n=1
G

EIRd

(n)
(

1 −
(

1 − P
!h

)n)

Data used

Climate inputs for VECTRI, specifically rainfall and temper-
ature data at 0.44° grid spacing,are taken from the results of 
dynamical downscaling of the fourth version of the Rossby 
Centre Atmospheric (RCA) model (RCA4), participating in 
the Coordinated Regional Climate Downscaling Experiment 
(CORDEX) project. RCA4 was forced with five global cli-
mate models (GCMs) involved in the Coupled Model Inter-
comparison Project phase 5 (CMIP5; Taylor et al. 2012). 
Details of downscaled GCMs are provided in Table 1.

Observed malaria PR data are obtained from the Malaria 
Atlas Project programme (MAP) that collects results of indi-
viduals researchers or organizers already published in the 
literature while EIR is obtained from a recent database for 
Africa (Yamba et al. 2020).

VECTRI was first integrated from January 1985 through 
December 2005 using historical data from the downscaled 
GCMs which is compared against simulations when VEC-
TRI is forced by the observation FEWS-ARC2, Famine 
Early Warning Systems Network ARC version 2 (Love 
2002) for rainfall and the reanalysis ECMWF ERA-Interim 
(Dee et al. 2011) for temperature. Secondly, the model is 
integrated under global warming using two Representa-
tive Concentration Pathway scenarios: the high-mitigated, 
low-emission RCP2.6 and the low-mitigated, high-emission 
RCP8.5 scenarios (Vuuren et al. 2011). Using these two 
contrasted scenarios enables us to get an insight into the 
way each warming level might impact the malaria metrics’ 
distribution over Cameroon. Therefore, this offers the pos-
sibility to stimulate discussion about the opportunity or not 
to mitigate the changing climate.

Population density is taken from AFRIPOP (Linard 
et al. 2012) for each grid cell point in order to account for 
the growth of the population in the malaria simulations. 
We set the population growth parameter in VECTRI to be 
equal to the annual population growth rate in Cameroon, 
which is 2.6 according to the results of the third National 
Population Census (Mbarga 2010) taking advantage of the 
fact that the model is dynamic. VECTRI’s simulations are 
performed with a 0.1° × 0.1° horizontal resolution. Driv-
ing data are statistically downscaled to the land model 

Table 1  Details of GCMs used 
to force RCA4 in this study Model name Institution Native resolution References

EC-EARTH-ES European community Earth-System 
Model Consortium

1.125◦ × 1.125◦ Hazeleger et al. (2010)

MPI-ESM-LR Max Planck Institute for Meteorology 1.9◦ × 1.9◦ Popke et al. (2013)
MIROC-5 Atmosphere and Ocean Research Insti-

tute (University of Tokyo)
1.40◦ × 1.40◦ Watanabe et al. (2011)

NorESM1-M Norwegian Climate Centre 2.5◦ × 1.9◦ Bentsen et al. (2013)
HadGEM2-ES Met Office Hadley Centre 1.875◦ × 1.25◦ Collins et al. (2011)
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resolution assuming a lapse rate of 6.5 K  km−1 to adjust 
to the high-resolution topography.

Results and discussion

Models’ evaluation

This section aims at evaluating the ability of the RCA4 
model to reproduce the climatology of the study area as 
well as the VECTRI model to simulate malaria (malaria 
metrics) observed data.

RCA4 model evaluation

We started by investigating whether the atmospheric regional 
climate model RCA4 satisfactorily reproduces the mean cli-
matology of Cameroon rainfall and temperature. To this, 
we investigated the three agro-climatic sub-regions termed 
North Cameroon (NCAM), West Cameroon (WCAM) and 
East Cameroon (ECAM) (see Fig. 1). Only the results based 
on the ensemble mean of RCM experiments (RCA-EnsMean 
thereafter) are presented in the main document, whereas out-
comes from individual RCM simulations are shown in the 
supplementary material.

Figure 2 shows the seasonality of rainfall (left panels) 
and temperature (right panels) over the three agro-climatic 
regions. The grey shade band is the standard deviation 

Fig. 2  Seasonality of mean (1985–2005) rainfall (in mm/day, left 
panels) and temperature (in °C, right panels). The study area is subdi-
vided into three agro-climatic regions: a, b North Cameroon (NCAM, 
row 1), c, d West Cameroon (WCAM, row 2) and e, f East Came-

roon (ECAM, row 3). Data used are from RCA4 simulations and the 
ensemble mean of RCM runs (RCA-EnsMean) and from observed 
rainfall FEWS-ARC2 (red), CHIRPS2 (blue). The temperature refer-
ence is extracted from the ERA-Interim (cyan) reanalysis dataset
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obtained from the FEWS-ARC2 for precipitation and from 
the reanalysis ERA-Interim for the temperature. For a given 
month, a mean rainfall value greater than the corresponding 
standard deviation is considered as a clear failing of the con-
sidered experiment. Two peaks are observed for rainfall in 
WCAM (Fig. 2a) and ECAM (Fig. 2e) in May and October 
(highest peak at ∼12 mm/day and ∼9 mm/day respectively), 
while NCAM experiences a unimodal rainfall regime, with 
the peak (~ 9 mm/day) occurring during August to Septem-
ber months (Fig. 2c). Although some divergences in terms 
of rainfall magnitude are noticed between datasets (more 
pronounced in NCAM), they all nevertheless vary within the 
range of the observed standard deviation. The seasonality of 
temperature is also well captured with the highest values in 
March and the ones in December for WCAM (Fig. 2b) and 
ECAM (Fig. 2f). Two obvious peaks are observed within 

April to May (up to 30 °C) and within November to Decem-
ber (up to 28 °C) for NCAM (Fig. 2d). RCA-EC-EARTH 
failed to simulate the temperature for NCAM from April to 
June (Fig. 2d); from April to June and from November to 
December over ECAM (Fig. 2f). Overall, the climatological 
annual cycle of both rainfall and temperature are realisti-
cally captured over all subregions. The RCA-EnsMean is 
quite similar to individual RCM runs and is well contained 
in the natural variability of observations. This suggests that 
the ensemble mean of experiments is representative of indi-
vidual simulations and can be used without changing the 
conclusion.

Statistical performance measures are summarized in 
Fig. 3, through the Taylor diagram. Three statistical met-
rics are used, including the root-mean-square difference 
(RMSD), the pattern correlation (r) and the standard 

Fig. 3  Taylor diagrams display-
ing the statistics of daily precip-
itation and comparing RCA4’s 
experiments and the ensemble 
mean (RCA-EnsMean) with 
observations FEWS-ARC2 
(reference field for precipita-
tion). For temperature, the 
reanalysis ERA-Interim is used 
as a point of reference. The first 
row shows statistical param-
eters over NCAM, the second 
over WCAM and the third over 
ECAM. The first column dis-
plays statistical parameters for 
precipitation while the second 
does so for temperature
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deviation (STD), computed between downscaled results 
and FEWS-ARC2 for precipitation, and ERA-Interim for 
temperature used as a point of reference.

Regarding precipitation statistics, for NCAM and ECAM, 
RCA4’s experiments and FEWS-ARC2 clustered but not 
so close to the reference field with average performances 
(RMSD < 1; r ∼ 0.90 and STD < 0.75). There are fewer 
performances of RCA4’s model for WCAM compared 
to the reference field with 1 < RMSD < 1.5, r ∼ 0.90 and 
1 < STD < 1.5. For temperature, RCA4’s runs clustered and 
outperformed (compared to what was observed with precipi-
tation) over the three agro-climatic regions, with r ∼ 0.90, 
0.5 < RMSD < 1 and STD < 0.75.

VECTRI model evaluation

Figure 4 presents how observed PR and EIR (blue lines) fit 
with simulated values (red lines) over the different meas-
urement stations. Here, simulated values are results of the 
combination VECTRI-RCA-EnsMean, i.e. VECTRI driven 
by RCA-EnsMean. The PR and EIR observed and simulated 
values in Fig. 4 can be found in Table S1 and Table S2 in the 
supplementary material.

The results show that, although there are differences 
between the two experiments, the shapes of the curves 
are similar, meaning that the combination VECTRI-RCA-
EnsMean succeeds to detect the signal of individual stations. 
The differences can be attributed to differences in rainfall 
amount and temperature. VECTRI outperforms in simulat-
ing EIR (right panel) than PR (left panel). It is important to 
recall the challenge of assessing model performance over 
equatorial Africa given observational uncertainty. Some 
differences may be associated with inhomogeneities in sta-
tion measurements. The fact that the combination VECTRI-
RCA-EnsMean satisfactorily reproduces the signal of varia-
tion of PR and EIR in most stations makes its usage reliable 
for projection.

To get an insight into how the coupling VECTRI-RCA-
EnsMean simulates the spreading of malaria over the coun-
try, we showed in Fig. 5 the spatial distribution of the PR as 
modelled by VECTRI-RCA-EnsMean compared against the 
monthly observed PR over the period 1985–2005.

These spatial plots present a varied landscape of malaria 
PR over the country. There are some simulated biases in 
NCAM where PR values are above 0.5 (Fig. 5b) which is 
mostly dry and warm, whereas in the observation (Fig. 5a), 
the mean PR is lower. Such a difference could be probably 
related to the sensitivity of VECTRI to low rainfall. For 
ECAM, the differences in PR between observed and simu-
lated values are more obvious compared to WCAM. The 
model somehow outperforms better in these two areas com-
pared to the NCAM. 

Projected changes in the malaria metrics

In this section, we explore the impacts of global warming 
on the aforementioned malaria metrics under the optimistic 
(RCP2.6) and the pessimistic (RCP8.5) scenarios. Analy-
ses are conducted under two-time frames: the near future 
(2035–2065) and the far future (2071–2100), using the com-
bination VECTRI-RCA-EnsMean.

Changes in the parasite ratio (PR)

Figures 6 and 7 exhibit the monthly mean changes in PR 
over the near future and the far future under the high miti-
gated RCP2.6 (Fig. 6) and the low mitigated RCP8.5 (Fig. 7) 
scenarios.

Figure 6 presents the PR pattern obtained with RCA-
EnsMean, under RCP2.6 scenario. Results based on individ-
ual experiments are presented in the supplementary material 
as follows: Fig. S1 for RCA4-EC-EARTH-ES, Fig. S3 for 
RCA4-MPI-ESM-LR, Fig. S5 for RCA4-MIROC5, Fig. S7 
for RCA4-HadGEM2 and Fig. S9 for RCA4-NorESM1-M. 

Fig. 4  Results of combinations of VECTRI-observation (in blue) and 
VECTRI-RCA-EnsMean (in red) for PR (left panel) and EIR (right 
panel), function of rainfall (mm/day) and temperature (°C) over Cam-

eroon. The x-axis values represent the station number. The two panels 
show how VECTRI forced with observed station measurements com-
pares against VECTRI forced with RCA-EnsMean
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Fig. 5  Observed (left) and simulated (right) monthly mean of PR for the available data sites in Cameroon over the period 1985–2005. The PR 
values represent the average of all the points located within the same geographical areas of study

Fig. 6  Monthly mean changes in PR under RCP2.6 scenario. VECTRI model driven by RCA4-EnsMean for the period 2035–2065 (a) and 
2071–2100 (b)
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The PR tends to decrease when VECTRI is forced with 
RCA4-EC-EARTH-ES (Fig. S1) experiment with respect to 
other VECTRI-RCA4 runs. Contrastingly, increases instead 
are expected in the PR when VECTRI is driven by RCA4-
HadGEM2 (Fig. S7).

PR is then projected to increase throughout the year 
with emphasis from October to March over the near future 
(Fig. 6a). A similar pattern is observed over the far future 
(Fig.  6b), where the PR tends to mostly increase over 
WCAM and decreases during the April month in NCAM. 
The PR is projected to significantly decrease in the distant 
future than in the near future.

Figure 7 presents the PR pattern with RCA-EnsMean as 
forcing under RCP8.5 scenario. Results based on individual 
forcings of VECTRI by RCA4 experiments are highlighted 
in the supplementary material: Fig.  S2 for RCA4-EC-
EARTH-ES, Fig. S4 for RCA4-MPI-ESM-LR, Fig. S6 for 
RCA4-MIROC5, Fig. S8 for RCA4-HadGEM2 and Fig. S10 
for RCA4-NorESM1-M. The increase in the PR is strongest 
when VECTRI is coupled with RCA4-HadGEM2 (Fig. S8).

Under the high emission scenario RCP8.5 (Fig.  7), 
obvious differences between the near (Fig. 7a) and the far 
(Fig. 7b) future appear in the amplitude of changes in the 
PR. The PR generally tends to decrease from March to July, 
especially over NCAM, and increase during the rest of the 
year, especially over WCAM and ECAM.

The above results indicate that global warming would 
not much change the life cycles of the Anopheles mosquito 

and the malaria parasite plasmodium falciparum. Actually, 
rainfall creates suitable conditions (availability of ponds) 
for the mosquitoes’ breeding process. But extreme rain-
fall could negatively impact the productivity of mosquito 
breeding habitat by flushing effect which leads to high 
mosquito losses (Paaijmans et al. 2010). This is observed 
in Figs. 6 and 7 from April to September referring to rain-
fall patterns in Figs. S21 and S23 of the Supplementary 
material.

Moreover, PR tends to intensify with temperature val-
ues less than 32 °C (see Figs. S22 and S24 in the sup-
plementary material). This is associated with the fact that 
there is a range of temperatures that allows malaria trans-
mission. In fact, the temperature is able to create good 
conditions for malaria vectors to thrive. Generally, the 
increase in temperature accelerates vector life cycles and 
also decreases the incubation period of the parasite (Van-
Lieshout et al. 2004). This result is in line with previous 
studies conducted over Cameroon. They showed that the 
temperature suitability range for Anopheles gambiae and 
Anopheles funestus is between 20 and 29 °C (Tanga et al. 
2010). Similar results were reported over the Limpopo 
Province in South Africa (Komen et al. 2015). However, 
at a very high temperature, mortality is high thus reducing 
transmission (Ebi et al. 2005), which corresponds to the 
situation expected in NCAM (Fig. 7 from April to July) 
and previously reported by Chemison et al. (2021) and 
Caminade et al. (2014).

Fig. 7  Monthly mean changes in PR under RCP8.5 scenario. VECTRI model driven by RCA4-EnsMean for 2035–2065 (a) and 2071–2100 (b)
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Fig. 8  Monthly estimated changes in EIR indicating the number of infected bites per person per month (ib/p/m). This is obtained for the RCP2.6 
scenario from the coupling VECTRI-RCA4-EnsMean over the periods 2035–2065 (a) and 2071–2100 (b)

Fig. 9  Monthly estimated changes in EIR, indicating the number of infected bites per person per month (ib/p/m). Results obtained from the cou-
pling VECTRI-RCA-EnsMean under the RCP8.5 scenario and over 2035–2065 (a) and 2071–2100 (b) periods



International Journal of Biometeorology 

1 3

Changes in the entomological inoculation rate (EIR)

Figures 8 and 9 display maps of monthly mean changes in 
the EIR pattern when VECTRI is forced by RCA4-EnsMean 
under RCP2.6 and RCP8.5 respectively.

Broadly under RCP2.6, EIR is projected to decrease 
from April to July in NCAM and during March in WCAM 
(Fig. 8a). In the distant future, the EIR is expected to reduce 
from March to April, especially over NCAM (Fig. 8b). Over 
WCAM and ECAM subregions, an intensification of EIR 
is projected from April to November, whereas insignificant 
changes will occur for December and January.

For individual RCA4 model simulations, results are 
shown in the supplementary materials (Figs. S11, S13, S15, 
S17 and S19). EIR tends to gradually increase when VEC-
TRI is forced with RCA4-HadGEM2 (Fig. S17), from June 
(WCAM and ECAM) to November with a peak in August 
to September (NCAM). There is a decrease in projections 
using rainfall and temperature from RCA4-EC-EARTH-ES 
(Fig. S11), whereas fewer changes are expected in EIR with 
RCA4-NorESM1-M (Fig. S19).

Under RCP8.5, EIR is expected to decrease significantly 
over almost the entire study area during March and April 
months and especially over NCAM from May to June 
(Fig. 9a and b). Conversely, EIR is projected to increase 
over WCAM and ECAM from May to November and over 
NCAM from July to November. No particular changes are 
foreseen over almost the whole country from December to 
February, except for a small part of southern Cameroon 
where a strengthening of the EIR is noted in December and 
a weakening in February over the two projection periods.

Results with the coupling VECTRI-RCA4-EC-EARTH-
ES, VECTRI-RCA4-MPI-ESM-LR, VECTRI-RCA4-
MIROC5, VECTRI-RCA4-HadGEM2 and VECTRI-RCA4-
NorESM1-M are presented in Figs. S12, S14, S16, S18 and 
S19, respectively.

Changes in EIR presented in Figs.  8 and 9 can be 
explained by the suitable range of temperature of 18–33 °C 
(Bayoh and Lindsay 2003) of the study area as highlighted 
in Figs. S22 and S24 in the supplementary material. But it 
should be recalled that temperatures above 30 °C are preju-
dicial for anopheles’ development, therefore leading to a 
decrease in EIR as demonstrated in Béguin et al. (2011).

Changes in EIR are stronger in the far future than in the 
near future and vice-versa (Figs. 8 and 9). In general, the 
signal of change is stronger under RCP8.5 than RCP2.6, 
meaning an increased risk with the increased level of the 
radiative forcing. A similar study conducted by Chaturvedi 
and Dwivedi (2021) over India showed that under global 
warming, malaria transmission is expected to strengthen 
together with the duration of the transmission season. The 
EIR results also highlight the important role of changes in 
rainfall and temperature on malaria incidence and show the 

seasonality of the disease. Similar work also demonstrated 
that a decline in precipitation is beneficial for the growth of 
the mosquito population, which causes higher EIR (Ermert 
et al. 2012). Our study also attests to general expectations 
with regard to the impact of global warming on the spread 
of malaria. It is generally accepted that climate change will 
affect the spread of malaria as mentioned by Ogega and 
Alobo (2020), but it is also noted that malaria distribution 
is impacted by many factors in addition to climate change, 
including population mobility, changes in land use, changes 
in air and water temperatures and the systematic increase in 
preventive interventions, which VECTRI has not yet incor-
porated and which should prompt future work.

Conclusion

This work is an initial exploration of the relationship 
between climate and malaria in Cameroon using dynamical 
models under future climate scenarios of the CORDEX pro-
ject for Africa. The link between these parameters and two 
common malaria indicators, parasite ratio (PR) and entomo-
logical inoculation rate (EIR), was established. The results 
demonstrated that there is a close relationship between 
rainfall, temperature and malaria transmission in Cameroon 
under future climate change. For each of the models used 
under the two RCP scenarios, the impact of temperature on 
the evolution of malaria indicators is established, and the 
seasonality is highlighted for the PR and EIR metrics. The 
integration of VECTRI with future climate scenarios reveals 
a modulating effect of changes in temperature and rainfall 
on changes in malaria transmission, although factors such 
as population mobility and effective intervention strategies 
against malaria are likely to improve VECTRI results if 
implemented. The next step in line of this work is to ascer-
tain how best to incorporate such a model effectively into 
a national or regional decision-making process concerning 
health planning and interventions. If such a model should 
be used to aid operational decisions in Cameroon, using 
machine learning techniques for an effectiveness model’s 
calibration of parameters is required as recently introduced 
in Tompkins and Thomson (2018).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00484- 022- 02388-x.
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