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Abstract

A global existence theorem and uniqueness of solution of the coupled spatially
homogeneous relativistic Maxwell-Boltzmann system is proved in a Bianchi type I
spacetime back-ground , in a hard potential case. The proof relies in the use of a
particular form of Povzner inequality.
Keys words: Bianchi type I spacetime, Pozner inequality, relativistic Boltzmann
equation, Maxwell equations, energy estimates, hard potential, global existence.
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Résumé

Dans un espace-temps de Bianchi de type I, un théorème d’existence globale de
solutions du système couplé homogème de Maxwell-Boltzmann est établi. Ce résul-
tat provient de l’utilisation d’une forme particulière d’inégalité de Povzner.
Mots clés: espace temps de Bianchi type I, inégalité de Povzner, équation rela-
tiviste de Boltzmann, équations de Maxwell, estimation d’énergie, noyau dur, exis-
tence globale.
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Introduction

The main purpose of this work is to prove a global existence and uniqueness
theorem for a classical solution in the Bianchi type I space time of a magnetized
relativistic Boltzmann equation with a hard potential. This result is based on a
particular form of Povzner inequality.

The relativistic Boltzmann equation we consider here is one of the basic equa-
tions of relativistic kinetic theory. This equation rules the dynamics of the considered
charged particles which are subject to mutual collisions, by determining their distri-
bution function f which is a non-negative real-valued function of both the position
and the momentum of the particles. The Boltzmann equation generalizes the Vlasov
equation which governs the collisionless case, by introducing the collision operator.
At the contrary of the Vlasov equation which is widely studied in the literature,
there are few works on the Boltzmann equation. The Maxwell equations are the ba-
sic equations of electromagnetism and determine the electromagnetic field F created
by the fast-moving charged particles. We consider the case where the electromag-
netic field F is generated, through the Maxwell equations by the Maxwell current
defined by the distribution function f of the colliding particles, a charge density
e and a future pointing unit vector u tangent at any point to the temporal axis.
The system is coupled in the sens that, f , which is subject to the relativistic Boltz-
mann equation generates the Maxwell current in the Maxwell equations, whereas
the electromagnetic field F , which is subject to the Maxwell equations is in the
Lie derivative of f with respect to the vectors field tangent to the trajectories of
particles, which are deviated in the presence of F and are no longer the geodesics
of the space-time.

viii



Povzner introduced in 1962, the Povzner lemmas for the treatment of the mo-
ments of solution for homogeneous Boltzmann equation. These techniques have been
extensively used in the last 5 years to greatly develop the homogeneous Boltzmann
equation theory, confer [37].

The scattering kernel is a quantity that determines the nature of collisions be-
tween particles, and in the non-relativistic case several different types of scattering
kernels have been found to be attractive. For instance, the inverse power law gives
the best- known types of scattering kernel, and they are further classified into hard
and soft cases. In the relativistic setting it is not so clear which types of scattering
kernel should be of interest, but a classification of (special) relativistic hard and soft
potentials has been proposed in [9] and [39] by applying arguments similar to those
used in the non-relativistic case.

Some authors proved local existence theorems for the relativistic Boltzmann
equation, considering this equation alone as K. Bichteler. in [4] ; D. Bancel. in [2]
or coupling it to other fields equations and looking for local in time existence as
D. Bancel. and Y. Choquet-Bruhat. In [3] , R.T Glassey and W. Strauss obtained
a global result in[14], in the case of data near to that of equilibrium solution with
non-zero density. P.B. Mucha studied the relativistic Boltzmann equation coupled
to Einstein’s equation in [27] and [26], confusing unfortunately with the non rela-
tivistic formulation. More recently, N. Noutchegueme and E. Takou in [32] and N.
Noutchegueme and D. Dongo in [30], studied the relativistic Boltzmann equation
coupled to Einstein’s equations in a Robertson-Walker space-time and in a Bianchi
type I space-time, respectively, But only the uncharged case. N. Noutchegueme, D.
Dongo and E. Takou proved the global existence of solutions to the single Boltzmann
equation in [31] , in the uncharged case.

The motivations to make this study are too many. The first one was essentially
a mathematical challenge. Removing the hypothesis that the initial datum of the
Boltzmann equation is invariant under a subgroup of O3 in [29] will transform the
problem into a difficult one. Another problem is to solve the new system in a
very different framework. A supplementary motivation was to extend the method
used by Ho Lee in [21] in a single equation, to a coupled system of differential
equations namely the transformed Boltzmann equation, the Maxwell equations and
newly equations involving the momentum that becomes a variable. The study of
Ho Lee was done in Robertson-Walker space time, here we work in a Bianchi type I
space time and this makes the proofs more difficult to elaborate. In short, we have
had many motivations to make this study. Now this brings out the question of the
method to use.
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The method used here is a combination of the one used in [29] and [21], with the
change of variables into the covariant coordinates as in [21] and [41] , the Povzner in-
equality type, and the construction of a sequence of solutions of a modified Maxwell-
Boltzmann system.

This study is organized in four chapters:

– In chapter 1 we present the non-relativistic and the relativistic Boltzmann
equations in the first two sections. We stress on the hard and soft potential
interactions in the third section. The fourth section is devoted to the history of
Povzner inequality and the last section of the chapter talks about the Cauchy
Lipschitz and the Banach fixed point theorems together with the Gronwall
inequality

– In chapter 2 we settle the framework which is a Bianchi type I space-time, we
present the phases space, the distribution function and the collision operator
as well as the change of variables. Sections 2.2 and 2.3 are devoted to the
presentation of the Maxwell and the relativistic Boltzmann equations. In the
fourth section we give the assumptions of the work. Section five is devoted to
the coupled Maxwell-Boltzmann system and we end the chapter by section 6
in which we define the functional spaces.

– In chapter 3 we study the Maxwell-Boltzmann system for the µ−N regular-
ity. This chapter is organized in two sections. In section 3.1 we give a local
existence theorem and in section 3.2 we extend this result to a global existence
and uniqueness theorem for the µ−N regularity.

– In chapter 4 we address the problem of global existence of solutions to the
relativistic Maxwell-Boltzmann system for hard potential case. We present
the method, we give preliminary results and we study the modified Maxwell-
Boltzmann system. The strategy is to construct a sequence of solutions of the
modified Maxwell-Boltzmann system in other to prove that this sequence of
solutions converges to a solution of the initial system for the hard potential
case.
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CHAPTER 1

Preliminaries

This introductory chapter is devoted to the presentation in detail of the Boltz-
mann equations. The first section talks about the non relativistic Boltzmann equa-
tion, the second section gives important informations related to the relativistic Boltz-
mann equation. In the third section we stress on the nature of interactions between
particles, so we consequently present the relativistic hard and soft interactions. We
dedicated the fourth section to the Povzner inequality history and we end the chap-
ter by recalling the Cauchy-Lipschitz theorem, the Banach fixed point theorem and
the Gronwall inequality. The following contain comes from the book [6] but here
the presentation has been improved in order to make reading easy and pleasant.

1.1 The non relativistic Boltzmann equation

Consider a monoatomic gas with N molecules enclosed in a recipient of volume
V . One molecule of this gas can be specified at a given time by its position x =

(x1, x2, x3) and velocity c = (c1, c2, c3) . Hence, a molecule can be specified as a point
in a six-dimensional space spanned by its coordinates and velocity components, the
so-called µ−phase space. In the µ−phase space, a system ofN molecules is described
by N points with coordinates (xα, cα) for each α = 1, 2, · · · , N.

The state of a gas in the µ−phase space is characterized by a distribution function

1



1.1. The non relativistic Boltzmann equation

f (x, c, t) such that

f (x, c, t) dxdc ≡ f (x, c, t) dx1dx2dx3dc1dc2dc3 (1.1)

gives, at time t, the number of molecules in the volume element with position vectors
within the range x and x+dx and with velocity vectors within the range c and c+dc.

By denoting the volume element in the µ−phase space at time t as

dµ(t) = dxdc, (1.2)

the number of molecules in this volume element is given by

N(t) = f(x, c, t)dµ(t). (1.3)

Furthermore, let dµ(t + ∆t) denote the volume element in the µ−phase space at
time t+ ∆t where

N(t+ ∆t) = f (x+ ∆x, c+ ∆c, t+ ∆t) (1.4)

represents the number of molecules in this volume element.
If during the time interval ∆t the molecules do not collide, the quantities N(t)

and N(t+∆t) should be equal to each other. However, by considering time intervals
that are large than the mean free time−i.e., for ∆t� τ –collisions between the gas
molecules occur and the difference between the two numbers of molecules does not
vanish. Let this difference be denoted by

∆ = N (t+ ∆t)−N(t)

= f (x+∆x, c+ ∆c, t+ ∆t) dµ (t+ ∆t)− f (x, c, t) dµ (t) . (1.5)

The changes in the position and velocity vectors of the molecules during the time
interval ∆t are given by

∆x = c∆t,∆c = F∆t, (1.6)

where F (x, c, t) denotes a specific external force which acts on the molecules. It is
a force per unit of mass, i.e., has the dimension of an acceleration.

The relationship between the two volume elements dµ (t+ ∆t) and dµ (t) reads

dµ (t+ ∆t) = |J | dµ (t) (1.7)

2 Nana Mbajoun



1.1. The non relativistic Boltzmann equation

where J is the Jacobian of the transformation, i.e.,

J =
∂ (x1 (t+ ∆t) , x2 (t+ ∆t) , · · · , c3 (t+ ∆t))

∂ (x1 (t) , x2 (t) , · · · c3 (t))
. (1.8)

Up to linear terms in ∆t, the Jacobian is approximated by

J = 1 +
∂Fi
∂ci

∆t+O
[
(∆t)2] . (1.9)

Furthermore, the expansion of f (x+∆x, c+ ∆c, t+ ∆t) in Taylor series around
(x, c, t) and by considering also linear terms up to ∆t, becomes

f (x+∆x, c+ ∆c, t+ ∆t)

≈ f(x, c, t) +
∂f

∂t
∆t+

∂f

∂xi
∆xi +

∂f

∂ci
∆ci +O

[
(∆t)2] . (1.10)

The combination of (1.5) through (1.10) yields

∆N

∆t
=

[
∂f

∂t
+ ci

∂f

∂xi
+ Fi

∂f

∂ci
+ f

∂Fi
∂ci

]
dµ (t)

=

[
∂f

∂t
+ ci

∂f

∂xi
+
∂fFi
∂ci

]
dµ (t) . (1.11)

The determination of ∆N
∆t

when the collisions are taken into account are based on
the following hypotheses :

1st Hypothesis : For a rarefied gas, the probability of occurrence of collisions in which more
than two molecules participate is much smaller than one which corresponds to
binary encounters;

2nd Hypothesis : The effect of external forces on the molecules during the mean collision time
τc is negligible in comparison with the interaction molecular forces;

3rd Hypothesis :The asymptotic pre-collisional velocities of two velocities . This hypothesis is
known as the molecular chaos assumption and

4th Hypothesis : The distribution function f(x, c, t) does not change very much over a time
interval which is larger than the mean collision time but smaller than the mean
free time. The same assumption applies to the variation of f over a distance
of the order of the range of the intermolecular forces.

Consider now two gas molecules whose asymptotic pre-collisional velocities are de-
noted by c and c1. In figure (1.1) , the molecule which has velocity c is at the point

3 Nana Mbajoun



1.1. The non relativistic Boltzmann equation

Figure 1.1:

O, while the other molecule is approaching the plane according to a right angle and
with relative velocity g = c1 − c. The relative motion is also characterized by the
impact parameter b and by the azimuthal angle ε.

From Figure (1.1), one can infer that- during the time interval ∆t−all molecules
with velocities within the range c1 and c1 + dc1,and that are inside the cylinder
of volume g∆t bdb dε,will collide with the molecules located in a volume element
dx around the point O and whose velocities are within the range c and c + dc.
The number of molecules with velocities within the range c1and c1 + dc1 inside the
collision cylinder is given by f (x, c1, t) dc1g∆t bdb dε. These molecules will collide
with all molecules with velocities within the range c and c+dc and which are in the
volume element dx around the point O, i.e., f (x, c, t) dxdc. Hence, the number of
collisions, during the time interval ∆t, which occur in the volume element dx, reads

f (x, c1, t) dc1g∆t bdb dεf (x, c, t) dxdc. (1.12)

By dividing (1.12) by ∆t and integrating the resulting formula over all components
of the velocity −∞ < c1

i < +∞ (i = 1, 2, 3), over the azimuthal angle 0 ≤ ε ≤ 2π

and over all values of the impact parameter 0 ≤ b <∞, it follows the total number
of collisions per time interval ∆t in the µ-phase space that annihilates points with
velocity c in the volume element dµ (t), namely,

(
∆N

∆t

)−
= dµ (t)

∫
(x, c1, t) f (x, c, t) gb db dε dc1. (1.13)

In (1.13), all the five integrals described above were represented by only one symbol
of integration.

However, there exist collisions which create points with velocity c in the volume

4 Nana Mbajoun



1.1. The non relativistic Boltzmann equation

Figure 1.2:

element dµ (t). Indeed, they result from collisions of molecules with the following
characteristics:

i) asymptotic post-collisional velocities c′ and c′1,

ii) asymptotic post-collisional velocities c and c1,

iii) apsidal vector k′ = −k,

iv) impact parameter b′ = b and

v) azimuthal angle ε′ = π + ε.

Such collisions are known as restitution collisions, whereas the former are called
direct collisions. The geometry of these two collisions are represented in figures
(1.1) and (1.2).

By taking into account the previous analysis, one can infer that the number of
collisions, during the time interval ∆t, which occur in the volume element dx for the
restitution collisions is given by

f (x, c′1, t) dc
′
1g
′∆t b db dεf (x, c′, t) dxdc′. (1.14)

The above expression can be rewritten in a modified form as follows. First,
recall that the modulus of the Jacobian for the equations that relate the post-and
pre-collisional asymptotic velocities are equal to each other, i.e., g′ = g. Hence,
(1.14) becomes

f (x, c′1, t) f (x, c′, t) dx∆t g b dbdεdcdc1. (1.15)

Now, it follows from the above expression that the total number of collisions per
time interval ∆t, which creates points in the µ-phase space with velocity c in the
volume element dµ (t) ,reads

(
∆N

∆t

)+

= dµ (t)

∫
f (x, c′1, t) f (x, c′, t) g b dbdεdcdc1. (1.16)

5 Nana Mbajoun



1.2. The relativistic Boltzmann equation

The four hypotheses above and the arguments which lead to (1.13) and (1.16) are
designated frequently in the literature by the German word Stobzahlansatz, which
means supposition about the number of collisions.

By taking into account the above results, (1.11) with

∆N

∆t
=

(
∆N

∆t

)+

−
(

∆N

∆t

)−
(1.17)

is written in a final form as

∂f

∂t
+ ci

∂f

∂xi
+
∂Fif

∂ci︸ ︷︷ ︸
streaming

=

∫
(f ′1f

′ − f1f) gb db dε dc1

︸ ︷︷ ︸
collision

, (1.18)

which is the Boltzmann equation, a non-linear integro-differential equation for the
distribution function f . It describes the evolution of the distribution function in the
µ-phase space, and one can infer that the temporal change of f has two terms, one
of them is a collision term due to the motion of the molecules, whereas the other
is a collision term related to the encounters of the molecules. Above, the following
abbreviations were introduced :

f ′ ≡ f (x, c′, t) , f ′1 ≡ f (x, c′1, t) f ≡ f (x, c, t) f1 ≡ f (x, c1, t) . (1.19)

If the specific external force does not depend on the velocities of the molecules–as in
the case of the gravitational acceleration—or does depend on the velocity through a
cross product–like the cases of coriolis acceleration in non-inertial frames or Lorentz’
force in ionized gases–the velocity divergence ∂Fi

∂ci
vanishes and the Boltzmann equa-

tion (1.18) reduces to

∂f

∂t
+ ci

∂f

∂xi
+ Fi

∂f

∂ci
=

∫
(f ′1f

′ − f1f) gb db dε dc1. (1.20)

1.2 The relativistic Boltzmann equation

In this section we shall consider a single non-degenerate relativistic gas, i.e., a
gas where quantum effects are not taken into account.

A gas particle of rest mass m is characterized by the space-time coordinates
(xα) = (ct, x) and by the momentum four- vector (pα) = (p0, p) . Due to the con-
straint that the length of the momentum four-vector is mc, p0 is given in terms of p
by

p0 =
√
|p|+m2c2.

6 Nana Mbajoun



1.2. The relativistic Boltzmann equation

The one-particle distribution function, defined in terms of the space-time and
momentum coordinates f (xα, pα) = f (x, p, t), is such that

f (x, p, t) d3x d3p = f (x, p, t) dx1dx2dx3dp1dp2dp3 (1.21)

gives at time t the number of particles in the volume element d3x about x and with
momenta in a range d3p about p.

The number of particles in the volume element is a scalar invariant since all
observers will count the same particles. Let us examine the invariance of the volume
element d3x d3p. We have

d3p′

p′0
=
d3p

p0

. (1.22)

Let us choose the primed frame of reference as a rest frame, i.e., where p′ = 0.
In this case d3x′ is the proper volume and we have that

d3x =
√

1− v2/c2d3x′ =
1

γ
d3x′, (1.23)

where γ = 1√
1−|v|2/c2

.

On the other hand, from the transformation of the components of the momentum
four-vector we have that

p′0 =
1

γ
p0, (1.24)

since p0 = p0. Now we build the product

d3x d3p =
1

γ
d3x′

p0

p′0
d3p′ = d3x′ d3p′ (1.25)

and conclude that d3x d3p is a scalar invariant. Since the number of the particles
in the volume element d3x d3p is also a scalar invariant we conclude that the one
particle distribution function f(x, p, t) is a scalar invariant.

Let us denote the volume element at time t by

dµ (t) = d3x d3p. (1.26)

The number of particles in this volume element at time t is

N (t) = f (x, p, t) dµ (t) . (1.27)

7 Nana Mbajoun



1.2. The relativistic Boltzmann equation

Further, the number of particles in the volume element dµ (t+ ∆t) at time t+ ∆t is

N (t+ ∆t) = f (x+ ∆x, p+ ∆p, t+ ∆t) dµ (t+ ∆t) . (1.28)

The collisions between the particles imply that N(t) is not equal to N (t+ ∆t) and
the change in the number of particles is given by

∆N = N (t+ ∆t)−N (t)

= f (x+ ∆x, p+ ∆p, t+ ∆t) dµ (t+ ∆t)− f (x, p, t) dµ (t) , (1.29)

where the increments in the position and in the momentum read

∆x = v∆t, ∆p = F∆t, (1.30)

F (x, p, t) denotes the external force that acts on the particles and v = cp/p0 is the
velocity of the particle with momentum p.

The relationship between dµ (t+ ∆t) and dµ (t) is given by:

dµ (t+ ∆t) = |J | dµ (t) , (1.31)

with Jdenoting the Jacobian of the transformation

J =
∂ (x1 (t+ ∆t) , x2 (t+ ∆t) , · · · p3 (t+ ∆t))

∂ (x1 (t) , x2 (t) , · · · , p3 (t))
. (1.32)

If we consider up to linear terms in ∆t we get from (1.32) that the Jacobian reduces
to

J = 1 +
∂F i

∂pi
∆t+O

[
(∆t)2] . (1.33)

Now by expanding f (x+ ∆x, p+ ∆p, t+ ∆t) in Taylor series about the point (x, p, t)

and by considering only linear terms in ∆t it follows that

f (x+ ∆x, p+ ∆p, t+ ∆t)

≈ f(x, p, t) +
∂f

∂xi
∆xi +

∂f

∂t
∆t+

∂f

∂pi
∆pi +O

[
(∆t)2] . (1.34)

We combine equations (1.29) through (1.34) and get the total change in the number

8 Nana Mbajoun



1.2. The relativistic Boltzmann equation

of particles per unit of time interval:

∆N

∆t
=

[
∂f

∂t
+ vi

∂f

∂xi
+ F i ∂f

∂pi
+ f

∂F i

∂pi

]
dµ (t)

=

[
∂f

∂t
+ vi

∂f

∂xi
+
∂fF i

∂pi

]
dµ (t) . (1.35)

∆N is a scalar invariant as well as the proper time ∆τ = ∆t/γ, hence

γ
∆N

∆t
=

∆N

∆τ
= γ

[
∂f

∂t
+ vi

∂f

∂xi
+
∂fF i

∂pi

]
dµ (t) (1.36)

is also a scalar invariant. We have shown in (1.25) that dµ = d3x d3p is a scalar
invariant, and as a consequence the expression multiplying it in (1.36) must have
the same property as we shall show. We first consider the term

γ

[
∂f

∂t
+ vi

∂f

∂xi

]
= γ

[
∂f

∂t
+
cpi

p0

∂f

∂xi

]
=
cγ

p0
pα

∂f

∂xα
=

1

m
pα

∂f

∂xα
. (1.37)

Due to the fact that f is a scalar invariant, ∂f/∂xα is a four-vector and the scalar
product pα∂f/∂xα is a scalar invariant. We need only to prove that ,γ∂fF i/∂pi

has the same property. For the proof we consider the Minkowski force Kα =(
F.v

c(1−v2/c2)
1
2
, F

(1−v2/c2)
1
2

)
, that satisfies

Kαpα = K0p0 −K.p = 0, (1.38)

and the relationship

F =
K

γ
=
mcK

p0
, (1.39)

where m is the rest mass. If we consider p0 as an independent variable and make
use of the chain rule:

∂

∂pi
−→ ∂p0

∂p

∂

∂p0
+

∂

∂p
=

p

p0

∂

∂p0
+

∂

∂p
, (1.40)

we can write the following expression

γ
∂fF i

∂pi
= γmc

[
p

p0

∂

∂p0

(
fK

p0

)
+

∂

∂p
.

(
fK

p0

)]
. (1.41)
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1.2. The relativistic Boltzmann equation

Since p0 and p are treated as independent variables, the above equation reduces to

γ
∂fF i

∂pi
= γmc

[
1

p0

∂

∂p0

(
fK

p0

)
+

1

p0

∂

∂p
. (fK)

]

=
γmc

p0

[
∂fK0

∂p0
+

∂

∂p
. (fK)

]

=
γmc

p0

∂fKα

∂pα
=
∂fKα

∂pα
, (1.42)

which is a scalar invariant.
Now according to (1.37) and (1.42) equation (1.35) reads

∆N

∆t
=

c

p0

[
pα

∂f

∂xα
+m

∂fKα

∂pα

]
dµ (t) . (1.43)

To determine ∆N/∆t we decompose it in two terms

∆N

∆t
=

(∆N)+

∆t
− (∆N)−

∆t
, (1.44)

where (∆N)− /∆t corresponds to the particles that leave the volume element d3x d3p,
whereas (∆N)+ /∆t corresponds to those particles that enter in the same volume
element. Further we assume the following:

a) Only collisions between pairs of particles are taken into account, i.e., only
binary collisions are considered (this is reasonable if the gas is dilute, i.e., if
the volume occupied by the molecules is much smaller than the volume of the
gas);

b) if p and p∗denote the momenta of two particles before collision they are not
correlated. This will be applied to the momenta p of the particle that we
are following, andp∗ of its collision partner, as well as to two momenta p′

and p′∗ possessed by two particles before a collision that will transform them
into particles with momenta p and p∗ after collision. This hypothesis is the
so-called molecular chaos assumption;

c) the one-particle distribution function f(x, p, t) does not vary very much over
a time interval which is larger than the duration of a collision but smaller
than the time between collisions. The same applies to the change of fover a
distance of the order of the interaction range.

The German word StobJzahlansatz, which means supposition of number of col-
lisions, is frequently employed in the literature to indicate this set of assumptions
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1.2. The relativistic Boltzmann equation

Figure 1.3:
Representation of a binary collision

that will be presently used to determine ∆N/∆t.
We consider a collision between two beams of particles with velocities v = cp/p0

and v∗ = cp∗/p0
∗ . The particle number densities of these two beams in their own

frames are denoted by dn and dn∗. The d in front of n and n∗ indicates that these
number densities are infinitesimal because they refer to volume elements d3p and
d3p∗ of momentum space (dn = fd3p and dn∗ = f∗d3p∗). We first consider a reference
frame where the particles without label are at rest, i.e., v = 0. The total number of
these particles about x is dn d3x. The total number of particles that will collide with
the former and are in a volume element dV∗ will be dn∗dV∗ = dn∗dV/

√
1− v2

rel/c
2,

where vrel is the relative speed and
dV/

√
1− v2

rel/c
2 is a proper volume.

The particles with density dn∗ in the volume dV are differently scattered by their
partners in the collision through different angles. Each collision will occur in a plane
with some scattering angle Θ, another angle is needed to single out the plane (which
must contain the relative velocity) and two infinitesimal neighborhoods of the two
angles together single out a solid angle element dΩ. The volume element dV can be
written in terms of the so-called collision cylinder of base σdΩ and height vrel∆t,
∆t is identified with the differential of the proper time, because of the choice of the
reference frame. The factor σ has clearly the dimensions of an area and is called
the differential cross-section of the scattering process corresponding to the relative
speed vrel and the scattering angle Θ. In another reference system where v 6= 0,
d3x∆t ,σ, dΩ and vrel are scalar invariants.

The total number of collisions will be given then by the product of the particle
numbers corresponding to the velocities v and v∗:

dn d3x
dn∗√

1− v2
rel/c

2
dV = dn d3x

dn∗√
1− v2

rel/c
2

(σdΩvrel∆t) , (1.45)

where we have rewritten the volume element dV in terms of the collision cylinder
as discussed above.

Let us consider the product of the particle number densities in a system where

11 Nana Mbajoun



1.2. The relativistic Boltzmann equation

Figure 1.4:
Representation of the collision cylinder

v 6= 0 :

dn dn∗√
1− v2

rel/c
2

=
dn√

1− v2/c2

dn∗√
1− v2

∗/c
2

√
1− v2/c2

√
1− v2

∗/c
2

√
1− v2

rel/c
2

= f(x, p, t)d3pf∗(x, p, t)

√
1− v2/c2

√
1− v2

∗/c
2

√
1− v2

rel/c
2

= f(x, p, t)d3pf∗(x, p, t)d
3p∗

pαp
α
∗

p0p0
∗
. (1.46)

The particle number densities above were written in terms of the one-particle dis-
tribution functions

dn√
1− v2/c2

≡ f(x, p, t)d3p,
dn∗√

1− v2
∗/c

2
≡ f∗(x, p, t)d

3p∗. (1.47)

Hence instead of (1.45) we have that the total number of collisions reads

f(x, p, t)d3pf∗(x, p, t)d
3p∗vrel

pαp
α
∗

p0p0
∗
σdΩd3x∆t

= f(x, p, t)d3pf∗(x, p∗, t)d
3p∗gφσdΩd

3x∆t (1.48)

where we have introduced Mφller’s relative speed gφ.
Now the total number of particles that leave the volume element d3xd3p is ob-

tained from (1.48) by integrating it over all momenta p∗ and over all solid angle dΩ,
yielding

(∆N)− =

∫

Ω

∫

p∗

f(x, p, t)f∗(x, p∗, t)gφσdΩd
3p∗d

3xd3p∆t. (1.49)

This is frequently called the loss term because it describes the loss of particles in
the volume element d3xd3p in phase space, due to collisions.

We remark that sometimes this equation is written with a factor 1/2 in front
of the above integral. This is clearly related to the definition of the cross-section.
The fact is that we are dealing with identical particles. Whereas in non-quantum
mechanics identical particles can be regarded as distinguishable (because we can
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1.2. The relativistic Boltzmann equation

follow their motion in a continuous way), this is not the case in quantum mechanics.
Thus if we start with two states for the colliding particles we find for each pair
of final states a number which is the double of what we should expect from an
analogy with a non-quantum calculation. This is due to the fact that we compute
the two scattering processes leading the particles from the states (p′, p′∗) to the states
(p, p∗) and from the states (p∗, p) to the states (p′, p′∗) t, respectively, as the same
process, due to the indistinguishability of the particles involved. The definition of
cross-section in quantum mechanics thus leads to a result which is twice as much
the result expected from an analogy with classical mechanics. Thus if we use the
quantum cross-section, we must divide by two the result for the loss term obtained
above. We shall mainly deal with non-quantum effects and write the collision terms
without the factor 1/2. We remark that, when considering a mixture, one deals
with collisions of distinguishable particles and then our convention agrees with the
opposite one; this means that authors using the latter have a factor 1/2 in front of
collision terms associated with particles of the same species, whereas this factor is
absent in the collision terms referring to different species.

The same reasoning and comments apply to the computation of the total number
of particles that leave the volume element d3x′d3p′ and enter the volume element
d3xd3p. We consider a collision between two beams of particles with velocities
v′∗ = cp′∗/p

′0
∗ and by taking into account (1.49) we write the total number of particles

that leave the volume element d3x′d3p′ as

(∆N)+ =

∫

Ω′

∫

p′∗

f(x, p′, t)f∗(x, p
′
∗, t)g

′
φσ
′dΩ′d3p′∗d

3x′d3p′∆t′, (1.50)

which is called the gain term since it describes the gain of particles in the volume
element d3xd3p. For relativistic particles we have that gφ 6= g′φ. However, Liouville’s
theorem asserts that if we follow the evolution of a volume element in phase space
its volume does not change in the course of time. Here we have that

gφ∆tσdΩd3p∗d
3xd3p = g′φ∆t′σ′dΩ′d3p′∗d

3x′d3p′. (1.51)

Since d3x∆t = d3x′∆t′ is an invariant it follows from (1.51) that

∫

Ω

gφσdΩd
3p∗d

3p =

∫

Ω

g′φσ
′dΩ′d3p′∗d

3p′. (1.52)

Now we get from (1.43) together with (1.44), (1.49), (1.50) and (1.52):
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1.3. The relativistic Hard and Soft Interactions

c

p0

[
pα

∂f

∂xα
+m

∂fKα

∂pα

]
d3xd3p =

(∆N)+ − (∆N)−

∆t

=

∫
(f ′∗f

′ − f∗f) gφσdΩd
3p∗d

3xd3p (1.53)

where we have introduced the abbreviations

f ′∗ ≡ f (x, p′∗, t) , f ′ ≡ f (x, p′, t) f∗ ≡ f (x, p∗, t) f ≡ f (x, p, t) . (1.54)

If we denote by F the invariant flux

F =
p0p0
∗

c
gφ =

p0p0
∗

c

√
(v − v∗)2 − 1

c2
(v × v∗)2 =

√
(pα∗pα)2 −m4c4, (1.55)

equation (1.53) reduces to

pα
∂f

∂xα
+m

∂fKα

∂pα
=

∫
(f ′∗f

′ − f∗f)FσdΩ
d3p∗
p0
∗
, (1.56)

which is the final form of the relativistic Boltzmann equation for a single nondegen-
erate relativistic gas. In (1.56) we have denoted by only one symbol the integrals
over Ω and p∗.

Another expression for the Boltzmann equation (1.56) is obtained by the com-
bination of (1.35), (1.43) and (1.53), yielding

∂f

∂t
+ vi

∂f

∂xi
+
∂fF i

∂pi
=

∫
(f ′∗f

′ − f∗f) gφσdΩd
3p∗. (1.57)

The above equation has the same expression as that of the classical Boltzmann
equation.

1.3 The relativistic Hard and Soft Interactions

From physicists point of view, it is well known that the precise structure of the
collision kernel has hardly any influence on the behavior of the solutions of the
Boltzmann equation. Fortunately for mathematicians, this belief has proven to be
wrong in several respects, [43]. In [15] is given a classification of the cross in the non
relativistic case, this classification is extended to the relativistic case in [9] and [39].

From the non-relativistic kinetic theory, it is well known that refine analysis of
the Boltzmann equation seems heavily sensitive to assumptions on the cross section
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1.3. The relativistic Hard and Soft Interactions

σ [10, 18]. Thus following the Grad’s procedure [15], we shall classify the cross
section σ into the so call hard and soft interactions. This distinction between both
of them is due to a different collision frequency behavior: for hard interactions the
collision frequency (1.66) satisfies the relation

ν (p) = ν0 > 0, (1.58)

while for soft interactions we have

ν (p) 5 v0 and ν (p)→ 0 for |p| → ∞. (1.59)

Hard interactions are especially interesting not only because of some physical
motivations, but also from mathematical point of view.

In the non-relativistic physics Grad [15] has defined as hard interactions those
for which the cross section obeys:

σ (g, θ) > B
gε

1 + g
, (1.60)

and as the soft interaction these with

σ (g, θ) < Bgε−1, (1.61)

where 0 < ε < 1. Grad has shown the dependence of the collision frequency ν. For
the hard interaction, ν is bounded from below:

ν (p) > ν0 ,

while for soft interaction ν is bounded from above

ν (p) < ν ′ (p) 5 ν0 ,

where ν0 is a positive constant and ν (p)→ 0 as |p| → ∞.
The following issues coming from [15], examine the behaviour of the collision

frequency ν (p) in the relativistic case and establish the meaning of relativistic hard
and soft interactions.

Theorem 1.1. Let us assume that ∃ γ > −2, 0 5 β < γ + 2,

σ (g, θ) >
gβ+1

c0 + g
sinγ θ. (1.62)
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1.3. The relativistic Hard and Soft Interactions

Then the collision frequency obeys:

ν (p) > ν0

[
p0

M

]β/2
= ν0, (1.63)

where c0 and ν0 are constants.

Theorem 1.2. Let us assume existence of α/ 0 < α < 4, and γ > −2 so that :

σ (g, θ) < Bg−α sinγ θ.

Then

ν (p) <

[
p0

M

]−ε/2
5 ν0, (1.64)

where

ε =





α for 0 < α < 3,

α− 2 for 3 < α < 4,

δ + 1 where 0 < δ < 1, for α = 3.

Since Grad’s distinction between hard and soft interactions is based on the dif-
ferent properties of the collision frequency for corresponding types of interactions, in
the relativistic theory the meaning of hard and soft interactions should be redefined
using relations (1.62) and (1.63).

The preceding issues have been reformulated by Strain [39] as follows:

– for soft potential we assume that there exist γ > −2 and 0 < b < min {4, γ + 4}
satisfying (

g√
s

)
g−bσ0 (ω) . σ (g, ω) . g−bσ0 (ω) ,

– while for the hard potentials we assume that there exist γ > −2, 0 ≤ a ≤ γ+2

and 0 < b < min {4, γ + 4} satisfying
(
g√
s

)
g−bσ0 (ω) . σ (g, ω) .

(
ga + g−b

)
σ0 (ω) ,

σ0 (ω) . sinγ θ.

Here for any two quantities A, B the relation A . B means that there exists
a constant C such that A ≤ CB.

We consider a one-component classical relativistic gas of particles with rest mass
m 6= 0 in the flat space-time and in the absence of all external forces. We assume
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1.3. The relativistic Hard and Soft Interactions

that the system is close to a global equilibrium and that in order to determine its
state it suffices to know the one-particle distribution function.

It is convenient to introduce dimensionless variables xµ = yµ/ct and pµ = qµc/kT ,
where yµ and qµ represent the usual, dimensional four-vectors of position and mo-
mentum respectively. the dimensionless mass is M = mc2/kT. It is convenient
to interpret T as the temperature. In this frame we decompose xµ and pµ as :
xµ = (t, r) and pα = (p0, p) .The signature is (−,+,+,+).

We define here

– s1/2 = |p1 + p| is the total energy;

– 2g =|p1 − p| is the value of the relative momentum;

– cos θ = 1 − 2(pµ − p1µ)(pµ − p′µ)(4M2 − s)−1 defines the angle of scattering;
dΩ = sin θ dθ dϕ;

– σ (g, θ) is the differential scattering cross section.

All the above variables refer to the center of mass frame.

Ki [f(r, p, t)] =

∫
d3p1ki (p, p1) f (r, p1, t) , (1.65)

v (p) =

∫
d3p1k1 (p, p1) exp [(τ − τ1) /2] , (1.66)

where τ = Uµpµ, τ1 = Uµp1µ.

The integral kernels ki have the following form :

k1 (p, p1) =
1

2M2K2 (M)

gs1/2

p0p10

exp [− (τ + τ1) /2]

∫ π

0

dθsinθσ (g, θ) , (1.67)

k2 (p, p1) =
1

8M2K2 (M)

s3/2

gp0p10

∫ ∞

0

dx exp
[
−
(
1 + x2

)1/2
(τ + τ1) /2

]

× σ
[

g

sin (ϕ/2)
, ϕ

]
x

1 + (1 + x2)
1/2

(1 + x2)1/2
I0

[ |p ∧ p1|
2g

x

]
(1.68)

where I0 is the Bessel function of purely imaginary argument of index zero and ϕ is
connected with x by the relation

sin (ϕ/2) = 21/2g
[
g2 −M2 +

(
g2 +M2

) (
1 + x2

)1/2
]−1/2

. (1.69)
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1.4. Povzner inequality

p∧ p1 is a vector product of p and p1 calculated in the rest frame of our gas [in this
frame Uα = (1, 0, 0, 0)], so the explicit expression for |p ∧ p1|has a form :

|p ∧ p1| =
[
4g2
(
ττ1 − g2 −M2

)
−M2 (τ − τ1)2]1/2 . (1.70)

1.4 Povzner inequality

Acording to [37] Povzner introduced in 1962, the Povzner lemmas for the treat-
ment of the moments of solution for homogeneous Boltzmann equation. These
techniques have been extensively used in the last 5 years to greatly develop the
homogeneous Boltzmann equation theory.

The Povzner equation was first introduced for purely mathematical reasons and
usually ignored by the physicists. However, when considering the Grad limit of a
system of N interacting ’soft spheres’, Cercignani [6] obtained a hierarchy of equa-
tions factorized by a Povzner-like equation. Lichowicz and Pulvirenti [19] consid-
ered a system of N spheres colliding at a stochastic distance . They proved that
when N tends to infinity, the one-particle distribution function converges to a local
Maxwellian with density, velocity and temperature satisfying the Euler equations.
At an intermediate step the Povzner equation appears.

A number of results are known concerning the cases of the non-linear station-
ary Boltzmann equation close to equilibrium, and solutions of the corresponding
linearized equation. There, more general techniques - such as contraction mapping
based ones - can be utilized. So e.g. in an Rn setting, the solvability of boundary
value problems for the Boltzmann equation in situations close to equilibrium is stud-
ied in [16], [17]. Stationary problems in small domains for the non-linear Boltzmann
equation are also studied in [34]. The unique solvability of internal stationary prob-
lems for the Boltzmann equation at large Knudsen numbers is established in [22].
Existence and uniqueness of stationary solutions for the linearized Boltzmann equa-
tion in a bounded domain are proven in [23] and for the linear Boltzmann equation
uniqueness and existence are also proven in [42].

Moreover, existence results far from equilibrium have been obtained for the sta-
tionary nonlinear Povzner equation in a bounded region in ([1]). The Povzner col-
lision operator is a modified Boltzmann operator with a ’smearing’ process for the
pair collisions, whereas in the derivation of the Boltzmann collision operator, each
separate collision between two molecules occurs at one point in space.

Recently Lee and Rendall in [21] use povzner inequality proved by Povzner in
[36]. This inequality has been crucially used to prove existence theorems for the
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non-relativistic spatially homogeneous Boltzmann equation by Elmroth [12] and
Mischler and Wennberg [25]. The sharpest form of the Povzner inequality is given by
Mischler and Wennberg, but Lemma 3.5 in [21]corresponds to a relativistic extension
of Elmroth’s result.

1.5 The Cauchy- Lipschitz theorem, the Banach fixed

point theorem and Gronwall inequality

Definition 1.1. Let E be a Banach space and Ω be an open subset of R× E.

One say that f : Ω −→ E is locally k−Lipschitz if for all point (t0, x0) ∈ Ω, there
exists a neighborhood U of (t0, x0) in Ω and k > 0 such that one has :∀(t1, x1) ∈
U,∀(t2, x2) ∈ U,

||f(t1, x1)− f(t2, x2)|| ≤ k||x1 − x2|| (1.71)

Theorem 1.3. (Cauchy-Lipschitz : Local version)

If f : Ω −→ E is continuous and locally k−Lipschitz, and if (t0, x0) ∈ Ω, then
there exists a real number α > 0 such that the differential equation

dx

dt
= f(t, x) (1.72)

has a unique solution ϕ :]t0 − α, t0 + α[−→ E, which is C1and satisfy the initial
data ϕ(t0) = x0.

Proof. See [5]

Theorem 1.4. (Cauchy-Lipschitz : Global version) One suppose that the hypothesis
of theorem 1.3 are satisfied and that all solution of Cauchy problem





dx
dt

= f(t, x)

x(t0) = x0

(1.73)

is inside a fixed ball of E.
Then (1.73) has a unique global solution.

Proof. See [38]

Theorem 1.5. (Banach fixed point theorem) Let X be a complete metric space in
which the distance between two points x and y is denoted d(x, y). And let f : X −→ X
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be a contraction (i.e there exists c ∈]0, 1[ such that for all x, y ∈ X, d(f(x), f(y)) ≤
cd(x, y)), then f has a unique fixed point i.e there exists a unique z ∈ X such that

f(z) = z. (1.74)
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CHAPTER 2

The relativistic Maxwell-Boltzmann system

in a Bianchi type I Space-time

In this chapter we settle the framework which is a Bianchi type I space-time, we
give the formulations of the Boltzmann and the Maxwell equations. We also give
different parametrizations of the post collisional momentum. We then present the
coupled Boltzmann-Maxwell system of equations. Finally we define the functional
spaces.

2.1 Bianchi type I space-time and phase space

2.1.1 Definitions

Let us consider (M, g) a lorentzian spacetime with metric tensor of signature
(−,+,+,+) .

Definition 2.1. The manifold (M, g) is spatially homogeneous if it possesses a
group of isometries G4 which operates transitively on the spatial hypersurfaces.

If the group G4 has a subgroup G3 operating simply transitively, the manifold
(M, g) is called a Bianchi space-time.

There exists nine types of Bianchi space-times - Bianchi type I to IX, classified
according to the structure constants of the Lie group G3. If G4 does not have any
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2.1. Bianchi type I space-time and phase space

subgroup G3 operating simply transitively, one deduces the existence of the space-
times of Kantowski-Sachs. Bianchi space-times are spacially homogeneous.

Definition 2.2. A Bianchi type I space-time (M, g) is a space time where the
isometries group G4 is Abelian.

In this work, Greek indexes run from 0 to 3 and Latin indexes run from 1 to 3.
We adopt the Einstein convention:

aαb
α =

∑

α

aαb
α. (2.1)

In a time oriented Bianchi type I space-time, we consider the collisional evolution
of a kind of fast moving massive and charged particles and denote by xα = (x0, xi) =

(t, xi) ,the usual coordinates in R3+1 ,where t = x0 represents the time and (xi) the
space, g stands for the metric tensor of Lorentzian signature (−,+,+,+) which
writes in local coordinates:

g = − (dt)2 + a2 (t)
(
dx1
)2

+ b2 (t)
((
dx2
)2

+
(
dx3
)2
)
, (2.2)

where a and b are two differentiable increasing functions on R+.

Note that the metric tensor g given by (2.2) generalizes the metric of the Robertson-
Walker space time which is very important since it modelizes our universe in cosmo-
logical expansion. Note also that in (2.2) the components gαβ of g and gαβ of g−1

are given by :





g00 = −1;

g11 = a2;

g22 = g33 = b2;

g00 = −1;





g11 = 1
a2

;

g22 = g33 = 1
b2

;

gαβ = gαβ = 0 if otherwise.

(2.3)

The metric g being taken in the form (2.2) , the matrix (gαβ) is diagonal and is
written :

(gαβ) = diag(−1, a2, b2, b2). (2.4)

The computation of the determinant of this matrix gives us

|g| = |detg| = a2b4 > 0. (2.5)
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2.1. Bianchi type I space-time and phase space

Hence, (gαβ) is invertible and its inverse matrix (gαβ) is written:

(gαβ) = diag(−1,
1

a2
,

1

b2
,

1

b2
). (2.6)

The Christoffel symbols of the Levi-Civita connection ∇ associated to a metric
tensor g are defined by:

Γλαβ =
1

2
gλµ(∂αgµβ + ∂βgαµ − ∂µgαβ). (2.7)

In the present case, using (2.3) and (2.7) we obtain :

Γ0
11 =

1

2
g0µ [∂1gµ1 + ∂1g1µ − ∂µg11]

= −1

2
(−∂0g11)

=
1

2

da2 (t)

dt
= aȧ (t)

Γ0
22 = Γ0

33 =
1

2
g0µ [∂2gµ2 + ∂2g2µ − ∂µg22]

=− 1

2
(−∂0g22)

=
1

2

db2 (t)

dt

=ḃb (t)

Γ1
01 =

1

2
g1µ [∂0gµ1 + ∂1g0µ − ∂µg01]

=
1

2
× 1

a2 (t)

(
da2 (t)

dt

)

=
ȧ

a
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2.1. Bianchi type I space-time and phase space

Γ2
02 = Γ3

03 =
1

2
g2µ [∂0gµ2 + ∂2g0µ − ∂µg02]

=
1

2
× 1

b2 (t)

(
db2 (t)

dt

)

=
ḃ

b
.

In summary, we obtain that the Christoffel symbol are :




Γ1
10 = ȧ

a
;

Γ2
20 = Γ3

30 = ḃ
b
;

Γ0
11 = aȧ;

Γ0
22 = Γ0

33 = bḃ;

Γλαβ = 0 otherwise.

(2.8)

In (2.8) the dot stands for the derivative with respect to t.

2.1.2 The distribution function

The particles are statistically described by their distribution function, denoted f
,which is a non-negative unknown real-valued function of both the position xα and
the 4-momentum of the particles pα. So let T (R4) be the tangent bundle. Due to
the form of the metric, we can write T (R4) ∼= R4 × R4. Then

f : T
(
R4
) ∼= R4 × R4 −→ R+, (xα, pα) 7−→ f (xα, pα) . (2.9)

We define an inner product on R3 by setting for p = (p1, p2, p3) and q = (q1, q2, q3) :

p.q = a2p1q1 + b2
(
p2q2 + p3q3

)
. (2.10)

We consider that the massive particles have a same rest mass m > 0 normalized to
the unity, i.e m = 1. The particles are then required to move on the future sheet of
the mass-shell or the mass hyperboloid, whose equation is

g (p, p) = −1 (2.11)
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2.1. Bianchi type I space-time and phase space

or equivalently, using the expression (2.2) of g :

p0 =
√

1 + a2 (p1)2 + b2
(
(p2)2 + (p3)2) (2.12)

where p0 > 0 symbolizes the fact that, naturally, the particles eject towards the
future. The relation (2.12) shows that f is in fact defined on the sub-bundle of
T (R4) whose local coordinates are xα and pi.

In the present work, we consider the homogeneous Boltzmann equation for which
f depends only on the time x0 = t and p = (pi).

In the presence of electromagnetic field F , the trajectories

s 7−→ (xα (s) , pα (s)) (2.13)

of the charged particles are solutions of the differential system :




dxα

ds
= pα

dpα

ds
= Pα

(2.14)

where
Pα = Pα (F ) = −Γαλµp

λpµ + epβFα
β (2.15)

with
e(t) > 0 (2.16)

denotes the charge density of the particles.
Notice that the differential system (2.14) shows that the vectors field X(F )

defined locally by :
X (F ) = (pα, Pα (F )) (2.17)

where Pα is given by (2.15), is tangent to the trajectories.

2.1.3 Change of variables

For simplicity, we now consider the covariant variables. The covariant variables
(p0, pi) are obtained by lowering indexes as:

p0 = g0αp
α = −p0

pi = giαp
α = giip

i
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2.2. The Maxwell system in F

and this implies that
p1 = a2p1

and

pi = b2pi, i = 2, 3.

For the sake of simplicity, we will note in the sequel

v0 = p0, vi = giip
i

so that

v =
(
v1, v2, v3

)
.

We let the distribution function f depending on the time t and on the covariant
variables v = (v1, v2, v3) as in [20] and [33], instead of p.

Really: 



v1 = a2p1

v2 = b2p2

v3 = b2p3,

(2.18)

and we see that
dv = a2b4dp. (2.19)

In fact
dv

dp
= a2b4 (2.20)

and setting

v0 =
√

1 + a−2 (v1)2 + b−2
(
(v2)2 + (v3)2) (2.21)

we get :
v0 = p0 (2.22)

as indicated above.

2.2 The Maxwell system in F

The Maxwell system in F can be written as :

∇αF
αβ = Jβ (2.23)
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2.3. The spatially homogeneous Boltzmann equation in f

∇αFβγ +∇βFγα +∇γFαβ = 0. (2.24)

(2.23) and (2.24) are respectively the first and second group of the Maxwell equations
, F = (F 0i, Fij) is the electromagnetic field where F 0i and Fij stand for the electric
and magnetic parts respectively , and ∇α stands for the covariant derivative in g.
In (2.23), Jβ represents the Maxwell current whose local expression is given by :

Jβ =

∫

R3

pβf (t, p) ab2dp1dp2dp3

p0
− euβ (2.25)

in which
ab2 = (det g)

1
2 (2.26)

e (t) = e ≥ 0 (2.27)

is the charge density which also appears in (2.15),

u =
(
uβ
)

(2.28)

is a unit futur pointing timelike vector tangent to the time axis at any point which
means that

u0 = 1, ui = 0, i = 1, 2, 3. (2.29)

The particles are then suppose to be spatially at rest.
(2.24) is an identity expressing the fact F is closed, or equivalently

dF = 0. (2.30)

Now the identity∇α∇βF
αβ = 0 (see[28]) implies that we must have the conservation

law of current

∇αJ
β = 0. (2.31)

2.3 The spatially homogeneous Boltzmann equation

in f

For charged particles, and as obtained in section 1.2, the relativistic Boltzmann
equation in Bianchi type I space-time can be written as
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2.3. The spatially homogeneous Boltzmann equation in f

pα

p0

∂f

∂xα
+
P i

p0

∂f

∂pi
= Q (f, f) (2.32)

where
Q (f, f) =

∫

R3

∫

S2

vφσ (k, θ) (f ′f ′∗ − ff∗) ab2dwdq (2.33)

with

vφ =
k
√
δ

p0q0
, f ′ = f

(
t, p′
)
, f ′∗ = f

(
t, q′
)
, f = f (t, p) , f∗ = f (t, q) . (2.34)

Here Q is the collision operator, vφ the Mφller velocity, σ the scattering kernel,
θ the scattering angle, δ and k are given by

δ = δ (pα, qα) = − (pα + qα) (pα + qα) ,

k = k (pα, qα) =
√

(pα − qα) (pα − qα),

and are called total energy and relative momentum respectively. In the instanta-
neous, binary and elastic scheme due to Lichnerowicz and Chernikov, we consider
that at a given position xα = (t, x), only two particles collide each other, without
destroying each one, the collision affecting only the two momenta, but the energy
momentum being conserved. In this scheme, p and q stand for the two momenta
before the shock, and p′ and q′ for two momenta after the shock. The collisions
operator Q is defined using functions f and h on R3 by :

Q (f, h) = Q+ (f, h)−Q− (f, h) , (2.35)

where

Q+ (f, h) =

∫ ∫

R3×S2

ab2f
(
p′
)
h
(
q′
)
vφσ (k, θ) dqdw, (2.36)

Q− (f, h) =

∫ ∫

R3×S2

ab2f (p)h (q) vφσ (k, θ) dqdw. (2.37)

The energy momentum conservation is written as

p0 + q0 = p′0 + q′0 (2.38)

p+ q = p′ + q′ (2.39)

As suggested in [21] and [33], we can parametrize the post-collisional momenta as
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2.4. The Maxwell-Boltzmann system in (F, f) in the hard potential case

follows.
For pα and qα been given, we first consider

nα = pα + qα, tα =
(
niw

i,−n0w
)
, w ∈ S2. (2.40)

Then, for w ∈ S2, the post-collisional momenta are represented by :

p′α =
pα + qα

2
+
k

2

tα√
tβtβ

, q′α =
pα + qα

2
− k

2

tα√
tβtβ

(2.41)

It can be easily checked that they satisfy the mass shell condition and energy mo-
mentum conservation.

Lemma 2.1. The Jacobian of the change of variable (p, q) 7−→
(
p′, q′

)
defined by

(2.41) is computed to be
∂
(
p′, q′

)

∂ (p, q)
= −p

′0q′0

p0q0
(2.42)

Proof. See the Appendix

Now it appears clearly, using (2.12) and (2.41) that the functions in the integrals
(2.36) and (2.37) depend only on p and q and that these integrals with respect to q
and w give functions Q+ (f, h) and Q− (f, h) of the single variable p.

In practice we will consider functions f on R4 that induce for t ∈ R, functions
f(t) on R3 defined by

f (t) (p) = f (t, p) .

2.4 The Maxwell-Boltzmann system in (F, f ) in the

hard potential case

Setting β = 0 in the Maxwell system (2.23), we easily deduce that

∇αF
α0 = 0 (2.43)

since
F 00 = F00 = 0; F = F (t); Γ0

αλ = Γ0
λα, Fαλ = −F λα, (2.44)

and from (2.8)
Γααi = 0. (2.45)

Equation (2.23) then imposes that
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2.4. The Maxwell-Boltzmann system in (F, f) in the hard potential case

J0 = 0. (2.46)

By the relation (2.46), the expression (2.25) of Jβ in which we set β = 0 then allows
to compute e and gives, since u0 = 1 :

e (t) =

∫

R3

f (t, p) ab2dp (2.47)

where
dp = dp1dp2dp3. (2.48)

This relation shows that e is determined when f is known.
For the equation (2.24) the usual formula of the covariant derivative of g gives :

∇0Fij +∇iFj0 +∇jF0i = 0 (2.49)

and
∇iFjk +∇jFki +∇kFij = 0 (2.50)

using
Γkij = Γkji and Fij = −Fji, (2.51)

(2.50) and (2.51) write:

∂0Fij + ∂iFj0 + ∂jF0i = 0 (2.52)

∂iFjk + ∂jFki + ∂kFij = 0. (2.53)

The second set of equations is identically satisfied since F = F (t) , and the first set
reduces to :

∂0Fij = 0. (2.54)

Then Fij is constant and :
Fij = Fij (0) := ϕij. (2.55)

It remains to determine the electric part

F 0i := Ei. (2.56)

Writing (2.25) for β = i, we obtain

J i =

∫

R3

pif (t, p) ab2dp

p0
. (2.57)
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2.4. The Maxwell-Boltzmann system in (F, f) in the hard potential case

Writing (2.23 ) for α = 0 and using (2.8) allows to get :

∇0F
0i = ∂0F

0i + Γi0λF
0λ (2.58)

∇0F
0i = J i (2.59)

thus
∇0F

0i = ∂0F
0i + Γi0jF

0j = J i. (2.60)

Then, (2.57) and (2.60) imply

Ėi + Γi0jE
j =

∫

R3

pif (t, p) ab2dp

p0
. (2.61)

Since f = f (t, p) , then the homogeneous Boltzmann equation (2.32) can be written:

∂f

∂t
+
P i

p0

∂f

∂pi
= Q (f, f) (2.62)

and is equivalent to

∂f

∂t
+
P 1

p0

∂f

∂p1
+
P 2

p0

∂f

∂p2
+
P 3

p0

∂f

∂p3
= Q (f, f) . (2.63)

Solve the non linear first order partial differential equation (2.63) is equivalent to
solve the first order characteristic differential system :

dt

1
=
dp1

P 1

p0

=
dp2

P 2

p0

=
dp3

P 3

p0

=
df

Q (f, f)
= ds (2.64)

which allows to take t as parameter.
(2.64) give the following system :





dp1

dt
= P 1

p0

dp2

dt
= P 2

p0

dp3

dt
= P 3

p0

df
dt

= Q (f, f)

(2.65)

Using the expression f̃ (t, v) = f (t, p), it follows directly that the left hand side of
(2.63) is equal to ∂tf̃ (t, v). (2.63) is written now :

∂f̃

∂t
(t, v) = Q

(
f̃ , f̃

)
. (2.66)
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For simplicity of notation, it will cause no confusion if we use the same letter f to
designate f̃ in the remainder of the work.

On the other hand, we obtain from (2.15)

P i = −Γiλµp
λpµ + e

[
p0F i

0 + pkF i
k

]
, i = 1, 2, 3

which gives using expression (2.8) of Γλαβ,

F i
0 = −F 0i (2.67)

and

F i
j = giλFjλ (2.68)

= giiFji (2.69)

= −giiFij (2.70)

i, j = 1, 2, 3 :
P i

p0
= −2Γi0jp

j − e
[
F 0i + gii

pkFik
p0

]
, i,= 1, 2, 3. (2.71)

Using relation (2.47), (2.61), (2.64) and (2.71) the spatially homogeneous Maxwell-
Boltzmann system takes the following form :

Ėi = −Γi0jE
j +

∫

R3

qif (t, q) ab2dq

q0
, (2.72)

ṗi = −2Γi0jp
j −

[
Ei + gii

pkϕik
p0

] ∫

R3

f (t, q) ab2dq, (2.73)

df

dt
= Q (f, f) , (2.74)

Fij = Fij (0) = ϕij i, j = 1, 2, 3, f (0, p) = f0 (p) . (2.75)

Note that f and p are independent variables for the integro-differential system (2.72)-
(2.75).

In this context, the collision operator Q defined by (2.33) will depend on p only
through the collision kernel and we show it clearly by writing now Q (f, f, p) instead
of Q (f, f) (p) .

In what follows, it will be useful to use covariant variables. We can express the
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collision operator in terms of covariant variables as

Q (f, f) (t, v) = a−1b−2

∫

S2

dw

∫

R3

du
k
√
δ

v0u0
σ (k, θ)

×
[
f
(
t, v′
)
f
(
t, u′
)
− f (t, v) f (t, u)

]
. (2.76)

Thus, the Boltzmann equation (2.62) can be written in the following equivalent form
:

df (t, v)

dt
= Q (f, f) (t, v) . (2.77)

The above equivalent form will be used later for the hard potential case.

2.5 Assumptions on the work

In this work, as in [21], we assume that the scattering kernel for the spatially
homogeneous Maxwell-Boltzmann system in (F, f) in the hard potential case has
the form

σ (k, θ) = kβsinγθ, −2 < γ ≤ 1, 0 ≤ β < γ + 2 (2.78)

Since k
δ
is a bounded quantity, because δ = 4 + k2, a scattering kernel of this form

falls into the hard potential case.
We also assume the following assumptions on the potential of gravitations a(t)

and b(t) : 


a ≤ b

a (0) = a0 ≥ 3
2

(2.79)

and that there exists a positive constant C such that :

∣∣∣∣
ȧ

a

∣∣∣∣ ≤ C,

∣∣∣∣∣
ḃ

b

∣∣∣∣∣ ≤ C (2.80)

where the dot stands for derivative with respect to t.
The last assumption is physically justified and represent an expanding universe.
As a consequence, we have:

a(t) ≤ a0e
Ct; b(t) ≤ b0e

Ct;
1

a
(t) ≤ 1

a0

eCt;
1

b
(t) ≤ 1

b0

eCt (2.81)

where
a0 = a(0); b = b(0). (2.82)
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Notice that the two first inequalities in (2.81) are obtained by integrating (2.80)
over [0, t] ,t > 0 and that one deduces from

˙̂(
1

a

)
= − ȧ

a2
= (− ȧ

a
)× 1

a
(2.83)

and using (2.8) that
∣∣∣∣∣∣

˙̂(
1

a

)∣∣∣∣∣∣
≤ C(

1

a
), or

∣∣∣∣∣∣

˙̂(
1

a

)
/

(
1

a

)∣∣∣∣∣∣
≤ C, (2.84)

which yields the two last inequalities in (2.81) by integrating over [0, t] , t > 0.

For the moment, we need to introduce some useful functional spaces.

2.6 Functional spaces

The framework we will refer to for the distribution function f is L1
r (R3), the

subspace of the Lebesgue space L1 (R3) whose norm is denoted ||.||1 , r, r ≥ 0 and
defined by :

L1
r

(
R3
)

=

{
f ∈ L1

(
R3
)

: ||f ||1 , r =

∫

R3

|f (p) |
(
p0
)r
dp < +∞

}
. (2.85)

For r = 1, we will simply denote ||.||1 , r by ||.|| we also define

|f (t)|1 , r =

∫

R3

|f (t, v)| 〈v〉rdv, 〈v〉 =

√
1 + |v|2. (2.86)

Consequently, we have the following useful relations

||f (t) ||1 , r ≤ |f (t)|1 , r ≤ br (t) ||f (t) ||1 , r , (2.87)

where we use the inequalities

v0 ≤ 〈v〉 ≤ b (t) v0. (2.88)

Now ,we set for r ∈ R, r > 0 :

Xr =
{
f ∈ L1

1

(
R3
)
, f ≥ 0 a.e , ||f || ≤ r

}
(2.89)
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For any real interval I, we set :

C
([
I, L1

1

(
R3
)])

=
{
f : I −→ L1

1

(
R3
)
, f continuous and bounded

}
, (2.90)

C ([I,Xr]) =
{
f ∈ C

([
I, L1

1

(
R3
)])

, f (t) ∈ Xr,∀t ∈ I
}

(2.91)

with its usual norm
|||f ||| = sup {||f (t) ||, t ∈ I} . (2.92)

The framework we will refer to for p and E is R3, whose norm is denoted ||.|| or
||.||R3 .

C ([I,R3]) is a Banach space for the norm

|||m||| = sup {||m (t) ||, t ∈ I} . (2.93)

We consider on R3 × R3 × L1
1 (R3) the norm :

||
(
p, E, f

)
|| = ||p||+ ||E||+ ||f ||. (2.94)

We consider on C ([I,R3])× C ([I,R3])× C ([I, L1
1 (R3)]) the norm

|||
(
p, E, f

)
||| = |||p|||+ |||E|||+ |||f |||. (2.95)

Lemma 2.2. We have :
1) (L1

r (R3) ; ||.||1 , r) is a Banach space.
2) Endowed with the distance induced by the norm ||.||, Xr is a complete and

connected metric space.
3) C ([I, L1

1 (R3)] ; |||.|||) is a Banach space.
4) Endowed with the distance induced by the norm |||.|||, C ([I,Xr]) is a complete

metric space.

Proof. See the Appendix
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CHAPTER 3

The homogeneous Maxwell-Bolzmann

system for µ−N regularity

In this chapter we are concerned with the homogeneous Maxwell-Boltzmann
system for µ−N regularity. This chapter is very important in the method adopted
to attain the main issue of the work. It is a reformulation and a readjustment of the
result coming from [29]. The change of hypotheses imposes to change the framework
in which we look for solutions. The results obtained here are very important for
the next chapter. The concept of µ − N regularity introduced by Choquet and
Bancel many years ago in [3] consists on putting some boundary and Lipschitzian
assumptions on the scattering kernel. For more details on this concept, see [3]. The
chapter is organized as follows:

– Firstly, we begin by the proof of the local existence theorem of solution to the
Maxwell-Boltzmann-Momentum system for µ−N regularity.

– In the second part, we deduce a global existence theorem using a special tech-
nique.
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3.1. Local existence of solutions

3.1 Local existence of solutions

3.1.1 Properties of the collision operator

For technical purposes in the method adopted in this work, in this section we
change the scattering kernel k

√
δσ into a bounded kernel S

(
p, q, p′, q′

)
, considering

that it is a non negative continuous real valued function of all its arguments, on
which we additionally require the Lipschitz continuity assumption as in [29]:





0 ≤ S
(
p, q, p′, q′

)
≤ C1

|S
(
p1, q, p′, q′

)
− S

(
p2, q, p′, q′

)
| ≤ C1||p1 − p2||,

(3.1)

where C1 is a positive constant.
We recall that the relativistic-Boltzmann equation (2.32) reads:

∂f

∂t
+
P i

p0

∂f

∂pi
=

1

p0
Q (f, f) , (3.2)

where, using functions f, h : T (R4) −→ R

Q (f, h) = Q+ (f, h)−Q− (f, h) , (3.3)

Q+ (f, h) =

∫

R3

∫

S2

ab2

q0
f
(
p′
)
h
(
q′
)
S
(
p, q, p′, q′

)
dwdq, (3.4)

Q− (f, h) =

∫

R3

∫

S2

ab2

q0
f (p)h (q)S

(
p, q, p′, q′

)
dwdq, (3.5)

in which f (p) = f (t, p) .

The Maxwell-Boltzmann-Momentum system (2.72)-(2.75) transforms into the
following integro-differential system :

Ėi = −Γi0jE
j +

∫

R3

qif (t, q) ab2dq

q0
, i, j = 1, 2, 3 (3.6)

ṗi = −2Γi0jp
j −

[
Ei + gii

pkϕik
p0

] ∫

R3

f (t, q) ab2dq, (3.7)

df

dt
=

1

p0
Q (f, f, p) , (3.8)

Fij = Fij (0) = ϕij i, j = 1, 2, 3, f (0, p) = f0 (p) . (3.9)

In order to state the local existence theorem, we first prove the following impor-
tant propositions:
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Proposition 3.1. Let f, g ∈ L1
1 (R3) be given. Then

1

p0
Q+ (f, g) ,

1

p0
Q− (f, g) ,

1

p0
Q (f, g)

belong to L1
1 (R3), moreover,





∣∣∣
∣∣∣ 1
p0
Q+ (f, g)

∣∣∣
∣∣∣ ≤ C (t) ||f || ||g||∣∣∣

∣∣∣ 1
p0
Q− (f, g)

∣∣∣
∣∣∣ ≤ C (t) ||f || ||g||

(3.10)

∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, f)− 1

p0
Q+ (g, g)

∣∣∣∣
∣∣∣∣ ≤ C (t) ||f − g|| (||f ||+ ||g||) (3.11)

∣∣∣∣
∣∣∣∣

1

p0
Q− (f, f)− 1

p0
Q− (g, g)

∣∣∣∣
∣∣∣∣ ≤ C (t) ||f − g|| (||f ||+ ||g||) (3.12)

∣∣∣∣
∣∣∣∣

1

p0
Q (f, f)− 1

p0
Q (g, g)

∣∣∣∣
∣∣∣∣ ≤ C (t) ||f − g|| (||f ||+ ||g||) (3.13)

where
C (t) = 8πC1ab

2 (t)

and C1 is the constant provided by assumption (3.1).

Proof. Let f, g ∈ L1
1 (R3) .

i) We have

Q− (f, g) =

∫

R3

∫

S2

ab2

q0
f (p) g (q)S

(
p, q, p′, q′

)
dwdq.

Taking the norm, we have :
∣∣∣∣
∣∣∣∣

1

p0
Q− (f, g)

∣∣∣∣
∣∣∣∣ =

∫

R3

√
1 + |p|2

∣∣∣∣
1

p0
Q− (f, g)

∣∣∣∣ dp

=

∫

R3

∫

R3

√
1 + |p|2ab2dqdp

p0q0

∫

S2

|f (p) g (q)|S
(
p, q, p′, q′

)
dw

≤ 4πC1ab
2 (t)

∫

R3

∫

R3

√
1 + |p|2

√
1 + |q|2

p0q0
|f (p) g (q)| dqdp

≤ 4πC1ab
2 (t)

∫

R3

√
1 + |p|2 |f (p)| dp

∫

R3

√
1 + |q|2 |f (q)| dq

≤ 4πC1ab
2 (t) ‖f‖ ‖g‖
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≤ C (t) ‖f‖ ‖g‖

where
C (t) = 4πC1ab

2 (t) .

ii) We also have :

1

p0
Q+ (f, g) =

∫

R3

∫

S2

ab2

p0q0
f
(
p′
)
g
(
q′
)
S
(
p, q, p′, q′

)
dwdq.

Taking the norm we get :
∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, g)

∣∣∣∣
∣∣∣∣ =

∫

R3

√
1 + |p|2

∣∣∣∣
1

p0
Q+ (f, g)

∣∣∣∣ dp

then
∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, g)

∣∣∣∣
∣∣∣∣ =

∫

R3

∫

R3

√
1 + |p|2ab2dqdp

p0q0

∫

S2

∣∣f
(
p′
)
g
(
q′
)∣∣S

(
p, q, p′, q′

)
dw

≤ C1ab
2 (t)

∫

R3

∫

R3

√
1 + |p|2dqdp
p0q0

∫

S2

∣∣f
(
p′
)
g
(
q′
)∣∣ dw.

The Jacobian of the change of variables (p, q) 7−→
(
p′, q′

)
defined by (2.41) is

dpdq =
p0q0

p′0q′0
dp′dq′.

Then we get:

∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, g)

∣∣∣∣
∣∣∣∣ ≤ C1ab

2 (t)

∫

R3

∫

R3

√
1 + |p|2dq′dp′
p′0q′0

×
∣∣f
(
p′
)
g
(
q′
)∣∣
∫

S2

dw.

We set

A = C1ab
2 (t)

∫

R3

∫

R3

√
1 + |p|2dq′dp′
p′0q′0

∣∣f
(
p′
)
g
(
q′
)∣∣
∫

S2

dw
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therefore

A ≤ 4πC1ab
2 (t)

∫

R3

∫

R3

√
1 + |p|2

√
1 + |p′|2

√
1 + |q′|2

p′0q′0

×
∣∣f
(
p′
)
g
(
q′
)∣∣ dq′dp′.

But we have

√
1 + |p|2 =

√
1 +

1

a2
a2 (p1)2 +

1

b2
b2
(
(p2)2 + (p3)2)

≤
√

1 +
1

a2
+

1

b2

√
1 + a2 (p1)2 + b2

(
(p2)2 + (p3)2)

= p0

√
1 +

1

a2
+

1

b2
.

Since a ≤ b we have
1

a2
+

1

b2
≤ 2

a2
.

So:
∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, g)

∣∣∣∣
∣∣∣∣ ≤ 4πC1ab

2 (t)

×
√

1 +
2

a2

∫

R3

∫

R3

p0
√

1 + |p′|2
√

1 + |q′|2
p′0q′0

∣∣f
(
p′
)
g
(
q′
)∣∣ dq′dp′.

Otherwise, we have :

p0

p′0q′0
≤ p0 + q0

p′0q′0

=
p′0 + q′0

p′0q′0

=
1

q′0
+

1

p′0

≤ 1 + 1 = 2;

Accordingly:
∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, g)

∣∣∣∣
∣∣∣∣ ≤ B
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where

B = 8πC1ab
2 (t)

√
1 +

2

a2

∫

R3

√
1 + |p′|2

∣∣f
(
p′
)∣∣ dp′

×
∫

R3

√
1 + |q′|2

∣∣f
(
q′
)∣∣ dq′.

Then

B ≤ 8πC1ab
2 (t)

√
1 +

2

a2
||f || ||g||,

Consequently
∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, g)

∣∣∣∣
∣∣∣∣ ≤ C (t) ||f || ||g||,

where

C (t) = 8πC1ab
2 (t)

√
1 +

2

a2
.

iii) To show inequality (3.11) we use the bilinearity of the collision operator and
we write

1

p0
Q+ (f, f)− 1

p0
Q+ (g, g) =

1

p0
Q+ (f, f − g) +

1

p0
Q+ (f − g, g) .

We obtain using (3.10)

∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, f)− 1

p0
Q+ (g, g)

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, f − g) +

1

p0
Q+ (f − g, g)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, f − g)

∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣

1

p0
Q+ (f − g, g)

∣∣∣∣
∣∣∣∣

≤ C (t) ||f || ||f − g||+ C (t) ||g|| ||f − g||
≤ C (t) ||f − g|| (||f ||+ ||g||) .

iv) By the same way for (3.12) we write

∣∣∣∣
∣∣∣∣

1

p0
Q− (f, f)− 1

p0
Q− (g, g)

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣

1

p0
Q− (f, f − g) +

1

p0
Q− (f − g, g)

∣∣∣∣
∣∣∣∣

and we set
D =

∣∣∣∣
∣∣∣∣

1

p0
Q− (f, f − g) +

1

p0
Q− (f − g, g)

∣∣∣∣
∣∣∣∣ .
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Then

D ≤
∣∣∣∣
∣∣∣∣

1

p0
Q− (f, f − g)

∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣

1

p0
Q− (f − g, g)

∣∣∣∣
∣∣∣∣

≤ C (t) ||f || ||f − g||+ C (t) ||g|| ||f − g||
≤ C (t) ||f − g|| (||f ||+ ||g||) .

v) For the last inequality, since :

Q = Q+ −Q−,

we have: ∣∣∣∣
∣∣∣∣

1

p0
Q (f, f)− 1

p0
Q (g, g)

∣∣∣∣
∣∣∣∣ = E

where

E =

∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, f)− 1

p0
Q− (f, f)− 1

p0
Q+ (g, g) +

1

p0
Q− (g, g)

∣∣∣∣
∣∣∣∣ .

Then

E =

∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, f)− 1

p0
Q+ (g, g)− 1

p0
Q− (f, f) +

1

p0
Q− (g, g)

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣

1

p0
Q+ (f, f)− 1

p0
Q+ (g, g)

∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣

1

p0
Q− (f, f)− 1

p0
Q− (g, g)

∣∣∣∣
∣∣∣∣

≤ C (t) ||f − g|| (||f ||+ ||g||) + C (t) ||f − g|| (||f ||+ ||g||)
≤ C (t) ||f − g|| (||f ||+ ||g||) .

Proposition 3.2. Let p = (pi) , pj =
(
pij
)
∈ R3, j = 1, 2, f ∈ L1

1 (R3) , k ∈ {1, 2, 3} .
Then

p0 ≥ a
∣∣p1
∣∣ ; p0 ≥ b

∣∣p2
∣∣ ; p ≥ b

∣∣p3
∣∣ , (3.14)

∣∣∣∣
pk1
p0

1

− pk2
p0

2

∣∣∣∣ ≤ 5

(
1 +

a

b
+
b

a

)
||p1 − p2||, (3.15)

∣∣∣∣
1

p0
1

− 1

p0
2

∣∣∣∣ ≤ (2a+ 4b)
||p1 − p2||

p0
j

, j = 1, 2 (3.16)

|| 1
p0
j

Q (f, f, p1)− 1

p0
j

Q (f, f, p2) || ≤ 4πC1ab
2||f ||2||p1 − p2|| (3.17)

where C1 > 0 is the constant appearing in (3.1).
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Proof. (3.14) is a direct consequence of (2.12).
Let k ∈ {1, 2, 3} . We have

∣∣∣∣
pk1
p0

1

− pk2
p0

2

∣∣∣∣ =

∣∣∣∣
pk1p

0
2 − p0

1p
k
2

p0
1p

0
2

∣∣∣∣

=

∣∣∣∣
pk1p

0
2 − pk1p0

1 + pk1p
0
1 − p0

1p
k
2

p0
1p

0
2

∣∣∣∣

=

∣∣∣∣∣
pk1 (p0

2 − p0
1) + p0

1

(
pk1 − pk2

)

p0
1p

0
2

∣∣∣∣∣ .

Using the fact that p0
2 ≥ 1 we deduce that

∣∣∣∣
pk1
p0

1

− pk2
p0

2

∣∣∣∣ ≤
∣∣pk1
∣∣ |p0

2 − p0
1|

p0
1p

0
2

+
∣∣pk1 − pk2

∣∣ . (3.18)

For the first term, using expression (2.12) of p0:

p0
1 − p0

2 =
(p0

1)
2 − (p0

2)
2

p0
1 + p0

2

=
a2 (p1

1 + p1
2) (p1

1 − p1
2) + b2 (p2

1 + p2
2) (p2

1 − p2
2)

p0
1 + p0

2

+
b2 (p3

1 + p3
2) (p3

1 − p3
2)

p0
1 + p0

2

. (3.19)

From (3.18) and (3.19) we have :

∣∣∣∣
pk1
p0

1

− pk2
p0

2

∣∣∣∣ ≤
[
a2
(∣∣pk1p1

1

∣∣+
∣∣pk1p1

2

∣∣)+ b2
(∣∣pk1p2

1

∣∣+
∣∣pk1p2

2

∣∣)+ b2
(∣∣pk1p3

1

∣∣+
∣∣pk1p3

2

∣∣)

p0
1p

0
2 (p0

1 + p0
2)

+ 1

]

× ||p1 − p2||. (3.20)

Now we have, using conveniently the inequalities (3.14) :
for k = 1 :

|p1
1|

2
+ |p1

1p
1
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

a2
;

|p1
1p

2
1|+ |p1

1p
2
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

ab
;
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|p1
1p

3
1|+ |p1

1p
3
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

ab
,

Proof. for k = 2 :
|p2

1|
2

+ |p2
1p

2
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

b2
;

|p2
1p

1
1|+ |p2

1p
1
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

ab
;

|p2
1p

3
1|+ |p2

1p
3
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

b2
,

for k = 3 :
|p3

1|
2

+ |p3
1p

3
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

b2
;

|p3
1p

1
1|+ |p3

1p
1
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

ab
;

|p3
1p

2
1|+ |p3

1p
2
2|

p0
1p

0
2 (p0

1 + p0
2)
≤ 2

b2
.

Then, the relation (3.20) gives :

∣∣∣∣
p1

1

p0
1

− p1
2

p0
2

∣∣∣∣ ≤
(

3 + 4
b

a

)
||p1 − p2|| (3.21)

∣∣∣∣
p2

1

p0
1

− p2
2

p0
2

∣∣∣∣ ≤
(

5 + 2
a

b

)
||p1 − p2|| (3.22)

∣∣∣∣
p3

1

p0
1

− p3
2

p0
2

∣∣∣∣ ≤
(

5 + 2
a

b

)
||p1 − p2||. (3.23)

Using (3.21), (3.22) and (3.23) we obtain (3.15).
We have, using expression (2.12) of p0 and (3.19):

∣∣∣∣
1

p0
1

− 1

p0
2

∣∣∣∣ =

∣∣∣∣∣
(p0

1)
2 − (p0

2)
2

p0
1p

0
2 (p0

1 + p0
2)

∣∣∣∣∣

≤ a2 (|p1
1|+ |p1

2|) + b2 (|p2
1|+ |p2

2|) + b2 (|p3
1|+ |p3

2|)
p0

1p
0
2 (p0

1 + p0
2)

||p1 − p2||. (3.24)

But using conveniently inequalities (3.14) and p0
j > 1, j = 1, 2 :

|p1
1|+ |p1

2|
p0

1p
0
2 (p0

1 + p0
2)
≤ 2

ap0
j

; (3.25)

|p2
1|+ |p2

2|
p0

1p
0
2 (p0

1 + p0
2)
≤ 2

bp0
j

; (3.26)
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|p3
1|+ |p3

2|
p0

1p
0
2 (p0

1 + p0
2)
≤ 2

bp0
j

. (3.27)

Then we have using (3.24), (3.25), (3.26) and (3.27) the relation (3.16).
To establish (3.17), write using Q = Q+ −Q− :

∣∣∣∣
Q (f, f, p1)

p0
j

− Q (f, f, p2)

p0
j

∣∣∣∣

=

∣∣∣∣
Q+ (f, f, p1)

p0
j

− Q− (f, f, p1)

p0
j

− Q+ (f, f, p2)

p0
j

+
Q− (f, f, p2)

p0
j

∣∣∣∣

≤
∣∣∣∣
Q+ (f, f, p1)−Q+ (f, f, p2)

p0
j

∣∣∣∣

+

∣∣∣∣
Q− (f, f, p1)−Q− (f, f, p2)

p0
j

∣∣∣∣ . (3.28)

Now the expression (3.4) of Q+ shows that :

∣∣∣∣
Q+ (f, f, p1)−Q+ (f, f, p2)

p0
j

∣∣∣∣ ≤

1

p0
j

∫

R3

ab2

q0
dq

∫

S2

∣∣f
(
p′
)∣∣ ∣∣f

(
q′
)∣∣ ∣∣S

(
p1, q, p′, q′

)∣∣ ∣∣S
(
p2, q, p′, q′

)∣∣ dw.

Then using the second assumption (3.1) on the collision kernel S and proceeding as
in proof of the first inequality (3.10), we obtain :

∣∣∣∣
∣∣∣∣
Q+ (f, f, p1)−Q+ (f, f, p2)

p0
j

∣∣∣∣
∣∣∣∣ ≤ 4πC1ab

2 (t) ||f ||2||p1 − p2||. (3.29)

Next, using once more the second assumption (3.1) on the collision kernel S and
proceeding this time as in the proof of the second inequality (3.10) we obtain :

∣∣∣∣
∣∣∣∣
Q− (f, f, p1)−Q− (f, f, p2)

p0
j

∣∣∣∣
∣∣∣∣ ≤ 4πC1ab

2 (t) ||f ||2||p1 − p2||. (3.30)

(3.17) follows then from (3.28), (3.29) and (3.30).
This completes the proof of this proposition.

3.1.2 Local existence solutions of the system (3.6)-(3.9)

Let I = [t0, t0 + T ] a fixed interval of R+ with t0 ≥ 0, T > 0 arbitrarily given.
To solve the system (3.6)-(3.9) we begin by determine a local solution in interval

I.
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Let us consider the map

H : [t0, t0 + T ]× R3 × R3 × L1
1

(
R3
)
−→ R3 × R3 × L1

1

(
R3
)

(
t, p, E, f

)
7−→ H

(
t, p, E, f

)

where
H
(
t, p, E, f

)
= (H1, H2, H3)

(
t, p, E, f

)

denotes the right hand side of equations (3.6)-(3.8), or equivalently :

H1

(
t, p, E, f

)
= −Γi0jE

j +

∫

R3

qif (t, q) ab2dq

q0
, (3.31)

H2

(
t, p, E, f

)
= −2Γi0jp

j −
[
Ei + gii

pkϕik
p0

] ∫

R3

f (t, q) ab2dq, (3.32)

H3

(
t, p, E, f

)
=

1

p0
Q (f, f, p) (3.33)

in which i, j, k = 1, 2, 3, Γi0j depends on t through
ȧ
a
if i = j = 1 and ḃ

b
if i = j = 2, 3.

Additionally, we will need to estimate the difference in f, E and p in L1
1 and R3

norms.

Proposition 3.3. Let p̄1, p2, E1, E2 ∈ R3, f1, f2 ∈L1
1 (R3). Then :

∣∣∣∣H1

(
t, p1, E1, f1

)
−H1

(
t, p2, E2, f2

)∣∣∣∣
R3

≤ C2

(∣∣∣∣E1 − E2

∣∣∣∣
R3 + ||f1 − f2||

)
, (3.34)

∣∣∣∣H2

(
t, p1, E1, f1

)
−H2

(
t, p2, E2, f2

)∣∣∣∣
R3

≤ C3

(∣∣∣∣E1 − E2

∣∣∣∣
R3 + ||p1 − p2||R3 + ||f1 − f2||

)
(3.35)

∣∣∣∣H3

(
t, p1, E1, f1

)
−H3

(
t, p2, E2, f2

)∣∣∣∣
R3

≤ C4 (||p1 − p2||R3 + ||f1 − f2||) (3.36)

∣∣∣∣H
(
t, p1, E1, f1

)
−H

(
t, p2, E2, f2

)∣∣∣∣

≤ C5

(∣∣∣∣E1 − E2

∣∣∣∣
R3 + ||p1 − p2||R3 + ||f1 − f2||

)
(3.37)
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where





C2 = 3C + b2

C3 = 5 (6C + 1)
(

1 + a+ b2

a

)

×
(
1 + a

b
+ b

a
+ 1

a
+ 1

b

)
(1 + ||f2||) (1 + ab2)

(
1 + ||f2||+

∣∣∣∣E1

∣∣∣∣)

C4 = 8πC1ab
2 (1 + a+ 2b)

(
1 + ||f1||+ ||f2||+ ||f2||2

)

C5 = C2 + C3 + C4.

(3.38)

Proof. Write, using the expression of H1 in (3.31)

H1

(
t, p1, E1, f1

)
−H1

(
t, p2, E2, f2

)
= Γi0j

(
Ej

2 − Ej
1

)
+

∫

R3

qi

q0
ab2 [f1 (t, q)− f2 (t, q)] dq. (3.39)

For the first term in (3.39), we have, since Γ1
01 = ȧ

a
, Γ2

02 = Γ3
03 = ḃ

b
and using (2.80) :

∣∣Γi0j
(
Ej

2 − Ej
1

)∣∣ ≤ 3C
∣∣∣∣E1 − E2

∣∣∣∣ .

For the second term in (3.39), we have, since

|q1|
q0
≤ 1

a
,
|q2|
q0
≤ 1

b
,
|q3|
q0
≤ 1

b
,

∣∣∣∣
∫

R3

qi

q0
ab2 [f1 (t, q)− f2 (t, q)] dq

∣∣∣∣ = F

where

F =

∣∣∣∣∣∣

∫

R3

qi

q0
ab2

√
1 + |q|2

√
1 + |q|2

f1 (t, q)− f2 (t, q) dq

∣∣∣∣∣∣
.

Then

F ≤ab2 × 1

a

∫

R3

√
1 + |q|2

q0
|f1 (t, q)− f2 (t, q)| dq

≤b2

∫

R3

√
1 + |q|2 |f1 (t, q)− f2 (t, q)| dq

≤b2 ||f1 − f2|| , since
1

q0
≤ 1.
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We have now :

∣∣∣∣H1

(
t, p1, E1, f1

)
−H1

(
t, p2, E2, f2

)∣∣∣∣ ≤ 3C
∣∣∣∣E1 − E2

∣∣∣∣+ b2 ||f1 − f2||

since

3C
∣∣∣∣E1 − E2

∣∣∣∣+ b2 ||f1 − f2|| ≤
(
3C + b2

) (∣∣∣∣E1 − E2

∣∣∣∣+ ||f1 − f2||
)
,

then (3.34) yields.
Write, using the expression of H2 in (3.32)

H2

(
t, p1, E1, f1

)
−H2

(
t, p2, E2, f2

)
= 2Γi0j

(
pj2 − pj1

)

+ab2

[
Ei

2

∫

R3

f2 (t, q) dq − Ei
1

∫

R3

f1 (t, q) dq

]

+ab2giiϕki

[
pk2
p0

2

∫

R3

f2 (t, q) dq − pk1
p0

1

∫

R3

f1 (t, q) dq

]
. (3.40)

For the first term in (3.40) , we have :

∣∣2Γi0j
(
pj2 − pj1

)∣∣ ≤ 6C ||p1 − p2|| . (3.41)

We write the second term in (3.40) in the form

ab2

[
Ei

2

∫

R3

f2 (t, q) dq − Ei
1

∫

R3

f1 (t, q) dq

]
=

= ab2
(
Ei

2 − Ei
1

) ∫

R3

f2 (t, q) dq + ab2
(
Ei

1

) ∫

R3

[f2 (t, q)− f1 (t, q)] dq

= ab2
(
Ei

2 − Ei
1

) ∫

R3

√
1 + |q|2

√
1 + |q|2

f2 (t, q) dq + ab2
(
Ei

1

)

×
∫

R3

√
1 + |q|2

√
1 + |q|2

[f2 (t, q)− f1 (t, q)] dq.

Now we then have :
∣∣∣∣ab2

[
Ei

2

∫

R3

f2 (t, q) dq − Ei
1

∫

R3

f1 (t, q) dq

]∣∣∣∣ ≤ G
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where
G = ab2

(∣∣∣∣f2

∣∣∣∣+
∣∣∣∣E1

∣∣∣∣) (∣∣∣∣E1 − E2

∣∣∣∣+ ||f1 − f2||
)

(3.42)

Now we write the third term in (3.40) in the form

ab2giiϕki

[
pk2
p0

2

∫

R3

f2 (t, q) dq − pk1
p0

1

∫

R3

f1 (t, q) dq

]

= ab2giiϕki

[(
pk2
p0

2

− pk1
p0

1

)∫

R3

f2 (t, q) dq +
pk1
p0

1

∫

R3

(f2 (t, q)− f1 (t, q)) dq

]

= ab2giiϕki



(
pk2
p0

2

− pk1
p0

1

)∫

R3

√
1 + |q|2

√
1 + |q|2

f2 (t, q) dq




+ab2giiϕki


p

k
1

p0
1

∫

R3

√
1 + |q|2

√
1 + |q|2

(f2 (t, q)− f1 (t, q)) dq


 . (3.43)

Using (2.3) and (3.14) :




ab2g11 = b2

a
, ab2g22 = ab2g33 = a

|p11|
p01
≤ 1

a
,
|p21|
p01
≤ 1

b
,
|p31|
p01
≤ 1

b
.

(3.44)

Using (3.44), (3.15), we then deduce from (3.43) for the first term in brackets that,
we have for i ∈ {1, 2, 3} :

∣∣∣∣ab2giiϕki

[
pk2
p0

2

∫

R3

f2 (t, q) dq − pk1
p0

1

∫

R3

f1 (t, q) dq

]∣∣∣∣

≤ K1 (||p1 − p2||+ ||f1 − f2||) (3.45)

where :

K1 = 5

(
b2

a
+ a

)(
2 +

a

b
+
b

a
+

1

a
+

1

b

)
(1 + ||f2||)

∑

i,k

|ϕik| . (3.46)

(3.35) and the expression of C3 in (3.38) then follow from (3.42), (3.43), (3.44),
(3.45) and (3.46).

Write, using the expression of H3 in (3.33)
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H3

(
t, p1, E1, f1

)
−H3

(
t, p2, E2, f2

)
=

1

p0
1

Q (f1, f1, p1)− 1

p0
2

Q (f2, f2, p2)

=
1

p0
1

[
Q (f1, f1, p1)−Q (f2, f2, p1)

]

+
1

p0
1

[
Q (f2, f2, p1)−Q (f2, f2, p2)

]

+

(
1

p0
1

− 1

p0
2

)
Q (f2, f2, p2) . (3.47)

For the first term in (3.47) in which p1 is fixed, use (3.13), (3.1) to obtain setting
in (3.13) f = f1, g = f2

∣∣∣∣
∣∣∣∣

1

p0
1

[
Q (f1, f1, p1)−Q (f2, f2, p1)

]∣∣∣∣
∣∣∣∣ ≤ 8πC1ab

2 (||f1||+ ||f2||) ||f1 − f2|| . (3.48)

For the second term in (3.47) in which f2 is fixed, by using inequality (3.17) , with
j = 1, f = f2 we obtain

∣∣∣∣
∣∣∣∣

1

p0
1

[
Q (f2, f2, p1)−Q (f2, f2, p2)

]∣∣∣∣
∣∣∣∣ ≤ 4πC1ab

2 ||f2||2 ||p1 − p2|| . (3.49)

For the third term in (3.47) in which f2 is fixed, we use inequality (3.16) with j = 2

to obtain

∣∣∣∣
∣∣∣∣
(

1

p0
1

− 1

p0
2

)
Q (f2, f2, p2)

∣∣∣∣
∣∣∣∣ ≤ (2a+ 4b)

∣∣∣∣∣

∣∣∣∣∣
Q
(
f2, f2, P2

)

p0
2

∣∣∣∣∣

∣∣∣∣∣ . (3.50)

Now we deduce from (3.50) using inequality (3.13) in which we set f = f2, g = 0

that :
∣∣∣∣
∣∣∣∣
(

1

p0
1

− 1

p0
2

)
Q (f2, f2, p2)

∣∣∣∣
∣∣∣∣ ≤ 8πC1ab

2 (a+ 2b) ||f2||2 ||p1 − p2|| . (3.51)

(3.36) and the expression of C4 in (3.38), then follow from (3.49), (3.50) and (3.51).
Combining (3.34) ,(3.35) and (3.36) and using the definition (2.94) of the norm

on R3 × R3 × L1
1 (R3) we have (3.37).

This completes the proof of the proposition .

The following theorem gives the local existence of solution of the Maxwell-
Boltzmann system and is stated as follows:

Theorem 3.1. Let t0 ≥ 0,
(
pt0 , Et0 , ft0

)
∈ R3 × R3 × L1

1 (R3) be given. Then:
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1. There exists a real number δ > 0 such that the differential system (3.6)-
(3.9) has a unique solution

(
p, E, f

)
∈ C ([t0; t0 + δ] ;R3) × C ([t0; t0 + δ] ;R3) ×

C ([t0; t0 + δ] ;L1
1 (R3)) satisfying

(
p, E, f

)
(t0) =

(
pt0 , Et0 , ft0

)
.

Moreover f satisfies

|||f ||| = sup {||f (t)|| , t ∈ [t0; t0 + δ]} ≤ ||ft0|| . (3.52)

2. The Maxwell-Boltzmann system (2.23)-(2.24)-(3.2) has a unique local solution
(F, f) on [t0; t0 + δ] such that

F i0 (t0) = Ei
t0
, Fij (t0) = ϕij, f (t0) = ft0 , |||f ||| ≤ ||ft0|| . (3.53)

Proof. We apply the Cauchy-Lipschitz theorem to the first order differential system
(3.6)-(3.8).

1) Since the functions : a, b, ȧ, ḃ, 1
a
, 1
b
, S are continuous functions of t, so is the

right hand side H = (H1, H2, H3) of system (3.6)-(3.8).
By the continuity of the functions z = a, b, 1

a
, 1
b
at t = t0, there exists a real

number δ0 > 0 such that :

t ∈]t0 − δ0, t0 + δ0[=⇒ |z (t)| ≤ |z (t0)|+ 1. (3.54)

(3.54) implies using (2.81) to control z = a, b, 1
a
, 1
b
that :

t ∈]t0 − δ0, t0 + δ0[=⇒ |z (t)| ≤
(
a0 + b0 +

1

a0

+
1

b0

)
eCt0 + 1. (3.55)

Next, we set
B (ft0 , 1) =

{
f ∈ L1

1

(
R3
)
, ||f − ft0|| ≤ 1

}
.

Then :
f ∈ B (ft0 , 1) =⇒ ||f || ≤ ||ft0||+ 1. (3.56)

Now consider the neighborhood

Vt0 =]t0 − δ0, t0 + δ0[×R3 × R3 ×B (ft0 , 1)

of
(
t0, pt0 , Et0 , ft0

)
in the Banach space R× R3 × R3 × L1

1 (R3) and take

(
t, p1, E1, f1

)
,
(
t, p2, E2, f2

)
∈ Vt0 . (3.57)
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We deduce from the inequality (3.37), the definition (3.38) of C2, C3, C4, and C5,

the relation (3.55) for z = a, b, 1
a
, 1
b
, the relation (3.56) which implies since fj ∈

B (ft0 , 1) , j = 1, 2 ||fj|| ≤ ||ft0||+ 1, that there exists a constant

C6 = C6

(
a0, b0, t0, ft0 , ϕij,

∣∣∣∣E1

∣∣∣∣)

such that :

∣∣∣∣H
(
t, p1, E1, f1

)
−H

(
t, p2, E2, f2

)∣∣∣∣

≤ C6

(∣∣∣∣E1 − E2

∣∣∣∣
R3 + ||p1 − p2||R3 + ||f1 − f2||

)
.

This shows that H is locally Lipschitz in
(
p, E, f

)
with respect to the norm of the

Banach space R3 × R3 × L1
1 (R3) .

The existence of a unique solution
(
p, E, f

)
of the differential system (3.6)-(3.8)

on an interval [t0; t0 + δ], δ > 0, such that
(
p, E, f

)
(t0) =

(
pt0 , Et0 , ft0

)
is then

guaranteed by the Cauchy- Lipschitz theorem on first order differential systems.
2) The relation (3.52) is established in [31] , which studied the single Boltzmann

equation.
3) The existence of a local solution (F, f) of the Maxwell-Boltzmann system

is a direct consequence of the first part of the proof, the equivalence between the
Boltzmann equation (3.2) and the differential system 3.6-(3.8) and given (3.9). This
completes the proof of theorem 3.1.

We end this section by the following useful result, which is an immediate conse-
quence of theorem 3.1 for t0 = 0.

Theorem 3.2. Let p0, E0 ∈ R3, f0 ∈ L1
1 (R3),ϕij ∈ R be given.

Then there exists a real number T > 0 such that :
1) The differential system (3.6)-(3.9) has a unique solution

(
p, E, f

)
∈ C

(
[0;T ] ;R3

)2 × C
(
[0;T ] ;L1

1

(
R3
))

such that (
p, E, f

)
(0) =

(
p0, E0, f0

)
.

2) Moreover f satisfies
|||f ||| ≤ ||f0|| . (3.58)

3) The Maxwell- Boltzmann system (2.23)-(2.24)-(3.2) has a unique solution
(F, f) satisfying

F i0 (0) = Ei
0, Fij (0) = ϕij, f (0) = f0.

52 Nana Mbajoun



3.2. Global existence theorem for the Boltzmann equation for µ−N regularity

3.2 Global existence theorem for the Boltzmann equa-

tion for µ−N regularity

3.2.1 The strategy of proof of global existence theorem

Denote by [0, T [ the maximal existence domain of solution of the system (3.6)-
(3.9) denoted here by

(
p̃, Ẽ, f̃

)
and given by theorem 3.2 with the initial data

(
p0, E0, f0

)
∈ C

(
[0;T ] ;R3

)2 × C
(
[0;T ] ;L1

1

(
R3
))
.

We want to prove that T = +∞.

1. If we already have T = +∞, then the problem of global existence is solved.

2. If we suppose 0 < T < +∞, then we prove that the solution
(
p̃, Ẽ, f̃

)
can be

extended beyond T , which contradicts the maximality of T.

3. The strategy is as follows :
Suppose 0 < T < +∞ and let t0 ∈ [0, T [ . We will show that there exists
a strictly positive number τ > 0 independent on t0 such that the system
(3.6)-(3.9) has a unique solution

(
p, E, f

)
on [t0, t0 + τ ], with the initial data(

p̃0, Ẽ0, f̃0

)
at t = t0. Then taking t0 sufficiently close to T , for example, to

such that 0 < T − t0 < τ
2
and hence T < t0 + τ

2
, we can extend the solution(

p̃0, Ẽ0, f̃0

)
to [0, t0 + τ

2
], which strictly contains [0, T [, and this contradicts

the maximality of T. In order to simplify the notation, it will be sufficiently
enough if we could look for a number τ such that 0 < τ < 1.

4. In what follows we fix a number r > 0 and we take f0 such that

||f0|| ≤ r.

By (3.58) we have : ∣∣∣
∣∣∣f̃0

∣∣∣
∣∣∣ ≤ ||f0|| . (3.59)

We deduce from (3.59), using (3.52) that, any solution f of the Boltzmann
equation on [t0, t0 + τ ] such that f(t0) = f̃ (t0) , satisfies :

||f (t)|| ≤ r, t ∈ [t0, t0 + τ ]. (3.60)

Notice that (3.60) shows that a solution
(
p, E, f

)
of system (3.6)-(3.9) on
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[t0, t0 + τ ],τ > 0, such that

(
p, E, f

)
(t0) =

(
p̃ (t0) , Ẽ (t0) , f̃ (t0)

)

satisfies :

(
p, E, f

)
∈ C

(
[t0; t0 + τ ] ;R3

)2 × C ([t0; t0 + τ ] ;Xr) (3.61)

whereXr is defined by (2.89), C ([t0; t0 + τ ] ;Xr) by (2.91), with I = [t0; t0 + τ ] .

In what follows, [0, T [ , T > 0, is the maximal existence domain of the solution(
p̃, Ẽ, f̃

)
of (3.6)-(3.9) such that

(
p̃, Ẽ, f̃

)
(0) =

(
p̃0, Ẽ0, f̃0

)
∈ R3 × R3 × L1

1

(
R3
)
, ||f0|| ≤ r.

3.2.2 Preliminary results

We prove the following result which will be useful in what follows.

Lemma 3.1. The maps t 7−→ Ẽ (t) , t 7−→ p̃ (t) are uniformly bounded over [0, T [.

Proof. 1) Let t ∈ [0, T [.

Let us show that the map t 7−→ Ẽ (t) is uniformly bounded i.e there exists k1 > 0

such that ∀t ∈ [0, T [, we have ∣∣∣Ẽ (t)
∣∣∣ ≤ k1.

Consider (3.6) in which we set E = Ẽ and f = f̃ i.e, the inequality

˙̃
Ei = −Γi0iẼ

i +

∫

R3

qif̃ (t, q) ab2dq

q0
(3.62)

on [0, T [.

We have, using (2.8)

Γ1
01 =

ȧ

a
,Γ2

02 = Γ3
03 =

ḃ

b
,

then (2.80) implies that ∣∣Γi0i
∣∣ ≤ C. (3.63)

Since
|q1|
q0
≤ 1

a
,
|q2|
q0
≤ 1

b
,
|q3|
q0
≤ 1

b
,

using (2.81) by which

z = a, b,
1

a
,
1

b
,
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we have ∣∣∣∣
∫

R3

qi

q0
f̃ (t, q) ab2dq

∣∣∣∣ ≤ Ci
6, (3.64)

where
Ci

6 = Ci
6 (a0, b0, r, T ) .

We then deduce from(3.62),(3.63) and (3.64) that
∣∣∣∣

˙̃
Ei

∣∣∣∣ ≤ C
∣∣∣Ẽi

∣∣∣+ Ci
6. (3.65)

Now integrating (3.65) over [0, t], yields, using Ẽi (0) = Ei
0

∣∣∣Ẽi

∣∣∣ ≤
(∣∣Ei

0

∣∣+ Ci
6T
)

+ C

∫ t

0

∣∣∣Ẽi

∣∣∣ (s) ds, t ∈ [0, T [, i = 1, 2, 3 (3.66)

applying Gronwall lemma to (3.66) we obtain

∣∣∣Ẽi (t)
∣∣∣ ≤

(∣∣Ei
0

∣∣+ Ci
6T
)
eCt, t ∈ [0, T [, i = 1, 2, 3. (3.67)

Then the map t 7−→ Ẽ (t) is uniformly bounded.
2) Consider (3.7) in which we set p = p̃, E = Ẽ and f = f̃ i.e the equality :

˙̃
pi = −2Γi0ip̃

i −
[
Ẽi + gii

p̃kϕik
p0

]∫

R3

f̃ (t, q) ab2dq. (3.68)

We already have ∣∣Γi0i
∣∣ ≤ C. (3.69)

Since
ab2g11 =

b2

a
, ab2g22 = ab2g33 = a,

∣∣∣p̃1

∣∣∣
p0
≤ 1

a
,

∣∣∣p̃2

∣∣∣
p0
≤ 1

b
,

∣∣∣p̃3

∣∣∣
p0
≤ 1

b
,

and using (2.80) by which

|z (t)| ≤
(
a0 + b0 +

1

a0

+
1

b0

)
eCT ,∀t ∈ [0, T [,

for
z = a, b,

1

a
,
1

b
,
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we have : ∣∣∣∣∣

[
Ẽi + gii

p̃kϕik
p0

]∫

R3

f̃ (t, q) ab2dq

∣∣∣∣∣ ≤ Ci
7 (3.70)

where

Ci
7 = Ci

7

(
a0, b0, r, T,

∑

i,k

|ϕik| ,
∣∣Ei

0

∣∣
)
.

We deduce from (3.68) , (3.69) and (3.70) that :
∣∣∣∣

˙̃
pi
∣∣∣∣ ≤ 2C

∣∣∣p̃i
∣∣∣+ Ci

7, i = 1, 2, 3. (3.71)

Now integrating (3.71) over [0, t], t ∈ [0, T [, yields, using p̃i (0) = pi0 :

∣∣∣p̃i (t)
∣∣∣ ≤

(∣∣pi0
∣∣+ Ci

7T
)

+ 2C

∫ t

0

∣∣∣p̃i
∣∣∣ (s) ds, i = 1, 2, 3. (3.72)

Applying Gronwall lemma 1.1 to (3.71) we obtain

∣∣∣p̃i (t)
∣∣∣ ≤ K

(∣∣pi0
∣∣+ Ci

7T
)
e2Ct, K ∈ R, t ∈ [0, T [, i = 1, 2, 3. (3.73)

This completes the proof of Lemma 3.1.

3.2.3 Global existence of solutions for µ−N regularity

We first consider, for t0 ∈ [0, T [ and τ > 0,

(
p, E, f

)
∈ C

(
[t0; t0 + τ ] ;R3

)2 × C ([t0; t0 + τ ] ;Xr) .

We built from system (3.6)-(3.8) by setting in right hand side H = (H1, H2, H3)

which is given by (3.31)-(3.32) :
p̄ = p, f = f in H1, E = E, f = f in H2 and E = E, p̄ = p in H3; the following

differential system :
dEi

dt
= H1

(
t, p, E, f

)
(3.74)

dpi

dt
= H2

(
t, p, E, f

)
(3.75)

df

dt
= H3

(
t, p, E, f

)
(3.76)
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where

H1

(
t, p, E, f

)
= −Γi0jE

j +

∫

R3

qif (t, q) ab2dq

q0
(3.77)

H2

(
t, P , E, f

)
= −2Γi0jp

j −
[
Ei + gii

pkϕik
p0

] ∫

R3

f (t, q) ab2dq (3.78)

H3

(
t, P , E, f

)
=

1

p0
(
p
)Q
(
f, f, p

)
i = 1, 2, 3. (3.79)

We prove :

Proposition 3.4. Let t0 ∈ [0, T [, τ ∈]0, 1[, and(
p, E, f

)
∈ C ([t0; t0 + τ ] ;R3)

2 × C ([t0; t0 + τ ] ;Xr) be given.

Then the differential system (3.74)-(3.76) has a unique solution
(
p, E, f

)
∈

C ([t0; t0 + τ ] ;R3)
2 × C ([t0; t0 + τ ] ;Xr) such that :

(
p, E, f

)
(t0) =

(
p̃ (t0) , Ẽ (t0) , f̃ (t0)

)
.

Proof. - Firstly we consider equation (3.74) in E, with H1 defined by (3.77) in which
p and f are fixed.
Since a , b , ȧ , ḃ , 1

a
, 1
b
, f are continuous functions of t so is H1.

Next, we deduce from (3.34) in which we set

f1 = f2 = f

that : ∣∣∣∣H1

(
t, p, E1, f

)
−H1

(
t, p, E2, f

)∣∣∣∣
R3 ≤ C2

(∣∣∣∣E1 − E2

∣∣∣∣
R3

)
(3.80)

where
C2 = 3C + b2. (3.81)

Now we can use (2.81) to bound

z = a, b,
1

a
,
1

b

and we obtain, for t ∈ [t0; t0 + τ ] then t ≤ t0 + τ ≤ T + 1

|z (t)| ≤
(
a0 + b0 +

1

a0

+
1

b0

)
eC(T+1), t ∈ [t0; t0 + τ ] , z = a, b,

1

a
,
1

b
. (3.82)

We then deduce from (3.81) that :

C2 ≤ C ′2
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where
C ′2 = C ′2 (a0, b0, T ) . (3.83)

By (3.80) and (3.83), H1 is (globally) Lipschitz with respect to the R3− norm and
the local existence of a solution E of (3.74) such that E (t0) = Ẽ (t0) is guaranteed
by the Cauchy-Lipschitz theorem on first order differential systems.

Now, since E satisfies (3.74) in which H1 is given by (3.77), following the same
way as in the proof of Lemma 3.1, substituting E to Ẽ, p to p̃,f to f̃ , using (3.82)
and integrating (3.74) this time over [t0; t0 + t] , t ∈ [0; τ ] , we obtain :

∣∣Ei (t0 + t)
∣∣ ≤

(∣∣∣Ẽi (t0)
∣∣∣+ Ci

8T
)

+ C

∫ t0+t

t0

∣∣Ei
∣∣ (s) ds,

t ∈ [0, τ [, i = 1, 2, 3

where
Ci

8 = Ci
8 (a0, b0, r, T ) .

But by Lemma 3.1 and more precisely (3.67) , we have since t0 ∈ [0, τ [:

∣∣∣Ẽi (t)
∣∣∣ ≤

(∣∣Ei
0

∣∣+ Ci
6T
)
eCt.

But, by the Gronwall Lemma

∣∣Ei (t0 + t)
∣∣ ≤

[
Ci

8T +
(∣∣Ei

0

∣∣+ Ci
6T
)
eCt
]
eC(T+1),

t ∈ [0, τ [, i = 1, 2, 3

which shows that, every solution E of (3.74) satisfying E (t0) = Ẽ (t0) and defined
in [t0; t0 + τ ] is uniformly bounded. By the Cauchy-Lipschitz theorem, the solution
E is defined all over [t0; t0 + τ [ and E ∈ C ([t0; t0 + τ [;R3) .

- Secondly, we consider equation (3.75) in p,with H2 defined by (3.78) in which
E, f are fixed.
Since a , b , ȧ , ḃ , 1

a
, 1
b
, f , E are continuous functions of t, so is H2. Next , we

deduce from (3.35) in which we set

E1 = E2 = E, f = f2 = f

that : ∣∣∣
∣∣∣H2

(
t, p1, E, f

)
−H2

(
t, p2, E, f

)∣∣∣
∣∣∣
R3
≤ C3 ||p1 − p2||R3 (3.84)
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where using (3.38) :

C3 = (6C + 1)

(
1 + a+

b2

a

)(
1 +

a

b
+
b

a
+

1

a
+

1

b

)

× (1 + ||f ||)
(
1 + ab2

) (
1 + ||f ||+

∣∣∣
∣∣∣E
∣∣∣
∣∣∣
)
. (3.85)

Now we can use (2.81) to bound

z = a, b,
1

a
,
1

b

and we obtain, for t ∈ [t0; t0 + τ ] , then t ≤ t0 + τ ≤ T + 1:

|z (t)| ≤
(
a0 + b0 +

1

a0

+
1

b0

)
eC(T+1),

t ∈ [t0; t0 + τ ] , z = a, b,
1

a
,
1

b
. (3.86)

We then deduce from (3.85) using

∣∣∣∣f
∣∣∣∣ ≤

∣∣∣∣∣∣f
∣∣∣∣∣∣ ≤ r

since
f ∈ ([t0; t0 + τ ] ;Xr) ,

that
C3 ≤ C ′3

where
C ′3 = C ′3

(
a0, b0, r,

∣∣Ei
∣∣ , ϕij

)
. (3.87)

By (3.84) and (3.87), H2 is (globally) Lipschitz with respect to the R3− norm and
the local existence of a solution p of (3.75) such that p (t0) = p̃ (t0) is guaranteed by
the Cauchy-Lipschitz theorem on first order differential systems.

Now, since p satisfies (3.75) in which H2 is given by (3.78), following the same
way as in the proof of Lemma 3.1, substituting p to p̃, E to Ẽ, f to f̃ , using (3.86)
and integrating this time over [t0; t0 + t] , t ∈ [0, τ [, we are let to:

∣∣∣p̃i (t0 + t)
∣∣∣ ≤

(∣∣∣p̃i (t0)
∣∣∣+ Ci

9T
)

+ 2C

∫ t

0

∣∣∣p̃i
∣∣∣ (s) ds,

t ∈ [0, τ [, i = 1, 2, 3
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where

Ci
9 = Ci

9

(
a0, b0, r, T,

∣∣Ei
∣∣ ,
∑

i,k

|ϕik|
)
.

But by Lemma 3.1 and more precisely (3.73), we have, since t0 ∈ [0, T [

∣∣∣p̃i (t)
∣∣∣ ≤

(∣∣pi0
∣∣+ Ci

7T
)
e2Ct,

Then by Lemma 1.1

∣∣pi (t0 + t)
∣∣ ≤

[
Ci

9T +
(∣∣pi0

∣∣+ Ci
7T
)
e2Ct

]
eC(T+1)

t ∈ [0, τ [, i = 1, 2, 3,

which shows that , every solution p of (3.75) satisfying p(t0) = p̃ (t0) and defined in [t0; t0 + τ ]

is uniformly bounded. By the Cauchy-Lipschitz theorem of first order differential
systems, the solution p of (3.75) is defined all over [t0; t0+τ [ and p ∈ C ([t0; t0 + τ [;R3) .

Finally, under same assumption it is proved in [31] that the single equation (3.76)
in f , has a unique solution f ∈ C ([t0; t0 + τ [;Xr) such that f (t0) = f̃ (t0). This
completes the proof of proposition 3.4

In what follows we set

Yτ = C
(
[t0; t0 + τ ] ;R3

)2 × C ([t0; t0 + τ ] ;Xr) , r ∈ R, r > 0. (3.88)

Yτ is a complete metric subspace of the Banach space

C
(
[t0; t0 + τ ] ;R3

)2 × C
(
[t0; t0 + τ ] ;L1

1

(
R3
))

Proposition 3.4 allows us to define the map

g : Yτ −→ Yτ ,
(
p, E, f

)
7−→

(
p, E, f

)
. (3.89)

We now prove

Proposition 3.5. Let t0 ∈ [0, T [.
There exists a number τ ∈]0, 1[, independent of t0, such that the system (3.6)-

(3.8) has a unique solution
(
p, E, f

)
∈ Yτ satisfying

(
p, E, f

)
(t0) =

(
p̃ (t0) , Ẽ (t0) , f̃ (t0)

)
.

Proof. We will prove that there exists a number τ ∈]0, 1[, independent of t0, such
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that the map g, defined by (3.89) is a contraction of the complete metric space Yτ
defined by (3.88), which will then have a unique fixed point

(
p, E, f

)
solution of

system (3.58)-(3.8).
With the initial data

(
p̃ (t0) , Ẽ (t0) , f̃ (t0)

)
at t = t0, the differential system

(3.74)-(3.76) with H1, H2, H3 is equivalent to the integral system :

Ei (t0 + t) = Ẽi (t0) +

∫ t0+t

t0

{
−Γi0jE

j +

∫

R3

qif (t, q) ab2dq

q0

}
(δ) dδ (3.90)

pi (t0 + t) = p̃i (t0) +
∫ t0+t

t0

{
−2Γi0jp

j −
[
Ei + gii

pkϕik
p0

] ∫

R3

f (t, q) ab2dq

}
(δ) dδ (3.91)

f (t0 + t) = f (t0) +

∫ t0+t

t0

1

p0
(
p
)Q
(
f, f, p

)
(3.92)

t ∈]0, τ [, i = 1, 2, 3.

To
(
pl, El, fl

)
∈ Yτ , l = 1, 2 corresponds the solution

(
pl, El, fl

)
∈ Yτ , l = 1, 2,

whose existence is proved in proposition 3.4 . We now write the integral system
(3.90)-(3.92) for l = 1 and l = 2, and taking the differences , using notations (3.74)-
(3.76), we get:

(
Ei

1 − Ei
2

)
(t0 + t)

=

∫ t0+t

t0

f2 (t)
[
H1

(
δ, p1, E1, f1

)
−H1

(
δ, p2, E2, f2

)]
(δ) dδ (3.93)

(
pi1 − pi2

)
(t0 + t)

=

∫ t0+t

t0

[
H2

(
δ, p1, E1, f1

)
−H2

(
δ, p2, E2, f2

)]
(δ) dδ (3.94)

(f1 − f2) (t0 + t)

=

∫ t0+t

t0

[
H3

(
δ, p1, E1, f1

)
−H3

(
δ, p2, E2, f2

)]
(δ) dδ. (3.95)
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- Since
(
p2, E2, f2

)
∈ Yτ we deduce from (3.34) in which we set

p1 = p1, p2 = p2, f1 = f1, f2 = f2 :

∣∣∣∣H1

(
δ, p1, E1, f1

)
−H1

(
δ, p2, E2, f2

)∣∣∣∣

≤ C ′2
(∣∣∣∣p1 − p2

∣∣∣∣+
∣∣∣∣E1 − E2

∣∣∣∣+
∣∣∣∣f1 − f2

∣∣∣∣) (3.96)

where C ′2 = C ′2 (a0, b0, T ) is still given by (3.83).
- Since

(
p2, E2, f2

)
∈ Yτ , we have in (3.58) in which we set f = f2 :

(
p, E, f

)
(t0) =

(
p̃ (t0) , Ẽ (t0) , f̃ (t0)

)
:

∣∣∣∣f2 (t)
∣∣∣∣ ≤

∣∣∣∣∣∣f2 (t)
∣∣∣∣∣∣ ≤ r, t ∈ [t0; t0 + τ ] .

So we can deduce from (3.35) in which we set

E1 = E1, E2 = E2, f1 = f1, f2 = f2 :

∣∣∣
∣∣∣H2

(
δ, p1, E1, f1

)
−H2

(
δ, p2, E2, f2

)∣∣∣
∣∣∣

≤ C ′3

(
||p1 − p2||+

∣∣∣
∣∣∣E1 − E2

∣∣∣
∣∣∣+
∣∣∣∣f1 − f2

∣∣∣∣
)

(3.97)

where
C ′3 = C ′3

(
a0, b0, r, T,

∣∣Ei
∣∣ , ϕij

)

is still given by (3.87).
- Since

(
pl, El, fl

)
∈ Yτ , we deduce from (3.36) in which we set

p1 = p1, p2 = p2, E1 = E1, E2 = E2

and using in C4 given in (3.38)

∣∣∣∣fl (t)
∣∣∣∣ ≤

∣∣∣∣∣∣fl (t)
∣∣∣∣∣∣ ≤ r,
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since
(
pl, El, fl

)
∈ Yτ ,l = 1, 2 :

∣∣∣
∣∣∣H3

(
δ, p1, E1, f1

)
−H3

(
δ, p2, E2, f2

)∣∣∣
∣∣∣

≤ C ′4

(∣∣∣∣p1 − p2

∣∣∣∣+
∣∣∣
∣∣∣E1 − E2

∣∣∣
∣∣∣+ ||f1 − f2||

)
(3.98)

where
C ′4 = C ′4 (a0, b0, r, T ) .

Already notice that the constants C ′2, C ′3 and C ′4 are independent of t0.
Now using the inequalities (3.96),(3.97) and (3.98), we deduce from (3.93),(3.94)

and (3.95),
using the norm |||.||| and since t ∈ [0, τ ] :

∣∣∣∣∣∣E1 − E2

∣∣∣∣∣∣ ≤ C ′2τ
(∣∣∣∣∣∣E1 − E2

∣∣∣∣∣∣+
∣∣∣∣∣∣p1 − p2

∣∣∣∣∣∣+
∣∣∣∣∣∣f1 − f2

∣∣∣∣∣∣) (3.99)

|||p1 − p2||| ≤ C ′3τ
(∣∣∣
∣∣∣
∣∣∣E1 − E2

∣∣∣
∣∣∣
∣∣∣+ |||p1 − p2|||+

∣∣∣∣∣∣f1 − f2

∣∣∣∣∣∣
)

(3.100)

|||f1 − f2||| ≤ C ′4τ
(∣∣∣
∣∣∣
∣∣∣E1 − E2

∣∣∣
∣∣∣
∣∣∣+
∣∣∣∣∣∣p1 − p2

∣∣∣∣∣∣+ |||f1 − f2|||
)
. (3.101)

Now add (3.99),(3.100) and (3.101) to obtain

|||p1 − p2|||+
∣∣∣∣∣∣E1 − E2

∣∣∣∣∣∣+ |||f1 − f2|||

≤ (C ′2 + C ′3 + C ′4) τ
(
|||p1 − p2|||+

∣∣∣∣∣∣E1 − E2

∣∣∣∣∣∣+ |||f1 − f2|||
)

+ (C ′2 + C ′3 + C ′4) τ
(∣∣∣∣∣∣p1 − p2

∣∣∣∣∣∣+
∣∣∣
∣∣∣
∣∣∣E1 − E2

∣∣∣
∣∣∣
∣∣∣+
∣∣∣∣∣∣f1 − f2

∣∣∣∣∣∣
)
. (3.102)

Then if we take τ such that :

0 < τ < inf

{
1,

1

4 (C ′2 + C ′3 + C ′4)

}
(3.103)

(3.103) implies in particular

0 < (C ′2 + C ′3 + C ′4) τ <
1

4

from which we deduce, by sending the first term of right hand side of (3.102) to the
left hand side

3

4

(
|||p1 − p2|||+

∣∣∣∣∣∣E1 − E2

∣∣∣∣∣∣+ |||f1 − f2|||
)

≤ 1

4

(∣∣∣∣∣∣p1 − p2

∣∣∣∣∣∣+
∣∣∣
∣∣∣
∣∣∣E1 − E2

∣∣∣
∣∣∣
∣∣∣+
∣∣∣∣∣∣f1 − f2

∣∣∣∣∣∣
)

(3.104)
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and (3.104) gives :

|||p1 − p2|||+
∣∣∣∣∣∣E1 − E2

∣∣∣∣∣∣+ |||f1 − f2|||

≤ 1

3

(∣∣∣∣∣∣p1 − p2

∣∣∣∣∣∣+
∣∣∣
∣∣∣
∣∣∣E1 − E2

∣∣∣
∣∣∣
∣∣∣+
∣∣∣∣∣∣f1 − f2

∣∣∣∣∣∣
)
. (3.105)

(3.105) shows that
g :
(
p, E, f

)
7−→

(
p, E, f

)

is a contracting map in the complete metric space Yτ which then has a unique
fixed point

(
p, E, f

)
, solution of the integral system (3.90)-(3.92) and hence, of the

differential system (3.6)-(3.8) such that

(
p, E, f

)
(t0) =

(
p̃ (t0) , Ẽ (t0) , f̃ (t0)

)
.

This completes the proof of proposition 3.5.

Based on the method detailed in section 3.3.1, we have proved the following
result :

Theorem 3.3. Let p0 ∈ R3, E0 ∈ R3, f0 ∈ L1
1 (R3) , ϕij ∈ R, i, j = 1, 2, 3 be given,

such that ||f0|| ≤ r, where r > 0 is a given real number. Then :
1) The differential system (3.6)-(3.8) has a unique global solution

(
p, E, f

)
de-

fined all over [0,+∞[ and such that

(
p, E, f

)
(0) =

(
p0, E0, f0

)

and
|||f ||| ≤ ||f0|| , f (t) ≥ 0, t ∈ [0,+∞[.

2) The Maxwell- Boltzmann system (2.23)-(2.24)-(3.2) has a unique global solu-
tion (F, f) defined all over the interval [0,+∞[ and satisfying :

F i0 (0) = Ei
0, Fij (0) = ϕij, f (0) = f0, |||f ||| ≤ ||f0|| .
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CHAPTER 4

The modified relativistic Maxwell-Boltzman

system for a hard potential case

In this Chapter, we give the main existence result of this thesis using the results
of chapter 3 and a Povzner inequality type. The use of µ − N regularity does not
allow a very good physical description of the collision operator. In fact, this opera-
tor depends on several terms including the collision kernel, the relative momentum
and the energy in the center of momentum. Furthermore, one of the main terms
in the collision kernel is the scattering kernel which measures interactions between
particles. In the newtonian Boltzmann equation, scattering kernels are usually clas-
sified into soft and hard potentials. This classification was originally adapted in
the relativistic case by Dudynski and Ekiel-Jerzewska [9] and recently reformulated
by Strain in [40]. This reformulation increases the importance and the interest of
the relativistic Boltzmann equation. We consider in this chapter a case of collision
kernel which falls into hard potential. Such collision kernels modelize strong shocks.
That is why the strategy adopted in the sequel will be to construct a sequence of
solutions of a modified Maxwell-Boltzmann system in order to prove that this se-
quence of solutions converges to a particular solution of the Maxwell-Boltzmann
system with hard potential. Here, almost all the theorems, propositions, lemmas
are original and have been exposed using clear processes. We have also given a
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4.1. The method

reformulation of the Povzner inequality.

4.1 The method

We will consider the equivalent Maxwell-Boltzmann-Momentum system (3.6)-
(3.9) in which the collision operator is now given by:

Q (f, f) =

∫

R3

∫

S2

vφσ (k, θ) (f ′f ′? − ff?) ab2 dω dq,

where for simplicity of the notation we let

vφ =
k
√
δ

p0q0
, f ′ = f ′

(
t, p′
)
, f ′? = f ′?

(
t, q′
)
, f = f (t, p) , f ′? = f ′? (t, q) .

Similarly, using the covariant variables as indicated in the change of variables in
chapter 2, we get:

Q (f, f) (t, v) = a−1b−2

∫

R3

du

∫

S2

dω vφσ (k, θ) (f ′f ′? − ff?) .

The argument is to construct a modified system by truncating a certain part
of the collision kernel in the equation (3.8). Because in the truncated system
the scattering kernel is easily controlled, then global existence of solution for this
system is insured by theorem 3.3. Therefore we obtain a sequence of solutions of the
truncated systems, and showing that this sequence is a Cauchy sequence, we obtain
a solution of the initial system (3.6)-(3.9).

4.2 Preliminaries results

4.2.1 Estimates on the energy and relative momentum

We start by the following useful lemmas.

Lemma 4.1. The following inequalities hold

k ≤
√
δ, (4.1)

k ≤ 2
√
u0v0, (4.2)

√
δ ≤ 2

√
u0v0, (4.3)
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k ≤ a−1 |v − u| . (4.4)

Proof. We recall that:

δ = δ (pα, qα) = − (pα + qα) (pα + qα)

and
k = k (pα, qα) =

√
(pα − qα) (pα − qα).

Let us show that k ≤
√
δ. We have

δ = − (pα + qα) (pα + qα)

= pαpα − 2pαqα + qαqα − 2pαpα − 2qαqα

= pαpα − 2pαqα + qαqα − 2 (pαqα + qαqα)

= k2 + 4.

Then δ = k2 + 4 implies k ≤
√
δ.

Let us show that
√
δ ≤ 2

√
u0v0 and k ≤ 2

√
u0v0 .

We have

δ = −pαpα − qαqα − 2pαqα

= 2− 2pαgαλq
λ

= 2p0q0 + 2
(
1− a2p1q1 − b2p2q2 − b2p3q3

)

≤ 2p0q0 + 2
(
1 + a2

∣∣p1
∣∣ ∣∣q1

∣∣+ b2
∣∣p2
∣∣ ∣∣q2

∣∣+ b2
∣∣p3
∣∣ ∣∣q3

∣∣)

≤ 2p0q0 + 2
(
1, a

∣∣p1
∣∣ , b
∣∣p2
∣∣ , b
∣∣p3
∣∣) ·
(
1, a

∣∣q1
∣∣ , b
∣∣q2
∣∣ , b
∣∣q3
∣∣)

≤ 2p0q0

+2

√
1 + a2 (p1)2 + b2 (p2) + b2 (p3) ·

√
1 + a2 (q1)2 + b2 (q2) + b2 (q3)
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= 4p0q0.

Then
√
δ ≤ 2

√
p0q0 = 2

√
u0v0.

We have k ≤
√
δ and

√
δ ≤ 2

√
u0v0 , then k ≤ 2

√
u0v0.

Let us show that k ≤ a−1 |v − u|.
We have

k2 = (pα − qα) (pα − qα)

= −
(
p0 − q0

)2
+ a2

(
p1 − q1

)2
+ b2

(
p2 − q2

)2
+ b2

(
p3 − q3

)2

= −
(
v0 − u0

)2
+ a−2

(
v1 − u1

)2
+ b−2

(
v2 − u2

)2
+ b−2

(
v3 − u3

)2

≤ a−2 |v − u|2 .

Then k ≤ a−1 |v − u| and the proof is completed.

Lemma 4.2. The total energy k and the relative momentum δ are invariant quan-
tities under the collision process.

Proof. One has

δ
(
p
′α, q

′α
)

= − (p′α + q′α)
(
p
′α + q

′α
)

= −
(
gαβp

′β + gαβq
′β
)(

p
′α + q

′α
)

= −gαβ
(
p
′β + q

′β
)(

p
′α + q

′α
)
.

Since

p
′β + q

′β =
pβ + qβ

2
+
k

2

tβ√
tαtα

+
pβ + qβ

2
− k

2

tβ√
tαtα

= pβ + qβ

and

p
′α + q

′α =
pα + qα

2
+
k

2

tα√
tβtβ

+
pα + qα

2
− k

2

tα√
tβtβ

= pα + qα,
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we have

δ
(
p
′α, q

′α
)

= −gαβ
(
pβ + qβ

)
(pα + qα)

= − (pα + pα) (pα + qα)

= δ (pα, qα) .

By definition, we have

k
(
p
′α, q

′α
)

=
√

(p′α − q′α) (p′α − q′α)

=
√
gαβ (p′β − q′β) (p′α − q′α)

Since

p
′β − q′β =

pβ + qβ

2
+
k

2

tβ√
tαtα

− pβ + qβ

2
+
k

2

tβ√
tαtα

= k
tβ√
tαtα

and

p
′α − q′α =

pα + qα

2
+
k

2

tα√
tβtβ
− pα + qα

2
+
k

2

tα√
tβtβ

= k
tα√
tβtβ

we deduce that

k
(
p
′α, q

′α
)

=

√√√√gαβ

(
k

tβ√
tαtα

)(
k

tα√
tβtβ

)

=

√
gαβ

k2tαtβ√
gαβtβtα

√
gαβtαtβ

=
√
k2

= k (pα, qα)

4.2.2 Estimates on the collision operator

Lemma 4.3. Using the Bianchi type I spacetime, the following properties hold:
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For any measurable function h depending only of k, g and w, we have:

∫ ∫ ∫
h (k, δ, w)

p0q0
(f ′f ′? − ff?)

(
p0
)r
dw dq dp

=
1

2

∫ ∫ ∫
h (k, δ, w)

p0q0
ff?

((
p′0
)r

+
(
q′0
)r −

(
p0
)r −

(
q0
)r)

dw dq dp.

Proof. We use lemma 2.1 to make the change of variables between pre- and post-
collisional momenta as follow

1

p0q0
dp dq =

1

p′0q′0
dp′ dq′,

and note that k and δ are invariant quantities under the collision process and sym-
metric for p and q. Hence, the gain term can be written as

∫ ∫ ∫
h (k, δ, w)

p0q0
f ′f ′?

(
p0
)r
dw dq dp

=

∫ ∫ ∫
h (k, δ, w)

p′0q′0
f ′f ′?

(
p0
)r
dw dq′ dp′

=

∫ ∫ ∫
h (k, δ, w)

p0q0
ff ?

(
p
′0
)r

dw dq dp.

Interchanging p and q , this can also be rewritten as

∫ ∫ ∫
h (k, δ, w)

p0q0
f ′f ′?

(
p0
)r
dω dq dp = L

where
L =

∫ ∫ ∫
h (k, δ, w)

p0q0
ff ?

(
q
′0
)r

dw dq dp.

Hence, we obtain the following representation for the gain term:

∫ ∫ ∫
h (k, δ, w)

p0q0
f ′f ′?

(
p0
)r
dw dq dp = M

where

M =

∫ ∫ ∫
h (k, δ, w)

p0q0
ff ?

((
p′0
)r

+
(
q′0
)r)

dw dq dp.

After applying the same argument to the loss term, we obtain the desired result.

Lemma 4.4. Consider the collisional process in the Bianchi type I spacetime. Let
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(pα, qα) and (p′α, q′α) be pre- and post- collisional momenta respectively.
Consider the following quantity for r > 1:

G =
(
p′0
)r

+
(
q′0
)r −

(
p0
)r −

(
q0
)r
.

Then G satisfies
G ≤ Cr

((
p0
)r−1

q0 + p0
(
q0
)r−1

)
. (4.5)

If ω is restricted to the subset

{
ω ∈ S2 : |n · ω| ≤ a2 (t)√

2b2 (t)
|n|
}
,

then
G ≤ Cr

((
p0
)r− 1

2
(
q0
) 1

2 +
(
p0
) 1

2
(
q0
)r− 1

2

)
− cr

((
p0
)r

+
(
q0
)r)

, (4.6)

where Cr and cr are both different non-negative constants depending on r.

Proof. By the energy momentum conservation we have

p0 + q0 = p′0 + q′0

for each p0 and q0. Let pα and qα be given. By the inequality

αr + βr ≤ (α + β)r ≤ αr + βr + Cr
(
αr−1β + αβr−1

)
,

α, β ≥ 0, r > 1, (4.7)

we deduce that

(
p′0
)r

+
(
q′0
)r ≤

(
p0
)r

+
(
q0
)r

+ Cr

((
p0
)r−1 (

q0
)

+
(
p0
) (
q0
)r−1

)
.

Then
G ≤ Cr

((
p0
)r−1

q0 + p0
(
q0
)r−1

)
. (4.8)

To prove the second result, we make the assumption that
|n · ω| ≤ a2√

2b2
|n| and suppose that p′0 ≥ q′0.

Then p′0 is estimated as

p′0 ≤ p0 + q0

2
+

k
2
|a2 (t)n1ω1 + b2 (n2ω2 + n3ω3)|√

B (t)
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where

B (t) =
(
n0
) (
a2 (t)

(
ω1
)2

+ b2 (t)
((
ω2
)2

+
(
ω3
)2
))

×
(
a2 (t)n1w1 + b2 (t)

(
n2ω2 + n3ω3

))

And we notice that

|a2 (t)n1ω1 + b2 (n2ω2 + n3ω3)|√
B (t)

≤ 1

if and only if

2
(
a2n1ω1 + b2

(
n2ω2 + n3ω3

))2 ≤
(
n0
)2
(
a2
(
ω1
)2

+ b2
((
ω2
)2

+
(
ω3
)2
))

.

Now using the fact that a ≤ b and

δ =
(
n0
)2 −

(
a2
(
n1
)2

+ b2
((
n2
)2

+
(
n3
)2
))
≥ 0,

we easily deduce that:

|n · ω| ≤ a2

√
2b2
|n| ⇒ 2b2 (n · ω)2 ≤ a4 |n|4 .

This implies that

2b2 (n · ω)2 ≤ a4 |n|4 ≤
(
a2
(
n1
)2

+ b2
((
n2
)2

+
(
n3
)2
))

a2,

and then

2
(
a2 (t)n1w1 + b2 (t)

(
n2ω2 + n3ω3

))
≤ N

where
N = a2

(
a2
(
n1
)2

+ b2
((
n2
)2

+
(
n3
)2
))

.

The inequality |n · ω| ≤ a2√
2b2
|n| together with lemma 4.1 imply :

p′0 ≤ p0 + q0

2
+
k

2
≤

(√
p0 +

√
q0
)2

2
.
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Then G is estimated as

G ≤ 2
(
p′0
)r −

(
p0
)r −

(
q0
)r

≤ 1

2r−1

(√
p0 +

√
q0
)2r

−
(
p0
)r −

(
q0
)r

≤ (p0)
r

2r−1
+

(q0)
r

2r−1
+ Cr

((
p0
)r− 1

2
(
q0
) 1

2 +
(
p0
) 1

2
(
q0
)r+ 1

2

)
−
(
p0
)r −

(
q0
)r

≤ Cr

((
p0
)r− 1

2
(
q0
) 1

2 +
(
p0
) 1

2
(
q0
)r+ 1

2

)
− cr

((
p0
)r −

(
q0
)r)

,

where (4.7) is used and Cr and cr are two positive constants depending on r. This
completes the proof.

4.3 The modified Maxwell-Boltzmann-Momentum

system

Letm be any positive integer. Now we modify the Maxwell-Boltzmann-Momentum
system (3.6)-(3.9) by setting





Ėi
m

˙
= −Γi0jE

i
m +

∫
R3 qi

fm(t,q)ab2

q0
dq

ṗim
˙

= −Γi0jp
j
m −

[
Ei
m + gii p

k
mϕki
p0m

] ∫
R3 fm (t, q) ab2 dq

ḟm = Qm (fm, fm)

Fij = Fij (0) = ϕij , Em (0) = E0, pm (0) = p0, fm (0) = f0

(4.9)

where

Qm (fm, fm) = ab2

∫∫

R3×S2

vφ,m (km)β σ0,m (f ′mf
′
m? − fmfm?) dωdq,

vφ,m :=
min

{
k
√
δ,m

}

p0q0
, km = min {k,m} , σ0,m := min {σ0 (ω) ,m} .

Since the scattering kernel for the modified collision operator Qm (fm, fm) sat-
isfies the µ − N regularity properties (3.1) ,we conclude by theorem 3.3 that the
truncated equation (4.9) has a unique global solution

(
pm, Em, fm

)
∈ C

(
[0,+∞[,R3

)2 × C
(
[0,+∞[, L1

1

(
R3
))

such that
(
pm, Em, fm

)
(0) =

(
p0, E0, f0

)
.

The following lemma establishes that the sequence fm is a Cauchy sequence.
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Lemma 4.5. For any r ≥ 0 and T > 0, there exists a constant Cr, which does not
depend on m such that if ||f0||1,r is bounded, then

sup
m

sup
t∈[0,T ]

|fm (t)|1,r + ||fm (t)||1,r ≤ Cr. (4.10)

Proof. We first estimate ||fm (t)||1,r and then obtain the result by the relation (2.87).
By theorem 3.3 we have

sup
t∈[0,T ]

||fm (t)||1,r ≤ C

where C = ||f0||1,1 does not depend on m for 0 ≤ r ≤ 1 because for r ≤ s ≤ 1,

||fm (t)||1,r ≤ ||fm (t)||1,s .

Now we assume that r > 1.
In Bianchi type I space time, v0 depends on time and decreases as the time

evolves for each v. To be precise,

v0 =
(

1 + a−2 (t)
(
v1
)2

+ b−2 (t)
((
v2
)2

+
(
v3
)2
))

.

So,
∂tv

0 = −
(
ȧ(t)
a3(t)

(v1)
2

+ ḃ(t)
b3(t)

(
(v2)

2
+ (v3)

2
))
· 1
v0
≤ 0

because we assumed b (t) ≥ a (t) ≥ 3
2
, ȧ (t) ≥ 0 , ḃ (t) ≥ 0. By direct calculation

using equation (2.77) , we have

d

dt
|fm (t)|1,r =

a−1b−2

∫ ∫ ∫
vφ,m (km)β σ0,m (ω) (f ′mf

′
m? − fmfm?)

(
v0
)r
dω dv du

+

∫
fm (t, v)

∂v0

∂t
dω.

By lemma 4.3, we have

d

dt
|fm (t)|1,r ≤

a−1b−2

2

∫ ∫ ∫
vφ,m (km)β fmfm?

[(
v′0
)r

+
(
u′0
)r −

(
v0
)r −

(
u0
)r]

dω dv du.
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Using the fact that a−1b−2 is bounded , we apply lemma 4.4 to obtain

d

dt
|fm (t)|1,r ≤ I1 + I2 − I3

where

I1 = Cr

∫ ∫ ∫

|n·ω|≥ a2(t)

b2(t)
√
2
|n|
vφ,m (km)β σ0,m (ω) fmfm?

(
v0
)r−1

u0dωdvdu

+Cr

∫ ∫ ∫

|n·ω|≥ a2(t)

b2(t)
√
2
|n|
vφ,m (km)β σ0,m (ω) fmfm?v

0
(
u0
)r−1

dωdvdu

I2 = Cr

∫∫∫

|n·ω|≤ a2(t)

b2(t)
√
2
|n|
vφ,m (km)β σ0,m (ω) fmfm?

(
v0
)r− 1

2
(
u0
) 1

2 dωdvdu

+Cr

∫∫∫

|n·ω|≤ a2(t)

b2(t)
√
2
|n|
vφ,m (km)β σ0,m (ω) fmfm?

(
v0
) 1

2
(
u0
)r− 1

2 dωdvdu

I3 = cr

∫∫∫

|n·ω|≤ a2(t)

b2(t)
√
2
|n|
vφ,m (km)β σ0,m (ω) fmfm?

×
[(
v0
)r

+
(
u0
)r]

dωdvdu.

The second term I2 is easily estimated using lemma 4.1 as

I2 ≤ Cr

∫∫
fmfm?

(
v0
)r− 1

2
+β

2
(
u0
) 1

2
+β

2 dωdvdu

≤ Cr |fm (t)|1,r− 1
2

+β
2
|fm (t)|1, 1

2
+β

2
.

Consider now σ0,m (ω) defined by

σ0,m (ω) = min {sinγ θ, m} for − 2 < γ < −1.

Note that σ0,m (ω) is integrable on S2 for γ > −2, and there exists a constant Cγ
satisfying

∫
S2 σ0,m (ω) dω ≤ Cγ, where the constant Cγ does not depend on m. On

the other hand, since γ is negative, we have σ0,m (ω) ≥ 1 for any m.
Since

{
ω ∈ S2, |n · ω| ≤ a2 (t) 1

b2 (t)
√

2
|n|
}
⊂
{
ω ∈ S2, |n · ω| ≤ 1√

2
|n|
}
,
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then
µ

{
|n · ω| ≤ a2 (t) 1

b2 (t)
√

2
|n|
}
≤ µ

{
|n · ω| ≤ 1√

2
|n|
}
.

Now the integration domain of I3 is a set with Lebesgue measure

µ

{
|n · ω| ≤ 1√

2
|n|
}

= 2
√

2π,

which does not depend on m. Hence, I1 and I3can be estimated as

I1 ≤ Dr

∫∫∫
vφ,m (km)β fmfm?

(
v0
)r−1

u0 dvdu,

I3 ≥ dr

∫∫∫
vφ,m (km)β fmfm?

(
u0
)r−1

dvdu,

for some constantsDr and dr. We now fix the constantsDr and dr to split the domain
by
{
Dr (v0)

r−1 ≤ dr (u0)
r−1
}

and
{
Dr (v0)

r−1 ≥ dr (u0)
r−1
}
, and then obtain

I1 ≤ I11 + I12

where
I11 = Dr

∫∫∫
vφ,m (km)β fmfm?

(
v0
)r−1

u0 dv dū,

I12 = Dr

∫∫∫
vφ,m (km)β fmfm?

(
v0
)r−1

u0 dv dū.

We now obtain
I11 ≤ I3.

In the case of I12, we may simply use

(km)β ≤ C
(
v0u0

)β
2 ≤ Cr

(
v0
)β
.

Then I12 is simply estimated as

I12 ≤ Cr |fm (t)|1,r−1+β .

Combining the above estimates, we obtain

d

dt
|fm (t)|1,r ≤ Cr

(
|fm (t)|1,r− 1

2
+β

2
|fm (t)|1, 1

2
+β

2
+ |fm (t)|1,r−1+β

)

≤ Cr |fm (t)|1,r

where we use the fact that 0 ≤ β ≤ γ + 2 and −2 < γ ≤ −1.
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Integrating over [0, t], t ∈ [0, T [, we obtain

|fm (t)|1,r ≤ |fm (0)|1,r + Cr

∫ t

0

|fm (s)|1,r ds.

By Gronwall lemma, we obtain

|fm (t)|1,r ≤ |fm (0)|1,r eCrT .

Then
sup
m

sup
t∈[0,T ]

|fm (t)|1,r ≤ Cr.

Using equation (2.87) we obtain the desired result.

Lemma 4.6. Consider the sequence {fm} on any finite interval [0, T ]. For any
small number ε > 0, there exists a positive integer M such that if l,m ≥M , then

sup
t∈[0,T ]

|fl (t)− fm (t)|1,1 ≤ ε. (4.11)

Proof. Firstly we estimate ||fl (t)− fm (t)||1,1. We have using the relation (2.77) :

d

dt
||fl (t)− fm (t)||

=

∫
∂

∂t
(|fl (t, v̄)− fm (t, v̄)|) v0 + |fl (t, v̄)− fm (t, v̄)| ∂v

0

∂t
dv̄

=

∫
sgn (fl − fm) [Ql (fl, fl)−Qm (fm, fm)] v0 dv

−
∫ (

ȧ (t)

a3 (t)

(
v1
)2

+
ḃ (t)

b3 (t)

((
v2
)2

+
(
v3
)2
))
|fl (t, v̄)− fm (t, v̄)| 1

v0
dv̄

≤
∫

sgn (fl − fm) [Ql (fl, fl)−Qm (fm, fm)] v0 dv

≤ I + J

where
I =

∫
sgn (fl − fm) [Ql (fl, fl)−Ql (fm, fm)] v0 dv,

J =

∫
sgn (fl − fm) [Ql (fm, fm)−Qm (fm, fm)] v0 dv,
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and I and J will be estimated separately. The first term I is split again as

I =
1

2

∫∫∫
sgn (fl − fk)vφ;l (kl)

β σ0,l (ω)×

(f ′l − f ′m) (f ′l? + f ′m?) + (f ′l + f ′m) (f ′l? − f ′m?)
− (fl − fm) (fl? + fm?)− (fl + fm) (fl? − fm?)] v0 dω dv du

= I1 + I2 + I3 + I4.

Each Ii is estimated as follow :

I1 ≤
1

2

∫∫∫
vφ;l (kl)

β σ0,l (ω) |f ′l − f ′m| (f ′l? + f ′m?) v
0 dω dv du

=
1

2

∫∫∫
vφ;l (kl)

β σ0,l (ω) |fl − fm| (fl? + fm?) v
′0 dω dv du,

I2 ≤
1

2

∫∫∫
vφ;l (kl)

β σ0,l (ω) (f ′l + f ′m) |f ′l? − f ′m?| v0 dω dv du

=
1

2

∫∫∫
vφ;l (kl)

β σ0,l (ω) (fl + fm) |fl? − fm?| v′0 dω dv du

I3 = −1

2

∫∫∫
sgn (fl − fk) vφ;l (kl)

β σ0,l (ω) (fl − fm) (fl? + fm?) v
0dωdvdu

= −1

2

∫∫∫
vφ;l (kl)

β σ0,l (ω) |fl − fm| (fl? + fm?) v
0 dω dv du

and finally

I4 ≤
1

2

∫ ∫ ∫
vφ;l (kl)

β σ0,l (ω) (fl + fm) |fl? − fm?| v0 dω dv du

≤ 1

2

∫ ∫ ∫
vφ;l (kl)

β σ0,l (ω) (fl? + fm?) |fl − fm|u0 dω dp dq.

Therefore, I is estimated as

I ≤ 1

2

∫∫∫
vφ,l (kl)

β σ0,l (ω) |fl − fm| (fl + f)
(
v0 − u0 + v′0 + u′0

)
dω dv du

≤ C

∫∫
(kl)

β |fl − fm| (fl + f)u0 dv du

where we use v0 + u0 = v′0 + u′0.
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Using kl ≤ 2
√
v0u0, we obtain for I :

I ≤ C

∫∫
(kl)

β |fl − fm| (fl + f)
(
v0
)β

2
(
u0
)1+β

2 dv du

≤ C sup
n
||fn (t)||1,1+β

2
||fl (t)− fn (t)||1,β

2
. (4.12)

To estimate the second term J , note that

|vφ,l − vφ,m| =
1

v0u0

∣∣∣min
{
k
√
δ, l
}
−min

{
k
√
δ,m

}∣∣∣

≤ 1{k√δ≥l}min

{
k
√
δ

v0u0
,m

}
= 1{k√δ≥l}vφ,m

and similarly ∣∣∣(kl)β − (km)β
∣∣∣ ≤ 1{k>l} (km)β ,

|σ0,l (ω)− σ0,m (ω)| ≤ 1{sin γ ,γ≥l}σ0,m (ω) .

Hence J can be estimated as

J ≤
∫∫∫ ∣∣∣vφ,l (kl)β σ0,l (ω)− vφ,m (km)β σ0,m (ω)

∣∣∣ |f ′mf ′m? − fmfm?| v0dωdv̄dū

≤
∫∫∫

1{k√δ≥l}vφ,m (kl)
β σ0,l (ω) (f ′mf

′
m? + fmfm?) v

0 dω dv̄ dū

+

∫∫∫
1{k≥l}vφ,m (kl)

β σ0,l (ω) (f ′mf
′
m? + fmfm?) v

0 dω dv̄ dū

+

∫∫∫
1{sinγ θ,γ≥l}1{k√δ≥l}vφ,m (km)β σ0,m (ω) (f ′mf

′
m? + fmfm?) v

0dωdv̄dū

J1 + J2 + J3.

Note that each Ji can be separated into two terms: a gain containing f ′mf ′m? and a
loss term containing fmfm?. The gain and loss terms are estimated in the same way
after making the change of variables (v, u) 7−→ (v′, u′), hence we only present the
estimates for the loss terms. To estimate J1, we take a small number ε > 0 and use
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k
√
δ ≤ 4v0u0 from lemma 4.1:

J1 ≤ C

∫∫
1{4v0u0≥l} (kl)

β fmfm?v
0 dū dv̄

≤ C

∫∫
1{4v0u0≥l}fm

(
v0
)1+β

2 fm?
(
u0
)β

2 dū dv̄

≤ C

lε

∫∫
1{4v0u0≥l}fm

(
v0
)1+β

2
+ε
fm?

(
u0
)β

2
+ε
dū dv̄

≤ C

lε
||fm (t)||1,1+β

2
+ε ||fm (t)||1,β

2
+ε . (4.13)

To estimate J2, we use k ≤ |v − u| to obtain

J2 ≤ C

∫∫
1|v−u|≥lfm

(
v0
)1+β

2 fm?
(
u0
)β

2 dū dv̄

≤ C

∫∫
1{|v|≥ l

2}∪{|u|≥ l
2}fm

(
v0
)1+β

2 fm?
(
u0
)β

2 dū dv̄

≤ C ||fm (t)||1,1+β
2

+ε

∫
1{|u|≥ l

2}fm?
(
u0
)β

2 dū

≤ C

l
||fm (t)||21,1+β

2
. (4.14)

For J3 term, we use sin θ ≈ θ for 0 ≤ θ ≤ π
2
. Hence, the condition sinγ θ ≤ l is

equivalent to θ ≤ Cl
γ+2
γ , since γ is negative. We first estimate J3 as

J3 ≤ C

∫∫∫
1{

γ≥Cl
1
γ

}σ0,m (ω) fm
(
v0
)1+β

2 dω dū dv̄

≤ C ||fm (t)||1,1+β
2
||fm (t)||1,β

2

∫
1{

γ≥Cl
1
γ

}σ0,m (ω) dω.

The integration on S2 above is estimated as

∫
1{

θ≥Cl
1
γ

}σ0,m (ω) dω ≤ 2π

∫ Cl
1
γ

0

sinγ+1 θ dθ ≤ Cl
γ+2
γ ,

where the constant depends on γ. Note that −1 ≤ (γ + 2) /γ , and the third term
J3 is estimated as

J3 ≤ Cl
γ+2
γ ||fm (t)||1,1+β

2
||fm (t)||1,β

2
. (4.15)

We combine (4.12), (4.13), (4.14) and (4.15) and apply lemma 4.6 on any finite time
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interval [0, T ] to obtain:

d

dt
||fl (t)− fm (t)||1,1 ≤ C

(
l−ε + l−1 + l

γ+2
γ

)
+ C ||fl (t)− fm (t)||1,β

2

≤ C
(
l−ε + l

γ+2
γ

)
+ C ||fl (t)− fm (t)||1,1 .

Integrating over [0, T ] , we obtain

||fl (t)− fm (t)||1,1 ≤ C
(
l−ε + l

γ+2
γ

)
T + ||fl (t)− fm (t)||1,1

+ C

∫ t

0

||fl (s)− fm (s)||1,1 ds.

Since
fl (0) = fm (0) ,

and γ+2
γ

is negative, applying Gronwall lemma we obtain

||fl (t)− fm (t)||1,1 ≤
[
C
(
l−ε + l

γ+2
γ

)
T
]
eCT .

Then
sup
t∈[0,T ]

||fl (t)− fm (t)||1,1 ≤ C.

Using relation (2.87) we obtain the desired result.

Lemma 4.7. Consider the sequence
{
Ēm
}
and {p̄m} on any finite interval [0;T ] .

For any small number, there exists a positive integer M such that if k,m ≥M , then

sup
t∈[0,T ]

∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣ ≤ ε, (4.16)

sup
t∈[0,T ]

||p̄k (t)− p̄m (t)|| ≤ ε. (4.17)

Proof. We consider the relations (3.6), (3.31), (3.34) to deduce that:

∣∣∣
∣∣∣ ˙̄Ek(t) - ˙̄Em(t)

∣∣∣
∣∣∣ ≤ C2

(∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣+

∣∣∣∣f̄k (t)− f̄m (t)
∣∣∣∣) .

using the expression of C2 given by (3.38), relations (2.87) and (2.81) , we easily
deduce that there exists a positive absolute constant C6 such that :

C2 ≤ C6,

where C6 = C6 (a0, b0, T, C1) .
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Then

∣∣∣
∣∣∣ ˙̄Ek(t) - ˙̄Em(t)

∣∣∣
∣∣∣ ≤ C6

(∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣+

∣∣∣∣f̄k (t)− f̄m (t)
∣∣∣∣) .

Integrating over [0, T ] ,we easily obtain:

∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣ ≤

C6

(
T sup
t∈[0,T ]

||fk (t)− fm (t)||+
∫ t

0

∣∣∣∣Ēk (s)− Ēm (s)
∣∣∣∣ ds

)
,

t ∈ [0, T ] .

By Gronwall inequality, we obtain:

∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣ ≤ TC6 sup

t∈[0,T ]

||fk (t)− fm (t)|| eC6T .

Then (2.87) and lemma 4.5 allow to obtain the inequality (4.16.).
Using the same scheme and invoking this time relations (3.7), (3.32),(3.35), we

obtain
|| ˙̄pk(t) - ˙̄pm(t) ||
≤ C3

(
||p̄k (t)− p̄m (t)||+

∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣+

∣∣∣∣f̄k (t)− f̄m (t)
∣∣∣∣) .

Using the expression of C3 given by (3.38), relations (2.80) and , (2.81) invoking
lemma 3.1 and theorem 3.3 to bound

∣∣∣∣Ēm (t)
∣∣∣∣ and

∣∣∣∣f̄m (t)
∣∣∣∣, we easily deduce that

there exists a positive absolute constant C7 such that

C3 ≤ C7

where C7 = C7

(
a0, b0, ||f0|| ,

∣∣∣∣Ē0

∣∣∣∣ , T, C1, C
)
. Then

|| ˙̄pk(t) - ˙̄pm(t) ||
≤ C7

(
||p̄k (t)− p̄m (t)||+

∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣+

∣∣∣∣f̄k (t)− f̄m (t)
∣∣∣∣)

Integrating over [0, T ] we easily obtain

||p̄k (t)− p̄m (t)|| ≤ C7

[
sup
t∈[0,T ]

(∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣+

∣∣∣∣f̄k (t)− f̄m (t)
∣∣∣∣)

+

∫ t

0

||p̄k (s)− p̄m (s)|| ds
]
, t ∈ [0, T ] .

By Gronwall inequality, we obtain

||p̄k (t)− p̄m (t)|| ≤ TC7 sup
t∈[0,T ]

(∣∣∣∣Ēk (t)− Ēm (t)
∣∣∣∣+

∣∣∣∣f̄k (t)− f̄m (t)
∣∣∣∣) eC7T .
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Then the inequalities (2.87) , lemma 4.6 and the inequality (4.16) give the relation
(4.17) .

So the proof is completed.

Theorem 4.1. Let p̄0, Ē0 ∈ R3, ϕij ∈ R,f ∈ L1
r (R3) be given, in which r > 1 + β

2

and f0 ≥ 0, and suppose that the scattering kernel has the form (2.78):
- Then the equivalent Maxwell-Boltzmann- Momentum system (3.6)-(3.9) has a

unique global solution
(
F̄ , p̄, f

)
such that f ∈ C ([0,+∞[, L1

1 (R3)) with f (t) ≥ 0

and satisfying

F i0 = F i0 (0) = Ei
0, Fij = Fij (0) = ϕij, f (0, ·) = f0;

- (F, f) is the unique global solution of the Maxwell-Boltzmann system (2.23)-
(2.24), (2.32).

Proof. Lemmas (4.6) and (4.7) show that the sequence
{(
p̄m, Ēm, fm

)}
is a Cauchy

sequence in the Banach space (R3)
2×L1

1 (R3). Hence, there exists
(
p̄, Ē, f

)
a solution

of the system (2.72)-(2.74) with initial condition
(
p̄0, Ē0, f0

)
. The initial condition

f0 ∈ L1
r (R3) with r > 1 + β

2
comes from Theorem (3.3). The non-negativity of f

is guaranteed by the same theorem. The uniqueness is obtained by following the
proofs of lemmas (4.6) and (4.7). This completes the proof.
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Conclusion

This work was devoted to extend the work of [29] who considered the homoge-
neous relativistic Maxwell-Boltzmann system for µ−N regularity with an additional
hypothesis of invariance under a subgroup of O3. In the present work, we have dis-
carded this hypothesis of invariance. After presenting the Boltzmann equations,
the hard and soft intercations, the background spacetime, the unknowns and the
equations, we have considered in chapter 3 the Maxwell-Boltmann system for µ−N
regularity, readjusting results of [29]and [20]. The same system were also considered
in case of hard potential kernel in the last chapter. The method followed was the
one used in [20], relying in the use of a particular form of Povzner inequality, but
in a more difficult situation, since the Boltzmann equation was coupled with the
Maxwell equations and because the momentum raised as an unknown. Some energy
estimates in particular functionnal spaces allowed us to obtain a global existence
theorem and uniqueness of mild solutions.

In our future investigations, we will consider a generalized inhomogeneous and
magnetized relativistic Boltzmann equation for both the soft and hard potential
cases in a curved space time.
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APPENDIX A

Proof of Lemma 2.1

Proof. To prove the lemma, we use a parametrisation different from (2.41)

p′α = pα + 2
tβq

β

tγtγ
tα, q′α = qα − 2

tβq
β

tγtγ
tα,

where tα is the same as in (2.41). For convenience we write

p′k = pk + Awk, q′k = qk − Awk, A = −2
tβq

β

tγtγ
n0

and we obtain

w (p′, q′)

w (p, q)
= det

(
dij +

(
wpjA

)
wi

(
wqjA

)
wi

−
(
wpjA

)
wi dij −

(
wqjA

)
wi

)

= det
(
dij +

(
wpjA− wqjA

)
wi
)

= 1 +
(
wpjA− wqjA

)
wi. (1)

Differentiating the conserved energy

p′0 + q′0 = p0 + q0
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with respect to pj, and multiplying by wj yields:

(−p′k
p′0

wp′k

wpj
− −q

′
k

q′0

wq′k

wpj

)
wj = −pj

p0

wj.

Then (
pj
p0

− p′j
p′0

)
wj =

(
p′k
p′0
− q′k
q′0

)
wk
(
wpjA

)
wj.

Similarly we obtain

(
qj
q0

− q′j
q′0

)
wj =

(
p′k
p′0
− q′k
q′0

)
wk
(
wqjA

)
wj.

Hence (1) is given by

w (p′, q′)

w (p, q)
=

(
p′k
p′0
wk − q′k

q′0
wk
)−1(

pj
p0

wj − qj
q0

wj
)
. (2)

Recall that
nα = pα + qα, tα =

(
njw

j,−n0w
)
, for w ∈ S2,

and then the above quantities are rewritten as follows :

pj
p0

wj − qj
q0
wj =

1

p0q0

(q0nj − n0qj)w
j

=
1

p0q0

qαt
α. (3)

Similarly we obtain

p′k
p′0
wk − q′k

q′0
wk =

1

p′0q
′
0

(q′0p
′
k + q′0q

′
k − q′0q′k − p′0q′k)wk

=
1

p′0q
′
0

(q′0nk − n0q
′
k)w

k

=
1

p′0q
′
0

q′αt
α

=
1

p′0q
′
0

qαt
α, (4)

where we use the energy-momentum conservation and the following equality :

tαq
′α = tαq

α − 2
tβq

β

tγtγ
tαt

α

= −tαqα.
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We plug (4) and (3) into (2) to obtain the desired result and this completes the
proof.
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APPENDIX B

Proof of lemma 2.2

Proof. 1) L1
r (R3) is already a normed vector space .

Now it suffices to show that L1
r (R3) is complete i.e in L1

r (R3) any Cauchy sequence
converges.
Let then (fn)n≥1 be a Cauchy sequence in L1

r (R3) .
Let us show that (fn)n≥1 converges in L1

r (R3) towards a function f belonging to
L1
r (R3).

Since (fn)n≥1 is a Cauchy sequence in L1
r (R3) , one has :

[
||fn − fm||1, r −→ 0, m, n −→ +∞

]
.

Thus
((√

1 + |p|2
)r

fn

)

n≥1

is a Cauchy sequence in L1 (R3) which is a complete

space.
Then there exists g ∈L1 (R3) such that

(√
1 + |p|2

)r
fn −→ g (a)

in L1 (R3) .

Otherwise, we have

||fn − fm||L1(R3) ≤ ||fn − fm||1, r −→ 0,
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then (fn)n≥1 is also a Cauchy sequence in L1 (R3) which is a complete space.
Consequently, there exists f ∈ L1 (R3) such that

fn −→ f

in L1 (R3) .

Now ((√
1 + |p|2

)r
fn −→ g

)

in L1 (R3) implies

fn −→
1(√

1 + |p|2
)r g

in L1 (R3).
Since

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
fn −

1(√
1 + |p|2

)r g

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
L1(R3)

=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

(√
1 + |p|2

)r
fn − g

(√
1 + |p|2

)r

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
L1(R3)

≤
∣∣∣∣
∣∣∣∣
(√

1 + |p|2
)r

fn − g
∣∣∣∣
∣∣∣∣
L1(R3)

and
∣∣∣∣
∣∣∣∣
(√

1 + |p|2
)r

fn − g
∣∣∣∣
∣∣∣∣
L1(R3)

−→ 0

then, we have 



fn −→ f in L1 (R3)

fn −→ 1(√
1+|p|2

)r g in L1 (R3) .

Accordingly

f =
1(√

1 + |p|2
)r g,

and we have that:
g =

(√
1 + |p|2

)r
f ∈ L1

(
R3
)
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In conclusion, we have :

f ∈ L1
(
R3
)

and
(√

1 + |p|2
)r

f ∈ L1
(
R3
)
.

Now if we replace in (a) g by
(√

1 + |p|2
)r

f , we have

(√
1 + |p|2

)r
fn −→

(√
1 + |p|2

)r
f

in L1 (R3) ,
which simply means

fn −→ f in L1
r

(
R3
)
.

Then L1
r (R3) is complete and consequently is a Banach space.

2) L1
1 (R3) is obviously a complete normed space.

It suffices to show that the subset Xr is closed in L1
1 (R3).

Let (fn)n≥1 be a sequence in Xr which converges to f in L1
1 (R3) . Let us show that

f ∈ Xr i.e
f ≥ 0 a.e and ||f || ≤ r.

Since

fn −→ f in L1
1

(
R3
)

we deduce that
||fn|| −→ ||f || .

Thus
||f || ≤ r.

It remains to prove that f ≥ 0 a.e.
Since

fn −→ f in L1
1

(
R3
)
,

then (√
1 + |p|2

)r
fn −→

(√
1 + |p|2

)r
f

in L1
1 (R3). So fn −→ f in L1 (R3) .

We can extract a subsequence (fnk)k∈N of (fn)n≥1 such that

fnk (x) −→ f (x) a.e .

90 Nana Mbajoun



But we have fnk ≥ 0 a.e, so we can conclude that f ≥ 0 a.e .
Now let us show that Xr is connected.
Let f, g ∈ Xr. Then for all t ∈ [0, 1], we set

h = (1− t) f + tg.

We then have h ∈ Xr because :
i) h ≥ 0 a.e
ii) ||h|| ≤ (1− t) ||f ||+ t ||g|| ≤ (1− t) r + tr = r.

Thus Xr is a convex subset of L1
1 (R3).

Since the space L1
1 (R3) is a topological vector space, the map t 7−→ (1− t) f + tg is

continuous from [0, 1] to L1
1 (R3) . But Xr being convex, any segment joingning two

points f, g ∈ Xr is a path strictly included in Xr.
Thus Xr is piecewise connected and so Xr is a connected metric subspace of L1

1 (R3).
3) C ([I, L1

1 (R3)] ; |||.|||) is a Banach space since L1
1 (R3) is a Banach space.

4) By the same way, C ([I,Xr]) is a complete metric space because Xr is a
complete metric space.
Consequently C ([I,Xr]) is a complete metric subspace of C ([I, L1

1 (R3)] ; |||.|||) .
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Abstract

A global existence theorem and uniqueness of solution of the coupled spatially
homogeneous relativistic Maxwell-Boltzmann system is proved, in a Bianchi type I
spacetime back-ground, in a hard potential case. The proof relies in the use of a
particular form of Povzner inequality.

Mathematics Subject Classification: 83Cxx

Keywords: Bianchi type I spacetime, Povzner inequality, relativistic Boltz-
mann equation, Maxwell equations, energy estimates, hard potential, global
existence

1. INTRODUCTION

One of the most important models which rules the dynamic of dilute charged
particles is expressed by the coupled relativistic Maxwell-Boltzmann system, in
which particles interact with themselves through collisions and with their self
consistence electromagnetic field. The study encludes the case of fast moving
particles of gas being submitted to binary collisions. We restrict the study to
homogeneous case, which means that the unknown in the equation depends
only on time and velocity variables. In [5] , Noutchegueme and R. Ayissi have
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studied the Maxwell-Boltzmann system, in a Bianchi type I spacetime, with a
bounded scattering kernel. One of the purpose of this article is to extend this
result in a more physically relevant situation.

The nature of collisions between particles is determined by the scattering
kernel. In the relativistic setting, a classification of the scattering kernel into
hard and soft potential has been proposed in [2, 9] . As in [7] , we consider a
scattering kernel of hard potential type, which is more physically relevant.

The relativistic Boltzmann equation rules the dynamic of the considered
charged particles which are subject to collide with themselves, by determining
their distribution function, denoted f , a non-negative real valued function of
both the time and the momentum of particles.

The Maxwell equations are the equations of electromagnetism and determine
the electromagnetic field F created by the fast moving and charged particles.
We consider the case where this field is generated by a Maxwell current defined
by the distribution function, a charge density e and a future pointing unit
vector u, tangent at any point to the temporal axis.

The main objective of the present paper is to extend the results of [5] in two
points. Firstly, we consider a hard potential case, instead of bounded kernel.
Secondly, we remove the assumption that the initial datum of the Boltzmann
equation is invariant under a subgroup of O3. But for the sake of method we
first consider a bounded kernel in section 3, in order to extend to the hard
potentiel case after obtaining an existence theorem. The main tool here is a
particular form of Povzner inequality.

The paper organises as follows :
- In section 2, we introduce the equations .

- In section 3, we study the bounded case.
- In section 4, we study the hard potential case.

2. THE MAXWELL-BOLTZMANN SYSTEM IN A BIANCHI
TYPE I SPACETIME

2.1. Notations. In a time oriented Bianchi type I spacetime, we consider the
collisional evolution of fast moving massive and charged particles and denote
by xα = (x 0 ; x i) the usual coordinates in R4 , where t = x 0 represents the time
and (x i) the space, g is the metric tensor of Lorentzian signature (−,+,+,+)
which writes:

g = −dt2 + a2 (t)(dx 1 )2 + b2 (t)
(
(dx 2 )2 + (dx 3 )2

)
, (2.1)

where a and b are two differentiable increasing functions on R+ such that:

a ≤ b, a(0) = a0 ≥
3

2
. (2.2)

The expression of the Christoffel symbols of the Levi-Civita connection ∇
of g is:
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Γ λ
αβ =

1

2
gλµ [∂αgµβ + ∂βgαµ − ∂µgαβ]. (2.3)

As in [5] , we require that there exists a constant C > 0 such that:

∣∣∣∣
1

a

da

dt

∣∣∣∣ ≤ C ,

∣∣∣∣
1

b

db

dt

∣∣∣∣ ≤ C. (2.4)

The particles are statistically described by their distribution function, de-
noted f = f (xα, pα) in which (xα) is the position (pα) = (p0, p)is the the
4−momentum of the particle. So:

f : T
(
R4
) ∼= R4 × R4 −→R+, (xα, pα) 7→ f (xα, pα) . (2.5)

On R3 a scalar product is defined by

p.q = a2p1q1 + b2
(
p2q2 + p3q3

)
. (2.6)

The particles whose mass m = 1 is normalized to the unity move on the
futur sheet of the mass-shell

p0 =
√

1 + a2 (p1 )2 + b2 ((p2 )2 + (p3 )2 ). (2.7)

The trajectories s 7−→ (xα(s), pα(s)) of particles solve the differential sys-
tem:

dxα

ds
= pα,

dpα

ds
= Pα := −Γα

λµp
λpµ + epβFα

β (2.8)

where e = e(t) denotes the charge density of particles.
With the covariant variables, the distribution function f will be seen some-

times as a function of t and v = (v1 , v2 , v3 ) as in [4] , instead of p, where:
{

v1 = a2p1 , v2 = b2p2 , v3 = b2p3, dv = a2b4dp

v0 =
√

1 + a−2 (p1 )2 + b−2 ((p2 )2 + (p3 )2 ).
(2.9)

2.2. The Maxwell system in F . The Maxwell system in F can be written
as:

∇αF
αβ = Jβ, ∇αFβγ +∇βFγα +∇γFαβ = 0 (2.10)

where ∇α stands for the covariant derivative in g, Jβ represents the Maxwell
current whose local expression is given by:

J β =

∫

R3

pβf (t , p) (detg)
1
2 dp

p0
− euβ, u0 = 1, ui = 0 (2.11)
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in which u =
(
uβ
)
is a unit futur pointing timelike vector tangent to the time

axis at any point.
The particles are then spatially at rest. Now the identity

∇α∇βFαβ = 0

imposes, given (2.10) that

∇αJ β = 0 . (2.12)

2.3. The Boltzmann equation in f . The Boltzmann equation in a Bianchi
type I spacetime writes:

pα

p0
∂f

∂xα
+
P i

P 0

∂f

∂pi
= Q(f, f) =

∫

R3

∫

S2

vφσ(k, θ) (f ′f ′∗ − ff∗) ab2dωdq (2.13)

where

vφ =
k
√
δ

p0q0
, f ′ = f

(
t , p ′

)
, f ′∗ = f

(
t , q ′

)
, f = f (t , p) , f∗ = f (t , q).

Here Q is the collision operator, vφ the Mï¿œller velocity, σ the scattering
kernel, θ the scattering angle, δ and k are given by

δ = − (pα + qα) (pα + qα) , k =
√

(pα − qα) (pα − qα),

and are called total energy and relative momentum respectively. In the in-
stantaneous, binary and elastic scheme , if p, q and p′, q′ stand for the two
momenta before and after shock , the collision operator Q is defined by:

Q (f , h) = Q+ (f , h)−Q− (f , h), f, h : R3 → R (2.14)

Q+ (f , h) =

∫ ∫

R3×S2

ab2 f
(
p ′
)

h
(
q ′
)

vφσ(k , θ)dqdω, (2.15)

Q− (f , h) =

∫ ∫

R3×S2

ab2 f (p) h (q) vφσ(k , θ)dqdω. (2.16)

The energy momentum conservation is written as

p0 + q0 = p ′0 + q ′0 , p + q = p′ + q′. (2.17)
As suggested in [4] and [8] , we parametrize the post-collisional momenta as
follows: pα and qα being given, we first consider

nα = pα + qα, tα =
(
niω

i , −noω
)
, ω ∈ S2 (2.18)

then, the post-collisional momenta are represented by:
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p ′α =
pα + qα

2
+

k

2

tα√
tβtβ

, q′α =
pα + qα

2
− k

2

tα√
tβtβ

. (2.19)

They satisfy the mass shell condition and energy momentum conservation.
As shown in [1] , the Jacobian of the change of variable

(−
p,
−
q
)
7−→

(
p′, q′

)
is

∂
(
p ′, q ′

)

∂ (p, q)
=

p ′0q ′0

p0q0
. (2.20)

2.4. Assumptions on the scattering kernel. In this work, we assume that
the scattering kernel has the form

σ (k , θ) = kβ sinγ θ, −2 < γ ≤ −1 , 0 ≤ β < γ + 2 . (2.21)
Since k

δ
is a bounded, a kernel of this form falls into the hard potential case.

2.5. The Maxwell-Boltzmann system in (F, f). Setting β = 0 in the first
equation (2.10) , we easily deduce that

J 0 = 0 . (2.22)
By (2.22) , the expression (2.11) of J β with β = 0 , u0 = 1 gives:

e (t) =

∫

R3

f (t , p) ab2dp, (2.23)

and shows that f determines e.
The second set of the Maxwell equations is identically satisfied and the first

set reduces to ∂Fij = 0 , so:

Fij = Fij (0 ) := ϕij . (2.24)
(2.24) means that the magnetic part Fij does not evolve during time.

It remains to determine the electric part F 0i := E i .
Writing (2.11) for β = i , using (2.10) for α = 0 and (2.3) gives:

J i =

∫

R3

pi f (t , p) ab2

p0
dp, (2.25)

Ė i + Γ i
0jE

j =

∫

R3

pi f (t , p) ab2

po
dp. (2.26)

Since f = f (t , p), the Boltzmann equation (2.13) can be written:

∂f

∂t
+
P i

P 0

∂f

∂pi
= Q (f, f) . (2.27)
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Still using the letter f instead of f# usually used in the standard notation
, solving the non linear PDE (2.27) is equivalent to solve the characteristic
system:

dt

1
=
dp1

P 1

p0

=
dp2

P 2

p0

=
dp3

P 3

p0

=
df

Q (f, f)
= ds, (2.28)

which allows to take t as parameter. Now we obtain from (2.8) and (2.3) :

P i

p0
= −2Γi0jp

j − e
[
F 0i + gii

pkFik
p0

]
, i = 1 , 2 , 3 . (2.29)

Using relations (2.23) , (2.25) , (2.28) and (2.29) , the Maxwell-Boltzmann sys-
tem transforms into a Maxwell-Boltzmann -Momentum system of the form:





Ėi = −Γi0jE
j +
∫
R3

qif(t,q)ab2

q0
dq (a)

.

ṗi = −2Γi0jp
j −

[
Ei + gii p

k

p0
ϕki

] ∫
R3 f (t, q) ab2dq (b)

df
dt

= Q (f, f) (c)

Fij = Fij(0) = ϕij. (d)

(2.30)

Now f and p are independant variables for the integro-differential system
(2 .30 ) .

The collision operator expresses in terms of covariant variables using (2.9)
as

Q (f , f ) (t , v) = a−1b−2
∫

S2

dω

∫
duvφσ(k, θ)

[
f
(
t, v′
)
f
(
t, u′
)
− f (t, v) f (t, u)

]

and the Boltlzmann equation (2.27) becomes:

∂f (t, v)

∂t
= Q (f, f) (t, v) . (2.31)

Now we introduce some useful functional spaces.

2.6. Functional spaces. The framework for the distribution function f is
L1
r (R3) , the subspace of L1 (R3) whose norm, denoted ‖ . ‖1 ,r , r ≥ 0 is defined

by:

L1
r

(
R3
)

=

{
f ∈ L1

(
R3
)

: ‖ f ‖1 ,r=
∫

R3

|f (p)|
(
p0
)r
dp < +∞

}
.

We will denote ‖ . ‖1 ,1 by ‖ . ‖ and we define:

|f (t)|1 ,r =

∫

R3

|f (t , v)| < v >r dv , < v >=

√
1 + |v |2 .

Consequently, we have:



Magnetized relativistic Boltzmann equation 197

‖ f (t) ‖1 ,r≤ |f |1 ,r ≤ br(t) ‖ f (t) ‖1 ,r . (2.32)
Now, we set for r ∈ R, r > 0 :

Xr =
{
f ∈ L1

1

(
R3
)
, f ≥ 0 a.e ‖ f ‖≤ r

}
. (2.33)

Xr is a complete and connected metric space for the induced norm.
For any real interval I, we set:

C
(
[I;L1

1

(
R3
)
]
)

=
{
f : I −→ L1

1

(
R3
)
, f continuous and bounded

}
,

C ([I;Xr]) =
{
f ∈ C

([
I;L1

1

(
R3
)])

, f(t) ∈ Xr, ∀t ∈ I
}
. (2.34)

|||f ||| = sup {‖ f (t) ‖, t ∈ I }, f ∈ C
([
I;L1

1

(
R3
)])

.

C ([I ; Xr ]) is a complete metric space for the induced norm.
The frame work for p and E is R3 , with the norm ‖.‖ or ‖.‖R3 .

C
([
I;R3

])
=
{
m : I −→ R3, m continuous and bounded

}

is a Banach space for the norm |||m||| , = sup {‖m (t)‖ , t ∈ R}.
We define on R3×R3×L1

1 (R3) and on C ([I ;R3 ])× C ([I ;R3 ])× C ([I ; L1
1 (R3 )]) :

∥∥(p,E , f
)∥∥ = ‖p‖+

∥∥E
∥∥+ ‖f ‖, (2.35)

∣∣∣∣∣∣(p,E , , f
)∣∣∣∣∣∣ = |||p|||+

∣∣∣∣∣∣E ,
∣∣∣∣∣∣+ |||f |||. (2.36)

3. THE MAXWELL-BOLTZMANN SYSTEM WITH A
BOUNDED KERNEL

For technical purpose, in this section we change the scattering kernel k
√
δσ

into a bounded kernel S
(
p, q, p′, q′

)
, a non-negative continuous real valued

function of its arguments, and on which we additionally require that:
{

0 ≤ S
(
p, q, p′, q′

)
≤ C1∣∣S

(
p1, q, p′, q′

)
− S

(
p2, q, p′, q′

)∣∣ ≤ C1 ‖p1 − p2‖ ,
(3.1)

where C1 is positive constant. The Boltzmann equation (2.13) changes as:

∂f

∂t
+
P i

p0
∂f

∂pi
=

1

p0
Q (f, f) , (3.2)

Q (f , h) = Q+ (f , h)−Q− (f , h), (3.3)

Q+ (f , h) =

∫

R3

∫

S2

ab2

q0
f
(
p ′
)

h
(
q ′
)

S
(
p, q , p ′, q ′

)
dωdq , (3.4)
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Q− (f , h) =

∫

R3

∫

S2

ab2

q0
f (p) h (q) S

(
p, q , p ′, q ′

)
dωdq . (3.5)

The Maxwell-Boltzmann-Momentum system (2 .30 ) transforms in:





Ėi = −Γi0jE
j +
∫
R3

qif(t,q)ab2

q0
dq = H1

(
t, p, E, f

)
(a)

ṗi = −2Γi0jp
j −

[
Ei + gii p

k

p0
ϕki

] ∫
R3 f (t, q) ab2dq = H2

(
t, p, E, f

)
(b)

df
dt

= 1
p0
Q (f, f, p) = H3

(
t, p, E, f

)
(c)

Fij = Fij(0) = ϕij (d) .

(3.6)

3.1. Local existence of solutions. In what follows and in the next, we
briefly review the results of [5] .

First, we estimate the differences in f ,E , p in L1
1 and R3 norms:

Proposition 1. Let p1 , p2 ,E1 ,E2 ∈ R3 , f1 , f2 ∈ L1
1 (R3 ). Then:





∥∥H1

(
t , p1 ,E1 , f1

)
− H1

(
t , p2 ,E2 , f2

)∥∥
R3 ≤ C2

(∥∥E1 − E2

∥∥
R3 + ‖f1 − f2‖

)
(a)∥∥H2

(
t, p1, E1, f1

)
−H2

(
t, p2, E2, f2

)∥∥
≤ C3

(
‖p1 − p2‖+

∥∥E1 − E2

∥∥
R3 + ‖f1 − f2‖

)
(b)∥∥H3

(
t, p1, E1, f1

)
−H3

(
t, p2, E2, f2

)∥∥
R3 ≤ C4 (‖p1 − p2‖+ ‖f1 − f2‖) (c)

(3.7)

where





C(t) = 8πC1ab
2 (t) , C2 = 3C + b2

C3 = 5 (6C + 1)
(

1 + a+ b2

a

) (
1 + a

b
+ b

a
+ 1

a
+ 1

b

)
×

(1 + ‖f2‖) (1 + ab2)
(
1 + ‖f2‖+

∥∥E1

∥∥)

C4 = C (1 + a+ 2b)
(
1 + ‖f1‖+ ‖f2‖+ ‖f2‖2

)

C5 = C2 + C3 + C4.

(3.8)

In order to state the local existence theorem, we first recall this useful theorem:
Theorem 2. Let t0 ≥ 0 ,

(
pt0 , Et0 , ft0

)
∈ R3 × R3 × L1

1 (R3) be given. Then:

1. There exists a real number τ > 0 such that the differential system (3.6)

has a unique solution
(
p, E, f

)
∈ C ([t0, t0 + τ ] ;R3)

2 × C ([t0, t0 + τ ] ;L1
1 (R3))

satisfying
(
p, E, f

)
(t0) =

(
pt0 , Et0 , ft0

)
. Moreover f satisfies:

|‖f ‖| = sup {‖f (t)‖ , t ∈ [t0 , t0 + τ ]} ≤ ‖ft0‖. (3.9)
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2. The Maxwell-Boltzmann system (2.10) , (3.2) has a unique local solution
(F, f) on [t0 , t0 + τ ] such that

F 0i (t0) = Ei
t0
, Fij = Fij (t0) = ϕij, f (t0) = ft0 , |‖f ‖| ≤ ‖ft0‖. (3.10)

We end by stating the following local existence theorem coming from the-
orem 2.
Theorem 3. Let p0, E0 ∈ R3, f0 ∈ L1

1 (R3) , ϕij ∈ R be given.

Then there exists a real number T > 0 such that:
1. The differential system (3.6) has a unique solution

(
p, E, f

)
∈ C ([0, T ] ;R3)

2×
C ([0, T ] ;L1

1 (R3)) such that
(
p,E , f

)
(0 ) =

(
p0 ,E0 , f0

)
. Moreover:

|‖f ‖| ≤ ‖f0‖. (3.11)

2. The Maxwell-Boltzmann system (2.10) , (3.2) has a unique solution (F, f)
satisfying F 0i (0) = Ei

0, Fij = Fij (0) = ϕij, f (0) = f0.

3.2. Global existence theorem.

3.2.1. The method. To prove global existence, the authors in [5] used the
following method:

Let [0 ,T [ be the maximal existence domain of solution of the system (3.6)

denoted here by
(
p̃, Ẽ, f̃

)
and given by theorem 3 with the initial data

(
p0, E0, f0

)
∈ C ([0, T ] ;R3)

2 × C ([0, T ] ;L1
1 (R3)) .

We want to prove that T = +∞.
(a) If we already have T = +∞, the problem of existence is solved.
(b) If we suppose 0 < T < +∞, then the solution

(
p̃, Ẽ, f̃

)
can be extended

beyond T , which contradicts the maximality of T .
Supposing 0 < T < +∞ and t0 ∈[0, T [, it is shown in [5] that there exists a

number τ > 0 independant of t0 such that the system (3 .6 ) has a unique solu-
tion

(
p,E , f

)
on [t0, t0 + τ ] , with the initial data

(
p̃0, Ẽ0, f̃0

)
at t = t0 . Then

taking t0 suffisciently close to T , for example, t0 such that 0 < T − t0 <
τ
2
and

hence T < t0 + τ
2
, we can extend the solution

(
p̃, Ẽ , f̃

)
to
[
0, t0 + τ

2

]
which

strictly contains [0, T [ , and this contradicts the maximality of T .

3.2.2. Preliminary results. The following preliminary results were used in
[5] :

Lemma 4. The maps t 7→ Ẽ (t), t 7→ p̃ (t) are uniformly bounded over [0, T ] .

Proposition 5. Let t0 ∈ [0, T [ ,
(
p̃t0 , Ẽt0 , f̃t0

)
∈ C ([t0, t0 + τ ] ;R3)

2×C ([t0, t0 + τ ] ;L1
1 (R3))

be given. Then there exists a number τ∈ ]0 , 1 [, independent of t0, such that the
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system (3.6) has a unique solution
(
E, p, f

)
∈ C ([t0, t0 + τ [ ;R3)

2×C ([t0, t0 + τ [ ;Xr)

such that
(
E, p, f

)
(t0) =

(
p̃t0 , Ẽt0 , f̃t0

)
.

3.2.3. The global existence theorem: Based on the method detailed above
and using preliminary results, the following global existence theorem was
proved in [5] :
Theorem 6. Let p0, E0 ∈ R3, f0 ∈ L1

1 (R3) , ϕij ∈ R be given, such that
‖f0‖ ≤ r where r > 0 is a given real number. Then:

1) The differential system (3.6) has a unique global solution
(
E, p, f

)
defined

all over the interval [0,+∞[ and such that =
(
E, p, f

)
(0) =

(
E0, p0, f0

)
and

|‖f ‖| ≤ ‖f0‖ , f (t) ≥ 0, t ∈ [0,+∞[ .

2) The Maxwell-Boltzmann system (2.10) , (3.2) has a unique global solution
(F, f) on [0,+∞[ satisfying :

F 0i (0) = Ei
0, Fij = Fij (0) = ϕij, f (0) = f0, |‖f ‖| ≤ ‖f0‖ .

4. THE MAXWELL-BOLTZMANN SYSTEM IN HARD
POTENTIAL CASE

Here, we extend the result of theorem 6 to some hard potential case. We
still consider the Maxwell-Boltzmann-Momentum system (2.30) with the col-
lision operator now given by:

Q(f, f) =
∫
R3

∫
S2 vφσ(k, θ) (f ′f ′∗ − ff∗) ab2dωdq

= a−1b−2
∫
S2 dω

∫
duvφσ(k, θ) (f ′f ′∗ − ff∗) .

4.1. The method. We construct a modified system by truncating a certain
part of the collision kernel in the equation (2.30− c) . As in the truncated
system the scattering kernel is bounded, global existence of solution is insured
by theorem 6. Then we obtain a sequence of solutions of the truncated system,
and showing that this is a Cauchy sequence we obtain a solution of the initial
system (2.30) .

4.2. Preliminary results. We start by the following useful lemmas.

Lemma 7. The following inequalities hold

k ≤
√
δ, k ≤ 2

√
u0v0 ,

√
δ ≤ 2

√
u0v0, k ≤ a−1|v − u|. (4.1)

Proof. The results are obtained by simple calculations. �

Lemma 8. For the collision operator, the following property holds :
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For any measurable function h depending only of k , δ and ω, we have:
∫∫∫ h(k,δ,ω)

p0q0
(f ′f ′? − ff?) (p0)

r
dωdqdp

= 1
2

∫∫∫ h(k,δ,ω)
p0q0

ff?
(
(p′0)

r
+ (q′0) r − (p0)

r − (q0)
r)
dωdqdp.

Proof. See [4] �
Lemma 9. Consider the collisional process in the Bianchi type I spacetime.
Let (pα, qα) and (p′α, q′α) be pre and post collisional momenta respectively.

For r > 1 , consider:

G =
(
p ′0
)r

+
(
q ′0
)r −

(
p0
)r −

(
q0
)r
.

Then G satisfies

G ≤ Cr
(
(p0)r−1q0 + p0(q0)r−1

)
. (4.2)

If ω is restricted to the subset
{
ω ∈ S2 : |n.ω| ≤ a2(t)√

2b2(t)
|n|
}
,then:

G ≤ Cr
(

(p0)r−
1
2 (q0)

1
2 + (p0)

1
2 (q0)r−

1
2

)
− cr

(
(p0)r + (q0)r

)
(4.3)

where Cr and cr are two different non-negative constants depending on r .
Proof. By the energy momentum conservation, we have

p0 + q0 = p ′0 + q ′0 , for each p0 and q0.

Let pα and qα be given. By the inequality
{
αr + βr ≤ (α + β)r ≤ αr + βr + Cr (αr−1β + αβr−1)

α, β ≥ 0 ; r > 1 ,
(4.4)

we deduce that

(p ′0 )r + (q ′0 )r ≤ (p0 )r + (q0 )r + Cr
(
(p0 )r−1 (q0 ) + (p0 )(q0 )r−1

)
.

Then

G ≤ Cr
(
(p0)r−1q0 + p0(q0)r−1

)
. (4.5)

For the second result, suppose that |n.ω| ≤ a2√
2b2
|n| and p ′0 ≥ q ′0 .

Then p ′0 is estimated as

p′0 ≤ p0 + q0

2

+
k

2

|a2(t)n1ω1 + b2 (n2ω2 + n3ω3)|√
(n0)2 (a2(t)(ω1)2 + b2(t) ((ω2)2 + (ω3)2))− (a2(t)n1ω1 + b2(t) (n2ω2 + n3ω3))2

.
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And we notice that

|a2(t)n1ω1 + b2 (n2ω2 + n3ω2) |√
(n0)2 (a2(t)(ω1)2 + b2(t) ((ω2)2 + (ω3)2))− (a2(t)n1ω1 + b2(t) (n2ω2 + n3ω2))2

≤ 1

if and only if
2 (a2n1ω1 + b2 (n2ω2 + n3ω3))

2 ≤ (n0)2 (a2(ω1)2 + b2 ((ω2)2 + (ω3)2)) .
Now using the facts that

a ≤ b, δ =
(
n0
)2 −

(
a2(n1)2 + b2

(
(n2)2 + (n3)2

))
≥ 0,

we easily deduce that:

|n.ω| ≤ a2

√
2 b2
|n| ⇒ 2b4 (n.ω)2 ≤ a4|n|2

⇒ 2
(
a2(n1ω1)2 + b2

(
(n2ω2)2 + (n3ω3)2

))

≤ a2
(
a2(n1)2 + b2

(
(n2)2 + (n3)2

))

Then |n.ω| ≤ a2√
2b2
|n| implies, using lemma 10 that:

p ′0 ≤ p0 + q0

2
+

k

2
≤

(√
p0 +

√
q0
)2

2
So G is estimated as:

G ≤ 2
(
p′0
)r −

(
p0
)r −

(
q0
)r ≤ 1

2r−1

(√
p0 +

√
q0
)2r
−
(
p0
)r −

(
q0
)r

≤ (p0)
r

2r−1 +
(q0)

r

2r−1 + Cr
(

(p0)
r− 1

2 (q0)
1
2 + (p0)

1
2 (q0)

r+ 1
2

)
− (p0)

r − (q0)
r

≤ Cr
((
p0
)r− 1

2
(
q0
) 1

2 +
(
p0
) 1

2
(
q0
)r+ 1

2

)
− cr

((
p0
)r

+
(
q0
)r)

where (4.4) is used and Cr, cr > 0 are constants depending on r. �
Let m be any positive integer: Now we modify the Maxwell-Boltzmann-

Momentum system (2.30) by setting :





Ėi
m = −Γi0jE

j
m +

∫
R3

qifm(t,q)ab2

q0
dq

˙pim = −Γi0jp
j
m −

[
Ei
m + gii p

k
m

p0m
ϕki

] ∫
R3 fm (t, q) ab2dq

dfm
dt

= ab2
∫
R3

∫
S2 vφ,m (km)β σ0,m (ω) (f ′mf

′
m? − fmfm?) dωdq = Qm (fm, fm)

Fij = Fij(0) = ϕij , Em(0) = E0, pm(0) = p0, fm(0) = f0
(4.6)

where vφ,m :=
min{k√δ,m}

p0 q0
,km := min {k ,m} , σ0 ,m := min {σ0 (ω),m}.
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Since the scattering kernel of Qm (fm, fm) is bounded case, we conclude by
theorem 6 that the truncated equation (4.6) has a unique global solution

(
Em, pm, fm

)
∈ C

(
[0,+∞[ ;R3

)2 × C
(
[0,+∞[ , L1

1(R3)
)

such that
(
Em , pm , fm

)
(0 ) =

(
E0 , p0 , f0

)
.

The following lemma establishes that the sequence fm is a Cauchy sequence.
Lemma 10. For any r ≥ 0 and T > 0 , there exists a constant Cr which does
not depend on m such that if ‖ f0 ‖1 ,r is bounded, then:

sup
m

sup
t∈[0,T ]

|fm(t)|1,r+ ‖ fm(t) ‖1,r≤ Cr. (4.7)

Proof. We first estimate ‖fm (t)‖1 ,r and then obtain the result using (2.32) .
By theorem 6 we have

sup
t∈[0,T ]

‖fm (t)‖1,r ≤ C

where C = ‖f0 (t)‖1 ,1 does not depend on m for 0 ≤ r ≤ 1

because for r ≤ s ≤ 1, ‖fm (t)‖1,r ≤ ‖fm (t)‖1,s . Now we assume that r > 1 .

Since v0 decreases with time for each v, using (2.2)and (2.9) , we have:

∂tv
0 = −

(
ȧ(t)

a3(t)
(v1)2 +

ḃ(t)

b3(t)

(
(v2)2 + (v3)2

)
)

1

v0
≤ 0.

By direct calculation using equation (2.31) , we have:

d

dt
|fm(t)|1,r =

a−1b−2
∫ ∫ ∫

vφ,m(km)βσ0,m(ω) (f ′mf
′
m? − fmfm?)

(
v0
)r
dωdvdu+

∫
fm(t, v)

∂v0

∂t
dω

and the second integral is negative. Hence, we may only consider:

d

dt
|fm(t)|1,r ≤ a−1b−2

∫ ∫ ∫
vφ,m(km)βσ0,m(ω) (f ′mf

′
m? − fmfm?)

(
v0
)r
dωdvdu.

By lemma 8 , we have:

d

dt
|fm(t)|1,r ≤

a−1b−2

2

∫ ∫ ∫
vφ,m(km)βσ0,m(ω)fmfm?

[
(v′0)r + (u′0)r − (v0)r − (u0)r

]
dωdvdu.

Using the fact that a−1b−2 is bounded, we apply lemma 9 and some cal-
culations of lemma 3.6 in [4] to obtain
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sup
m

sup
t∈[0,T ]

|fm(t)|1,r ≤ Cr.

By (2.32) , we obtain the desired result, and the proof is completed. �

Lemma 11. Consider the sequence {fm} on any interval [0, T ] . For each small
number ε > 0 , there exists a positive integer M such that if k ,m ≥ M :

sup
t∈[0 ,T ]

|fk (t)− fm (t)|1,1 ≤ ε. (4.8)

Proof. The proof is similar to the proof of the previous lemma.
We first estimate ‖fk (t)− fm (t)‖1 ,r then by (2.32) , the result follows.
Using the relation (2.31) , we have :

d

dt
‖fk (t)− fm (t)‖1 ,r =

=

∫
Sgn (fk − fm) (Qk (fk, fk)−Qm (fm, fm)) v0dv

−
∫ (

ȧ (t)

a3 (t)
(v1)2 +

ḃ (t)

b3 (t)

(
(v2)2 + (v3)2

)
)
|fk(t, v)− fm(t, v)| 1

v0
dv

≤
∫
Sgn (fk − fm) (Qk (fk, fk)−Qm (fm, fm)) v0dv.

It remains to follow the proof of lemma 3.7 in [4] and obtain a positive
integer N such that if k ,m ≥ N then:

sup
t∈[0,T ]

‖fk (t)− fm (t)‖1 ,1 ≤ ε.

Thus , the desired result is obtained by (2.32) and the proof is completed. �

Lemma 12. Consider the sequences
{
Em
}

and {pm} on any finite interval
[0, T ] . For any small number ε > 0 , there exists a positive integer M such that
if k ,m ≥ M , then

sup
t∈[0 ,T ]

∥∥Ek (t)− Em (t)
∥∥ ≤ ε, (4.9)

sup
t∈[0 ,T ]

‖pk (t)− pm (t)‖ ≤ ε. (4.10)
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Proof. We consider the relations (3.6− a) , (3.7− a) to deduce that:
∥∥∥ ˙Ek (t)− ˙Em (t)

∥∥∥ ≤ C2

(∥∥Ek (t)− Em (t)
∥∥+ ‖fk (t)− fm (t)‖

)
.

Using the expression of C2 given by (3.8) , relations (2.4) , we easily deduce
that there exists a positive absolute constant C6 such that:

C2 ≤ C6 =C6 = C6 (a0, b0, T, C1) .

Then∥∥∥ ˙Ek (t)− ˙Em (t)
∥∥∥ ≤ C6

(∥∥Ek (t)− Em (t)
∥∥+ ‖fk (t)− fm (t)‖

)
.

Integrating over [0, t] ,we obtain:

∥∥Ek (t)− Em (t)
∥∥ ≤C6

(
T sup
t∈[0,T ]

‖fk (t)− fm (t)‖+

∫ t

0

∥∥Ek (s)− Em (s)
∥∥ ds

)
,

t ∈ [0, T ] . By Cronwall inequality, we obtain:

∥∥Ek (t)− Em (t)
∥∥ ≤ TC6 sup

t∈[0 ,T ]

‖fk (t)− fm (t)‖ eC6T

Then (2.32) and lemma 11 allow to conclude.
Using the same scheme, invoking this time (3.6− b) , (3.7− b) we obtain:

∥∥∥ ˙pk (t)− ˙pm (t)
∥∥∥ ≤ C3

(
‖pk (t)− pm (t)‖+ ‖fk (t)− fm (t)‖+

∥∥Ek (t)− Em (t)
∥∥) .

Using the expression of C3 given by (3.8) , relations (2.4) , invoking lemma
4 and theorem 6 to bound

∥∥Em (t)
∥∥ and ‖fm (t)‖ , we easily deduce that

there exists a positive absolute constant C7 such that:

C3 ≤ C7 = C7

(
a0, b0, ‖f0‖ ,

∥∥E0

∥∥ , T, C1, C
)
.

Then

∥∥∥ ˙pk (t)− ˙pm (t)
∥∥∥ ≤ C7

(
‖pk (t)− pm (t)‖+ ‖fk (t)− fm (t)‖+

∥∥Ek (t)− Em (t)
∥∥)

Integrating over [0, t] and using the Gronwall lemma, we obtain:

‖pk (t)− pm (t)‖ ≤ TC7 sup
t∈[0 ,T ]

(∥∥Ek (t)− Em (t)
∥∥+ ‖fk (t)− fm (t)‖

)
eC7T

Then (2.32) , lemma 11 and the inequality (4.9) give the relation (4.10).
So, the proof is completed. �
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4.3. The global existence theorem. Now we can state the main result of
this work.

Theorem 13. Let p0, E0 ∈ R3, ϕij ∈ R, f0 ∈ L1
r (R3) be given, with r > 1 + β

2

and f0 ≥ 0 . Suppose that the scattering kernel has the form (2.21) .
- Then the equivalent Maxwell-Boltzmann-Momentum system (3.6) has a

unique global solution (F, p, f) such that f ∈ C ([0 ,+∞[ ,L1
1 (R3 )) with f (t) ≥ 0

and satisfying F i0 := F i0(0) = Ei
0,Fij = Fij (0 ) = ϕij ,f (0 , .) = f0 .

- (F, f) is the unique global solution of the Maxwell-Boltzmann system
(2.10) , (2.13) .
Proof. Lemmas 11 and 12 show that the sequence

{(
Em, pm, fm

)}
is a

Cauchy sequence in the Banach space (R3 )
2 × L1

1 (R3) . Hence there exists(
E, p, f

)
a solution of the system (2.30) with initial condition

(
E0, p0, f0

)
. The

initial condition f0 ∈ L1
r (R3 ) with r > 1 + β

2
comes from lemma 3.7 in [4]

and the non-negativity of f is guaranteed by the same lemma. The uniqueness
is obtained by the proof of lemmas 11 and 12. This complete the proof. �

5. CONCLUSION

This work was devoted to extend the result of [5] who considered the ho-
mogeneous relativistic Maxwell- Boltzmann system for a bounded scatter-
ing kernel with an additional hypothesis of invariance under a subgroup of
O3. In the present work, we discarded this hypothesis. After presenting the
bacground spacetime, the unknowns and the equations, we considered the
Maxwell-Boltzmann system for a bounded kernel and we briefly recalled the
results of [5] . The same system has been considered in case of hard potential
kernel. The method followed was the one used in [4] , relying in the use of a
particular form of Povzner inequality, but in a more difficult situation, because
the Boltzmann equation was coupled with the Maxwell equations. Some en-
ergy estimates allowed us to obtain global existence theorem and uniqueness
of mild solutions.

In our future investigations, we will consider an inhomogeneous magnetized
Boltzmann equation for both bounded and hard potential cases.
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