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NOMENCLATURE AND UNITS 
 

𝐴 cross section area, m² 

𝐵𝑜 oil formation volume factor, m³/m³ 

𝐵𝑤 water formation volume factor, m³/m³ 

𝐵𝑔 gas formation volume factor, m³/m³ 

𝐶𝑑 profile parameter 

𝐶𝑜 isothermal compressibility of oil bar-1 

𝐶𝑝 specific heat at constant pressure, j/kg K 

d inner diameter of pipe, m 

𝑓 friction factor,                      

𝐺𝑂𝑅 gas-oil ration,  m³/m³ 

g acceleration of gravity, m/s² 

ℎ𝑖 inner convection heat transfer coefficient, W/m²-K 

ℎ𝑜 outer convection heat transfer coefficient, W/m²-K 

𝐻 hold up 

𝑘 thermal conductivity of pipe, W/m-K 

𝑘𝑖𝑛𝑠 thermal conductivity of the insulation material, W/m-K 

𝐿 pipe length, m 

M𝑔 mass of gas, kg 

P pressure, Pa 

𝑃𝑏 bubble point pressure, Pa 

𝑃𝑝𝑐 pseudo-critical pressure, Pa 

𝑃𝑝𝑟  pseudo-reduced pressure 

q heat flow rate, W/m² 

𝑄𝑤(𝑃, 𝑇) volumetric flow rate of water at flow conditions, m³/D 

𝑄𝑜(𝑃, 𝑇) volumetric flow rate of oil at flow conditions, m³/D 
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𝑄𝑔(𝑃, 𝑇) volumetric flow rate of gas at flow conditions, 158.99m³/D 

𝑄𝑤_𝑠𝑐 (𝑃, 𝑇) volumetric flow rate of water at standard conditions, m³/D 

𝑄𝑜_𝑠𝑐 (𝑃, 𝑇) volumetric flow rate of water at standard conditions, m³/D 

𝑄𝑔_𝑠𝑐 (𝑃, 𝑇) volumetric flow rate of water at standard conditions, m³/D 

𝑅𝑒 Reynolds number   

𝑅𝑆 solution gas-oil ratio, m³/m³ 

𝑟 radius of pipe, m 

T temperature, °F, K 

𝑇𝑝𝑐 pseudo-critical temperature, °R 

𝑇𝑝𝑟 pseudo-reduced temperature  

𝑈 overall heat transfer coefficient, W/m² K 

𝑉𝑑 drift velocity, m/s 

𝑉𝑠𝑤  superficial velocity of water, m/s 

𝑉𝑠𝑜 superficial velocity of oil, m/s 

𝑉𝑠𝑔 superficial velocity of gas, m/s 

𝑉𝑔 velocity of the gas phase, m/s 

𝑉𝑚 mixture velocity, m/s 

𝑉𝑜(𝑃, 𝑇) volume of oil at pressure and temperature, m³ 

𝑉𝑔(𝑃, 𝑇) volume of gas at pressure and temperature, m³ 

𝑉𝑤(𝑃, 𝑇) volume of water at pressure and temperature, m³ 

𝑉𝑜_𝑠𝑐  volume of oil at standard condition, m³ 

𝑉𝑤_𝑠𝑐 volume of water at standard condition, m³ 

𝑉𝑔_𝑠𝑐  volume of gas at standard condition, m³ 

𝑊 mass flow rate, kg/s 

𝑊𝑂𝑅 water-oil ratio, m³/m³ 

𝑍 gas compressibility factor 
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SUBSCRIPTS 

 

atm Atmospheric 

o oil, outer 

g Gas 

w Water 

l liquid    

m Mixture 

sc standard conditions 

pc pseudo-critical 

pr pseudo-reduced 

r Reduced 

tp two phase 

p Pipe 

i Inner 

a Ambient 

f Fluid 

n no-slip 

Av Average 
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GREEK SYMBOLS 

 

𝝆 density,kg/m³ 

𝝁 viscosity, Pa.s 

𝜸 specific gravity 

𝛂 void fraction 

𝜺 pipe roughness, m 

𝜼 joule Thomson coefficient, 

𝛉 inclination angle of pipe, rad 

𝝈 surface tension, j/m 
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ABSTRACT 
 

In this thesis, we developed a thermal model for pressure and temperature predictions of an oil and 

gas flow through a long subsea pipeline based on energy conservation equation coupled with a pressure 

gradient formulation. Next, we determined by using three approaches, the optimum insulation thickness of 

three insulating material, that will be necessary to maintain a minimum temperature of 40°C, at any point 

of the flowing area in the pipe. In the first approach, we defined manually and gradually the range of 

insulation thickness and we determined by running numerical simulations, the optimum insulation thickness 

of the three insulating materials namely black aerogel (BA), calcium silicate (CS) and polyurethane foam 

(PUF). In the second approach, we combined genetic algorithm (GA) and power regression model using 

MATLAB software, to find out the optimum insulation thickness of each of the insulating material. Finally, 

the optimum insulation thickness was also determined using machine learning models namely: Generalized 

Linear Model (GLM), Decision Tree (DT), Deep Learning (DL), Random Forest (RF) and Support Vector 

Machine (SVM), in RAPIDMINER software. Further, we investigated the risks of formation of some flow 

assurance issues in pipeline using logistic regression. The results obtained from the numerical simulations 

of the temperature using MATLAB, is in good agreement with a relative error of 1.60% and 0.64% 

respectively on those from field data and the PIPESIM model. An absolute relative error of 1.64% was 

obtained with an existing model. In addition, the predicted pressure model matches with the measured value 

data with a relative pressure drop of 1.26%. Optimum insulation thickness, for the case of BA, was found 

to be 8.89 cm, 7.94 cm and 8.16 cm using respectively, the numerical simulation approach, power 

regression approach and RF approach. Next, for the case of CS, 71.12 cm, 69.5 cm and 69.77 cm were 

found respectively, following the three approaches. Finally, for the case of PUF, 22.86 cm, 22.30 cm and 

22.43 cm were found respectively, for the numerical simulation approach, power regression approach and 

RF approach. It comes out that, the best insulating material for this study is BA. Finally, logistic regression 

model for the evaluation of flow assurance solids risk formation, using MATLAB, was validated using 

results from a statistical analysis software named STATGRAPHIC. Good accuracy was observed, 

indicating the capability of the software for making good predictions of the flow assurance solids risk 

formation during transportation of oil and gas in long subsea pipeline.  

Keywords: Subsea pipeline, insulating material, two-phase flow, black oil model, heat transfer, numerica l 

simulation, machine learning, temperature profile. 
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RESUME 
 

Dans cette thèse, nous avons développé un modèle thermique à une dimension pour décrire la 

distribution de température et de pression d’un écoulement multiphasique de pétrole à partir de l’équation 

de conservation de l’énergie couplée avec l’équation du gradient de pression. Ensuite, nous avons 

déterminé, suivant trois approches, l’épaisseur optimale de trois matériaux d’isolation, nécessaire pour 

maintenir une température minimale de 40°C, en tout point de la conduite. Dans la première approche, nous 

avons défini manuellement et progressivement la plage d’épaisseur d’isolation et nous avons déterminé 

l’épaisseur optimale de trois matériaux d’isolation à savoir : le silicate de calcium (CS), la mousse de 

polyuréthane (PUF) et l’aérogel noir (BA) en effectuant des simulations numériques. Dans la deuxième 

approche, nous avons combiné les techniques d’algorithme génétique (GA) et le modèle de régression de 

puissance, à l’aide du logiciel MATLAB. Enfin, nous avons utilisé certains modèles d’apprentissage 

automatique dits « Machine Learning » à savoir : Modèle Linéaire Généralisé, Arbre de Décision, 

Apprentissage Profond, Forêt Aléatoire (FA) et Machine à Vecteur de Support, du logiciel RAPIDMINER. 

Nous avons finalement étudié, les risques de formation de certains solides, liés au transport 

d’hydrocarbures, en utilisant la régression logistique. Les résultats des simulatio ns numériques de la 

température obtenus à l’aide de MATLAB, sont en accord avec une erreur relative de 1,60% et 0,64% 

respectivement, sur ceux issus des données de valeur mesurées et du modèle PIPESIM. Une erreur relative 

de 1,64% a été obtenue avec un modèle existant. Le modèle de gradient de pression, est également en accord 

avec les données mesurées, avec une erreur relative de 1,26%. L’épaisseur d’isolation optimale, pour le cas 

de BA, s’est avérée être de 8,89 cm, 7,94 cm et 8,16 cm, en utilisant respectivement l’approche par 

simulation numérique, par la régression de puissance combinée avec GA et par l’approche de FA combinée 

avec GA. Pour le cas du CS,71,12 cm, 69,5cm et 69,77 ont été obtenues respectivement, suivant ces trois 

approches. Pour le cas de PUF, 22,86 cm, 22,30 cm et 22,43 cm, ont été trouvées respectivement. Il en 

ressort que, le meilleur matériau isolant pour cette étude est le BA avec une épaisseur de 7,94 cm. Enfin,  

s’agissant de l’évaluation du risque de formation des solides, les résultats obtenus à l’aide de MATLAB, 

du modèle de régression logistique ont été validés par le logiciel STAGRAPHIC. Les différents modèles 

utilisés dans ce travail, ont été validés, indiquant leur capacité à pouvoir faire des prédictions assez précises.  

 

Mots clés : pipeline sous-marin, matériaux isolants, écoulement multiphasique, modèle d’huile noire, 

transfert de chaleur, simulation numérique, machine learning, profil de température.
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GENERAL INTRODUCTION  
 

Offshore oil and gas production has become an essential part of global energy supply. It involves ever 

more advanced technologies and increasing attention to environmental impacts. According to [1], offshore 

production accounts for 30% of global oil production and 27% of gas production. These percentages have 

remained stable since the beginning of the 21st century, despite the strong onshore development of 

unconventional hydrocarbons such as tar sands or bituminous sands and shale hydrocarbons, it is estimated 

that offshore production represents 20% of world oil reserves and 30% of gas reserves [1]. Deep offshore 

accounts for 40% of Total’s production and 70% of its 2015-2018 exploration goals. In 2017, 15% of global 

oil production comes from deep offshore (Total’s forecast for 2019). 400 to 500 subsea wells operated and 

8 Floating Production Storage and Outloading (FPSO) units [1]. Deep offshore hydrocarbons, once 

considered to be out of reach, now make up around 30% of the world’s yet-to-be discovered conventiona l 

resources. Theirs exploitation, which takes place at greater and greater depths, in increasingly difficult seas 

and within increasingly isolated reserves characterized by complex fluids, represents a major challenge for 

the future of energy. From market predictions, the offshore industry is expected to invest $210 billion for 

new developments in five years (2011 - 2015), a 60% increase compared to the previous period (2006 - 

2010), with pipelines and flow systems representing the 38% of this budget [2]. The implementation of new 

exploration and drilling technologies is expected to make the offshore industry to continue its growth 

towards deep (500 – 1500m) and ultra-deep (> 1500 m) waters. 

One of the great challenges in subsea production result from unprecedented temperature and pressure 

conditions which leads to some flow assurance issues. According to [3], the offshore industry will face 

more challenging scenarios with production from deeper and colder waters. Subsea facilities will require 

longer subsea tiebacks in satellite fields to transport hydrocarbon fluids from the wellhead to existing 

production and processing platforms, and may require the transportation of processed gas and condensate 

streams to export facilities through subsea pipelines. The formation of solid deposits, such as gas hydrates, 

waxes, asphaltenes and mineral scale, may plug the flowlines, preventing production and generating a 

safety hazard. The flow assurance of the produced hydrocarbon stream has become a technical discipline 

that focuses on the design of safe and secure operation techniques for the uninterrupted transport of 

reservoir fluids from the reservoir to the point of sale.  

Offshore pipelines are widely use as the unique mean of transportation of offshore fluids, which are 

generally consisting of oil, gas and water. These pipelines used for the transportation of offshore fluids 
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from the reservoir to the surface facility are known as infield pipelines and are designed for multiphase 

flow. These pipelines can be directly exposed to the seawater, buried or partially buried or event gathered  

as bundle.  As conventional crude oil are more and more scarce, oil and gas industry are obliged to extract 

fluids from deeper water and at long tieback distances where the surrounding water is very cold. The lowest 

temperature of seawater, the presence of high water cut and changes in pressure and temperature of the 

fluids along the pipeline, will lead respectively to the cooling of the hot offshore fluids and to some flow 

assurance issues such as scales, asphaltenes, waxes and hydrates formation and deposition. As a 

consequence of these issues, the pipe effective flow area will reduce and in some cases, blockage of 

pipelines can occur (see figures 1.1 below) causing an interruption in production and therefore, resulting in 

colossal financial loss due to maintenance operations [4]. With today’s low oil price and high rig rate, the 

industry is struggling with cost reduction [5]. Therefore, one of the important question is how to assure that, 

fluids will be safely and economically transported from the bottom of the wells all the way to the 

downstream processing plant. It is clear that, the fundamental challenge of any subsea project is to be able 

to transport the reservoir fluids, which is generally a multiphase fluid, consisting of oil, gas and water, from 

downhole to the processing facilities. One of the solutions to this problem is to find out the temperature and 

pressure profiles of the flowing fluid inside pipeline as well as to realize optimal insulation design because 

of it low resulting cost. 

 

 
 
 

 
                                                                                   

 
 

 

 

Figure 1.1: some flow assurance issues deposition inside pipeline [6]. In a) wax deposition, b) 

hydrate deposition and c) asphaltenes deposition. 

 

Pressure and temperature are dependent variables that affect all the flow parameters.  Due to their 

importance, the calculations of temperature and pressure profile during multiphase flow in wells and 

pipelines have been the scope of many researches [6]. [7] Presented temperature prediction model for 

flowing in wellbores and pipelines using both analytical model based on black oil model for fluids 

characterization. [4] Presented a model based on the general energy equation to describe the Explic it 

Temperature Drop Formula for an oil-gas steady flow in pipeline. They characterized the fluids properties 

using both black oil model and compositional model. [8] Developed two-phase flow wellbore thermal 

a)  b)  c) 
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models (oil–water and oil–gas) in both homogeneous and Drift-Flux forms. They used a compositiona l 

model to describe the fluids properties.  [9] Presented the mathematical and numerical modeling of the oil 

biphasic flow in a partially submerged onshore pipeline. They analyzed the influence on the type of pipe 

insulation in the pressure and temperature gradients. All these researches show the interest that the scientific 

community have on this topic. Most of these studies focuses only on the modeling and simulation of 

pressure and temperature profiles in pipelines and wellbores during single-phase flow. Only few of them 

deals with the case of multiphase flow.  These studies do not really take into account the need to perform 

thermal insulation of subsea pipeline, which is considered as one of the flow assurance thermal 

managements solutions.  

Thermal insulation is used to slow down thermal energy loss of subsea production systems and 

therefore prevent solid deposits from precipitating. As subsea production systems move towards the deep 

sea, the cost of insulation systems will increase. A cost-effective insulation system is thus of great 

importance for subsea applications. Optimum insulation thickness need then to be calculated for an 

appropriate selection of the insulating material with respect to a proper thickness. In recent years, many 

researches have been carried out on this topic in the open literature showing the interest of scientific for the 

pipeline thermal design. For examples: NURFARAH and William [10] carried out a study on the optimum 

thermal insulation design for subsea pipeline. One of their objectives was to establish a workflow procedure 

in selecting thermal insulation materials, thickness and number of layers required for protective coating. 

The pipeline length considered was comprised between 500 and 1500m and the design criterion was that 

the output temperature should be above 20°C. They used Visual Basic Application with Excel for the 

simulations purpose. KIRAN [11], explored and compared the various types of insulation and find the 

optimum thickness of insulation required to maintain the temperature of the fluid inside the pipeline, above 

the hydrate/wax formation temperature of about 40°C to ensure smooth flow. Excel spreadsheet calculat ion 

was used to compare the effect of various insulation material with different thicknesses on the temperature 

profile of the fluid in deep-water environment. Ibrahim MASAUD Ahmed [12], focuses he study on the 

thermal insulation pipelines used for subsea crude oil transportation. He used MATLAB and Ansys fluent 

CFD to validate the MATLAB model. Briggs et al. [13] carried out a study using PIPESIM software to 

investigate the effects of flowlines sizes, flow rates, insulation material, type and configuration on flow 

assurance of waxy crude over 10.2 km between the wellhead and the first stage separator on the platform. 

Considering the implications of these factors for flow assurance. They used Polyurethane Foam, and pipe-

in-pipe insulation type. MOBOLAJI et al. [14] investigated the best material that is suitable for the thermal 

insulation of subsea flowlines using the ANSYS software package, and then provided the best composite 

arrangement of insulation materials for better heat optimization. They used different insulating materia ls 

such as Aerogel, Paraffin Wax, Mineral Wool and Grooved Mineral to fill the gap between the inner pipe 
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and the outer pipe. S. A. MARFO et al. [15] used PIPESIM software to design a suitable pipeline for 

transporting condensate gas for the Jubilee and TEN Fields. The design comprises of two risers and two 

flowlines. Hydrate formation temperature was determined to be 72.5 °F at a pressure of 3 000 psig. The 

insulation thickness for flowlines 1 and 2 were determined to be 1.5 in. and 2 in. respectively. S. A. MARFO 

et al. [16] employed PIPESIM software to design a subsea pipeline for transportation of natural gas from 

Gazelle Field in Côte d’Ivoire to a processing platform located 30 km and to predict the conditions under 

which hydrate will form. They found that, an insulation thickness of 0.75 in, with specific pipe size of 10 

in, could satisfy the arrival pressure condition of 800 psia. [12] Analyzed the temperature profile in steady 

state flow, heat loss, and transient flows of the startup mode for transporting crude oil in deep water pipeline. 

His study considers the determination of the effects produced with several thicknesses of insulation and 

several insulation materials for steady state and transient flow, using temperature profiles during the start-

up of crude oil in subsea pipelines.  However, most of these studies thermally design insulation materia l 

for pipelines using computational method and commercial software. Moreover, some of them are based on 

single-phase flow. As far as two-phase gas and liquid flow is concerned, few of these studies calculated the 

optimum insulation thickness based on a coupled temperature-pressure model. ALADE [17] carried out a 

study that focuses on choosing and sizing of an insulation material to meet an output temperature of an oil 

and gas wells. The criterion design output temperature was set at 20°C. The pipeline used was 1km long. 

The fluids properties were modeled using compositional model. Aspen Hysys software was used and 

polyurethane Foam was used as the insulating material.  

This thesis aim to develop a thermal model for temperature and pressure predictions of a hot crude 

oil flowing through a subsea pipeline and to choosing and sizing an insulation material that will meet an 

output temperature of 40°C, using three approaches. Moreover, in this work, we used logistic regression to 

analyze the risk of formation of some flow assurance issues. The items accomplished during the course of 

this work are: 

- Fluids properties characterized using black oil model 

- Build pipeline model with PIPESIM software 

- Build a thermal model that described pressure and temperature profiles inside subsea 

pipeline during two-phase flow 

- Simulation of the pressure drop model for two-phase flow on MATLAB software and 

validation against field data and PIPESIM software 

- Simulation of the temperature model for two-phase flow on MATLAB software and 

validation against field data and PIPESIM software 

- Optimum insulation thickness calculation based on numerical simulations of three different 

insulation materials for different insulation thickness manually defined 
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- Optimum insulation thickness determination based on machine learning techniques for 

different insulation thickness randomly created using MATLAB 

- Optimum insulation thickness determination based on machine learning techniques for 

different insulation thickness randomly created using RAPIDMINER. 

- Evaluate the flow assurance risk probability for the best insulating material. 

This thesis has been divided into 3 chapters. In chapter 1, after the introduction, a brief review on 

multiphase flow in pipelines is presented. The concepts on single and two-phase flow are presented, along 

with typical approaches for modeling flow behavior and pressure drop. In this chapter, heat transfer as well 

as insulation materials concepts are also presented. This chapter also highlights machine learning 

techniques and genetic algorithm concepts. The main focus of this Chapter is to provide the background to 

the fundamental concepts of fluid flow and heat transfer modeling during transportation in pipelines as well 

as machine techniques. Chapter 2 is devoted to methodology used in this work to achieve the objectives. 

Here, the thermal model that described the pressure and temperature profiles inside the considered subsea 

pipeline is presented. PIPESIM pipeline-built model is also presented. Machine learning techniques and 

RAPIDMINER software are briefly presented. Genetic algorithm chart is shown. Temperature and pressure 

profile obtained by numerical simulations using MATLAB and PIPESIM are discussed and compared each 

other with field data in chapter 3. The optimum insulation thickness as well as the best insulating materia l 

obtained by numerical simulations and by combining genetic algorithm with machine learning techniques 

are presented. Finally, this thesis is ended by conclusions and suggestions for further research. 
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Introduction 

 

The aim of this study is to develop a thermal model for the prediction of temperature and pressure 

profiles of a hot multiphase fluid, consisting of oil and gas, flowing through a long subsea pipeline, in order 

to investigate the proper insulating material as well as the appropriated insulation thickness that will meet 

the thermal requirement of 40°C. Accurate prediction of temperature profile in subsea pipelines during 

multiphase flow required the simultaneous modeling of the hydrodynamic behavior of the biphasic fluids 

and the heat transfer occurring between the fluids and the pipeline wall.  An appropriate formulation of the 

pressure drop and liquid hold up is essential to model the temperature profile. Therefore, this chapter 

provides a brief overview of the petroleum production system, the fundamentals of single-phase and 

multiphase flow. A review of steady state and transient models is provided, with a discussion of the key 

concepts behind each of them. The concepts of heat transfer and insulation material are also highlights in 

this chapter. Numerical tools used in this work is finally presented.  

 

1.1 Multiphase flow modeling in offshore area  

Multiphase flow is the area of fluid mechanics that deals with the simultaneous flow of two or more 

immiscible phases of matter (gas, liquid, or solid). Although this phenomenon may occur in many industr ia l 

applications, this thesis focuses on the multiphase flow of oil and gas in offshore pipelines. In this thesis, 

the terms multiphase and two-phase are used interchangeably. Multiphase flow has become increasingly 

important for the transportation of fluid from reservoir to the surface facility through pipelines. In offshore 

fields, produced fluids are transported to shore through long, large-diameter export pipelines for subsequent 

separation and processing. Tiebacks are often long pipelines that transport untreated produced fluids from 

marginal fields to an existing platform. These pipeline systems usually exhibit multiphase flow. Offshore 

pipelines are multiphase flow systems that require proper design and operation for safe and economic 

business. Accurate prediction of flow pattern, liquid holdup, pressure drop and flow characteristics along 

these pipeline systems is essential to enhance not only pipeline design, sizing, and routing, but also design 

of downstream separation and processing facilities to ensure safe and economic business operation.  

Therefore, it is important to have good understanding of the concepts of single and multiphase flow in 

pipelines.  

1.1.1 Single and Multiphase flow concepts in offshore pipelines 

 

It is very important to set some fundamental concepts of multiphase flow in pipeline, before talking 

about the temperature modeling. Any fluid flow consisting of more than one phase is referred to as 
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multiphase flow. Multiphase flow can be defined as a simultaneous flow of several phases. Gas-liquid two-

phase flow is prevalent in various major industries such as petroleum, nuclear, space and geothermal [18]. 

In offshore production and transportation of oil and gas, multiphase flow occurs in horizontal as well as 

inclined pipes, in both the wellbore and flowlines. Flow assurance engineers require design methods to 

determine the pressure drop and liquid holdup to correctly size the transportation line and the separation 

facilities. In subsea area, multicomponent flow is generally encountered in infield pipelines through which, 

oil, gas and water are usually transported simultaneously either from manifold or the wells to the surface 

facilities, which can be a platform or a FPSO (Floating Production, Storage and Offloading).  The flow of 

oil, gas and water can be treated as a biphasic flow where the oil and water constitute the liquid phase and 

gas is the gaseous phase. Because of the difference in densities of the two phases, they do not travel along 

the pipeline with the same velocity. For example, in downward flow, the liquid phase always flows faster 

than the gas phase [19]. Two-phase flow in horizontal, inclined or vertical pipeline, always display many 

configurations due to the difference in densities of the fluids and the pipeline geometry. These 

configurations are called flow regimes or flow patterns, which differ from each other in the spatial 

distribution of the interface of the fluids in presence. Pressure drop and liquid hold up calculations are 

strongly related to the type of flow pattern. Thus, multiphase flow reveals to be more complicated and 

complex to model than the single-phase flow. The modeling of multiphase flow in subsea pipeline required 

a good understanding of the petroleum production system. 

1.1.2 Petroleum production systems in subsea area 

 

Petroleum production systems can be classified in two main groups, which are reservoir system and 

piping system. The piping system is the means to transport reservoir fluids from the reservoir to surface 

facility. A schematic of this is presented at the Fig.1.2 below. From this figure, the following are the primary 

components: 

- Reservoir, which is a porous and permeable rock that contains hydrocarbons. 

- Wellbore, which is a vertical, deviated, or horizontal pipe connect to the reservoir to the surface. 

- Wellhead, which is a combination of valves and chokes that control the flow. 

- Flowlines, which are horizontal or slightly inclined pipes that transport reservoir fluids. 

- Separator: which is a large vessel that separate reservoir fluids. 

Petroleum production systems generally exhibit multiphase flow. Because of water flooding, water coning 

and production of interstitial water or water condensing in the well. Alternatively, free gas saturation in an 
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oil reservoir will lead to a gas-liquid mixture and retrograde condensation can result in hydrocarbons liquid 

condensing in a gas or condensate reservoir so that gas-liquid mixture can be encountered.  

 

 

Figure 1.2: A schematic view of production system [20].  

 

1.1.3 Single phase flow 

The basis for virtually all computations involving fluid flow in pipes is conservation of mass, 

momentum, and energy. Application of these principles permits calculating changes in pressure and 

temperature along pipes. It is important to understand the fundamentals of single-phase flow in pipes before 

discussing multiphase flow in pipes. This section discusses the approach to calculate the steady state 

pressure drop in single-phase flow. This will provide the fundamental basis to build upon when moving to 

two-phase flow. It is important to understand fluid physical behavior along pipes before predicting its flow 

parameters. The two main fluid physical properties related to fluid flow in pipes are viscosity and density. 

On the basis of fluid viscosity, fluids can be classified into two categories-namely, Newtonian and non-

Newtonian. Similarly, fluids can be classified into incompressible and compressible according to their 

density behavior [21]. 

a) Newtonian fluid 

A Newtonian fluid is a fluid with constant viscosity, regardless of the shear force applied on it. This 

definition indicates that Newtonian fluid viscosity depends only on pressure, temperature, and composition, 
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and not on the shear forces. The constant viscosity behavior of a Newtonian fluid is represented by the 

constant slope of a straight line through the origin of a plot of shear stress vs shear rate. Newton’s law for 

this type of fluid can be written as [21], 

𝜏𝑥𝑦 = −𝜇
𝑑𝑉𝑥

𝑑𝑦
                                                                                                                                     (1.1) 

where: 𝜏𝑥𝑦 is the shear stress or momentum flux, Pa,
 𝑑𝑉𝑥

 𝑑𝑦
, is the shear rate, s-1, and 𝜇, the viscosity, Pa.s. The 

negative sign in front of the viscosity indicates that the shear stress transfers from high velocity to low 

velocity. All gases and homogeneous nonpolymeric liquids follow Newtonian behavior. Conversely, a non-

Newtonian fluid is one that has an increasing viscosity trend (shear thickening) or decreasing viscosity 

trend (shear thinning) with shear stress. Furthermore, a non-Newtonian fluid may have a constant viscosity 

but require an initial shear force to flow (plastic flow). In oil and gas production, crude oil, formation water, 

and natural gas are all considered to Newtonian fluids. Others fluids, however, such as oil/water emulsions 

or slurries (oil and produced solids) are often found to display non-Newtonian behavior [21]. This study 

focuses assume that fluids are Newtonians 

b) Incompressible fluid 

A constant density with pressure and temperature characterizes an incompressible fluid. Although there 

is no truly incompressible fluid, this assumption simplifies the mathematical formulation and calculat ion 

significantly with minor error. Water is the best example of an incompressible fluid, whereas crude oil is 

considered a slightly compressible fluid. Conversely, natural gas is compressible fluid because of its low  

intermolecular forces that cause a density change with pressure and temperature. [21] 

c) Steady state condition 

A steady state condition is a special flowing condition in which the mass, linear momentum and energy 

inflow rates in pipe are equal to outflow rates. In other words, the rate change of mass, linear momentum, 

and energy along a pipe is zero. In steady state condition, the conservation laws are independent of time 

[21].  

d) Conservation of mass 

For a given control volume, such as a segment of pipe, conservation of mass simply implies that the 

mass in, minus the mass out, must equal the mass accumulation. The mass conservation equation for fluid 

flow in one dimension is then given by, 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑉)

𝜕𝐿
= 0                                                                                                                                  (1.2) 
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Equation 2 is the continuity equation that describes the time rate change of fluid density at any time and 

pipe length. For steady state flow conditions, there is no mass accumulation and the equation above 

becomes: 

 
𝑑(𝜌𝑉)

𝑑𝐿
= 0                                                                                                                                            (1.3)   

For an incompressible fluid, equation (1.3) reduces to the following 

     𝜌
𝑑(𝑉)

𝑑𝐿
= 0                                                                                                                                      (1.4)  

Equation 4 indicates that for a steady state incompressible flow, the fluid velocity is constant along the pipe.  

e) Conservation of momentum 

From the Newton’s first law, the rate of momentum out minus the rate of momentum in, plus the rate 

of momentum accumulation in a given pipe segment must equal the sum of all the forces on the fluids. 

Figure 1.3 defines the control volume and partial variables. Conservation of linear momentum can be 

expressed as:  

 

 

 

 

 

Figure 1.3 Segment of an inclined pipe [22] 

 

(𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑟𝑎𝑡𝑒)𝑖𝑛 − (𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑟𝑎𝑡𝑒)𝑜𝑢𝑡 + (𝑠𝑜𝑚 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑓𝑙𝑢𝑖𝑑) =

(𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 )𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝑣𝑜𝑙𝑢𝑚𝑒                                                        (1.5) 

Mathematically, we have: 

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑟𝑎𝑡𝑒 𝑖𝑛 = 𝐴𝑝𝜌𝑉 (𝑉)𝑖𝑛 

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑟𝑎𝑡𝑒 𝑜𝑢𝑡 = 𝐴𝑝𝜌𝑉 (𝑉)𝑜𝑢𝑡  

𝑠𝑜𝑚 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑓𝑙𝑢𝑖𝑑 = 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 + 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒 + 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒 

𝜃 

Z 

dL 
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The shear force is a result of fluid shear along the pipe wall and is the product of shear stress and the inner 

pipe surface area (𝜋𝑑∆𝐿). The shear force is always acting in the opposite direction of flow (negative). The 

shear force is defined as (𝜏𝑤 .𝜋𝑑∆𝐿). 

The gravity force is the weight of fluid and is the product of hydrostatic pressure (𝜌𝑔∆𝐿 sin 𝜃) and pipe 

cross-sectional area (𝐴𝑝 =
𝜋𝑑2

4
). The gravity force direction depends on the flow direction as follow: 

- In upward flow, the gravity term is negative (i.e., pressure loss because of the positive inclinat io n 

angle). 

- In downward flow the gravity force is positive (i.e., pressure gain because of the negative inclinat ion 

angle, which pulls the fluid in the direction of flow). 

- In horizontal flow, the gravity force is zero. 

The pressure force in a moving fluid is defined by the equation of state, (𝜌 = 𝑓(𝑝,𝑇)) and may increase 

or decrease along pipe depending on the magnitude and direction of the shear and gravity forces. 

Equation 2.5 can therefore be rewritten as, 

𝐴𝑝𝜌𝑉 (𝑉)𝑖𝑛 − 𝐴𝑝𝜌𝑉 (𝑉)𝑜𝑢𝑡 + 𝐴𝑝𝑃 − 𝐴𝑝 (𝑃 +
𝜕𝑃

𝜕𝐿
𝑑𝐿) − 𝐴𝑝  𝜌𝑔∆𝐿 sin 𝜃 −

𝐴𝑝  𝑓𝜌
𝑉2

2𝑑
= 𝐴𝑝

𝜕(𝜌𝑉)

𝜕𝑡
𝑑𝐿                                                                                                      (1.6) 

 From equation 6 above, we obtained,          

𝜕(𝜌𝑉)

𝜕𝑡
+

𝜕(𝜌𝑉2)

𝜕𝐿
= −

𝜕𝑃

𝜕𝐿
− 𝑓𝜌

𝑉2

2𝑑
− 𝜌𝑔 sin 𝜃                                                                        (1.7)                                    

for steady state flow, we have: 

𝜕𝑃

𝜕𝐿
= −𝑓𝜌

𝑉2

2𝑑
− 𝜌𝑔 sin 𝜃 −

𝜕(𝜌𝑉2)

𝜕𝐿
                                                                                          (1.8)                                    

Combining the equation above with the continuity equation, gives: 

𝜕𝑃

𝜕𝐿
= −𝑓𝜌

𝑉2

2𝑑
− 𝜌𝑔 sin 𝜃 − 𝜌𝑉

𝜕𝑉

𝜕𝐿
                                                                                           (1.9)                                         

where: d is the inside diameter of the pipe, m, f is the dimensionless friction factor. 𝜌 is the density of the 

fluid, kg/m³, 𝑔 is the acceleration of gravity, m/s², 𝜃 is the pipeline inclination, rad, 𝑉, is the velocity of the 

fluid, m/s, 𝐿, is the pipeline length, m, and 𝑃, is the pressure, Pa.  Equation 2.9 applies for any fluid in 
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steady state, one-dimensional flow for which f, p, and v can be defined. Definition of these variables is what 

causes most of the difficulty in describing two-phase flow. In two-phase flow, f may be a function of other 

variables besides the Reynolds number and relative roughness.   

The pressure gradient prediction along a pipe is obtained by combining the mass and the momentum 

conservation equations. This equation indicates that, the total pressure gradient along a pipe is composed 

of three components, which are frictional, elevation and acceleration. The first term at the right of the 

equation is the pressure gradient term due to friction, the second term is the one due elevation and the last 

term is the one due to acceleration of fluids particles.  For single-phase flow, this equation can be solved 

using analytical method. As far as multiphase flow is concerned, the resolution of this equation cannot be 

done without resorting to empirical techniques. More details are provides in [21-24]. Some aspects of the 

pressure gradient equation as it applies to single-phase flow are discussed to develop a thorough 

understanding of each component before modifying it for two-phase flow. The elevation change or 

hydrostatic component is zero for horizontal flow only. It applies for compressible or incompressib le, 

steady state or transient flow in both vertical and inclined pipes. For downward flow, the sin of the angle is 

negative, and the hydrostatic pressure increases in the direction of flow. The friction loss component applies 

for any type of flow at any pipe angle. It always causes a drop of pressure in the direction of flow. The 

kinetic energy change or acceleration component is zero for constant area, incompressible flow. For any 

flow condition in which a velocity change occurs, such as compressible flow, a pressure drop will occur in 

the direction of the velocity increase. Although single-phase flow has been studied extensively, it still 

involves an empirically determined friction factor for turbulent flow calculations. The dependence of this  

friction factor on pipe roughness, which must usually be estimated, makes the calculated pressure gradients 

subject to considerable error. To calculate the pressure change in equation 1.9, the friction factor must be 

evaluated. The friction factor f, dependent on the Reynolds number, pipe wall roughness, and flow regime 

in the pipe (i.e., laminar or turbulent flow). Therefore, the procedure requires evaluating whether the flow 

is laminar or turbulent.  This can be accomplished by first defining and calculating the Reynolds number.  

 Reynolds Number and flow regime 

The Reynolds number is a dimensionless number defined as the ratio of inertial to viscous forces. The 

Reynolds number is calculated as follow. 

𝑅𝑒 =
𝑉𝜌𝑑

𝜇
                                                                                                                                          (1.10) 

Where, 𝜌 is the density, km/m³, 𝑉 is the velocity, m/s, 𝜇 is the dynamic viscosity, kg/(m. s) and 𝑑 is the 

pipe diameter, m. If the Reynolds number is less than 2000, flow is laminar otherwise, the flow is turbulent.  
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 Pipe wall relative roughness 

The pipe wall relative roughness is the dimensionless roughness of the internal pipe wall and is a 

measure of the texture of the surface. It is characterized by the vertical irregularities and deviations of a real 

surface from its ideal form. If these deviations are large, then the surface is rough. If they are small, the 

surface is smooth. The roughness is often affected by corrosive fluids and solids particles flowing in the 

pipe. Thus it is a function of operation time, fluids and pipe material.  The relative roughness is therefore 

the roughness divided by the pipe inside diameter. The roughness values of common material are availab le 

in literature.  

 Friction factor 

Friction factor can be determined from the Moody chart (see figure 1.4 below) which illustrate the flow 

regime regions and their respective friction factor behavior.  

Friction factor can be calculated as follow: 

- For Reynolds numbers lower than 2000 the flow is laminar, and f is given explicitly by 

    𝑓 =
64

𝑅𝑒
                                                                                                             (1.11) 

- For Reynolds numbers larger than 3000 the flow is turbulent, and f is given implicitly by: 

- Smooth pipe friction factor (modified Blasius 1908) 

𝑓 = 0.184𝑅𝑒−0.2
                                                                                                                    (1.12)         

- Rough pipe friction factor (Colebrook, 1939) 

       
1

√𝑓
= 1.74 + 2 log10 (2𝜀 +

18.7

𝑅𝑒√𝑓
)                                                                           (1.13)                                                   

where, 𝜀 is the dimensionless pipe roughness defined as: 

𝜀 =
𝑒

𝑑
                                                                                                                                                    (1.14) 
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Figure.1.4: Moody Friction Diagram Source:  http://www.thefullwiki.org/Moody_diagram 

 

- For fully turbulent flow, that is, the friction factor is no longer a function of the Reynolds number 

and only a function of the relative roughness, friction factor is calculated as: 

𝑓 = [1.74 − 𝑙𝑜𝑔 (
2𝜀

𝑑
)]

−2

                                                                                                          (1.15)                                            

Finally, the pressure gradient equation becomes by making use of derivatives definition, as: 

𝑑𝑃

𝑑𝐿
= −𝑓𝜌

𝑉2

2𝑑
− 𝜌𝑔 sin 𝜃 − 𝜌𝑉

𝑑𝑉

𝑑𝐿
                                                                                         (1.16)                                                           

where: 𝑔 is the acceleration of gravity in m/s² and  𝜃 is the inclination angle in rad. In pipeline engineering, 

the inclination 𝜃 is defined as the angle of the pipeline axis with respect to the horizontal plane. The term 

sin 𝜃 is therefore a measure of the change in elevation of the pipeline axis per unit length of measured 

distance. Equation (1.16) above shows that the steady-state pressure gradient equation is made up of three 

components: friction, elevation and acceleration.  

(
𝑑𝑃

𝑑𝐿
)

𝑡𝑝
= (

𝑑𝑃

𝑑𝐿
)

𝑓
+ (

𝑑𝑃

𝑑𝐿
)

ℎ
+ (

𝑑𝑃

𝑑𝐿
)

𝑎
                                                                                       (1.17)                                  

The frictional loss is caused by the dissipation of energy by viscous forces in the fluid. This term 

depends strongly on the fluid properties, the flow regime (laminar or turbulent) and the fluid velocity. It is 

usually the most important component in pipelines. Friction losses normally represent 5 to 20% of the total 

http://www.thefullwiki.org/Moody_diagram
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pressure drop in wells [25]. The head loss or gravity loss is the static change in pressure caused by the 

change in the pipe’s elevation. In near-horizontal pipelines this component is negligible, but it is usually 

the most important component in a well. The pressure between surface and bottom hole changes greatly, 

simply due to the weight of the column of fluid in the well, even if it is not flowing. It usually contributes 

from 80 to 95% of the pressure gradient in the wells [25]. The acceleration loss is caused by the change in 

momentum when the fluid is accelerated in the well due to expansion. Generally, this term is less important 

and can be neglected in some cases. However, it can become of significance for very high rate gas wells 

[22]. 

1.1.4 Multiphase flow parameters in subsea pipeline 

In petroleum production system, the term multiphase flow refers to the simultaneous flow of two or 

more different phases (oil, water, gas, solids) in pipeline. In this study, the term multiphase flow will refer 

to the flow of gas-liquid (oil and water) flow. In subsea area, we distinguish pipelines that transport 

untreated produced fluids from the reservoir to the surface facilities. These pipelines are called infie ld 

pipelines or Tiebacks and always exhibit multiphase flow. While pipelines that carried, fluids from surface 

facilities to shore are called export pipelines. In this study, pipelines are considered as infield pipelines.  

Some basic multiphase flow concepts definition in subsea pipeline are presented. 

 Flow patterns 

As summarize by [26], flow pattern of the multiphase flow is the description of how the liquid and gas 

are distributed in the pipe. The flow pattern can be affected by many parameters, such as pipe inclination, 

liquid/gas ratio and inlet flow rate. Generally, flow pattern can be divided into two categories: horizonta l 

flow pattern and vertical flow pattern. Because the flow is directed by perpendicular gravity, the flow 

pattern of horizontal multiphase flow is distinct from vertical flow. Figure 1.5 below present some of the 

flow patterns generally encountered in horizontal pipeline. From this illustration, we can retain that:  

Stratified flow occurs in a horizontal pipeline when gas and liquid flow with a relatively small flow rate. In 

horizontal flow, gas flows above the liquid, which flows along the lower portion of the pipe. Stratified flow 

is generally classified into two types, which are smooth and wave flow. Stratified smooth flow has no 

disturbance on the liquid surface when the gas velocities are low enough. Stratified wave flow happens at 

higher gas velocities, waves can be seen on the surface of the liquid. If the gas velocity increases, waves 

start to form, and these waves can get high enough to reach the top of the pipe. When that happens, the gas 

is throttled or even blocked for a moment so that the flow becomes discontinuous, thus leading to the 

formation of slugs or elongated bubbles. Disperse bubble flow occur when numerous tiny bubbles are 

transported by continuous liquid phase, causing no relative motion between the two phases.  Annular flow 
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is characterized by the axial continuity of the gas phase in a central core with the liquid flowing upward, 

both as thin film along the pipe wall and as dispersed droplets in the core, leaving a very thin liquid film 

flowing along the wall.   

 

Figure 1.5: Gas-liquid flow regimes in horizontal pipes [26]. 

In vertical and near vertical systems, four major flow patterns are recognized: bubbly flow, slug flow, churn 

flow and annular flow. These flow patterns are clearly distinguishable and are generally recognized by all 

researchers. A schematic of different flow regimes in a vertical wellbore is shown in Figure 1.6 below. 

- Bubbly flow: At low gas velocity, the liquid phase is the continuous phase and gas or vapor phase 

flows as bubbles in it. When the gas velocity is low, especially in vertical flow, the bubbles are 

uniformly distributed. 

- Slug flow: As gas velocity increases, the bubbles coalesce and make larger bubbles. These large 

bubbles sometimes have almost the same diameter as the wellbore. Hence, as shown in Figure 1.8, 

the slug flow consists of two parts: large bubbles (Taylor bubbles) and continuous liquid phase 

containing small bubbles. 

- Churn flow: This flow regime forms by the breakdown of slug flow Taylor bubbles because of high 

mixture velocity. The gas phase flows in a chaotic manner through the liquid phase and it is 

relatively unstable, hence the multiphase flow parameters such as holdup vary with time at each 

section when churn flow exists in the tubing. 

- Annular flow: As the flow rate and fraction of the gas phase increases, this phase starts to flow 

through the center of the wellbore as a continuous core with some liquid droplets. The liquid phase 

forms a layer along the pipe wall and flows as an annulus. 
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Figure 1.6. Schematic multiphase flow patterns in a vertical tube (From left to right: bubble flow, slug 

flow, churn flow and annular flow), picture from [25]. 

 

 Two phase variables 

When performing multiphase flow calculations for wells and pipelines, single-phase flow equations are 

often modified to account for the presence of a second phase. This involves defining mixture expressions 

for velocities and fluid properties that use weighting factors, based on either volume or mass fractions. 

Therefore, it is important to understand the two-phase flow variables that are commonly used in two-

phase flow calculations. These variables are known as liquid holdup and void fraction, and velocities 

 Liquid holdup and void fraction 

Liquid holdup can be defined as the fraction of a pipe volume increment or cross section that is occupied 

by the liquid phase. The expression “hold-up” is also often used in the oil industry to indicate the volume 

fractions occupied by gas and liquid, although in upward flow the gas is not actually held up, but to the 

contrary is speeded up. The liquid hold-ups 𝐻𝐿 is defined as 

𝐻𝐿 =
𝑉𝐿

𝑉𝑝
=

𝐴𝐿

𝐴𝑝
                                                                                                                                   (1.18) 

The in-situ gas volume fraction is defined by the void fraction and is given as 

𝐻𝑔 = 𝛼 = 1 − 𝐻𝐿                                                                                                                          (1.19) 
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For the case of homogeneous flow, the no-slip holdup is the fraction of liquid in the pipe and can be 

calculated from the in-situ volumetric flow rates as: 

𝜆𝐿 =
𝑄𝐿

𝑄𝑚
=

𝑄𝐿

𝑄𝐿 +𝑄𝑔
=

𝑉𝑠𝑙

𝑉𝑚
                                                                                                              (1.20) 

The no-slip gas void fraction is the fraction of the pipe cross-sectional area occupied by gas. It is 

calculated as: 

𝜆𝑔 = 1 − 𝜆𝐿                                                                                                                                      (1.21) 

When oil and water flow simultaneously in pipes, with or without gas, the slippage between them is 

normally small as compared to the slippage that can occur between gas and liquid. Therefore, assuming 

no-slippage, the oil fraction in a liquid phase is calculated as: 

𝑓𝑜 =
𝑄𝑜

𝑄𝑜+𝑄𝑤
                                                                                                                                        (1.22) 

The water cut, is defined as the ratio of water volumetric flow compared to the total volumetric liquid 

flow.  

𝑓𝑤 = 1 − 𝑓𝑜 =
𝑄𝑤

𝑄𝑜 +𝑄𝑤
                                                                                                                  (1.23) 

 Velocities 

Several velocities are used in multiphase flow, such as superficial, mixture, actual, and slip velocities.  

Superficial velocity is defined as phase velocity, assuming it occupies the entire pipe cross-sectional area. 

Superficial velocity is smaller than actual phase velocity. Oil, water and gas superficia l velocity are 

calculated as follow: 

𝑉𝑆𝑜 =
𝑄𝑜

𝐴𝑝
                                                                                                                                             (1.24)  

Vsw =
𝑄𝑤

𝐴𝑝
                                                                                                                                           (1.25) 

𝑉𝑆𝑔 =
𝑄𝑔

𝐴𝑝
                                                                                                                                             (1.26) 
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For homogeneous flow of oil and water, the two phases may be combined as a single liquid phases as 

follows: 

𝑉𝑆𝐿 =
𝑞𝐿

𝐴𝑝
=

𝑄𝑜 +𝑄𝑤

𝐴𝑝
                                                                                                                         (1.27) 

 Mixture velocity 

The mixture velocity is defined as the algebraic sum of the respective phase flow rates divided by the 

entire pipe cross-sectional area. In terms of superficial velocities, the mixture velocity of two and three-

phase flows can be expressed as: 

𝑉𝑚 = 𝑉𝑆𝐿 + 𝑉𝑆𝑔                                                                                                                               (1.28) 

 Actual velocity 

The actual velocity represents the local or the true phase velocity of each phase in the pipe. It can be 

calculated as follow: 

𝑉𝑔 =
𝑄𝑔

𝐴𝑔
=

𝑄𝑔

𝐴𝑝𝛼
=

𝑉𝑠𝑔

𝛼
                                                                                                                    (1.29) 

𝑉𝐿 =
𝑄𝐿

𝐴𝑔
=

𝑄𝐿

𝐴𝑝𝐻𝐿
=

𝑉𝑠𝐿

𝐻𝐿
                                                                                                                 (1.30)      

For homogeneous flow, the void fraction and liquid holdup are replaced by the no-slip void fraction and 

the no-slip liquid holdup in equation (1.29) and (1.30) respectively.      

 Slip velocity 

The slip velocity can be defined as the difference between the actual phase velocities.  

 𝑉𝑆 = 𝑉𝐿 − 𝑉𝑔                                                                                                                                    (1.31) 

In homogeneous flow, the slip velocity in equation (1.31) is reduced to zero because the no-slip liquid 

holdup is used as the liquid holdup. 

 Two-phase mixture properties 

From knowledge of single-phase in-situ densities and viscosities of oil, water, gas, gas-oil ratio, water oil 

ratio, gas-water ratio, surface tensions and no-slip liquid holdup, the multiphase in-situ mixture density, 

viscosity, and surface tension can be calculated. A wide variety of methods have been used to define mixture 

properties in the open literature [27-31].  
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 Oil water mixture 

For both black-oil and compositional model cases, when free water exists, oil and water properties can be 

combined under the assumption of no-slip homogeneous flow using volumetric weighted-averaging 

methods as follows [22-24]: The liquid density at standard conditions and at flow conditions are given by: 

𝜌𝐿_𝑠𝑐 = 𝑓𝑤𝜌𝑤_𝑠𝑐 + (1 − 𝑓𝑤)𝜌𝑜_𝑠𝑐 =
𝑊𝑂𝑅

1+𝑊𝑂𝑅
𝜌𝑤_𝑠𝑐 +

1

1+𝑊𝑂𝑅
𝜌𝑜_𝑠𝑐                         (1.32) 

𝜌𝐿 =
𝜌𝑔_𝑠𝑐𝑅𝑠𝐿+𝜌𝐿_𝑠𝑐

𝐵𝐿
                                                                                                                        (1.33) 

where: 𝜌𝑤_𝑠𝑐  and 𝜌𝑜_𝑠𝑐  are the water and oil densities at the standard conditions. 𝐵𝐿 is the volume formation 

factor of the liquid given by [22] as follow: 

𝐵𝐿 =
𝑊𝑂𝑅

1+𝑊𝑂𝑅
𝐵𝑤 +

1

1+𝑊𝑂𝑅
𝐵𝑜                                                                                                   (1.34)                                            

and 𝑅𝑠𝐿  the gas-liquid ration defined as the ratio of the quantity of gas solubilized in the oil at flow condition 

to the liquid volume, both expressed at standard conditions.  

𝑅𝑠𝐿 =
1

1+𝑊𝑂𝑅
𝑅𝑠                                                                                                                              (1.35) 

From the above, the density of liquid homogeneous mixture can be obtained by: 

𝜌𝐿 = 𝜌𝑜(1 − 𝑓𝑤) + 𝜌𝑤𝑓𝑤                                                                                                         (1.36) 

The liquid viscosity can be calculated using the water cut as follow: 

𝜇𝐿 = 𝜇𝑜(1 − 𝑓𝑤) + 𝜇𝑤𝑓𝑤                                                                                                          (1.37) 

where 𝜇𝑜 and 𝜇𝑤 are respectively the oil and water viscosities. 

The surface tension of the liquid mixture is given as follow: 

𝜎𝐿 = 𝜎𝑜 (1 − 𝑓𝑤) + 𝑓𝑤𝜎𝑤                                                                                                           (1.38) 

 where 𝜎𝑜  and 𝜎𝑤 are respectively the oil and water surface tensions. 

 Gas-Liquid mixture  

No-slip gas-liquid properties can be calculated using the no-slip liquid holdup as a volumetric weighting 

factor [25]. 
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𝜌𝑛 = [𝜌𝑜(1 − 𝑓𝑤) + 𝜌𝑤𝑓𝑤]𝜆𝐿 + 𝜌𝑔(1 − 𝜆𝐿)                                                                 (1.39) 

𝜇𝑛 = 𝜇𝐿𝜆𝐿 + 𝜇𝑔𝜆𝑔                                                                                                                       (1.40) 

1.1.5 Multiphase pressure gradient models in offshore pipeline 

For single-phase flow, the pressure gradient is calculated as in equation (1.16). As far as multiphase 

flow is concerned, the frictional pressure drop is the result of an irreversible work done due to shear at the 

pipe wall and at the gas-liquid interface. The frictional pressure drop in two-phase flow reveal to be much 

more complex to predict than single-phase flow. This is because it dependent on many flow parameters 

such as pipe diameter, mass flux, pipe orientation, pipe surface roughness, fluid properties and interfac ia l 

contact area between the phases. There are many two-phase flow pressure drop correlations in the open 

literature. Sometimes it becomes difficult to know which correlation would be more accurate or suitable 

for the task at hand. Moreover, the lack of good understanding of the two-phase flow behavior had led many 

researchers to develop correlations that are limited to a certain range of flow parameters. Therefore, the 

user of the correlation must understand those restrictions and must make sure the task at hand is within the 

restrictions [32]. In the following paragraphs, will be presented some of the pressure gradient correlations 

selected based on the works done by [23, 25 and 32]. From these works, the frictional pressure gradient is 

modeled based on separated flow approached or a well-mist flow approached or homogeneous models. 

Below, is presented some of the two-phase variables necessary for the modeling of fluid flow.  

1.1.5.1 Homogeneous pressure gradient 

The accurate design of oil and gas well tubing and surface flowlines requires the ability to predict 

flow behavior along the pipes. Here, we present the physical phenomena and prediction methodology of 

two-phase flow in pipes for homogeneous flow. Homogeneous can be defined as of uniform structure or 

composition throughout. In multiphase terminology, a homogeneous two-phase flow is defined as the flow 

structure in which the two phases travel at the same in-situ velocity. When the combined drag and buoyancy 

forces overcome the gravity force, the higher density phase will disperse throughout the higher-veloc ity 

phase, resulting in equal velocities of both phases and thus a no-slip homogeneous flow. The fundamenta l 

assumption in the homogeneous model is that fluid in the system are perfectly mixed so that there is no slip 

between each phase, hence forming a homogeneous mixture [33]. Treated as a single-phase fluid, the two-

phase fluid is considered to have one velocity-mixture velocity. Fluid properties can be represented by 

mixture properties. The equality of the phase’s velocities in homogeneous two-phase flow ignores a 

common two-phase flow physical phenomenon known as slippage. Therefore, a homogeneous two-phase 

flow results in no accumulation of one phase along the pipe. Pressure drop calculations for homogeneous 
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two-phase flow in pipes starts by calculating the in-situ physical fluid properties and flow rates for each 

phase. Detailed descriptions of this calculation using the black-oil model and the compositional are given 

in [23, 25]. The calculation steps is followed by calculating two-phase flow variables such as superfic ia l 

velocities, mixture velocity, and no-slip liquid holdup. The two-phase mixture properties are then 

calculated, and the results are then used in calculating the pressure gradient. In the open literature, many 

correlations have been developed for the determination of pressure gradient in homogeneous flow with and 

without slippage condition. [25, 32]. The pressure gradient equation derived in equation (1.16) for single-

phase flow can be modified for homogeneous multiphase flow by using homogeneous mixture properties 

and adding an acceleration term. 

𝑑𝑃

𝑑𝐿
= −𝑓𝑡𝑝𝜌𝑛

𝑉𝑚
2

2𝑑
− 𝜌𝑛𝑔 sin 𝜃 − 𝜌𝑛𝑉𝑚

𝑑𝑉𝑚

𝑑𝐿
                                                                      (1.41) 

The elevation pressure gradient component requires the no-slip homogeneous density and inclination angle. 

This term has the highest contribution to the total pressure gradient.  The pressure gradient caused by 

acceleration is negligible except for cases of high flow velocities. The frictional pressure gradient 

component requires determining a two-phase homogeneous friction factor, which requires a two-phase 

homogeneous Reynolds number, estimated as follows: 

𝑅𝑒𝑛𝑠 =
𝜌𝑛𝑉𝑚𝑑

𝜇𝑛
                                                                                                                                  (1.42) 

In equation (1.41), 𝑓𝑡𝑝 is the two-phase friction factor, which can be obtained from the Colebrook equation 

as given below: 

1

√𝑓𝑡𝑝
= −2𝑙𝑜𝑔 [

2𝜀/𝑑

3.7
−

5.02

𝑅𝑒𝑛𝑠
𝑙𝑜𝑔 (

2𝜀/𝑑

3.7
+

13

𝑅𝑒𝑛𝑠
)]                                                               (1.43) 

where 𝜀, is the pipe roughness, d the pipe diameter and 𝑅𝑒𝑛𝑠 is the Reynolds number of the mixture.  

Homogeneous pressure gradient can also be calculated using some empirical correlations. Here, Beggs and 

Brill (1973)  and modified Dukler et al (1969) correlations will be presented among others. 

a) Beggs and Brill (1973) model [24] 

The general expression for the pressure drop, where p is the pressure and L is the pipeline length, can be 

written as follow:  

(
𝑑𝑃

𝑑𝐿
)

𝑡𝑜𝑡𝑎𝑙
= (

𝑑𝑃

𝑑𝐿
)

𝑓
+ (

𝑑𝑃

𝑑𝐿
)

𝑔
+ (

𝑑𝑃

𝑑𝐿
)

𝑎𝑐𝑐
                                                                              (1.43)                                                                  



Chapter 1: Literature review 
 

  

PRESENTED by  GOPDJIM NOUMO Prosper, in PARTIAL FULFILLMENT to the AWARD of PhD in PHYSICS 26 

 

The first term on the right side of equation (1.43) with subscript “f” is the pressure gradient due to friction, 

the second term with subscript “g” is the pressure gradient due to elevation and the last term with subscript 

“acc” is the pressure gradient due to acceleration. The Beggs and Brill (1973) correlation for the total 

pressure gradient is given generally as: 

𝑑𝑃

𝑑𝐿
=

𝑓𝑡𝑝𝜌
𝑛𝑉𝑚

2

2𝑑
+𝜌𝑚𝑔 sin 𝜃

1−𝐸𝑘
                                                                                                                (1.44) 

In which 𝐸𝑘  is a dimensionless acceleration term that take into consideration the pressure gradient due to 

kinetic energy effects and is given by: 

𝐸𝑘 =
𝑉𝑚𝑉𝑆𝑔𝜌𝑚

𝑃
                                                                                                                                  (1.45) 

In equation.(1.44), 𝑓𝑡𝑝 is the friction factor for two-phase flow; 𝜌𝑛  is the no-slip density of the fluids;𝜌𝑚  is 

the slip density of the fluids; 𝑉𝑚 is the mixture velocity of the fluids; 𝑑 is the pipe inner diameter; P is the 

pressure; g is the acceleration of gravity; 𝜃  is the inclination angle of the pipe; L is the pipeline length. . 

assuming the acceleration component to be negligible gives: 

 
𝑑𝑃

𝑑𝐿
=

𝑓𝑡𝑝𝜌
𝑛𝑉𝑚

2

2𝐼𝐷
+ 𝜌𝑚𝑔 sin 𝜃                                                                                                       (1.46) 

with 𝜌𝑚  given by: 

 𝜌𝑚 = 𝜌𝑙 𝐻𝐿 + 𝜌𝑔 𝛼                                                                                                                       (1.47)       

In equation (1.44), the two-phase friction factor is calculated as follows: 

𝑓𝑡𝑝 = [4𝑙𝑜𝑔 (
𝑅𝑒𝑛𝑠

4.5223log(𝑅𝑒𝑛𝑠 −3.8215)
)]

−2

× 𝑒𝑆
                                                                 (1.48) 

𝑆 =
𝑙𝑛𝑌

−0.0523+3.182 ln(𝑌) −0.8725(ln(𝑌) )2+0.01853(ln(𝑌))4                                                    (1.49) 

𝑌 =
𝜆

𝐻(𝜃)
                                                                                                                                             (1.50) 

In equation (1.50), 𝐻(𝜃) is the liquid holdup for any inclination angle of pipeline. For more details on this 

method, see [25].  
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b) Dukler and Taitel correlation  

 The Dukler and Taitel correlation [34] is given by:  

(
𝑑𝑃

𝑑𝐿
) =

𝑓𝑡𝑝𝜌𝑚𝑉𝑚
2

2𝐷
+ 𝜌𝑚𝑔 sin(𝜃)                                                                                               (1.51) 

c) Drift-flux model 

Similar to the homogeneous model, the drift-flux model treats the two-phase flow mixture as a 

whole, yet it does so with the relative motion of one phase with respect to the mixture. Drift-flux model 

considers the two-phase closely coupled by one mixture momentum equation. In the drift-flux model, the 

dominant relative motion of one phase to the other is caused by an external force such as gravity. The drift -

flux model is considered an improvement over the homogeneous model and a simplification of the two-

fluid model, which treats each phase separately. The drift-flux model was first developed by [35]. It is 

showed in [35] that, the void fraction can be predicted taking into consideration the non-uniformity in flows 

and the difference in velocity between the two phases. The mathematical expression of the drift-flux model 

of a gas and liquid flow in pipes is as follows: 

The volumetric drift flux of the gas phase is given as: 

𝐽𝑔 = 𝛼(𝑉𝑔 − 𝑉𝑚)                                                                                                                            (1.52) 

Where 𝐽𝑔  is the volumetric drift flux of the gas in m³/s-m² and 𝛼 is the gas void fraction. Substituting the 

mixture velocity (𝑉𝑚 = 𝑉𝑆𝐿 + 𝑉𝑆𝑔 ) and the superficial phase velocities (𝑉𝑆𝐿 = 𝛼𝑉𝑔) into equation (1.52) and 

simplifying gives. 

𝐽𝑔 = 𝛼(𝑉𝑔 − 𝑉𝐿) + 𝛼²(𝑉𝑔 − 𝑉𝑚)                                                                                           (1.53)   

Substituting the slip velocity (𝑉𝑆 = 𝑉𝑔 − 𝑉𝐿 ) into equation (1.53) gives the following. 

𝐽𝑔 = 𝛼(1 − 𝛼)𝑉𝑆                                                                                                                            (1.54) 

Alternatively, starting from equation (1.52) and using the actual velocity definition 𝑉𝑔 =
𝑉𝑆𝑔

𝛼
, equation 

(1.52) can be expressed in term of superficial gas and liquid velocities and gas void fraction as:  

𝐽𝑔 = (1 − 𝛼)𝑉𝑆𝑔 − 𝛼𝑉𝑆𝐿                                                                                                            (1.55) 

Equating equation (1.54) and equation (1.55) yields: 
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𝛼(1 − 𝛼)𝑉𝑆 − (1 − 𝛼)𝑉𝑆𝑔 − 𝛼𝑉𝑆𝐿 = 0                                                                             (1.56) 

Equation (1.56) gives the following implicit equation of gas void fraction, which can be solved for gas void 

fraction implicitly given a constant slip velocity. From this model, liquid holdup and thus pressure gradient 

can be calculated. Void fraction can also be calculated using correlations. When gas and liquid flow together 

in pipeline, due to the buoyancy effect, the gas phase velocity is different from the liquid phase. From [35] 

general law we have: 

𝑉𝑔 = 𝐶𝑑𝑉𝑚 + 𝑉𝑑                                                                                                                              (1.57) 

 Here, 𝐶𝑑 is the profile parameter and  𝑉𝑑  is the drift velocity. For a well-homogeneous model, 𝑉𝑑 = 0 and 

𝐶𝑑 = 1. The void is defined as: 

𝛼 =
𝑉𝑠𝑔

𝐶𝑑𝑉𝑚+𝑉𝑑
                                                                                                                                    (1.58) 

The drift flux parameters 𝐶𝑑 and 𝑉𝑑can be calculated using the correlation. In this study, the void fraction 

is approached using correlations of Woldesemayat and Ghajar (2007) as presented by [23]. 

- Correlation developed by Woldesemayat and Ghajar (2007) [36]. 

𝐶𝑑 =
𝑉𝑠𝑔

𝑉𝑚
[1 + (

𝑉𝑠𝑙

𝑉𝑠𝑔
)

(
𝜌𝑔
𝜌𝑙

)
0.1

]                                                                                               (1.59)             

𝑉𝑑 = 2.9 [
𝑔.𝐼𝐷.𝜎(1+cos 𝜃)(𝜌𝑙−𝜌𝑔)

𝜌𝑙
2 ]

0.25

(1.22 + 1.22 sin 𝜃)
𝑃𝑎𝑡𝑚

𝑃                           (1.60)                    

𝛼 =
𝑉𝑠𝑔

𝑉𝑠𝑔[1+(
𝑉𝑠𝑙
𝑉𝑠𝑔

)
(

𝜌𝑔
𝜌𝑙

)
0.1

]+2.9[
𝑔𝑑𝜎(1+𝑐𝑜𝑠𝜃)(𝜌𝑙−𝜌𝑔)

𝜌𝑙
2 ]

0.25

(1.22+1.22 𝑠𝑖𝑛 𝜃)
𝑃𝑎𝑡𝑚

𝑃

               (1.61) 

Homogeneous model can be applied with more or less reasonable prediction in several two-phase pipe 

flow production and transportation applications. The homogeneous model, because of its simplicity, works 

well only in a limited number of applications [22]. Its gives reasonable results if the density ratio of liquid 

and gas is less than 10 or if the total mass flux is greater than 2000 kg/m². s [22]. It is used as a reference 

case. 
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1.1.5.2 Separated flow models 

In separated flow models, each phase is assumed to flow separately from one another. Most separated 

flow models assume different velocities for each phase unlike homogeneous flow models where both of the 

fluids are assumed to have the same velocity. In this type of flow, two-phase frictional pressure drop can 

be modeled based on the use of two-phase multiplier. In this work, the correlation presented by Wallis [37], 

Müller-Steinhagen [38] and Vierra and Garcia [39] were used to model the friction term in equation (1.43). 

a) Wallis correlation (1969) 

The two-phase multiplier is defined as the ratio of the frictional pressure gradient and the one 

considering that the total mass flow is flowing as liquid. The correlation proposed by Wallis (1969) [37] 

based on two-phase multiplier is given by: 

∅𝑙𝑜
2 =

(
𝜕𝑃

𝜕𝐿
)

𝑓

(
𝜕𝑃

𝜕𝐿
)

𝑙

                                                                                                                                     (1.62) 

(
𝜕𝑃

𝜕𝐿
)

𝑙
=

𝑓𝑙

2𝜌𝑙

𝐺2

𝑑
                                                                                                                                 (1.63) 

∅𝑙𝑜
2 = (1 + 𝑥 (

𝜌𝑙−𝜌𝑔

𝜌𝑔
)) (1 + 𝑥 (

𝜇𝑙−𝜇𝑔

𝜇𝑔
))

−1/4

                                                             (1.64) 

where: subscripts ‘l’ and ‘f’ are used to indicate liquid only and frictional component of pressure, 

respectively. ∅𝑙𝑜 is the two-phase multiplier, (
𝜕𝑃

𝜕𝐿
)

𝑓
is the pressure gradient due to friction, (

𝜕𝑃

𝜕𝐿
)

𝑙
is the 

pressure drop due to liquid flow only.  

In equation (1.63),𝑓𝑙 is the friction factor of the liquid phase determined in this study by the Colebrook 

correlation given as: 

1

√𝑓𝑙
= −2𝑙𝑜𝑔 [

2𝜀

3.7
−

5.02

𝑅𝑒𝑙
𝑙𝑜𝑔 (

2𝜀

3.7
+

13

𝑅𝑒𝑙
)]                                                                           (1.65) 

𝑅𝑒𝑙 =
𝐺.𝑑

𝜇𝐿
                                                                                                                                           (1.66) 

where, 𝑅𝑒𝑙is the Reynolds number of the liquid phase, 𝐺 = 𝜌𝑔𝑉𝑆𝑔 + 𝜌𝐿 𝑉𝑆𝐿  is the total mass flux. 𝑥 

represents the vapor quality of the gas-liquid mixture and can be calculated as follow: 

𝑥 =
𝑚𝑔̇

�̇�𝑔+�̇�𝑙
=

𝑄𝑔𝜌𝑔

𝑄𝑔 𝜌𝑔+𝑄𝑙 𝜌𝑙
=

𝑄𝑔𝜌𝑔

𝑄𝑔𝜌𝑔+𝑄𝑜𝜌𝑜+𝑄𝑤𝜌𝑤
,                                                                  (1.67) 

�̇�𝑔and �̇� 𝑙 are the gas and liquid mass flowrates.  
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Therefore, the Wallis model is described by equation (1.68) below: 

(
𝑑𝑃

𝑑𝐿
) = 𝜌𝑚𝑔 sin(𝜃) + ∅𝑙𝑜

2 𝑓𝑙

2𝜌𝑙

𝐺2

𝑑
                                                                                         (1.68)     

             

b) Müller-Steinhagen and Hecck (1986) 

This correlation was checked against other fourteen correlations using a data bank of 9300 

measurements for a variety of fluids and flow conditions [38]. The proposed two-phase multiplier is: 

∅𝑙𝑜
2 =

𝐺𝑐(1−𝑥)1/3+𝐵𝑥3

𝐵1
                                                                                                                 (1.69) 

𝐺𝑐 = 𝐵1 + 2(𝐵 − 𝐵1)𝑥                                                                                                              (1.70) 

𝐵1 =
𝑓𝑙

2𝜌𝑙

𝐺2

𝑑
                                                                                                                                        (1.71) 

𝐵 =
𝑓𝑔

2𝜌𝑔

𝐺2

𝑑
                                                                                                                                         (1.72) 

Therefore, the Müller-Steinhagen model is obtained by replacing equations (1.69-172) into equation (1.68), 

hence: 

(
𝑑𝑃

𝑑𝐿
) = 𝜌𝑚𝑔 sin(𝜃) + ∅𝑙𝑜

2 𝑓𝑙

2𝜌𝑙

𝐺2

𝑑
                                                                                         (1.73) 

c) Vierra and Garcia (2014) 

As presented by [23], Vierra and Garcia (2014) [39] addressed the friction term in the two-phase 

multiplier approach by using a homogeneous two-phase flow model and considering the center of volume 

j and center of mass velocities. The two phase multiplier is given by: 

∅𝑙𝑜
2 = (

𝑓

𝑓𝑙
) (

𝜌𝐿

𝜌
)                                                                                                                            (1.74)       

Using the correlation given by Swamee (1993) [40], the friction factor in equation (1.74) can be determined 

as follow: 

𝑓𝑙 = ((
64

𝑅𝑒𝑙
)

8

+ 9.5 [ln ((
𝜀

3.7
+

5.74

𝑅𝑒𝑙
9) − (

2500

𝑅𝑒𝑙
)

6
)]

−16

)

0.125

                                 (1.75) 
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For the liquid friction factor, 𝑓𝑙,  the Reynolds number is calculated as: 

𝑅𝑒𝑙 =
𝑑.𝐺

𝜇𝐿
                                                                                                                                           (1.76) 

For the center of mass velocity approach,  

𝑅𝑒𝑚 =
𝜌𝑚𝑉𝑚𝑑

𝜇𝑚
                                                                                                                                  (1.77) 

Therefore, the Vierra and Garcia model is obtained by replacing equations (1.74-1.77) into equation (1.68), 

hence: 

(
𝑑𝑃

𝑑𝐿
) = 𝜌𝑚𝑔 sin(𝜃) + ∅𝑙𝑜

2 𝑓𝑙

2𝜌𝑙

𝐺2

𝑑
                                                                                         (1.78) 

Above, we have presented some of the pressure models generally used for single and multiphase 

flow in wellbores and pipelines. This work modified the pressure model presented by Dukler and Taitel, in 

which the liquid hold up was determined by the Drift-Flux model. In the following, we are presenting a 

brief review on heat transfer process during multiphase flow in subsea pipeline. 

1.2 Review on heat transfer in subsea pipeline during multiphase fluid flow 

In offshore area, pipelines carried hot petroleum fluids from the reservoir to the surface. The hot 

fluids will be losing heat as far as its travels along the pipeline because of the cooling surrounding. In this 

section, we will review the heat transfer mechanism during multiphase flow in subsea pipelines. This 

include conduction, convection and radiation. Heat transfer occurs whenever there exists a temperature 

difference in a medium or between media. Three mechanisms are responsible of the flow of heat in a 

medium: conduction, convection and radiation.     

1.2.1 Conduction 

Heat conduction, also called diffusion, is the term used to refer to the transport of heat from a high 

temperature to low temperature in a fix medium, which may be solid or a fluid, by the motion of molecules 

or electrons. This mechanism is governed by the Fourier’s law of conduction expressed as follow, when 

considering the solid shown in figure 1.7 below. 

𝑄 = 𝑘𝐴𝑝
𝑑𝑇

𝑑𝑥
                                                                                                                            (1.116)      
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where Q  is the rate of heat transfer per unit time, k is the thermal conductivity of the material, 𝐴𝑝is the area 

of the medium (pipe), T is the temperature distribution profile and 
𝑑𝑇

𝑑𝑥
 is the temperature gradient.  The 

negative sign in equation (1.116) indicates that heat is transferred in the direction of decreasing temperature.  

 

 

 

 

Figure 1.7: One dimensional heat transfer by conduction in a solid 

1.2.2 Convection 

Convection is a heat transfer mechanism, which is caused by the motion of fluid on a solid surface 

or inside a channel. Convection is called forced convection if the fluid is forced to flow over the surface by 

external means such as fan, pump, or the wind. In contrast, convection is called natural (or free) convection 

if the fluid motion caused by buoyancy forces that are induced by density differences due to the variation 

of temperature in the fluid (Figure 1.8).  

 

 

 

 

Figure 1.8: Schematic view of heat transfer by convection. 

The rate of convection heat transfer between a bulk fluid at the temperature 𝑇𝑓  and the surface of a 

channel at a temperature 𝑇𝑝 , is expressed by Newton’s law of cooling as: 

�̇�𝑐𝑜𝑛𝑣 = ℎ𝐴𝑝(𝑇𝑓 − 𝑇𝑝)                                                                                                            (1.117) 

In equation (1.117) above, �̇�𝑐𝑜𝑛𝑣 is the rate of heat transfer per unit time, h is the convective heat transfer 

coefficient, 𝐴𝑝 is the cross-sectional area of the medium (pipe), 𝑇𝑓  is the temperature of the fluids and 𝑇𝑝 is 

the temperature of the surface or the environment temperature. 

1.2.3 Radiation 
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Every body with a temperature emits energy in the form of electromagnetic waves or photons, which 

is  called radiation. The radiation energy does not require a medium for heat transfer. Most gases transmit 

nearly all incident radiation, but liquids rapidly attenuate radiation. Most solids, except for glasses and 

transparent plastics, are completely opaque to radiation. For subsea pipelines systems, because the fluids 

temperature is usually less than 200°C, this heat transfer mechanism is relatively insignificant compared 

with heat transfer from conduction and convection. The radiation energy per unit time from a blackbody is 

proportional to the fourth power of absolute temperature and can be described by Stefan-Boltzmann law as 

follow: 

�̇�𝑅𝑎𝑑 = 𝜎𝐴𝑝 𝑇𝑝
4

                                                                                                                             (1.118) 

where 𝜎 = 5,6703 × 10−8 (𝑤.𝑚−2 . 𝑘−4) is the Stefan-Boltzmann constant. 𝑇𝑝  is the temperature of the 

body and 𝐴𝑝 is the area of the body. 

Although these three heat transfer modes occur at all subsea systems, for typical pipelines, heat transfer 

from radiation is relatively insignificant compared with heat transfer from conduction and convection 

because the system temperature is below 200°C in generally. Therefore, conduction and convection will be 

solely considered here. 

1.2.4 Heat transfer through pipelines 

When fluid flows inside a pipe, the heat transfer process is a result of the convection inside the pipe, 

the conduction through the pipe and the convection outside the pipe. The Fourier’s law in the radial 

coordinate gives the conduction heat transfer 𝑞 . Whereas the Newton’s law gives the convective heat 

transfer inside the pipe and outside the pipe.  

1.2.4.1 Heat transfer through an exposed pipeline 

Let us considered the figure (1.9) representing a horizontal pipeline without insulation, exposed to 

surrounding (seawater or soil). We analyzed the heat transfer through the pipe. 

- For convection inside pipeline, the Newton’s law is given as follow: 

𝑞 = 2𝜋𝑟1∆𝐿ℎ𝑖(𝑇𝑚 − 𝑇1)                                                                                                         (1.119) 

where,   

𝑟1    represent the inner radius of the pipeline, 

∆𝐿   is the pipeline segment, 
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ℎ𝑖    is the internal heat transfer coefficient, 

𝑇𝑚   is the average temperature of the fluids, 

𝑇1    the temperature of inner pipe wall. 

 

 

 

 

 

 

Figure 1.9: schematic of view of an exposed pipeline 

- For conduction through the pipe, the Fourier’s law is given by: 

𝑞 = 2𝜋∆𝐿𝑘𝑝𝑖𝑝𝑒
(𝑇1−𝑇2)

𝑙𝑛(
𝑟2
𝑟1

)
                                                                                                              (1.120) 

where: 𝑘𝑝𝑖𝑝𝑒 is the pipe thermal conductivity. 𝑟2 is the outer radius of the pipe and 𝑇2 is the outer temperature 

of the pipe wall. 

- For convection outside the pipe we have: 

𝑞 = 2𝜋𝑟2∆𝐿ℎ𝑜(𝑇2 − 𝑇𝑒)                                                                                                         (1.121) 

where: 𝑇𝑒 is the surrounding seawater temperature; ℎ𝑜 is the outer convective coefficient of the seawater. 

Combining equations (1.119) through (1.121) yield, 

(𝑇𝑚 − 𝑇𝑒) =
𝑞

2𝜋∆𝐿
[

1

𝑟1ℎ𝑖
+

𝑙𝑜𝑔 (
𝑟2
𝑟1

)

𝑘𝑝𝑖𝑝𝑒
 +

1

𝑟2ℎ𝑜
]                                                                       (1.122) 

1.2.4.2 Heat transfer through an exposed insulated pipeline with one layer 

Let us considered figure 1.10, below representing a horizontal pipeline with one insulation layer. 

Heat transfer analysis gives: 
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Figure 1.10: schematic view of pipeline with insulation layer exposed to seawater 

 

- For conduction through the insulation material 1, Fourier`s law is given by: 

𝑞 = 2𝜋∆𝐿𝑘𝑖𝑛𝑠
(𝑇3−𝑇2)

𝑙𝑛(
𝑟3
𝑟2

)
                                                                                                                (1.123) 

where,𝑘𝑖𝑛𝑠  is the thermal conductivity of the insulation layer, 𝑇3 is the temperature at the insulation layer 

and 𝑟3  is the radius of the insulation.  

The temperature difference between the internal film fluids and the surrounding is then given as:  

(𝑇𝑚 − 𝑇𝑒) =
𝑞

2𝜋∆𝐿
[

1

𝑟1ℎ𝑖
+

𝑙𝑜𝑔 (
𝑟2
𝑟1

)

𝑘𝑝𝑖𝑝𝑒
+

𝑙𝑜𝑔 (
𝑟3
𝑟2

)

𝑘𝑖𝑛𝑠
+

1

𝑟3ℎ𝑜
]                                                   (1.124) 

1.2.4.3 Heat transfer through and exposed insulated pipeline with multilayer 

More generally, from equation written above, the heat transfer from the internal film fluids to the 

surrounding can be given as, for a pipeline with multilayers of insulation materials,  

𝑞 =
(𝑇𝑚−𝑇𝑒)

[
𝑟𝑜

𝑟𝑖ℎ𝑖
+∑ (

𝑟𝑜𝑙𝑜𝑔 (
𝑟𝑗+1

𝑟𝑗
)

𝑘𝑗
)+

1

ℎ𝑜

𝑛
𝑗=1 ]

                                                                                             (1.125) 

where:  𝑟𝑜  and 𝑟𝑖 are respectively the outer and the inner radii of the pipe, ℎ𝑜 and ℎ𝑖 are outer and inner heat 

transfer coefficients. 𝑘𝑗is the conductivity of layer j and 𝑟𝑗 is the radius of wall layer j. n is the number of 

wall layers.  
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1.2.5 Heat transfer coefficient 

From the equation above, in order to determine the heat transfer to surrounding or the temperature 

difference between the fluids and the surrounding, is important to know the internal and outer heat transfer 

coefficient, hence the overall heat coefficient. 

1.2.5.1 Internal convective coefficient 

The internal heat transfer coefficient of two-phase flows is strongly dependent on the flow pattern and 

on the liquid film thickness of the circumference of the tube. According to the   correlation developed by 

Ghajar and Tang (2005) [41] as presented by Stephane and Josua (2011) [42], we have:  

- For turbulent flow: 

ℎ𝑖 = ℎ𝐿𝑖𝐹𝑝 [1 + 0.7 (
𝑥

1−𝑥
)

0.08
(

𝐹𝑝

1−𝐹𝑝
)

0.06

(
𝑃𝑟𝑔

𝑃𝑟𝐿
)

0.03
(

𝜇𝐿

𝜇𝑔
)

0.14

(𝐼)0.65]               (1.126) 

where, 

𝑃𝑟𝑔 and 𝑃𝑟𝑔 are the liquid and gas Prandtl number. 

I is the inclination factor that take into account the effect of the gravity on the heat transfer coefficient given 

by: 

𝐼 = 1 +
𝑔𝑑(𝜌𝑙−𝜌𝑔) sin 𝜃

𝜌𝑙𝑉𝑆𝐿
2                                                                                                               (1.127) 

the pipe factor is given by: 

𝐹𝑝 = 𝛼 + (1 − 𝛼)𝐹𝑠                                                                                                                  (1.128) 

The shape factor 𝐹𝑠,  is defined as: 

𝐹𝑠 =
2

𝜋
tan−1 (√

𝜌𝑔(𝑉𝑔−𝑉𝐿 )
2

𝑔𝑑(𝜌𝐿−𝜌𝑔)cos 𝜃
)                                                                                        (1.129) 

𝑉𝑔and 𝑉𝐿  are liquid and gas velocities respectively. 𝛼 is the void fraction. 𝜃 is the inclination angle. The 

heat transfer coefficient ℎ𝐿𝑖 can be calculated using various correlations. For fully turbulent flow, the 

correlation of Dittus and Boelter (1930) [36] can be used. Hence,  
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𝑁𝑢𝑜 = 0.027 . 𝑅𝑒𝑜
0.8𝑃𝑟𝑜

0.3
                                                                                                            (1.130) 

𝑁𝑢𝑖 = ℎ𝐿𝑖𝑑/𝑘𝑓                                                                                                                            (1.131) 

𝑃𝑟𝐿 =
𝐶𝑝𝑙𝜇𝐿

𝑘𝐿
                                                                                                                                     (1.131) 

𝑘𝐿 = 𝛼𝑜𝑘𝑜 + 𝛼𝑤𝑘𝑤                                                                                                                    (1.132) 

where: 𝜇𝐿 is the liquid viscosity at the bulk temperature; 𝐶𝑝𝑙 is the heat capacity of the liquid at bulk 

temperature.𝑘𝑙is the thermal conductivity of the liquid at bulk temperature and wall temperature.𝑅𝑒𝐿
 is the 

Reynolds liquid number.  

- If the fluid is in a transitional region 2100 < 𝑅𝑒𝐿 < 5 × 104  the correlation of Gnielinski (1976)  

[43] can be used as follow:   

ℎ𝐿𝑖 =
(𝑓𝐿 /8)𝑅𝑒𝑙

𝑃𝑟𝐿

1+12.7√(𝑓𝐿/8)(𝑃𝑟𝐿
2/3

−1)
[1 + (

𝑑𝑖

𝐿
)

2/3
] (

𝑃𝑟𝑚

𝑃𝑟𝑤
)

𝑛
(

𝑘𝐿

𝑑𝑖
)                                            (1.133) 

Here, the Moody diagram can be used to obtain the friction factor, 𝑓𝑙.   

𝑓𝐿 = [0,79 ln(𝑅𝑒 𝑙
) − 1,64]−2

                                                                                              (1.134) 

Equation (1.133) is valid for 0.5 < 𝑃𝑟𝐿 < 2000 and 3 × 103 < 𝑅𝑒𝐿 < 5 × 106. 

- For laminar flow 

𝑁𝑢𝑖 = 3.66.                                                                                                                           (1.135)       

1.2.5.2 External convective coefficient 

Here, the surrounding pipeline can be exposed to the seawater, can be buried or partially buried 

under the subsea soil. For pipeline exposed to seawater, the external heat transfer coefficient can be 

calculated using the correlation presented in equation (1.130) for given seawater properties. 

1.2.5.3 Heat transfer coefficient of soil for buried pipeline 

From [44] and using figure.1.11, the heat transfer coefficient for a buried pipeline can be expressed 

as: 

ℎ𝑠𝑜𝑖𝑙 =
𝑘𝑠𝑜𝑖𝑙

(
𝐷

2
) cosh−1(

2𝑍

𝐷
)
                                                                                                                 (1.137) 
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where, ℎ𝑠𝑜𝑖𝑙  is the heat transfer coefficient of soil, 𝑘𝑠𝑜𝑖𝑙  is the thermal conductivity of soil, D is the outside 

diameter of buried pipe and Z is the distance between top of soil and centre of pipe. 

 

Figure 1.11: cross section of a buried pipeline [44]. 

For the case of Z> D/2,  

cosh−1 (
2𝑍

𝐷
) = ln [(

2𝑍

𝐷
) + ((

2𝑍

𝐷
)

2

− 1)
0.5

]                                                                   (1.138) 

ℎ𝑠𝑜𝑖𝑙 =
𝑘𝑠𝑜𝑖𝑙

D ln[
2𝑍+√4𝑍2−𝐷2

𝐷
]
                                                                                                             (1.139) 

1.2.5.4 Heat transfer coefficient for partially buried pipeline 

The increase in the insulation effect for a partially buried pipeline is not large compared with a fully 

buried pipeline. Heat flow circumferentially through the steel to the section of exposure. Even exposure of 

just the crown of the pipeline results in efficient heat transfer to the surroundings due to the high thermal 

conductivity of the steel pipe. A trenched pipeline (partially buried pipeline) experiences less heat loss than 

an exposed pipeline but more than a buried pipeline [44]. Engineering judgment must be used for the 

analysis of trenched pipelines. The heat transfer may be calculated using a weighted average of the fully 

buried pipe and exposed pipe as follows:  

ℎ𝑝𝑏 = (1 − 𝑓𝑝)ℎ𝑜,𝑏𝑢𝑟𝑖𝑒𝑑 + 𝑓𝑝ℎ𝑜,𝑒𝑥𝑝𝑜𝑠𝑒𝑑                                                                         (1.140) 

where, 𝑓𝑝 is the fraction of outside surface of pipe exposed to the surrounding fluid. 

1.2.6 Overall heat transfer coefficient 

In the modeling of heat transfer, the overall heat transfer is an important parameter that has to be 

calculated accurately. Below, we present details on the calculation of this parameter is various cases.  
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1.2.6.1 Overall heat transfer coefficient for exposed pipeline with and without 

insulation 

For an exposed pipeline, with or without insulation layer (s), the overall heat transfer coefficient is 

determined as follow: 

𝑈𝑜 =
1

[
𝑟𝑜

𝑟𝑖ℎ𝑖
+∑ (

𝑟𝑜𝑙𝑜𝑔 (
𝑟𝑗+1

𝑟𝑗
)

𝑘𝑗
)+

1

ℎ𝑜

𝑛
𝑗=1 ]

                                                                                          (1.141) 

1.2.6.2 Overall heat transfer coefficient for buried pipeline with and without insulation 

For a buried pipeline, with or without insulation layer (s), the overall heat transfer coefficient is 

determined as follow: 

𝑈𝑜 =
1

[
𝑟𝑜

𝑟𝑖ℎ𝑖
+∑ (

𝑟𝑜𝑙𝑜𝑔 (
𝑟𝑗+1

𝑟𝑗
)

𝑘𝑗
)+

1

ℎ𝑠𝑜𝑖𝑙

𝑛
𝑗=1 ]

                                                                                      (1.142) 

1.2.6.3 Overall heat transfer coefficient for partially buried pipeline with and without 

insulation 

For a partially buried pipeline, with or without insulation layer (s), the overall heat transfer 

coefficient is determined as follow: 

𝑈𝑜 =
1

[
𝑟𝑜

𝑟𝑖ℎ𝑖
+∑ (

𝑟𝑜𝑙𝑜𝑔 (
𝑟𝑗+1

𝑟𝑗
)

𝑘𝑗
)+

1

ℎ𝑝𝑏

𝑛
𝑗=1 ]

                                                                                        (1.143) 

Heat transfer characteristics such as the over all heat transferred coefficient and the convective heat 

transferred have been review for uninsulated and insulated pipeline, as well as for partial and fully buried 

pipeline. In the following, we will be presenting a review on different tool that are usually used to run 

numerical simulation of the temperature and pressure profile. 

1.3 Machine learning techniques and genetic algorithm revue [45] 

Machine Learning (ML) is a subset of Artificial Intelligence (AI), but the two are not entirely the same. 

While AI is the umbrella concept that deals with the creation of intelligent machines that can simula te 

human thinking capability and behavior, machine learning is an application that allows machines to learn 
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from data without being programmed explicitly. In fact, machine learning, as a sub-field and a concept that 

branched out of AI, started to flourish in the 1990s. The focus of this field gradually shifted from only 

achieving artificial intelligence to tackling solvable problems of a practical nature. The goal of machine 

learning is to generalize a detectable pattern or to create an unknown rule from given examples. Over a 

period and with more data, model predictions will become better. As organizat ions become more data-

driven, machine learning is rapidly gaining prominence across multiple sectors. Industries that have widely 

adopted this advanced technology include: 

 Retail 

Retail sites that offer buying recommendations based on your previous purchases use machine learning 

technologies to analyze your shopping patterns. Today, leading retailers rely heavily on ML to capture and 

analyze buyer data to gain customer insights, optimize pricing, launch marketing campaigns, and to deliver 

a personalized shopping experience.  

 Energy 

Oil and gas companies deploy machine learning to analyze subsurface energy sources, predict refinery 

failures, and streamline distribution systems to maximize profits. 

The scope of implementing machine learning in the energy sector is vast and expanding.  

 Financial Services 

The application of machine learning in the financial sector is diverse. Banks and financial institutions 

not only implement machine learning technologies to help customers and investors in several ways, but 

they also use ML for detecting high-risk profiles, cyber surveillance, and fraud prevention 

 Healthcare 

Thanks to advancements in sensor technologies and medical wearable devices, machine learning is 

increasingly becoming an integral part of the modern-day healthcare ecosystem. The breakthrough 

technology helps healthcare professionals analyze data to determine trends in real-time, which leads to 

better diagnosis and improved treatment.  

 Transportation and Logistics 

Data analysis, trend detection, and the modeling aspect of ML are crucial tools for transport organizations 

and delivery companies. The transportation and logistics industry uses machine learning to make more 

efficient routes and predict potential problems, translating into increased profitability. 

 Government 
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Government agencies have various data sources. From utilities to public safety, government agencies are 

mining Big Data to gain actionable insights for improving efficiency, lowering risks, and increasing 

savings. Many agencies are also adopting machine learning to detect fraud and curb identity theft. 

Machine Learning is great for [45]: 

 Problems for which existing solutions require a lot of hand-tuning or long lists of rules: one Machine 

Learning algorithm can often simplify code and perform better. 

 Complex problems for which there is no good solution at all using a traditional approach: the best 

Machine Learning techniques can find a solution. 

 Fluctuating environments: a Machine Learning system can adapt to new data. 

 Getting insights about complex problems and large amounts of data. 

 

1.3.1 Classification of machine learning [45] 

Machine learning is broadly classified into three categories but nonetheless, based on the situation, 

these categories can be combined to achieve the desired results for particular applications. 

1.3.1.1 Supervised learning 

This is teaching machines to learn the relationship between other variables and a target variable. In 

supervised learning, the training data you feed to the algorithm includes the desired solutions, called labels.  

1.3.1.2 Unsupervised learning 

In unsupervised learning, algorithms learn by themselves without any supervision or without any 

target variable provided. It is a question of finding hidden patterns and relations in the given data. The 

categories in unsupervised learning are as follows: Dimensionality reduction and Clustering. 

1.3.1.3 Reinforcement learning 

This allows the machine or agent to learn its behavior based on feedback from the environment. In 

reinforcement learning, the agent takes a series of decisive actions without supervision and, in the end, a 

reward will be given, either +1 or -1. Based on the final payoff/reward, the agent reevaluates its paths. 

Reinforcement learning problems are closer to the artificial intelligence methodology rather than frequently 

used machine learning algorithms. 

In some cases, we initially perform unsupervised learning to reduce the dimensions followed by 

supervised learning when the number of variables is very high. Similarly, in some artificial intelligence 

applications, supervised learning combined with reinforcement learning could be utilized for solving a 
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problem; an example is self-driving cars in which, initially, images are converted to some numeric format 

using supervised learning and combined with driving actions (left, forward, right, and backward). 

1.3.2 Overview of machine learning algorithms 

Machine learning models are classified mainly into supervised, unsupervised and reinforcement 

learning methods.  

1.3.2.1 supervised learning  

Some of the most important supervised learning algorithms are: 

 Logistic regression 

Logistic regression is the appropriate regression analyses to conduct when the dependent variable is 

dichotomous (binary). Outcomes are discrete classes rather than continuous values in this problem. In 

statistical methodology, it uses the maximum likelihood method to calculate the parameter of individua l 

variables. In contrast, in machine learning methodology, log loss will be minimized with respect to the 

weights. Logistic regression has a high bias and a low variance error. 

 Lasso and ridge regression 

This uses regularization to control overfitting issues by applying a penalty on coefficients. In ridge 

regression, a penalty is applied on the sum of squares of coefficients, whereas in lasso, a penalty is applied 

on the absolute values of the coefficients. The penalty can be tuned in order to change the dynamics of the 

model fit. Ridge regression tries to minimize the magnitude of coefficients, whereas lasso tries to elimina te 

them. 

 Linear regression  

This is used for the prediction of continuous variables. It utilizes error minimization to fit the best 

possible line in statistical methodology. However, in machine learning methodology, squared loss will be 

minimized with respect to the weights. Linear regression also has a high bias and a low variance error. 

 

 Decision trees (classification trees) 

Recursive binary splitting is applied to split the classes at each level to classify observations to their 

purest class. The classification error rate is simply the fraction of the training observations in that region 

that do not belong to the most common class. Decision trees have an overfitting problem due to their high 

variance in a way to fit; pruning is applied to reduce the overfitting problem by growing the tree completely. 

Decision trees have low a bias and a high variance error. 
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 Bagging classifier 

This is an ensemble technique applied on decision trees in order to minimize the variance error and at 

the same time not increase the error component due to bias. In bagging, various samples are selected with 

a subsample of observations and all variables (columns), subsequently fit individual decision trees 

independently on each sample and later ensemble the results by taking the maximum vote (in regression 

cases, the mean of outcomes calculated). 

 Random forest classifier 

This is similar to bagging except for one difference. In bagging, all the variables/columns are selected 

for each sample, whereas in random forest a few subcolumns are selected. The reason behind the selection 

of a few variables rather than all was that during each independent tree sampled, significant variables always 

came first in the top layer of splitting. Which makes all the trees look more or less similar and defies the 

sole purpose of ensemble: that it works better on diversified and independent individual models rather than 

correlated individual models. Random forest has both low bias and variance errors. 

 Boosting classifier  

This is a sequential algorithm that applies on weak classifiers such as a decision stump (a one-level 

decision tree or a tree with one root node and two terminal nodes) to create a strong classifier by ensembling 

the results. The algorithm starts with equal weights assigned to all the observations, followed by subsequent 

iterations where more focus was given to misclassified observations by increasing the weight of 

misclassified observations and decreasing the weight of properly classified observations. Boosting might 

have an overfitting problem, but by carefully tuning the parameters, we can obtain the best of the self 

machine learning model. 

 K-Nearest Neighbors (KNN)  

The k-Nearest Neighbor algorithm is based on comparing an unknown Example with the k training 

Examples which are the nearest neighbors of the unknown Example. The first step of the application of the 

k-Nearest Neighbor algorithm on a new Example is to find the k closest training Examples. "Closeness" is 

defined in terms of a distance in the n-dimensional space, defined by the n Attributes in the training Example 

Set. Different metrics, such as the Euclidean distance, can be used to calculate the distance between the 

unknown Example and the training Examples. Due to the fact that distances often depends on absolute 

values, it is recommended to normalize data before training and applying the k-Nearest Neighbor algorithm. 

The metric used and its exact configuration are defined by the parameters of the Operator. In the second 

step, the k-Nearest Neighbor algorithm classify the unknown Example by a majority vote of the found 

neighbors. In case of a regression, the predicted value is the average of the values of the found neighbors. 
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It can be useful to weight the contributions of the neighbors, so that the nearer neighbors contribute more 

to the average than the more distant ones. 

 Support Vector Machines (SVM) classifier 

This maximizes the margin between classes by fitting the widest possible hyperplane between them. In 

the case of non-linearly separable classes, it uses kernels to move observations into higher-dimensiona l 

space and then separates them linearly with the hyperplane there. 

1.3.2.2 unsupervised learning  

In unsupervised learning, the training data is unlabeled. The system tries to learn without a teacher.  

Unsupervised learning does not have as many algorithms as in supervised learning. 

Some of the most important unsupervised learning algorithms are: 

 Principal component analysis (PCA) 

Principal components are calculated in place of the original variable in this dimensionality reduction 

technique. Principal components are determined where the variance in data is maximum; subsequently, the 

top n components will be taken by covering about 80 percent of variance and will be used in further 

modeling processes, or exploratory analysis will be performed as unsupervised learning. 

 K-means clustering 

This is an unsupervised algorithm that is mainly utilized for segmentation exercise. K-means clustering 

classifies the given data into k clusters in such a way that, within the cluster, variation is minimal and across 

the cluster, variation is maximal. 

1.3.2.3 reinforcement learning  

Reinforcement Learning is a very different beast. The learning system, called an agent in this context, 

can observe the environment, select and perform actions, and get rewards in return. It must then learn by 

itself what is the best strategy, called a policy, to get the most reward over time. A policy defines what 

action the agent should choose when it is in a given situation. This is the scenario in which multip le 

decisions need to be taken by an agent prior to reaching the target and it provides a reward, either +1 or -1, 

rather than notifying how well or how badly the agent performed across the path:  

 Markov decision process 

In reinforcement learning, MDP is a mathematical framework for modeling decision-making of an agent 

in situations or environments where outcomes are partly random and partly under control. In this model, 
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environment is modeled as a set of states and actions that can be performed by an agent to control the 

system's state. The objective is to control the system in such a way that the agent's total payoff is maximized 

 Monte Carlo methods 

Monte Carlo methods do not require complete knowledge of the environment, in contrast with MDP. Monte 

Carlo methods require only experience, which is obtained by sample sequences of states, actions, and 

rewards from actual or simulated interaction with the environment. Monte Carlo methods explore the space 

until the final outcome of a chosen sample sequences and update estimates accordingly. 

 Temporal difference learning 

This is a core theme in reinforcement learning. Temporal difference is a combination of both Monte Carlo 

and dynamic programming ideas. Similar to Monte Carlo, temporal difference methods can learn directly 

from raw experience without a model of the environment's dynamics. Like dynamic programming, temporal 

difference methods update estimates based in part on other learned estimates, without waiting for a fina l 

outcome. Temporal difference is the best of both worlds and is most commonly used in games. 

1.3.3 Steps in machine learning model development and deployment 

 

The development and deployment of machine learning models involves a series of steps that are almost 

similar to the statistical modeling process, in order to develop, validate, and implement machine learning 

models. The steps are as follows: 

 Collection of data: Data for machine learning is collected directly from 1. structured source data, 

web scrapping, API, chat interaction, and so on, as machine learning can work on both structured 

and unstructured data (voice, image, and text). 

 Data preparation and missing/outlier treatment: Data is to be formatted as per the chosen 

machine learning algorithm; also, missing value treatment needs to be performed by replacing 

missing and outlier values with the mean/median, and so on. 

 Data analysis and feature engineering: Data needs to be analyzed in order to find any hidden 

patterns and relations between variables, and so on. Correct feature engineering with appropriate 

business knowledge will solve 70 percent of the problems. Also, in practice, 70 percent of the data 

scientist's time is spent on feature engineering tasks. 

 Train algorithm on training and validation data: Post feature engineering, data will be divided 

into three chunks (train, validation, and test data) rather than two (train and test) in statistica l 
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modeling. Machine learning are applied on training data and the hyperparameters of the model are 

tuned based on validation data to avoid overfitting. 

 Test the algorithm on test data: Once the model has shown a good enough performance on train 

and validation data, its performance will be checked against unseen test data. If the performance is 

still good enough, we can proceed to the next and final step. 

 Deploy the algorithm: Trained machine learning algorithms will be deployed on live 

 Streaming data to classify the outcomes.  

1.4 Genetic algorithm in Matlab [46] 

 

The genetic algorithm is a method for solving optimization problems that is based on natural 

selection, the process that drives biological evolution. The genetic algorithm repeatedly modifies a 

population of individual solutions. At each step, the genetic algorithm selects individuals at random from 

the current population to be parents and uses them produce the children for the next generation. Over 

successive generations, the population “evolves” toward an optimal solution. You can apply the genetic 

algorithm to solve a variety of optimization problems that are not well suited for standard optimizat ion 

algorithms, including problems in which the objective function is discontinuous, non-differentiab le, 

stochastic, or highly nonlinear [46]. The genetic algorithm uses three main types of rules at each step to 

create the next generation from the current population [46]: 

- Selection rules select the individuals, called parents that contribute to the population at the next 

generation.  

- Crossover rules combine two parents to form children for the next generation. 

- Mutation rules apply random changes to individual parents to form children. 

The genetic algorithm differs from a standard optimization algorithm in two main ways, as summarized in 

the following [46]: 

 Standard Algorithm 

- Generates a single point at each iteration. The sequence of points approaches an optimal 

solution. 

- Selects the next point in the sequence by a deterministic computation. 

 Genetic Algorithm 
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- Generates a population of points at each iteration. The population approaches an optimal 

solution. 

- Selects the next population by computations that involve random choices. 

In this work, we proposed that GA be used to solve heat transfer problems of insulation material selection. 

The goal of the proposal is to estimate the optimal parameters using a GA. The GAs are approaches, which 

try to find the optimal solution and are based on evolutionary methodologies as state above. The process 

flow of a GA can be described as follow:  

- As a first step, the initial population is generated, and the fitness for this population is calculated. 

The fitness is checked to determine whether it meets the stopping criterion. If the stopping 

criterion is not met, the selection algorithm is run to find the best solutions. The most commonly 

used selection algorithms are tournament, roulette wheel, proportionate, rank, and steady-state 

selection.  

- The next step is to create new children according to the selected parents. At this stage, a 

crossover is made. Crossover is a matter of replacing some of the genes in one parent with the 

corresponding genes of the other. 

-  After the crossover phase, a mutation is made. Mutations consist of flipping the bit at a 

randomly chosen locus.  

- After this process, the fitness of the generated children is calculated, and the best is selected. 

The error criterion is checked again, and this process is repeated until the desired point is 

reached. Genetic algorithms have a target based on the fitness function. Constraints and design 

variables are used while the target is found. Constraints are variables that include formulas and 

ranges and only affect the target function. Design variables are found in a certain range of values, 

and they are explored by the GA. They are effective on the constraints and target function. The 

target is the fitness value for which the maximum, minimum, and target values are to be 

determined. 

1.5 Software 

There exist many software for numerical simulations of thermal flow phenomena and machine 

learning predictions. Below, we are presenting the used in this study. In oil and gas industry, successful 

production system design and operations requires a detailed understanding of multiphase flow behavior. 

Flow modeling and simulation provides valuable insight into flow behavior, including the physics 

describing flow through the entire production systems, from reservoir pore to process facility. Simulato rs 

and numerical codes are often used for prediction, optimization, evaluation and support to decision maker. 
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The multiphase flow simulation now than ever has become a powerful engineering tool to conduct virtua l 

experiments, to minimize cost of production system design and physical testing, and to assist development 

of new technologies particularly in the oil and gas industry. The major challenge of a petroleum engineer 

is to design wells and pipelines to ensure that produced fluids will be safely and economically transported 

to downstream processing facilities. One of the solution is to run multiphase flow simulation. The 

foundation for accurate modeling of these piping systems relies on three core areas of science: Multiphase 

flow; Heat transfer and Fluid behavior. Pipesim and Matlab among others software have been used in this  

study to model and simulate thermal multiphase flow in offshore pipelines. Rapidminer software was also 

used to design patterns in order to predict the temperature profile and combining this machine learning 

model to genetic algorithm, optimum insulation thickness was determined. 

1.5.1 MATLAB software [47] 

MATLAB (Matrix laboratory) is a software that enable to not only to work with built-in function, 

but also, to implement numerical algorithm from mathematical model ( further detailed can be obtained by 

reading the MATLAB tutorial downloadable easily at www.mathwork.com). In this work, MATLAB 

software was used to implement thermal multiphase of oil and gas in long subsea pipeline. 

1.5.2 PIPESIM software [48] 

The PIPESIM simulator offers the most advanced steady state modeling capabilities in the industry to 

address these critical aspects:  

- Multiphase flow modeling 

- Heat transfer  

- Fluid property modeling 

The PIPESIM simulator together with OLGA simulator, offer the most rigorous modeling solution for 

multiphase flow systems.  

1.5.3 Machine learning software: RAPIDMINER [49] 

Machine learning techniques can skip all the physical theories and models to extract direct patterns 

between data, thereby providing computers with the ability to learn without being explicitly programmed. 

In this study, machine learning techniques were employed to establish a pattern between the minimum 

temperature and thickness of insulating materials. The goal in machine learning was to find an appropriate 

function to depict the pattern between minimum temperature and the insulation thickness. RAPIDMINER 

software provides an integrated and comprehensive environment for carrying out several task like data 

preparation, machine learning, deep learning, text mining as well as predictive analytics. It is popular for 

http://www.mathwork.com/
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its lightning-fast speed to drive revenue, reduce costs and avoid risk. One of its most essential features is 

its graphical unit interface-based drag and drop feature that allows the users to intuitively build data 

processing workflows that can be selected from over 2000 available nodes. Apart from building machine 

learning models, one can also optimize the model performance through bagging boosting and building the 

model ensembles. 

Conclusion 

 

In this chapter, we have carried out a brief literature review on single and multiphase flow in 

pipeline. Next, we presented an overview of some pressure gradient models existing in the literature. 

further, we presented an overview on heat transfer process and characteristic during multiphase flow in 

subsea pipeline. finally, machine learning models and genetic algorithm as well as some simulation tools 

such as PIPESIM, MATLAB and RAPIDMINER were presented. In the following chapter, we will be 

presenting the methods and materials used in order to achieve our objectives. 
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Introduction 

 

In order to avoid precipitation and solid deposits, thermal insulation is applied to subsea 

pipelines to maintain the temperature of crude oil above a critical level, such as the wax 

appearance temperature (WAT), hydrate formation or even scales and asphaltenes. The position 

within the entire system where the lowest temperature is observed is a risk point. For insula t ion 

design, the insulation requirement for pipeline and flowline segments is to keep the temperature 

at the risk point higher than the critical level. In fact, various combinations of insula t ion 

thickness can lead to the same lowest temperature. Theoretically, for a certain subsea 

production system, there exists one insulation design that meets the insulation requirement with 

the lowest insulation volume [50]. Therefore, the optimizing approach adopted in this study is 

the same as that presented in [50].   The best minimum of insulation thickness that will 

guarantee a minimum material consumption will be found. Thus, the insulation volume is set 

as the objective function and the insulation requirement as the constraint. This work developed 

a low thermal model for temperature and pressure predictions and its determined optimum 

insulation thickness using three approaches: the numerical simulation, application of genetic 

algorithm to machine learning, based on MATLAB software and RAPIDMINER software. In 

order to achieve this goal, we applied the following methodology. 

2.1 Pipeline geometry  

The subsea pipeline geometry considered in this study is the same as that presented in 

[4] for the example 1 case. Figure 2.1 below represent a vertical section of the considered 

offshore pipeline. The figure was represented with MATLAB software based on data from the 

schematic in [4]. 

2.2 Fluid properties characterization 

In this work, the black oil model was used to characterized the oil and gas 

thermophysical properties. The black oil model assumed that there are at most three distinct 

phases: oil, gas and water. Water and oil are assumed to be immiscible and they do not 

exchange mass or change phase. Gas is assumed to be soluble in oil but not in water. All 

black oil model variables are given in S.I units unless precise. 
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Figure 2.1: Vertical sectional profile of the pipeline [4] 

2.2.1 Bubble point pressure 𝑷𝒃  

The bubble point pressure can be determined by [51]: 

𝑃𝑏 = 1.255 [(
𝐺𝑂𝑅

0.0059𝛾𝑔102.14/𝛾𝑜 10−0.00198𝑇
)

0.83

− 1.76]                              (2.1)                  

with T is in °k,  𝑃𝑏 in Bar.   

2.2.2 Gas oil solution 𝑹𝑺 

Standing in 1951 [51], proposed a correlation for the calculation of the gas-oil 

solution. 

𝑅𝑆 = 0.00590𝛾𝑔102.14/𝛾𝑜10−0.00198𝑇(0.797. 10−5𝑃 + 1.4)1.205
     (2.2)                                                  

For pressures greater than bubble point pressure, 𝑅𝑆 = 𝐺𝑂𝑅 .  

with  T in °k  and P in Pa, 𝑅𝑆 in Sm³/Sm³. 

2.2.3 Oil formation volume factor 𝑩𝒐 

𝐵𝑜is defined as the ratio between the oil volume at flow conditions and the oil volume 

at standard conditions.  
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𝐵𝑜 =
𝑉𝑜(𝑃,𝑇)

𝑉𝑜_𝑠𝑐
=

𝑄𝑜 (𝑃,𝑇)

𝑄𝑜_𝑠𝑐
=

𝑉𝑠𝑜

𝑉𝑠𝑜_𝑠𝑐
                                                                                (2.3) 

Oil formation volume factors at or less than bubble point pressures can be estimated by using 

the correlation obtained by Standing (1951) [51]. 

𝐵𝑜 = 0.9759 + 0.952. 10−3 (𝑅𝑆 (
𝛾𝑔

𝛾𝑂𝑆𝐶
)

0,5

+ 0.401𝑇 − 103 )
1.2

     (2.4)                                    

For pressures greater than bubble point pressure, oil formation volume factor is calculated as 

in [51] by: 

𝐵𝑜 = 𝐵𝑜𝑏 𝑒𝑥𝑝[−𝐶𝑜(𝑃 − 105𝑃𝑏)]                                                                         (2.5) 

The coefficient of oil isothermal compressibility is calculated by [29] using the correlation 

below: 

𝐶𝑜 = 10−9
2.81𝑅𝑠+3.10𝑇+

171

𝛾𝑜
−118𝛾𝑔−1102

𝑃
                                                            (2.6) 

With, T in °k, P in Bar, 𝐵𝑜 in m³/m³  and 𝐶𝑜 in Bar-1. 

2.2.4 Oil viscosity 𝝁𝒐 

The oil viscosity is determined for three thermodynamic pressure levels 

- For 𝑃 = 𝑃𝑎𝑡𝑚The dead oil viscosity is calculated using the equation by Beal (1946) 

[27] as presented by [23]: 

𝜇𝑜𝑑 = 𝐶4 (0.32 +
1.8×107

𝐴𝑃𝐼4.53
) (

360

𝐶3+200
)

10
(0.43+

8.33
𝐴𝑃𝐼

)

                                           (2.7) 

- For     𝑃𝑎𝑡𝑚 < 𝑃 ≤ 𝑃𝑏  The live oil viscosity is calculated using Beggs and Robinson 

(1975) [28] formulation                

𝜇𝑜 = 10.715𝐶4(𝐶1𝑅𝑠 + 100)−0.515 (
𝜇𝑜𝑑

𝐶4
)

(5.44(𝐶1𝑅𝑠+150)−0.338)

          (2.8)  

- For   𝑃 > 𝑃𝑏, The relation from Vasquez and Beggs (1980) [29] is used  
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𝜇𝑜 = 𝜇𝑜𝑏 (
𝑃

𝑃𝑏
)

𝑚

                                                                                                            (2.9) 

where,  

𝑚 = 2.6(𝐶2𝑃)1.187 × 𝑒−11.513−8.9810−5𝐶2𝑃
                                                  (2.10)       

𝜇𝑜𝑏  is the viscosity at the bubble-point pressure obtained using and setting 𝑅𝑠 = 𝐺𝑂𝑅 . 

𝜇𝑜is given in Pa.s. 

2.2.4.1 Oil specific gravity and oil density 𝜸𝒐, 𝝆𝒐 

In petroleum industry, the oil specific gravity and oil density are given by: 

𝛾𝑜 =
141.5

𝐴𝑃𝐼+131.5
                                                                                                              (2.11) 

𝜌𝑜_𝑠𝑐 = 𝛾𝑜𝜌𝑤_𝑠𝑐                                                                                                            (2.12) 

𝜌𝑜 =
𝜌𝑜_𝑠𝑐+𝜌𝑔_𝑠𝑐𝑅𝑠

𝐵𝑜
                                                                                                        (2.13) 

where, 

𝜌𝑜_𝑠𝑐 , 𝜌𝑤_𝑠𝑐  and 𝜌𝑔_𝑠𝑐  are standard densities of oil, water and gas respectively. 𝛾𝑜 is the 

specific density of oil.  𝜌𝑜 is the local density of oil at flow conditions. 

2.2.5 Gas compressibility factor Z 

Correlation presented by [23] approximating the abacus data in Standing and Katz 

(1942) [30] is given by: 

𝑍 = 1 −
3.52

100.9813𝑇𝑝𝑟
+

0.274𝑃𝑝𝑟
2

100.8157𝑇𝑝𝑟
                                                                         (2.14) 

𝑇𝑝𝑟 =  
𝑇

𝑇𝑝𝑐
                                                                                                                        (2.15) 

𝑃𝑝𝑟 =  
𝑃

𝑃𝑝𝑐
                                                                                                                        (2.16) 
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where, the pseudocritical properties were calculated using the Standing (1951) [51] 

correlation   

𝑇𝑝𝑐 =
1

𝐶5
(168 + 325𝛾𝑔 − 12.5𝛾𝑔

2)                                                                  (2.17)                                     

𝑃𝑝𝑐 =
1

𝐶2
(677 + 15.0𝛾𝑔 − 37.5𝛾𝑔

2)                                                                 (2.18) 

2.2.6 Gas formation volume factor 𝑩𝒈 

𝐵𝑔  is defined by the ratio of the free gas volume in flow condition to the volume at 

standard condition of the same mass of gas. 

𝐵𝑔 =
𝑉𝑔(𝑃,𝑇)

𝑉𝑔_𝑠𝑐
=

𝜌𝑔_𝑠𝑐

𝜌𝑔
                                                                                               (2.19) 

𝐵𝑔 =
𝑃𝑠𝑐

𝑇𝑠𝑐

𝑍𝑇

𝑃
                                                                                                                     (2.20) 

where, 𝑃𝑠𝑐  and 𝑇𝑠𝑐  are pressure and temperature at standard condition. 𝑇 and 𝑃 are 

temperature and pressure at flow conditions respectively. 

2.2.7 Gas density 𝝆𝒈 

𝜌𝑔 = 0.009225
𝛾𝑔𝑃

𝑍𝑇
                                                                                                   (2.21) 

where T is in °k, P in Pa.   

2.2.8 Gas viscosity 𝝁𝒈  

For the gas viscosity calculation, we used the Lee et al (1966) [31]. 

𝜇𝑔 = 𝐶4𝐹1𝑒𝑥𝑝(𝐹2(𝐶4𝜌𝑔)
𝐹3

)                                                                                (2.22)                                                                                              

𝐹1 =
(9.379+16.07𝑀𝑔)(𝐶5𝑇)1.5

209.2+19260𝑀𝑔+𝐶5𝑇
                                                                                    (2.23)                                                                         

𝐹2 = 3.448 +
986.4

𝐶5𝑇
+ 10.09𝑀𝑔                                                                          (2.24)                                                          
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𝐹3 = 2.447 − 0.2224𝐹2                                                                                         (2.25)                                                               

where T is in °k              

2.2.9 Water formation volume factor 𝑩𝑾 

𝐵𝑊is defined as the ratio between the water volume at flow conditions and the water 

volume at standard conditions. 

𝐵𝑤 =
𝑉𝑤(𝑃,𝑇)

𝑉𝑤_𝑠𝑐
=

𝑄𝑤 (𝑃,𝑇)

𝑄𝑤_𝑠𝑐
                                                                                            (2.26)     

 It can be calculated using the McCain correlation [52]. 

𝐵𝑊 = (1 + ∆𝑉𝑤𝑇 )(1 + ∆𝑉𝑤𝑃 )                                                                            (2.27)                                                               

where ∆𝑉𝑤𝑇   and ∆𝑉𝑤𝑃  are respectively the volume corrections for temperature and pressure, 

obtained by: 

∆𝑉𝑤𝑇 = −1.00010(10−2) + 1.33391(10−4)𝐶3 +

5.50654(10−7)𝐶3
2
                                                                                                   (2.28)    

∆𝑉𝑤𝑃 = −1.95301(10−9)𝐶2𝐶3𝑃 − 1.72834(10−13)𝐶2
2𝐶3𝑃2 −

3.58922(10−7)𝐶2𝑃 − 2.25341(10−10)𝐶2
2𝑃2

                                             (2.29)                                                                            

𝑇is given in °k and P in Pa.  

2.2.10 Water density 

The water density at local flow condition is calculated as: 

𝜌𝑤 =
𝜌𝑤_𝑠𝑐

𝐵𝑤
                                                                                                                      (2.30)                                                                            

where 𝜌𝑤𝑠𝑐  and 𝛾𝑤𝑠𝑐  are respectively water density at standard conditions and specific gravity 

of water at standard condition. 

2.2.11 Water viscosity 

The water viscosity was estimated  by using the  correlation of Collins (1987) [53], 

neglecting salinity effect as presented by [23]. 
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𝜇𝑤𝑠𝑐
= 109.574𝐶4𝐶3

−1.12166
                                                                                (2.31) 

𝜇𝑤 = 𝜇𝑤𝑠𝑐
(0.999 + 4.029510−5𝑘6 + 3.1062 × 10−9𝑘6

2)                 (2.32)            

𝑘6 = (𝐶2𝑃 + 14.7)                                                                                                   (2.33) 

2.2.12 Volumetric flow rate 

Volumetric flow rate of petroleum fluids (gas, oil and water) at flow conditions are 

defined as follow: 

𝑄𝑔 = (𝑄𝑔 _𝑠𝑐 − 𝑅𝑠𝑄𝑜_𝑠𝑐 )𝐵𝑔 = 𝑄𝑜_𝑠𝑐 (𝐺𝑂𝑅 − 𝑅𝑠)𝐵𝑔                               (2.34)          

𝑄𝑜 = 𝑄𝑜_𝑠𝑐 𝐵𝑜                                                                                                               (2.35) 

𝑄𝑤 = 𝑄𝑤 _𝑠𝑐 𝐵𝑤                                                                                                            (2.36) 

𝑄𝑙 = 𝑄𝑜_𝑠𝑐 𝐵𝑜 + 𝑄𝑤 _𝑠𝑐 𝐵𝑤 = 𝑄𝑜_𝑠𝑐 (𝐵𝑜 + 𝑊𝑂𝑅. 𝐵𝑤)                                (2.37) 

where,  𝑄𝑔_𝑠𝑐 , 𝑄𝑤_𝑠𝑐  and 𝑄𝑜_𝑠𝑐  are the flow rates of gas, water and oil at standard conditions. 

𝑄𝑔 , 𝑄𝑤 , 𝑄𝑜  and 𝑄𝑙 are the flow rates of gas, water, oil and liquid at flow conditions.𝐺𝑂𝑅 and 

𝑊𝑂𝑅 are gas oil ratio and water oil ratio at surface. 

2.3 Multiphase pressure prediction model  

Pressure model used in this work was derived by replacing in the Dukler et al pressure 

model equation (2.38), the liquid hold up in the original model by using drift flux parameters 

obtained from Woldesemayat and Ghajar [36]. The Dukler and Taitel correlation [37] is given 

by:  

(
𝑑𝑃

𝑑𝐿
) =

𝑓𝑡𝑝𝜌𝑚𝑉𝑚
2

2𝐷
+ 𝜌𝑚𝑔 sin(𝜃)                                                                            (2.38) 

In this equation, the fluid density, mixture velocity and friction factor are calculated by 

combining black oil correlations with drift flux parameters. Thus,  

The liquid density at standard conditions and at flow conditions are given by: 

𝜌𝑙_𝑠𝑐 = 𝑓𝑤𝜌𝑤_𝑠𝑐 + (1 − 𝑓𝑤)𝜌𝑜_𝑠𝑐 =
𝑊𝑂𝑅

1+𝑊𝑂𝑅
𝜌𝑤_𝑠𝑐 +

1

1+𝑊𝑂𝑅
𝜌𝑜_𝑠𝑐       (2.39) 
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𝜌𝑙 =
𝜌𝑔_𝑠𝑐𝑅𝑠𝑙+𝜌𝑙_𝑠𝑐

𝐵𝑙
                                                                                                        (2.40) 

in these equations, 𝜌𝑤_𝑠𝑐  and 𝜌𝑜_𝑠𝑐  are the water and oil densities at the standard conditions. 

𝐵𝑙is the volume formation factor of the liquid given by Andreolli (2017) as follow: 

 𝑅𝑠𝑙 the gas-liquid ration defined as the ratio of the quantity of gas solubilized in the oil at flow 

condition to the liquid volume, both expressed at standard conditions.  

𝑅𝑠𝑙 =
1

1+𝑊𝑂𝑅
𝑅𝑠                                                                                                            (2.41) 

From the above, the density of gas and liquid homogeneous mixture for no slip condition can 

be obtained by: 

𝜌𝑛 = [𝜌𝑜(1 − 𝑓𝑤) + 𝜌𝑤𝑓𝑤]𝜆𝐿 + 𝜌𝑔𝜆𝐺                                                             (2.42) 

𝐵𝑙 =
𝑊𝑂𝑅

1+𝑊𝑂𝑅
𝐵𝑤 +

1

1+𝑊𝑂𝑅
𝐵𝑜                                                                                  (2.43) 

For slippage between phases: 

𝜌𝑚 =
𝜌𝑔_𝑠𝑐𝑅𝑠𝑙+𝜌𝑙_𝑠𝑐

𝐵𝑙
𝛼𝑙 + 𝜌𝑔𝛼                                                                                  (2.44) 

Vsg =
𝑄𝑔

𝐴𝑝
=

(𝑄𝑔_𝑠𝑐−𝑄𝑜_𝑠𝑐𝑅𝑠)𝐵𝑔

𝐴𝑝
=

𝑄𝑜(𝐺𝑂𝑅 −𝑅𝑠)𝐵𝑔

𝐴𝑝
                                                (2.45) 

𝑉𝑠𝑜 =
𝑄𝑜

𝐴𝑝
=

𝑄𝑜_𝑠𝑐𝐵𝑜

𝐴𝑝
                                                                                                      (2.46) 

Vsw =
𝑄𝑤

𝐴𝑝
=

𝑄𝑤_𝑠𝑐𝐵𝑤

𝐴𝑝
                                                                                                  (2.47) 

𝑉𝑠𝑙 =
𝑄𝑜_𝑠𝑐𝐵𝑜

𝐴𝑝
+

𝑄𝑤_𝑠𝑐𝐵𝑤

𝐴𝑝
                                                                                             (2.48) 

The actual velocity represents the local or the true phase velocity of each phase in the pipe. It 

can be calculated as follow: 
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𝑉𝑔 =
𝑄𝑔

𝐴𝑔
=

𝑄𝑔

𝐴𝑝𝛼
=

𝑉𝑠𝑔

𝛼
                                                                                                 (2.49) 

𝑉𝐿 =
𝑄𝐿

𝐴𝑔
=

𝑄𝐿

𝐴𝑝𝛼𝑙
=

𝑉𝑠𝐿

𝛼𝑙
                                                                                               (2.50)                                                                                     

The mixture velocity can then be defined as the sum of the superficial gas and liquid velocit ies . 

Thus,  

Vm =
𝑄𝑜_𝑠𝑐𝐵𝑜

𝐴𝑝
+

𝑄𝑤_𝑠𝑐𝐵𝑤

𝐴𝑝
+

𝑄𝑜(𝐺𝑂𝑅 −𝑅𝑠)𝐵𝑔

𝐴𝑝
                                                           (2.51) 

Combining these equations yields the final pressure model developed in this work. 

(
𝑑𝑃

𝑑𝐿
) =

𝑓𝑡𝑝(
𝜌𝑔_𝑠𝑐𝑅𝑠𝑙+𝜌𝑙_𝑠𝑐

𝐵𝑙
𝛼𝑙+0.009225

𝛾𝑔𝑃

𝑍𝑇
𝛼)(

𝑄𝑜(𝐺𝑂𝑅−𝑅𝑠)𝐵𝑔
𝐴𝑝

)
2

2𝐷
+

(
𝜌𝑔_𝑠𝑐𝑅𝑠𝑙+𝜌𝑙_𝑠𝑐

𝐵𝑙
𝛼𝑙 + 0.009225

𝛾𝑔𝑃

𝑍𝑇
𝛼) 𝑔 sin(𝜃)                                             (2.52)                             

The pressure model obtained depend on the drift flux parameter and black oil properties. This 

model was compared to four others pressure models presented herein described by equations 

(1.46), (1.68), (1.73) and (1.78). It was also compared to field data and PIPESIM model in 

order to evaluate its accuracy.  

2.4 Temperature prediction model  

The temperature profile is derived from the energy conservation equation. The mixture 

energy conservation equation used in this work is based on a homogeneous fluid model, 

where the gas and liquid phases are treated as a pseudo-phase, and the properties are the 

volume average of the independent phases [54]. The energy balance equation was derived 

from [55] where the hydrate terms was neglected. This equation includes terms for the 

transient behavior of the system enthalpy, the convection of energy, the transient change in 

system pressure, fluid viscous dissipation, change in potential energy, pipe wall heat transfer 

to the environment. The energy balance equation in terms of the pseudo-phase enthalpy is, 

𝜕ℎ

𝜕𝑡
− 𝑣𝑚

𝜕ℎ

𝜕𝑥
=

1

𝜌𝑚

𝜕𝑃

𝜕𝑡
− 𝑣𝑚

𝜕𝑣𝑚

𝜕𝑡
− 𝑣𝑚 𝑣𝑚

𝜕𝑣𝑚

𝜕𝑡
− 𝑣𝑚 𝑔 sin(𝜃) −

�̇�𝜋𝑑

𝐴𝑝𝜌𝑚
 (2.53) 
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Where h is mixture enthalpy per unit mass and �̇� is the wall heat flux. 

The following is the procedure to express the mixture energy conservation equation explicitly 

in terms of temperature. From the thermodynamic theory, entropy (s) is a function of pressure 

(P) and temperature (T). 

𝑑𝑠𝑘 = (
𝜕𝑠𝑘

𝜕𝑇𝑘
)

𝑃𝑘
𝑑𝑇𝑘 + (

𝜕 𝑠𝑘

𝜕𝑃𝑘
)

𝑇𝑘
𝑑𝑃𝑘                                                                   (2.54) 

The specific enthalpy is also a function of temperature and pressure 

𝑑ℎ𝑘 = 𝐶𝑃𝑘𝑑𝑇𝑘 + (
𝜕ℎ𝑘

𝜕𝑃𝑘
)

𝑇𝑘
𝑑𝑃𝑘                                                                             (2.55) 

For simple compressible systems of fixed chemical composition subject to an internally 

reversible process, the first law of thermodynamic can be written as, 

𝑑𝑠𝑘 =
𝑑ℎ𝑘

𝑇𝑘
− 𝑣𝑘

𝑑𝑃𝑘

𝑇𝑘
                                                                                                   (2.56) 

Where, 𝑣𝑘 is specific volume and 𝑘 denotes either gas or liquid. By substituting (2.55) into 

(2.56), we have, 

𝑑𝑠𝑘 =
𝐶𝑃𝑘𝑑𝑇𝑘

𝑇𝑘
+

1

𝑇𝑘
[(

𝜕ℎ𝑘

𝜕𝑃𝑘
)

𝑇𝑘
𝑑𝑃𝑘 − 𝑣𝑘] 𝑑𝑃𝑘                                                 (2.57) 

From equations (2.54) and (2.57), the following equation can be obtained, 

(
𝜕𝑠𝑘

𝜕𝑇𝑘
)

𝑃𝑘
=

𝐶𝑃𝑘

𝑇𝑘
                                                                                                              (2.58) 

(
𝜕 𝑠𝑘

𝜕𝑃𝑘
)

𝑇𝑘
= − (

𝜕𝑉𝑘

𝜕𝑇𝑘
)

𝑃𝑘
                                                                                              (2.59) 

𝑑𝑠𝑘 =
𝐶𝑃𝑘

𝑇𝑘
𝑑𝑇𝑘 − (

𝜕𝑉𝑘

𝜕𝑇𝑘
)

𝑃𝑘
𝑑𝑃𝑘                                                                              (2.60) 

Solving for the enthalpy gives 

𝑑ℎ𝑘 = 𝐶𝑃𝑘𝑑𝑇𝑘 + [−𝑇𝑘 (
𝜕𝑉𝑘

𝜕 𝑇𝑘
)

𝑃𝑘
+ 𝑣𝑘 ] 𝑑𝑃𝑘                                                   (2.61) 
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Deriving equation (2.60) with respect to pressure at constant enthalpy gives, 

𝜂𝑘 = (
𝜕𝑇𝑘

𝜕𝑃𝑘
)

ℎ𝑘
=

1

𝐶𝑃𝑘
[𝑇𝑘 (

𝜕𝑉𝑘

𝜕𝑇𝑘
)

𝑃𝑘
− 𝑣𝑘]                                                         (2.62)   

Where 𝜂𝑘  is the Joule-Thomson coefficient of phase k. by substituting equation (2.62) into 

equation (2.61) we have, 

𝑑ℎ𝑘 = 𝐶𝑃𝑘𝑑𝑇𝑘 + 𝜂𝑘𝐶𝑃𝑘𝑑𝑃𝑘                                                                                  (2.70) 

Substituting equation (2.70) into equation (2.53) gives the energy balance equation in terms of 

temperature, 

𝐶𝑃𝑚 (
𝜕𝑇𝑚

𝜕𝑡
+ 𝑣𝑚

𝜕𝑇𝑚

𝜕𝐿
) − 𝜒 (

𝜕𝑃

𝜕𝑡
+ 𝑣𝑚

𝜕𝑃

𝜕𝐿
) −

1

𝜌𝑚

𝜕𝑃

𝜕𝑡
+ 𝑣𝑚 (

𝜕𝑣𝑚

𝜕𝑡
+

𝑣𝑚
𝜕𝑣𝑚

𝜕𝐿
) = −𝑣𝑚 𝑔 sin 𝜃 −

�̇�𝜋𝑑

𝐴𝑝𝜌𝑚
                                                                          (2.71) 

Where:  

𝜒 =
𝜌𝑔𝛼𝜂𝑔𝐶𝑝,𝑔+𝜌𝐿𝐻𝐿𝜂𝐿𝐶𝑝,𝐿

𝜌𝑚
                                                                                        (2.72) 

𝐶𝑝𝑚 is the average specific heat capacity of the multiphase flow calculated using equations 

(2.73) and (2.74) below as in [56]. 

 𝐶𝑝𝑚 = 𝐶𝑝𝑔𝛼
𝜌𝑔

𝜌𝑚
+ 𝐶𝑝𝐿(1 − 𝛼)

𝜌𝐿

𝜌𝑚
                                                                  (2.73)                                                                           

𝐶𝑝𝐿 = (
𝑄𝑜

𝑄𝑜+𝑄𝑤
) 𝐶𝑝𝑜 + (

𝑄𝑤

𝑄𝑜+𝑄𝑤
)𝐶𝑝𝑤                                                                 (2.74) 

 𝜂𝑚 , is the average Joule-Thomson coefficient calculated as shown in equation (2.75 through 

equation (2.79) as shown below, 

𝜂𝑚 = −
1

𝑤𝑚𝐶𝑝𝑚
(𝑤𝑔𝐶𝑝𝑔𝜂𝑔 + 𝑤𝑙𝐶𝑝𝑙𝜂𝑙)                                                          (2.75) 

𝜂𝑔 = (
1

𝜌𝑔𝐶𝑝𝑔

)[
𝑇𝑚

𝑍
(

𝑑𝑍

𝑑𝑇𝑚
)

𝑝

]                                                                                    (2.76)                                                                                            
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𝜂𝐿 =
1

𝜌𝐿𝐶𝑝𝐿

(𝑇𝑚𝛽 − 1)                                                                                             (2.77) 

Equation (2.78) below calculated the thermal expansion of the liquid phase 𝛽. 

𝛽 =
1

𝑉𝐿
(

𝜕𝑉𝐿

𝜕𝑇
) =

1

𝐵𝐿
(

𝜕𝐵𝐿

𝜕𝑇
) =

𝑊𝑂𝑅

1+𝑊𝑂𝑅

𝜕𝐵𝑤

𝜕𝑇
+

1

1+𝑊𝑂𝑅

𝜕𝐵𝑜

𝜕𝑇
                              (2.78) 

𝑤𝑚 is the average mixture mass flow rate given by, 

𝑤𝑚 = 𝜌𝑚𝑉𝑚 𝐴𝑝                                                                                                             (2.79) 

The heat exchange between the hot fluids inside pipeline and the cooler environment is given 

by: 

𝑞 = 𝑈𝑜 (𝑇𝑚 − 𝑇𝑒)                                                                                                       (2.80) 

𝑈𝑜  is the overall heat transfer coefficient given by equation (2.81) below: 

1

𝑈𝑜
= 𝑟𝑖𝑛𝑠 (

1

𝑟𝑖ℎ𝑖𝑛
+

1

ℎ𝑝𝑖𝑝𝑒
+

1

ℎ𝑖𝑛𝑠
 +

1

ℎ𝑠𝑢𝑟
)                                                            (2.81)                       

where parameters ℎ𝑖𝑛, ℎ𝑝𝑖𝑝𝑒, ℎ𝑖𝑛𝑠  and ℎ𝑠𝑢𝑟  are, respectively, the heat transfer coefficient of 

the multiphase fluid flowing in the pipe (“in”), the thermal conductivity of the metallic pipe 

(“pipe”), the thermal conductivity of the insulation layer (“layer”), and the heat transfer 

coefficient of the surrounding environment (“sur”), which can be either water or soil. 𝑟𝑖𝑛𝑠 , 𝑟𝑖 

and 𝑟𝑜  are respectively the pipeline outer radius including insulation, the pipeline inner radius 

and the pipeline outer radius excluding insulation. 

According to [57], the terms ℎ𝑖𝑛 at the right hand of equation (2.81) can be calculated using 

equation (2.82) through equation (2.92):  

ℎ𝑖𝑛 =
𝐾𝑡𝑝𝑁𝑢𝑡𝑝

𝐷
                                                                                                               (2.82) 

where: 

𝐾𝑡𝑝 = 𝛼𝑘𝑔 + (1 − 𝛼)𝑘𝐿                                                                                         (2.83)                               

For laminar flow in long pipe ( 𝑅𝑒𝑇 ≤ 2000 )                                                                             



Chapter 2: Methodology for thermal model development: insulation design 
 

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 63 

 

𝑁𝑢𝑡𝑝 = 1.86 [𝑅𝑒𝑇𝑃𝑟𝑚 (
𝐷

𝐿
)]

1

3
                                                                               (2.84) 

For turbulent flow ( 𝑅𝑒𝑇 ≥ 6000 )           

𝑁𝑢𝑡𝑝 = 0.023 ReT
0.8Prm

0.33 (1 + (
𝐷

𝐿
)

0.7
)                                                       (2.85) 

For transition flow regime (2000 ≤ 𝑅𝑒𝑇 ≤ 6000 )                                                            

𝑁𝑢𝑡𝑝 = 𝑁𝑢𝑙𝑎𝑚𝑖𝑛𝑎𝑟 [
𝑅𝑒𝑇

6000
]

𝑎

                                                                                   (2.86) 

where, parameter 𝑎 is given by: 

 𝑎 =
ln (

𝑁𝑢𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡
𝑁𝑢𝑙𝑎𝑚𝑖𝑛𝑎𝑟

)

𝑙𝑛(
𝑅𝑒𝑚𝑎𝑥
𝑅𝑒𝑚𝑖𝑛

)
                                                                                                    (2.87) 

The total Reynolds number is calculated as follow: 

𝑅𝑒𝑇 =
𝜌𝐿𝑉𝑠𝐿 𝐷

𝜇𝐿
+

𝜌𝑔𝑉𝑠𝑔𝐷

𝜇𝑔
                                                                                            (2.88) 

The Prandtl number of the mixture is given by: 

𝑃𝑟𝑚 =
𝜇𝑚𝐶𝑝𝑚

𝐾𝑚
                                                                                                               (2.89) 

The mixture thermal conductivity is given as: 

𝐾𝑚 =
𝑘𝑔𝑘𝐿

(1−𝛼)𝑘𝑔+𝛼𝑘𝐿
                                                                                                      (2.90) 

The thermal conductivity of the metallic pipe ℎ𝑝𝑖𝑝𝑒 and that of the insulation layer ℎ𝑖𝑛𝑠  are 

calculated as follow:  

ℎ𝑝𝑖𝑝𝑒 =
𝑘𝑝𝑖𝑝𝑒

ln(
𝑟𝑜
𝑟𝑖

)
                                                                                                               (2.91) 



Chapter 2: Methodology for thermal model development: insulation design 
 

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 64 

 

ℎ𝑖𝑛𝑠 =
𝑘𝑖𝑛𝑠

ln(
𝑟𝑖𝑛𝑠

𝑟𝑜
)
                                                                                                               (2.92) 

The surrounding heat transfer coefficient ℎ𝑠𝑢𝑟  depend on the nature of the surrounding 

environment. The correlation of average external heat transfer coefficient is calculated by the 

equation following, from [54]. For seawater environment, we have: 

𝑁𝑢𝑜 = 0.027 . 𝑅𝑒𝑜
0.8𝑃𝑟𝑜

0.3
                                                                                           (2.93) 

𝑅𝑒𝑜 =
𝜌𝑜𝑉𝑜𝐷

𝜇𝑜
                                                                                                                  (2.94) 

𝑃𝑟𝑜 =
𝜇𝑜𝐶𝑝𝑜

𝐾𝑜
                                                                                                                   (2.95) 

ℎ𝑠𝑢𝑟 =
𝐾𝑜𝑁𝑢𝑜

𝐷
                                                                                                                (2.96) 

In steady state conditions, assuming the kinetic term to be negligible, equation (2.71) 

becomes: 

𝑑𝑇𝑚

𝑑𝐿
= −

𝑈𝑜𝜋𝑑(𝑇𝑚−𝑇𝑒)

𝐶𝑝𝑚
𝑤𝑚

+ 𝜂𝑚
𝑑𝑃

𝑑𝐿
−

𝑔 sin(𝜃)

𝐶𝑝𝑚

                                                         (2.97) 

Equation (2.97) represents the temperature model of a mixture of gas-liquid flowing through 

an offshore pipeline in which the pressure gradient is obtained by using equation (2.52).  

2.6 Numerical simulations algorithm 

The finite difference method was used to discretize the temperature model given by 

equation (2.97). All the equations in this study are solved simultaneously using MATLAB 

software. Numerically, we divide the pipeline into sections, and each section was divided into 

cells and consider average value of temperature and pressure in the cells. The numerical 

solution obtained using iterative approached is therefore given by: 

𝑇𝑚(𝑖+1)−𝑇𝑚(𝑖)

∆𝑥
= (

𝑇𝑒−𝑇𝑚

𝐴
+ 𝜂𝑚

𝑑𝑃

𝑑𝐿
−

𝑔 sin(𝜃)

𝐶𝑝𝑚

)
𝑖

                                                (2.98)   

In which, the parameter 𝐴 is: 
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𝐴𝑖 = (
𝐶𝑝𝑚

𝑤𝑚

𝑈𝑜𝜋𝐷
)

𝑖
                                                                                                            (2.99)  

i. Given the initial value of temperature and pressure at node 𝑖, guess an initial 

predicted temperature and pressure at node 𝑖 + 1 by setting for example  𝑇𝑖+1, = 𝑇𝑖 

and 𝑃𝑖+1 = 𝑃𝑖. 

ii. Calculate the average quantities for the temperature and pressure 𝑇𝐴𝑣 =
𝑇𝑖+1+𝑇𝑖

2
 and 

𝑃𝐴𝑣 =
𝑃𝑖 +1+𝑃𝑖

2
 . 

iii. Calculate all the flow parameters and the physical properties at 𝑇𝐴𝑣 and 𝑃𝐴𝑣. 

iv. Computes pressure predicted 𝑃𝑖+1
𝑝𝑟𝑒𝑑  from the models. 

v. Test convergence for pressure by comparing the calculated pressure to the guess 

pressure as follow:=
|𝑃𝑖 +1

𝑝𝑟𝑒𝑑 −𝑃𝑖 +1|

𝑃𝑖 +1
 , If 𝜀 < 10−6  the procedure converge. If not, 

set 𝑃𝑖+1 = 𝑃𝑖+1
𝑝𝑟𝑒𝑑 and calculate a new average pressure and repeat step 3 to 5 

until the condition is match. 

vi. Calculate the temperature 𝑇𝑖+1
𝑝𝑟𝑒𝑑 from the temperature model 

Again, if temperature is not the same as the assumed one, we need to go back to the process 2 

until converge is achieved. 

2.7 PIPESIM thermal model 

 

PIPESIM multiphase thermal model was built in this study in order to validate the pressure 

and the temperature models developed and presented here.  A PIPESIM model is a 

representation of a flowing system that can be used to simulate fluid flow through the system. 

A model can be a single well with or without connected surface piping and equipment, a 

pipeline transporting fluid from one point to another, or multiple wells, pipeline, and surface 

equipment connected together to represent a large and complex flow network.  

2.7.1 Basic model building workflow 

 

The network schematic model was used to build the pipeline model in PIPESIM.  Figure 

2.2 below shows a sketch of the simulation modeling of the pipeline in PIPESIM 
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Figure 2.2: Sketch of the simulation modeling of subsea pipeline in PIPESIM. 

Next, pipeline data was introduced in the PIPESIM as it is shown in figure 2.3 below, 

 

Figure 2.3: Editing pipeline data with PIPESIM. 

2.7.2 Create or edit fluid models 

Fluid modeling is a fundamental aspect of multiphase flow simulation. Before running 

any simulations, you need to create one or more fluid models. Fluid models are used to describe  

phase behavior and provide physical and transport properties of the fluid required for any 

simulation run. PIPESIM supports several types of fluids. After you select a fluid type on the 

home tab, all the objects within the model automatically use that fluid type. Even though you 
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can store multiple types of fluids within an object, PIPESIM only displays the one you selected 

on the home tab and uses it in simulation. These fluid types are currently available: Black oil 

and Compositional Fluid models. Black oil model was also used in pipesim for the fluid 

characterization. After the pipeline model was built, the fluid model was edited as it is shown 

in figure 2.4 below. 

 

Figure 2.4: Sketch fluid model edited in PIPESIM 

In this work, the revised Beggs and brill model was chose for the simulation of the pressure 

gradient, see figure 2.5 

 

Figure 2.5: setting correlation for multiphase simulation using PIPESIM. 
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2.7.3 Energy equation for steady-state flow 

PIPESIM uses the first law of thermodynamics to perform a rigorous heat transfer 

balance on each pipe segment. The first law of thermodynamics is the mathematical formula t ion 

of the principle of conservation of energy applied to a process occurring in a closed system (a 

system of constant mass m). It equates the total energy change of the system to the sum of the 

heat added to the system and the work done by the system. For steady-state flow, it connects 

the change in properties between the streams flowing into and out of an arbitrary control volume 

(pipe segment) with the heat and work quantities across the boundaries of the control volume 

(pipe segment). For a multiphase fluid in steady-state flow, the energy equation is given by: 

∆ [(𝐻 +
1

2
𝑉𝑚

2 + 𝑔𝑧) 𝑑𝑚] = ∑ 𝛿𝑄 − 𝛿𝑊                                                     (2.100) 

where the specific enthalpy 

𝐻 = 𝑈 + 𝑃𝑉                                                                                    (2.101) 

is a state property of the system since the internal energy 𝑈 the pressure 𝑃 and the volume 𝑉 

are state properties of the system. It is clear from the left-hand side of equation 2.100, that the 

change in total energy is the sum of the change in enthalpy energy, 

∆[𝐻𝑑𝑚] = ∆[(𝑈 + 𝑃𝑉)𝑑𝑚]                                                                              (2.102) 

The change in gravitational potential energy: 

∆(𝐸𝑝) = ∆[(𝑔𝑧)𝑑𝑚]                                                                                             (2.103)  

Moreover, the change in total kinetic energy (based on the mixture velocity) 

∆(𝐸𝑘) = ∆ [(
1

2
𝑉𝑚

2) 𝑑𝑚]                                                                                         (2.104) 

Which is assumed to be negligible. 

On the right-hand side of equation 2.100,  ∑ 𝛿𝑄 includes all the heat transferred to the control 

volume (pipe segment) and 𝛿𝑊 represents the shaft work, that is work transmitted across the 

boundaries of the control volume (pipe segment) by a rotating or reciprocating shaft. 

2.7.4 Run simulations 
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You can perform nodal analysis, reservoir simulation, and use other analytical tools 

(such as pressure/temperature (P/T) profiles, VFP tables, and network simulation) to calculate 

the distribution of flowrates, temperatures, and pressures throughout the system and plan new 

field developments. In figure 2.6 below, a sketch of pipeline simulation model is presented. 

 

Figure 2.6: sketch of pipeline simulation model with PIPESIM. 

2.8 Optimum insulation  

In previous sections, we developed a thermal model that described the distribution of 

pressure and temperature through a subsea pipeline. In order to avoid some flow assurance 

issues such as precipitation and solid deposits, thermal insulation is applied to subsea pipelines  

to maintain the temperature of crude oil above a critical level, such as the wax appearance 

temperature (WAT). The position within the entire system where the lowest temperature is 

observed is a risk point. The problem here is to find out the optimum insulation thickness that 

meets the insulation requirement along with the lowest insulation material consumption. This 

objective has been achieved using three approaches: numerical simulations, combined machine 

learning with genetic algorithm using MATLAB and simulation run using RAPIDMINER. 

2.8.1 Numerical simulations  

For the numerical approach, we defined manually and gradually the different insulat ion 

thickness. Firstly, the insulation thickness was ranged from 0.0254 to 0.0635m. Moreover, it 

was further extended with an increasing step of 0.0127m until the requirement is satisfied. For 
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each insulation thickness and for each insulating material, numerical simulation was performed 

until the stopping criterial defined by equation (2.105): 

𝑇𝑚𝑖𝑛 ≥ 𝐶                                                                                                                    (2.105) 

𝑇𝑚𝑖𝑛  is the minimum temperature of the system given in (°K) and C is the requirement set 

here at 40°C. 

2.8.2 Genetic algorithm combined with machine learning techniques using 

MATLAB  

 

The problem here is to find out the optimum insulation thickness of three different 

insulating materials that meets the thermal criteria by applying genetic algorithm to machine 

learning techniques using MATLAB. As state by [50], for insulation design, the insula t ion 

requirement for pipeline and flowline segments is to keep the temperature at the risk point 

higher than the critical level. In fact, various combinations of insulation thickness can lead to 

the same lowest temperature. Theoretically, for a certain subsea production system, there exists 

one insulation design that meets the insulation requirement with the lowest insulation volume. 

The optimizing approach adopted here was to set the insulation volume as the objective function 

and the insulation requirement as the constraint. The objective function is defined by  

𝐹 = ∑ 𝜋𝐿 ((𝑋𝑖 + 𝐷𝑖)2 − (𝐷𝑖
2))𝑛=200

𝑖=1                                                            (2.106) 

where, n is the number of gathered data points, 𝑋𝑖 is the insulation thickness at the ith data point 

given in (m), 𝐷𝑖 is the external diameter at the ith data point in (m). 𝐿 is the length of the subsea 

pipeline in (m). 

For a certain subsea production system, the minimum temperature of the whole system 

is a function of the insulation thicknesses as shown in equation (2.107) below: 

𝑇𝑚𝑖𝑛 = 𝑓(𝑋𝑖)                                                                                                             (2.107) 

As state in [50], machine learning techniques can skip all the physical theories and 

models to extract direct patterns between data, thereby providing computers with the ability to 

learn without being explicitly programmed. In this study, machine learning techniques were 

employed to establish a pattern between the minimum temperature of the system and the 

insulation thickness. Supervised machine learning technique was used here because as 
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mentioned above, in supervised learning, the training data you feed to the algorithm includes 

the desired solutions. Hence, for a given 𝑋𝑖 and 𝑌𝑖 = 𝑇𝑚𝑖𝑛 (𝑖) , the goal in machine learning is 

to find an appropriate function 𝑓(𝑋𝑖) that will be able to depict the pattern between 𝑇𝑚𝑖𝑛  and 𝑋 

as follow: 

𝑌 = 𝑓(𝑋) + 𝜀𝑒𝑟𝑟𝑜𝑟                                                                                                  (2.108)  

𝑌 is the corresponding minimum temperature of the system and 𝑓(𝑋) is the predicted minimum 

temperature. Defining the equation 𝑓(𝑋) form, is the first step, which includes the selection of 

the equation form from types such as polynomial, exponential, power function , natural 

logarithm and so on. The arrangement of the variables is also critical in this step. The second 

step is to train the unknown parameters in the equations by feeding a large number of examples 

to the learning algorithm. A polynomial equation is commonly used in linear regression. The 

ordinary form of a polynomial equation is: 

𝑌 = 𝜃0 + 𝜃1𝑋1 + ⋯ + 𝜃𝑛𝑋𝑛 + 𝜃𝑛+1𝑋1
2 + ⋯ + 𝜃2𝑛𝑋𝑛

2 + 𝜀               (2.109) 

𝑋 𝑇 = [1, 𝑋1 , 𝑋2 , … , 𝑋𝑛, 𝑋1
2 , 𝑋2

2, … , 𝑋𝑛
𝑚]                                                        (2.110) 

𝜃𝑇 = [𝜃0 , 𝜃1 , … , 𝜃𝑛 , 𝜃𝑛+1 , … 𝜃2𝑛]                                                                   (2.111) 

The learning features are 𝑋𝑇and the unknown parameters are 𝜃𝑇 . These parameters are 

determined by minimizing the cost function below: 

𝐽(𝜃) =
1

2
∑ (𝜃𝑇𝑋𝑗 − 𝑌𝑗)

2𝑛
𝑗=1 +

𝜆

𝑚𝑛1
∑ 𝜃𝑗

2𝑚𝑛1
𝑗=1                                             (2.112) 

Where 
𝜆

𝑚𝑛
∑ 𝜃𝑗

2𝑚𝑛
𝑗=1  is the regularization term to prevent overfitting.  𝑛 is the number of training 

examples, m is the maximum power index of a polynomial equation, 𝑛1 is the number of first-

order features of a polynomial equation, and 𝜆  is the tuning factor. Because the relationship 

between the minimum temperature of the system and the insulation thickness is non-linear, the 

form of the predicted function proposed was the same as in equation (2.109) with the difference 

that the exponential index of each variable was not fixed to an integer, but was considered an 

unknown constant, which was trained by the supervised learning algorithm. More specifica l ly, 

the predicted function equation form for this study was given by: 
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𝑌 = 𝜃0 + 𝜃1𝑋 𝜃2 + 𝜀                                                                                          (2.113) The 

form of this equation was inspired by an observation in the scatter plot of the minimum 

temperature of the system and the insulation thickness. Once an appropriate 𝜃𝑇  was obtained 

by training, which makes the error 𝜀 small enough, the direct pattern between minimum 

temperature and insulation thickness was then established as: 

𝑇𝑚𝑖𝑛
𝑗 = 𝜃0 + 𝜃1𝑋𝑗

𝜃2                                                                                              (2.114) 

The database for the training process was generated by simulation. After obtaining equation 

(2.114), optimization algorithms was then used to assess the best set of insulation thickness. 

The fitting function equation form was trained by machine learning techniques with the 

database. The database was divided into three parts: training data set (70%), cross-validat ion 

data set (10%), and testing data set (20%). The fitting parameters were trained with the training 

data and the fitting function was tested with the testing data. The cross-validation data was then 

used to validate some special fitting parameters. Finally, all the trained equations were 

evaluated by their performance in terms of prediction accuracy.  Below are the different steps 

that we employed in determining the optimum insulation thickness: 

 200 insulation thickness were created randomly between 10 to 700 mm 

 For each insulation thickness created, the minimum temperature of the system was 

calculated using the thermal model built in this thesis. 

 Based on these dataset, supervised machine learning technique was used in order to 

establish a pattern between the minimum temperature and the insulation thickness.  

 The database was then divided into three parts: training data set (70%), cross-validat ion 

data set (10%), and testing data set (20%). The fitting parameters are trained with the 

training data and the fitting function is tested with the testing data. The cross-validat ion 

data can be used to validate some special fitting parameters. 

 Finally, the genetic algorithm was then employed to find out the optimum insula t ion 

thickness with respect to the thermal requirement. 

In MATLAB, there are two ways you can use the genetic algorithm with the toolbox: 

- Calling the genetic algorithm function ga at the command line. 

- Using the Genetic Algorithm Tool, a graphical interface to the genetic algorithm see 

figure 2.7 below. 
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Figure 2.7 below is a sketch of graphical interface of genetic algorithm in MATLAB. 

This MATLAB toolbox was used to find out the optimum insulation thickness in this study. 

2.8.3 Optimum insulation using RAPIDMINER software 

In RAPIDMINER, we built and run six supervised machine learning algorithms and we 

applied genetic algorithm operator to find out the optimum insulation thickness that meets the 

thermal requirement. The steps in building a genetic algorithm optimization using machine 

learning techniques in RAPIDMINER are as follow: 

 Basic processing  

- Load and process data 

- Creates training and a validation set 

- Performs some basic feature engineering and preprocessing such as missing value 

handling or encoding.  

 Feature engineering and modeling 

- Handle text columns if desired and stores the text processing model 

- Performs automatic feature engineering if desired. This happens in addition to the 

basic feature engineering done before text processing, date handling encoding etc. 

- Performs the actual model training and automatic hyperparameter tuning (parameter 

optimization) if desired. 

 Transform validation and scoring data 
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- Transform the validation data (known target value) using the same preprocessing 

and features 

- Transform the scoring data (no know target value) using the same preprocessing and 

features 

 Scoring m validation explanations, weights and simulator 

- Applies the model on the validation and the scoring data sets for scoring. Also 

explain the predictions and calculate model-specific weights. 

- Perform a multiple hold-out set validation with robust estimation which provides 

similar quality of performance estimations than a cross validation with smaller 

runtimes. 

 Production model 

- Creates a final production model by training a model with the same parameters on 

the combined training and validation data sets. 

The figure 2.7 below presents the RAPIDMINER process interface. 

 

Figure 2.8 below is a sketch of graphical interface of genetic algorithm in RAPIDMINER. 

Generally, for a subsea production system, the optimization steps were as follows: 

- Build a subsea system model and gather enough model results to prepare the training 

database (the performance of the linear regression depends on the number of model 

results).  

-  Run a non-linear regression algorithm to extract a direct pattern between minimum 

temperature and insulation thickness. 
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- Run GA to find the insulation design, which meets the insulation requirements using 

the minimum volume of insulation material. 

2.9 Flow assurance solids risk formation analyses with logistic regression 

As state earlier, flow assurance solids formation is increasingly important issue in subsea 

oil and gas production pipelines due to its unexpected disaster such as reduction of the flow 

area resulting in a decreasing production rate. To ensure that these issues do not occur suddenly, 

factors such as temperature that mostly contribute to its formation should be analyzed seriously. 

Logistic regression model describes a relationship between an outcome and a set of independent 

variables. It has been using widely either in the medical field, business and marketing studies 

or as simple as determining yes or no in the decision-making process [58]. Here, the logist ic 

regression analyses are used to answer whether yes or no the solids formation will occur during 

transportation of oil and gas in long subsea pipeline for given insulation thickness and minimum 

temperature of the system. The features used include insulation thickness and minimum 

temperature of the system. The Logistic Regression procedure is designed to fit a regression 

model in which the dependent variable Y characterizes an event with only two possible 

outcomes. Two types of data may be modeled: 

- Data in which Y consists of a set of 0’s and 1’s, where 1 represents the occurrence 

of one of the 2 outcomes. 

- Data in which Y represents the proportion of time that one of the 2 outcomes 

occurred. 

The fitted regression model relates Y to one or more predictor variables X, which may 

be either quantitative or categorical. In this procedure, it is assumed that the probability of an 

event is related to the predictors through a logistic function. The procedure fits a model using 

either maximum likelihood or weighted least squares. The logistic model relates the probability 

of occurrence P of the outcome counted by Y to the predictor variables X. The model takes the 

form:  

𝑃(𝑧1) =
1

1+𝑒 −𝑧1                                                                                                         (2.115) 

with, 

𝑧1 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛                                                           (2.116) 
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where 𝑥1, 𝑥2, …, 𝑥𝑛 are the independent variables of interest and 𝛽0, 𝛽1, …, 𝛽𝑛 are the 

coefficient representing unknown parameters. Estimates of these parameters are obtained using 

a mathematical technique called maximum likelihood. This likelihood mean the probability has 

been evaluated as a function of the parameters with fix data [59]. Likelihood allows the 

estimation of unknown parameters based on known outcomes. Initially, 𝛽0 = 0, and at each 

iteration the value of this parameter will be updated. The iteration will stop when the percentage 

of error decreases to the smallest value that approximately becomes zero.  

Alternatively, the model in equation (2.115) can be written in the form:  

log (
𝑃(𝑧1)

1−𝑃(𝑧1)
) = 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛)

                                                 (2.117) 

where the left-hand side of the above equation is referred to as the logit transformation. 

To determine the contribution of insulation thickness and the minimum temperature of 

the system on the risk analyses of the flow assurance issues formation, logistic regression 

analyses was applied here using MATLAB script. The following steps were considered: 

- The dataset of the minimum temperature of the system was obtained using numerica l 

simulations of the thermal model developed in this study. The insulation thickness 

was generated randomly.  The flow assurance solids formation threshold is the 

thermal requirement. Thus, flow assurance issues risk is treated as binary data. If 

minimum temperature less than requirement then solids formation risk=1 and 0 

otherwise.  

- All possible variables were defined: the response variable is the solids risk formation 

whereas the insulation thickness and the minimum temperature of the system are the 

quantitative variables.  

- Input of variables data into logistic regression function 

- Estimate parameter using maximum likelihood estimation to determine goodness of 

fit: from the logistic function, the logistic regression model is attained through the 

parameter z1 that can be composed as linear sum of the explanatory variables as 

follows: 

- Test the significance of each parameter and eliminate insignificance variables: 

once a full logistic regression model is developed, the backward stepwise 

elimination procedure will be used to remove the independent variable with an 
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insignificant coefficient. The backward stepwise elimination procedure begins 

with a full model. Then the variable that are found to be insignificant are 

eliminated from the model in an iterative process. 

- Determine the most influential factor subject to solids risk formation. Next, 

analyses the tested model to ensure that the model still adequately fits the data. 

For model validation, other model was built and used in a statistical analyses tool 

name STATGRAPHIC. 

In RAPIDMINER see figure 2.9 below, the following steps were employed to build 

the logistic regression model: 

- Load the dataset containing all the variables in the process 

- Select the target attribute  

- Split the data into three: 70% training, 20% test and 10% validation 

- Used the logistic regression model tool 

- Apply the model  

- Validate the model by evaluating its performance by using the classifica tion 

performance tool 

 

Figure 2.9: overview of the logistic regression model built in RAPIDMINER. 

 

In STATGRAPHIC software see figure 2.10 below, the steps below where done: 

- Load the dataset containing all the variables 

- Precise the dependent variable and the independent variable  

- Choose method of evaluating the parameters. Here the maximum likelihood 

method was selected. 
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- The backward selection was choosing for fit, and the model order was set to first 

order. 

 

Figure 2.10: sketch of the precision of the variable’s names for logistic regression in 

STATGRAPHIC. 

2.10 Operating parameters  

Below, the necessary parameters for the models’ simulations are presented. 

2.10.1 Pipeline and insulation materials parameters  

The studied system presented here is consisting of a production subsea pipeline. The 

pipeline geometry considered is the same as that presented in [4] for the example 1 case. The 

geometrical parameters of pipeline and insulation materials are presented in table 3.1 below 

and the thermophysical properties of the insulation materials are given in table 3.2 below. 

Table 2.1: Geometrical parameters of the subsea pipeline [4]. 

Internal 

diameter of 

pipeline (m) 

External 

diameter of 

pipeline (m) 

Thickness of 

pipeline (m) 

Pipeline length  

(m) 

Insulation 

materials 

thickness (m) 

0.3112 0.3239 0.0127 50,000 0.0254 

- - - - 0.0381 

- - - - 0.0508 

- - - - 0.0635 
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Table 2.2: Thermophysical properties of the insulation materials [19] 

Insulation materials Thermal conductivity (W/m K) 
Specific heat 

(Kj/Kg K) 

Density 

(Kg/m³) 

Calcium Silicate 0.069 0.96 260 

Polyurethane 0.04 1400 45 

Black Aerogel 0.012 950 140 

 

2.10.2 Data of fluids and operating parameters  

The data of fluids used as well as the operating parameters are the same as in [4]. 

Table 2.3: Operating parameters [4] 

Oil flow rate 0.00955m³/s 

Gas flow rate 9.05 Nm³ 

Density of natural gas 0.710 Kg/m³ 

Density of crude oil (20°C) 886.9 Kg/m³ 

Surrounding temperature 277.15 K 

Inlet temperature 323.15 K 

Outlet temperature  278.75 K 

Inlet pressure 5 MPa 

Outlet pressure 2.4 MPa 

Over all heat transfer coefficient  2 (W/m² K) 

 

Conclusion 

In this chapter, we presented the mathematical models, which describes the temperature 

and pressure profiles existing inside a subsea pipeline carrying a hot multiphase fluid. Further, 

we presented the PIPESIM model employed herein. Next, we presented the approaches that we 

used to find out the optimum insulation thickness of three insulating materials for subsea 

pipeline insulation design. Finally, the machine learning technique such as power regression 

model was presented. RAPIDMINER tool, MATLAB tool for genetic algorithm optimiza t ion 

and STAGRAPHIC tool used for logistic regression model were presented.  All these models 

were simulated and the results will be presented in the final chapter



Chapter 3: Results and discussion  
 

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 80 

 

 

 

 

CHAPTER 3: RESULTS 

AND DISCUSSION 
 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Results and discussion  
 

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 81 

 

Introduction 

 

In this chapter, the numerical results obtained with MATLAB by using the pressure and 

temperature models developed herein, are compared with those from measured values, 

PIPESIM model and existing model from literature. Next, optimum insulation thickness of 

black aerogel, calcium silicate and polyurethane were assessed using numerical simulat ion, 

genetic algorithm combined with power regression and machine learning respectively, by using 

MATLAB and RAPIDMINER software. Finally, logistic regression model for prediction of the 

occurrence of flow assurance solids risk formation built with MATLAB was compared with the 

results displayed by STAGRAPHIC.  Results are presented in graphical form using profiles. 

Tables are also used to observe difference and performance parameters that evaluates the 

accuracy of models. 

 

3.1 Pressure profile comparison  

We considered a pipeline system of 50 km long in a subsea bed. Pressure measurements 

values are available at both the inlet and outlet. Operating parameters have been displayed in 

Table 2.1 to Table 2.3 above. The existence of several models in literature such as homogeneous 

approaches, two-phase multiplayer and drift-flux approaches for the modeling of the pressure 

in pipeline during two-phase flow reflects the many uncertainties in characterizing actual fluid. 

Figure 3.1 and figure 3.2 below, represents the curves of some selected pressure models 

described by equations ((1.44), (1.68), (1.73) and (1.78)) and PIPESIM models respectively, 

with our model. Simulations revealed that, for the considered pipeline geometry, the 

transportation of fluid would experience a decrease in pressure, resulting in an increase of 

pressure drop, due to the contributions of the gravitational and friction components. Based on 

this first simulation, we observed from figure 3.1 that, the predicted model (equation (2.52)) 

and the Beggs and Brill correlation (equation (1.46)) are closed than Wallis et al, model 

(equation 1.68)), Müller-Steinhagen model (equation (1.73)) and Vierra and Garcia model 

(equation (1.78)). From figures 3.2 and 3.3, it can be observed that, the model proposed here 

predict the pressure gradient better than the PIPESIM model and other models. This is because, 

in the predicted model, new correlations for calculating the gas compressible factor and the 

liquid hold up correlation were incorporated in the original pressure model. The proposed model 

predicted the liquid holdup using void fraction correlation from a drift flux model.  
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Figure 3.1: Comparison of the pressure gradient correlation 

 

 

Figure 3.2 Comparison of the pressure gradient correlation with PIPESIM model correlation 
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From figure 3.3, we noticed that the pressure decreases along the offshore pipeline from 5 ×

106Pa to 2.4327 × 106Pa. This can be explained by the fact that, the nature of the oil being 

transported is heavy crude oil. Heavy crude oil, have extremely low mobility due to their high 

viscosity. In subsea environment, their transportation is more challenging. As pressure and 

temperature are depending variables, a decrease in temperature may lead to the formation of 

some flow assurance issues such as asphaltenes, heavy metals, wax, and even hydrates, making 

it more challenging to production or transportation of the fluid. One can also observed that the 

resulting pressure drop is not linear in figure 3.3; this is due to the presence of more than one 

phase. 

 

Figure 3.3: pressure profile along offshore pipeline obtained using proposed model. 

 

From the results shown above, and when comparing with those from measured values as 

indicated in Table 3.1 below, it can be said that, the predicted model is the model that best 

described the pressure gradient along the considered subsea pipeline with a relative error of 

1.26%. This performance indicator shows the capability of the model presented herein, for 

capturing the flow of oil and gas in subsea pipeline, and to characterize the actual fluid 

properties using black oil model. It also confirms that, the liquid fraction  was well described 

using our approach . 
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Table.3.1: Pressure comparison and validation with the measured value (MV) [4]. 

 

3.2 Validation of the temperature profile 

The temperature profile along subsea pipeline using the predicted model (equation (2.97)) 

is compared with the PIPESIM model, the unified predicting temperature and pressure (UPTP) 

model, and the measured value (MV) from [4]. From figure 3.4 below, it can be seen that, the 

temperature decreases along the pipeline for the both model from 323.15°k to an end point 

value of 278.29°k for PIPESIM and 277.99°k for our model. This is due to the heat exchanged 

between the hot flowing fluid inside the pipeline and surrounding cold water. It can also be 

observed that, the both curves have the same trend. From Table.3.2 below, it is shown that, the 

results obtained from our model is in good agreement with results from others models and those 

of the measured value (MV). In addition, our model prediction matches with the PIPESIM 

prediction with a relative error of 0.7%. These results indicates that, the proposed thermal model 

presented here is verified and accurate. 

Table 3.2: Temperature drop validation (MV) as presented in [4] 

 

 

 

 

 

 

 

Methods Inlet pressure/ (MPa) Endpoint pressure/ (MPa) Pressure drop /(MPa) REPD 

Model 5 2.43 2.57 1.16% 

MV 5 2.40 2.60  

Methods Inlet  

temperature 

(°k) 

Endpoint  

temperature 

(°k) 

Temperature  

drop (°k) 

RETD 

Model 323.15 277.99 45.16 1.68% 

PIPESIM 323.15 278.29 44.86 1.03% 

UPTP 323.15 277.25 45.90 3.27% 

MV 323.15 278.75 44.40  
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Figure.3.4 Temperature profile comparison between our model and PIPESIM model. 

In this   Table 3.2, the relative temperature drop (RETD) is calculated as follow: 

𝑅𝐸𝑇𝐷 =
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑟𝑜𝑝 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑟𝑜𝑝 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
× 100% 

3.3 Heat flux exchanged between the warm fluids and the seawater environment 

As hot fluid flows inside pipeline surrounded by cold water, heat will flow from the hottest 

body to the coolest body until an equilibrium state will reach. This will result in a decrease in 

temperature of the warm body. Thus, figure.3.5 below, represents the curve of heat flux along 

the transportation pipeline. It can be observed that, heat flux decreases rapidly and tends to 

flattened after at about 3.5 km of flow, indicating that, warm and the cold bodies have reached 

to an equilibrium state.  

3.4 Oil viscosity and oil flowrate variations with temperature 

From figure 3.6 below, we observed that, as the temperature decreases along the pipeline, 

the oil viscosity increases. This increase in oil viscosity is mainly due to the heat exchanged 

between the surrounding seawater and hot fluid inside pipeline. The increase in oil viscosity 

will obviously lead to a decrease in production. While in figure.3.7 below, it is shown that, the 

oil flowrate decreases as the temperature decreases. This is due to the fact that, the decrease in 
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temperature and pressure along the pipeline, will lead to a very slow mobility of the fluid, 

making the transportation more difficult.   

 

Figure 3.5 Heat flux exchange between the warm oil and gas flow and the seawater 

environment. 

 

Figure 3.6: Variation of the oil viscosity with the temperature. 
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Figure 3.7 Variation of the oil flowrate with the temperature. 
 

3.5 Effect of oil flow rate on the temperature profile  

Effect of the oil flowrate was also investigated see figure 3.8 below. Results showed that as oil 

flowrate increases, the temperature drop decreases. This is because, increasing oil flowrate, 

increases the Reynolds number, which influence the overall heat transfer coefficient. Flow 

becomes rapid and the heat flux diminishes.  

 

Figure 3.8 Variation of the oil flowrate with the temperature. 
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3.6 Optimum insulation thickness determination 

After the validation of the proposed thermal model, we now used it to find out the best 

insulating material as well as the optimum insulation thickness by applying numerica l 

simulations on the model and by combining genetic algorithm with supervised machine learning 

model. The goal is to find out the best approach to use for insulation thickness design in order 

to avoid material consumption and to reduce the resulting cost.  

3.6.1 Application of numerical simulation for optimum insulation thickness  

Here, the insulation thickness was manually defined from 254 mm to 700 mm with a 

step of 254 mm. for each insulation thickness value and for each insulating material, the 

simulation was carried out. The process ended when the minimum temperature of the system 

was greater or equal to the thermal requirement set in this case at 40°C. 

3.6.1.1 Numerical simulations for optimum insulation thickness using 

Calcium Silicate insulating material 

 The simulations results presented in figure 3.9 below indicates that, the minimum insulat ion 

thickness that can meets the thermal requirement using calcium silicate material is comprised 

between 68.58 cm and 71.12 cm. More specifically, a true insulation thickness of 69.47cm will 

meet the requirement. This value was obtained after several simulations run and was not 

captured by the proposed approach. It was set as the true numerical insulation thickness of this 

problem for the considered case.  71.12cm was the value captured by our manual and gradual 

simulation. The material consumption volume was evaluated and presented in Table 3.3 below. 

From this Table, we observed that, the predicted values from this approach would not capture 

the appropriate insulation thickness that would meet the requirements of 313.15°K. This 

approach is time consuming and fastidious.  

Table 3.3: Calcium insulation volume for different thickness 

Insulation  

thickness (cm) 

68.58 69.47 

 

71.12 

 

Absolute Relative Error 0.89  1.65 

Minimum temperature (°K) 313.11 313.15 313.17 

Insulation volume (m^3) 143589.51 146416.62 148123.22 
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Figure 3.9: Temperature profiles of the flowing fluids inside subsea pipeline with different 

insulation thickness of Calcium Silicate. 

 

3.6.1.2 Numerical simulations for optimum insulation thickness of Black 

Aerogel 

The simulations results presented in figure 3.10 below indicates that, the minimum 

insulation thickness that can meets the thermal requirement using black aerogel material in this 

case is comprised between 7.62 cm and 10.16 cm. A true insulation thickness of 7.98 cm will 

meet the requirement. The material consumption volume can be seen in Table 3.4 below.  

Table 3.4: Minimum temperature and insulation volume for different thickness of BA 

Insulation thickness (cm) 7.62 7.98 8.89 10.16 

Absolute Error  0.36  0.91 2.18 

Minimum temperature (°K) 312.86 313.15 313.78 314.50 

Insulation volume (m^3) 8661.50 9111.37 9759.57 11953.83 

The minimum temperature of the predicted value of 7.62 cm is not greater nor equal to the 

requirement temperature of 313.15°K. From this table the nearest local minimum insulation 
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thickness close to the true value that is captured by our simulation with respect to the 

requirement is 8.89 cm. As in the case of CS presented above, we can said that, it is not 

obvious to find the appropriate thickness that would meet the requirements without over-

estimation of raw material.  

 

Figure 3.10: Temperature profiles of the flowing fluids inside subsea pipeline with different 

insulation thickness of BA 
 

3.6.1.3 Numerical simulations for optimum insulation thickness of 

Polyurethane foam 

 The simulations results presented in figure 3.11 below indicates that, the minimum insulat ion 

thickness that can meets the thermal requirement using polyurethane foam material is 

comprised between 20.32 cm and 25.4 cm. more specifically, an insulation thickness of 22.30 

cm will meet the requirement. The material consumption volume can be seen in Table 3.5 

below. From this Table, it can be observed that, the predicted value of 22.86 cm is closely to 

the true value of 22.30 cm with absolute error of 0.56%. 

Table 3.5: Minimum temperature and insulation volume for different thickness of PUF 

Insulation thickness (m) 20.32 25.40 22.86 22.30 

Absolute  Error 1.98 3.1 0.56  

Minimum temperature (°K) 312.71 313.71 313.26 313.15 

Insulation volume (m^3) 27148.94 35961.98 31454.17 30491.01 
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Figure 3.11: Temperature profiles with different insulation thickness of PUF. 

 

The results obtained from Table 3.3 to Table 3.5 were summarized in Table 3.6 below. 

Table 3.6: comparison of optimum insulation thickness from each insulating material 

Insulating 

materials 

Optimum 

insulation 

thickness (m) 

predicted 

True 

optimum 

insulation 

thickness 

(m) 

Insulation volume 

(m^3) 

True 

insulation 

volume (m^3) 

Calcium silicate 71.12 69.47 148123.22 146416.62 

Black aerogel 8.89 7.98 8661.50 9111.37 

Polyurethane foam 22.86 22.30 31454.17 30491.01 

 

From this Table 3.6, we observed that, the insulating material that will withstand the 

requirement with a low insulation volume consumption is black aerogel.  
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3.6.2 Application of genetic algorithm combined with machine learning 

techniques for optimum insulation thickness using Matlab. 

The purposes here was first to find out the appropriated function that best describes the 

relation between insulation thickness and minimum temperature of the system. Next, to verify 

the accuracy of the ML model and finally to combine the GA with the ML model to find out 

the optimum insulation thickness. For each insulating material, 200 examples of insula t ion 

configurations were randomly generated and simulated. The insulation thickness is ranged from 

10 mm to 700 mm. The simulation results were randomly divided into three parts: 70% training 

examples (140), 10% validation examples (20), and 20% test examples (40).  The type of fitting 

function was one of the key factors dictating the performance of the regression model. Equation 

(2.114) was used to fit the data of each insulating material. The regression model trained several 

functions with different exponential orders. Equation (3.1) below was then used to calculate the 

root mean square error (RMSE). Root Mean Square Error help to find how much error there is 

between two data sets. In order words, it compares a predicted value and an observed or known 

value. The smaller an RMSE value, the closer predicted and observed values are. It can be 

calculated using the formula below:  

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 )𝑛

𝑖=1

𝑛
                                                                 (3.1) 

For the case of black aerogel, the RMSE and the correlation coefficient were plotted against the 

exponential power of the fitting function. These curves were displayed in order to determine 

the order of the exponential power of the fitting function in the regression model. Figure 3.12 

below and figure 3.13 were obtained after several simulations for the case of BA. The training 

error indicates how well the algorithm is fitting the training data. The validation error and test 

error indicate the prediction accuracy of the trained. As shown in Figure 3.12 below, the three 

errors decreased in relation to a decrease exponential order, and they flattened after the -0.75 

order, thus indicating that, adding terms with an order smaller than this order would not improve 

regression performance. From figure 3.13 below, we observed that, the correlation coeffic ient 

of the predicted function increases as the exponential order decreases and flattened after the 

order of -0.75. Thus, the fitting function with an order of -0.75 were then chosen for the 

optimization algorithm used in this case. The same process were performed for the cases of 

calcium silicate and polyurethane foam and the results were represented by the graphs in figure 

3.14 to figure 3.17. 
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Figure 3.12: RMSE vs order of X power in the fitting function: case of BA material 

 

 

Figure 3.13: Correlation coefficient R (%) vs X order in the fitting function: B.A case 
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Figure 3.14: Root mean square error vs X order in the fitting function: Calcium silicate case 

 

 

Figure 3.15: Correlation coefficient vs X order in the fitting function: Calcium silicate case 
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Figure 3.16: RMSE vs X order in the fitting function: Polyurethane foam case. 

 

 

Figure 3.17: Correlation coefficient vs X order in the fitting function: Polyurethane foam case. 

 

From the curves displayed above, the order of each fitting function for each insulat ing 

material was determined and the form of each equation was obtained after several simulat ions 

by verifying in each run simulation that the fitting function has neither a high variance nor a 
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high bias. The controlled factor was set to zero. Table 3.7 below presents the various equations 

forms for each insulating material. 

Table 3.7: forms of predicting equation for each insulating material  

Insulating materials Equation forms 

Black Aerogel 𝑇min 𝐵𝐴 = 321.164 − 212 ∗ 𝑋−0.75   

Calcium Silicate 𝑇min 𝐶𝑆 = 318.638 − 228.48 ∗ 𝑋−0.57   

Polyurethane Foam 𝑇min 𝑃𝑈𝐹 = 319.734 − 274.699 ∗ 𝑋−0.69   

 

In order to test the performance of these functions, ten insulation thickness, which had never 

been fed to the learning functions, were randomly created. The minimum temperatures were 

calculated using the trained functions and compared with results given by thermal model. Figure 

3.18 to figure 3.23 below illustrates the comparison and the performance of the fitting functions 

for each insulating material. As shown in Tables 3.8, 3.9 and 3.10, the regression mod el 

performed well in predicting the minimum temperature. The average absolute error was 2% for 

the case of black aerogel, 7.37% for the calcium silicate case and 2.5% for the polyurethane 

foam case. The regression successfully built a nonlinear and accurate pattern between insula t ion 

thickness and the minimum temperature of the subsea production system for each insula t ing 

material. 

 

Figure 3.18: comparison of the predicted Tmin of PUF and the Tmin of PUF obtained from 

the thermal model. 
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Figure 3.19: Fitting of the predicted Tmin of PUF and the Tmin of PUF obtained from the 

thermal model. 

 

Table 3.8: Minimum temperature calculated and minimum temperature predicted of PUF  

Insulation thickness (mm) Tmin Observed  (°K) Tmin Predicted (°K) Absolute Error 

101.6 308.45 308.40 0.05 

200 312.63 312.63 0.00 

90 307.51 307.41 0.10 

120 309.64 309.63 0.01 

420 315.47 315.47 0.00 

350 314.91 314.90 0.01 

128 310.08 310.07 0.01 

111.5 309.13 309.11 0.02 
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Figure 3.20: comparison of the predicted Tmin of CS and the Tmin of CS obtained from the 

thermal model. 

 

 

Figure 3.21: Fitting of the predicted Tmin of CS and the Tmin of CS obtained from the 

thermal model. 
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Table 3.9: Minimum temperature calculated and minimum temperature predicted of CS. 

Insulation thickness (mm) Tmin Observed (°K) Tmin Predicted (°K) Absolute Error 

101.6 302.40 302.23 0.17 

200 307.46 307.48 0.02 

90 301.36 301.06 0.30 

120 303.77 303.71 0.07 

420 311.33 311.33 0.00 

350 310.53 310.53 0.00 

128 304.28 304.25 0.03 

 

 

Figure 3.22: comparison of the predicted Tmin of B.A and the Tmin of B.A obtained from the 

thermal model  
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Figure 3.23: Fitting of the predicted Tmin of B.A and the Tmin of B.A obtained from the 

thermal model. 

Table 3.10: Minimum temperature calculated and minimum temperature predicted of B.A. 

Insulation thickness (mm) Tmin Observed (°K)  Tmin Predicted (°K)  Absolute Error 

101.6 314.50 314.50 0.00 

200 317.18 317.14 0.04 

90 313.85 313.86 0.01 

120 315.29 315.28 0.01 

420 318.87 318.83 0.04 

350 318.54 318.50 0.04 

128 315.58 315.55 0.03 

 

Further, we carried out optimization to minimize the volume of insulation material using 

genetic algorithm (GA) taking into account the constraint for steady state flow set herein at 

40°C. We make used of the MATLAB optimization toolbox. The population size was set at 50, 

because we had fewer variables, not up to five, and the maximum iteration was 100. The GA 

toolbox was then applied in programming the algorithm. GA was run for each insula t ing 

material and the results were plotted as shown below.  
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For the case of black aerogel (B.A), figure 3.24 is a plot of the best objective function 

value in each generation. It can be seen that, the best insulation volume is about 9067.194 m^3 

for an optimum insulation thickness of 79.38 mm. These solutions are obtained after only 7 

generations.  

 

Figure 3.24: Best insulation volume and optimum insulation thickness of B.A using G.A 

 

We run multiple objective function optimization in order to find out the best set of 

optimal solutions. The goal was to minimize the insulation volume and the minimum 

temperature of the system. Figure 3.25 is a plot of the first objective function (insula t ion 

volume) against the second function (minimum temperature). From this figure, one can easily 

see the non-dominated solution point of the two objectives functions. This solution point is 

given by 313.15°K for the minimum temperature of the system and 9067.194 m^3 for the 

insulation volume. The corresponding optimal insulation thickness is 79.38 mm. Figure 3.26 

represents the plot of the maximum violation constraint. This constraint converged to 0, 

indicating that the insulation design would meet the requirement.  The Pareto front in figure  

3.25 as well as the maximum constraint given in figure 3.26 below ensured that, the insula t ion 

design would meet the temperature constraint.  
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Figure 3.25: Pareto front of insulation volume against minimum temperature of B.A using 

G.A 

 

 

Figure 3.26: Maximum constraint violation for the case of B.A 

 

The same analysis was applied in the cases of calcium silicate (CS) and polyurethane 

foam (PUF). Thus, from figure 3.27 below, it is shown that, the minimum insulation volume of 
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the calcium silicate insulating material is 146148 m^3 and the best insulation thickness is 

693.605 mm.  

 

Figure 3.27: Best insulation volume and optimum insulation thickness of C.S using G.A 

 

The Pareto front represented in figure 3.28 below shows the optimal solution of the 

multiple objective’s optimization run. In this figure, it can be observed that, the best solution of 

the minimization of the insulation volume and the minimum temperature of the system is given 

by 313.15°K and 146148 m^3. In figure 3.29, we observed that, the maximum constraint 

violation converged to 0, indicating that the objective function would satisfy the constraint 

requirement.  

For the polyurethane case, figure 3.30 below is a plot of the best insulation volume using 

the G.A. from this figure, it is shown that the optimal insulation volume is 30507,8 m^3. This 

result was obtained after 10 generations. In figure 3.31 below, the Pareto front shows the 

optimal solution of the multiple objective’s optimization run. In this figure, we can observe that 

the best solution of the minimization of the insulation volume and the minimum temperature of 

the system is given by 313.15°K and 30507.8 m^3. The maximum constraint violat ion 
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converged to 0 from figure 3.32 above. This indicates that the objective function satisfied the 

constraint requirement. 

 

Figure 3.28: Pareto front of insulation volume and minimum temperature of C.S using G.A 

 

 

Figure 3.29: maximum constraint violation for the case of C.S 
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Figure 3.30: Best insulation volume and optimum insulation thickness of PUF using G.A 

 

 

Figure 3.31: Pareto front of insulation volume and minimum temperature of PUF using G.A 
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Figure 3.32: maximum constraint violation for the case of PUF 

 

3.6.3 Application of genetic optimization on machine learning techniques for 

optimum insulation thickness using RAPIDMINER 

For the purpose of validation and comparison, RAPIDMINER was used with the same 

objective and constraint functions. RAPIDMINER proposed various machine- learning 

techniques to solve optimization problems. Using RAPIDMINER, five machine learning 

models were used to train, test and validate dataset from numerical simulations. After the 

models were validated, we used the model to find out the optimum insulation thickness by 

applying genetic algorithm. The five models were applied to each insulating material. The 

results obtained from this software are presented here below. 

3.6.3.1 Optimum insulation thickness of B.A using RAPIDMINER 

Five machines learning models: generalized linear model (GLM), deep learning (DL), 

decision tree (DT), random forest (RF) and support vector machine (SVM) were used to predict 

the minimum temperature of the system. After validation of the models by evaluation of the 
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performance, genetic algorithm optimization method is applied to find out the best global 

minimum insulation of B.A material using RAPIDMINER. Figures 3.33, 3.36, 3.39, 3.42 and 

3.45 are respectively the plots of the predicted minimum temperature of the system given by 

GLM, DL, DT, RF and SVM against the true values of the minimum temperature obtained by 

numerical simulation. From these plots, it can be seen that, the five models’ predictions are 

likely close to the true prediction. The performance parameters of these models are shown in 

Table 3.11 below. In this Table, we noticed that, only GLM has a small correlation coeffic ient 

less than 0.9. DT and RF have the greater scoring and training time as it can be seen in figure 

3.48. In addition, DT and RF have greater correlation coefficient indicating a good relationship 

between the predicted and the true value of the minimum temperature. After the five models 

were tested and validated, we applied the GA to each of the model in order to find out the best 

global minimum insulation thickness. GA is a concept based on natural selection. It evolves 

over time so that a better solution can be obtained. GA is used to find out the optimum solution 

of a problem. This can be done based on fitness function. Initially, we have an initial possible 

solution call initial parent or candidate solution. So, for every parent or selected candidate, it 

fitness value is found out.  This fitness value decides whether the solution is best or not. Fitness 

function is simply a function which takes a candidate solution to the problem as input and 

produces as output how fit or good a solution is. In the case study, the fitness function is 

incorporate in RAPIDMINER software. When the fitness of each candidate is evaluated, the 

solution which satisfied the fitness criteria during the evaluation is kept in the population and 

those which do not satisfied the fitness criteria are discarded from the population after the 

fitness evaluation. Next, genetic operators like selection, crossover and mutation are applied on 

the selected parent for the generation of the new offspring. Thus, figures 3.34, 3.37, 3.40. 3.43 

and 3.46 represent the plot of the fitness values of the fitness function over times of GLM, DL, 

DT, RF and SVM respectively. It can be seen that, in these figures, the fitness value increases 

rapidly. This increase in fitness values indicates the major role of the mutation operator in the 

changing of the genetic pool. In general, mutation affect a small portion of the population and 

provides an advantage to the individual by increasing its fitness value. We can easily observe d 

that, the fitness value increases from -1.75 to 0 in figure 3.42. The reproduction or crossover 

operator role is to select among the previously selected chromosomes in the initial population, 

two chromosomes according to the fitness value in order to produce an offspring for next 

generation of new population. The selection, crossover, and mutation operation will be repeated 

on current population until the new population is complete. The converge is satisfied when the 
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absolute value of the fitness value remains constant across generation. The plot represented in 

figures 3.34, 3.37, 3.40, 3.43 and 3.46, meets this criterion. The fitness values converge to 0 for 

most of the models indicating the termination of the genetic algorithm. After the GA is 

terminated, the optimum solution of displays by each model can be visualized. Model that did 

not meet the requirement are discarded. In the case study, although DT has the best performance 

it did not meet the requirement. The RF model was then choosing the machine learning 

modeling, which displays the best insulation thickness of BA and the minimum insula t ion 

volume as, presented in Table 3.11 and Table 3.12 below. In Table 3.11 below, it is shown the 

best optimal insulation thickness of B.A as displayed in figures 3.34, 3.37, 3.40, 3.43 and 3.45.   

Table 3.11: Comparison of the performance and optimum insulation thickness of B.A 

predicted using machine learning models with RAPIDMINER 

Models RMSE Mean 

Absolute  

Error 

Correlation 

Coefficient 

Optimum 

insulation 

thickness (mm) 

Generalized 

Linear Model 

0.93 

 

0.79 

 

0.89 118.72 

Deep 

Learning 

0.95 

 

0.76 0.92 118.72 

Decision 

Tree 

0.19 

 

0.09 

 

0.99 

 

81.63 

Random 

Forest 

0.41 

 

0.25 

 

0.97 

 

81.63 

Support 

Vector 

Machine 

0.46 

 

0.33 

 

0.96 

 

65.88 
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Table 3.12: comparison of insulation thickness and insulation volume of various models 

for the case of B.A 

Models  Optimum insulation thickness 

(mm) 

Absolute 

error 

Insulation 

volume (m^3) 

True Numerical value 79.80  9111.37 

Numerical model 88.90 9.10 9759.56 

Generalized Linear Model 118.72 38.92 14288.16 

Deep Learning 118.72 38.92 14288.16 

Decision Tree 81.63 1.83 9349.07 

Random Forest 81.63 1.83 9349.07 

Support Vector Machine 65.88 13.92 7382.56 

Regression model 79.38 0.42 9067.19 

 

 

Figure 3.33: predicted values vs true values of the minimum temperature of the system given 

by the GLM using RAPIDMINER with B.A insulating material. 
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In Table 3.12 above, the value of the optimal insulation volume of B.A are calculated 

for the corresponding insulation thickness. From this Table, we noticed that the numerica l 

model, RF, and Regression model predict value of the insulation thickness with small absolute 

error though. From this table, we also noticed that best model that performed well is the 

regression model over the numerical model. This is because the search procedure of the 

numerical model was based on manual and gradual step of the insulation thickness, which do 

not lead to the nearest best global optimum insulation thickness. This result simply confirms 

the importance of making use of machine learning in engineering processes. 

 

 Figure 3.34: Application of G.A to GLM for optimal insulation thickness of B.A using 

RAPIDMIN



Chapter 3: Results and discussion  
 

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 111 

 

 

 

Figure 3.35: visualization of the optimum insulation thickness of B.A material given by GLM 

using RAPIDMINER 
 

 

Figure 3.36: predicted values vs true values of the minimum temperature of the system given 

by the DL using RAPIDMINER with B.A insulating material. 
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Figure 3.37: Application of G.A to DL for optimal insulation thickness of B.A using 

RAPIDMINER 

 

Figure 3.38: visualization of the optimum insulation thickness of B.A material given by DL 

using RAPIDMINER. 
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Figure 3.39: predicted values vs true values of the minimum temperature of the system given 

by the DT using RAPIDMINER with B.A insulating material. 
 

 

Figure 3.40: Application of G.A to DT for optimal insulation thickness of B.A using 

RAPIDMINER 
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Figure 3.41: visualization of the optimum insulation thickness of B.A material given by DT 

using RAPIDMINER. 

 

Figure 3.42: predicted values vs true values of the minimum temperature of the system given 

by the RF using RAPIDMINER with B.A insulating material
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Figure 3.43: Application of G.A to RF for optimal insulation thickness of B.A using 

RAPIDMINER 

 

Figure 3.44: visualization of the optimum insulation thickness of B.A material given by RF 

using RAPIDMINER
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Figure 3.45: predicted values vs true values of the minimum temperature of the system given 

by the SVM using RAPIDMINER with B.A insulating material. 

 

 

Figure 3.46: Application of G.A to SVM for optimal insulation thickness of B.A using 

RAPIDMINER 
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Figure 3.47: visualization of the optimum insulation thickness of B.A material given by SVM 

using RAPIDMINER. 

 

 

Figure 3.48: comparison of the training and scoring times of the five machine learning models 

 

3.6.3.2 Optimum insulation thickness of CS with RAPIDMINER 

The same analysis done in the B.A case was performed for the CS case. Results of these 

simulations are presented below. Figures 3.49, 3.52, 3.55, 3.58 and 3.61 are respectively the 

plots of the predicted minimum temperature of the system by GLM, DL, DT, RF and SVM 

against the true minimum temperature obtained by numerical simulation. In Table 3.13 below, 

we can see that, all the models performed well with a correlation coefficient greater than 0.9. 

Next, the genetic algorithm was then applied using RAPIDMINER to find out the optimum 
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insulation thickness. Moreover, it is shown in figure 3.64 that the DT has the fastest training 

time while the DL has the fastest scoring time. 

Figures 3.450, 3.53, 3.56, 3.59 and 3.62 are plots of the fitness values across each 

generation in the GA process. The increase in fitness value indicates the major role of the 

mutation in the changing of the genetic pool In general, mutation affect a small portion of the 

population and provides an advantage to the individual by increasing its fitness value. We can 

easily observe that the fitness value increases over generations and converge. A constant fitness 

value indicates that the individual solution does not change or improve for the given period. 

The reproduction or crossover operator role is to select among the previously selected 

chromosomes in the initial population, two chromosomes according to the fitness value in order 

to produce offspring for next new generation of new population. The selection, crossover, and 

mutation operation will be repeated on current population until the new population is complete. 

The GA terminates when the absolute value of the fitness value is constant across generation. 

The plot represented in all these figures meets this criterion.  

In Table 3.13 below, it is shown that the DT, DL and RF models performed well the 

prediction with high correlations coefficients and low RMSE. An analysis of this Table revealed 

that, RF though having a small RMSE and the greater correlation coefficient predicted a nearest 

optimum value. Table 3.14 below shows the comparison of all the models presented in this 

thesis for predicting the optimum insulation thickness of calcium silicate.  From this Table, it 

can be seen that, the numerical simulation and the RF models predicted the optimum insula t ion 

thickness with a relative error of 0.77% and 0.48% respectively.  
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Figure 3.49: predicted values vs true values of the minimum temperature of the system given 

by the GLM using RAPIDMINER with CS insulating material  
 

 

Figure 3.50: Application of G.A to GLM for optimal insulation thickness of C.S using 

RAPIDMINER 
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Figure 3.51: visualization of the optimum insulation thickness of CS material given by GLM 

using RAPIDMINER. 

 

 

Figure 3.52: predicted values vs true values of the minimum temperature of the system given 

by the DL using RAPIDMINER with CS insulating material 
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Figure 3.53: Application of G.A to DL for optimal insulation thickness of C.S using 

RAPIDMINER 

 

Figure 3.54: visualization of the optimum insulation thickness of CS material given by DL 

using RAPIDMINER.
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Figure 3.55: predicted values vs true values of the minimum temperature of the system given 

by the DT using RAPIDMINER with CS insulating material 

 

  

Figure 3.56: Application of G.A to DT for optimal insulation thickness of C.S using 

RAPIDMINER 
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Figure 3.57: visualization of the optimum insulation thickness of CS material given by DT 

using RAPIDMINER. 

 

 

Figure 3.58: predicted values vs true values of the minimum temperature of the system given 

by the RF using RAPIDMINER with CS insulating material 
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Figure 3.59: Application of G.A to RF for optimal insulation thickness of C.S using 

RAPIDMINER 

 

Figure 3.60: visualization of the optimum insulation thickness of CS material given by RF 

using RAPIDMINER.
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Figure 3.61: predicted values vs true values of the minimum temperature of the system given 

by the SVM using RAPIDMINER with CS insulating material 

  

 

Figure 3.62: Application of G.A to SVM for optimal insulation thickness of C.S using 

RAPIDMINER 
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Figure 3.63: visualization of the optimum insulation thickness of CS material given by SVM 

using RAPIDMINER. 

 

 

Figure 3.64: comparison of the training and scoring times of the five machine learning models 

Table 3.13: performance and optimum insulation thickness of CS using machine 

learning model with RAPIDMINER 

Models RMSE Mean Absolute  
Error 

Correlation 
Coefficient 

Optimum insulation 
thickness (mm) 

Generalized Linear 

Model 

1.22 

 

0.90 

 

0.93 562.69 

Deep Learning 1.13 
 

0.79 0.94 
 

507.47 

Decision Tree 1.13 

 

0.44 

 

0.95 

 

698.00 

Random Forest 0.85 

 

0.47 

 

0.97 

 

697.74 

Support Vector 

Machine 

1.16 

 

0.48 

 

0.90 

 

670.28 
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Table 3.14: comparison of insulation thickness and insulation volume of various models 

for the case of CS 

Models  Optimum insulation 

thickness (mm) 

Absolute error  Insulation volume 

(m^3) 

True numerical value 694.70  146416.61 

Numerical model 711.20 16.5 92181,98 

Generalized Linear Model 562.69 132.01 106937.78 

Deep Learning 507.47 187.23 92044.88 

Decision Tree 698.00 3.3 147480.83 

Random Forest 697.74 3.04 147399.98 

Support Vector Machine 670.28 24.42 138707.71 

Regression model 693.60 1.1 146148.00 

 

3.6.3.3 Optimum insulation thickness of PUF with RAPIDMINER 

             The same analysis done in the B.A and CS cases was performed and the results of these 

simulations are presented below. Figures 3.65, 3.68, 3.71, 3.74 and 3.77 are respectively the 

plots of the predicted minimum temperature of the system by GLM, DL, DT, RF and SVM 

against the true minimum temperature obtained by numerical simulation. From these plots. In 

table 3.18 below, we can see that all the models performed well with a correlation coeffic ient 

greater than 0.9. From figure 3.80, it can be seen that the DT has the fastest scoring time while 

the DL has the fastest training time. After, the models were tested and validated; the genetic 

algorithm was then applied using RAPIDMINER to find out the optimum insulation thickness.  

          In Table 3.16 below, it is shown that, the DT, DL and RF models performed well the 

prediction with high correlations coefficients and low RMSE. An analysis of this Table revealed 

that, RF though having a small RMSE and the greater correlation coefficient predicted a nearest 

optimum value. Table 3.17 below shows the comparison all the models presented in this thesis 

for predicting the optimum insulation thickness of PUF.  
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Figure 3.65:   predicted values vs true values of the minimum temperature of the system given 

by the GLM using RAPIDMINER with PUF insulating material 

 

 

Figure 3.66: Application of G.A to GLM for optimal insulation thickness of PUF using 

RAPIDMINER 
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Figure 3.67: visualization of the optimum insulation thickness of PUF material given by GLM 

using RAPIDMINER. 

 

 

Figure 3.68:   predicted values vs true values of the minimum temperature of the system given 

by the DL using RAPIDMINER with PUF insulating material 
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Figure 3.69: Application of G.A to DL for optimal insulation thickness of PUF using 

RAPIDMINER 

 

Figure 3.70: visualization of the optimum insulation thickness of PUF material given by DL 

using RAPIDMINER
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Figure 3.71:   predicted values vs true values of the minimum temperature of the system given 

by the DT using RAPIDMINER with PUF insulating material 

 

 

Figure 3.72: Application of G.A to DT for optimal insulation thickness of PUF using 

RAPIDMINER 
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Figure 3.73: visualization of the optimum insulation thickness of PUF material given by DT 

using RAPIDMINER 
 

 

Figure 3.74:   predicted values vs true values of the minimum temperature of the system given 

by the RF using RAPIDMINER with PUF insulating material 
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Figure 3.75: Application of G.A to RF for optimal insulation thickness of PUF using 

RAPIDMINER 

 

Figure 3.76: visualization of the optimum insulation thickness of PUF material given by RF 

using RAPIDMINER
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Figure 3.77:   predicted values vs true values of the minimum temperature of the system given by the 

SVM using RAPIDMINER with PUF insulating material 

 

 

Figure 3.78: Application of G.A to SVM for optimal insulation thickness of PUF using RAPIDMINER 
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Figure 3.79: visualization of the optimum insulation thickness of PUF material given by SVM using 

RAPIDMINER 

Table 3.15: performance and optimum insulation thickness of PUF using machine learning model 

with RAPIDMINER 

Models RMSE Mean Absolute  

Error 

Correlation 

Coefficient 

Optimum insulation 

thickness (mm) 

Generalized Linear 
Model 

0.74 0.53 0.96 449.55 

Deep Learning 0.71 0.48 0.96 

 

424.29 

Decision Tree 0.19 0.08 0.98 

 

224.30 

Random Forest 0.37 
 

0.27 0.97 
 

340.90 

Support Vector 

Machine 

0.35 

 

0.13 0.98 

 

206.36 

Table 3.16: comparison of insulation thickness and insulation volume of various models for the case 

of PUF 

Models  Optimum insulation 

thickness (mm) 

 Absolute error Insulation volume 

(m^3) 

True Numerical value 223.02  30491.01 

Numerical model 228.60 5.58 31454.17 

Generalized Linear Model 449.55 226.53 77451.70 

Deep Learning 424.29 201.27 71415.69 

Decision Tree 224.30 1.28 30711.77 

Random Forest 340.90 117.88 52917.13 

Support Vector Machine 206.36 16.66 27674.35 

Regression model 223.02 0.00 30507.80 
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3.6.4 Optimum insulation thickness of the subsea pipeline 

 

Here we summarized the results presented above and we select the best insulating material as well as the 

best global minimum insulation thickness for the considered subsea pipeline. 

Table 3.17: comparison of insulation thickness and insulation volume of various models. 

Models  Optimum insulat ion 

thickness (mm) 

Insulation volume (m^3) 

BA CS PUF BA CS PUF 

Numerical model 88.90 694.70 228.60 9759.56 92181.98 31454.17 

Generalized Linear Model 118.72 562.69 449.55 14288.16 106937.78 

 

77451.70 

Deep Learning 118.72 507.47 424.29 14288.16 92044.88 71415.69 

Decision Tree 81.63 698.00 224.30 9349.07 147480.83 30711.77 

Random Forest 81.63 697.74 340.90 9349.07 147399.98 52917.13 

Support Vector Machine 65.88 670.28 206.36 7382.56 138707.71 27674.35 

Regression model 79.38 693.60 223.02 9067.19 146148.00 30507.80 

 

From the results presented above and the results shown in Table 3.17, we observed that, the black 

aerogel insulating material is the best option and the best minimum insulation thickness is comprised 

between 79.38 and 81.636 mm. The regression model was the best model among the others and predicted 

a global minimum of insulation thickness for the B.A insulating material of 79.38mm. The difference 

between the true numerical value is 9.52mm corresponding to a gain in insulation volume of about 

982.45m^3. This result indicate that machine learning algorithm combined to G.A is appropriate for the 

consumption material limitation.  

3.7 Flow assurance solids risk formation assessment using logistic regression  

Here we analyzed the effect of the best insulating material selected above, that is black aerogel as well 

as the effect of the minimum temperature of the system on the flow assurance (F.A) solids risk formation 
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in subsea pipeline using logistic regression model via MATLAB. The model validation is further done by 

comparing results generated via MATLAB script and the results displayed by STATGRAPHIC. 

3.7.1 Flow assurance solids risk formation assessment using logistic regression via 

MATLAB 

In this section, we are presenting the results of the logistic regression model applied for the flow 

assurance solids risk formation during oil and gas transportation in subsea pipeline. The logistic regression 

using two independent variables (insulation thickness and minimum temperature of the system is first 

applied on the dataset. Figure 3.80 below represents the plot of the train logistic regression model. From 

this figure, we can observe that the logistic regression model performed well by given a good prediction of 

the different data. However, the predicted model did not give correct results between 312°K and 314°K. 

The 0 mean that flow assurance solids will not form and the 1 simple mean that solids formation may occur. 

For insulation thickness located at far distance to the right, no risk of flow assurance exists. Equation (2.115) 

is used to find out the probability of flow assurance solids risk formation inside the subsea pipeline. Figure 

3.81 below shows the plot of this result obtained using only minimum temperature of the system as 

independent variable. From this figure, we noticed that the logistic regression model fits the training model. 

One can note that at a minimum temperature of 312°K flow assurance solids formation will have a 100% 

probability to occur while at a minimum temperature of 314°K, the flow assurance solids will have an 

occurrence probability of 0%. Similar results were obtained using insulation thickness as the independent 

variable.  

 

Figure 3.80: plot of flow assurance solids risk formation using two variables: insulation thickness and 

minimum temperature 
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In figure 3.82 below, it can be seen that, the logistic train model and the predicted model are in good 

agreement. Furthermore, one can notice that the probability of solids formation increases to a value of 1 as 

the insulation thickness of the black aerogel insulating material get lower and lower than an approximative ly 

value of 83.45 mm. for all insulation thickness greater than this value, no flow assurance solids risk exists.  

 

Figure 3.81: plot of the probability of F.A solids risk formation vs minimum temperature. 

 

Figure 3.82: plot of the probability of F.A solids risk formation vs insulation thickness of B.A . 
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3.7.2 Flow assurance solids risk formation assessment using logistic regression via 

STATGRAPHIC 

For the purpose of validation, logistic regression model was also built in STATGRAPHIC version 19 

software.  

 In the first case, one independent variable was used, the minimum temperature of the system. 210 

observations were achieved. Moreover, the flow assurance solids risk formation was evaluated using 

the maximum likelihood. The Table 3.18 gives the value of the parameters defining the logist ic 

regression in equation (2.115) and Table 3.19 present the deviance values. 

Table 3.18: Estimated Regression Model (Maximum Likelihood) 

Parameter Estimate Standard Error Estimated Odds Ratio 

Constant 4321.99 1397.02  

Minimum temperature -13.80 4.44 0.00 

 

The output shows the results of fitting a logistic regression model to describe the relationship between flow 

assurance solids risk formation and 1 independent variable, the minimum temperature of the system. The 

equation of the fitted model is 

𝑃(𝑇𝑚𝑖𝑛) =
exp (𝑧1)

1+exp (𝑧1)
                                                                                                                   (3.2) 

where 

  𝑧1 = 4321.99 −  13.8075 ∗ 𝑇𝑚𝑖𝑛                                                                                    (3.3) 

Table 3.19: Analysis of deviance 

Source Deviance P-Value 

Model 67.95 0.001 

Residual 0.02 1.00 

Total (corrected.) 67.97  

Because the P-value for the model in the Analysis of Deviance table is less than 0.05, there is a statistica lly 

significant relationship between the variables at the 95.0% confidence level.  In addition, the P-value for 

the residuals is greater than 0.05, indicating that the model is not significantly worse than the best possible 

model for this data at the 95.00% or higher confidence level.  The percentage of deviance explained by 

model = 99.97 and the adjusted percentage = 94.09. The pane also shows that the percentage of deviance 

in flow assurance solid risk formation explained by the model equals 99.97%.  This statistic is similar to 
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the usual R-Squared statistic.  The adjusted percentage, which is more suitable for comparing models with 

different numbers of independent variables, is 94.09%.  In figure 3.83 below, the plot of the logist ic 

regression model with a 95% confidence is presented. The Plot of this figure displays the estimated 

probability of the flow assurance solids risk formation versus the minimum temperature. We can observe 

that, the figure in 3.81 and figure 3.84 shows similarities. The curve in blue represents the model while the 

red curves are the low and high boundary of the curve model with a 95% confidence. From this figure, it 

can be seen that at a minimum temperature of 312°K, the solids risk formation probability is 100% and at 

minimum temperature of 314°K, the occurrence risk of the solids is 0%. These are in good agreement as 

those shown in figure 3.81 above.  

 

 

Figure 3.83: plot of the probability of F.A solids risk occurrence vs minimum temperature 

 

In the second case, insulation thickness is used as the independent variable. Table 3.20 below gives the 

parameters defining the model and Table 3.21 present the deviance values. 

Table 3.20: Estimated Regression Model (Maximum Likelihood) 

Parameter Estimate Standard Error Estimated Odds Ratio 

Constant 37.27 6.09  

Insulation thickness -0.47 0.06 0.62 
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Table 3.21: Analysis of deviance 

Source Deviance P-Value 

Model 67.59 0.001 

Residual 0.37 1.00 

Total (corrected.) 67.97  

The percentage of deviance explained by model = 99.44 and adjusted percentage = 93.55. Figure 3.84 

below, shows the results of fitting the logistic regression model to describe the relationship between flow 

assurance solids risk formation and one independent variable.  

 

Figure 3.84: flow assurance solids risk formation vs insulation thickness 

 

The equation of the fitted model is   

𝑃(𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) =
exp (𝑧1)

1+exp (𝑧1)
                                                                              (3.4) 

where 

  𝑧1 = 37.2701 −  0.47657 ∗ 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠                                               (3.5) 

Because the P-value for the model in the Analysis of Deviance table is less than 0.05, there is a statistica lly 

significant relationship between the variables at the 95.00% confidence level.  In addition, the P-value for 
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the residuals is greater than or equal to 0.05, indicating that the model is not significantly worse than the 

best possible model for this data at the 95.00% or higher confidence level.  The pane also shows that the 

percentage of deviance in solids risk formation probability explained by the model equals 99.40%.  This 

statistic is similar to the usual R-Squared statistic.  The adjusted percentage, which is more suitable for 

comparing models with different numbers of independent variables, is 93.55%.  This value indicates when 

considering two independent variables, the insulation thickness might not be statistically significant at the 

95.00% and may be ignored because the adjusted value of the minimum temperature which is 94.09% 

appear to be greater than the 93.55%.  It can also be seen that figure 3.84 and figure 3.81 are simila r. 

Furthermore, one can notice that the probability of solids formation increases to a value of 1 as the insulat ion 

thickness of the black aerogel insulating material get lower and lower than an approximatively value of 

83.45 mm. for all insulation thickness greater than this value, no flow assurance solids risk exists.  

Conclusion 

  

        In this chapter, the results from the simulation of the temperature and pressure models using MATLAB 

are presented.  It is shown that, results generated by our model via MATLAB, and those obtained from: 

PIPESIM model, measured value in literature and the unified pressure temperature profile (UPTP) 

developed by [4] are in good agreement. The optimum insulation thickness of three insulating materia ls 

was determined. For each thickness, the thermal requirement condition was verified. Based on this 

information, the best insulating material was the Black Aerogel material, with an insulation thickness of 

79.38mm. Results from the determination of insulation thickness of each insulating material based on the 

three approaches mentioned above, indicates that, machine learning combined to genetic algorithm is the 

ideal method to find out the best insulation distribution in terms of reduction in material consumption 

volume, thus for cost related to pipe-insulation. Next, it is also showed that, neither the polyurethane nor 

the calcium silicate fulfilled the objective function constraint and the requirement constraint.  Therefore, 

using calcium silicate or polyurethane will demand more material consumption than that of black aerogel 

insulating material. Finally, logistic regression model built using MATLAB for assessing the risk of some 

flow assurance solids formation was validated using STATGRAPHIC software. This result indicates that, 

the two software are able to capture the problem of flow assurance risk in subsea pipeline, using logist ic 

regression.  
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CONCLUSION AND RECOMMENDATIONS FOR 

FUTURE WORK 
 

In summary, a low thermal model was developed in this thesis. The model was used to predict 

pressure and temperature profile. Further, a nonlinear and accurate pattern between the insulation thickness 

and the minimum working temperature was successfully established using regression model. The trained 

algorithm was able to predict the minimum temperature of the subsea production pipeline with a smaller 

relative error of 0.4%. Incorporating machine learning techniques and an optimization algorithm is the ideal 

method to find out the best insulation distribution. The results obtained by the GA optimization algorithms 

are optimistic in terms of reducing the insulation material consumption. In the case study, the black aerogel, 

calcium silicate and polyurethane foam were used as insulating materials and the optimization algorithm 

combined to machine learning gave the best optimum insulation thickness.  It was shown that, optimizat ion 

algorithm combined with machine learning technique lead to a reduction of insulation volume of about 

44.18m³ when compared to the manually approach, which demonstrates somehow, the great potential of 

the optimization method. It is also important to note that we have two options of providing the training data 

in machine learning: using numerical simulation software or by in-situ measurements. Some of the 

significant points of this thesis can be listed below:  

- Multiphase fundamental of oil and gas flow have been review herein 

- Oil and gas fluid properties were characterized using black oil model using MATLAB software 

- Pressure profile for and oil gas flow in long subsea undulated pipeline was predicted during 

transportation using MATLAB software 

- Temperature profile of oil and gas flow was predicted during transportation using MATLAB 

software 

- Pipeline model was built in PIPESIM software 

- Temperature and pressure profile were calculated using PIPESIM software 

- Insulation thickness was designed using numerical simulation based on manually defined 

thickness 

- Machine leaning techniques such as Deep leaning, decision tree, support vector machine, 

random forest, generalized linear model, logistic regression and regression model were 

implemented using MATLAB, RAPIDMINER and STATGRAPHIC software 

- Genetic algorithm was used for optimization  
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- Finally, logistic regression was used to investigate the probability of formation of some flow 

assurance solids component   

Temperature is an important parameter that help to design production system. The knowledge of 

how temperature is being distributed along subsea pipeline is very important in oil and gas production 

system. A complete thermal design is obtained by combining steady and transient state simulation. This 

could be useful in optimizing the requirement constraint. For example, it will be very interesting to know 

within how many hour solids precipitation and deposition will start to form after shut-in and shutdown time. 

There are nowadays, many new insulating materials with better thermal performance and properties. These 

insulating materials could also be investigated for the conservation heat of subsea pipeline. Compositiona l 

option of characterizing fluids could also be used. So, for future work, the following recommendations are 

suggested:  

- Transient temperature profile could be coupled to the steady state model developed here to 

complete the thermal design analysis.  

- Compositional oil model could be used for fluid characterization and compared to the black oil 

model approached.  

- Analysis of the effect of a large amount and new insulating materials on the temperature effect 

is also suggested.  

- The objective function constraint could include the cost of insulating material, the maintenance 

cost, the total cost of the project.  

- Shut-in and shutdown time could be analyzed in this work.  

- Another optimization algorithm such as particle swarm optimization could be used in this work 

and compared to the GA.  

- Others numerical simulations tools such as COMSOL Multiphysics and Olga software could be 

used and compared to our numerical results.  

- Finally, more data greater than 200 for example 2000 data or 10000 data could be generated 

experimentally or by numerical simulations to prepare machine learning models. 

 



References  

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 145 

 

REFERENCES 
 

[1] www.Total.com, accessed on 09/27/2013 

[2] Davis, L., (2011). Offshore tide on the rise, in: E&P Magazine. Hart Energy, Houston, Texas, USA. 

(http://www.epmag.com/item/Offshore-Tide-The-Rise 92764, accessed 09/17/2012). 

[3] Kaczmarski, A.A., Lorimer, S.E., (2001). Emergence of flow assurance as a technical discipline specific 

to deepwater: Technical challenges and integration into subsea systems engineering. Offshore Technology 

Conference, Houston, Texas, USA, 30 Apr-3 May. https://doi.org/10.4043/13123-MS. 

[4]: Duan, J.M., Wang, W., Zhang, Y., Zheng, L.J., Liuand, H.S., Gong, J., (2013). Energy Equation 

Derivation of the Oil-Gas Flow in Pipelines. Oil & Gas Science and Technology – Rev. IFP 

Energiesnouvelles, https://doi.org/10.2516/ogst/2012020. 

[5]: Knut, V.L., (2015). Advanced Temperature Model for HPHT Conditions. Master Thesis in Petroleum 

Geoscience and Engineering, Department of Petroleum Engineering and Applied Geophysics, Norwegian 

University of Science and Technology. 

[6] Sharifian, R., (2016). Temperature Modeling for Nodal Analysis. Master of Science in Applied Earth 

Sciences, Faculty of Civil Engineering & Geosciences, Delft University of Technology. 

[7] Onuh, Y.C., (2011). Temperature Prediction Model for Flowing Distribution in Wellbores and 

Pipelines. Master of Science in Petroleum Engineering, Faculty of the African University of Science and 

Technology Abuja-Nigeria. 

[8] Ayala, L.F., Dong, T., (2015). Thermodynamic analysis of thermal responses in horizontal wellbores. J 

Energy Resour Technol. http://doi.org/10.1007/s13202-015-0166-x 

[9] Romero, O.J., Saad, H.C., Pereira, I.B., Romero, M.I., (2016). Influence of heat transfer on two-phase 

flow behavior in on-shore oil pipelines.Ingeniería e Investigación. 

http://dx.doi.org/10.15446/ing.investig.v36n1.51570. 

[10] Nurfarah, H.B.Z., William, P., (2016). Optimum Thermal Insulation Design for Subsea Pipeline Flow 

Assurance. Researchgate. http://doi.org/10.13140/RG.2.2.33853.05603. 

[11] Kiran, D., Sadafule, S., (2014). Study on effect of insulation design on thermal-hydraulic analysis: an 

important aspect in subsea pipeline designing. Technical Report, Maharashtra Institute of Technology. 

https://www.researchgate.net/publication/263426807. 

http://www.total.com/
https://doi.org/10.4043/13123-MS
https://doi.org/10.2516/ogst/2012020
http://doi.org/10.1007/s13202-015-0166-x
http://dx.doi.org/10.15446/ing.investig.v36n1.51570
http://doi.org/10.13140/RG.2.2.33853.05603
https://www.researchgate.net/publication/263426807


References  

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 146 

 

[12] Ibrahim, M.A., (2018). Modeling and development of insulation materials in subsea pipeline. Master 

thesis, Faculty of Engineering and Applied Science, University of Newfoundland . 

https://www.semanticscholar.org. 

[13] Briggs, T.A., Onyegiri, I.E., Ekwe, E.B., (2020). Investigation of the effects of flowlines sizes, flow 

rates, insulation material, type and configuration on flow assurance of waxy crude. Innovative Systems 

Design and Engineering. https://doi.org/10.7176/ISDE/11-3-02. 

[14] Mobolaji, A., Adekola, A., (2020). Optimization of Thermal Insulation of Subsea Flowlines for 

Hydrates. Society of Petroleum Engineers. https://doi.org/10.2118/203721-MS. 

[15] Marfo, S.A., Opoku, A.P., Kpami, L.A.A., (2018). Subsea pipeline design for natural gas 

transportation: A case study of côte d’ivoire’s gazelle field. International Journal of Petroleum and 

Petrochemical Engineering (IJPPE). http://dx.doi.org/10.20431/24547980.0403003 

[16] Marfo, S.A., Opoku, A.P., Acquah, J., Amafio, E.M., (2019). Flow assurance in subsea pipeline 

design-A case study of Ghana’s Jubilee and TENfield, Ghana Minig Journal. 

https://dx.doi.org/104314/gmv19i1.9. 

[17] Alade, O., (2018). Sizing surface production flowlines insulation thickness for a desired output 

temperature. Petroleum & Petrochemical Engineering Journal. https://doi.org/10.23880/ppej-16000178 

[18] Abduvayt, P., Arihara, N., Manabe, R., Ikeda, K., (2003). "Experimental and modeling studies for gas-

liquid two-phase flow at high pressure conditions." Journal of the Japan Petroleum Institute. 

https://doi.org/10.1627/jpi.46.111. 

[19] Fidan., (2011). Wellbore heat loss calculation during steam injection in onshore & offshore 

environments. Master Thesis, Department of Ressources Engineering, STANFORD UNIVERSITY. 

[20] Boyun, G., William, C., Lyons, A.G., (2007). Petroleum Production Engineering: A Computer-

Assisted Approach. Publisher: Elsevier Science & Technology Books. ISBN: 0750682701. 

[21] Eissa, M.A., Brill, J.P., (2017). Applied Multiphase Flow in Pipes and Flow Assurance, Oil and Gas 

Production. Society of Petroleum Engineers. 222 Palisades Creek Drive Richardson, TX 75080-2040 USA. 

ISBN 978-1-61399-492-4. 

[22] Jansen, J.D., (2016). Nodal analysis of oil and gas wells – system modeling and numerica l 

implementation. SPE Textbook Series. SPE, Richardson. In production.  

https://doi.org/10.7176/ISDE/11-3-02
https://doi.org/10.2118/203721-MS
http://dx.doi.org/10.20431/24547980.0403003
https://dx.doi.org/104314/gmv19i1.9
https://doi.org/10.23880/ppej-16000178
https://doi.org/10.23880/ppej-16000178


References  

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 147 

 

[23] Andreolli, I., Zortea, M., Baliño, J.L., (2017). Modeling offshore steady flow field data using drift-

flux and black-oil models, Journal of Petroleum Science and Engineering. 

https://doi.org/10.1016/j.petrol.2017.07.001. 

[24] Beggs, H.D., Brill, J.P., (1973). A study of two-phase flow in inclined pipes. Journal of Petroleum 

Technology. https://doi.org/10.2118/4007-PA . 

[25] Brill, J.P., Mukherjee, H. K., (1999). Multiphase flow in wells. Society of Petroleum Engineers. SPE 

Monograph series vol.17. ISBN:978-1-55563-080-5. 164pp. 

[26] Ove, B., (2010). Pipe Flow 2: Multi-phase Flow Assurance, International Energy Agency, USA About 

Oil & Gas Technologies for the future. ISBN 978-616-335-926-1, drbratland.com.    

[27] Beal, C., (1946). The viscosity of air, water, natural gas, crude oil and its associated gases at oil field 

temperatures and pressures. Transactions of the AIME. . https://doi.org/10.2118/946094-G  

[28] Beggs, D.H., Robinson, J.R., (1975). Estimating the viscosity of crude oil systems. Journal of 

Petroleum technology.  https://doi.org/10.2118/5434-PA  

[29] Vazquez, M., Beggs, H.D., (1980). Correlations for fluid physical property prediction. Journal of 

Petroleum Technology. https://doi.org/10.2118/6719-PA  

[30] Standing, M.B., Katz, D.L., (1942). Density of natural gases. Transactions of the AIME. 

https://doi.org/10.2118/942140-G  

[31] Lee, A.L., Gonzalez, M.H., Eakin, B.E., (1966). The viscosity of natural gases. Journal of Petroleum 

Technology. https://doi.org/10.2118/1340-PA  

[32] Henock, M.M., (2004). Comparison of frictional pressure drop correlations for isothermal two-phase 

horizontal flow. Master thesis, Department of Mechanical Engineering, Bahir Dar University, Ethiopia. 

[33] Hasan, A.R., Kabir, C.S., (2002). Fluid flow and heat transfer in wellbores, Society of Petroleum 

Engineers, Richardson. ISBN:978-1-55563-094-2. 175pp. 

[34] Taitel, Y., Dukler, A.E., (1976). A model for predicting flow regime transitions in horizontal and near 

horizontal gas-liquid flow, AIChE Journal. https://doi.org/10.1002/aic.690220105. 

[35] Zuber, N., Findlay, J.A., (1965). Average volumetric concentration in two-phase flow systems. J Heat 

Transfer. https://doi.org/10.1115/1.3689137 . 

https://doi.org/10.1016/j.petrol.2017.07.001
https://doi.org/10.1016/j.petrol.2017.07.001
https://doi.org/10.2118/946094-G
https://doi.org/10.2118/5434-PA
https://doi.org/10.2118/6719-PA
https://doi.org/10.2118/942140-G
https://doi.org/10.2118/1340-PA
https://doi.org/10.1115/1.3689137
https://doi.org/10.1115/1.3689137


References  

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 148 

 

 [36] Woldesemayat, M., Ghajar, A.J., (2007). Comparison of void fraction correlations for different flow 

patterns in horizontal and upward inclined pipes. International Journal of Multiphase Flow.  

https://doi.org/10.1016/j.ijmultiphaseflow.2006.09.004  

[37] Wallis, G.B., (1969). One-dimensional Two-phase Flow. McGraw-Hill, New York, 

243.ISBN:978007067942900679428. 408pp. 

[38] Müller, H., Heck, K., (1986). A simple friction pressure drop correlation for two-phase ow in pipes. 

Chemical Engineering and Processing: Process Intensification. https://doi.org/10.11016/0255-

2701(86)80008-3 . 

[39] Vieira, R.A., Garcia, A. P., (2014). Combination of petroleum correlations and drift-flux approaches: 

A new model for two-phase flow pressure gradient calculation for horizontal and slightly inclined upward 

flowlines. In: ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. 

American Society of Mechanical Engineers. 

[40] Swamee, P. K., (1993). Design of a submarine oil pipeline. Journal of transportation Engineering. 

https://doi.org/10.11061/(ASCE)0733-947X(1993)119:1(159)n . 

[41] Afshin, J.G., Clement, C.T., (2010). Importance of Non-Boiling Two-Phase Flow Heat Transfer in 

Pipes for Industrial Applications.Taylor&Francis.https://doi.org/10.1080/01457630903500833  

[42] Stéphane, L., Josua, P., (2011). Two-phase flow in inclined tubes with specific reference to 

condensation: A review. International Journal of Multiphase Flow, Elsevie r  

https://doi.org/10.1016/j.ijmultiphaseflow.2011.04.005 . 

[43] Gnielinski, V., (1976). New equations for heat and mass transfer in the turbulent pipe and channel 

flow. Int. Chem.Eng. 

[44] Qiang, B., Yong, B., (2005). Subsea Pipeline Design, Analysis, and Installation. Technology 

&Engineering. 

 [45] Aurélien, G., (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. 

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. Printed in 

the United States of America. 

[46] Mathwork., (2004). Genetic Algorithm and Direct Search Toolbox User’s Guide for use in MATLAB. 

MathWorks, Inc. 

[47] www.Mathworks.com, accessed on 05/28/2013 

https://doi.org/10.1016/j.ijmultiphaseflow.2006.09.004
https://doi.org/10.11016/0255-2701(86)80008-3
https://doi.org/10.11016/0255-2701(86)80008-3
https://doi.org/10.11061/(ASCE)0733-947X(1993)119:1(159)n
https://doi.org/10.1080/01457630903500833
https://doi.org/10.1016/j.ijmultiphaseflow.2011.04.005
http://www.mathworks.com/


References  

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 149 

 

[48] www.pipesim.com, accessed on 07/20/2014 

[49] www.Rapidminer.com, accessed on 04/17/2016  

[50] Yang, J.L., Estefen, S.F., (2018). Thermal insulation of subsea pipelines for different materials. Int 

Journal of Pressure Vessels and Piping. https://doi.org/10.1016/j.ijpvp.2018.09.009 . 

[51] Standing, M.B., (1951). Volumetric and phase behavior of oil field hydrocarbon systems: PVT for 

engineers. California Research Corp. 

[52] McCain, W.D., (1990). The properties of petroleum fluids. PennWell Books, Tulsa. ISBN: 

9781615838066. 548pp 

[53] Collins, A. G., (1987). Petroleum engineering handbook. SPE, Dallas. 

[54] Cazarez, O., Vasquez, M.A., (2005). Prediction of pressure, temperature, and velocity distribution of 

two-phase ow in oil wells. Journal of Petroleum Science and Engineering, https://doi.org/10.1016 / 

j.petrol.2004.11.003.  

[55] Zerpa, L.E., (2013). A practical model to predict gas hydrate formation, dissociation and 

transportability in oil and gas flowlines. PhD thesis, Faculty and the Board of Trustees of the Colorado 

School of Mines. 

[56] Pourafshary, P., Varavei, A., Sepehrnoori, K., Podio, A., (2008). A Compositional Wellbore/Reservo ir 

Simulator to Model Multiphase Flow and Temperature Distribution, International Petroleum Technology 

Conference, 3-5 December, Kuala Lumpur, Malaysia. https://doi.org/10.2523/ IPTC-12115-MS.  

[57] Kreith, F., Bohn, M., (1997). Principles of Heat Transfer, 5th Edition, PWS Publishing Company. 

[58] Ottenbacher, K.J., Smith, P.M., Illig, S.B., Linn, R.T., Fiedler, R.C., Granger, C.V., (2001). 

Comparison of logistic on and neural networks to predict rehospitalization in patients with stroke”. Journal 

of clinical epidemiology. https://doi.org/10.1016/ s0895-4356(01)00395-x.  

[59] Dowdy,S., Chilko D., (2004). Statistics for research:3rd edition”. Hoboken, New Jersey: John Wiley & 

Sons, Inc. ISBN:0-471-26735-X 

http://www.pipesim.com/
http://www.rapidminer.com/
https://doi.org/10.1016/j.ijpvp.2018.09.009
https://doi.org/10.1016/j.ijpvp.2018.09.009
https://doi.org/10.1016/j.ijpvp.2018.09.009
https://doi.org/10.2523/%20IPTC-12115-MS.
https://doi.org/10.1016/%20s0895-4356(01)00395-x.


Appendice 

PRESENTED BY  GOPDJIM NOUMO PROSPER, IN PARTIAL FULFILLMENT TO THE AWARD OF PHD IN PHYSICS 150 

 

APPENDICE 
 

List of publications 

 

 

1- Gopdjim Noumo Prosper, Donatien Njomo, Zepang Nana Kevin, 2020. Numerical Simulation of the 

Minimum Insulation Thickness to Thermally Design a Subsea Pipeline Carrying an Oil and Gas flow. 

International Journal of Heat and Technology. 

 

 

2- Gopdjim Noumo Prosper, Donatien Njomo, Zepang Nana Kevin (2019):  Modeling and simulation of 

the temperature profile along offshore pipeline of an oil and gas flow: effect of insulation materia ls. 

International Journal of Innovative Science and Research Technology Volume 4, Issue 9, September - 2019 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Numerical Simulation of the Minimum Insulation Thickness to Thermally Design a Subsea 

Pipeline Carrying an Oil and Gas Flow 

Prosper Gopdjim Noumo*, Donatien Njomo, Kevin Zepang Nana, Leonard Ribot Chuisseu Nguewo 

Department of Physics, Faculty of Science, University of Yaounde 1, P.O.Box 812, Yaoundé, Cameroon 

Corresponding Author Email: gopdjimnoumop@gmail.com

https://doi.org/10.18280/ijht.390310 ABSTRACT 

Received: 16 September 2020 

Accepted: 8 January 2021 

This paper considered an existing subsea pipeline transporting an oil and gas flow, and 

proposed to find the best thermal insulating material and the required thickness of 

insulation necessary to meet an output temperature of 40℃ and a pressure of 2.4MPa so as 

to avoid flow assurance issues. MATLAB and PIPESIM software were employed to run 

the simulations of the temperature and pressure profiles along the considered pipeline. Data 

used for the simulations were obtained from open literature. Results obtained from our 

simulations in MATLAB are validated using PIPESIM software, measured values and 

prediction model from literature. The temperature model was then used to thermally design 

an insulation thickness for the 50 km long pipeline using three insulating materials which 

are: black aerogel, polyurethane and calcium silicate. Results from the analysis showed 

that the black Aerogel material with a critical thickness of 10.16 cm is most effective to 

satisfy the criterion design. The effect of the selected insulating material was also 

investigated on the phase envelop. Results shows that for proper insulation thickness the 

flowing fluid temperature can be maintained at a temperature above which no flow 

assurance issues can be observed.

Keywords: 

thermal insulation, two-phase flow, heat 

transfer, numerical simulation, temperature 

profile, pressure profile 

1. INTRODUCTION

In deepwater oil production project, where wells are located 

far from platforms, offshore fluids generally consisting of oil 

gas and water are often transported over long distances in 

subsea pipelines [1]. During the transportation, the multiphase 

fluids is cooled on its way to the surface production due to heat 

transfer, through the pipelines walls, with the surrounding 

seawater [1]. If the production flow-line is not properly and 

sufficiently insulated against heat losses to the external 

surrounding, temperature of the flowing fluids inside the 

subsea pipeline will drop and this may lead to some flow 

assurance issues such as the precipitation of asphaltenes and/or 

paraffin wax and the formation of hydrates [2]. For example, 

it is shown by Ahmed [3] that at temperature around 288, 15°k, 

wax will start to form inside the pipeline and at temperature 

below 313, 15°k, combine with high-pressure gas hydrates 

will occur.  As results of these issues, pipe effective flow area 

may reduce and if serious, blockage may occur [4]. In subsea 

area, the interaction between the cold surrounding water and 

the warm flowing fluids inside pipeline is a major cause of 

temperature drop, which is responsible of some flow assurance 

issues such as wax deposition, and risk of hydrates formation. 

Therefore, temperature drops must be prevented in oil and gas 

production in order to minimize flow assurance issues. This 

can be achieved by choosing a proper insulation material with 

an appropriate thickness for the pipeline. 

Insulation of pipeline is becoming more and more 

increasingly important in any subsea project because of the 

increase in energy saving that it can provides. Optimum 

insulation thickness need then to be calculated for an 

appropriate selection of the insulating material with respect to 

a proper thickness. In recent years, many researches have been 

carried out on this topic in the open literature showing the 

interest of scientific for the pipeline thermal design. For 

examples: Nurfarah and William [5] carried out a study on the 

optimum thermal insulation design for subsea pipeline. One of 

theirs objectives was to establish a workflow procedure in 

selecting thermal insulation materials, thickness and number 

of layers required for protective coating. The pipeline length 

considered was comprised between 500 and 1500m and the 

design criterion was that the output temperature should be 

above 20℃. They used Visual Basic Application with Excel 

for the simulations purpose. Kiran [6], explored and compared 

the various types of insulation and find the optimum thickness 

of insulation required to maintain the temperature of the fluid 

inside the pipeline, above the hydrate/wax formation 

temperature of about 40℃ to ensure smooth flow. Excel 

spreadsheet calculation was used to compare the effect of 

various insulation material with different thicknesses on the 

temperature profile of the fluid in deep-water environment. 

Ibrahim Masaud Ahmed [3], focuses he study on the thermal 

insulation pipelines used for subsea crude oil transportation. 

He used MATLAB and Ansys fluent CFD to validate the 

MATLAB model. Briggs et al. [7] carried out a study using 

PIPESIM software to investigate the effects of flowline sizes, 

flow rates, insulation material, type and configuration on flow 

assurance of waxy crude over 10.2 km between the wellhead 

and the first stage separator on the platform. Considering the 

implications of these factors for flow assurance. They used 

Polyurethane Foam, and pipe-in-pipe insulation type. 

Mobolaji et al. [8] investigated the best material that is suitable 

for the thermal insulation of subsea flowlines using the 

ANSYS software package, and then provided the best 
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composite arrangement of insulation materials for better heat 

optimization. They used different insulating materials such as 

Aerogel, Paraffin Wax, Mineral Wool and Grooved Mineral to 

fill the gap between the inner pipe and the outer pipe. Marfo et 

al. [9] used PIPESIM software to design a suitable pipeline for 

transporting condensate gas for the Jubilee and TEN Fields. 

The design comprises of two risers and two flowlines. Hydrate 

formation temperature was determined to be 72.5 °F at a 

pressure of 3 000 psig. The insulation thickness for flowlines 

1 and 2 were determined to be 1.5 in. and 2 in. respectively. 

Marfo et al. [9] employed PIPESIM software to design a 

subsea pipeline for transportation of natural gas from Gazelle 

Field in Côte d’Ivoire to a processing platform located 30 km 

and to predict the conditions under which hydrate will form so 

as to be avoided. The found that an insulation thickness of 0.75 

in.with specific pipe size of 10 in. could satisfy the arrival 

pressure condition of 800 psia. However, most of these studies 

thermally design insulation material for pipelines using 

computational method and commercial software. Moreover, 

some of them are based on single-phase flow. As far as two-

phase gas and liquid flow is concerned, none of these studies 

calculated the optimum insulation thickness based on a 

coupled temperature-pressure model. Pressure and 

temperature are dependent variables that affect all the flow 

parameters.  

Oluwaseun [10] carried out a study that focuses on choosing 

and sizing of an insulation material to meet an output 

temperature of an oil and gas wells. The criterion design output 

temperature was set at 20℃. the pipeline used was 1km long. 

The fluids properties was modeled using compositional model. 

Aspen Hysys software was used and Urethane Foam was used 

as the insulating material. Similarly to the work done by 

Zulkefli and Pao [5], this paper focuses on choosing and sizing 

of an insulation material to meet an output temperature of an 

oil and gas transporting pipelines in a subsea area from a 

wellhead to a surface processing plant. The particular points 

of this work that differ from [4] are:  

 

- the pipeline is 50km long with undulation;  
- the fluids properties are calculated using black oil 

model,  
- the design output temperature used is 40℃ 
- three insulating materials: Calcium Silicate (CS), 

Black Aerogel (BA) and Polyurethane Foam (PUF) 

are used for the optimum insulation thickness  
- MATLAB and PIPESIM software are used to perform 

numerical simulations  
 

The aim of this study is to analyze the performance of 

different insulating materials along with the different 

insulation thickness. Then choice of the thermal insulation 

design should have the ability to maintain the flowline 

temperature above the critical point of hydrate formation 

temperature in order to prevent hydrate and wax crystals, 

which is usually 20℃. However, in this study the criterion 

temperature design was set to 40℃. More specifically, the 

study objectives are to:  

 

- model the fluids properties with black oil model;  
- model the temperature and pressure profiles of an oil 

and gas flow in an undulated subsea pipeline;  
- build a computer program code in MATLAB for 

numerical simulations; model the temperature with 

PIPESIM software;  

- use the temperature model for the thermal design of 

the subsea pipeline by performing numerical 

simulations analysis of different insulating materials 

with different thicknesses. 

 

This research project is therefore devoted to the 

investigation of thermal insulation properties and fluid 

properties on the temperature profile in the pipeline system 

during steady state condition. The thermal insulation design 

should have a capability of maintaining the temperature above 

40℃. This project is therefore restricted to: undulated subsea 

pipeline of 427m of altitude and 50km long; passive thermal 

insulation. This work contributes to a better understanding of 

the calculation of temperature and pressure distributions 

during gas and liquid flow in subsea pipeline using black oil 

model approach for fluids properties characterization, which 

lead to the optimal choice of the thermal insulation design. 

This study is organized as follow: Section 2 presents the 

methodology and the propose algorithm for steady state flow 

analysis. Section 3 presents ours case study and field data. The 

results of our numerical analysis are presented and discussed. 

Section 4 conclude the work and presents recommendations 

and future work. 

 

 

2. METHODOLOGY 

 

2.1 Geometrical parameters of pipeline and insulation 

materials 

 

The subsea pipeline geometry considered in this study is the 

same as that presented by Duan et al. [4] for the example 1 

case. Figure 1 below represent a vertical section of the 

considered offshore pipeline. The figure was represented with 

MATLAB software based on data from the schematic in ref. 

[4].  

 

Table 1. Geometrical parameters of pipeline and insulation 

[4] 

 
Internal 

diameter of 

pipeline (m) 

Outer 

diameter of 

pipeline (m) 

Thickness 

of pipeline (m) 

Length 

of pipeline 

(m) 

0.3112 0.3239 0.0127 50,000 

 

The geometrical parameters of the pipeline and insulation 

materials as well as the thermophysical properties of insulation 

materials are given in Table 1 and Table 2. 

 
 

Figure 1. Vertical sectional profile of the pipeline [4] 
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Table 2. Thermophysical properties of the insulation 

materials [11, 12] 
 

Insulation 

materials 

Thermal 

conductivity 

(W/m K) 

Specific 

heat 

(Kj/Kg K) 

Density 

(Kg/m³) 

Calcium Silicate 0.069 0.96 260 

Polyurethane 0.04 1400 45 

Black Aerogel 0.012 950 140 

 

2.2 Fluids properties  
 

The black oil model assumed that there are at most three 

distinct phase: Oil, gas and water. Water and oil are assumed 

to be immiscible and they do not exchange mass or change 

phase. Gas is assumed to be soluble in oil but not in water. In 

this work, the fluids properties were calculated using the black 

oil approached as follow. All black oil variables are given in 

S.I units unless precise.  
 

2.2.1 Bubble point pressure Pb 

The bubble point pressure can be determined by [13]: 

 

Pb = 1.255 [(
GOR

0.0059γg102.14/γo10−0.00198T
)

0.83

− 1.76] (1) 

 

with T is in °k, Pb in Bar.   
 

2.2.2 Gas oil solution Rs 

Standing in 1951 [14], proposed a correlation for the 

calculation of the gas-oil solution. 

 

RS = 0.00590γg102.14/γo10−0.00198T(0.797. 10−5P

+ 1.4)1.205 
(2) 

 

For pressures greater than bubble point pressure, Rs=GOR, 

with T in °k and P in Pa, Rs in Sm³/Sm³. 

 

2.2.3 Oil formation volume factor Bo 

Bo is defined as the ratio between the oil volume at flow 

conditions and the oil volume at standard conditions.  

 

Bo =
Vo(P, T)

Vo_sc
=

Qo(P, T)

Qo_sc
=

Vso

Vso_sc
 (3) 

 

Oil formation volume factors at or less than bubble point 

pressures can be estimated by using the correlation obtained 

by Standing [14]. 

 

Bo = 0.9759 + 0.952. 10−3 (RS (
γg

γOSC

)
0,5

+ 0.401T − 103 )

1.2

 (4) 

 

For pressures greater than bubble point pressure, oil 

formation volume factor is calculated by [14]: 

 

Bo = Bobexp[−Co(P − 105Pb)] (5) 

 

The coefficient of oil isothermal compressibility is 

calculated by Vazquez and Beggs [15] using the correlation 

below: 
 

Co = 10−9
2.81Rs + 3.10T +

171
γo

− 118γg − 1102

P
 

(6) 

 

With, T in °k, P in Bar, Bo in m³/m³ and Co in Bar-1. 

2.2.4 Oil viscosity μo 

The oil viscosity is determined for three thermodynamic 

pressure levels 

- For P=Patm, the dead oil viscosity is calculated using 

the equation by Beal [16] as presented by [17]: 
 

𝜇𝑜𝑑 = 𝐶4 (0.32 +
1.8 × 107

𝐴𝑃𝐼4.53 ) 

(
360

𝐶3 + 200
)

10
(0.43+

8.33
𝐴𝑃𝐼

)

 

(7) 

 

- For Patm<P≤Pb, the live oil viscosity is calculated 

using Beggs and Robinson [17] formulation     
            

μo

= 10.715C4(C1Rs

+ 100)−0.515 (
μod

C4

)
(5.44(C1Rs+150)−0.338)

 

(8) 

 

- For P>Pb, the relation from Vasquez and Beggs [18] 

is used  

 

μo = μob (
P

Pb
)

m

 (9) 

 

where, 
 

m = 2.6(C2P)1.187 × e−11.513−8.9810−5C2P (10) 

 

μob is the viscosity at the bubble-point pressure obtained 

using and setting Rs=GOR. 

μo is given in Pa.s. 

 

2.2.5 Oil specific gravity and oil density γo, ρo 

In petroleum industry, the oil specific gravity and oil density 

are given by: 

 

γo =
141.5

API + 131.5
 (11) 

 

ρo_sc = γoρw_sc (12) 

 

ρo =
ρo_sc + ρg_scRs

Bo

 (13) 

 

where, 

ρo_sc, ρw_sc and ρg_sc are standard densities of oil, water and 

gas respectively. γo is the specific density of oil. ρo is the local 

density of oil at flow conditions. 

 

2.2.6 Gas compressibility factor Z 

Correlation presented by Andreolli et al. [11] approximating 

the abacus data in Standing and Katz [19] is given by: 

 

Z = 1 −
3.52

100.9813Tpr
+

0.274Ppr
2

100.8157Tpr
 (14) 

 

Tpr =  
T

Tpc
   (15) 

 

Ppr =  
P

Ppc

 (16) 
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where, the pseudocritical properties were calculated using the 

Standing [15] correlation  

  

Tpc =
1

C5

(168 + 325γg − 12.5γg
2) (17) 

 

Ppc =
1

C2

(677 + 15.0γg − 37.5γg
2) (18) 

 

2.2.7 Gas formation volume factor Bg 

Bg is defined by the ratio of the free gas volume in flow 

condition to the volume at standard condition of the same mass 

of gas. 

 

Bg =
Vg(P,T)

Vg_sc
=

ρg_sc

ρg
  (19) 

 

Bg =
Psc

Tsc

ZT

P
 (20) 

 

where, Psc and Tsc are pressure and temperature at standard 

condition. T and P are temperature and pressure at flow 

conditions respectively. 

 

2.2.8 Gas density ρg 

 

ρg = 0.009225
γgP

ZT
 (21) 

 

where, T is in °k, P in Pa.   

 

2.2.9 Gas viscosity μg 

For the gas viscosity calculation, we used the Lee et al. [18]. 

 

μg = C4F1exp(F2(C4ρg)
F3

) (22) 

  

F1 =
(9.379 + 16. 07Mg)(C5T)1.5

209.2 + 19260Mg + C5T
 (23) 

 

F2 = 3.448 +
986.4

C5T
+ 10.09Mg (24) 

  

F3 = 2.447 − 0.2224F2 (25) 

 

where, T is in °k   

            

2.2.10 Water formation volume factor BW 

BW is defined as the ratio between the water volume at flow 

conditions and the water volume at standard conditions. 

 

Bw =
Vw(P, T)

Vw_sc
=

Qw(P, T)

Qw_sc

 (26) 

 

It can be calculated using the McCain correlation [20]. 

 

BW = (1 + ∆VwT)(1 + ∆VwP) (27) 

 

where, ∆𝑉𝑤𝑇  and ∆𝑉𝑤𝑃  are respectively the volume 

corrections for temperature and pressure, obtained by: 

 

∆VwT = −1.00010(10−2) + 1.33391(10−4)C3

+ 5.50654(10−7)C3
2 

(28) 

 

∆VwP = −1.95301(10−9)C2C3P

− 1.72834(10−13)C2
2C3P2

− 3.58922(10−7)C2P

− 2.25341(10−10)C2
2P2 

(29) 

 

T is given in °k and P in Pa.  

 

2.2.11 Water density 

The water density at local flow condition is calculated as: 

 

ρw =
ρw_sc

Bw
   (30) 

 

where, ρwsc and γwsc are respectively water density at standard 

conditions and specific gravity of water at standard condition. 

 

2.2.12 Water viscosity 

The water viscosity was estimated by using the correlation 

of Collins [21], neglecting salinity effect as presented by [11]. 

 

μwsc
= 109.574C4C3

−1.12166 (31) 

 
μw = μwsc

(0.999 + 4.029510−5k6 + 3.1062 × 10−9k6
2) (32) 

 

k6 = (C2P + 14.7) (33) 

 

2.2.13 Volumetric flow rate 

Volumetric flow rate of petroleum fluids (gas, oil and water) 

at flow conditions are defined as follow: 

 

Qg = (Qg_sc − RsQo_sc)Bg = Qo_sc(GOR − Rs)Bg (34) 

 
Qo = Qo_scBo (35) 

 
Qw = Qw_scBw   (36) 

 
Ql = Qo_scBo + Qw_scBw = Qo_sc(Bo + WOR. Bw) (37) 

 

where, Qg_sc, Qw_sc and Qo_sc are the flow rates of gas, water 

and oil at standard conditions. Qg, Qw, Qo and Ql are the flow 

rates of gas, water, oil and liquid at flow conditions. GOR and 

WOR are gas oil ratio and water oil ratio at surface. 

 

2.3 Pressure gradient formulation 

 

The pressure gradient is calculated using Dukler and Taitel 

correlation [22] in which, void fraction is determined based on 

drift-flux model using correlations from [23]. Eq. (1) below 

describes the pressure profile along a flow-line. 

 

(
dP

dL
) =

ftpρmVm
2

2D
+ ρmg sin(θ) (38) 

 

where: P is the pressure given in Pa; L is the length of the 

pipeline in m; ρm is the mixture local density in kg.m-3; vm is 

the mixture velocity in m.s-1; D is the pipeline outer diameter 

in m; g is the gravitational acceleration given in m.s-2 and θ is 

the inclinasion of the pipeline expressed in degrees. In Eq. (38), 

two necessary variables are to be determined: the friction 

factor of two-phase flow ftp and the mixture density ρm.  

 

ρm = ρL (
λ2

1 − α
) + ρg (

(1 − λ)2

α
) (39) 
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1

√ftp

= −2log [
2ε/d

3.7
−

5.02

Re
log (

2ε/d

3.7
+

13

Re
)] (40) 

 

λ =
Qo_scBo + Qw_scBw

Qo_scBo + Qw_scBw + (Qg_sc − Qo_scRs)Bg

 (41) 

 

α =
Vsg

CdVm+Vd
    (42) 

 

Cd =
Vsg

Vm
[1 + (

Vsl

Vsg
)

(
ρg

ρL
)

0.1

] (43) 

 

Vd = 2.9 [
g. D. σ(1 + cos θ)(ρL − ρg)

ρL
2 ]

0.25

(1.22

+ 1.22 sin θ)
Patm

P  

(44) 

 

From (Eq. (38)) to (Eq. (44)):  

ρg, is the local density of the gas, kg.m-3; ρL is the local liquid 

density, kg.m-3; α is the void fraction of the gas phase given by 

drift flux correlation of Woldesemayat. For more details, see 

[23]. Vsg is the superficial velocity of the gas phase, m.s-1; Vm 

is the mixture velocity, m.s-1; Cd is the profile parameter and 

Vd is the drift velocity. σ is the surface tension calculated given 

in N.m-1. Patm, is the atmospheric pressure, in Pa. λ is the liquid 

input fraction. Qo_sc and Qw_sc are oil and water flowrate 

respectively at standard condition given in m3.s-1. Black oil 

parameters which are: Bw, m3.s-3; Bg, m3.m-3; Bo, m3.m-3; Rs, 

Sm3.Sm-3, ε, is the pipe roughness, d the pipe diameter and Re 

is the Reynolds number of the mixture given by (Eq. (45)) 

below: 

 

Re =
ρmVmd

μm

 (45) 

 

2.4 Temperature profile model using MATLAB  

 

Difference material of thermal insulation will result to 

various temperature profile inside the subsea pipeline. Thus, 

we present here the temperature calculations model for an oil 

and gas flow inside subsea pipeline. The temperature are 

pressure dependent. From the general equation describing the 

temperature profile along pipeline considering that the kinetic 

energy is negligible as in ref. [24], we have: 

 
∂(Tm)

∂t
− ηm

∂P

∂t
= −vm

∂(Tm)

∂L
−

UoπD(Tm − Te)

ApρmCpm

+ vmηm

∂P

∂L
− vm

g sin(θ)

Cpm

 

(46) 

 

where, Tm is the average temperature of the fluid given in °k, 

Ap is the pipe cross-sectional area m2, t is the time given in s, 

𝐶𝑝𝑚
 is the mixture specific heat capacity in J.k.kg

-1, ηm is the 

mixture Joule Thomson coefficient, k.Pa-1, Uo is the overall 

heat transfer coefficient in w.k.m-2, Te is the environment 

temperature in °k.   

In steady state conditions, (Eq. (47)) becomes: 

 
dTm

dL
= −

UoπD(Tm − Te)

Cpm
wm

+ ηm

dP

dL
−

g sin(θ)

Cpm

 (47) 

 

where: 

 

wm = ρmVmAp (48) 

 

Cpm = Cpgα
ρg

ρm

+ CpL(1 − α)
ρL

ρm

 (49) 

 

CpL = (
Qo

Qo + Qw

) Cpo + (
Qw

Qo + Qw

)Cpw (50) 

 

From (Eq. (47) to (Eq. (50)): 

𝑤𝑚 is the mixture mass flow rate in kg.s, Cpm, is the average 

specific heat capacity calculated as in ref. [25], Cpg and CpL 

are the specific heat capacity of the gas and liquid respectively. 

Cpm, Cpg and CpL are expressed in J.k.kg
-1. Qo and Qw are 

respectively the local flowrates of the oil and water. ηm, is the 

average Joule-Thomson, coefficient calculated using (Eq. (51)) 

through (Eq. (54)) as shown below, 

 

ηm = − (
wgCpgηg + wLCpLηL

 wmCpm

) (51) 

 

ηg = (
1

ρgCpg

) [
Tm

Z
(

dZ

dT
)

p
] (52) 

 

ηL =
1

ρL CpL

(Tmβ − 1) (53) 

 

β =
WOR

1 + WOR

∂Bw

∂T
+

1

1 + WOR

∂Bo

∂T
 (54) 

 

Where is the thermal expansion coefficient and Z is the gas 

compressible factor. 

The overall heat transfer coefficient Uo is calculated as  

  

1

Uo
= (

rins

rihin
+ rins

ln (
ro

ri
)

kpipe
+ rins

ln (
rins
ro

)

kins
 +

rins

ho
) (55) 

 

kpipe and kins represent the thermal conductivity of the 

metallic pipe and the insulation layer respectively, they are 

expressed in, w.k-1.m-1. rins, ro and ri are respectively the 

insulation material radius, the outer and the inner radius given 

in m. The surrounding heat transfer coefficient ho expressed in 

w.k-1.m-2, is calculated using (Eq. (56)) below: 

 

ho =
KoNuo

D
 (56) 

 

where, 𝑁𝑢𝑜 = 0.027. 𝑅𝑒𝑜
0.8𝑃𝑟𝑜

0.3, represent the Nusselt number; 

𝑅𝑒𝑜 =
𝜌𝑜𝑉𝑜𝐷

𝜇𝑜
, is the outer Reynolds number of the seawater; ρo 

is the density of the seawater, kg.m-3; Vo, is the seawater 

velocity, m/s; μo is the viscosity of the seawater, in Pa.s; 𝑃𝑟𝑜 =
𝜇𝑜𝐶𝑝𝑜

𝐾𝑜
, is the Prandtl number of the outer seawater; Cpo is the 

specific heat capacity of the seawater, J.k.kg
-1; Ko is the 

thermal conductivity of the seawater, w.k-1.m-1.  

The internal heat transfer coefficient expressed in w.k-1.m-2, 

is calculated according to Pourafshary et al. [25] as follow: 

 

hin =
KtpNutp

D
 (57) 
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where, Ktp expressed in w.k-1.m-1, is the mixture thermal 

conductivity of the two-phase flow given as 

 

Ktp = αkg + (1 − α)kL (58) 

 

With kg and kL representing each the thermal conductivity 

of the gas and liquid respectively, expressed both in w.k-1.m-1.                   

Nutp, the Nusselt number of the two-phase flow determined 

as follow:              

If flow is laminar (ReT≤2000), for long pipe, we have:    

                                                               

Nutp = 1.86 [ReTPrm (
D

L
)]

1
3
 (59) 

 

If flow is turbulent flow (ReT≥6000), for long pipe, we have:  

 

Nutp = 0.023 ReT
0.8Prm

0.33 (1 + (
D

L
)

0.7

) (60) 

 

For transition flow regime (2000≤ReT≤6000)   

                                                          

Nutp = Nulaminar [
ReT

6000
]

a

 (61) 

 

with, parameter 𝑎 given by: 

 

a =
ln (

Nuturbulent
Nulaminar

)

ln(
Remax
Remin

)
   (62) 

 

The total Reynolds number ReT is calculated as follow: 

 

ReT =
ρLVsLD

μL

+
ρgVsgD

μg

 (63) 

 

The Prandtl number of the mixture is given by: 

 

Prm =
μmCpm

Ktp

 (64) 

 

2.5 Numerical simulations 

 

The finite difference method was used to discretize the 

temperature model given by Eq. (47). All the equations in this 

study are solved simultaneously using MATLAB software. 

Numerically, we divide the pipeline into sections, and each 

section was divided into cells and consider average value of 

temperature and pressure in the cells. The numerical solution 

obtained using finite difference method is therefore given by: 

 
Tm(i + 1) − Tm(i)

∆x
= (

Te − Tm

A
+ ηm

dP

dL
−

g sin(θ)

Cpm

)

i

 (65) 

 

In which, the parameter A is:  
 

Ai = (
Cpm

wm

UoπD
)

i

 (66) 

 

The temperature model presented above is first validated by 

using it to produce the same work done by [4]. The difference 

done here by this research is the methodology approach for the 

determination of the pressure gradient, the calculation of the 

Z-factor, the calculation of the liquid holdup and the 

determination of the of the joule Thomson coefficient of gas, 

liquid and thus, for the mixture. In Table 3 below, we present 

all the necessary inputs fluids data to run simulations.  

 

Table 3. Operating parameters [4] 

 
Oil flow rate 0.00955m³/s 

Gas flow rate 9.05 Nm³ 

Density of natural gas 0.710 Kg/m³ 

Density of crude oil (20℃) 886.9 Kg/m³ 

Surrounding temperature 277.15 K 

Inlet temperature 323.15 K 

Outlet temperature 278.75 K 

Inlet pressure 5 MPa 

Outlet pressure 2.4 MPa 

Over all heat transfer coefficient 2 (W/m² K) 

 

2.6 Temperature model using PIPESIM 

 

This study also uses the PIPESIM software to build and 

validate the temperature model presented above. The 

operating parameters are enter in the software. The fluid type 

is set as black oil. The simulations are  

 

2.6.1 Pipeline model 

The network schematic model was used to build the pipeline 

model in PIPESIM. Figure 2 below shows a sketch of the 

simulation modeling of the pipeline in PIPESIM. 

 

2.6.2 Multiphase correlation 

The multiphase model selected in PIPESIM was the revised 

correlation of Beggs and Brill [17] described by the following 

equation 

 

dP

dL
=

ftpρnVm
2

2d
+ ρmg sin θ

1 − Ek

 
(67) 

 

In which 𝐸𝑘 is a dimensionless acceleration term that take 

into consideration the pressure gradient due to kinetic energy 

effects and is given by: 

 

Ek =
VmVSgρm

P
 (68) 

 

The Beggs and Brill multiphase correlation deals with both 

the friction pressure loss and the hydrostatic pressure 

difference. First the appropriate flow regime for the particular 

combination of gas and liquid rates (Segregated, Intermittent 

or Distributed) is determined. The liquid holdup, and hence, 

the in-situ density of the gas-liquid mixture is then calculated 

according to the appropriate flow regime, to obtain the 

hydrostatic pressure difference. A two-phase friction factor is 

calculated based on the "input" gas-liquid ratio and the Moody 

friction factor table using Colebrook equation. From this, the 

friction pressure loss is calculated using "input" gas-liquid 

mixture properties. That is why this model was selected. 
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Figure 2. Sketch of the simulation modeling of subsea pipeline in PIPESIM 

 

2.6.3 Energy equation 

PIPESIM uses the first law of thermodynamics to perform 

a rigorous heat transfer balance on each pipe segment. The first 

law of thermodynamics is the mathematical formulation of the 

principle of conservation of energy applied to a process 

occurring in a closed system (a system of constant mass m). It 

equates the total energy change of the system to the sum of the 

heat added to the system and the work done by the system. For 

steady-state flow, it connects the change in properties between 

the streams flowing into and out of an arbitrary control volume 

(pipe segment) with the heat and work quantities across the 

boundaries of the control volume (pipe segment). For a 

multiphase fluid in steady-state flow, the energy equation is 

given by: 

 

∆ [(H +
1

2
Vm

2 + gz) dm] = ∑ δQ − δW (69) 

 

where the specific enthalpy: 

 

H = U + PV (70) 

 

is a state property of the system since the internal energy U the 

pressure P and the volume V are state properties of the system. 

It is clear from the left-hand side of Eq. (69), the change in 

total energy is the sum of the change in enthalpy energy, 

 

∆[Hdm] = ∆[(U + PV)dm] (71) 

 

the change in gravitational potential energy: 

 

∆(Ep) = ∆[(gz)dm] (72) 

 

and the change in total kinetic energy (based on the mixture 

velocity) 

 

∆(Ek) = ∆ [(
1

2
Vm

2 ) dm] (73) 

 

which is assumed to be negligible. 

On the right-hand side of Eq. (69), ∑δQ includes all the heat 

transferred to the control volume (pipe segment) and δW 

represents the shaft work, that is work transmitted across the 

boundaries of the control volume (pipe segment) by a rotating 

or reciprocating shaft 

 

2.6.4 Setup calculation 

In PIPESIM, after the pipeline model is built and the fluid 

model is considered, the setup data for simulations can then be 

edited as it be seen in the Figure 3 below. 

 

 
 

Figure 3. Sketch of data edit in PIPESIM 

  

2.6.5 Run simulations 

You can perform nodal analysis, reservoir simulation, and 

use other analytical tools (such as pressure/temperature (P/T) 

profiles, VFP tables, and network simulation) to calculate the 

distribution of flowrates, temperatures, and pressures 

throughout the system and plan new field developments. 

Figure 4 below presents a sketch of temperature simulation run 

using PIPESIM. 
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Figure 4. Sketch of temperature simulation with PIPESIM 

 

 

3. RESULTS AND DISCUSSIONS 
 

The given calculations are performed to select the insulation 

material and appropriate insulation layer thickness. The design 

criterion is to ensure that the temperature at any point on the 

flow line does not drop to below 40℃, as required by flow 

assurance. Insulating materials considered for this design are 

Calcium Silicate (CS), Black Aerogel (BA) and Polyurethane 

Foam (PUF). Firstly, MATLAB software was used to 

implement numerical simulations and PIPESIM software was 

used for numerical validation purpose of the temperature 

profile. Further simulations are run to thermally design the 

subsea pipeline. Finally, the effect of the selected insulation 

material on the heat flux and the phase envelop of the fluids 

was carried out 

 

3.1 Pressure profile inside the subsea pipeline  

 

As pressure and temperature are simultaneously dependent, 

we first present the result of the pressure profile along the 

considered subsea pipeline. In order to verify the pressure 

model describes above in Eq. (38), numerical simulation was 

performed with MATLAB software using data presented in 

Table 3 above. The validation of the predicted model is done 

using PIPESIM software and measure value data obtained 

from [4]. 

 

3.1.1 Validation with the PIPESIM model 

In order to validate the model used for predicting the 

pressure profile, the output of the predicted model was 

compared to the output of the PIPESIM model. From Figure 5 

above, we observed the Pressure drop is not linear because of 

the presence of more than phase. Predicted pressure decreases 

along the subsea pipeline from 5×106 Pa to 2.4327×106 Pa. 

The pressure obtained with the PIPESIM software have an 

end-point value of 3×106 Pa. The predicted used Dukler and 

Taitel model in which liquid holdup is calculated using drift-

flux correlation while the PIPESIM model used the Beggs and 

Brill correlation. These different approaches could explain the 

difference observed when comparing the outputs of the models. 

However, the pressure drop from PIPESIM is closed to the one 

obtained by our predicted program with a relative error of 

about (3-2.4327)/3=19%. This shows that the predicted model 

presented in this study can be used for two-phase pressure drop 

calculation in an undulated subsea pipeline of about 50km. A 

greater pressure drop will cause a smaller displacement of the 

fluid, thus additional energy will be required to displace the 

fluid. 

  
 

Figure 5. Pressure profile inside subsea pipeline obtained 

using proposed model with MATLAB software and validated 

with PIPESIM model 

 

Table 4. Pressure comparison and validation [4] 

 

Methods 

Inlet 

pressure/ 

(MPa) 

Endpoint 

pressure/ 

(MPa) 

Pressure 

drop 

/(MPa) 

REPD 

Model 5 2.4327 2.5673 1.26% 

Measured 

Value 
5 2.4 2.6  
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3.1.2 Validation with measured data  

We compared in Table 4, the end-point value of the 

predicted model of pressure profile and the measured value 

from experiment in [4]. We then calculated the relative 

pressure difference (REPD). From Table 4, we noticed that the 

predicted pressure and the measured end-value are in good 

agreement with a relative error of 1.26% which shows that the 

proposed model capture well the two-phase flow pressure 

profile inside the subsea pipeline. 

 

3.2 Temperature profile inside subsea pipeline 

 

Temperature is one of the most important parameter in all 

thermal insulation design in subsea pipeline. Before 

investigating on the proper insulation material and the required 

insulation thickness, the temperature profile of the fluid 

flowing inside the pipeline must be well described. In order to 

make sure that the proposed temperature model is good for 

further simulations run, validation was carried out using 

PIPESIM model, measured value from experiment in [4] and 

literature calculation model from [4]. The predicted 

temperature from Eq. (65) was implement in MATLAB. 

 

3.2.1 Validation with the PIPESIM model 

Using the data presented in Table 3 above in conjunction 

with the above temperature model described by Eq. (65), the 

predicted temperature profile has been calculated using 

MATLAB software. The model was first validated 

numerically with the PIPESIM software as shown in Figure 6 

below. It can be observed that the mixture of oil and gas enters 

the subsea pipeline with a temperature of 323.15°k and 

decreases along the subsea pipeline until it reaches the 

temperature of approximately 277.9934°k. This result was 

obtained for an overall heat transfer coefficient U = 2 W/(m² 

K) as presented by Duan et al. [4]. From the plot, it can be 

observed that the predicted model and the PIPESIM model 

show a good agreement. It can also be observed that the 

flowing temperature decreases rapidly to 313.15°K for a 

travelled distance of about 0.5 km, which represent the 

maximum distance the fluid moved before starting undergoing 

flow assurance issues such as paraffin wax formation and 

deposition. By considering the pipeline length of 50 km, the 

close match results shows that the model can predict the 

temperature distribution of an oil and gas flow through an 

undulated subsea pipeline.  

 

 
 

Figure 6. Temperature profile comparison between our 

model and PIPESIM model 

 
 

Figure 7. Oil viscosity variation with temperature 
 

As the fluid temperature decreases along the pipeline due to 

the heat losses between the cold surrounding and the hot fluid, 

oil viscosity will increase as it is shown in Figure 7 above. 

Such situation may promote formation of solids such as wax 

in the pipeline resulting in pipeline obstruction thus to an 

increase in pressure drop of the fluid. Another problem, is the 

decrease of the oil production along the subsea production 

pipeline as can be seen in the Figure 8. 

Figures 6, 7 and 8 show that the temperature is an important 

parameter for the analysis of fluid flow in subsea pipeline. A 

drop in temperature will cause a reduction in production due 

to a restriction of the flow area by solids deposition such as 

wax and hydrates resulting from a thermal unbalance between 

the surrounding cold water and the hot fluid flowing through 

the pipeline. This situation may required a more suitable 

insulation design for remediation.   
 

 
 

Figure 8. Oil flowrate variation with temperature 

 

3.2.2 Validation with measured field data from literature 

model 

The model was also validated using measured value from 

field data. The results was presented and compared in Table 5 

below. From this table, it is show that the predicted 

temperature from our model is in good agreement with that of 

the measured value and the predicted model from [4]. The 

results show a relative error of 1.68% with the measured value, 

1.04% with the PIPESIM model and 3.37% with the model 

presented by Duan et al. [4]. This result shows that the model 

can predict accurately the temperature profile inside the 

considered subsea pipeline for an overall heat transfer 

coefficient U = 2 W/(m² K).  
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Table 5. Validation of the temperature calculations with others models 

 
Methods Inlet temperature/(K) Endpoint temperature/(K) Temperature drop RETD 

Predicted model 323.15 277.99 45.1566 1.68% 

MV 323.15 278.75 44.4 1.04% 

PIPESIM prediction 323.15 278.28 44.86  

UPTP 323.15 277.25 45.9 3.37% 

Form the results presented in Figure 6 and Table 5 above, it 

clear that the temperature model presented in this study can be 

further used for the thermal insulation design because of its 

good accuracy with other models. The main goal of the 

thermal design analysis was to select an appropriate insulation 

layer thickness and material. The design criterion is to ensure 

that the temperature at any point on the flow line does not drop 

to below 40℃, as required by flow assurance. Insulation 

materials considered for this design are Calcium Silicate, 

Polyurethane Foam and Black Aerogel. 

 

3.3 Numerical simulations for the determination of the 

minimum insulation thickness of Calcium Silicate 

 
Figure 9 below shows the effect of various Calcium Silicate 

thickness on the fluid temperature along the subsea pipeline.  

The thickness is comprised between 2.54 to 66.04 cm. It can 

be seen that, for insulation thickness less than 66.04 cm, the 

fluid temperature would drop below the 313.15°K, leading to 

high risk of flow assurance issues inside the subsea pipeline. 

The minimum insulation thickness to be used in this case is 

66.04 cm. 

 

 
 

Figure 9. Temperature profiles of the flowing fluids inside 

subsea pipeline with different insulation thickness of Calcium 

Silicate 

 

3.4 Numerical simulations for the determination of the 

minimum insulation thickness of Polyurethane Foam  

 

Figure 10 below, shows the temperature profile for different 

Polyurethane Foam thickness taken between 2.54 cm and 

25.4cm. It can be observed that the minimum insulation 

thickness that would achieved an output temperature of at least 

313.15°K is 25.4cm. 

 

3.5 Numerical simulations for the determination of the 

minimum insulation thickness of Black Aerogel  

 

In Figure 11 below, we plotted the temperature profile for 

different insulation thickness of Black Aerogel. The thickness 

range from 1.27 cm and 10.16 cm. The minimum insulation 

thickness necessary to satisfy the design criterion is 10.16 cm 

as can be seen. 

When comparing the temperature profiles plotted in figure 

9 to Figure 11 for the various insulating materials with 

different thickness, we observed that either a 25.4 cm of 

Polyurethane or a 10.16cm of Black Aerogel material should 

be used as insulating material type for the subsea pipeline. 

However, only cost analyses can justify one of the options, 

which is beyond the scope of this work. In this study, because 

Black Aerogel has the smallest thermal conductivity and 

provide the smallest insulation thickness, it was chosen as the 

best insulating material with a thickness of 10.16cm for the 

design purpose. 

 

 
 

Figure 10. Temperature profiles of the flowing fluids inside 

subsea pipeline with different insulation thickness of 

Polyurethane Foam 

 

 
 

Figure 11. Temperature profiles of the flowing fluids inside 

subsea pipeline with different insulation thickness of Black 

Aerogel 

 

The temperature profiles have also help us to investigate the 

risk of flow assurance issues by examined the phase envelop. 

 

3.6 Effect of Black Aerogel on the phase diagram  

 

Due to the low temperature and high pressure of deep water, 

772



 

the pipe thermal insulation has important effects on the fluid 

temperature in pipeline. Effect of Black Aerogel on the 

formation area of some flow assurance issues under different 

insulating material thickness.  

In Figure 12, F.A is for Flow Assurance. The effect of 

different insulating material thickness was investigated on the 

phase diagram. It can be seen that the flow assurance risk 

formation area decreases with the increase of the thickness of 

insulating material. Thus, this approach can also be used to 

optimize the thermal insulation design of subsea pipeline. 

 

 
 

Figure 12. Pressure variation vs temperature 

 

 

4. CONCLUSION 

 

In this work, we proposed a model to thermally design a 

subsea pipeline for heat conservation purpose in subsea 

pipeline and therefore to avoid the formation of some flow 

assurance issues such as paraffin wax and hydrates. As 

temperature and pressure greatly influence the flow assurance 

issues caused by thermal unbalance, a temperature and 

pressure model were proposed and validated using field data 

and others models. The good agreement obtained shows that 

the predicted models are suitable for temperature and pressure 

prediction in subsea pipeline. Further simulations were run to 

find out the optimal insulation thickness among three different 

insulating materials with various thicknesses in order to 

achieve the subsea pipeline design. From the obtained results, 

it is concluded that a minimum of 10.16 cm Black Aerogel 

thermal insulation thickness is required to ensure that the 

discharge temperature at the discharge end of the subsea 

pipeline does not fall below 313.15 degree Kelvin. It was also 

observed that, the selected insulation material has direct 

impacts on the flow assurance issues formation area in the 

subsea pipeline. Because of this, flow assurance risk formation 

region can be shifted or avoided. The proposed model can 

therefore be used to thermally design a subsea pipeline during 

steady state operation. For future work, logistic regression can 

be used to predict hydrate formation probability in a subsea 

production and transportation pipeline for a given composition 

and operating conditions. Machine learning approach can also 

be used to risk assessment of hydrate and wax formation. 

Multi-variate Logistic Regression Model to Analyze hydrate 

formation risk can also be carried out. Thermal insulation 

design can be studied on transporting pipeline that crosses 

offshore and onshore pipeline. Transient analysis can also be 

considered to capture wax, hydrates deposition tendencies 

during shut down, and restart scenarios for subsea pipeline 

transporting liquid and gas flow. A comparative study using 

PIPESIM, Aspen Hysys and MATLAB can be done in order 

to choose the best software that properly offer a good 

estimation of optimal insulation thickness. Investigation 

should be carried out for optimal economic insulation 

thickness design in subsea pipeline. 
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NOMENCLATURE 

 

A cross section area, m2 

Bo oil formation volume factor, m3 .m-3 

Bw water formation volume factor, m3 .m-3 

Bg gas formation volume factor, m3 .m-3 

Cd profile parameter 

Cp specific heat at constant pressure, J. kg
−1. k−1 

D inner diameter of pipe, m 

f friction factor 

g acceleration of gravity, m. s−2 

hin inner convective heat transfer coefficient, 

w. k−1. m−2 

ho outer convection heat transfer coefficient, 

w. k−1. m−2 

k thermal conductivity of pipe, w. 𝑘−1. m−1 

L pipe length, m 

P pressure, Pa 

q heat flux rate 

Qw local flow rate of water at flow conditions, 

m3. s−1 

Qo local flow rate of oil at flow conditions, m3. s−1 

Qg local flow rate of gas at flow conditions, m3. s−1 

Qw_sc flow rate of water at standard conditions, 

m3. s−1 

Qo_sc flow rate of water at standard conditions, 

m3. s−1 

Qg_sc flow rate of water at standard conditions, 

m3. s−1 

Re Reynolds number 

RS solution gas-oil ratio, Sm3. Sm−3 

r radius of pipe, m 

T temperature, k 

U overall heat transfer coefficient, w. k. m−2 

Vd drift velocity, 𝑚. s−1 

Vsw superficial velocity of water, m. s−1 

Vso superficial velocity of oil, m. s−1 

Vsg superficial velocity of gas, m. s−1 

Vg velocity of the gas phase, m. s−1 

Vl velocity of the liquid phase, m. s−1 

Vm mixture velocity, 𝑚. s−1 

w mass flow rate, kg. s−1 

Z gas compressibility factor 

 

Greek symbols 

 

ρ density, kg. m−3 

μ viscosity, kg. m-1.s-1 

α void fraction 

η joule Thomson coefficient, k. Pa−1 

θ inclinasion angle of pipe, 𝑟𝑎𝑑 

σ surface tension, N. m−1 

 

Subscripts 

 

atm atmospheric 

o oil, outer 

g gas 

w water 

l liquid    

m mixture 

sc standard conditions 

tp two phase 

p pipe 

i inner 

ins insulation 

e ambient 

 

774



Volume 4, Issue 9, September – 2019                                    International Journal of  Innovative Science and Research Technology                                                 

              ISSN No:-2456-2165 

 

IJISRT19SEP1352                                                   www.ijisrt.com                     566 

Modeling and Simulation of the Temperature Profile 

along Offshore Pipeline of an Oil and Gas Flow: 

Effect of Insulation materials 
 

 

Gopdjim Noumo Prosper 

Dept. of Physics 

University of Yaounde 1 

Yaounde, Cameroon 

Donatien Njomo. 

Dept. of Physics 

University of Yaounde 1 

Yaounde, Cameroon 

Zepang Nana Kevin 

Dept. of Physics 

University of Yaounde 1 

Yaounde, Cameroon 

 

 

Abstract:- In offshore area, flowing parameters such as 

temperature and pressure must be controlled in order 

to guarantee a safety and economical transportation of 

fluid along pipeline. This can be achieved by using 

numerical simulations. In this paper, a mathematical 

model for predicting temperature and pressure profile 

along offshore pipeline during oil and gas 

transportation is presented. The model obtained from 

general formulation of pressure and temperature 

equations during two-phase flow is discretized and 

solved iteratively using a Matlab code. The numerical 

simulations results, shows a good agreement with a 

relative error of 1.16% on a field data obtained from 

literature. Further, effect of three insulation layers 

consisting of calcium silicate, black aerogel and 

polyurethane foam along with different insulation 

material thickness ranges between 0.0254 m and 0.0635 

m, as well as different oil flowrates, on the temperature 

profile are analyzed. Required insulation material, 

insulation thickness and minimum inlet temperature for 

maintaining a minimum flow temperature of 313.15°k 

at any point in the offshore pipeline are determined.  

Results shows that an inlet temperature of 343.15°k 

with a thickness of 0.0635 m of black aerogel satisfied 

the requirement. It is shown that, the proposed model 

has predicted the temperature distribution very well. 

 

Keywords:- Temperature Profile, Offshore Pipeline, 

Numerical Simulation, Insulation Material, Two Phase 

Flow. 

 

I. INTRODUCTION 

 

During transportation of oil and gas inside offshore 

pipeline, the fluid inside pipeline losses heat because of the 

temperature difference between the cooler surrounding and 

the warmer fluids. Consequently, if the fluids temperature 

drop below the wax appearance temperature or the hydrate 

appearance temperature, wax and hydrates deposition will 

occur which may lead to a reduction of the effective flow 

area of pipe and if serious, blockage may occur [1]. Pipeline 

blockage significantly influence the economical operation 

and financial benefit of the oil and gas industry. With 

today’s low oil price and high rig rate, the industry is 

struggling with cost reduction [2]. Therefore, it is very 

important to carefully manage the thermal design of 

offshore pipeline in order to control the heat loss and thus, 

to prevent additional loss resulting from maintenance 

operations related to the flow assurance issues. Temperature 

distribution is therefore of great importance in any design 

process of oil and gas transportation. 

 

In the open literature, many authors have been 

interested in the topic of temperature modeling and 

simulation inside offshore pipelines and wellbores for single 

and multiphase flow as it is shown in [1, 2, 4-11] among 

others. From these studies, it comes out that:  

 temperature and pressure are dependent;  

 the temperature profile model obtained for multiphase 

flow is different from that of single-phase flow because 

of complexity of the dynamical behavior of the 

multiphase; 

 fluids properties are determined using black oil or 

component model as presented in [5, 12, 15];   

 pressure profile is modeled using homogeneous or 

separated phase model [11-145]. 

 single-phase temperature distribution can e determined 

using analytical or numerical solution. 

 

Temperature profile investigation in offshore pipeline 

is mostly to find out the thermal management strategy 

appropriate to limit some of the flow assurance issues such 

as wax and hydrate formation and deposition. Insulation 

materials revealed to be one the various thermal strategy 

that can be used in order to maintain the flow temperature at 

any point in the pipeline above wax and hydrate formation 

region. As shown in [18], at temperature around 288, 15°k, 

wax will start to form inside the pipeline and at temperature 

below 313, 15°k, combine with high-pressure gas hydrates 

will occur. Therefore, it is also important to select the 

appropriate insulation material and required thickness that 

will be able to keep the flowing temperature to above 

313.15°k. Recently, [3,16-18] among others, have 

investigated the effect of several insulation materials and 

several thickness on the temperature profile under steady 

and transient state condition in order to select and to 

determine the require thickness of insulation necessary to 

guarantee a continuous flowing of the fluid inside pipeline. 

However, most of these studies focuses on the case of 

single-phase flow and do not considered the pressure drop 

calculation. 
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In this study, are objectives are to model under steady 

state, the temperature profile during oil and gas flow in 

offshore pipeline and to determine by numerical simulation: 

 the effect of oil flow rate change on the temperature 

profile, 

 the effect of several insulation materials and several 

insulation thickness on the temperature profile  

 the optimum operating condition that is, the appropriate 

insulation material and thickness necessary to meet the 

requirement temperature of 313.15°k at any point in the 

pipeline. 

 

II. METHODOLOGY 

 
A. Pipeline Geometry 

The pipeline geometry considered in this study is the 

same as that presented in [1] for the example 1 case. Figure 

1 below is a representation of the vertical section of the 

considered offshore pipeline.  

 

 
Fig. 1:- Vertical sectional profile of the pipeline [1]. 

 

Figure 2 below, show the cross sectional section of the 

pipeline covered with insulation. 

 

 
Fig. 2:- Pipeline with insulation material 

 

The pipeline is consisting of a single metal carbon 

steel covered by coating insulation. The surrounding 

environment is seawater. 

 

B. Fluids Properties 

Fluids properties needs to be determined in order to 

perform the calculation of the pressure gradient along 

pipeline. These properties, which are local density, local 

viscosity, surface tension, local fluids flow rates, formation 

volume factors and the gas compressibility factor among 

others, depend on pressure and temperature and are 

determined using black oil model.  In this work, we do not 

focused on fluids properties calculations but on the 

temperature calculation. The methodology of the 

determination of these fluids properties can be seen in the 

works done by [12], which provides in depth details 

equations needed for the calculations procedure using black 

oil model formulation. 

 

C. Abbreviations and Acronyms 

The pressure gradient , where p is the pressure 

and L is the length along the pipeline is determined as: 

 

                          (1)                                                                                                                          

 

The first term on the right side of Equation (1), 

subscript “f”, is the pressure gradient corresponding to the 

friction. The second term with subscripts “h”, correspond to 

the gravity, and the last term with subscripts “acc”, is 

relative to the pressure loss due to the acceleration. In this 

work, the pressure gradient is approximated by using Dukler 

and Taitel correlation [4] in which, void fraction is 

determined based on drift-flux model using correlations 

from [11,23]. 

 

                                (2)                                                                                        

 

where:  is the pressure given in ;  is the length 

of the pipeline in ;   is the mixture local density in 

;  is the mixture velocity in ;  is the 

pipeline outer diameter in ;  is the gravitational 

acceleration given in  and  is the inclinasion of the 

pipeline expressed in degrees. In equation (2), two 

necessary variables are to determine: 

-  is the two phase friction factor determined as in [4]. 

-  , which is calculated here using equation (3) below: 

  

                                 (3)                                                             

 

with, , density of the gas, ;  liquid  

density, ;  is the void fraction of the gas phase 

given by drift flux correlation of Woldesemayat. For more 

details see [12, 26]. 

 

                                                                  (4)                                                                                                   
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where, is the superficial velocity of the gas phase, 

;  is the mixture velocity, ;  is the profile 

parameter and    is the drift velocity. These two 

parameters are calculated as presented in [12] by:  

                                        (5)                                                                                            

 

  (6) 

 

In equation (6), , , is the surface tension 

calculated as presented in the work of [27]. , is the 

atmospheric pressure, in .  

 

From equation (2),  is the liquid input fraction and is 

calculated as follow: 

 

                     (7)                                                                                            

 

where,  and  are oil and water flowrate 

respectively at standard condition given in . Black oil 

parameters which are: , m³/m³; , m³/m³; , m³/m³;  

, Sm³/Sm³ are calculated as presented in the work of 

Andreolli [12].  

 

D. Temperature Model 

From the general equation describing the temperature 

profile along pipeline considering that the kinetic energy is 

negligible [19] we have: 

 

       (8)                                                                   

 

where,  is the average temperature of the fluid 

given in ,  is the pipe cross-sectional area   ,  is 

the time given in ,  is the mixture specific heat 

capacity in ,  is the mixture Joule Thomson 

coefficient, ,  is the overall heat transfer 

coefficient in ,  is the environment temperature in 

.  

  

In steady state conditions, equation (8) becomes: 

 

               (9)                                                                                                                                                         

where: 

 is the mixture mass flow rate in ,  given by:  

 

                                       (10)                                                                                                                                                                  

 

 , is the average specific heat capacity of the 

multiphase flow calculated using equations (11) and (12) 

below as in [28]: 

 

                      (11)                                                                                                                                                                                

  

                   (12)                                                                                                   

 

Where,  and  are the specific heat capacity 

of the gas and liquid respectively. ,  and  are 

expressed in .  and  are respectively the 

local flowrates of the oil and water given by 

,  and , 

 are the oil and water local flowrate respectively.  

 

, is the average Joule-Thomson, coefficient 

calculated using equation (13) through equation (16) as 

shown below, 

 

                                  (13)  

                                                                                                                                                                               

                                        (14)  

                                                                                                                                                                     

                    (15)  

                                                                                                                                                                             

                                 (16)  

                                                                                                                                             

where,   and  are respectively the Joule 

Thomson coefficients of the liquid and the gas given both 

in . , is the thermal expansion of the liquid phase,

. , is the gas compressibility factor determined by 

using new correlation presented in [29].  and  are the 

mass flowrate of the gas and liquid phases respectively 

given in  .       

                                  

From equation (9), the overall heat transfer 

coefficient  is  given by equation (17)  below: 

 

(17)                                                                                                                             

 

 

http://www.ijisrt.com/


Volume 4, Issue 9, September – 2019                                    International Journal of  Innovative Science and Research Technology                                                 

              ISSN No:-2456-2165 

 

IJISRT19SEP1352                                                   www.ijisrt.com                     569 

where,  and  represent the thermal 

conductivity of the metallic pipe and the insulation layer 

respectively, they are expressed in , . ,  

and  are respectively the insulation material radius, the 

outer and the inner radius of the pipeline, all expressed in 

.  

 

The surrounding heat transfer coefficient   

expressed in , is calculated using equation 

(18) below: 

 

                                                                  (18)                                                                                                                                                                                                   

 

where, , represent the 

Nusselt number; , is the outer Reynolds 

number of the seawater;  is the density of the seawater, 

;  , is the seawater velocity, ;  is the 

viscosity of the seawater, in ; , is the 

Prandtl number of the outer seawater;  is the specific 

heat capacity of the seawater, ;  is the 

thermal conductivity of the seawater,   

 

The internal heat transfer coefficient expressed in 

, is calculated according to [24] as follow: 

 

                                                             (19)                                                                                                                                                                                         

 

where: 

 expressed in , is the mixture thermal 

conductivity of the two-phase flow given as 

 

                                         (20)                                                                                        

 

With  and  representing each the thermal 

conductivity of the gas and liquid respectively, expressed 

both in .  

                                                                                                                                                                          

, the Nusselt number of the two-phase flow 

determined as follow:                         

If flow is laminar (  ), for long pipe, we 

have:                                                                  

                                 (21)                                                                                                                                                  

 

If flow is turbulent flow (  ), for long 

pipe  we have:        

 

           (22)                                                                             

 

 

For transition flow regime (  )                                                            

 

                                     (23)                                                                                                                                                                          

 

with, parameter  given by: 

                                                    (24)                                                                                                    

 

The total Reynolds number  is calculated as 

follow: 

 

                                            (25)                                                                                                                                                                                          

 

The Prandtl number of the mixture is given by: 

 

                                                             (26)                                                                                                                                                                              

 

The heat exchange between the hot fluids inside 

pipeline and the cooler environment is given by: 

  

                                                     (27)                                                                                                   

 

where,  is the heat flux given in . 

 

Numerical Solution 

The finite difference method was used to discretize 

the temperature model given by equation (9). All the 

equations in this study are solved simultaneously using 

Matlab software. Pipesim software is used for comparison 

purpose. Numerically, we divide the pipeline into sections, 

and each section was divided into cells and consider 

average value of temperature and pressure in the cells. The 

numerical solution obtained using finite difference method 

is therefore given by: 

 

      (28)                                                                                                        

 

In which, the parameter  is:  

 

                                                          (29)                                                                                      

 

The temperature model presented above is first 

validated by using it to produce the same work done by [1]. 

The difference done here by this research is the 

methodology approach for the determination of the 

pressure gradient, the calculation of the Z-factor, the 

calculation of the liquid holdup and the determination of 

the of the joule Thomson coefficient of gas, liquid and thus, 

for the mixture. The operating parameters used is the same 

as those presented in table .1 of reference [1]. 
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III. RESULTS AND DISCUSSIONS 

 

In order to analyze the accuracy of the temperature 

model proposed in this study, the obtained results are to be 

compared with the results from, UPTP model and measured 

value (MV) as presented in [1] for the;  

 

Case 1 example.  

For that, the same operating parameters and the same 

pipeline geometry parameters as in [1] have been used in 

our Matlab computer program. By using this field data, we 

computed the pressure and temperature profile along the 

offshore pipeline.  Fig. 3 and 4 represents the pressure and 

temperature profile of the oil and gas flow through offshore 

pipeline obtained using the proposed model.  

 
Fig. 3:- Pressure profile of oil and gas flow along offshore 

pipeline obtained using proposed model. 

 

In fig.3, we observed that the pressure decreases along 

the offshore pipeline from to 

. Pressure drop is not linear because of 

the presence of more than phase.  

 

 
Table 1:- Pressure comparison and validation [1]. 

 

Table.1 above shows the pressure drop comparison 

between results from our model and that obtained by 

measurement. 

 

It comes out that the predicted pressure model matches 

with the measured value with a relative pressure drop 

(REPD) of 1.26%. 

 

 

 

 

 

 

 

 

In fig.4, it is shown the comparison between the 

temperature profile of the oil and gas flow from our model 

and that from pipesim model. It can be seen, the temperature 

decreases along the pipeline for the both model from 

323.15°k to an end point value of 278.2861°k for pipesim 

and 277.9934°k for our model. It is shown that our model 

prediction matches with the pipesim prediction with a 

relative error of 0.6%. 

 
Fig. 4:- Temperature profile comparison between our model 

and pipesim model. 

 

Table.2 below, presents comparison between the 

results of the temperature drop obtained from our model, 

pipesim model, UPTP model and measured value. In this 

table, the relative temperature drop  (RETD) is calculated as 

follow: 

 

 
 

It is shown in table.2 below that the result obtained 

from our model is in good agreement with results from 

others models and those of the measured value. These 

results indicates that the accuracy of the proposed model 

presented here is verified. 

 

From fig.4 above, we also observed that the 

temperature decreases significantly after the first 1.5 km of 

flow. This is due to the rapid heat flux exchange between 

the warm fluid and the cooler environment as can be seen in 

fig.5 below. 

 

 
Table 2:- Temperature drop validation (MV) as presented in 

[1] 
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Fig. 5:- Heat flux exchange between the warm oil and gas 

flow and the seawater environment. 

 

 
Fig. 6:- Variation of the oil viscosity with the temperature. 

In fig.7 below, it is shown that the oil flowrate decreases as 

the temperature decreases. 

 
Fig. 7:- Variation of the oil flowrate with the temperature. 

 

By considering the validation of the proposed model, 

sensibility runs are performed. We first analyzed the effect 

of three insulation materials, which are black aerogel, 

calcium silicate and polyurethane foam, with various 

thickness on the temperature profile. The following 

conditions were considered: the oil flowrate is maintained to 

0.00955 m³/s, the inlet pressure is also fixed at 5MPa. The 

overall heat transfer coefficient is no longer set fix, but is 

determined using equation (17). Temperature profile is then 

calculated for each insulation and various thickness. Results 

are displayed in fig. 8, 9 and 10 below. 

 
Fig. 8:- Effect of several thickness of black aerogel on the 

temperature profile of oil and gas flowing through offshore 

pipeline of 50 km. 

 
Fig. 9:- Effect of several thickness of calcium silicate on the 

temperature profile of oil and gas flowing through offshore 

pipeline of 50 km 

 
Fig. 10:-  Effect of several thickness of polyurethane on the 

temperature profile of oil and gas flowing through offshore 

pipeline of 50 km. 

 

It comes out from the figures above that, by increasing 

the insulation material thickness, the temperature drop 

decreases along the pipeline. It can also be observed that the 

http://www.ijisrt.com/


Volume 4, Issue 9, September – 2019                                    International Journal of  Innovative Science and Research Technology                                                 

              ISSN No:-2456-2165 

 

IJISRT19SEP1352                                                   www.ijisrt.com                     572 

black aerogel material provides the best insulation than the 

others materials because of it very low thermal conductivity. 

However, none of the insulation material type and the 

selected thickness is able to withstand the flow assurance 

requirement.  

 

Effect of the oil flowrate was also investigated. 

Results showed that as oil flowrate increases, the 

temperature drop decreases. This is because, increasing oil 

flowrate, increases the Reynolds number, which influence 

the overall heat transfer coefficient. Flow becomes rapid 

and the heat flux diminishes. For the considered range of the 

oil flowrate, the required minimum of the temperature is not 

achieve. 

 
Fig. 11:- Variation of the oil flowrate with the temperature. 

 

Further simulations have been carried out. The 

insulation material type used is the black aerogel because 

black aerogel provides better insulation than the others. The 

thickness selected are 0.0508 m and 0.0635 m, because the 

selected thickness have great impact on the temperature than 

the others as has been shown earlier. The oil flowrate is kept 

constant. The temperature profile for different inlet 

temperature and different insulation material thickness are 

calculated. Results are shown in fig.12 and 13 below. It is 

found that, from fig.12, the selected conditions is not 

suitable for maintaining the minimum temperature of 

313.15°k while in fig.13, for an inlet temperature of 

343.15°k with a thickness 0.0635 m, require minimum 

temperature in at any point in the pipeline is achieved. 

 
Fig. 12:- effect of different inlet temperature with 0.0508 m 

of black aerogel on the temperature profile of oil and gas 

flow in offshore pipeline 

 
Fig. 13:- effect of different inlet temperature with 0.0635 m 

of black aerogel on the temperature profile of oil and gas 

flow in offshore pipeline. 

 

The method presented in this study can be useful for 

the calculations of the temperature and pressure distribution 

along offshore pipeline as well as for thermal insulation 

management. 

 

IV. CONCLUSION 

 

In this paper, a mathematical model is proposed for 

predicting using numerical simulations, the temperature 

and pressure profile in long offshore pipeline of length 50 

km during transportation of oil and gas. A drift flux model 

has been used to calculate the liquid holdup and the fluid 

properties where determined using black oil model. The 

overall heat transfer is modeled and incorporated in our 

computer program for sensitivity runs simulations. The 

results predicted by our model were compared against the 

results from measured value, UPTP model and pipesim 

model. Some of the significant points can be listed below:  

 Good agreement is found between the predicted model 

results and field data, UPTP and pipesim models, which 

proves the accuracy of the model. 

 When increasing the thickness of the insulation, the oil 

flowrate and the inlet temperature individually, the 

temperature drop decreases to a value below the require 

temperature at which no flow assurance issues such wax 

and hydrates formation can be observed. 

 For an appropriate couple of inlet temperature and 

insulation thickness, obtained with a fix oil flowrate and 

a well-selected insulation material type, optimal 

operating condition that guarantee a continuous flow of 

the fluid inside offshore pipeline is achieved 
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