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This Thesis describes the vibratory, including dynamics analysis and vibration con-

trol of an offshore platform. After the description of the different types of offshore plat-

forms, particular attention is paid to tension leg platforms subjected to sea wave ex-

citations. Firstly, one establishes the analytical framework consisting of mathematical

modeling of tension leg platform taking into account the tendons and the delay. We

analyse the stability and determine the physical characteristics of tendon system that

allow the system to be always stable. Secondly, new nonlinear viscoelastic model describ-

ing the surge movement of tension leg platform is presented. To make the model more

meaninful and practical, fractional derivative damping within the meaning of Caputo is

taking into account in the modeling of the system. Finally, a tuned liquid column damper

(TLCD) is used to modify the dynamic response of the structural system. By means of

the appropriate mathematical concepts (modal approximation, harmonic balance method,

D-subdivision method, Melnikov method, multi-scales method, average method) and nu-

merical simulation (Fourth-order Runge-Kutta method for ordinary differential equations,

Fourth-order-Runge-Kutta method for delay differential equations, numerical method for

fractional differential equations, bisection method ), the dynamic behavior of the struc-

ture under wave excitation is studied. It is well known that due to the presence of time

delay the stability and vibration amplitude of the structure are affected. We show that

this effect could be compensated by making a good choice of tendons parameters when de-

signing offshore platforms. We demonstrate that the installation of control device (tuned

liquid column damper) at the top of tension leg platform can effectively contribute to

reduce the vibrations. Also, a proper selection of the material used to build the tendons

can contribute to reduce the amplitude of vibrations and to suppress chaos in the tension

leg platform system.

Keywords: Offshore platform, Tension leg platform,Wave, Cantilever beam,

Rayleigh beam theory, Amplitude of vibration, Delay effect, Tuned liquid col-

umn damper, Fractional order derivative.
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Résumé xix

Cette thèse décrit l’analyse dynamique et le contrôle des vibrations d’une plateforme offshore.

Après la description des différents types de plateformes offshore, une attention particulière est

portée aux plateformes à jambes de tension soumises aux excitations des vagues de mer. Pre-

mièrement, on établit le cadre analytique consistant en une modélisation mathématique de la

plateforme à jambe de tension prenant en compte les cables et le retard. Nous analysons la

stabilité et déterminons les caractéristiques physiques du système des cables qui permettent au

système structurel d’être toujours stable. Deuxièmement, un nouveau modèle viscoélastique non

linéaire décrivant le mouvement de surtension de la plateforme à jambe de tension est présenté.

Pour rendre le modèle plus significatif et pratique, l’amortissement à dérivé fractionnaire au sens

de Caputo est pris en compte dans la modélisation du système. Enfin, un amortisseur de colonne

de liquide accordé (TLCD) est utilisé pour modifier la réponse dynamique du système struc-

turel. Par le biais des méthodes mathématiques appropriées (approximation modale, méthode

de la balance des harmoniques, méthode de D-subdivision, méthode de l’échelle à temps mul-

tiple, méthode de Melnikov, méthode de la moyenne) et méthodes de simulation numérique (la

méthode de Runge-Kutta d’ordre quatre pour les équations aux dérivées ordinaires, la méthode

de Runge-Kutta d’ordre quatre pour les équations aux dérivées ordinaires avec retard, méthode

numérique pour les différentielles fractionnaire. Il est bien connu qu’en raison de la présence du

retard dans un système, la stabilité et l’amplitude de vibration du système sont affectées. Nous

montrons que cet effet pourrait être compensé en faisant un bon choix des paramètres des câbles

lors de la conception des plates-formes offshore. Nous démontrons que l’installation d’un disposi-

tif de contrôle (amortisseur de colonne de liquide réglé) au sommet de la plate-forme à jambe de

tension peut contribuer à réduire efficacement les vibrations. Par ailleurs, nous montrons qu’un

choix approprié du matériau utilisé pour la construction des plateformes à jambe de tension peut

contribuer à réduire l’ amplitude de vibrations et à supprimer des comportements non désirés

(tels que le chaos) dans la superstructure.

Mots-clés: Plate-forme offshore, Plate-forme à jambe de tension, Vague, Poutre

cantilever, Théorie de poutre de Rayleigh, Amplitude de vibration, Effet du retard,

Amortisseur à colonne de liquide réglé, Dérivée fractionnaire.
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Since the dawn of modern civilization, man has been in an ever-increasing need of more and

cheaper energy. Resources on land are heading towards extinction due to their rapid depletion.

In recent decades, the vast ocean bed has been the target of exploration. It is in this context,

the offshore structures in particular offshore platforms may be regarded as the greatest exten-

tion of engineering expertise in recent years. Offshore platforms are extensively used to explore,

drill, produce, storage and transport ocean oil and/or gas resources in different depths.The ear-

liest offshore structure for oil drilling was built about 1887 off the cost of southern California

near Santa Barbara [1]. There are several types of offshore platforms, such as self-elevating plat-

forms, gravity platforms, steel jacket platforms, tension-leg platforms (TLPs), articulated leg

platforms, guyed tower platforms, spar platforms, floating production systems, and very large

floating structures. These platforms can be divided into fixed-bottom platforms and buoyant

platforms, which have their own particular purposes and different configurations. . Specifically,

offshore platforms which are located in a very tough ocean environment over a long period of

time, are inevitably affected by environmental loading, such as waves, winds, ice, currents, flow,

and earthquakes [2–9]. This environmental loading may lead to failure of deck facilities, fatigue

failure of platforms, inefficiency of operation, and even discomfort of crews. In order to ensure

reliability and safety of offshore platforms, it is of great significance to explore a proper way of

suppressing vibration of offshore platforms. To meet an increasing demand for marine sources

of energy and minerals, in the past several decades, a lot of research effort has been made on

offshore platforms. The related investigations are mainly focused on structure design and mon-

itoring, damage detection, fatigue analysis and reliability assessment, mathematical modeling,

dynamic analysis and vibrations control of these structures . Note that reduction of vibration

amplitude of an offshore platform by 15 percent can extend service life over two times and can

result in decreasing expenditure on maintenance and inspection of structures [10,11].

Notice that a direct and simple way to mitigate vibration of offshore platforms is to increase

the stiffness of the platforms. As a result, natural frequencies can be shifted away from resonating

frequencies [12]. However, such schemes generally require extra construction material, which

unavoidably leads to increase the costs. Thus, an alternative way is to choose a proper structural

control method to reduce structural vibration to an acceptable level [13, 14]. In the past several

decades, structural control schemes, such as passive control schemes [15], semi-active control

schemes [16], and active control schemes [17], were widely utilized to reduce vibrations of offshore

platforms. The tendon systems can also be used, they are constituted by viscoelastic materials.
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Therefore, the long memory effects of these viscoelastic materials can be modelled by means of

fractional derivatives. We demonstrate that this viscoelastic physical property of the tendons can

be beneficial for the platform offshore safety.

Predicting the dynamic behavior of an offshore platform under the action of irregular and

regular waves is a well-known challenging subject in structural dynamics and it is considered in

this thesis. In particular, the dynamics of tension leg platforms under the action of irregular and

regular waves analyzed by using the vibrational and chaotic approaches. More precisely, the aim

of the research presented in this thesis is to:

• Model mathematically this structural systems under irregular and regular sea wave exci-

tation.

• Compensate the time-delay effect on the stability and the amplitude of vibration of the

TLP.

• Use mathematical and numerical tools to access the behaviour of the structural system

and analyse the influence of the control device.

• Explore the effects of main parameters, namely : number of tendons, the order of the frac-

tional viscoelastic material that constitutes the tendon and the tendon viscosity coefficient

on the amplitude of TLP and the on the threshold condition for the appearance of chaos

and the basins of attraction.

Following this introduction, the dissertation is organized as follows

Chapter one is devoted to the state of the art, on the types of platform offshore as well as

the different types of environmental loads on offshore structures, the dynamics of elastic beam

and rigid beam are also presented. Afterwards, generalities on the vibration control of mechanical

structures are given.

Chapter two consists of the presentation of some analytical and numerical technics used to

analysis and solve the problematic of the thesis.

Chapter three is devoted to the presentation and discussion of the results of mathematical

analysis and numerical simulations. We end with a general conclusion where we summarize the

main results obtained, and perspectives related to our future investigations are suggested.
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1.1 Introduction

Offshore platforms vibrations due to thier hostile environment are a source of nuisance that

affects the longevity and the comfort of their users. Vibration control are therefore widely used

to subdue vibrations in order to lengthen the service life of equipments and structures, also

to provide a more comfortable and safe condition for human beings. Due to their structural

easiness, offshore platform are particularly vulnerable to damages and sometimes collapse when

subjected to sea wave and other external excitation such as earthquakes, wind, ice and tsunamis.

In recent years, tendon systems and tuned liquid column damper have become increasingly

design and vibration control technique to protect offshore platforms from severe loads. Despite

the decades of previous studies, design and vibration control of offshore platforms remains an

important problem. The chapter is organized as follows: Section 1.2 presents the types of platform

, while Section 1.3 is devoted to the different types of environmental loads on offshore structures.

Section 1.4 presents general mathematical formalism of offshore platform (in particular a tension

leg platform). Section 1.5 will give an overview on vibration control techniques especially tendon

systems and tuned liquid column damper. Section 1.6 deals with the presentation of the problems

to be solved in the thesis. Finally in Section 1.7, a brief conclusion will mark the end of this

chapter.

1.2 Types of offshore platform

Offshore platforms fall under three major categories : fixed platforms, compliant platforms and

floating platforms. They are further classified as follows:

1.2.1 Fixed platforms

1.2.1.1 Jacket platform

A typical jacket platform (Bullwinkle platform) is shown in Fig. 1.1 [1]. A typical jacket platform

consists of process, wellhead, riser, flare support, and living quarters. The advantages of offshore

jacket platforms are: (i) support large deck loads; (ii) possibility of being constructed in sections

and transported; (iii) suitable for large field and long-term production (supports a large number

of wells); (iv) piles used for foundation result in good stability; and (v) not influenced by seafloor

scour. Few disadvantages are as follows : (i) cost increases exponentially with increase in water
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depth; (ii) high initial and maintenance costs; (iii) not reusable (iv) steel structural members are

subjected to corrosion, causing material degradation in due course of service life,(v) installation

process is time consuming and expensive.

Figure 1.1: Jacket platform

1.2.1.2 Gravity platform

In addition to steel jackets, concrete was also prominently used to build some offshore structures.

These structures are called gravity platforms or gravity-based structures (GBS). A gravity plat-

form relies on the weight of the structure to resist the encountered loads instead of piling [18–20].

In regions where driving piles become difficult, structural forms are designed to lie on its own

weight to resist the environmental loads [21]. Gravity platforms are the large bottom mounted

reinforced concrete structures that are capable of supporting large topside loads during tow-out,

which minimizes the hook-up work during installation [22]. Additional large storage spaces for

hydrocarbons add up to their advantage. Their salient advantages include: (i) constructed on-

shore and transported; (ii) towed to the site of installation; (iii) quick installation by flooding; (iv)

no special foundation is required; and (v) use of traditional methods and labor for installation.

These platforms are also known to be responsible for seabed scouring due to large foundations,

causing severe environmental impact [23, 24]. Gravity platforms had serious limitations namely

: (i) not suitable for sites of poor soil conditions, as this would lead to significant settlement of

foundation ; (ii) long construction period which there by delays the early start of production

; and (iii) natural frequencies falling within the range of significant power of the input wave

spectrum [25]. Advantages of gravity platforms over jacket platforms are namely: (i) Greater
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safety for people on board and topside; (ii) Towing to site with deck is possible, which minimizes

installation time and cost; (iii) Low maintenance cost because concrete submerged in water will

have less problems than that of steel structure; (iv) Adjustable crude oil capacity; (v) Capability

to support large deck areas; (vi) Risers are protected as they are placed inside the central shaft;

and (vii) Possible access to sea floor from the cell compartment in the foundation, resulting in

healthy monitoring. Fig. 1.2 [1] shows the Hibernia gravity base structure. The platform is a

steel gravity base structure with a weight of 112,000 ton, height of 241 m, and has steel skirts

for penetration into the seabed.

Figure 1.2: Gravity platform

1.2.1.3 Jack-up rigs

Jack-up (rigs) platforms are temporary structures, meant for exploratory drilling. They are simi-

lar to barges with movable legs. They are mobile as their hulls have the requisite floating charac-

teristics to enable towing from site to site. When the legs are projecting upwards, the rig can be

easily towed from one location to another location. Jacking system provides an effective method

to quickly lower or raise the hull. The legs are lattice, truss-type, and transparent to wave loads.

When the jack-up is being towed to the site for exploratory drilling, the legs will be projecting

upwards from the deck. On installation, the legs will be pushed inside the sea bed while the deck

is lifted up. Hence called ”Jack-up rig”. After installation, one-third height of the leg should be

left above the hull for maintaining the stability of the platform. The failure in the platform occurs

during sailing when the legs are completely above the hull due to overturning moment caused by

the wind load and by spud can pull off. The latter may cause serious damage to the drill pipes

and risers but the system will remain floating. The spud can foundation is not an ideal hinged
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joint. It offers partial fixity to the structure so that the structure may also fail under bending.

The jack-up rigs are capable of working under harsh environments of wave heights up to 24 m

and wind speed exceeding 100 knots. Advantages of the platform include (i) high mobility; (ii)

low cost and efficient; (iii) easy fabrication and repair; (iv) easy decommissioning; and (v) simple

construction. These platforms also have some serious limitations such as (i) suitable only for

shallow depth; (ii) subjected to sea bed scouring which leads to differential settlement; (iii) not

suitable for rocky stratum. The name jack-up is assigned as the legs will be pulled up while they

are transported from one site to another. On reaching the installation site, legs will be driven

into the seabed for a better stability. Jack-up rigs have significant mobility but the geometric

configuration is comparable to that of a fixed-base structure. Fig. 1.3 [1] shows a schematic view

of a typical jack-up rig.

Figure 1.3: Jack-up rig platform

1.2.2 Compliant platform

To overcome the above negative factors, one should design a structural form, which should attract

fewer forces and remain flexible to withstand the cyclic forces. The structural action and the

form are corrected based on the ”mistakes” learnt from the fixed type platforms. This is a special

kind of reverse engineering, which makes offshore platforms unique. This leads to continuous

improvement from one platform to the other. Hence, FEED is on a constant update as new

structural forms are being tried for oil and gas exploration in deep and ultra-deep waters [26,27].

Fixed type offshore structures became increasingly expensive and difficult to install in greater

water depths. Hence, modified design concept evolved for structures in water depths beyond

500m. A compliant offshore tower is similar to that of a traditional platform, which extends from
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surface to the sea bottom and transparent to waves. A compliant tower is designed to flex with

the forces of waves, wind, and current. Classification under compliant structure includes those

structures that extend to the ocean bottom and are anchored directly to the seafloor by piles

and/or guidelines [28]. Guyed towers, articulated tower, and tension leg platform fall under this

category.

1.2.2.1 Guyed tower

Guyed tower is a slender structure made up of truss members that rest on the ocean floor and

is held in place by a symmetric array of catenary guy lines. The foun-dation of the tower is

supported with the help of spud can arrangement, which is similar to the inverted cone placed

under suction. The structural action of the guyed tower makes its innovation more interesting,

which is one of the successful improvements in the structural form in the offshore structural

design. The upper part of the guy wire is a lead cable, which acts as a stiff spring in moderate

seas. The lower portion is a heavy chain, which is attached with clump weights called touch-down

point. This feature has allowed the tower to be designed with a constant square cross section

along its length, reducing the structural steel weight as compared with that of a conventional

platform [29]. The advantages of guyed towers are (i) low cost (lower than steel jacket) ; (ii)

good stability as guy lines and clump weights improve restoring force ; and (iii) possible reuse.

The disadvantages are as follows : (i) high maintenance costs ; (ii) applicable to small fields

only ; (iii) exponential increase in cost with increase in water depth; and (iv) difficult mooring.

These factors intuited further innovation in the platform geometry, which resulted in articulated

towers [30]. Fig. 1.4 [1] shows the schematic view of the Lena tower (Guyed tower)

Figure 1.4: Guyed tower
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1.2.2.2 Articulated tower

One of the earliest compliant structures that started in relatively shallow waters and slowly

moved into deep water is the articulated tower. An articulated tower is an upright tower that is

hinged at its base with a universal joint, which enables free rotation about the base. When there

was a need to improve the structural form from fixed to compliant, researchers thought of both

modes of compliancy namely : (i) rotational and (ii) translational. Enabling large translational

motion could make the platform free from position-restrained, and hence rotational compliancy

was attempted. In such geometric forms, it is important to note that the design introduces a

single-point failure deliberately, which is the universal joint. The tower is ballasted near the

universal joint and has a large buoyancy tank at the free surface to provide large restoring force

(moment). This is achieved by the dynamic change in water plane area or variable submergence

of the member. In addition, the compliancy of the articulated tower avoids the concentration

of high overturning moments and the resulting stress. The advantages of articulated towers are

as follows : (i) low cost; (ii) large restoring moments due to high center of buoyancy; and (iii)

protection of risers by tower. There are few disadvantages : (i) suitable only for shallow water

as the tower shows greater oscillations for increased water depth ; (ii) cannot operate in bad

weather; (iii) limited to small fields; and (iv) fatigue of universal joint leads to a single-point

failure [31–33]. Fig. 1.5 [1] shows a typical articulated tower, supporting the storage activities of

a vessel.

Figure 1.5: Articulated tower
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1.2.2.3 Tension leg platform

A tension leg platform (TLP) is a vertically moored compliant platform [34]. Fig. 1.6 [1] shows a

typical TLP, highlighting its various components. Taut mooring lines vertically moor the floating

platform, with its excess buoyancy ; they are called tendons or tethers. The structure is vertically

restrained, while it is compliant in the horizontal direction permitting surge, sway, and yaw

motions. The structural action resulted in low vertical force in rough seas, which is the key

design factor [35–37]. Columns and pontoons in TLP are constructed with tubular members due

to which the buoyancy force exceeds the weight of the platform. The excess buoyancy created is

balanced by the pretension in the taut moorings. Substantial pretension is required to prevent

the tendons from falling slack even in the deepest trough, which is achieved by increasing the

free-floating draft [37, 38]. As the requirement of pretension is too high, pretension cannot be

imposed in tethers by any mechanical means. During commissioning, void chambers (columns

and pontoon members) are filled with ballast water to increase the weight; this slackens the

tendons. After tendons are securely fastened to the foundation in the seabed, de-ballasting is

carried out to impose necessary pretension in the tendons. Advantages of TLPS are as follows:

(i) mobile and reusable; (ii) stable as the platform has minimal vertical motion; (iii) low increase

in cost with increase in water depth; (iv) deepwater capability; and (v) low maintenance cost.

Few disadvantages are namely: (i) high initial cost; (ii) high subsea cost; (iii) fatigue of tension

legs; (iv) difficult maintenance of subsea systems; and (v) little or no storage.

Figure 1.6: Tension leg platform
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1.2.3 Floating platforms

Semisubmersibles, FPSO systems, FPUs, FSO systems, and spar platforms are grouped under

this category.

1.2.3.1 Semisubmersible

Semisubmersible marine structures are well known in the oil and gas industries and belong

to the category of neutrally buoyant structure. These structures are typically moveable only by

towing. These semisubmersibles have a relatively low transit draft, with a large water plane area,

which allows them to be floated to a stationing location. On location, it is ballasted, usually

by seawater, to assume a relatively deep draft or semi-submerged condition, with a smaller

water plane area, for operation. Semisubmersible platforms have the principal characteristic of

remaining in a substantially stable position and have minimal motions in all the degrees of

freedom due to environmental forces such as the wind, waves, and currents. The main parts of

the semisubmersibles are the pontoons, columns, deck, and the mooring lines. When submerged

for stationing and operations, the columns connecting the pontoons to the upper deck present

a lower water plane area, thereby attracting less wave loads and thus reducing the motions.

Generally, dynamic position keeping systems (DPS) are deployed to hold the semisubmersibles

in position while production and drilling [39]. Fig. 1.7 [1] shows a typical semisubmersible. The

advantages of semisubmersibles are as follows: (i) mobility with high transit speed ; (ii) stable

as they show minimal response to wave action; and (iii) large deck area. The disadvantages are

(i) high initial and operating costs; (ii) limited deck load (low reserve buoyancy); (iii) structural

fatigue; (iv) expensive to move large distances.

1.2.3.2 Floating production unit (FPU), floating storage and offsloading (FSO),

floating production, storage, and offsloading (FPSO)

FPSO is an acronym for Floating Production, Storage and Offloading systems. Offloading of the

crude oil is usually to a shuttle tanker. Typically converted or newly built tankers are custom-

made for production and storage of hydrocarbons. These stored hydrocarbons are subsequently

transported by other vessels to terminals or deepwater ports. The design variants of FPSO are

FPS and FSO. FPS is an acronym for Floating Production Systems devoid of storage facility.

Now, it is a universal term to refer to all production facilities that float rather than structurally
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Figure 1.7: Semisubmersible platform

supported by the seafloor, and typical examples include TLPs, spars, semisubmersibles, ship-

shape vessels, etc. FSO is an acronym for Floating, Storage, and Offloading system. Like the

FPSO, these are typically converted or newly built tankers, and they different from the FPSO

by not incorporating the processing equipment for production; the liquids are stored for shipment

to another location for processing. An FPSO relies on subsea technology for the production of

hydrocarbons and typically involves pipeline export of produced gas with shuttle tanker (offload-

ing) transport of produced liquids [40]. Salient advantages of the FPSOs are asfollows: (i) low

cost; (ii) mobile and reusable; (iii) reduced lead time; (iv) quick disconnecting capability, which

can be useful in iceberg-prone areas; (v) little infrastructure required; and (vi) turret mooring

system enables FPS (converted ship type) to head into the wind/waves reducing their effect. The

disadvantages are (i) limited to small fields; (ii) low deck load capacity; (iii) damage to risers

due to motion; (iv) poor stability in rough sea.

Figure 1.8: Floating production unit (FPU), floating storage and offsloading (FSO), float-

ing production storage and offsloading (FPSO)
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1.2.3.3 Spar platform

Spar platform belongs to the category of neutrally buoyant structures and consists of a deep

draft floating caisson. This caisson is a hollow cylindrical structure similar to a very large buoy.

Its four major components are hull, moorings, topsides, and risers. The spar relies on a tradi-

tional mooring system, i.e., anchor-spread mooring or catenaries mooring system, to maintain its

position. The spar design is now being used for drilling, production, or both. The distinguishing

feature of a spar is its deep draft hull, which produces very favorable motion characteristics. The

hull is constructed by using normal marine and shipyard fabrication methods, and the number

of wells, surface wellhead spacing, and facilities weight dictate the size of the center well and the

diameter of the hull. Fig. 1.9 [1] shows a typical spar platform. In the classic or full cylinder hull

forms, the whole structure is divided into upper, middle and lower sections. The upper section is

compartmentalized around a flooded center well housing different type of risers namely produc-

tion riser, drilling riser, and export/import riser. This upper section provides buoyancy for the

spar. The middle section is also flooded but can be configured for oil storage. The bottom section,

called keel, is also compartmentalized to provide buoyancy during transport and to contain any

field-installed, fixed ballast. The mooring lines are a combination of spiral strand wire and chain.

Advantages of spar platforms are as follows: (i) low heave and pitch motion compared to other

platforms; (ii) use of dry trees (i.e., on surface); (iii) ease of fabrication; (iv) unconditional stabil-

ity as its center of gravity is always lower than the center of buoyancy. Disadvantages include the

following: (i) installation is difficult as the hull and the topsides can only be combined offshore

after the spar hull is upended; (ii) have little storage capacity which brings along the necessity

of a pipeline or an additional FSO; and (iii) have no drilling facilities.

Figure 1.9: Spar platform
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Fixed structures are economically feasible only up to water depths. In the range 1, 000 to

1,600 ft. Fixed platforms are indeed the most popular and prolific structures for water depths

of 400 to 500 ft. However, they become impractical for deep water because they must be built

stronger and more bulky than the equivalent compliant structures. In recent years, the need to

explore for oil in deeper water has made compliant structures more popular. Compliant towers

are believed to be economically feasible in water depths exceeding 2, 000 ft. Here, we will consider

compliant structures. In particular, we are interested in tension leg platforms (TLP) in this thesis.

1.3 Environmental forces

This section deals with different types of environmental loads on offshore structures. It also

includes code information regarding the loads. Step-by-step method for load estimate on a cylin-

drical member and an example structure is detailed. The procedure for estimating wave loads

is illustrated through examples. Loads for which an offshore structure must be designed can be

classified into the following categories:

• Permanent loads or dead loads

• Operating loads or live loads

• Other environmental loads including earthquake loads

• Construction and installation loads

• Accidental loads

While the design of buildings onshore is influenced mainly by the permanent and operating

loads, the design of offshore structures is dominated by environmental loads, especially waves

loads, and the loads arising in the various stages of construction and installation. These include

� Wave Forces (regular and irregular)

� Wind Forces

� Current Forces

� Earthquake Loads

�Ice and Snow Loads

1.3.1 Morison’s equation

J.R. Morison [41] presented a theory for determination of forces on a vertical cylinder in the

presence of regular and irregular sea waves. The theory evaluates the inertia and drag forces
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without modifying the wave characteristics. This Theory makes us of linear or Airy’s theory

for determination of velocity and accelaration of the water particles at the axis of the cylinder.

According to Morison’s formulation [41], the wave force at any elevation z at the time t is given

by Eq.(1.1)

fM (z, t) = ρwcM
π

4
D2u̇x (t)− ρw (cM − 1)

π

4
D2v̇ (t) + ρwcD

D

2
(ux (t)− v (t)) |ux (t)− v (t)| ,

(1.1)

where, ρw is a water density, D is a diameter of the cylinder, v and v̇ are the velocity and

acceleration of the structure, ux and u̇x are the horizontal velocity and accelaration of water

particle, cM is the inertia coefficient, cD is the drag coefficient and || is the absolute value.

1.3.2 Regular sea wave excitation

In the wave theory, the wave is assumed to be sinusoidal with constant wave amplitude, wave-

length, and wave period. Thus, the regular propagation wave in defined as,

η (x, t) = ηa sin (kx− ωt) , (1.2)

where η is the time-and position-dependent wave elevation. The linear wave theory, usually

called the Airy theory, can be used to represent the wave kinematics. The seawater is assumed

to be incompressible and inviscid. The fluid motion is irrotational. Then, a velocity potential

exists and satisfies the Laplace equations. By applying the kinematic boundary conditions and

the dynamic free-surface conditions, the velocity potential, and the wave kinematics can be

found [42]. Based on the Airy theory [42], the horizontal water particle kinematics are described

by Eq.(1.3) and Eq.(1.4).

u (x, z, t) = ωηa
cosh k (z + h)

sinh kh
cos (kx− ωt) (1.3)

u̇ (x, z, t) = ω2ηa
cosh k (z + h)

sinh kh
sin (kx− ωt) , (1.4)

where u and u̇ are the water particle velocity and acceleration in the x-direction (wave propaga-

tion direction), respectively, ω is the wave frequency, ηa is the regular wave amplitude, k is the

wave number, the z axis is upward, and h is the mean water depth.
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1.3.3 Irregular sea wave excitation

The natural seaway on the oceans is irregular. It is also referred to as random sea. The sea

shows rarely a unidirectional, regular sinusoidal wave pattern, but we observe a mixture of wave

of different length and direction. The nature seaway can be decomposes to a sum of partial

sinusoidal waves, each having a relatively small steepness, even for a severe sea. Therefore, the

spectral approch with a sum of partial waves constitutes a valid representation for a random sea.

Form careful observation, certain typical or characteristic parameters can be estimated, such as

a significant wave height, period and direction of progress. S. Denis and Pierson [45] introduced

a mathematical description of natural seaways. Their work was a milestone to allow a calculation

of random seas and linear ship motion. The Unidirectional, irregular wave ζ in seen as the sum

of regular partial waves, as showns in Figure 1.10 (x = 0). From a record of the irregular sea,

the wave velocities are determined using random wave theory, and characterized by the Pierson-

Moskowitz power spectrum, and converted to the time domain using Borgman’s method [43,44].

Based on Airy wave theory, irregular wave shape is determined by Eq.(1.5)

Figure 1.10: Irregular wave from sum of regular wave

ζ (x, t) =
∑n

i=1
ai cos (kix− ωit+ εi) . (1.5)

Velocity and acceleration of water particles are given by Eqs.(1.6) and (1.7)

u (x, z, t) =
∑n

i=1
aiωi

cosh k (z + h)

sinh kh
cos (kix− ωit+ εi) (1.6)
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u̇ (x, z, t) =
∑n

i=1
aiω

2
i

cosh k (z + h)

sinh kh
sin (kix− ωit+ εi) , (1.7)

where ζ is the wave cordinate, expressing surface elevation, i is the number of wave component

(partial wave), ai is the amplitude of the ith partial wave, ωi is the frequency of partial wave, n

is the total number of partial wave, ki is the wave number, x and t are the way of progress and

time, εi is a phase angle of partial wave (the phase is randomly distribution).

1.4 General mathematical formalism of TLP

According to the modelling of compliant offshore structure, in particular a Tension Leg Platform,

in litterature, there are two majors ways to model: as Cantilever elastic beams or rigid body

beams. This part of work is devoted to the generalities on dynamics of beams

1.4.1 Rigid model

It should be noted that the system responds as a soft spring system. This can be shown by

looking at the rigid model. The equation of motion for this system is given by

mẍ (t) + cẋ (t) + (T0 + ∆T (x (t)) ) sin θ = f (t) , (1.8)

where m is the mass of the structure, T0 is the initial pre-tension in the tendon, x is the

displacement in the surge direction, θ is the angle between the initial and the displaced position

of the tether, c is the structural damping coefficient, ∆T (x) increase in the initial pre-tension

due to the arbitrary displacement, f (t) is the external force

1.4.2 Elastic model

An exact formulation of the beam problem was first investigated in terms of general elasticity

equations by Love [46]. They derived the equations that describe a vibrating solid cylinder.

However, it is not practical to solve the full problem because it yields more information than

usually needed in applications. Therefore, approximate solutions for transverse displacement

are sufficient. The beam theories under consideration all yield the transverse displacement as a

solution.
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Euler-Bernoulli beam model

Detailed derivations for the Euler-Bernoulli model can be found in text books by Benaroya [47].

Here, the equation of motion is obtained using Hamilton’s variational principle. The potential

energy of a uniform beam due to bending is given by

PE =
1

2

∫ L

0
EI

(
∂2w (x, t)

∂x2

)2

dx. (1.9)

The kinetic energy is given by

KE =
1

2

∫ L

0
ρA

(
∂2w (x, t)

∂t2

)2

dx. (1.10)

The Lagrangian, defined by KE - PE, is given by

L =
1

2

∫ L

0
ρA

(
∂2w (x, t)

∂t2

)2

dx− 1

2

∫ L

0
EI

(
∂2w (x, t)

∂x2

)2

dx (1.11)

Using the extended Hamilton’s principle, by including the non conservative forcing, the governing

differential equation of motion is given by

ρA
∂2w (x, t)

∂t2
+ EI

∂4w (x, t)

∂x4
= f (x, t) , (1.12)

where E is the modulus of elasticity, I is the area moment of inertia of the cross-section

about the neutral axis, w (x, t) is the transverse deflection at the axial location x and time t, L

is the length of the beam, ρ is the density of the beam, A is the cross-sectional area of the beam

and f (x, t) is the external force. The boundary conditions to be satisfied
∂2w
∂x2

= 0, w = 0 for hinged end
∂w
∂x = 0, w = 0 for clamped end
∂2w
∂x2

= 0, ∂3w
∂x3

= 0 for free end
∂w
∂x = 0, ∂3w

∂x3
= 0 for sliding end

we proceed with the Rayleigh beam model

Rayleigh beam model

The Rayleigh beam adds the rotary inertia effects to the Euler-Bernoulli beam. The kinetic

energy due to the rotation of the cross-section is given by

KErot =
1

2

∫ L

0
ρI

(
∂2w (x, t)

∂x∂t

)2

dx. (1.13)
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Combining Equation 1.6 with Equations 1.2 and 1.3 to form the Lagrangian and using Hamil-

ton’s principle, we obtain the equation of motion given by

ρA
∂2w (x, t)

∂t2
+ EI

∂4w (x, t)

∂x4
− ρI ∂

4w (x, t)

∂x2∂t2
= f (x, t) , (1.14)

with the boundary conditions given by
∂2w
∂x2

= 0, w = 0 for hinged end
∂w
∂x = 0, w = 0 for clamped end
∂2w
∂x2

= 0, ∂3w
∂x3
− ρI ∂3w

∂x∂t2
= 0 for free end

∂w
∂x = 0, ∂3w

∂x3
− ρI ∂3w

∂x∂t2
= 0 for sliding end

Shear beam model

This model consider the effect of shear distortion. We introduce new variables α, the angle of

rotation of the cross-section due to the bending moment, and β , the angle of distortion due to

shear. The total angle of rotation is the sum of α and β and is approximately the first derivative

of the deflection,

α (x, t) + β (x, t) =
∂w (x, t)

∂x
(1.15)

The equations of motion, using Hamilton’s principle, are given by:

ρA∂2w(x,t)
∂t2

− ksGA
(
∂2w(x,t)
∂x2

− ∂α(x,t)
∂x

)
= 0

EI ∂
2α(x,t)
∂x2

+ ksGA
(
∂w(x,t)
∂x − α (x, t)

)
= 0

(1.16)

with the boundary conditions given by

w (x, t is the dimensionless displacement, α (x, t is the angle of rotation due to the bending

moment, G is the shear modulus of elasticity and ks is the shape factor.
∂α
∂x = 0, w = 0 for hinged end

α = 0, w = 0 for clamped end
∂α
∂x = 0,

(
∂w
∂x − α

)
= 0 for free end

α = 0,
(
∂w
∂x − α

)
= 0 for sliding end

Timoshenko beam model

Timoshenko [48,49] proposed a beam theory which consider the effects of shear distortion and ro-

tary inertia, the Lagrangian includes the effects of bending moment, lateral displacement, rotary
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inertia, and shear distortion. We assume that there is no rotational kinetic energy associated with

shear distortion, but only with the rotation due to bending. Takinhg into account the previous

comment, the equations of motion, using Hamilton’s principle, are given by:

ρA∂2w(x,t)
∂t2

− ksGA
(
∂2w(x,t)
∂x2

− ∂α(x,t)
∂x

)
= f (x, t)

ρI ∂
2α(x,t)
∂t2

− EI ∂
2α(x,t)
∂x2

− ksGA
(
∂w(x,t)
∂x − α (x, t)

)
= 0

(1.17)

with the boundary conditions given by ∂α
∂x = 0, w = 0 for hinged end

α = 0, w = 0 for clamped end
∂α
∂x = 0,

(
∂w
∂x − α

)
= 0 for free end

α = 0,
(
∂w
∂x − α

)
= 0 for sliding end

1.5 An overview on structural control system and vi-

bration control techniques

For several years, always with the aim of improving the performance of controllers and having

stronger structures, new structural control system and vibrations control techniques have emerged

and is now more and more widespread in the word. It can be passive, active, semi-active or hybrid.

1.5.1 Tendon systems

The tendon system consists of the tendons, and ancillary components needed for operation,

including load measurement systems and inspection or monitoring apparatus (Figure 1.11). The

tendon system restrains motion of the platform in response to wind, waves, current, and tide

within specified limits [50, 51]. The tendons connect points on the platform to corresponding

points on a seafloor foundation. By restraining, the platform at a draft deeper than that required

displacing its weight; the tendons are ideally under a continuous tensile load that provides a

horizontal restoring force when the platform is displaced laterally from its still water position.

Generally very stiff in the axial direction, the tendon system limits heave, pitch, and roll response

of the platform to small amplitudes while its softer transverse compliance restrains surge, sway,

and yaw response to within operationally acceptable 1limits [50, 52].
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Figure 1.11: Principle of Tendon System on the TLP [50]

1.5.2 Tuned liquid column damper(TLCD)

The idea of utilising liquid in a U-tube to create damping effect for reducing structural vibration

by merely allowing it to pass through a small orifice opening in the U-tube was first introduced

by Sakai F. in the year of 1989. This device is termed as Tuned Liquid Column Damper as shown

in Figure 1.12 [53]

Figure 1.12: Illustration of TLCD [54]

This idea has then be used, further developed extensively and even several modification has

been made to the original TLCD. The classification of TLCD available is shown at Figure 1.13

The term LCVA stands for liquid column vibration absorber. The difference between LCVA

and TLCD is that a LVCA has a different cross-section in the horizontal and vertical column

while TLCD has a same cross-section in the horizontal and vertical column. Double tuned liquid

column damper, DTLCD, hybrid tuned liquid column damper, as well as pressurized tuned liquid
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Figure 1.13: Family of TLCD [55]

column damper, PTLCD is not popular due to the complexity in building it and predicting their

damping behaviour [56]. On the other hand, tuned liquid column ball damper, TLCBD is the

use of a rolling ball instead of an orifice to induce a head loss in the fluid flow of the TLCD [57].

1.6 Problem of the thesis

Various works of art and mechanical constructions emerge daily across the word. We are thus

talking about bridges, roads, buildings, boats, offshore platforms that are customizable and

varied. All these constructions are essential to the socio-economic development of a region or

even a country. In the sense that they allow and participate in the mobility of people (tourists

and travellers), the explore, drill, produce, storage, and transport ocean oil and/or gas resources.

Hence the need to continually ensure that they are in good working order in order to avoid

disasters that will cost the lives of people and their property. The study of the dynamics and

the control of the vibrations of offshore platforms (in particular tension leg platfrom) under

the action of irregular and regular waves are investigated in this scientific work. Therefore, we

propose three techniques to reduce the vibrations of a TLP. First, the rigidity and the damping

coefficient of the tendon are increased this by taking into account the time-delay. Second, the

fractional nonlinear viscoelastic behavior of the material that constitutes the tendons is taken

into account. Finally the tuned liquid column damper will be used as the integral part of the

structural system to attenuate the vibration induced by the irregular sea wave excitation.

1.7 Conclusion

This chapter has provided an overview of the dynamics and generalities, on the types of offshore

platform, the beam models (elastic, rigid and boundary conditions) and structural vibration

control system. To analyse and to solve the problems of the thesis, one needs the use of some

analytical and numerical methods. The chapter 2 will be devoted to these methods.
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2.1 Introduction

The present chapter is devoted to the presentation of the principles of each method used along

the thesis. Theoretical methods concerning both analytical and numerical methods are presented:

Galerkin method for modal approximation of partial differential equations, Harmonic Balance

(HB) method and method of multiple scales for analytical resolution of ordinary differential

equations (ODEs),Average method, Linear stability of delay differential equations,Routh-Hurwitz

stability criterion, Melnikov’s method,Fourth-order-Runge-Kutta method for delay differential

equations,fourth-order Runge- Kutta (RK4) method for numerical resolution, numerical method

for fractional differential equation and Bisection method for complex polynomial equations.

2.2 Mathematical formalism

In this subsection, different theories and mathematical methods used to propose solutions to the

systems of differential equations of this thesis are stated.

2.2.1 Galerkin approximation for partial differential equations

Vibrations of continuous systems (strings, rods, beams, plates and shells) are governed by PDEs.

Galerkin decomposition method is used to simplify the problems of vibrating structures through

the reduction of the PDEs into ODEs [58,59].

Lets w (x, t) describes the displacement of a structure at the time t and spatial location x.

Any sufficiently smooth deflection field w (x, t) satisfying any fixed boundary conditions can then

be represented as a weighted sum of mode shapes:

w (x, t) =
N∑
n=1

qn (t)φn (x) (2.1)

,

where N represents the number of modes used in the approximation, qn (t) represents the

amplitude of vibrations of the structure associated with the nth mode and φn (x) represents the

modal function solution of the nth mode of the beam linear natural equation. These mode shape

functions depend on the boundary conditions and are eigenfunctions of the governing equations,

of uniform Rayleigh beam in absence of external excitation, obtained from the dimensionles

Eq.(1.14) as follows
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∂2w(x,τ)
∂τ2

+ ∂4w(x,τ)
∂x4

− µ∂
4w(x,τ)
∂x2∂τ2

= 0 (2.2)

First, assume that w (x, τ) is separable so that one can write w (x, τ) = φ (x) q (τ) . Then,

the equation of motion becomes

φ (x) q̈ (τ) + φ′′′′ (x) q (τ) − µφ′′ (x) q̈ (τ) = 0 (2.3)

Assuming that q (τ) is harmonic with frequency ω such that q̈ (τ) = −ω2 q (τ) with solution

q (τ) = a cosωτ + b sinωτ , we can write Eq.(2.3) as

φ′′′′ (x) +
(
µω2

)
φ′′ (x)− ω2φ (x) = 0 (2.4)

The mode function for transverse vibration of the beam is expressed as

φ (x) = d1 sin (αx) + d2 cos (αx) + d3 sinh (βx) + d4 cosh (βx) (2.5)

where α, β are given as follows

α =

√
(µω2)+

√
(µω2)2+4ω2

2 , β =

√
−(µω2)+

√
(µω2)2+4ω2

2 . (2.6)

After using the following dimensionless boundary conditions

w (0, τ) = 0

w′′ (0, τ)− kL
EIw

′ (0, τ) = 0

w′′′ (1, τ)− ρIω2
0L

2

EI (ẅ (1, τ))′ − Mpω2
0L

3

EI ẅ (1, τ) = 0

w′′ (1, τ) = 0,

(2.7)

one obtain four simultaneous equations which can be written in the matrix form as

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1

−KL
EI α −α2 −KL

EI β β2

−α2 sinα −α2 cosα β2 sinhβ β2 coshβ

A1 A2 A3 A4

∣∣∣∣∣∣∣∣∣∣∣∣∣



d1

d2

d3

d4


=



0

0

0

0


(2.8)
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where

A1 = −α3 cosα+
((

r
L

)2
α2β2 +

Mp

ρALω
2α2 sinαA2 = α3 sinα−

((
r
L

)2
α2β2 +

Mp

ρALω
2α2 cosαA3 = β3 coshβ +

((
r
L

)2
α2β2 +

Mp

ρALω
2β2 sinhβA4 = β3 sinhβ +

((
r
L

)2
α2β2 +

Mp

ρALω
2β2 coshβ

In order to have a non-trivial solution, the determinant of the matrix in Eq.(2.8) has to be

zero. The first transversability equation is given by

A1

(
KL
EI β

3 sinhβ + β4 sinhβ + α2β2 coshβ − KL
EI α

2β cosα
)
−A2

(
KL
EI αβ

2 sinhβ + KL
EI α

2β sinα
)

+A3

(
−KL
EI αβ

2 coshβ + α2β2 sinα− KL
EI α

3 sinα+ α4 sinα
)

+A4

(
KL
EI αβ

2 sinhβ + KL
EI α

2β sinα
)

= 0

(2.9)

The second transversability equation is given by

β =
√

α2

1+µα2
(2.10)

Finally the constants d1, d2, d3 , d4 can be expressed in the terms of d1, and they are given

by the following relations

d2 =

(
−(α2 sinα+αβ sinhβ)

α2 cosα+β2 coshβ+ EI
KL

β(α2+β2) sinhβ

)
d1

d3 =

(
−α
β + EI

KL

(
α2+β2

β

)
(α2 sinα+αβ sinhβ)

α2 cosα+β2 coshβ+ EI
KL

β(α2+β2) sinhβ

)
d1

d4 =

(
(α2 sinα+αβ sinhβ)

α2 cosα+β2 coshβ+ EI
KL

β(α2+β2) sinhβ

)
d1

The value of d1 is obtained such that the eigenfunctions φ (x) are normalized
∫ 1

0 φ
2
n (x)dx = 1

.

2.2.2 Method of multiple scales for ordinary differential equations

Let’s Consider a nonlinear oscillator described by the equation of motion

ÿ + Ω2
0y = εf (t, y, ẏ) , (2.11)

where ε is a dimensionless parameter, assumed to be small. The dot over y denotes differentiation

with respect to time t and f (t, y, ẏ) is a nonlinear function which can depends explicitly on time.
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With the method of multiple scales, it is assumed that the solution of Eq. (2.11) depends on

multiple independent variables (two in its simplest form). Accordingly, this solution is expressed

in terms of different time scales as

y (t) =

∞∑
m=0

εmym (t0, t1, ...) = y0 (t0, t1, ...) + εy1 (t0, t1, ...) + ..., (2.12)

where tm represents different independent time scales given by

tm = εmt,m = 0, 1, ... (2.13)

There is a normal time scale t0 = t, slow time scale t1 = εt, a super slow time scale t2 = ε2t, etc.

Thus,

d

dt
= D0 + εD1 + . . . , (2.14a)

d2

dt2
= D2

0 + 2εD0D1 + . . . , (2.14b)

where

Dm =
∂

∂tm
, i.e. D0 =

∂

∂t0
and D1 =

∂

∂t1
(2.15)

Substituting Eq. (2.12) into Eq. (2.11) and taking into account Eqs. (2.14) and (2.15), the

following set of linear ordinary differential equations result

ε0 : D2
0y0 + Ω2

0y0 = 0, (2.16a)

ε1 : D2
0y1 + Ω2

0y1 = −2D0D1y0 + f (y0, D0y0, t0) , (2.16b)

The expansion gets more and more tedious with increasing order in ε. Let’s carry this pro-

cedure out to first order in ε. At order ε0,

y0 = A cos (Ω0t0 + ϕ) , (2.17)

where A and ϕ are arbitrary (at this point) functions of {t1, t2, ...}. Now we solve the next

equation in the hierarchy, for y1.

Let θ = Ω0t0 + ϕ. Then D0 = ∂
∂t0

= Ω0
∂
∂θ and we have

D2
0y1 + Ω2

0y1 = 2Ω0 sin θD1A+ 2AΩ0 cos θD1ϕ+ f (A cos θ,−A sin θ, t0) . (2.18)

Since the arguments of f are periodic under θ → θ+ 2π, we may expand f in a Fourier series as

f (θ) = f (A cos θ,−A sin θ, t0) =
∞∑
k=1

αk (A) sin (kθ) +
∞∑
k=1

βk (A) cos (kθ) . (2.19)
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The inverse of this relation is

αk (A) =
1

π

∫ 2π

0
f (θ) sin (kθ) dθ (k > 0) , (2.20a)

β0 (A) =
1

2π

∫ 2π

0
f (θ) dθ, (2.20b)

βk (A) =
1

π

∫ 2π

0
f (θ) cos (kθ) dθ (k > 0) . (2.20c)

We now demand that the secular terms on the right-hand side (Eq. (2.18)) – those terms pro-

portional to cos θ and sin θ – must vanish. This means

2Ω0D1A+ α1 (A) = 0, (2.21a)

2AΩ0D1ϕ+ β1 (A) = 0. (2.21b)

These two first order equations require two initial conditions, which is sensible since our initial

equation ÿ + Ω2
0y = εf (y, ẏ, t) is second order in time. With the secular terms eliminated, we

may obtain y1 as follows

y1 =

∞∑
k 6=1

{
αk (A)

1− k2
sin (kθ) +

βk (A)

1− k2
cos (kθ)

}
+B0 cos θ + C0 sin θ, (2.22)

the constants B0 and C0 are arbitrary functions of t1, t2, etc..

The equations for A and ϕ (Eqs. (2.21)) are both first-order in t1. They will therefore

involve two constants of integration – call them A0 and ϕ0. At second order, these constants are

taken as dependent upon the super slow time scale t2. The method itself may break down at this

order.

2.2.3 Average method

In the quest for approximate solution techniques for vibration problems, the method of averaging

has proved to be a powerful analytic tool. This method was originally introduced by Bogoliubov

and Mitropolsky [60]. In this thesis, we have used the

averaging technique which is now illustrated with the following single-degree-of-freedom sys-

tem of linear stiffness:

Ẍ + ω2
0X = εf

(
X, Ẋ

)
+ εh

(
X, Ẋ

)
Dα [X (t)] (2.23)

where ε is a small parameter, indicating that the damping term is of order ε.
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f
(
X, Ẋ

)
and h

(
X, Ẋ

)
are linear or nonlinear functions with respect to X, Ẋ,

Dα [X (t)] Caputo-type fractional derivative and defined by

Dα [X (t)] =
1

Γ (n− 1)

∫ t

0

X(n) (t− τ)

τα
dτ (2.24)

where n− 1 < α ≤ n and Γ (z) is Gamma function that satisfies Γ (z + 1) = z Γ (z). At first, the

original system (2.23) is transformed into a diffusion differential equation by using the following

generalized Van der Pol transformation:

X = A (t) cos θ, Ẋ = −A (t) sin θ, θ = ω0t+ φ (t) (2.25)

Therefore, the joint response process (X,Ẋ ) is needed to be transformed to a pair of slowly

varying processes (A,φ ). After some elementary calculations, Eq. (2.23) may be replaced by the

following two first-order equations:

Ȧ = −sin θ

ω0
[εf (A cos θ, −Aω0 sin θ ) + εh (A cos θ, −Aω0 sin θ )Dα [A cos θ]] (2.26)

φ̇ = −cos θ

Aω0
[εf (A cos θ, −Aω0 sin θ ) + εh (A cos θ, −Aω0 sin θ )Dα [A cos θ] (2.27)

To apply the averaging method, we average at the period T of which one could select as T =

2π/ω0 in the case of periodic function or T =∞ in the case of aperiodic (Dα
τ (A cos (ω0τ + ϕ)))

[61–64]. We obtain the following pair of first order differential equations for the amplitude A (τ)

and the phase ϕ (τ).

< Ȧ >=< −sin θ

ω0
[εf (A cos θ, −Aω0 sin θ ) + εh (A cos θ, −Aω0 sin θ )Dα [A cos θ]] > (2.28)

< φ̇ >=< −sin θ

ω0
[εf (A cos θ, −Aω0 sin θ ) + εh (A cos θ, −Aω0 sin θ )Dα [A cos θ]] > (2.29)

where

< [.]>t =
1

T

∫ t0+T

t0

[.] dt (2.30)

It is seen that the fractional derivative with Caputo definition is essentially a generalized integral

with derivative of time-delay in it, usually, it is very difficult to deal with a higher fractional
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order in mathematics. Here in only the case 0 < α ≤ 1 in this thesis is considered, other values

will be discussed further in our future work. So, according to formula (2.25) and Eq. (2.26), the

Caputo-type fractional derivative can be rewritten as

1

Γ (1− α)

∫ t

0

Ẋ(n) (t− τ)

τα
dτ =

Aω0

Γ (1− α)

[
cos θ

∫ t

0

sinω0τ

τα
dτ − sin θ

∫ t

0

cosω0τ

τα
dτ

]
(2.31)

It turns out that how to calculate or approximate the integrals appeared in (2.31) is an

important task to replace the complicated Caputo-type fractional derivative in terms of envelope

and frequency. Fortunately, the following two generalized integrals can play a role to solve this

problem, they are respectively

∫ t

0

sinω0τ

τα
dτ = ωα−1

0

[
Γ (1− α) cos

πα

2
− cosω0t

(ω0t)
α + o(ω0t)

−α
]

(2.32)∫ t

0

cosω0τ

τα
dτ = ωα−1

0

[
Γ (1− α) sin

πα

2
− sinω0t

(ω0t)
α + o(ω0t)

−α
]

(2.33)

2.2.4 Stability of the non-trivial steady states solutions of the

nonlinear system response

It is well known that the steady states solutions of any nonlinear system only exist if they are

stable. Hence the interest to perform a stability analysis of these solution. To do so, we shall

define first what we mean by a steady state solution and how can appreciate their stability. So,

formally, we can say that

Definition [65]

The constant vector Y0 ∈ Cn is a steady state solution of differential equations

dy(t)

dt
= F (y(t)) (2.34)

if it satisfies the equation F (y(t)) = 0, where 0 is the null vector and F (y(t)) is a differentiable

vector function. when Y0 6= 0, the steady state solution is non-trivial.

As we have seen, if such a system is required to satisfy the initial condition given by Y (0) = Y0,

then its solution will be Y (t) = Y0 for all times t. (So, Y0 will be a constant solution of the system).

What about the stability of this solution? We can get some information about the stability of

the solution of the nonlinear systems models by using Taylor’s Theorem to "relate" it to a linear

system. In fact, the version of Taylor’s Theorem which we shall use is the following
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Theorem[Taylor’s Theorem] [65]

If F : Cn → Cn is a continuously differentiable function and Y0 is some constant vector in

Cn, then for a vector δy(t) ∈ Cn,

F (Y0 + δy(t)) = F (Y0) +DF (Y0) +R(δy(t)) (2.35)

Note that if the function F (Y ) = (f1(Y ), f2(Y ), f3(Y ), ......., fn(Y )), then DF is the Jacobian

DF =


∂f1
∂Y1

. . . ∂f1
∂Yn

...
. . .

...
∂fn
∂Y1

· · · ∂fn
∂Yn

 (2.36)

and the matrix DF (Y0) is the Jacobian evaluated at YO. Further, R(δy(t)) has the property

that: R(δy)
‖δy‖ → 0, as δy → 0. Loosely speaking, this means that if each entry of δY is small, then

F (Y0 + h) ' F (Y0) +DF (Y0) (2.37)

Where ' can be interpreted as "is approximately".

Now, suppose that Y0 is a state solution of the previous system (37), i.e. F (Y0) = 0, and take

Y (t) to be a solution of the system such that Y (0)−Y0 is small. If we now take Y (t) = Y0+δY (t),

system (34) becomes

d

dt
{Y0 + δY (t)} = F (Y0 + δY ) (2.38)

Consequently, using Taylor’s theorem, we have

F (Y0 + h) ' F (Y0) +DF (Y0) (2.39)

dδY (t)

dt
=

d

dt
{Y0 + δY (t)} = DF (Y0)δY (t) +R(Y (t)) (2.40)

and if δY (t) is small, we can ignore the term R(δY (t)). This means that if the quantity

δY (0) = Y (0)−Y0 = is small, then the behaviour of the vector δY (t) = Y (t)−Y0 is qualitatively

the same as the solution to linear system

dδY (t)

dt
= DF (Y0)δY (t) (2.41)

This analysis result in the following theorem:
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Theorem [65]

Let the constant vector Y0 be a steady state solution of the system (2.34) and let the matrix

DF (Y0) denote the Jacobian evaluated at Y0

-If the n eigenvalues of the Jacobian matrix DF (Y0) have real parts less than zero, then the

steady state solution Y0 is stable.

-If at least one of the n eigenvalues of Jacobian matrix DF (Y0) has real part greater than

zero, them the steady state solution Y0 is unstable

Generally, the determination of the sign of the real parts of the eigenvalues is carried out by

using the Routh-Hurwitz criterion [66]

This mathematical formalism will be used in the following chapter to analyze the stability of

the steady state solution of the beam responses.

2.2.5 Linear stability of delay differential equations

The question of stability for delayed nonlinear equations near their steady-state solutions or fixed

points is particularly important when the dynamical states of any system are investigated, as it

is the case in this thesis. Indeed, the study of the stability makes possible to realize what happens

if a system is disturbed slightly near an equilibrium condition.

• Linearization near an equilibruium solution

Let consider a set of autonomous DDEs of first order defined as [66]

dX (t)

dt
= H [X (t) ,X (t− τ) , α] (2.42)

where X (t) = (x1 (t) , x2 (t) , . . . , xn (t)) is the vector of n-dynamical variables of the system,

X (t− τ) = (x1 (t− τ) , x2 (t− τ) , . . . , xn (t− τ)) is the delayed vector of n-dynamical variables,

H = (h1 (t) , h2 (t) , . . . , hn (t)) is a n-dimensional vectorial function and α = (α1, α2, . . . , αp) is

a set of control parameters of the system.

Let us denote an equilibrium point X0 and consider small variations δX of the system around

this equilibrium point, defined by

X (t) = X0 + δX (t) (2.43)

Substituting Eq. (2.43) into Eq.(2.42) and expanding this equation in a Taylor series about

X0, and discarding terms of order higher than the first in the δX’s leads to the variational
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equation

dδX (t)

dt
= J0 (α) δX (t) + J1 (α) δX (t− τ) (2.44)

where J0 and J1 are matrix (n× n) of partial derivatives at the equilibrium point X0 and

are called Jacobian matrix.

• Linearization near an equilibruium solution

The eigenvalues of the linear set of the Eq. (2.44) can be found from the characteristic

equation of the system. In that case, the characteristic equation becomes

G (s;α) = det
(
sI− J0 (α)− J1 (α) e−sτ

)
(2.45)

where I is the unit matrix and s are the eigenvalues of the system (2.45) and roots of the

characteristic equation.

The algorithm of the D-subdivision method can be summarized as follows [67]:

1. First, solve the equation

G (jω;α) = 0 (2.46)

for s as a function of jω (including the origin of the complex plane) in order to find

(stability crossing) surfaces in the parameter space Rnp such that for each s on such a

surface, there exists at least one characteristic root on the imaginary axis.

2. Second, these surfaces divide the parameter space into several regions and sometimes it

is possible to conclude, by using appropriate additional arguments, for which region the

stability is guaranteed. As additional arguments, we can find, for example, a particular

point (on some of the axis of the parameter space) for which the stability analysis becomes

easier to perform (finite-dimensional systems, eventually). Each region derived in this way

is characterized by the same number of strictly unstable characteristic roots for all the

points of the corresponding domain.

2.2.6 Melnikov’s method to predict Smale horseshoe chaos

Melnikov’s method [68] is one of relatively few analalytical method used to predict the onset

of chaotic notion in dynamical systems with deterministic or random perturbation. It gives a

Ph.D Student in Fundamental Mechanics and Complex Systems by NGOUNOU Armel Martial ?UY1/FS?



Chapter II: Mathematical formalisms and numerical methods 35

bound on the parameters of a system such that chaos is predicted not to occur. It is applicable

to conservative one DOF systems which include a separatrix loop, and which are perturbed by

small forcing and damping.

The idea is to show by perturbation expansions that there exists an intersection of the

stable and unstable manifolds of an equilibrium point in two-dimensional pointcare map M. this

implies that there is a horseshoe in the map M, which in turn implies that there exist periodic

motions of all periods, as well as motions which are not periodic. The horseshoe mapalso exhibits

sensitive dependence on initial conditions. The method was first applied by Holmes [69] to study

a periodically forced Duffing oscillator with negative linear stiffness.

To perform the general Melnikov technique for horseshoe chaos analysis, let’s consider a

single-degree-of-freedom Hamiltonian system subject to light damping and external or parametric

excitation. This system has the following form:

 ẋ = ∂H
∂y

ẏ = −∂H
∂x − ελ (x, y) ∂H∂y + εf (x, y) η(t),

(2.47)

where x and y are generalized displacement and velocity respectively; H = H(x, y) is Hamil-

tonain with can be purely periodic excitation or random noise excitation. λ (x, y) represents the

coefficient of danping; (x, y) represents the amplitude of excitation.

We assume that (x0(t), y0(t)) is a solution on separatrix loop in the ε = 0 system will generally

be "broken" when the pertubation is appleid. The question of whether or not chaos can occur

in a particular system depends upon what happens to broken pieces of the separatrix loop (the

stable and unstable manifolds of the saddle), that is , whether they intersect or not. In the case

of Eq. (2.48) and based on a formula given by Wiggins [70,71] , Melnikov’s method involves the

following integral:

M(t0) =

+∞∫
−∞

∂H

∂y

[
−ελ (x, y)

∂H

∂y
+ εf (x, y) η(t+ t0)

]
dt, (2.48)

where before integrate the provious Eq. (2.39), the couple (x, y) is substituded by the orbit

(x0(t), y0(t)).
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2.3 Numerical method

It is well known that the validation of results obtained through analytical inves- tigation is

guaranteed by the perfect match with the results obtained through direct numerical simulation

of the mathematical model. In this thesis, three numerical methods including , a classical RK4

to integrate the ODEs, Newton-Leipnik and A-B-M predictor-corrector schemes to integrate

the FDEs and the bisection method to solve a complex or non-trivial polynomial equations are

presented.

2.3.1 Fourth-order Runge-Kutta method for ordinary differential

equations

An ODE is solved analytically considering some assumption to obtain approximate solutions.

In contrast, a numerical method proposes solutions which are closed with the experiment. In this

thesis, RK4 is used for numerical resolution of ODEs. Fortran 90, with Matlab software language

are also used as programming languages. RK4 method has been elaborated for the first time in

1894 by Carle Runge and has been improved by Martin W. Kutta in 1901. This method is widely

used because of its stability. It combines trapezium numerical integration and Simpson methods.

Let us consider the first-order ODE as

dy

dt
= f (t, y) , (2.49)

with the initial condition y (t0) = y0.

The aim of the RK4 method is to find solutions after each time step h i.e. to determine

the point (t+ h; y (t+ h)) knowing the point (t; y (t)). This method establishes the following

relations [72,73]:

y (t+ h) = y (t) +
1

6
(L1 + 2L2 + 2L3 + L4) , (2.50)

where

L1 = hf (t, y (t)) ,

L2 = hf
(
t+ h

2 , y (t) + L1
2

)
,

L3 = hf
(
t+ h

2 , y (t) + L2
2

)
and

L4 = hf (t+ h, y (t) + L3) .

This procedure needs in its iteration only the initial value y0, to calculate all the other values

taken by the function y at other times separated by the time step h.
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In the case of second-order differential equation
d2y
dt2

= f
(
t, y, dydt

)
y (t0) = y0,

dy
dt

∣∣∣
t=t0

= y
(1)
0

, (2.51)

it can be divided in order to obtain two first order equations. With variables change, let’s consider

Eq. (2.51) under the following form
dy
dt = z

dz
dt = f (t, y, z)

y (t0) = y0, z (t0) = z0

, (2.52)

The RK4 iterations are given by the following equation y (t+ h) = y (t) + 1
6 (L1 + 2L2 + 2L3 + L4)

z (t+ h) = z (t) + 1
6 (K1 + 2K2 + 2K3 +K4)

, (2.53)

where L1 = hz (t) ,

K1 = hf (t, y, z) ,

L2 = h
(
z (t) + K1

2

)
,

K2 = hf
(
t+ h

2 , y (t) + L1
2 , z (t) + K1

2

)
,

L3 = h
(
z (t) + K2

2

)
,

K3 = hf
(
t+ h

2 , y (t) + L2
2 , z (t) + K2

2

)
,

L4 = h (z (t) +K3) and

K4 = hf
(
t+ h

2 , y (t) + L3, z (t) +K3

)
.

This generalized form can also serve to solve numerically second-order coupled ODEs.

2.3.2 Fourth-order-Runge-Kutta method for delay differential equa-

tions

In the case of delay differential equations (DDEs), the dynamical state of a system at each

time t depends both on the value of the vector of n-dynamical variables X at time t, and

also on the value of X at a prior time t − τ , with τ > 0 [74, 75]. Taking into account the

delayed variable X(t − τ) = (x1(t− τ), x2(t− τ), ..., xn(t− τ)) with n−dimensional vectorial

flow G = (G1, G2, ..., Gn), a DDE can be written as
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dX(t)

dt
= G(t,X(t),X(t− τ))

with X(t) = g(t) for t ∈ [−τ, 0] , (2.54)

where g is a n−dimensional vector which depends of the time t,X(t) = [x1(t), x2(t), ..., xn(t)] and

X(t− τ) = (x1(t− τ), x2(t− τ), ..., xn(t− τ)) are unknown vectorial variables. At the difference

of ODEs where the initial conditions were given by a discrete and finite set of value, initial

conditions in DDEs should be indicated (through the use of a function) for all the values contained

into the continuous interval [−τ, 0], so an infinity of values should be known to characterize the

system. The RK4 iterative scheme for the case DDEs defined by Eq. (2.54) can be given by

xi+1,j = xi,j + h (L1,j + 2L2,j + 2L3,j + L4,j) /6

t = t+ h , (2.55)

where

L1,j = G(ti, xτ,i,j , xi,j)

L2,j = G(ti + h/2, xτ,i,j , xi,j + hL1,j/2)

L3,j = G(ti + h/2, xτ,i,j , xi,j + hL2,j/2)

L4,j = G(ti + h, xτ,i,j , xi,j + hL3,j) , (2.56)

where i represents the time incrementation and j labels the variables related to xj . L1,j , L2,j ,

L3,j , L4,j are intermediate variables and h represents the time step.

2.3.3 Numerical method for fractional differential equations

To solve a fractional differential equation, one has to approximate the corresponding derivative

operator, which means including information about previous states of the system (the so-called

memory effect). For numerical solutions of the FDEs, the Newton-Leipnik and A-B-M predictor-

corrector schemes [76–79] are the most used. Accordingly, particular attention will be put on

these two numerical methods in this section.

Firstly, a method on the basis of the A-B-M type predictor-corrector schemes is suitable

for Caputo’s fractional order derivative becaause it just requires the initial conditions and for
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unknown function it has clear physical meaning. The method is based on the fact that fractional

differential equation

 Dq
tY (t) = dqY (t)

dtq = F (t, Y (t))

Y (k)(0) = Y
(k)

0 , k = 0, 1, 2, .......,m− 1
(2.57)

is equivalent to the Volterra integral equation

Y (t) =

[q]−1∑
k=0

Y
(k)

0

tk

k!
+

1

Γ(q)

t∫
0

(t− τ)q−1F (τ, Y (τ))dτ (2.58)

Discretizing the Voterra equation Eq. (2.58) for uniform grid tn = nh (n = 0, 1, 2, ...., N), h =

Tsim/N and using the short memory principle (fixed or logarithmic) [76,80], we obtain a close nu-

merical approximation of the true solution Y (tn) of fractional differential equation while preserv-

ing the order of accuracy. Assume that we have calculated approximations Yh(tj), j = 1, 2, ...., n

and we want to obtain Yh(tn+1) by means of the equation

Yh(tn+1) =
m−1∑
k=0

Y
(k)

0
tkn+1

k! + hq

Γ(q+2)F
[
tn+1, Y

p
h (tn+1)

]
+

hq

Γ(q+2)

n∑
j=0

aj,n+1F [tj , Yn(tj)]
(2.59)

where

aj,n+1 =


nq+1 − (n− q)(n+ 1)q, , if j = 0

(n− j + 2)q+1 + (n− j)q+1 + 2(n− j + 1)q+1, if 1 ≤ j ≤ n

1, if j = n+ 1

(2.60)

The preliminary approximation Y p
h (tn+1) is called predictor and it is given by

Y p
h (tn+1) =

m−1∑
k=0

Y
(k)
O

tkn+1

k!
+

1

Γ(q)

n∑
j=0

bj,n+1F [tj , Yn(tj)] (2.61)

where

bj,n+1 =
hp

q
[(n+ 1− j)q − (n− j)q] (2.62)

Secondly, a method on the Newton-Leipnik algorithm is suitable for Grunwald-Letnkov frac-

tional order derivative. This approach is based on the fac that for a wide class of functions, three

definitions Grunwald-Letnikov, Riemman-Liouville and Caputo’s are equivament. In this case ,
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the relation to explicit numerical approximation of qth derivative at the points kh, (k = 1, 2, ....)

has the following form [80]:

K−Lm/hD
q
tkf(t) ≈ h−q

k∑
j=0

(−1)j

 q

j

 f(tk−j) (2.63)

where Lm is the "memory length", th = kh, h is the time step of calculation and (−1)j

 q

j

 are

binomial coefficients C(q)
j (j = 0, 1, .....). For their calculation we can use the following expression

C
(q)
0 = 1, C

(q)
j =

(
1− 1 + q

j

)
C

(q)
j−1 (2.64)

According to the short memory principle [76, 80], the length of system memory can be substan-

tially reduced in numerical algorithm to get reliable results. Therefore, general numerical solution

of the following fractional differential equation

aD
q
tY (t) = F (t,X(t)) (2.65)

can be expressed as

Y (t) = F (tk, Y (tk))h
q −

k∑
j=1

C
(q)
j Y (tk−j) (2.66)

In Eq. (2.55), the memory term is expressed by the sum. As shown in paper [81], both

mentioned time-domain numerical methods (Newton-Lepnik and A-B-M) have approximately

the same order of accuracy and good match of numerical solutions. Since that the last one

method is easy to code, we will used it in the following chapter to approximate the numerical

solutions of the FDEs describing our reduced systems models.

2.2.2.4 Bisection method for complex polynomial equations

Bisection method is the simplest among all the numerical schemes to solve the complex polyno-

mial equations. The method is also called the interval having method, the binary search method,

or the dichotomy method. The bisection method is based on the following result from calculus:

The Intermediate Value Theorem:

Assume f : R → R is a continuous function and there are two real numbers a and b such

that f(a)f(b) < 0. them f(x) has at least one zero between a and b
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In other words, if a continuous function has different signs at two points, it has to go through

zero somewhere in between!

The bisection method of finding two such numbers a and b, then halving the interval [a, b]

and keeping the half on which f(x) changes sign and repeating the procedure until this interval

shrinks to give the required accuracy for the root. An algorithm of this method could be defined

as follows. Suppose we need a root for f(x) = 0 and we have an error tolerance of ε (the absolute

error in calculating the root must be less that ε).

Bisection Algorithm :

Step 1: Find two numbers a and b at which f has different signs.

Step 2: Define c = a+b
2 .

Step 3: If b− a ≤ ε them accept c as the root and stop.

Step 4: If f(a)f(b) ≤ 0 then set c as the new b. Otherwise set c as the new a. Return to

Step 1

Let α be the value of the root, a ≤ α ≤ b. Let an, bn and cn be the values of a,b and c on

the nth iteration of the algorithm. Then the error bound for cn is given by

|α− cn| ≤
1

2n
(b− a) (2.67)

This inequality can give us the number of iterations needed for a required accuracy ε

n ≥
log
(
b−a
ε

)
log(2)

(2.68)

Advantages and disadvantages of the bisection method

- The method is guaranteed to converge

- The error bound decreases by half with each iteration

- The bisection method converges very slowly

- The bisection method cannot detect multiple roots

This method will be used in the next chapter in order to ge the non-trivial steady states

solutions of some nonlinear Amplitude-Frequency equations governing one of our systems models

response.
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2.3.4 Hardware and software

Throughout this thesis, we used a Laptop having Window 10 as operating system. For mathe-

matical expansions and numerical simulations, the following software were used: Matlab, Fortran

and Maple. These software are enormously used in scientific research and engineering.

2.3.5 Conclusion

The present chapter has been devoted to the presentation of mathematical and numerical meth-

ods used to solve the differential equations describing the reduced mathematical models of our

excited tension leg platform systems as well as the hardware and software used. These methods

will be used in the next chapter to obtain the different results that give us informations about

the different states of the studied systems.
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3.1 Introduction

This chapter is devoted to the results and discussions on the work carried out in this thesis.

Section 3.2 analyse the effect of the delay between the detection of vibration and the action of

tendons on the dynamics response of tension leg platform (TLP) under sea waves excitation.

Section 3.3 presents the new nonlinear viscoelastic model describing the surge movement of

tension leg platform. Section 3.4 analyses the influence of tuned liquid column device to the

amplitude reduction of an offshore platform under irregular sea wave excitation. The last section

concludes the chapter.

3.2 Effect of the delay between the detection of vibra-

tion and the action of tendons on the dynamics

response of tension leg platform (TLP) under sea

waves excitation.

3.2.1 Physical model

A TLP structure which includes, deck, hull, pontoon, risers, tendons and foundation template

is shown schematically in Fig. 3.1 and equivalent model, consisting of a vertical beam and two

tendons which are coupled through the platform is shown in Fig. 3.2

Figure 3.1: Schematics of offshore structures [82]
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Figure 3.2: A simplified model of a TLP

3.2.2 Mathematical modeling

Consider a pinned free beam of length l, with density ρ, Young’s module E, cross sectional

area A and moment of inertia I, after using the physical and mathematical concept, the governing

equation for TLP (Beam) model system under waves excitation given by equation [83–85].


ρA∂2u(x,t)

∂t2
+ c1

∂u(x,t)
∂t

= EA∂2u(x,t)
∂x2

+ EA
2

∂
∂x

((
∂w(x,t)
∂x

)2
)

ρA∂2w(x,t)
∂t2

+ EI ∂
4w(x,t)
∂x4

+ c2
∂w(x,t)
∂t
− ρI ∂

4w(x,t)
∂t2∂x2

− EA ∂
∂x

(
e∂w(x,t)

∂x

)
+ zc (t) = f (x, t)

(3.1)

where

e = ∂u(x,t)
∂x + 1

2

(
∂w(x,t)
∂x

)2

with the boundary and initial conditions

w (0, t) = ∂2w
∂x2

(0, t) = ∂2w
∂x2

(l, t) = ∂3w
∂x3

(l, t) = 0 (3.2)

u (0, t) = 0 , u (l, t) = lN0
EA

(3.3)

Assuming that the radius of gyration r is small enough, the longitudinal inertia force and
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dissipative force are neglected. Using the boundaries conditions (3.3) and after some simplification

its comes out the following equation

e = N0
EA + 1

2l

∫ l
0

(
∂w
∂x

)2
dx (3.4)

Thus the general equation governing the behaviour of the system is given by

ρA∂2w(x,t)
∂t2

+ EI ∂
4w(x,t)
∂x4

+ c2
∂w(x,t)
∂t − ρI ∂

4w(x,t)
∂t2∂x2

−N0
∂2w(x,t)
∂x2

−EA
2l

(∫ l
0

(
∂w(x,t)
∂x

)2
dx

)
∂2w(x,t)
∂x2

+ zc (t) = f (x, t) ,
(3.5)

where w = w(x, t) is the lateral deflexion, EI denotes the flexural rigidity of the beam, c2 is the

damping coefficient, ρI is the transverse Rayleigh beam coeffcient, and N0 is axial load.

The sea waves excitation is formulated using Morisons equation [41] and airy theory [84] is

given by

f (x, t) = 1
2Cdρw (2rout)

π2H
T 2

cosh2k(x+d1)

sinh2kd1
cos (ωt) |cos (ωt)|

−CMρwA2π2H
T 2

cosh k(x+d1)
sinh kd1

sin (ωt)− CmρA∂2w(x,t)
∂t2

(3.6)

, where CD, CM and Cm are the coefficient of the drag, and inertia forces of the beam and the

added mass respectively. ρw is density of sea water, rout is the outher radius of beam.

zc (t) represent the tendons force which is produced by the deplacement of tendon. In fact,

tendons are viscoelastic structures which mean they exhibit both elastic and viscous behaviors.

Zhang and al [86], proposed a mathematical model given by

zc (t) = 4kc cosαc [s1w (t− tx) + s2ẇ (t− tẋ)] (3.7)

where kc is tendon stiffness, αc is tendon inclination, s1 and s2 are control parameters, tx and tẋ

time delays for displacement and velocity feedback force in the system, respectively. We notice

that w and ẇ are written as functions of t− tx and t− tẋ, respectively. This lag between the

structure response and the corrective action may be attributed to the time required to sense and

to gather the information and the computation time for determining the proper action.

Taking into account the following dimensionless variable

q = w
r , y = x

l0
, τ = r

l20

√
E
ρ t, l∗ = l

l0
, k3 = Cm

ρw
ρ

λ = c2l0
2

Ar
√
ρE
, N ′0 = N0l0

EI , β = I
Al0

2

α = l0
4

EIr , d
∗ = d1

l0
, Γ1 = 4kcs1

l0
4

EI cosαc

Γ2 = 4kcs2
l0

2r
EI

√
E
ρ cosαc, r =

(
I
A

) 1
2

(3.8)
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Eqs.(3.5) - (3.6) are reduced to a non-dimensional equation

∂4q(y,τ)
∂y4

− β ∂
4q(y,τ)
∂τ2∂y2

+ (1 + k3) ∂
2q(y,τ)
∂τ2

+ λ∂q(y,τ)
∂τ −N ′0

∂2q(y,τ)
∂y2

− l0
2l

(∫ l∗
0

(
∂q(y,τ)
∂y

)2
dy

)
∂2q(y,τ)
∂y2

+ Γ1q (y, τ − τy) + Γ2
∂q(y,τ−τẏ)

∂τ = αf1 (y, τ)
(3.9)

f1 (y, τ) = 1
2
Cdρw (2rout)

π2H2

T 2

cosh2kl0(y+d∗)

sinh2kl0d∗
cos (ωτ) |cos (ωτ)| − CMρwA2π2H

T 2

cosh kl0(y+d∗)
sinh kl0d∗

sin (ωτ)

(3.10)

with the boundary conditions

q (0, τ) = ∂2q
∂y2

(0, τ) = ∂2q
∂y2

(l∗, τ) = ∂3q
∂y3

(l∗, τ) = 0 (3.11)

Here l0 is a reference lenght of the beam.

3.2.3 Modal equation

To deal with the analytical analysis, we resort to an assumed mode expansion. Specifically,

it is assumed that q can be written as the finite sum

q (y, τ) =
N∑
n=1

vn (τ)φn (y) (3.12)

where vn(τ) is the amplitude of the nth mode, and φn(y) is the solution of the eigenvalue problem

obtained by solving Eq.(3.9) and without damping, non linearity, excitation and tendon effect,

and φn(y) is given by

φ1 (y) = Ky if n = 1 (3.13)

or

φn (y) = cos(kn)
cosh(kn) sinh (kny) + sin (kny) if n ≥ 2 (3.14)

where

kn =
(
n− 3

4

)
π (3.15)

It should be noted that the first natural frequency occurs at 0. This mode corresponds to the

rigid body motion which has a mode shape given as φ1, which is not considered in our problem,
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since this mode has no relation with the elastic deflection of the beam [87]. In the rest of this

part, we limit ourselves to elastic mode, in particular in first elastic mode.

After substituting Eq.(3.12) into Eq.(3.9), multiplying both sides of the resultant equation

by the shape function then integrating with respect to the beam axis y over the length l∗, and

taking into account the orthogonality condition, the modal equation is given by

v̈2 (τ) + 2ηv̇2 (τ) + ω2
2v2 (τ) + γv3

2 (τ) + pv2 (τ − τx)

+dv̇2 (τ − τẋ) = p0 cos (ωτ) |cos (ωτ)| + p1 sin (ωτ)
(3.16)

with

I0 =
∫ l ∗
0 φ2n(y)dy∫ l ∗

0 (1+k3)φ2n(y)dy−β
∫ l ∗
0 φ′′n(y)φn(y)dy

, η = λ
2 I0,

ω2
1 =

∫ l ∗
0 φ′′′′n (y)φn(y)dy∫ l ∗

0 (1+k3)φ2n(y)dy−β
∫ l ∗
0 φ′′n(y)φn(y)dy

, ω2
2 = ω2

1 −N

N = N ′0

∫ l∗
0 φ′′n(y)φn(y)dy∫ l∗

0 (1+k3)φ2n(y)dy−β
∫ l∗
0 φ′′n(y)φn(y)dy

, p0 = 1
2Cdρw (2rout)

π2H
T 2 I2

I2 =

∫ l ∗
0

cosh2kl0(y+d∗)
sinh2kl0d

∗ φn(y)dy∫ l ∗
0 (1+k3)φ2n(y)dy−β

∫ l ∗
0 φ′′n(y)φn(y)dy

, p1 = −CMρwA2π2H
T 2 I3,

I3 =

∫ l ∗
0

cosh kl0(y+d∗)
sinh kl0d

∗ φn(y)dy∫ l ∗
0 (1+k3)φ2n(y)dy−β

∫ l ∗
0 φ′′n(y)φn(y)dy

, p = Γ1I0 , d = Γ2I0

(3.17)

Eq.(3.16) represents the modal equation of the TLP under sea waves excitation, with its

different parameters defined by (3.17)

3.2.4 Effect of tendon on the stability of the structure

The aims of this section is to show how the tendon can affect parameter on the stability of the

structure taking into account the time-delay. This is done using the D-subdivision method [86].

Thus, Eq.(3.16) can be rewritten as follows

v̇2 = g

ġ = −2ηg − ω2
0v2 − γv3

2 − pv2 (τ − τx)− dy (τ − τx)

+p0 cos (ωτ) |cos (ωτ)|+ p1 sin (ωτ)

(3.18)

point v20(0, 0) is an equilibruim point of Eq.(3.18). The characteristic equation of the lin-

earized version of Eq.(3.18) related to this equilibrium point is

s2 + (2η + d exp (−sτẋ)) s+
(
ω2

2 + p exp (−sτx)
)

= 0 (3.19)
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To obtain the stability boundary in the plane of the tendon parameter(d, p), we use the

D-subdivision method. According to that method, the stability boundary in the plane are de-

termined by the points that yield either to a root s = 0 or a pair of pure imaginary roots of

Eq.(3.19).

Substituting s = 0 into Eq.(3.19), one finds

p = −ω2
2

(3.20)

Setting s = ib (where b is a real constant) into the characteristic Eq.(3.19), and after some

algebraic manipulation we obtained

(cos bτx) p+ (b sin bτẋ) d = b2 − ω2
2

(b cos bτẋ) d− (sin bτx) p = −2ηb
(3.21)

which leads to

p =
(
b2 − ω2

2

)
cos bτ0 + 2ηb sin bτ0

d =
(b2−ω2

2)
b sin bτ0 − 2η cos bτ0 τx = τẋ = τ0

(3.22)

Properties of the beam and characteristics of the sea waves which are used for numerical

purpose are given in Tables 3.1 and 3.2 [82,84]

Table 3.1: Properties of the beam.

Parameter name Symbol Value

beam length (m) l 415

inertial coefficient of beam CM 1.7

drag coefficient of beam Cd 0.8

Inertial coefficient of added mass Cm 1

Density of beam (kg.m−3) ρ 7800

Young’s module of beam(Gpa) E 204

Outer raduis of beam (m) rout 0.4

Axial force (N) N0 3.462e7
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Table 3.2: properties of sea.

Parameter name Symbol Value

Sea depth d 415 m

Wave height H 2 m

Wave period T 25 s

water density ρw kg/m3

In this part, the simulation solutions are obtainted using the fourth-order runge kutta method,

and the matlab software is used for plotting the curves. The Hopf bifurcation boundary in the

(p, d) space delimiting the stability boundary can be found from the bifurcation curve defined

by Eq.(3.22) and bifurcation line defined by Eq.(3.20). In Fig. 3.3, the stable area consists of the

region of the plane limited by the straight line given by Eq.(3.20) and the curve associated with

each value of time delay given by Eq.(3.22).

Figure 3.3: Stability boundary in the

space (p, d) and various values of time

delay, with η = 0.06, ω2 = 1.36

Figure 3.4: Stability boundary in the

space (p, d) and various values of damp-

ing, with τ0 = 0.1, ω2 = 1.36

Fig. 3.3 shows that the increase of the value of time-delay contributes to reduce the stability

area. In Fig. 3.4 the stability boundary in the space (p, d) and various values of damping is
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plotted. The interest here is the effect of delay on the stability. One can observe that when

the damping coefficient increase, the stability area increase. This means that by increasing the

damping coefficient, the area will be increased; so one could choose the parameters of the tendon,

so that the structure remains stable.

In Fig. 3.5 the evolution of the amplitude of vibration as a function of time is plotted. It is

viewed in Fig. 3.5(a) that the amplitude decreases as function of time leading to stability, while

in Fig. 3.5(b) the amplitude increases with time leading to instability of the system.

Figure 3.5: Effect of tendons parameter on the stability of the TLP, (a )the tendons

parameter taken in the stable region τ0 = 0.3, p = 4, d = 3; (b )the tendons parameter

taken in the unstable region τ0 = 0.3, p = 6.5, d = 3, with η = 0.06, γ = −4.388, ω2 = 1.36

.
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3.2.5 Compensation of the time-delay effect for amplitude reduc-

tion

In this section, a particular attention is focused on the analytical and numerical analysis in order

to determine a parameter of the system that will compensate the time-delay effect leading to

amplitude reduction.

For that purpose the multiple time scale method [88–90], which provides an analytical ap-

proximate solution and thus permits to detect the effects of the time-delay on the system response

is used.

We suppose that |cos (ωτ)| = ξ cos (ωτ) , where ξ = ±1 Eq.(3.16) can be written as

v̈2 (τ) + 2ηv̇2 (τ) + ω2
2v2 (τ) + γv3

2 (τ − τx) + pv2 (τ)

+dv̇2 (τ − τẋ) = ξp0(cos (ωτ))2 + p1 sin (ωτ) ξ = ±1
(3.23)

Taking into account the following relation: (cos (ωτ))2 = 1+cos(2ωτ)
2 and by substituting it in

the Eq.(3.23), one obtain

v̈2 (τ) + 2ηv̇2 (τ) + ω2
2v2 (τ) + γv3

2 (τ) + pv2 (τ − τx)

+dv̇2 (τ − τẋ) = ξ p02 + ξ p02 cos (2ωτ) + p1 sin (ωτ)
(3.24)

One focus our attention on applying the multiple scales method to find the uniform analytical

approximations solution at resonance. One would like to obtain a first-order approximate solution

so that we define two-time scales as a fast-time, slow-time, so that the derivative with respect to

time expanded as

d
dτ = dT0

dτ
∂
∂T0

+ ε ∂
∂T1

= D0 + εD1 + ...

d2

dτ2
= D2

0 + 2εD0D1 + ...

(3.25)

where ε refers to a very small perturbation parameter. The expansions of the solution v2 (τ, ε)

and v2 (τ − τx, ε) have the form

v2 (τ) = v20 (T0, T1) + εv21 (T0, T1) + ... (3.26)

v2 (τ − τx, ε) = v20 (T0 − Tx, T1 − εTx) + εv21 (T0 − Tx, T1 − εTx) + ... (3.27)

where Tn = εnτ
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Assuming that Tx is small enough, after using Taylor expansion on Eq.(3.27) one gets

v2 (τ − τx, ε) = v20 (T0 − Tx, T1) − εD1Txv20 (T0 − Tx, T1)

+εv21 (T0 − Tx, T1)− ε2TxD1v21 (T0 − Tx, T1)
(3.28)

After this expansion, we focus on the different type of resonance that one can have when the

structure is subjected to the sea waves excitation.

Harmonic resonance

Substituting Eqs.(3.26) and (3.28) into the Eq.(3.24) and equating the same power of the coeffi-

cients, we obtain

D2
0v20 + ω2

2v20 = 0 (3.29)

D2
0v21 + ω2

2v21 = −2D0 (D1v20 + ηv20)− γv3
20 − pv20 (T0 − Tx, T0)

−dD0v20 (T0 − Tx, T0) + ξ p02 + ξ p02 cos 2ωT0 + p1 sinωT0

(3.30)

The solution of Eq.(3.29) can be written as

v20 (T0, T1) = A (T1) exp (iω2T0) + cc (3.31)

Substituting the above equations into Eq.(3.30) we obtain

D2
0v21 + ω2

2v21 =
[
−2iω2 (A′ + ηA)− 3γĀA2 − pA exp (−iω2Tx)

−iω2dA exp (−iω2Tx)× exp (iω2T0)− γA3 exp (3iω2T0) + ξ p0
2

+ ξ p0
4

exp (2ωT0) + p1
2i

exp (ωT0) + cc

(3.32)

Two types of resonance could occur from the above equation during the vibration of the

system

-First case: ω2 ' ω

The deviations of ω from ω2 are shown as the following definition

ω = ω2 + εσ

where σ is the detuning parameter. After considering the above definition and by eliminating

the secular terms from Eq.(3.32), one will arrive at

−2iω2 (A′ + µA)− 3γĀA2 − pA exp (−iω2Tx) − iω2dA exp (−iω2Tx) + p1
2i exp (iσ1T1) = 0

(3.33)
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Using the polar notation A (T1) = a(T1)
2 exp (iθ1) of the above equation and by separating

the real and the imaginary parts, we obtain

ω2a
′ + ηω2a− p

2a sin (ω2Tx) + d
2ω2a cos (ω2Tx) + p1

2 cosφ1 = 0

ω2σa− ω2aφ
′ − p

2a cos (ω2Tx)− d
2ω2a sin (ω2Tx)− 3

8γa
3 − p1

2 sinφ1 = 0
(3.34)

In which φ1 = σT1−θ1. For the sake of the steady state response, the parameters φ′1, θ′1 and

a′ must be set to zero and, after some mathematical simplification of Eq.(3.34), the following

equation is obtained

(
ηω2a− p

2a sinω2Tx + d
2ω2a cosω2Tx − d

2ω2a sinω2Tx
)2

=
p21
4

(3.35)

-Second case: ω2 ' 2ω and ω = ω2

2
+ εσ2

Therefore, the secular terms would be

−2iω2 (A′ + µA)− 3γĀA2 − pA exp (−iω2Tx) − iω2dA exp (−iω2Tx)

+ξ p0
2

exp (2iσ1T1) = 0

(3.36)

Similarly, by applying the polar forms and separating the imaginary and the real parts,

and after some mathematical simplification, the steady-state response will be obtained

(
ηω2a− p

2
a sinω2Tx + d

2
ω2a cosω2Tx

)2
+ (2σω2a

−3
8
γa3 − p

2
a cosω2Tx − d

2
ω2a sinω2Tx

2 =
p20
16

(3.37)

After making these different calculations, the simulation solutions are obtainted us-

ing the bisection method, and the matlab software is used for plotting the curves. Fig.

3.6 shows a comparative analysis of the amplitude response as function of the detuning

parameter from the results of analytical derivations and numerical simulation. The result

obtained shows a qualitative agreement between the numerical and analytical analysis.

The effects of time-delay on the amplitude response of the TLP under sea wave excita-

tion for the first and second resonance state are shown in Fig. 3.7 and Fig. 3.8. As depicted
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Figure 3.6: Frequency response curves, (a )Primary resonance, (b )Superharmonic reso-

nance, (b )Subharmonic resonance, (d )Combination resonance, with τ0 = 0.0, p = 4,

d = 3, η = 0.06, γ = −4.388, ω2 = 1.36 .
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in Fig. 3.7 and Fig. 3.8, increasing the time-delay parameter results in an increase of the

amplitude response of the TLP. Fig. 3.9 and figure 3.10 shown the amplitude response

curves for different values of naturels frequency. For the primary and secondary resonance

state, the natural frequency have the same effects, increasing the natural frequency re-

sults in decreasing the amplitude response of TLP. For example, it has been shown that,

taking the two values of the following natural frequencies, ω2 = 1.36 (ie 0.453 rad/s )

and ω2 = 1.6 (ie 0.987 rad/s) , one notes that the effect of the delay on the amplitude is

attenuated for the value of the frequency ω2 = 1.6 (ie 0.987 rad/s). One conclude that,

by making a good choice of the natural frequency of the structure one can compensate

the time-delay effect on the amplitude. The effects of the damping coefficient on the fre-

quency response for the first and second resonance state are shown in Fig. 3.11 and Fig.

3.12. From both figures, it can be observed that increasing the damping coefficient will

reduce the amplitudes of vibration, the effect of time-delay of the amplitudes of vibration

meaning that is reduced. It has been found that, for a delay value equal to 0.1 ( ie 0.22

second), taking a value of the damping coefficient of η = 0.1 (ie c2 = 66.67Ns/m) instead

of η = 0.06 (ie c2 = 40Ns/m), one could compensate for the effect of the delay on the

stability of the structure.

Figure 3.7: Effect of time-delay on the

TLP amplitude, ω = ω2 + εσ, with η =

0.06, γ = −4.388, ω2 = 1.36, p = 4, d = 3

Figure 3.8: Effect of time-delay on the

TLP amplitude, ω = 1
2
ω2 + εσ, with η =

0.06, γ = −4.388, ω2 = 1.36, p = 4, d = 3
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Figure 3.9: Primary resonance curve, ef-

fect of natural frequency ω2, with η =

0.06, γ = −4.388, p = 4, d = 3

Figure 3.10: Secondary resonance curve,

effect of natural frequency ω2, with η =

0.06, γ = −4.388, p = 4, d = 3

Figure 3.11: Primary resonance curve, ef-

fect of damping η , with ω2 = 1.36,

γ = −4.388, p = 4, d = 3

Figure 3.12: Secondary resonance curve,

effect of damping η, with ω2 = 1.36, γ =

−4.388, p = 4, d = 3
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Superharmonic, subharmonic and combination resonances

In the following section we shall investigate the superharmonic resonance, subharmonic

resonance and combination resonance. When the amplitude of the sinusoidal external force

is large, other type of oscillations can be displayed by the model, namely the superhar-

monic, the subharmonic and combination resonance states. Using the multiple timescale

method, we obtain

D2
0v20 + ω2

2v20 = ξ p0
2

+ ξ p0
2

cos 2ωT0 + p1 sinωT0 (3.38)

D2
0v21 + ω2

2v21 = −2D0 (D1v20 + ηv20)− γv3
20 − pv20 (T0 − Tx, T0)− dD0v20 (T0 − Tx, T0)

(3.39)

The solution of Eq.(3.38) can be written as

v20 (T0, T1) = A (T1) exp (iω2T0) + β0 + β1 exp (2iωT0) + β2 exp (iωT0) + cc (3.40)

β0 = ξp0
ω2
2
, β1 = ξp0

4(ω2
2−4ω2)

, β2 = p1
2(ω2

2−ω2)
, i2 = −1

Substituting Eq.(3.40) into Eq.(3.39) we gets
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D2
0v21 + ω2

2v21 =
(
−2iω2 (A′ + ηA)− 3γĀA2 − pA exp (−iω2Tx)− iω2dA exp (−iω2Tx)

−3γβ2
0A− 6γβ2

1A+ 6γβ2
2A)× exp (iω2T0)

−γ (A3 exp (3iω2T0) + β3
1 exp (6iωT0) + β3

2 exp (3iωT0))

− ( 2iηωβ2 + pβ2 exp (−iωTx) + idωβ2 exp (−iωTx)

+6γβ2AĀ+ 3γβ2
0β2 + 6γβ2

1β2 − 6γβ0β1β2 − 3γβ3
2

)
× exp (iωT0)

− ( 4iηωβ1 + pβ1 exp (−2iωTx) + 2idωβ1 exp (−2iωTx)

+6γβ1AĀ+ 3γβ2
0β1 − 6γβ2

2β1 + 3γβ2
2β0 + 3γβ3

1

)
× exp (2iωT0)

−γ (3 β0A
2 exp (2iω2T0) + 3β1A

2 exp (2i (ω2 − ω)T0)

+3β1A
2 exp (2i (ω2 + ω)T0) + 3β2A

2 exp (i (2ω2 + ω)T0)

−3β2A
2 exp (i (2ω2 − ω)T0) + 2β0β1A exp (i (ω2 − 2ω)T0)

+2β0β1A exp (i (ω2 + 2ω)T0) + 2β0β2A exp (i (ω2 + ω)T0)

+β2
1A exp (i (ω2 + 4ω)T0) + β2

2A exp (i (ω2 + 2ω)T0)

+β2
1A exp (i (ω2 − 4ω)T0)− 2β0β2A exp (i (ω2 − ω)T0)

+2β1β2A exp (i (ω2 + 3ω)T0)− 2β1β2A exp (i (ω2 + ω)T0)

+β2
2A exp (i (ω2 − 2ω)T0) − 2β1β2A exp (i (ω2 − 3ω)T0)

+2β1β2A exp (i (ω2 − ω)T0) + 6β0β1β2 exp (3iωT0)

−3β2β
2
1 exp (3iωT0) + 3β1β

2
2 exp (4iωT0) + 3β2β

2
1 exp (5iωT0)

+β3
0 + 3β0β

2
2 − 6β0β

2
2 − 6β1β

2
2 +6β0AĀ

)
+ cc

(3.41)

cc is the complex conjugate of the previous terms. One noticed that the system can

presented two superharmonic, two subharmonic and two combinations resonant states,

when the following conditions are satisfied:

-Superharmonic resonance

6ω = ω2 + εσ; 3ω = ω2 + εσ

-Subharmonic resonance

ω = 3ω2 + εσ; ω = 3
2
ω2 + εσ

-Combination resonance

4ω = ω2 + εσ; 5ω = ω2 + εσ
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a) Superharmonic resonance

Considering 3ω = ω2 + εσ , and injecting this condition into Eq. (3.41) and setting

secular terms to 0, we obtained

−2iω2 (A′ + µA)− 3γĀA2 − pA exp (−iω2Tx) − iω2dA exp (−iω2Tx)− 3γ (β2
0 + 2β2

1 + 2β2
3)

−iγ (β3
3 − 6β0β1β3 + 3β3β

2
1) exp (iσT1) = 0

(3.42)

where β3 = p1
2(ω2

2−ω2)

Using the polar notation A (T1) = a(T1)
2

exp (iθ1) of in Eq.(3.41) and by separating the

real and the imaginary parts, we obtain



ω2a
′ + ηω2a− p

2
a sin (ω2Tx) + d

2
ω2a cos (ω2Tx) + γ (β3

3 − 6β0β1β3 + 3β3β
2
1) cosφ1 = 0

ω2σa− ω2aφ
′
1 −

p
2
a cos (ω2Tx)− d

2
ω2a sin (ω2Tx)− 3

8
γa3 − 3γ (β2

0 + 2β2
1 + 2β2

3) a
2

−γ (β3
3 − 6β0β1β3 + 3β3β

2
1) sinφ1 = 0

(3.43)

.

For the sake of the steady state response, the parameters θ′1, a′ φ′1 must be set to

zero and, after some mathematical simplification of Eq.(3.43), the following equation is

obtained

(µa)2 +
(
σω2a− 3

8
γa3 − p

2
a cos (ω2Tx)

−d
2
ω2a sin (ω2Tx)− 3

2
γ (β2

0 + 2β2
1 + 2β2

3) a 2 = f 2
0

(3.44)

,

where f0 = γ (β3
3 − 6β0β1β3 + 3β3β

2
1) , µ = ηω2 − p

2
sin (ω2Tx) + d

2
ω2 cos (ω2Tx).

Let us consider now 6ω = ω2 + εσ, and injecting this condition into Eq. (3.41) and

setting secular terms to 0, one gets

Ph.D Student in Fundamental Mechanics and Complex Systems by NGOUNOU Armel Martial ?UY1/FS?



Chapter III: Results and discussion 61

−2iω2 (A′ + µA)− 3γĀA2 − pA exp (−iω2Tx) − iω2dA exp (−iω2Tx)

−3γ (β2
0 + 2β2

1 + 2β2
3)− γβ3

1 exp (iσT1) = 0
(3.45)

.

Similarly, by applying the polar forms and separating the imaginary and the real parts,

and after some mathematical simplification, the steady-state response we gets

(µa)2 +
(
σω2a− 3

8
γa3 − p

2
a cos (ω2Tx)− d

2
ω2a sin (ω2Tx)− 3

2
γ (β2

0 + 2β2
1 + 2β2

3) a
)2

= f 2
0

(3.46)

,

where f0 = γβ3
1

b) Subharmonic resonance

In this part, we treat two cases: ω = 3ω2 + εσ and ω = 3
2
ω2 + εσ . In the first

case(ω = 3ω2 + εσ) ,the secular terms are eliminated when

−2iω2 (A′ + µA)− 3γĀA2 − pA exp (−iω2Tx) − iω2dA exp (−iω2Tx)

−3γ (β2
0 + 2β2

1 + 2β2
3)− 3iγβ3Ā

2 exp (iσT1) = 0
(3.47)

.

Inserting the polar form of A, putting φ1 = σT1 − 3θ1, and proceeding in the same

way as in the case of superharmonic, we obtain the following equation

(µ)2 +
(
σ
3
ω2 − 3

8
γa2 − p

2
cos (ω2Tx)− d

2
ω2 sin (ω2Tx)− 3

2
γ (β2

0 + 2β2
1 + 2β2

3)
)2

= (f0a)2

(3.48)

,

where f0 = 3γβ3.
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The second case let us consider ω = 3
2
ω2 + εσ proceeding in the same way as in the

case, one obtain the following equation

(µ)2 +
(
σ
3
ω2 − 3

8
γa2 − p

2
cos (ω2Tx)− d

2
ω2 sin (ω2Tx)− 3

2
γ (β2

0 + 2β2
1 + 2β2

3)
)2

= (f0a)2

(3.49)

Where f0 = 3γβ1

c) combination resonance

In this part, the following situation is considered: 4ω = ω2 + εσ; 5ω = ω2 + εσ

frist case 4ω = ω2 + εσ; The corresponding solvability condition is

−2iω2 (A′ + µA)− 3γĀA2 − pA exp (−iω2Tx) − iω2dA exp (−iω2Tx)− 3γ (β2
0 + 2β2

1 + 2β2
3)

+3γβ2
3β1 exp (iσT1) = 0

(3.50)

.

Subtutiting the polar form of A, putting φ1 = σT1 − 3θ1 in the above equation, and

proceeding in the same way as in the case of superharmonic, the resonance equation is

given by

(µa)2 +
(
σω2a− 3

8
γa3 − p

2
a cos (ω2Tx)− d

2
ω2a sin (ω2Tx)− 3

2
γ (β2

0 + 2β2
1 + 2β2

3) a
)2

= f 2
0

(3.51)

where f0 = 3γβ2
3β1

second case 5ω = ω2 + εσ. In this case, the resonance equation is given by

(µa)2 +
(
σω2a− 3

8
γa3 − p

2
a cos (ω2Tx)− d

2
ω2a sin (ω2Tx)− 3

2
γ (β2

0 + 2β2
1 + 2β2

3)
)2

= f 2
0

(3.52)

where f0 = 3γβ2
1β3
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Figs. 3.13, 3.14, 3.15, 3.16, 3.17, 3.18 represent the influence of the natural frequency

on the amplitude response for the superhamonic, subharmnic and combination resonance

state . As can be seen from these figures, increasing the natural frequency results in

decreasing the oscillation amplitude, this allows us to say that increasing the natural fre-

quency of the structure could increase the life of the structure because the vibrations of

the structure are reduced. Each black curves of these figures are obtained for different val-

ues of time-delay. This allow us to say that time-delay has no effect on the superhamonic,

subharmonic and combination resonant states.

Figure 3.13: Superharmonic resonance

curve: 3ω = ω2 + εσ, effect of natural

frequency ω2, η = 0.06, γ = −4.388,

p = 4, d = 3

Figure 3.14: Superharmonic resonance

curve: 6ω = ω2 + εσ, effect of natural

frequency ω2, η = 0.06, γ = −4.388,

p = 4, d = 3
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Figure 3.15: Subharmonic resonance

curve: ω = 3ω2 + εσ, effect of natural

frequency ω2, η = 0.06, γ = −4.388,

p = 4, d = 9

Figure 3.16: Subharmonic resonance

curve: ω = 1
2
ω2 + εσ, effect of natural

frequency ω2, η = 0.06, γ = −4.388,

p = 4, d = 3

Figure 3.17: Combination resonance

curve: 4ω = ω2 + εσ, effect of natural

frequency ω2, η = 0.06, γ = −4.388,

p = 4, d = 3

Figure 3.18: Combination resonance

curve: 5ω = ω2 + εσ, effect of natural

frequency ω2, η = 0.06, γ = −4.388,

p = 4, d = 3
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3.3 Design, analysis and horseshoes chaos control on

Tension Leg Platform system with fractional non-

linear viscoelastic tendon force under regular sea

wave excitation.

3.3.1 Model description, mathematical modeling and wave force

3.3.1.1 Model description

The supporting structure of TLP consists of a hull, tethers, and templates. The hull is

a buoyant structure with a deck at its top. The pontoons and columns provide sufficient

buoyancy to maintain the deck above the sea waves during all sea states. The hull is

anchored to the sea bed through tethers and fixed in place with templates as presented in

Fig. 3.19 and equivalent model is shown in Fig. 3.20. Where FB is a total buoyancy force,

W is a total weight of the platform in the air, T0 is the initial pre-tension in the tether,

Dc is the diameter of TLP columns, Dp is the diameter of pontoon, Dr is the draft .

Figure 3.19: Schematic tension leg plat-

form

Figure 3.20: Surge displacement of TLP :

simplified model

Dr is calculated from the following relation [91]

Ph.D Student in Fundamental Mechanics and Complex Systems by NGOUNOU Armel Martial ?UY1/FS?



Chapter III: Results and discussion 66

Dr =
4

D2
c

(
FB − nρgLpHpWp

nρπg

)
(3.53)

where n is the number of tendon and ρ is the water density

3.3.1.2 Mathematical model of the vibration of tension leg platform

In this section, we have limited the analysis to the single DoF in order to give a first rough

estimate of the sea wave and the fractional viscoelastic tendon force effects. Therefore,

the equation of motion in horizontal direction of the whole system Fig. 3.20 is given as

follows:

mẍ+ cẋ+ F (x) = Fw (3.54)

F (x) = (nT0 + n∆T (x) ) sin θ + nµDα
t x (3.55)

∆T (x) = AE

(√
L2

0 + x2 − L0

L0

)
(3.56)

The model used in this section is based on the model proposed by [92]. In order to get

closer in a more practical and meaningful case, we propose in this section a model which

taking into account that the structure can have a catastrophic behavior.

Assuming that the displacement x is small enough and taking into account the previous

comment, one obtains

∆T (x) =
AE

2L2
0

x2 − AE

8L4
0

x4 (3.57)

sin θ =
x√

L2
0 + x2

' x

L0

(
1− x2

2L2
0

+
3x4

8L4
0

)
' x

L0

− x3

2L3
0

+
3x5

8L5
0

(3.58)

(nT0 + n∆T (x) ) sin θ ' nT0

L0

x+ n

(
AE − T0

2L3
0

)
x3 − 3n

(
AE − T0

8L5
0

)
x5 (3.59)

Taking into account Eq.(3.59), Eq.(3.54) becomes
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mẍ+
nT0

L0

x+ cẋ+ n

(
AE − T0

2L3
0

)
x3 − 3n

(
AE − T0

8L5
0

)
x5 + nµDα

t x = Fw (3.60)

where, x is the displacement in the surge direction, θ is the angle between the initial

and the displaced position of the tether, c is the structural damping coefficient, L0 is the

initial length of each tether, E is the Young’s modulus of the tether, ∆T (x) increases in

the initial pre-tension due to the arbitrary displacement, F (x) is the nonlinear viscoelastic

force of tendon, Fw is the wave force, A is the cross-sectional area of tether, µ is the tendon

viscosity coefficient and Dα
t is the fractional derivative with order α ∈ (0, 1).

3.3.1.3 Wave force

According to Morison [41], the generalized wave force due to sea wave on the members of

TLP is calculated by the Morison equation on TLP columns as below:

Fmorison =
∑

(Finertia + Fdrag)column (3.61)

Assuming that the force coefficients Cm and Cd are constants and integrating over the

still-water-depth on column yields [93].

Fmorison =
∑
column

∫
V

cmρu̇dV −
∫
V

caρẍdV +

∫ z2

z1

0.5cdρ |u− ẋ| (u− ẋ) dz (3.62)

Taking into account the wave theory, the horizontal water particle velocity and accel-

eration at the vertical centreline of a circular cylinder at x = 0 are given [94]

u (x, t) =
πH

T

cosh kz

sinh kd
cos (kx− Ωt) (3.63)

u̇ (x, t) =
2π2H

T 2

cosh kz

sinh kd
sin (kx− Ωt) (3.64)

The relation between Ω and k is given by [93].

Ω2 = gk tanh kd (3.65)
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In the deep water d
L
> 0.5, the following equation used to replace Eq.(3.65) becomes

L =
0.5gT 2

π
(3.66)

where, H is the wave height, L is the wave length, Ω is the wave frequency k is the

wave number, Ca, Cm are inertia and added mass coefficient respectively, z1 and z2 are

the bottom level and the still water level, T is the wave period. Also, madd is the added

mass on TLP columns, V is the volume of column.

Ignoring the drag force [93] and substituting Eq.(3.63) and Eq.(3.64) into Eq.(3.62)

one obtains:

Fmorison =
∑
column

∫
V

caρẍdV +
∑
column

cmρ
2π2H

T 2

πD2
c

4 sinh kd

(
sinh kz2 − sinh kz1

k

)
sin Ωt

(3.67)

Substituting Eq.(3.67)into Eq.(3.60) one could obtain

(m+madd) ẍ (t) + cẋ (t) + nT0
L0
x+ n

(
AE−T0

2L3
0

)
x3 (t)− 3n

(
AE−T0

8L5
0

)
x5 (t)

+nµDα
t x (t) =

∑
column

cmρ
2π2H
T 2

πD2
c

4 sinh kd

(
sinh kz2−sinh kz1

k

)
sin Ωt

(3.68)

where madd =
∑

column

∫
V

caρdV

Taking into account the following dimensionless variables and parameters and after

some manipulations, the dimensionless nonlinear equations of the system can be obtained

as follows

y = x
L0
, Ω0 =

√
nT0

(m+madd)L0
, γ1 = AE−T0

2T0
, ω = Ω

Ω0
, λ = c

√
L0

n(m+madd)T0

η =
nµΩα−2

0

(m+madd)
, F0 = ε

∑
column

cmρ
2π2H
T 2

πD2
c

4 sinh kd

(
sinh kz2−sinh kz1

k

)
, ε = 1

nT0
, τ = Ω0t

ÿ (τ) + λẏ (τ) + ω2
0y (τ) + γ1y

3 (τ)− 3

4
γ1y

5 (τ) + ηDα
τ y (τ) = F0 sinωτ (3.69)

The previous equation represents the dimensionless equation of the system.
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3.3.2 Approximate solution of the TLP response subjected to the

wave excitations and stability analysis

3.3.2.1 Analytical investigation

In this section, we are interested on the effect of the order of derivative α, the tendon

viscosity coefficient η and the number of tendon n on the dynamic response of the platform.

Averaging method is applied here. First of all, we assume that γ1, γ2, η and F0 are

small perturbations, and considered ω2 = ω2
0 + ξσ, ω2

0 = 1

For that consideration, let us assume that the solution of Eq.(3.69) can be written as

y (τ) = A (τ) cos (ωτ + ϕ (τ)) (3.70)

ẏ (τ) = −ωA (τ) sin (ωτ + ϕ (τ)) (3.71)

where the amplitude A (τ) and the phase ϕ (τ) are slow-varying functions of time τ .

Substituting Eq.(3.70) and Eq.(3.71) into Eq.(3.69) after some mathematical manipula-

tions, one obtains

 Ȧ = − 1
ω

[P1 (A, ϕ) + P2 (A, ϕ)] sin (ωτ + ϕ)

Aϕ̇ = − 1
ω

[P1 (A, ϕ) + P2 (A, ϕ)] cos (ωτ + ϕ)
(3.72)

P1 (A, ϕ) = F̃0 sin (ωτ) + σA cos (ωτ + ϕ) + λ̃ωA sin (ωτ + ϕ)

−γ̃1A
3cos3 (ωτ + ϕ) + 3

4
γ̃1A

5cos5 (ωτ + ϕ)

P2 (A, ϕ) = −η̃Dα
τ (A cos (ωτ + ϕ))

(3.73)

To apply the averaging method, we average at the period T1 of which one could se-

lect as T1 = 2π/ω in the case of periodic function or T1 = ∞ in the case of aperiodic

Dα
τ (A cos (ωτ + ϕ)) [95–98]. We obtain the following pair of first order differential equa-

tions for the amplitude A (τ) and the phase ϕ (τ).

Ȧ = −F0

2ω
cosϕ+

λ

2
A+ ηAωα−1 sin

(απ
2

)
(3.74)

Aϕ̇ =
F0

2ω
sinϕ− ξσA

2ω
+

3γ1A
3

8ω
− 15γ1A

5

64ω
+ ηAωα−1 cos

(απ
2

)
(3.75)
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In vibration engineering, the steady-state solution is more important. By eliminating

sinϕ and cosϕ

Eq.(3.74) and Eq.(3.75) for the steady-state solution
(
A = A0, Ȧ = 0, ϕ̇ = 0

)
, one

obtains the following nonlinear algebraic equation

c10A
10
0 + c8A

8
0 + c6A

6
0 + c4A

4
0 + c2A

2
0 − F 2

0 = 0 (3.76)

with

c2 = β2
1 (α) + β2

2 (α) , c4 = −3γ1
2
β1 (α) , c6 =

9γ21
16

+ 15γ1
16
β2 (α) , c8 = −45γ21

64
, c10 =

225γ21
1024

β1 (α) = λω + ηωα sin
(
απ
2

)
, β2 (α) = (ω2 − ω2

0)− ηωα cos
(
απ
2

)
(3.77)

This equation has more than one steady-state solution for some parameters. An in-

teresting observation is the dependence of the oscillations amplitude upon the tendons

parameters (natural frequency ω2
0 = 1, nonlinear γ1 component, the number of tendon n

and the dimensionless viscosity coefficient η), the parameters of the wave excitation (wave

frequency ω and the dimensionless wave load F0).

Next, we study the stability of the steady-state solution by using the method of An-

dronov and Witt [100], A = A0 +∆A, ϕ = ϕ0 +∆ϕ and substituting them into Eq.(3.74)

and Eq.(3.75) one obtains

dA

dτ
= −β1 (α)

2ω
∆A+

A0

2ω

[
β2 (α)− 3

4
γ1A

2
0 +

15

32
γ1A

4
0

]
∆ϕ (3.78)

dϕ

dτ
=

1

2ωA0

[
9

4
γ1A

2
0 −

75

64
γ1A

4
0 − β2 (α)

]
∆A− β1 (α)

2ω
∆ϕ (3.79)

where β1 (α) and β2 (α) are given by Eq.(3.77). The stability of the steady-state so-

lution is determined by the eigenvalue of the corresponding Jacobian matrix of Eq.(3.78)

and Eq.(3.79) . The corresponding eigenvalues Ψ are the roots of

Ψ
2

+ β1(α)
2ω

Ψ +
(
β1(α)

2ω

)2

+ 1
4ω2

[
3
4
γ1A

2
0 − 15

32
γ1A

4
0 − β2 (α)

]
×
[

9
4
γ1A

2
0 − 75

64
γ1A

4
0 − β2 (α)

]
= 0

(3.80)

Since 0 < α < 1, then β1 (α) > 0 , the determination of signs of the real parts of the

roots Ψ may be carried out by making use of the Routh-Hurwitz criterion [101] as
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(
β1 (α)

2ω

)2

+
1

4ω2

[
3

4
γ1A

2
0 −

15

32
γ1A

4
0 − β2 (α)

]
×
[

9

4
γ1A

2
0 −

75

64
γ1A

4
0 − β2 (α)

]
< 0 (3.81)

The previous inequality represents the instability condition for the steady-state solu-

tion.

3.3.2.1 Numerical investigation

It is well known that the validation of results obtained through analytical investigation

is guaranteed by the perfect match with the results obtained through direct numerical

simulation of the mathematical model. Thus, the numerical scheme used in this paper

is based on the Gunwald-Letnikov definition of the fractional order derivative Eq.(3.82)

[102,103]

Dα
τ

[
y
(
τnf
)]
≈ h−α

nf∑
j=0

Cα
j y
(
τnf−j

)
(3.82)

where h is the integration step and the coefficients Cα
j satisfy the following recursive

relations :

Cα
0 = 1, Cα

j =

(
1− 1 + α

j

)
Cα
j−1 (3.83)

Properties of the tendon leg platform and characteristics of the sea waves which are

used for numerical and analytical purpose are given in Table 3.3 [104]

Fig. 3.21 shows the effect of the fractional order derivative on the amplitude of vi-

bration of the TLP. It is found that as the order of the fractional derivative increases,

the amplitude response of the TLP decreases. The increase of the fractional order deriva-

tive also contributes to decrease the unstable range of amplitude. Nevertheless, beyond

a certain value of the fractional parameter (α ∈ (0.65, 1)), we rather observe an increase

in amplitude. This graph also shows a comparison between the analytical results (curve

with dotted lines) and numerical results (curve with a circle line α = 0.5). We observe

a good agreement between the analytical and numerical results. The same results were

obtained by Anague et al [105], who studied the dynamics of a Rayleigh beam resting
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Table 3.3: Properties of the tendon leg platform and characteristics of the sea waves.

Parameter name Symbol Value

Tendons length (m) L0 882.5

Pre-Tension (mt) T0 18857

Weight of structure (mt) W 13154

Young’s modulus of a tendon (Pa) E 2.1010

Tendon stiffness (N/m) k0 9.106

Tendon Outer Inner Diameter (mm) D0, Di 813, 781.5

Pontoon Size (m) Lp,Wp, Hp 46, 15, 5

Columns Size (m) Dc, Hc 20, 51

Number of Tendons Per Tendsion leg n 8, 12, 16

Inertial coefficient of added Cm 2

Tendon viscosity coefficient (Nsα/m) µ 3.104

Acceleration of gravity (m/s2) g 9.81

Water density (kg/m3) ρ 1024

Wave period (s) T 12

Wave height (m) H 6

on fractional-order viscoelastic Pasternak foundations subjected to moving loads. But in

their case they only observed a decrease in amplitude of vibration of the beam when the

fractional parameter increases.

In Fig. 3.22, we have plotted the amplitude response curve of vibration of the TLP

A0 as a function of the wave frequency ω for different values of the dimensionless tendon

viscosity coefficient η. It is clearly shown that the system is more stable when the value

of the dimensionless tendons viscosity coefficient increases. There is also a fairly signifi-

cant reduction in the vibration amplitude of the structure with the increase of viscosity

coefficient. The multi-value solutions appear for the small value of this coefficient and

disappears gradually when this value increase.
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Figure 3.21: Steady-state amplitude A0 of the TLP as function of wave frequency ω for

different values of the fractional-order α with n = 8.

Fig. 3.23 shows the variation of the amplitude of vibration of the TLP A0 as function

of the tendon viscosity coefficient for different values of wave frequency ω. It is observed

from this figure that, for the lowest tendon viscosity coefficient, we only have the multi-

value solutions, while for the highest tendon viscosity coefficient the multi-value solutions

disappear. This confirms the results obtained and displays in Fig. 3.22. It is also found

that for a value frequency ω = ω0 = 1 , when the tendon viscosity coefficient increases, the

amplitude of vibration of TLP continuously decreases Fig. 3.23(a), which is not the case

in Fig. 3.23(b), Fig. 3.23(c) and Fig. 3.23(d), where the increase in the tendon viscosity

coefficient leads first to increase the amplitude of vibration of the TLP, and then decrease

it.

Fig. 3.24 shows the variation of the amplitude of vibration of the TLP as function of

the tendon viscous coefficient η for different values of the fractional-order α . From the

analysis of this figure, we note that the hysteresis and the amplitude jump phenomena

are confirmed and can be controlled by the fractional-order parameter.

Fig. 3.25 shows the behaviour of the amplitude of vibration A0 in function of excitation
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Figure 3.22: Steady-state amplitude A0 of the TLP as function of wave frequency ω for

different values of tendon viscosity coefficient with (a) η = 0.03, (b) η = 0.08, (c) η = 0.2,

(d) η = 0.4 for n = 8, α = 0.5.
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Figure 3.23: Steady-state amplitude A0 of the TLP as function of tendon viscosity coeffi-

cient η for different values of wave frequency with (a) ω = 1, (b) ω = 1.09, (c) ω = 1.15,

(d) ω = 1.2 for n = 8, α = 0.5.
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Figure 3.24: Steady-state amplitude A0 of the TLP as function of tendon viscosity coeffi-

cient η for different values of fractional-order with (a) α = 0.1, (b) α = 0.5, (c) α = 0.8,

(d) α = 0.95 for n = 8, ω = 1.09
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frequency ω for the different values of number of tendons. One can observe that, when

the number of the tendons increases, the vibration amplitude is relevantly reduced and

the domain of the unstable solutions also decreases.

Figure 3.25: Steady-state amplitude A0 of the TLP as function of wave frequency ω for

different values of the number of tendons n, with α = 0.5.

3.3.3 Effect of tendon on the appearance of horseshoes chaos on

TLP: Melnikov analysis

In this section, it comes to evaluating the Melnikov’s function which measures the distance

between the border of regular oscillations and that of chaotic movements. Indeed, the aim

is to clearly determine the effect of the fractional order parameter, the tendon viscosity

coefficient and the number of tendons on the fractality of the basins of attraction and,

so to speak, Smale horseshoe chaos through the analysis of the Melnikov’s function. The

configuration considered here is that of a catastrophic monostable potential.

The mathematical model Eq.(3.69) can be rewritten as a perturbed Hamiltonian sys-

tem as
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dχ

dτ
= F [χ] + εG [χ, τ ] , (3.84)

where the vector fields χ, F and G are given by

χ =

 y

z = ẏ

 , F =

 z

−y − γ1y
3 + 3

4
γ1y

5

 , G =

 0

−λz − ηDα
τ y + F0 sinωτ


(3.85)

with ε being a perturbation parameter.

In the unperturbed case (ε = 0), the system of Eq.(3.84) is the Hamiltonian system

with Hamiltonian function

H (y, z) =
1

2
z2 +

1

4
γ1y

4 − 3

24
γ1y

6 (3.86)

and the corresponding potential function is given as

U (y) =
1

4
γ1y

4 − 3

24
γ1y

6 (3.87)

The saddle points are connected by heteroclinic orbit that satisfy the following equa-

tion:

yhet = ±
y1

√
2 sinh

(
θ
2
τ
)

[−β + cosh (θτ)]
1
2

, zhet = ±
y1

√
2

2
(1− β) θ cosh

(
θ
2
τ
)

[−β + cosh (θτ)]
3
2

(3.88)

where

β = 5−3G2

3G2−1
, θ = y2

1

√
γ1(1−G2)

2
, G2 =

y22
y21

Fig. 3.26(a) shows the potential energy of our system (γ1 > 0). The system has three

equilibrium points: a center point y0 = (0, 0) and two saddle points y1,2 =

(
±
√

2(γ1+
√
γ21+3γ1

3γ1
, 0

)
,

as shows in Fig. 3.26(b)

Unfortunately, mechanical and civil structures are subject to external stresses. That

said, we consider the perturbed case (ε 6= 0). The Melnikov’s theorem is used to detect
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Figure 3.26: Potential (a), separatrix (closed curve) and Phase space trajectories (open

line) (b) of the system Eq.(3.69).

transverse intersection points between perturbed and unperturbed orbits or the appear-

ance of the fractality on the basin of attraction, which leads to the occurrence of chaos.

Melnikov’s theorem which gives the condition of transversality (of the existence of a frac-

tal basin) can be formulated as follows [105–109]. Let the Melnikov function be defined

in the case of Eq.(3.84) as

MD (τ0) =
∫ +∞
−∞ F [χhet (τ)] ∧G [χhet (τ) , τ + τ0 ]

= −λ
∫ +∞
−∞ z2

het (τ) dτ − η
∫ +∞
−∞ zhet (τ)Dα

τ [yhet (τ)] dτ + F0

∫ +∞
−∞ zhet (τ) sin (τ + τ0) dτ

(3.89)

When the Melnikov function has simple point, the stable manifold and unstable man-

ifold intersect transversally, chaos in the sense of Smale horseshoe transform occurs. So

let MD (τ0) = 0 , one concludes that horseshoe chaos appears when
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F0 ≥ F0cr = y1

(
2ηI1 + λ(1− β)θI2√

2× I3

)
(3.90)

where
I1 =

∫ +∞
−∞

cosh( θ2 τ)
[−β+cosh(θτ)]

3
2
Dα
τ

[
sinh( θ2 τ)

[−β+cosh(θτ)]
1
2

]
dτ

I2 = (β+1)

2θ(1−β2)2

[
β + 2 + (4β+2)(1−β2)√

β2−1
ln

(
−β+1+

√
β2−1

−β+1−
√
β2−1

)]
, I3 = 2

√
2πω

(1−β)θ2 sinh(πωθ )

Fig. 3.27, Fig. 3.28 and Fig. 3.29 show the threshold conditions as function of wave fre-

quency for different values of the main parameters of the system. Fig. 3.27(a) shows the

critical external force for different values of fractional order parameter. One can observe

that, when the value of the fractional order parameter increases, the thresholds of the

critical values F0cr decrease. Fig. 3.27(a) confirms the fact that as fractional order param-

eter increases the amplitude of critical force decreases. We can conclude that, by making

the good choice of fractional derivative relating to reduce the amplitude of vibration of

the system. Fig. 3.28 presents the threshold conditions as a function of wave frequency

for different values of tendon viscosity coefficient. For each frequency, it is shown that the

limit value predicted by the Melnikov theory is much larger when the tendon viscosity

coefficient increases. On the other hand, the effect of the number of the tendons on the

threshold amplitude versus the wave frequency is shown in Fig. 3.29. It is clear that the

increase of the number of tendons first increases the threshold. One can conclude that the

highest value of the number of tendons contributed to increase the degree of stability of

the TLP.

To confirm our analytical predictions obtained in Fig. 3.27, Fig. 3.28 and Fig. 3.29, we

study the effect tendon viscosity coefficient and fractional order parameters on a basin of

attraction of the system. For this purpose, we numerically solve Eq.(3.69) using Newton-

Leipnik method [98, 99]. From Fig. 3.30, we notice that, when decreasing the order of

derivative, one an erosion of the basin of attraction. This result allows to conclude that,

the lowest value of fractional order has a detrimental effect on the stability of the system.

Fig. 3.31 presents the effect of the tendon viscosity coefficient on the basin of attraction. It

should be noted that, when the tendon viscosity coefficient η greater than 0.27 , the basin
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Figure 3.27: Critical external force for the appearance of horsheshoes chaos as function

of: (a) wave frequency ω, (b) fractional order parameter α for n = 8.

Figure 3.28: Critical external force for the appearance of horsheshoes chaos for different

values of tendon viscosity coefficient η for n = 8, α = 0.5.
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Figure 3.29: Critical external force for the appearance of horsheshoes chaos for different

values of the number of tendons n for α = 0.5.

of attraction has a regular form Fig. 3.31(d). Those results have already been predicted

analytically. We can conclude that, the analytical and numerical predictions are in good

agreement.

3.4 Tension leg platform model with tuned liquid col-

umn damper under excitation of sea waves

3.4.1 Physical Model, mathematical model of the vibration of

tension leg platform with tuned liquid column damper, modal

equation and description of the wave excitation

3.4.1.1 Physical model

We focused on compliant platforms, and in particular on tension leg platform. A TLP

structure which includes, deck, hull, pontoon, risers, tendons, foundation template and

TLCD control device is shown schematically in Fig. 3.32 and equivalent model, consisting

of a vertical beam is shown in Fig. 3.33. The TLCD model is given in Fig. 3.34
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Figure 3.30: Effect of fractional parameter α on basin of attraction with (a) α = 0.15, (b)

α = 0.35, (c) α = 0.4, (d) α = 0.5 for n = 8, η = 0.3, ω = 1, F0cr = 0.05.
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Figure 3.31: Effect of tendon viscosity coefficient η on basin of attraction with (a) η = 0.2,

(b) η = 0.24, (c) η = 0.26, (d) = 0.28 for n = 8, α = 0.5 ,ω = 1, F0cr = 0.05.

Figure 3.32: Schematics of tension leg

platform [110]
Figure 3.33: A simplified model [110]
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Figure 3.34: Tuned liquid column damper model [111]

3.4.1.2 The mathematical model of the vibration of tension leg platform with

tuned liquid column damper

The kinetic energy T of the vibration of tension leg platform with tuned column liquid

damper is written [84,112]:

T = TTLCD + Tstructure (3.91)

TTLCD = ρlAv
h
L

∫ L
0

[(
∂W (L,t)

∂t

)2

+
(
∂Y (t)
∂t

)2
]
dX + ρlAh

b
L

[∫ L
0

(
υ ∂Y (t)

∂t
+ ∂W (L,t)

∂t

)2

dX

]
(3.92)

Tstructure = ρA
2

∫ L
0

[(
∂W (X,t)

∂t

)2

+
(
∂U(X,t)

∂t

)2
]
dX − ρI

2

∫ L
0

(
∂2W (X,t)
∂X∂t

)2

dX (3.93)

Finally one obtains
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T = ρlAv
h
L

∫ L
0

[(
∂W (L,t)

∂t

)2

+
(
∂Y (t)
∂t

)2
]
dX + ρlAh

b
L

[∫ L
0

(
υ ∂Y (t)

∂t
+ ∂W (L,t)

∂t

)2

dX

]
+ρA

2

∫ L
0

[(
∂W (X,t)

∂t

)2

+
(
∂U(X,t)

∂t

)2
]
dX − ρI

2

∫ L
0

(
∂2W (X,t)
∂X∂t

)
dX

(3.94)

Simultaneously taking into account geometric nonlinearity, axial force action and po-

tential energy of TLCD. The potential energy given by three paths: bending potential

energy Vb, axial potential energy Vn and TLCD potential energy VT LCD [111,112].

V = Vb + Vn + VTLCD (3.95)

V = 1
2
EI
∫ L

0

(
∂W (X,t)
∂X

)2

dX + 1
2
EA
∫ L

0

(
1
2

(
∂W (X,t)
∂X

)2

+ ∂U(X,t)
∂X

)2

dX

, +N0
ρA
2

∫ L
0

(
∂2W (X,t)
∂X2

)2

dX + ρlAvg
1
L

∫ L
0

(
h2 + (Y (t))2)dX

(3.96)

where ρ and ρl are the density of the structure and liquid respectively, A represents the

cross-sectional area of the beam, Av and Ab are the vertical and horizontal column cross-

section area of the TLCD respectively, I is the moment of inertia, L is the beam length,

h and b are the vertical and horizontal liquid length respectively, g is the gravitational

acceleration, υ is the area ratio of the vertical column to the horizontal column of the

TLCD , N0 is the compressive axial force, EI and EA represent the flexural rigidity and

axial stiffness, respectively. The non- conservative force Q is composed of three parts:

energy consumption of the vibration of TLP, the dissipation force of the liquid and the

external force, which can be formulated as

Q = −
[∫ L

0
c∂W (X,t)

∂t
dX + 1

L
ρlAhξυ

2

2

∫ L
0

∣∣∣∂Y (t)
∂t

∣∣∣∂Y (t)
∂t

dX +
∫ L

0
f (X, Y, t)dX

]
(3.97)
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where c is the damping coefficient of the TLP and ξ is the head loss coefficient.

Applying the Rayleigh beam theory and Lagrange’s equations, the coupled transverse-

longitudinal equations of the TLP and TLCD dynamical equation are given by the fol-

lowing set of equations:

ρA∂2W (X,t)
∂t2

+
(
ρlAv

h
L

+ ρlAh
b
L

)
∂2W (L,t)

∂t2
+ c∂W (X,t)

∂t
+ EI ∂

4W (X,t)
∂X4 − ρI ∂

4W (X,t)
∂X2∂t2

−EA ∂
∂x

[
∂W (X,t)
∂X

(
1
2

(
∂W (X,t)
∂X

)2

+ ∂U(X,t)
∂X

)]
−N0

∂2W (X,t)
∂X2 + ρlAh

b
L
υ ∂

2Y
∂t2

= f (X, Y, t)

(3.98)

(
ρlAv

h
L

+ ρlAh
b
L
υ
) ∂2y(t)

∂t2
+ 2ρlAvg

L
y (t) + ρlAhυ

2

2L
ξ
∣∣∣∂y(t)
∂t

∣∣∣ ∂y(t)
∂t

= −ρlAh bL
∂2W (L,t)

∂t2
(3.99)

ρA∂2U(X,t)
∂t2

− EA ∂
∂x

[(
1
2

(
∂W (X,t)
∂X

)2

+ ∂U(X,t)
∂X

)]
= 0 (3.100)

The boundary conditions are given by [84]

U (0, t) = U (L, t) = 0

W (0, t) = 0

EIW ′′ (0, t)− kW ′ (0, t) = 0

EIW ′′′ (L, t)− ρI
(
Ẅ (L, t)

)′
−N0W

′ (L, t)−MpẄ (L, t) = 0

(3.101)

Assuming that the radius of gyration r is small enough, the longitudinal inertia force

is neglected [112] , Eq. (3.100) can be written as

e = ∂U(X,t)
∂X

+ 1
2

(
∂W (X,t)
∂X

)2
(3.102)
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Using the following boundary conditions U (0, t) = U (L, t) = 0 and after some sim-

plification it comes out the following equation

e = 1
2L

∫ L
0

(
∂W (X,t)
∂X

)2

dX (3.103)

One obtains the general nonlinear equations governing the behavior of the system

(TLP+TLCD) is given by

ρA∂2W (X,t)
∂t2

+
(
ρlAv

h
L

+ ρlAh
b
L

) ∂2W (L,t)
∂t2

+ c∂W (X,t)
∂t

+ EI ∂
4W (X,t)
∂X4 − ρI ∂

4W (X,t)
∂X2∂t2

−EA
(

1
2L

∫ L
0

(
∂W (X,t)
∂X

)2

dX

)
∂2W (X,t)
∂X2 −N0

∂2W (X,t)
∂X2 + ρlAh

b
L
υ ∂

2Y (t)
∂t2

= f (X, Y, t)

(3.104)

(
ρlAv

h
L

+ ρlAh
b
L
υ
) ∂2Y (t)

∂t2
+ 2ρlAvg

L
Y (t) + ρlAhυ

2

2L
ξ
∣∣∣∂Y (t)

∂t

∣∣∣ ∂Y (t)
∂t

= −ρlAh bL
∂2W (L,t)

∂t2

(3.105)

Taking into account the following dimensionless variables and parameters and after some

manipulations, the dimensionless nonlinear equations of the controlled system can be ob-

tained as follows

w (x, τ) = W (X,t)
r

, x = X
L
, τ = ω0t, ω0 = 1

L2

√
EI
ρA
, y (τ) = Y (t)

h
, λ = cL2

√
ρAEI

,

P0 = N0L2

EI
, η = ρl

ρAL
(Avh+ Ahb) , cp = ρlAhbhυ

ρALr
, λ2 = Ahhυ

2ξ
2(Avh+Ahbυ)

ω2
2 = 2ρAvAgL4

EI(Avh+Ahbυ)
, cq = Ahbr

(Avh2+Ahbhυ)
, µ =

(
r
L

)2

∂2w(x,τ)
∂τ2

+ η ∂
2w(1,τ)
∂τ2

+ λ∂w(x,τ)
∂τ

+ ∂4w(x,τ)
∂x4

− µ∂
4w(x,τ)
∂x2∂τ2

−1
2

(∫ 1

0

(
∂w(x,τ)
∂x

)2

dx

)
∂2w(x,τ)
∂x2

− P0
∂2w(x,τ)
∂x2

+ cp
∂2y(τ)
∂τ2

= L3

EI
f (x, y, τ)

(3.106)

∂2y(τ)
∂τ2

+ ω2
2y (τ) + λ2

∣∣∣∂y(τ)
∂τ

∣∣∣ ∂y(τ)
∂τ

= −cq ∂
2w(1,τ)
∂τ2

(3.107)

The dimensionless boundary condition given by
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w (0, τ) = 0

w′′ (0, τ)− kL
EI
w′ (0, τ) = 0

w′′′ (1, τ)− ρIω2
0L

2

EI
(ẅ (1, τ))′ − N0L2

EI
w′ (1, τ)− Mpω2

0L
3

EI
ẅ (1, τ) = 0

w′′ (1, τ) = 0

(3.108)

3.4.1.3 Irregular sea waves excitation

According to Morison, the generalized transverse force on an oscillating cylindrical beam

element in sea waves can be modelled as [41]:

f (X, Y, t) = Cdρwro

(
VY (X, Y, t)− Ẇ (X, t)

) ∣∣∣VY (X, Y, t)− Ẇ (X, t)
∣∣∣

+CMπr
2
0ρwV̇Y (X, Y, t) − CAπr2

0ρwẄ (X, t)
(3.109)

According to dimensionless parameters one obtains

f (x, y, τ) = Cdρwro (vy (x, y, τ)− ẇ (x, τ)) |vy (x, y, τ)− ẇ (x, τ)|

+CMπr
2
0ρwv̇y (x, y, τ) − CAπr2

0ρwẅ (x, τ)
(3.110)

where vy and v̇y are the dimensionless transverse velocity and acceleration of the water

particles in the sea, respectively; x and y are the dimensionless position in the longitudinal

and transverse direction of beam, respectively; Cd, CM , and CA are the coefficients of the

drag, inertia forces of the beam and the added mass, respectively; ρw is the material density

of the water; r0 is the outer radius of the TLP. By assuming that longitudinal velocity

of water particles are much bigger than longitudinal velocity of beam Vy >> Ẇ (X, t) at

Y = 0, Eq.(3.110) can be simplified as [112]:

f (x, y, τ) = Cdρwro (vy (x, y, τ)) |vy (x, y, τ)|+ CMπr
2
0ρwv̇y (x, y, τ) − CAπr2

0ρwẅ (x, τ)

(3.111)
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Taking into account the third term of Eq. (3.111) , Eq. (3.106) becomes

(1 + k3) ∂2w(x,τ)
∂τ2

+ η ∂
2w(1,τ)
∂τ2

+ λ∂w(x,τ)
∂τ

+ ∂4w(x,τ)
∂x4

− µ∂
4w(x,τ)
∂x2∂τ2

−1
2

(∫ 1

0

(
∂w(x,τ)
∂x

)2

dx

)
∂2w(x,τ)
∂x2

− P0
∂2w(x,τ)
∂x2

+ cp
∂2y(τ)
∂τ2

= L3

EI
f1 (x, y, τ)

(3.112)

with

f1 (x, y, τ) = Cdρwro (vy (x, y, τ)) |vy (x, y, τ)|+ CMπr
2
0ρwv̇y (x, y, τ) (3.113)

k3 =
CAπr

2
0ρw

ρA

The wave velocities are determined using random wave theory, and characterized by the

Pierson-Moskowitz power spectrum, and converted to the time domain using Borgman’s

method [41, 43]: Based on Airy wave theory, irregular wave shape is determined by wave

profile η defined in Eq. (3.114) as

η (y, τ) = Hs
4

√
2
N

N∑
n=1

cos
(
k̄ny − ω̄n

ω0
τ + ϕn

)
(3.114)

Therefore, velocity and acceleration of water particles are computed by Eqs. (3.115)

and (3.116) :

Vy (x, y, τ) = Hs
4

√
2
N

N∑
n=1

ω̄n
cosh k̄nx
sinh k̄nd

cos
(
k̄ny − ω̄n

ω0
τ + ϕn

)
(3.115)

V̇y (x, y, τ) = Hs
4

√
2
N

N∑
n=1

ω̄2
n

cosh k̄nx
sinh k̄nd

sin
(
k̄ny − ω̄n

ω0
τ + ϕn

)
(3.116)

in which Hs ,N , k̄n and ω̄n are significant wave height, number of frequency sample,

nth wave number and nth angular frequency of the ocean wave motion, respectively; ϕn

is a uniform random number between 0 and 2π ; d is the ocean depth.

ω̄n = ωn+ωn−1

2
, k̄n = k (ω̄n) , n = 1, · · · , N (3.117)

The frequency ω0 is zero, ωN and is chosen so that most of the area is contained

between ω0 and ωN . The frequencies ω0 to ωN are chosen so that the area under the

spectrum curve for each interval is equal [114]
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3.4.1.4 Modal equation

In oder to reduce the partial differential equations to a set of ordinary differential equa-

tions, this to assess the dynamic behaviour response of the structural system, the general

solution of the Eq. (3.106) and Eq. (3.107) can be written as separation variables of q (τ),

which is the time dependent function and the shape function φ (x) . The spatial function is

obtained from Equation Eq. (3.106) without the term of nonlinearity, the wave excitation

and the coupling term. Then, Eq. (3.106) is reduced to

∂2w(x,τ)
∂τ2

+ ∂4w(x,τ)
∂x4

− µ∂
4w(x,τ)
∂x2∂τ2

− P0
∂2w(x,τ)
∂x2

= 0 (3.118)

First, assume that w (x, τ) is separable so that one can write w (x, τ) = φ (x) q (τ) .

Then, the equation of motion becomes

φ (x) q̈ (τ) + φ′′′′ (x) q (τ) − µφ′′ (x) q̈ (τ) − P0φ
′′ (x) q (τ) = 0 (3.119)

Assuming that q (τ) is harmonic with frequency ω such that q̈ (τ) = −ω2 q (τ) with

solution q (τ) = a cosωτ + b sinωτ , we can write Eq. (3.119) as

φ′′′′ (x) + (µω2 − P0)φ′′ (x)− ω2φ (x) = 0 (3.120)

The mode function for transverse vibration of the beam is expressed as

φ (x) = d1 sin (αx) + d2 cos (αx) + d3 sinh (βx) + d4 cosh (βx) (3.121)

where α, β are given as follow

α =

√
(µω2−P0)+

√
(µω2−P0)2+4ω2

2
, β =

√
−(µω2−P0)+

√
(µω2−P0)2+4ω2

2
(3.122)

After using the boundary conditions in Eq.(3.108), we obtain four simultaneous equa-

tions which can be written in the matrix form as∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1

−KL
EI
α −α2 −KL

EI
β β2

−α2 sinα −α2 cosα β2 sinh β β2 cosh β

A1 A2 A3 A4

∣∣∣∣∣∣∣∣∣∣∣∣∣


d1

d2

d3

d4


=


0

0

0

0


(3.123)
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where

A1 = −α3 cosα +
((

r
L

)2
α2β2 − N0L2

EI

)
α cosα + Mp

ρAL
ω2α2 sinα

A2 = α3 sinα−
((

r
L

)2
α2β2 − N0L2

EI

)
α sinα + Mp

ρAL
ω2α2 cosα

A3 = β3 cosh β +
((

r
L

)2
α2β2 − N0L2

EI

)
β cosh β + Mp

ρAL
ω2β2 sinh β

A4 = β3 sinh β +
((

r
L

)2
α2β2 − N0L2

EI

)
β sinh β + Mp

ρAL
ω2β2 cosh β

In order to have a non-trivial solution, the determinant of the matrix in Eq. (3.123)

has to be zero. The first transversability equation is given by

A1

(
KL
EI
β3 sinh β + β4 sinh β + α2β2 cosh β − KL

EI
α2β cosα

)
− A2

(
KL
EI
αβ2 sinh β + KL

EI
α2β sinα

)
+A3

(
−KL

EI
αβ2 cosh β + α2β2 sinα− KL

EI
α3 sinα + α4 sinα

)
+ A4

(
KL
EI
αβ2 sinh β + KL

EI
α2β sinα

)
= 0

(3.124)

The second transversability equation is given by

β =
√

α2+P0

1+µα2
(3.125)

Finally the constants d1, d2, d3, d4 can be expressed in the terms of d1, and they are

given by the following relations

d2 =

(
−(α2 sinα+αβ sinhβ)

α2 cosα+β2 coshβ+ EI
KL

β(α2+β2) sinhβ

)
d1

d3 =

(
−α
β

+ EI
KL

(
α2+β2

β

)
(α2 sinα+αβ sinhβ)

α2 cosα+β2 coshβ+ EI
KL

β(α2+β2) sinhβ

)
d1

d4 =

(
(α2 sinα+αβ sinhβ)

α2 cosα+β2 coshβ+ EI
KL

β(α2+β2) sinhβ

)
d1

The value of d1 is obtained such that the eigenfunctions φ (x) are normalized
∫ 1

0
φ2
n (x)dx =

1 . To reduce the partial differential equations to a set of ordinary differential equations,
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the general solution of w (x, τ) can be written as separation variables of q (τ) which is the

time dependent functions by the shape functions φ (x).

w (x, τ) =
∞∑
n=1

φn (x) qn (τ) (3.126)

Substituting the mode decomposition of Eq. (3.126) into Eqs. (3.106) and (3.107), multi-

plying by the spatial expression, integrating from 0 to 1 and considering the first vibration

mode, one obtains the modal forms of above equations, that are defined as follow


q̈ (τ) + λ1q̇ (τ) + (ω2

1 − p0) q (τ) + γq3 (τ) + cp1 ÿ (τ) = f (τ)

ÿ (τ) + λ2 |ẏ (τ)| ẏ (τ) + ω2
2y (τ) = −cq1 q̈ (τ)

(3.127)

with
λ1 =

λ
∫ 1
0 φ

2(x)dx

(1+k3)
∫ 1
0 φ

2(x)dx−µ
∫ 1
0 φ
′′(x)φ(x)dx+ηφ(1)

∫ 1
0 φ(x)dx

ω2
1 =

∫ 1
0 φ
′′′′(x)φ(x)dx

(1+k3)
∫ 1
0 φ

2(x)dx−µ
∫ 1
0 φ
′′(x)φ(x)dx+ηφ(1)

∫ 1
0 φ(x)dx

p0 =
P0

∫ 1
0 φ
′′(x)φ(x)dx

(1+k3)
∫ 1
0 φ

2(x)dx−µ
∫ 1
0 φ
′′(x)φ(x)dx+ηφ(1)

∫ 1
0 φ(x)dx

cp
1

=
cp

∫ 1
0 φ(x)dx

(1+k3)
∫ 1
0 φ

2(x)dx−µ
∫ 1
0 φ
′′(x)φ(x)dx+ηφ(1)

∫ 1
0 φ(x)dx

cq1 =
cqφ(1)

∫ 1
0 φ(x)dx∫ 1

0 φ(x)dx
, γ =

− 1
2

∫ 1
0 (

∫ 1
0 φ
′2(x)dx)φ′′(x)φ(x)dx

(1+k3)
∫ 1
0 φ

2(x)dx−µ
∫ 1
0 φ
′′(x)φ(x)dx+ηφ(1)

∫ 1
0 φ(x)dx

f (τ) =
L4

EIr
f1(x,y,τ)

(1+k3)
∫ 1
0 φ

2(x)dx−µ
∫ 1
0 φ
′′(x)φ(x)dx+ηφ(1)

∫ 1
0 φ(x)dx

cp1 and cq1 represent the control gain parameters.

3.4.2 Linear stability analysis

Following the classical local stability analysis of Lyapunov, the fixed points of the system

are first examined. Consider the system of Eq. (3.127), the fixed points are (0, 0, 0, 0),(
±
√
−ω2

1−p0
γ

, 0, 0, 0

)
. The characteristic equation is given as follows
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s4 + a0s
3 + a1s

2 + a2s+ a3 = 0 (3.128)

with

a0 = λ1+2ελ2v0
1−cp1cq1

, a1 =
2ελ1λ2v0+ω2

1+3γq20−p0+ω2
2

1−cp1cq1
, a2 =

2ελ1λ2v0(ω2
1+3γq20−p0+ω2

2)+λ1ω2
2

1−cp1cq1
, a3 =

(ω2
1+3γq20−p0)ω2

2

1−cp1cq1

From the classical local stability analysis of Lyapunov, it is known that the fixed points

are stable if the real parts of the roots of the characteristics equation are all negative.

Otherwise (if at least one root has a positive real part), the fixed points are unstable.

Using Routh-Hurwitz criterion, for the sign of the real part of roots, we obtain that the

real parts of the roots are negative provided that all the coefficients a0, a1, a2 and a3 are

positive and that all the determinants ∆1 = a0a1 − a2 and ∆2 = a0 (a1a2 − a0a3) − a2
2

are also positive. Knowing that all these coefficients are positive and considering the case

where the parameters cp1 and cq1 are also positive, the above analysis leads to the following

condition for the control for the stability of the fixed points for the system under TLCD

controller

0 < cp1cq1 < 1 (3.129)

This condition allows us to obtain the following stability diagram shown in Fig. 3.35

where the white region represent the stable region and the blue one the unstable.

Figure 3.35: Stability boundary in the control parameter space cp1 − cq1 .
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3.4.3 Numerical analysis of the modal equation

In this section, the dynamical states of the TLP are explored, and by varying the param-

eters of the TLCD the effect of the control system on general behavior of the TLP is also

investigated. The numerical simulations are carried out through the fourth-order Runge

Kutta scheme. Properties of the beam and characteristics of the sea waves which are used

for numerical purpose are given in Tables 3.4, 3.5 and 3.6 [115,116].

Table 3.4: Physical properties of the TLP.

Parameter name Symbol Value

tendons length (m) l 200

tendon outer raduis (m) r0 0.3048

tendon inner raduis (m) ri 0.1112

tendon density (kg/m3) ρ 7800

young’s modulus of a tendon (Gpa) E 204

inertial coefficient of beam CM 1.7

drag coefficient of beam Cd 0.8

inertial coefficient of added mass Cm 1

hull mass, (kg) Mp 2107

water density (kg/m3) ρw 1025

Fig. 3.36 shows the irregular wave excitation versus dimensionless time respectively.

One observe that, increase of the number of frequency sample N generates several har-

monics on the wave excitation.

Fig. 3.37 shows the response of the TLP without TLCD controller in time domain

under different values of number of frequency sample N . It is found that the increase of

the number of frequency sample increases both the response amplitude of the TLP and

the range of frequencies.
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Figure 3.36: Sea wave acting on the TLP with parameters defined in Tables 3.4, 3.5 for

Hs = 3.5m. a) N = 5, b) N = 15

Figure 3.37: Vibration response of the TLP without TLCD controller in time domain under

different values of number of frequency sample N with parameters defined in Tables 3.4,

3.5 for Hs = 3.5m.

Ph.D Student in Fundamental Mechanics and Complex Systems by NGOUNOU Armel Martial ?UY1/FS?



Chapter III: Results and discussion 97

Table 3.5: Physical properties of the simplified model.

Parameter name Symbol Value

mass per unit length of the beam ρA (kg/m) 334.9

transverse Rayleigh beam coefficient ρI (kg.m) 151.3

axial stiffness of the beam EA (kg/ms2) 9.52.109

flexural rigidity of the beam EI (Nm2) 4.18.109

compressive axial force N0 (N) 1.8.105

damping coefficient of the beam c (Ns/m) 360

Fig. 3.38 and Fig. 3.39 illustrate the effect of the controller on the displacement and

velocity of the TLP with different values of the number of frequency sample N . Fig.

3.38 shows that the vibrations caused by the sea wave excitation are reduced when the

structure is controlled by a TLCD device. Fig. 3.39 shows that the velocity of the TLP

decreases, when the structure is subjected to the action of the control device. As depicted

in those figures, the action of the TLCD controller also contributes to the suppression

of the complex motions observed as the number of frequency sample N increases. This

shows that the TLCD device acts efficiently on the dynamics response of the structure.

Figure 3.38: Vibration responses of the beam in time domain with parameters defined in

Tables 3.4, 3.5 and 3.6 for Hs = 3.5m. a) N = 5, b) N = 15
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Figure 3.39: The curves of velocities of TLP versus the time with parameters defined in

Tables 3.4, 3.5 and 3.6 for Hs = 3.5m. a) N = 5, b) N = 15

Figure 3.40: Vibration response of the TLP with TLCD controller in time domain for

different horizontal liquid length of the TLCD with parameters defined in Tables 3.4, 3.5

and 3.6 for N=10 Hs = 3.5m.
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Table 3.6: Physical properties of the TLCD.

Parameter name Symbol Value

vertical column cross-section (m2) Av 10

horizontal column cross-section, (m2) Av 10

vertical liquid length m h 4

horizontal liquid length (m) b 15

density of the liquid kg/m3 ρl 1000

area ratio of the vertical column to the horizontal column υ 1

Head loss coefficient ξ 500

Acceleration of gravity (m/s2) g 9.81

Fig. 3.40 represents the influence of the horizontal liquid length of the TLCD on the

response of TLP. This figure allows to observe that the increase of the horizontal liquid

length of the TLCD results to decrease the response of the system. Fig. 3.41 displays

the peak RMS versus the horizontal liquid column of TLCD. It is observed from this

figure that the increase of this horizontal liquid column length affects the performance of

tuned liquid column damper in reducing the amplitude response of the structure. This

result confirms the observation made in the Fig. 3.40. It is important to note that the

choice of the parameters of the TLCD is done such as the control device cannot increase

the mechanical energy in the structural system. In order words the control device should

reinforce the stability of the structure in order to avoid its premature destruction. Fig.

3.42 illustrated the peak RMS versus the head loss coefficient of TLCD. It is found that

for 0 < ξ < 850 the amplitude of TLP decreases and for 850 < ξ < 4000, it increases. It

appears that is exists and optimal value of the head loss coefficient (ξ = 850). It is also

noticed that, for the value of ξ greater than 2700, the control is no longer efficient. One

concludes that, by making a good choice of the head loss coefficient results to reduce the

vibration response of the structure.
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Figure 3.41: Root square response versus horizontal liquid column of TLCD length of the

TLCD with parameters defined in Tables 3.4, 3.5 and 3.6 for N=10, Hs = 3.5m.

Figure 3.42: Root square response versus head loss coefficient with parameters defined in

Tables 3.4, 3.5 and 3.6 for N=10, Hs = 3.5m.
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3.4.4 Conclusion

The present chapter has presented the results obtained in this thesis work. We firstly mod-

elled the TLP by the full partial differential equation that we have thereafter reduced to

the nonlinear ordinary differential equation. the effect of the time-delay on the stability of

the structure have been analyzed. Results of the analysis shown, that increase of the value

of time-delay contributes to reduce the stability area. Secondly a new nonlinear viscoelas-

tic model describing the surge movement of tension leg platform is presented. The effect

of main parameters, namely: number of tendons, the order of the fractional viscoelastic

material that constitutes the tendon and the tendon viscosity coefficient on the ampli-

tude as well as the appearance of horseshoe chaos of TLP have been analyzed.The result

shown that, the amplitude of TLP is affected by the number of tendons, the fractional

order derivative and the tendon viscosity coefficient and the horseshoes chaos decreases

and disappears as these parameters increase. Thirdly the Rayleigh beam approach is used

to develop mathematical formulation for dynamic analysis of the compliant offshore struc-

ture taking into account the TLCD controller. The influence of the TLCD on the dynamic

responses of TLP is analyzed. The results obtained shown that, a passive structural con-

trol device, i.e. tuned liquid column damper is a good candidate to cancel the vibration

on the TLP structure subjected under irregular sea wave excitation.
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This dissertation has dealt with an analysis of the dynamic behavior and vibration

control of an offsohre platform excited by the regular and irregular wave. Specific analyti-

cal and numerical analysis methods have been formulated to evaluate the response of the

structure. The main results obtained in this work are summarized as follows :

In the first chapter the review of the literature on the types of offshore platforms as

well as their importance in the exploration, drilling, production, storage and transportion

of the ocean oil and/or gas resources in different depths is done. Then we introduced the

various types of solicitation to which platforms are submitted. Finally, the derivation of

the equations of motion of beam models and the vibratory control of the mechanical are

presented. These beam models and precisely the Rayleigh beam model as well as the rigid

model are used to model the tendons of a TLP.

In the second chapter, methods and techniques used to solve the problematic of the

thesis have been described. Firstly the analytical methods has been presented, such as the

Galerkin method used to transform a problem of the PDEs into a set of ODEs, the multiple

scales method to solve the nonlinear ODEs with the time delay, the classical averaging

technique and harmonic balance method to approach the nonlinear ODEs, Melnikov’s

method to predict Smale horseshoe type chaos, Routh-Hurwitz criterion to give the deci-

sion on the stability of the non-trivial steady-states solutions of the nonlinear ODEs and

the D-subdivision method to investigate through linear stability of delay differential equa-

tions. Finally, numerical methods have been presented, such as the RK4 for the ODEs,

the RK4 for the DDEs, the Newton-Leipnik and the A-B-M predictor-corrector schemes

to integrate the nonlinear FDEs, the bisection method to solve complex or non-trivial

polynomial equations.

The third chapter was devoted to the presentation and discussion of the results ob-

tained in the thesis.

• Firstly, the effect of the delay between the detection of vibration and the action of

tendons on the dynamics response of tension leg platform (TLP) under sea waves

excitation was analyse. An analytical and numerical solution for the dynamic re-

sponse of a TLP under sea wave excitation are presented. The TLP is modeled by

the full partial differential equation that we have thereafter reduced to the nonlinear
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ordinary differential equation. The effect of tendon on the stability of the structure

have been analyzed. Results of the analysis shown that increase of the value of time-

delay contributes to reduce the stability area. Then the effect of time-delay on the

primary, secondary, superharmonic, subharmoncic and combination resonance state

has been illustred. The analysis leads us to the conclusion that increasing the time-

delay will increase the amplitude response in the case of the primary and secondary

resonaces, but is without effects on the superharmonic, subharmonic and combina-

tion resonants states. One also analysed the effect of the natural frequency on the

amplitude response. It has been found that the amplitude of oscillation decreases by

increasing the natural frequency, this for all types of resonant states, which allows

to cancel the time-delay effect in the case of primary and secondary resonances.

• In the second set of result, we have analysed the surge movement of tension leg plat-

form under regular sea wave excitation. We have supposed that, the tendons exhibit

a nonlinear viscoelastic behavior and fractional properties. The TLP is modeled

by the nonlinear ordinary differential equation. Then the averaging method has

been used to evaluate the effect of different parameters, namely : fractional order,

tendon viscosity coefficient, number of tendons on the vibration amplitude of the

tendon leg platform and on its stability. It was observed that as the order of the

fractional derivative increases the amplitude response of the TLP decreases. The

increase of the fractional order derivative also contributes to decrease the unstable

range of amplitude. Nevertheless, beyond a certain value of the fractional param-

eter (α ∈ (0.65, 1)), we have rather observed an increase in amplitude. It was also

observed that, the amplitude response of tension leg platform is relevantly reduced

and the domain of the unstable solutions also decreases when the number of tendons

increases. On the basis of the Melnikov method, we have demonstrated that increase

the number of tendons, the tendon viscosity coeffcient and fractional derivative can

be contributed to enlarge de regular domain.

• Finally, we have used TLCD as control device to reduce vibration on a compliant

offshore under irregular sea wave excitation. The effect of TLCD device on the
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stability of the structure has been analyzed, along with the dynamic responses of

the structure. The influence of different parameters on the dynamics response of

the system on the control strategy has been presented. The results of the analysis

show that increase the number of frequency sample generates several harmonics on

the dynamic response of the structure. When the horizontal liquid length of the

TLCD becomes large, the controller becomes more efficient. The optimum head loss

coefficient is obtained to minimize the vibration response of the structure.

In this thesis, some of the results have opened interesting perspectives for future in-

vestigations. In this sense, it would be interesting for us to study the dynamics of TLPs

taking into account the 3-DOF or 6-DOF. It will also be interesting to carry out an

experimental study in order to validate the theoretical results obtained.
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Abstract

In this study, the dynamic response of the tension leg platform (TLP)
under sea waves excitation is investigated. One establishes the ana-
lytical framework consisting of mathematical modeling of TLP taking
into account the tendons and the delay. We analyse the stability and
determine the physical characteristics of tendon system that allow
the system to be always stable. Conditions on the space parame-
ters of the system for which harmonic, subharmonic, superharmonic,
combination resonants states are obtained using the multiple time
scales method. The results show that the stability area of the system
decreases when the delay increases and increases when the damping
coefficient increases. Furthermore, increasing the time- delay only
increases the value of the maximum amplitude response of the sys-
tem. However, reasonable selection of the system parameters can
effectively reduce the level of vibration of the system.

©2021 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

Offshore structures are used in the oil industry as exploratory, producction, oil storage, and oil landing
facilities. In general, there are two types of stationary offshore structures: fixed and compliant. In
recent years, the need to explore for oil in deeper water has made compliant structures more popular.
Compliant towers are believed to be economically feasible in water depths exceeding 2000 ft. In
particular,we are interested in tension leg platforms (TLP). Those structures being constructed in
harsh environment are affected by wave and wind forces which can also affect their reliability. Moreover,
stability of TLP structures is highly dependent on tendons.

Many studies are done about modeling and dynamic response of TLP structures under sea wave
excitation. A review on the dynamic response of compliant platforms was made by Adrezin and al [1].
Adrezin and Benaroya [2,3] they examined the nonlinear transverse behavior of a tension leg platform

†Corresponding author.
Email address: nananbendjo@yahoo.com

ISSN 2164-6457, eISSN 2164-6473/$-see front materials © 2021 L&H Scientific Publishing, LLC. All rights reserved.
DOI:10.5890/JAND.2021.12.004
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with being a time dependent tension due to gravity and buoyancy. It appeared that the inclusion of
hydrodynamic forces on tendons will result in greater surge amplitude and offset position. Han and
Benaroya [4] modeled a vertical member of compliant offshore structure as a beam which is under
going bending and extension. The beam is contituted with a mass point and is subjected to its free
end with an axial load. They also compared linear and non-linear responses. They showed that the
transverse response of the linear model is as good as the nonlinear coupled models. However, they
also found that the nonlinear coupled method is more suitable for the axial vibration response. Yigit
and Chrostoforou [5] studied the coupled vibration of the oil well drill strings in compression and
also they solved the equations of motion by using the assumed model method. They arrive to the
conclusion that the coupled model at a lower load yields an unstable behavior in comparison of the
uncoupled model. Patel and Park [6] investigated on the dynamics of tension leg platform tethers at
low tension. Besides, they analyzed the effect of tension on the dynamic behavior of the structure and
it was observed that the increase in the axial force frequency has no effect on the transverse response,
only the axial response is influenced. Gadagi and Benaroya [7] studied the dynamic response of an
axially loaded tendon of a tension leg platform and they derived a set of non-linear equations of motion
for a coupled axial and transverse vibration of a tether subjected to end tension. Kim and Yang [8]
developed a numerical study of the transient effect of tendon disconnection on global performance of an
extended tension leg platform during harsh environmental conditions of Gulf of Mexico and found that
tendon breakage affects natural periods of heave and pitch. Taflanidis and al [9] determined a dynamic
response of the platform, by considering the uncertainties related to the excitation characteristics
such as significant wave height or uncertainties related to the TLP model properties such as, Young
module of tendons and they concluded that uncertainties related to excitation characteristics are the
dominant risk factors. Clearly and al [10] studied the effect of wave impact angle on the platform
motion and also they determined how pre-tension modifies motion of the platform and behavior of
mooring lines. Additionally, they concluded that the wave angle has a little impact on the broad
nature of the platform dynamics and the maximum tension in mooring cables highly depend on the
impact angle. An investigation by Srinivasan and al [11] was to analyse non-linear phenomena such as
ringing and springing responses [12,13] that have been observed in TLPs under impact and non-impact
wave conditions. These phenomena can pose a threat to platform stability and can result to an eventual
fatigue failure of the tendons [11,14].

In this paper, we analyze the time-delay effect on the stability and the amplitude of vibration of the
TLP. This consists to determine the physical parameters of the structure leading to reduce the effect
of this delay on the stability and amplitude of vibration of the structure.

The paper is organized as follows. After Introduction, the physical model of the system which
taking into account tendon and the equivalent modal equation is illustrated in Section 2. In Section
3, the effect of the tendon on the stability of the structure taking into account the time-delay are
presented. In Section 3, analytical and numerical methods are used to analyse the effects of the main
parameters of the system on the amplitude response. Section 5 is devoted to the conclusion.

2 Modelling of the dynamics of TLP taking into account the tendons

A TLP structure which includes, deck, hull, pontoon, risers, tendons and foundation template is shown
schematically in figure 1 and equivalent model, consisting of a vertical beam and two tendons and
which are coupled through the platform is shown in figure 2.



A.M. Ngounou et al / Journal of Applied Nonlinear Dynamics 10(4) (2021) 643–659 645

Fig. 1 Schematics of offshore structures [4].

Fig. 2 A simplified model of a TLP.

2.1 Mathematical modeling

Consider a pinned free beam of length l, with density ρ, Young’s module E, cross sectional area A and
moment of inertia I, after using the physical and mathematical concept,the governing equation for TLP
(Beam) model system under waves excitation given by equation [15–17].

ρA
∂ 2u(x, t)

∂ t2 + c1
∂u(x, t)

∂ t
= EA
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∂x2 +

EA
2

∂
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∂w(x, t)
∂x
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∂ t2 + EI
∂ 4w(x, t)

∂x4 + c2
∂w(x, t)

∂ t
−ρI

∂ 4w(x, t)
∂ t2∂x2 −EA

∂

∂x
(e

∂w(x, t)
∂x

) + zc(t) = f (x, t)
(1)

with the boundary and initial conditions

w(0, t) =
∂ 2w
∂x2 (0, t) =

∂ 2w
∂x2 (l, t) =

∂ 3w
∂x3 (l, t) = 0, (2)

u(0, t) = 0 , u(l, t) =
lN0

EA
. (3)
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Assuming that the radius of gyration r is small enough, the longitudinal inertia force and dissipative
force are neglected. Using the boundaries conditions (3) and after some simplification its comes out
the following equation

e =
N0

EA
+

1
2l

ˆ l

0
(
∂w
∂x

)2dx. (4)

Thus the general equation governing the behaviour of the system is given by

ρA
∂ 2w(x, t)

∂ t2 + EI
∂ 4w(x, t)

∂x4 + c2
∂w(x, t)

∂ t
−ρI

∂ 4w(x, t)
∂ t2∂x2 −N0

∂ 2w(x, t)
∂x2

− EA
2l

(

ˆ l

0
(
∂w(x, t)

∂x
)

2

dx)
∂ 2w(x, t)

∂x2 + zc(t) = f (x, t)
(5)

where w = w(x, t) is the lateral deflexion EI denotes the flexural rigidity of the beam, c2 is the damping
coefficient, ρI is the transverse Rayleigh beam coeffcient, and N0 is axial load.

The sea waves excitation is formulated using Morisons equation [18] and airy theory [16] is given
by

f (x, t) =
1
2

Cdρw (2rout)
π2H
T 2

cosh2k (x + d1)

sinh2kd1
cos(ωt) |cos(ωt)|

−CMρwA
2π2H

T 2
coshk (x + d1)

sinhkd1
sin(ωt)−CmρA

∂ 2w(x, t)
∂ t2

(6)

where CD, CM and Cm are the coefficient of the drag, and inertia forces of the beam and the added mass
respectively. ρw is density of sea water, rout is the outher radius of beam.

zc (t) represent the tendons force which is produced by the deplacement of tendon. In fact, tendons
are viscoelastic structures which mean they exhibit both elastic and viscous behaviors. Zhang and
al [19], proposed a mathematical model given by

zc (t) = 4kc cosαc [s1w(t− tx)+ s2ẇ(t− tẋ)] (7)

where kc is tendon stiffness, αc is tendon inclination, s1 and s2 are control parameters, tx and tẋ time
delays for displacement and velocity feedback force in the system, respectively. We notice that w and
ẇ are written as functions of t− tx and t− tẋ, respectively. This lag between the structure response and
the corrective action may be attributed to the time required to sense and to gather the information
and the computation time for determining the proper action.

Taking into account the following dimensionless variable

q =
w
r
, y =

x
l0

, τ =
r
l2
0

√
E
ρ

t, l∗ =
l
l0
, k3 = Cm

ρw

ρ

λ =
c2l02

Ar
√

ρE
, N′0 =

N0l0
EI

, β =
I

Al02

α =
l04

EIr
, d∗ =

d1

l0
, Γ1 = 4kcs1

l04

EI
cosαc

Γ2 = 4kcs2
l02r
EI

√
E
ρ

cosαc, r = (
I
A

)
1
2 .

(8)

Eqs.(5) - (6) are reduced to a non-dimensional equation

∂ 4q(y,τ)

∂y4 −β
∂ 4q(y,τ)

∂τ2∂y2 +(1 + k3)
∂ 2q(y,τ)

∂τ2 + λ
∂q(y,τ)

∂τ
−N′0

∂ 2q(y,τ)

∂y2

− l0
2l

(

ˆ l∗

0
(
∂q(y,τ)

∂y
)

2

dy)
∂ 2q(y,τ)

∂y2 + Γ1q(y,τ− τy)+ Γ2
∂q(y,τ− τẏ)

∂τ
= α f1(y,τ)

(9)
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f1 (y,τ) =
1
2

Cdρw (2rout)
π2H2

T 2
cosh2kl0 (y + d∗)

sinh2kl0d∗
cos(ωτ) |cos(ωτ)|−CMρwA

2π2H
T 2

coshkl0 (y + d∗)
sinhkl0d∗

sin(ωτ)

(10)
with the boundary conditions

q(0,τ) =
∂ 2q
∂y2 (0,τ) =

∂ 2q
∂y2 (l∗,τ) =

∂ 3q
∂y3 (l∗,τ) = 0. (11)

Here l0 is a reference lenght the of beam.

2.2 Modal equation

To deal with the analytical analysis, we resort to an assumed mode expansion. Specifically, it is assumed
that q can be written as the finite sums

q(y,τ) =
N

∑
n=1

vn (τ)φn (y) (12)

where vn(τ) is the amplitude of the nth mode, and φn(y) is the solution of the eigenvalue problem
obtained by solving Eq.(9) and without damping, non linearity, excitation and tendon effect, and φn(y)
is given by

φ1 (y) = Ky, if n = 1 (13)

or

φn (y) =
cos(kn)

cosh(kn)
sinh(kny)+ sin(kny) i f n≥ 2 (14)

where

kn = (n− 3
4

)π. (15)

It should be noted that the first natural frequency occurs at 0. This mode corresponds to the rigid
body motion which has a mode shape given as φ1, which is not considered in our problem, since this
mode has no relation with the elastic deflection of the beam [20]. In the rest of this paper, we limit
ourselves to elastic mode, in particular in first elastic mode.

After substituting Eq.(12) into Eq.(9), multiplying both sides of the resultant equation by the shape
function then integrating with respect to the beam axis y over the length l∗, and taking into account
the orthogonality condition, the modal equation given by

v̈2 (τ)+ 2η v̇2 (τ)+ ω
2
2 v2 (τ)+ γv3

2 (τ)+ pv2 (τ− τx)+ dv̇2 (τ− τẋ)

=p0 cos(ωτ) |cos(ωτ)| + p1 sin(ωτ)
(16)

with

I0 =

´ l ∗

0 φ 2
n (y)dy´ l ∗

0 (1 + k3)φ 2
n (y)dy−β

´ l ∗
0 φ ′′n (y)φn (y)dy

, η =
λ

2
I0,

ω
2
1 =

´ l ∗

0 φ ′′′′n (y)φn (y)dy´ l ∗
0 (1 + k3)φ 2

n (y)dy−β
´ l ∗

0 φ ′′n (y)φn (y)dy
, ω

2
2 = ω

2
1 −N

N = N′0

´ l∗

0 φ ′′n (y)φn (y)dy´ l∗
0 (1 + k3)φ 2

n (y)dy−β
´ l∗

0 φ ′′n (y)φn (y)dy
, p0 =

1
2

Cdρw (2rout)
π2H
T 2 I2 (17)

I2 =

´ l ∗

0
cosh2kl0(y+d∗)

sinh2kl0d∗
φn (y)dy´ l ∗

0 (1 + k3)φ 2
n (y)dy−β

´ l ∗
0 φ ′′n (y)φn (y)dy

, p1 =−CMρwA
2π2H

T 2 I3,
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I3 =

´ l ∗

0
coshkl0(y+d∗)

sinhkl0d∗ φn (y)dy´ l ∗
0 (1 + k3)φ 2

n (y)dy−β
´ l ∗

0 φ ′′n (y)φn (y)dy
, p = Γ1I0 , d = Γ2I0.

Eq.16 represents the modal equation of the TLP under sea waves excitation, with its different
parameters defined by Eq.17.

3 Effect of tendon on the stability of the structure

The aims of this section is to show how the tendon can affect parameter on the stability of the structure
taking into account the time-delay. This is done using the D-subdivision method [19].

Thus, Eq.(16) can be rewritten as follows

v̇2 =g

ġ =−2ηg−ω
2
0 v2− γv3

2− pv2 (τ− τx)−dy(τ− τx)

+ p0 cos(ωτ) |cos(ωτ)|+ p1 sin(ωτ)

(18)

point v20(0,0) is an equilibruim point of Eq.(18). The characteristic equation of the linearized version
of Eq.(18) related to this equilibrium point is

s2 +(2η + d exp(−sτẋ))s +
(
ω2

2 + pexp(−sτx)
)

= 0. (19)

To obtain the stability boundary in the plane of the tendon parameter(d, p), we use the D-subdivision
method. According to that method, the stability boundary in the plane are determined by the points
that yield either to a root s = 0 or a pair of pure imaginary roots of Eq.(19).

Substituting s = 0 into Eq.(19), one finds

p =−ω
2
2 . (20)

Setting s = ib (where b is a real constant) into the characteristic equation(19), and after some
algebraic manipulation we obtained

(cosbτx) p +(bsinbτẋ)d = b2−ω
2
2 (bcosbτẋ)d− (sinbτx) p =−2ηb (21)

which leads to

p =
(
b2−ω

2
2
)

cosbτ0 + 2ηbsinbτ0

d =

(
b2−ω2

2
)

b
sinbτ0−2η cosbτ0, τx = τẋ = τ0.

(22)

Properties of the beam and characteristics of the sea waves which are used for numerical purpose
are given in Tables 1 and 2 [4, 16].

In this part, the simulation solutions are obtainted using the fourth-order runge kutta method,
and the matlab software is used for plotting the curves. The Hopf bifurcation boundary in the (p, d)
space delimiting the stability boundary can be found from the bifurcation curve defined by Eq.(22)
and bifurcation line defined by Eq.(20). In figure 3, the stable area consists of the region of the plane
limited by the straight line given by Eq.(20) and the curve associated with each value of time delay
given by Eq.(22). Figure 3 shows that the increase of the value of time-delay contributes to reduce
the stability area. In figure 4 the stability boundary in the space (p, d) and various values of damping
is plotted. The interest here is the effect of delay on the stability. One can observe that when the
damping coefficient increase, the stability area increase. This means that by increasing the damping
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Table 1 Properties of the beam.

Parameter name Symbol Value

beam length (m) l 415

inertial coefficient of beam CM 1.7

drag coefficient of beam Cd 0.8

Inertial coefficient of added mass Cm 1

Density of beam (kg.m2) ρ 7800

Young’s module of beam(Gpa) E 204

Outer raduis of beam (m) rout 0.4

Axial force (N) N0 3.462e7

Table 2 Properties of sea.

Parameter name Symbol Value

Sea depth d 415 m

Wave height H 2 m

Wave period T 25 s

water density ρw kg/m3

Fig. 3 Stability boundary in the space (p, d)
and various values of time delay, with η = 0.06,
ω2 = 1.36.

Fig. 4 Stability boundary in the space (p, d) and
various values of damping, with τ0 = 0.1, ω2 = 1.36.

coefficient, the area will be increased; so one could choose the parameters of the tendon, so that the
structure remains stable.

In figure 5 the evolution of the amplitude of vibration as a function of time is plotted. It is viewed
in figure 5.a that the amplitude decreases as function of time leading to stability, while in figure 5.b
the amplitude increases with time leading to instability of the system.

4 Compensation of the time-delay effect for amplitude reduction

In this section, a particular attention is focused on the analytical and numerical analysis in order to
determine a parameter of the system that will compensate of time-delay effect leading to amplitude
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(a) (b)

Fig. 5 Effect of tendons parameter on the stability of the TLP, (a) the tendons parameter taken in the stable
region τ0 = 0.3, p = 4, d = 3; (b) the tendons parameter taken in the unstable region τ0 = 0.3, p = 6.5, d = 3,
with η = 0.06, γ =−4.388, ω2 = 1.36.

reduction.
For that purpose the multiple time scale method [21–23], which provides an analytical approximate

solution and thus permits to detect the effects of the time-delay on the system response is used.
We suppose that |cos(ωτ)|= ξ cos(ωτ) , where ξ =±1 Eq.(16) can be written as

v̈2 (τ)+ 2η v̇2 (τ)+ ω
2
2 v2 (τ)+ γv3

2 (τ− τx)+ pv2 (τ)

+ dv̇2 (τ− τẋ) = ξ p0(cos(ωτ))2 + p1 sin(ωτ) , ξ =±1.
(23)

Taking into account the following relation: (cos(ωτ))2 = 1+cos(2ωτ)
2 and by substituting it in the

Eq.(23), one obtain

v̈2 (τ)+ 2η v̇2 (τ)+ ω
2
2 v2 (τ)+ γv3

2 (τ)+ pv2 (τ− τx)+ dv̇2 (τ− τẋ)

=ξ
p0

2
+ ξ

p0

2
cos(2ωτ) + p1 sin(ωτ).

(24)

One focus our attention on applying the multiple scales method to find the uniform analytical
approximations solution at resonance. One would like to obtain a first-order approximate solution so
that we define two-time scales as a fast-time, slow-time, so that the derivative with respect to time
expanded as

d
dτ

=
dT0

dτ

∂

∂T0
+ ε

∂

∂T1
= D0 + εD1 + ...

d2

dτ2 = D2
0 + 2εD0D1 + ...

(25)

where ε refers to a very small perturbation parameter. The expansions of the solution v2 (τ,ε) and
v2 (τ− τx,ε) have the form

v2 (τ) = v20 (T0,T1)+ εv21 (T0,T1)+ ... (26)

v2 (τ− τx,ε) = v20 (T0−Tx,T1− εTx)+ εv21 (T0−Tx,T1− εTx)+ ... (27)

Where Tn = εnτ
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Assuming that Tx is small enough, after using Taylor expansion on Eq.(27) one gets

v2 (τ− τx,ε) =v20 (T0−Tx,T1) − εD1Txv20 (T0−Tx,T1)

+ εv21 (T0−Tx,T1)− ε
2TxD1v21 (T0−Tx,T1) .

(28)

After this expansion, we focus on the different type of resonance that one can have when the
structure is subjected to the sea waves excitation.

4.1 Harmonic resonance

Substituting Eqs.(26) and (28) into the Eq.(24) and equating the same power of the coefficients, we
obtain

D2
0v20 + ω

2
2 v20 = 0 (29)

D2
0v21 + ω

2
2 v21 =−2D0 (D1v20 + ηv20)− γv3

20− pv20 (T0−Tx,T0)

−dD0v20 (T0−Tx,T0)+ ξ
p0

2
+ ξ

p0

2
cos2ωT0 + p1 sinωT0.

(30)

The solution of Eq.(29) can be written as

v20 (T0,T1) = A(T1)exp(iω2T0)+ cc (31)

Substituting the above equations into Eq.(30) we obtain

D2
0v21 + ω

2
2 v21 =[−2iω2

(
A′+ ηA

)
−3γĀA2− pAexp(−iω2Tx)− iω2dAexp(−iω2Tx)]

× exp(iω2T0)− γA3 exp(3iω2T0)+ ξ
p0

2
+ ξ

p0

4
exp(2ωT0)+

p1

2i
exp(ωT0)+ cc.

(32)

Two types of resonance could occur from the above equation during the vibration of the system

-First case: ω2 ' ω

The deviations of ω from ω2 are shown as the following definition
ω = ω2 + εσ

Where σ is the detuning parameter. After considering the above definition and by eliminating the
secular terms from Eq.(32), one will arrive at

−2iω2
(
A′+ µA

)
−3γĀA2− pAexp(−iω2Tx) − iω2dAexp(−iω2Tx) +

p1

2i
exp(iσ1T1) = 0. (33)

Using the polar notation A(T1) = a(T1)
2 exp(iθ1) of the above equation and by separating the real and

the imaginary parts, we obtain

ω2a′+ ηω2a− p
2

asin(ω2Tx)+
d
2

ω2acos(ω2Tx)+
p1

2
cosφ1 = 0,

ω2σa−ω2aφ
′− p

2
acos(ω2Tx)−

d
2

ω2asin(ω2Tx)−
3
8

γa3− p1

2
sinφ1 = 0.

(34)

In which φ1 = σT1− θ1. For the sake of the steady state response, the parameters φ ′1, θ ′1 and a′

must be set to zero and, after some mathematical simplification of Eq.(34), the following equation is
obtained

(ηω2a− p
2

asinω2Tx +
d
2

ω2acosω2Tx)
2 +(σω2a− 3

8
γa3− p

2
acosω2Tx−

d
2

ω2asinω2Tx)
2 =

p2
1

4
. (35)

-Second case: ω2 ' 2ω and ω = ω2
2 + εσ2



652 A.M. Ngounou et al / Journal of Applied Nonlinear Dynamics 10(4) (2021) 643–659

(a) (b)

(c) (d)

Fig. 6 Frequency response curves, ((a)) Primary resonance, ((b)) Superharmonic resonance, ((c)) Subharmonic
resonance, ((d)) Combination resonance, with τ0 = 0.0, p = 4, d = 3, η = 0.06, γ =−4.388, ω2 = 1.36.

Therefore, the secular terms would be

−2iω2
(
A′+ µA

)
−3γĀA2− pAexp(−iω2Tx) − iω2dAexp(−iω2Tx) + ξ

p0

2
exp(2iσ1T1) = 0. (36)

Similarly, by applying the polar forms and separating the imaginary and the real parts, and after
some mathematical simplification, the steady-state response will be obtained

(ηω2a− p
2

asinω2Tx +
d
2

ω2acosω2Tx)
2 +(2σω2a− 3

8
γa3− p

2
acosω2Tx−

d
2

ω2asinω2Tx)
2 =

p2
0

16
. (37)

After making these different calculations, the simulation solutions are obtainted using the bisec-
tion method, and the matlab software is used for plotting the curves. Figure 6 shows a comparative
analysis of the amplitude response as function of the detuning parameter from the results of analytical
derivations and numerical simulation. The result obtained shows a qualitative agreement between the
numerical and analytical analysis. The effects of time-delay on the amplitude response of the TLP
under sea wave excitation for the first and second resonance state are shown in figure 7 and figure 8.
As depicted in figure 7 and figure 8, increasing the time-delay parameter results in an increase of the
amplitude respose of the TLP. Figure 9 and figure 10 shown the amplitude response curves for different
values of naturels frequency. For the primary and secondary resonance state, the natural frequency
have the same effects, increasing the natural frequency results in decreasing the amplitude response of
TLP. For example, it has been shown that, taking the two values of the following natural frequencies,
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Fig. 7 Effect of time-delay on the TLP ampli-
tude, ω = ω2 + εσ , with η = 0.06, γ = −4.388,
ω2 = 1.36, p = 4,d = 3.

Fig. 8 Effect of time-delay on the TLP amplitude,

ω = 1
2 ω2 +εσ , with η = 0.06, γ =−4.388, ω2 = 1.36,

p = 4, d = 3.

Fig. 9 Primary resonance curve, effect of natural
frequency ω2, with η = 0.06, γ =−4.388, p = 4, d =
3.

Fig. 10 Secondary resonance curve, effect of natu-
ral frequency ω2, with η = 0.06, γ =−4.388, p = 4,
d = 3.

ω2 = 1.36 (ie 0.453 rad/s ) and ω2 = 1.6 (ie 0.987 rad/s) , one notes that the effect of the delay on the
amplitude is attenuated for the value of the frequency ω2 = 1.6 (ie 0.987 rad/s). One conclude that,
by making a good choice of the natural frequency of the structure one can compensate the time-delay
effect on the amplitude. The effects of the damping coefficient on the frequency response for the first
and second resonance state are shown in figure 11 and figure 12. From both figures, it can be observed
that increasing the damping coefficient will reduce the amplitudes of vibration, the effect of time-delay
of the amplitudes of vibration meaning that is reduced. It has been found that, for a delay value equal
to 0.1( ie 0.22 second), taking a value of the damping coefficient of η = 0.1 (ie c2 = 66.67Ns/m) instead
of η = 0.06 (ie c2 = 40Ns/m), one could compensate for the effect of the delay on the stability of the
structure.

4.2 Superharmonic, subharmonic and combination resonances

In the following section we shall investigate the superharmonic resonance, subharmonic resonance and
combination resonance. When the amplitude of the sinusoidal external force is large, other type of os-
cillations can be displayed by the model, namely the superharmonic, the subharmonic and combination
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Fig. 11 Primary resonance curve, effect of damping
η , with ω2 = 1.36, γ =−4.388, p = 4, d = 3.

Fig. 12 Secondary resonance curve, effect of damp-
ing η , with ω2 = 1.36, γ =−4.388, p = 4, d = 3.

resonance states. Using the multiple timescale method, we obtain

D2
0v20 + ω

2
2 v20 = ξ

p0

2
+ ξ

p0

2
cos2ωT0 + p1 sinωT0, (38)

D2
0v21 + ω

2
2 v21 =−2D0 (D1v20 + ηv20)− γv3

20− pv20 (T0−Tx,T0)−dD0v20 (T0−Tx,T0) . (39)

The solution of Eq.(38) can be written as

v20 (T0,T1) = A(T1)exp(iω2T0)+ β0 + β1 exp(2iωT0)+ β2 exp(iωT0)+ cc (40)

β0 = ξ p0
ω2

2
, β1 = ξ p0

4(ω2
2−4ω2)

, β2 = p1
2(ω2

2−ω2)
, i2 =−1.

Substituting Eq. (40) into Eq. (39) we gets

D2
0v21 + ω

2
2 v21 =

(
−2iω2

(
A′+ ηA

)
−3γĀA2− pAexp(−iω2Tx)− iω2dAexp(−iω2Tx)

−3γβ
2
0 A−6γβ

2
1 A + 6γβ

2
2 A
)
× exp(iω2T0)

− γ
(
A3 exp(3iω2T0)+ β

3
1 exp(6iωT0)+ β

3
2 exp(3iωT0)

)
− (2iηωβ2 + pβ2 exp(−iωTx)+ idωβ2 exp(−iωTx)

+6γβ2AĀ + 3γβ
2
0 β2 + 6γβ

2
1 β2−6γβ0β1β2−3γβ

3
2
)
× exp(iωT0)

− (4iηωβ1 + pβ1 exp(−2iωTx)+ 2idωβ1 exp(−2iωTx)

+6γβ1AĀ + 3γβ
2
0 β1−6γβ

2
2 β1 + 3γβ

2
2 β0 + 3γβ

3
1
)
× exp(2iωT0)

− γ (3 β0A2 exp(2iω2T0)+ 3β1A2 exp(2i(ω2−ω)T0)

+ 3β1A2 exp(2i(ω2 + ω)T0)+ 3β2A2 exp(i(2ω2 + ω)T0)

−3β2A2 exp(i(2ω2−ω)T0)+ 2β0β1Aexp(i(ω2−2ω)T0)

+ 2β0β1Aexp(i(ω2 + 2ω)T0)+ 2β0β2Aexp(i(ω2 + ω)T0)

+ β
2
1 Aexp(i(ω2 + 4ω)T0)+ β

2
2 Aexp(i(ω2 + 2ω)T0)

+ β
2
1 Aexp(i(ω2−4ω)T0)−2β0β2Aexp(i(ω2−ω)T0)

+ 2β1β2Aexp(i(ω2 + 3ω)T0)−2β1β2Aexp(i(ω2 + ω)T0)

+ β
2
2 Aexp(i(ω2−2ω)T0)−2β1β2Aexp(i(ω2−3ω)T0)

+ 2β1β2Aexp(i(ω2−ω)T0)+ 6β0β1β2 exp(3iωT0)

−3β2β
2
1 exp(3iωT0)+ 3β1β

2
2 exp(4iωT0)+ 3β2β

2
1 exp(5iωT0)

+ β
3
0 + 3β0β

2
2 −6β0β

2
2 −6β1β

2
2 +6β0AĀ

)
+ cc

(41)
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cc is the complex conjugate of the previous terms. One noticed that the system can presented two
superharmonic, two subharmonic and two combinations resonant states, when the following conditions
are satisfied:

-Superharmonic resonance
6ω = ω2 + εσ ; 3ω = ω2 + εσ

-Subharmonic resonance
ω = 3ω2 + εσ ; ω = 3

2 ω2 + εσ

-Combination resonance
4ω = ω2 + εσ ; 5ω = ω2 + εσ

a) Superharmonic resonance

Considering 3ω = ω2 + εσ , and injecting this condition into Eq. (41) and setting secular terms to
0, we obtained

−2iω2
(
A′+ µA

)
−3γĀA2− pAexp(−iω2Tx) − iω2dAexp(−iω2Tx)−3γ

(
β

2
0 + 2β

2
1 + 2β

2
3
)

− iγ
(
β

3
3 −6β0β1β3 + 3β3β

2
1
)

exp(iσT1) = 0
(42)

where β3 = p1
2(ω2

2−ω2)
.

Using the polar notation A(T1) = a(T1)
2 exp(iθ1) of in Eq.(41) and by separating the real and the

imaginary parts, we obtain
ω2a′+ ηω2a− p

2
asin(ω2Tx)+

d
2

ω2acos(ω2Tx)+ γ
(
β

3
3 −6β0β1β3 + 3β3β

2
1
)

cosφ1 = 0,

ω2σa−ω2aφ
′
1−

p
2

acos(ω2Tx)−
d
2

ω2asin(ω2Tx)−
3
8

γa3−3γ
(
β

2
0 + 2β

2
1 + 2β

2
3
) a

2
− γ
(
β

3
3 −6β0β1β3 + 3β3β

2
1
)

sinφ1 = 0.

(43)

For the sake of the steady state response, the parameters θ ′1, a′ φ ′1 must be set to zero and, after
some mathematical simplification of Eq.(43), the following equation is obtained

(µa)2 +(σω2a− 3
8

γa3− p
2

acos(ω2Tx)−
d
2

ω2asin(ω2Tx)−
3
2

γ
(
β

2
0 + 2β

2
1 + 2β

2
3
)

a)2 = f 2
0 (44)

Where f0 = γ
(
β 3

3 −6β0β1β3 + 3β3β 2
1
)
, µ = ηω2− p

2 sin(ω2Tx)+ d
2 ω2 cos(ω2Tx).

Let us consider now 6ω = ω2 + εσ , and injecting this condition into Eq. (41) and setting secular
terms to 0, one gets

−2iω2
(
A′+ µA

)
−3γĀA2− pAexp(−iω2Tx) − iω2dAexp(−iω2Tx)

−3γ
(
β

2
0 + 2β

2
1 + 2β

2
3
)
− γβ

3
1 exp(iσT1) = 0.

(45)

Similarly, by applying the polar forms and separating the imaginary and the real parts, and after
some mathematical simplification, the steady-state response we gets

(µa)2 +(σω2a− 3
8

γa3− p
2

acos(ω2Tx)−
d
2

ω2asin(ω2Tx)−
3
2

γ(β
2
0 + 2β

2
1 + 2β

2
3 )a)2 = f 2

0 (46)

Where f0 = γβ 3
1 .
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b) Subharmonic resonance

In this part, we treat two cases: ω = 3ω2 + εσ and ω = 3
2 ω2 + εσ . In the first case(ω = 3ω2 + εσ),

the secular terms are eliminated when

−2iω2
(
A′+ µA

)
−3γĀA2− pAexp(−iω2Tx) − iω2dAexp(−iω2Tx)

−3γ
(
β

2
0 + 2β

2
1 + 2β

2
3
)
−3iγβ3Ā2 exp(iσT1) = 0.

(47)

Inserting the polar form of A, putting φ1 = σT1− 3θ1, and proceeding in the same way as in the
case of superharmonic, we obtain the following equation

(µ)2 +(
σ

3
ω2−

3
8

γa2− p
2

cos(ω2Tx)−
d
2

ω2 sin(ω2Tx)−
3
2

γ(β
2
0 + 2β

2
1 + 2β

2
3 ))2 = ( f0a)2 (48)

Where f0 = 3γβ3.
The second case let us consider ω = 3

2 ω2 +εσ proceeding in the same way as in the case, one obtain
the following equation

(µ)2 +(
σ

3
ω2−

3
8

γa2− p
2

cos(ω2Tx)−
d
2

ω2 sin(ω2Tx)−
3
2

γ(β
2
0 + 2β

2
1 + 2β

2
3 ))2 = ( f0a)2 (49)

Where f0 = 3γβ1.
c) combination resonance.
In this part, the following situation is consider: 4ω = ω2 + εσ ; 5ω = ω2 + εσ

frist case 4ω = ω2 + εσ ; The corresponding solvability condition is

−2iω2 (A′+ µA)−3γĀA2− pAexp(−iω2Tx) − iω2dAexp(−iω2Tx)−3γ
(
β 2

0 + 2β 2
1 + 2β 2

3
)

+3γβ 2
3 β1 exp(iσT1) = 0.

(50)

Subtutiting the polar form of A, putting φ1 = σT1−3θ1 in the above equation, and proceeding in
the same way as in the case of superharmonic, the resonance equation is given by

(µa)2 +
(
σω2a− 3

8 γa3− p
2 acos(ω2Tx)− d

2 ω2asin(ω2Tx)− 3
2 γ
(
β 2

0 + 2β 2
1 + 2β 2

3
)

a
)2

= f 2
0 (51)

Where f0 = 3γβ 2
3 β1.

Second case 5ω = ω2 + εσ . In this case, the resonance equation is given by

(µa)2 +(σω2a− 3
8

γa3− p
2

acos(ω2Tx)−
d
2

ω2asin(ω2Tx)−
3
2

γ
(
β

2
0 + 2β

2
1 + 2β

2
3
)
)2 = f 2

0 . (52)

Where f0 = 3γβ 2
1 β3.

Figures 13, 14, 15, 16, 17, 18 represents the influence of the natural frequency on the amplitude
response for the superhamonic, subharmnic and combination resonance state . As can be seen from
these figures, increasing the natural frequency results in decreasing the oscillation amplitude, this allows
us to say that increasing the natural frequency of the structure could increase the life of the structure
because the vibrations of the structure are reduced. Each black curves of these figures are obtained for
different values of time-delay. This allow us to say that time-delay has no effect on the superhamonic,
subharmonic and combination resonant states.

5 Conclusion

An analytical and numerical solution for the dynamic response of a TLP under sea wave excitation are
presented. We firstly modelled the TLP by the full partial differential equation that we have thereafter
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Fig. 13 Superharmonic resonance curve: 3ω = ω2 +
εσ , effect of natural frequency ω2, η = 0.06, γ =
−4.388, p = 4, d = 3.

Fig. 14 Superharmonic resonance curve: 6ω = ω2 +
εσ , effect of natural frequency ω2, η = 0.06, γ =
−4.388, p = 4, d = 3.

Fig. 15 Subharmonic resonance curve: ω = 3ω2 +
εσ , effect of natural frequency ω2, η = 0.06, γ =
−4.388, p = 4, d = 9.

Fig. 16 Subharmonic resonance curve: ω = 1
2 ω2 +

εσ , effect of natural frequency ω2, η = 0.06, γ =
−4.388, p = 4, d = 3.

Fig. 17 Combination resonance curve: 4ω = ω2 +
εσ , effect of natural frequency ω2, η = 0.06, γ =
−4.388, p = 4, d = 3.

Fig. 18 Combination resonance curve: 5ω = ω2 +
εσ , effect of natural frequency ω2, η = 0.06, γ =
−4.388, p = 4, d = 3.
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reduced to the nonlinear ordinary differential equation. Secondly, the effect of tendon on the stability
of the structure have been analyzed. Finally the effects of different parameters, namely, time-delay,
natural frequency and damping coefficient, on different types of resonant cases of the system were fully
investigated. Results of the analysis show that increase of the value of time-delay contributes to reduce
the stability area. Therefore, increasing the value of the damping would increase the stability area.
The effects of time-delay on the primary, secondary, superharmonic, subharmoncic and combination
resonance state has been illustred. The analysis leads us to the conclusion that increasing of the time-
delay would increases the amplitude response in the case of the primary and secondary resonaces, but
is without effects on the superharmonic, subharmonic and comobination resonants states. One also
analysed the effect of the natural frequency on the amplitude response. It has been found that the
amplitude of oscillation decreases by incrising the the natural frequency, this for all types of resonant
states, which allows to cancel the time-delay effect in the case of primary and secondary resonances.
The same conclusion was drawn by increasing the damping coefficient. Results were also presented
taking into account the non-dimensionless parameters. This order to validate the different analyzes
that have been made.
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Nomenclature

l = Beam length
cM = Inertia coefficient of beam
cd = Drag coefficient of beam
cm = Inertia coefficient of added mass
ρ = Density of beam
E = young’s module of beam
rout= Outer raduis of beam
N0 = Axial force
l0 = Reference length
s1, s2 = Control parameters
tx = Time delay of displacement
ṫx = Time delay of velocity
kc = Tendon stiffness
ρw = Water density
T= Wave period
d1 = Sea wave
H = Wave height
I = Moment of Inertia
A = Cross section area
r = Raduis of gyration
c2 = damping coefficient of beam
k= Wave number
λ = Dimensionless damping cefficient of beam
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N′0 = Dimensionless axial force
Γ1 = Dimensionless proportional gain parameter
Γ1 = Dimensionless derivative gain parameter
τ = Dimensionless time
τ0 = Dimensionless time delay
d∗ = Dimensionless sea depth
l∗ = Dimensionless beam length

References

[1] Adrezin, R., Bar-Avi, P., and Benaroya, H. (1996), Dynamic response of compliant offshore structures: review,
Journal of Aerospace Engineering, 9(4), 114-31.

[2] Adrezin, R. and Benaroya, H. (1999), Non-linear stochastic dynamics of tension leg platforms, Journal of
Sound and Vibration, 220, 27-65.

[3] Adrezin, R. and Benaroya, H. (1999), Response of a tension leg platform to stochastic wave forces, Probaba-
bilistic Engineering and Mechanics, 14, 3-17.

[4] Han, S.M. and Benaroya, H. (2002), Comparison of linear and nonlinear responses of a compliant tower to
random wave forces, Chaos Solitons and Fractals, 14, 269-291.

[5] Yigit, A.S. and Christoforou, A.P. ( 1996), Coupled axial and transverse vibrations of oilwell drillstrings,
Journal of sound and Vibration, 195, 617-27.

[6] Patel, M.H. and Park, H.I. (1991), Dynamics of tension leg platform tethers at low tension. Part I-Mathieu
stability at large parameters, Marine structures, 4, 257-273.

[7] Gadagi, M.M. and Benaroya, H. (2006), Dynamic response of an axially loaded tendon of a tension leg
platform, Journal of Sound and Vibration, 293, 38-58.

[8] Yang, C.K. and Kim, M.H. (2010), Transient effects of tendon disconnection of a TLP by hull-tendon-riser
coupled dynamic analysis, Ocean Engineering, 37, 667-677.

[9] Taflanidis, A.A., Vetter, C., and Loukogeorgaki, E. (2013), Impact of modeling and excitation uncertainties
on operational and structural reliability of tension leg platforms, Applied Ocean Research, 43, 131-147.

[10] Rudman, M. and Cleary, P.W. (2013), Rogue wave impact on a tension leg platform: the effect of wave
incidence angle and mooring line tension, Ocean Engineering, 61, 123-138.

[11] Srinivasan, C., Gaurav, G., Serino, G., and Miranda, S. (2011), Ringing and springing response of triangular
TLPs, International Shipbuild Programm, 58, 141-163.

[12] Abdussamie, N., Drobyshevski, Y., Ojeda, R., Thomas, G., and Amin, W. (2017), Experimental investigation
of wave-in-deck impact events on a TLP model, Ocean Engineering, 142, 541-562.

[13] Matsui, T., Sakoh, Y., and Nozu, T. (1993), Second-order sum-frequency oscillations of tension-leg platforms:
Prediction and measurement, Applied Ocean Research, 15, 107-118.

[14] Feng, W.H., Hua, F.Y., and Yang, L. (2014), Dynamic analysis of a tension leg platform for offshore wind
turbines, Journal of Power Technologie, 94, 42-49.

[15] Nayfeh, A.H. and Mook, D.H. (1995), Nonlinear Oscillations, Wiley Classics Library, New York.
[16] Jahangiri, V., Mirab, H., Fathi, R., and Ettefaghand, M.M. (2016), TLP Structural Health Monitoring Based

on Vibration Signal of Energy Harvesting System, Latin American Journal of Solids Structures, 13, 897-915.
[17] Anii, K.A., Kosaka, S.H., and Yamanaka, H. (1994), Stability of active-trndon structural control with time

delay, Journal of Engineering Mechanics, 120, 2240-2243.
[18] Morison, J.R., O’Brien, M.P., Johnson, J.W., and Schaaf, S.A. (1950), The force exerted by surface waves

on piles, Pet Trans, AIME 189, 149-57.
[19] Zhang, L., Yang, C.Y., Chajes, M.J., and Cheng, A.H.D. (1993), Stability of active-tendon structural control

with time delay, Jounal of Engineering Mechanics, 119, 1017-1024.
[20] Korak, S. and Ranjan, G. (2013), Rotating beams and non-rotating beams with shared eigenpair for pinned-

free boundary condition, Meccanica , 48, 1661-1676.
[21] Bernstein, A. and Rand, R. (2016), Delay-Coupled Mathieu Equations in Synchrotron Dynamics, Journal of

Applied Nonlinear Dynamics, 5(3), 337-348.
[22] Bernstein, A. and Rand, R., (2018), Delay-Coupled Mathieu Equations in Synchrotron Dynamics Revisited:

Delay Terms in the Slow Flow, Journal of Applied Nonlinear Dynamics, 7(4), 349-360.
[23] Yang, T., Fang, B., Chen, Y., and Zhen, Y. (2009), Approximate solutions of axially moving viscoelastic

beams subject to multi-frequency excitations, International Journal and Non-Linear Mechanics, 44, 230-238.



Chaos, Solitons and Fractals 157 (2022) 111952 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Design, analysis and horseshoes chaos control on tension leg platform 

system with fractional nonlinear viscoelastic tendon force under 

regular sea wave excitation 

A.M. Ngounou 

a , S.C. Mba Feulefack 

a , ∗, L.M. Anague Tabejieu 

b , B.R. Nana Nbendjo 

a 

a Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, 

Cameroon 
b Department of Mechanical Engineering National Higher Polytechnic School of Douala, University of Douala P.O. Box 2701, Douala, Cameroon 

a r t i c l e i n f o 

Article history: 

Received 29 October 2021 

Revised 21 February 2022 

Accepted 23 February 2022 

Keywords: 

Tension leg platform 

Fractional order derivative 

Tendon viscosity coefficient 

Number of tendons 

Horseshoes chaos 

a b s t r a c t 

In this paper, the dynamic response of a Tension Leg Platform (TLP) system with fractional nonlinear 

viscoelastic tendon force under regular sea wave is investigated. Analytical and numerical methods are 

employed to analyse the effect of the fractional viscoelastic parameter, the tendon viscosity coefficient 

and the number of tendons on the amplitude of the system. It is found that, when the tendon viscosity 

coefficient and the number of tendons increase, the amplitude of vibration decreases. We also show that, 

increase of the fractional order derivative also contributes to decrease the unstable range of amplitude. 

Nevertheless, beyond a certain value of the fractional parameter, we rather observe an increase in ampli- 

tude. In other hand, Melnikov technique is used to derive the analytical criterion for the appearance of 

the heteroclinic chaos in the system. Analytical prediction is tested against numerical simulations based 

on the basin of attraction. It is found that, the appearance of horseshoes chaos depend of the fractional 

viscoelastic parameter, the tendon viscosity coefficient and the number of tendons. 

© 2022 Elsevier Ltd. All rights reserved. 

1. Introduction 

TLP is a floating platform which is moored to the seabed by 

tendons. This platform consisted of buoyant hull, deck and moor- 

ing system. Buoyant hull sustains deck sufficiently above water 

level and anchored to the seabed by a complex mooring system. 

The buoyancy of TLP is more than weight. Therefore, it needs stiff

and strong pre tensioned tendons to support additional buoyancy. 

Tendons mostly connect hull to the seabed by suction anchors. Al- 

though the tendon mooring system allows lateral wave, wind and 

current loads move the platform compliantly, it keeps that strongly 

restricted vertically. Moreover, the stability of TLP structures is 

highly dependent on tendons. Thus, many researchers have been 

interested in the modeling and dynamic response of TLP structures 

under sea wave excitation [1–5] . 

In the literature many studies have been done with a view to 

determine the influence of tendon or tether parameters on the 

dynamic response of tension leg platform under wave excitation. 

Kurian et al. [6,7] developed a numerical study on the dynamic 

∗ Corresponding author. 

E-mail address: stevecloriant@yahoo.fr (S.C. Mba Feulefack). 

response of square TLPs subjected to regular and random waves. 

They also conducted parametric studies with different parameters 

such as pretension, wave angle, position of center of gravity and 

water depth. Yang and Kim [8] , developed a numerical study of 

the transient effect of tendon disconnection on the global perfor- 

mance of an extended tension leg platform (ETLP) during harsh 

environmental conditions of the Gulf of Mexico. Patel and Park 

[9] investigated on the dynamics of tension leg platform tethers 

at low tension. Besides, they analyzed the effect of tension on the 

dynamic behavior of the structure and it was observed that the 

increase in the axial force frequency has no effect on the trans- 

verse response, only the axial response is influenced. Amr R. El- 

gama et al. [10] , analyzed the effect of tethers tension force on 

the behavior of the triangular tension leg platform. In this study, 

the analysis was carried out using modified Morison equation in 

the time domain with water particle kinematics using Airy’s lin- 

ear wave theory to investigate the effect of changing the tether 

tension force on the stiffness matrix of TLP’s, the dynamic be- 

havior of TLP’s; and on the fatigue stresses in the cables. The 

effect was investigated for different parameters of the hydrody- 

namic forces such as wave periods, and wave heights. And Go- 

lafshani et al. [11] presented the analytical response of a contin- 

uous model of the tether of TLP, considering the buoyancy and the 

https://doi.org/10.1016/j.chaos.2022.111952 

0960-0779/© 2022 Elsevier Ltd. All rights reserved. 
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Nomenclature 

x horizontal displacement of TLP ( m ) 

˙ x velocity of TLP ( m / s ) 

ẍ acceleration of TLP ( m / s 2 ) 

m total mass of the platform ( kg ) 

W total weight of the platform in the air ( N ) 

F B total buoyancy force ( N ) 

x displacement in the surge direction ( m ) 

θ angle between the initial and the displaced posi- 

tion of the tendons 

L 0 initial length of each tendons ( m ) 

�T (x ) increase in the initial pre-tension due to the arbi- 

trary displacement ( N ) 

F w 

wave force ( N ) 

F (x ) nonlinear viscoelastic force of tendon ( N ) 

n number of tendons 

A cross-sectional area of tendons ( m 

2 ) 

T 0 pre-tension ( N ) 

E Young’s modulus of a tendon ( Pa ) 

k 0 tendon stiffness ( N / m ) 

L p , W p , H p pontoon size ( m ) 

D c , H c columns size ( m ) 

D r draft ( m ) 

C m 

inertial coefficient 

C d drag coefficient 

C a added mass coeficient 

μ tendon viscosity coefficient ( Ns α/ m ) 

g acceleration of gravity ( m / s 2 ) 

u water particle velocity ( m / s ) 

˙ u water particle acceleration ( m / s 2 ) 

ρ water density ( kg / m 

3 ) 

d sea wave ( m ) 

T wave period ( s ) 

H wave height ( m ) 

L wave length (m) 

c damping coefficient of tendons (Ns/m) 

k wave number (m 

−1 ) 

α fractional-order 

V volume of columns (m 

3 ) 

m add added mass of TLP columns (kg) 

� wave frequency (rad/s) 

z 1 , z 2 bottom level and still water level (m) 

σ tuning parameter (rad/s) 

ξ disturbances parameter 

effect of added mass fluctuation under the load simulated as an 

ocean wave. Recently Ngounou et al. [12] investigated the effect 

of the delay between the detection of vibration and the action of 

the tendons on the dynamic response of tension leg platform (TLP) 

under sea wave excitation. It was shown that, a good choice of the 

tendons parameters (natural frequency, damping coefficient) makes 

it possible to compensate the time-delay effect on the amplitude 

response. 

In this paper, a nonlinear viscoelastic model describing the 

surge movement of tension leg platform is presented. To make the 

model more meaninful and practical, fractional derivative damp- 

ing within the meaning of Caputo is taking into account in the 

modeling of the system. In fact, in the system of viscoelastic ma- 

terials, the damping term does not only depend on the current 

state, but also on the previous state. It was shown by Anague et al. 

[13] that, for material with memory properties, the fractional-order 

models can better describing the dynamic response of the sys- 

tem. In this work, we firstly propose a nonlinear model of the 

tendon leg platform taking into account the fractional viscoelastic 

behavior. Secondly the effect of main parameters, namely: num- 

ber of tendons, the order of the fractional viscoelastic material 

that constitutes the tendon and the tendon viscosity coefficient on 

the amplitude of TLP have been analyzed. The present study is di- 

vided into five sections. After the introduction, the physical model 

of the system which taking into account tendon and the mathe- 

matical model equation is illustrated in Section 2 . Section 3 con- 

tains the details of analytical and numerical methods (the averag- 

ing method [14–17] and Newton–Leipnik method [18,19] respec- 

tively) which have been used to analyze the effects of the main 

parameters of the system on the steady-state amplitude and the 

stability of the TLP system. In Section 4 , the Melnikov theorem is 

used to detect the effect of the order of the fractional viscoelas- 

tic parameter and the tendon viscosity coefficient and the number 

of tendons on the threshold condition for the appearance of chaos 

and the basins of attraction are explored to support the obtained 

results. Our approach follows the earlier methodology introduced 

and discussed in references [13,20–23] . Section 5 draws some brief 

conclusions. 

2. The tendon leg platform model 

The supporting structure of TLP consists of a hull, tethers, and 

templates. The hull is a buoyant structure with a deck at its top. 

The pontoons and columns provide sufficient buoyancy to main- 

tain the deck above the sea waves during all sea states. The hull 

is anchored to the sea bed through tethers and fixed in place with 

templates as presented in Fig. 1 and equivalent model is shown in 

Fig. 2 . Where F B is a total buoyancy force, W is a total weight of 

the platform in the air, T 0 is the initial pre-tension in the tether, 

D c is the diameter of TLP columns, D p is the diameter of pontoon, 

D r is the draft. 

D r is calculated from the following relation [24] 

D r = 

4 

D 

2 
c 

(
F B − nρg L p H p W p 

nρπg 

)
(1) 

where n is the number of tendon and ρ is the water density. 

Fig. 1. Schematic tension leg platform. 

2 
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Fig. 2. Surge displacement of TLP: simplified model. 

2.1. The mathematical model of the vibration of tension leg platform 

In this paper, we have limited the analysis to the single DoF in 

order to give a first rough estimate of the sea wave and the frac- 

tional viscoelastic tendon force effects. Therefore, the equation of 

motion in horizontal direction of the whole system ( Fig. 2 ) is give 

as follows: 

m ̈x + c ̇ x + F ( x ) = F w 

(2) 

F ( x ) = ( n T 0 + n �T ( x ) ) sin θ + nμD 

α
t x (3) 

�T ( x ) = AE 

( √ 

L 2 
0 

+ x 2 − L 0 

L 0 

) 

(4) 

The model used in this paper is based on the model proposed 

by Mohammad and Rahim [25] . In order to get closer in a more 

practical and meaningful case, we propose in this paper a model 

which taking into account that the structure can have a catas- 

trophic behavior. 

Assuming that the displacement x is small enough and taking 

into account the previous comment, one obtains 

�T ( x ) = 

AE 

2 L 2 
0 

x 2 − AE 

8 L 4 
0 

x 4 (5) 

sin θ = 

x √ 

L 2 
0 

+ x 2 
� 

x 

L 0 

(
1 − x 2 

2 L 2 
0 

+ 

3 x 4 

8 L 4 
0 

)
� 

x 

L 0 
− x 3 

2 L 3 
0 

+ 

3 x 5 

8 L 5 
0 

(6) 

( n T 0 + n �T ( x ) ) sin θ � 

n T 0 
L 0 

x + n 

(
AE − T 0 

2 L 3 
0 

)
x 3 − 3 n 

(
AE − T 0 

8 L 5 
0 

)
x 5 

(7) 

Taking into account Eq. (7) , Eq. (2) becomes 

m ̈x + 

n T 0 
L 0 

x + c ̇ x + n 

(
AE − T 0 

2 L 3 
0 

)
x 3 − 3 n 

(
AE − T 0 

8 L 5 
0 

)
x 5 + nμD 

α
t x = F w 

(8) 

where, x is the displacement in the surge direction, θ is the angle 

between the initial and the displaced position of the tether, c is 

the structural damping coefficient, L 0 is the initial length of each 

tether, E is the Young’s modulus of the tether, �T ( x ) increases in 

the initial pre-tension due to the arbitrary displacement, F ( x ) is 

the nonlinear viscoelastic force of tendon, F w 

is the wave force, A 

is the cross-sectional area of tether, μ is the tendon viscosity coef- 

ficient and D 

α
t is the fractional derivative with order α ∈ ( 0 , 1 ) . 

2.2. Wave force 

According to Morison [26] , the generalized wave force due to 

sea wave on the members of TLP is calculated by the Morison 

equation on TLP columns as below: 

F morison = 

∑ (
F inertia + F drag 

)
column 

(9) 

Assuming that the force coefficients C m 

and C d are constants 

and integrating over the still-water-depth on column yields [27] . 

F morison = 

∑ 

column 

∫ 
V 

c m 

ρ ˙ u dV −
∫ 
V 

c a ρẍ dV + 

∫ z 2 

z 1 

0 . 5 c d ρ| u − ˙ x | ( u − ˙ x ) dz 

(10) 

Taking into account the wave theory, the horizontal water par- 

ticle velocity and acceleration at the vertical centreline of a circular 

cylinder at x = 0 are given [28] 

u ( x, t ) = 

πH 

T 

cosh kz 

sinh kd 
cos ( kx − �t ) (11) 

˙ u ( x, t ) = 

2 π2 H 

T 2 
cosh kz 

sinh kd 
sin ( kx − �t ) (12) 

The relation between � and k is given by Mohammad and 

Rahim [27] . 

�2 = gk tanh kd (13) 

In the deep water d 
L > 0 . 5 , the following equation used to re- 

place Eq. (13) becomes 

L = 

0 . 5 g T 2 

π
(14) 

where, H is the wave height, L is the wave length, � is the wave 

frequency k is the wave number, C a , C m 

are inertia and added mass 

coefficient respectively, z 1 and z 2 are the bottom level and the still 

water level, T is the wave period. Also, m add is the added mass on 

TLP columns, V is the volume of column. 

Ignoring the drag force [27] and substituting Eqs. (11) and 

(12) into Eq. (10) one obtains: 

F morison = 

∑ 

column 

∫ 
V 

c a ρẍ dV + 

∑ 

column 

c m 

ρ
2 π2 H 

T 2 

πD 

2 
c 

4 sinh kd 

(
sinh k z 2 − sinh k z 1 

k 

)
sin �t (15) 

Substituting Eq. (15) into Eq. (8) one could obtain 

( m + m add ) ̈x ( t ) + c ̇ x ( t ) + 

n T 0 
L 0 

x + n 

(
AE − T 0 

2 L 3 
0 

)
x 3 ( t ) 

− 3 n 

(
AE − T 0 

8 L 5 
0 

)
x 5 ( t ) + nμD 

α
t x ( t ) 

= 

∑ 

column 

c m 

ρ
2 π2 H 

T 2 
πD 

2 
c 

4 sinh kd 

(
sinh k z 2 − sinh k z 1 

k 

)
sin �t (16) 

3 
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where m add = 

∑ 

column 

∫ 
V 

c a ρdV Taking into account the following di- 

mensionless variables and parameters and after some manipula- 

tions, the dimensionless nonlinear equations of the system can be 

obtained as follows 

y = 

x 

L 0 
, �0 = 

√ 

n T 0 

( m + m add ) L 0 
, γ1 = 

AE − T 0 
2 T 0 

, 

ω = 

�

�0 

, λ = c 

√ 

L 0 
n ( m + m add ) T 0 

η = 

nμ�α−2 
0 

( m + m add ) 
, F 0 = ε 

∑ 

column 

c m 

ρ
2 π2 H 

T 2 
πD 

2 
c 

4 sinh kd (
sinh k z 2 − sinh k z 1 

k 

)
, ε = 

1 

n T 0 
, τ = �0 t 

ÿ ( τ ) + λ ˙ y ( τ ) + ω 

2 
0 y ( τ ) + γ1 y 

3 ( τ ) − 3 

4 

γ1 y 
5 ( τ ) + ηD 

α
τ y ( τ ) 

= F 0 sin ωτ (17) 

The previous equation represents the dimensionless equation of 

the system. 

3. Approximate solution of the TLP response subjected to the 

wave excitations and stability analysis 

3.1. Analytical investigation 

In this section, we are interested in the effect of the order of 

derivative α, the tendon viscosity coefficient η and the number of 

tendon n on the dynamic response of the platform. 

Averaging method is applied here. First of all, we assume that 

γ1 , γ2 , η and F 0 are small perturbations, and considered ω 

2 = ω 

2 
0 + 

ξσ , ω 

2 
0 

= 1 . 

For that consideration, let us assume that the solution of 

Eq. (17) can be written as 

y ( τ ) = A ( τ ) cos ( ωτ + ϕ ( τ ) ) (18) 

˙ y ( τ ) = −ω A ( τ ) sin ( ω τ + ϕ ( τ ) ) (19) 

where the amplitude A ( τ ) and the phase ϕ ( τ ) are slow-varying 

functions of time τ . Substituting Eqs. (18) and (19) into Eq. (17) ) 

after some mathematical manipulations, one obtains {
˙ A = − 1 

ω [ P 1 ( A, ϕ ) + P 2 ( A, ϕ ) ] sin ( ωτ + ϕ ) 

A ˙ ϕ = − 1 
ω [ P 1 ( A, ϕ ) + P 2 ( A, ϕ ) ] cos ( ωτ + ϕ ) 

(20) 

P 1 ( A, ϕ ) = 

˜ F 0 sin ( ωτ ) + σA cos ( ωτ + ϕ ) + ̃

 λω A sin ( ω τ + ϕ ) 

− ˜ γ1 A 

3 cos 3 ( ωτ + ϕ ) + 

3 

4 

˜ γ1 A 

5 cos 5 ( ωτ + ϕ ) 

P 2 ( A, ϕ ) = − ˜ ηD 

α
τ ( A cos ( ωτ + ϕ ) ) (21) 

To apply the averaging method, we average at the period T 1 of 

which one could select as T 1 = 2 π/ω in the case of periodic func- 

tion or T 1 = ∞ in the case of aperiodic D 

α
τ ( A cos ( ωτ + ϕ ) ) [14–17] . 

We obtain the following pair of first order differential equations for 

the amplitude A ( τ ) and the phase ϕ ( τ ) . 

˙ A = − F 0 
2 ω 

cos ϕ + 

λ

2 

A + ηA ω 

α−1 sin 

(
απ

2 

)
(22) 

A ˙ ϕ = 

F 0 
2 ω 

sin ϕ − ξσA 

2 ω 

+ 

3 γ1 A 

3 

8 ω 

− 15 γ1 A 

5 

64 ω 

+ ηA ω 

α−1 cos 

(
απ

2 

)
(23) 

In vibration engineering, the steady-state solution is more im- 

portant. By eliminating sin ϕ and cos ϕ. 

Eqs. (22) and (23) for the steady-state solution (
A = A 0 , ˙ A = 0 , ˙ ϕ = 0 

)
, one obtains the following nonlinear 

algebraic equation 

c 10 A 

10 
0 + c 8 A 

8 
0 + c 6 A 

6 
0 + c 4 A 

4 
0 + c 2 A 

2 
0 − F 2 0 = 0 (24) 

with 

c 2 = β2 
1 ( α) + β2 

2 ( α) , c 4 = −3 γ1 

2 

β1 ( α) , 

c 6 = 

9 γ 2 
1 

16 

+ 

15 γ1 

16 

β2 ( α) , c 8 = −45 γ 2 
1 

64 

, c 10 = 

225 γ 2 
1 

1024 

β1 ( α) = λω + ηω 

α sin 

(
απ

2 

)
, 

β2 ( α) = 

(
ω 

2 − ω 

2 
0 

)
− ηω 

α cos 

(
απ

2 

)
(25) 

This equation has more than one steady-state solution for some 

parameters. An interesting observation is the dependence of the 

oscillations amplitude upon the tendons parameters (natural fre- 

quency ω 

2 
0 = 1 , nonlinear γ1 component, the number of tendon 

n and the dimensionless viscosity coefficient η), the parameters 

of the wave excitation (wave frequency ω and the dimensionless 

wave load F 0 ). 

Next, we study the stability of the steady-state solution by 

using the method of Andronov and Witt [29] , A = A 0 + �A, ϕ = 

ϕ 0 + �ϕ and substituting them into Eqs. (22) and (23) one obtains 

dA 

dτ
= −β1 ( α) 

2 ω 

�A + 

A 0 

2 ω 

[ 
β2 ( α) − 3 

4 

γ1 A 

2 
0 + 

15 

32 

γ1 A 

4 
0 

] 
�ϕ (26) 

dϕ 

dτ
= 

1 

2 ω A 0 

[ 
9 

4 

γ1 A 

2 
0 −

75 

64 

γ1 A 

4 
0 − β2 ( α) 

] 
�A − β1 ( α) 

2 ω 

�ϕ (27) 

where β1 ( α) and β2 ( α) are given by Eq. (25) . The stability of the 

steady-state solution is determined by the eigenvalue of the corre- 

sponding Jacobian matrix of Eqs. (26) and (27) . The corresponding 

eigenvalues � are the roots of 

�
2 + 

β1 ( α) 

2 ω 

� + 

(
β1 ( α) 

2 ω 

)2 

+ 

1 

4 ω 

2 

[ 
3 

4 

γ1 A 

2 
0 −

15 

32 

γ1 A 

4 
0 − β2 ( α) 

] 
[ 

9 

4 

γ1 A 

2 
0 −

75 

64 

γ1 A 

4 
0 − β2 ( α) 

] 
= 0 (28) 

Since 0 < α < 1 , then β1 ( α) > 0 , the determination of signs of 

the real parts of the roots � may be carried out by making use of 

the Routh–Hurwitz criterion [30] as (
β1 ( α) 

2 ω 

)2 

+ 

1 

4 ω 

2 

[ 
3 

4 

γ1 A 

2 
0 −

15 

32 

γ1 A 

4 
0 − β2 ( α) 

] 
×

[ 
9 

4 

γ1 A 

2 
0 −

75 

64 

γ1 A 

4 
0 − β2 ( α) 

] 
< 0 (29) 

The previous inequality represents the instability condition for 

the steady-state solution. 

3.2. Numerical investigation 

It is well known that the validation of results obtained through 

analytical investigation is guaranteed by the perfect match with 

the results obtained through direct numerical simulation of the 

mathematical model. Thus, the numerical scheme used in this pa- 

per is based on the Grunwald–Letnikov definition of the fractional 

order derivative Eq. (30) [31,32] and the Newton–Leipnik algorithm 

[18,19] 

D 

α
τ

[
y 
(
τn f 

)]
≈ h 

−α

n f ∑ 

j=0 

C αj y 
(
τn f − j 

)
(30) 
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Table 1 

Values of the physical parameters of TLP model. 

Parameter name Symbol Value 

Tendons length ( m ) L 0 882.5 

Pre-Tension ( mt ) T 0 18857 

Weight of structure ( mt ) W 13154 

Young’s modulus of a tendon ( Pa ) E 2 . 10 10 

Tendon stiffness ( N / m ) k 0 9 . 10 6 

Tendon Outer Inner Diameter ( mm ) D 0 , D i 813 , 781 . 5 

Pontoon Size (m) L p , W p , H p 46 , 15 , 5 

Columns Size ( m ) D c , H c 20 , 51 

Number of Tendons Per Tendsion leg n 8 , 12 , 16 

Inertial coefficient of added C m 2 

Tendon viscosity coefficient ( Ns α/ m ) μ 3 . 10 4 

Acceleration of gravity ( m / s 2 ) g 9.81 

Water density ( kg / m 

3 ) ρ 1024 

Wave period ( s ) T 12 

Wave height ( m ) H 6 

Fig. 3. Steady-state amplitude A 0 of the TLP as function of wave frequency ω for 

different values of the fractional-order α with n = 8 . 

where h is the integration step and the coefficients C α
j 

satisfy the 

following recursive relations: 

C α0 = 1 , C αj = 

(
1 − 1 + α

j 

)
C αj−1 (31) 

Properties of the tendon leg platform and characteristics of the 

sea waves which are used for numerical and analytical purpose are 

given in Table 1 [33] . 

Fig. 3 shows the effect of the fractional order derivative on 

the amplitude of vibration of the TLP. It is found that as the or- 

der of the fractional derivative increases, the amplitude response 

of the TLP decreases. The increase of the fractional order deriva- 

tive also contributes to decrease the unstable range of amplitude. 

Nevertheless, beyond a certain value of the fractional parame- 

ter ( α ∈ ( 0 . 65 , 1 ) ), we rather observe an increase in amplitude. 

This graph also shows a comparison between the analytical results 

(curve with dotted lines) and numerical results (curve with a circle 

line α = 0 . 5 ). We observe a good agreement between the analytical 

and numerical results. The same results were obtained by Anague 

et al [13] . Who studied the dynamic of a Rayleigh beam resting 

on fractional-order viscoelastic Pasternak foundations subjected to 

moving loads. But in their case they only observed a decrease in 

amplitude of vibration of the beam when the fractional parameter 

increases. 

In Fig. 4 , we have plotted the amplitude response curve of vi- 

bration of the TLP A 0 as a function of the wave frequency ω for 

different values of the dimensionless tendon viscosity coefficient η. 

It is clearly shown that the system is more stable when the value 

of the dimensionless tendons viscosity coefficient increases. There 

is also a fairly significant reduction in the vibration amplitude of 

the structure with the increase of viscosity coefficient. The multi- 

value solutions appear for the small value of this coefficient and 

disappears gradually when this value increase. 

Fig. 5 shows the variation of the amplitude of vibration of the 

TLP A 0 as function of the tendon viscosity coefficient for different 

values of wave frequency ω. It is observed from this figure that, 

for the lowest tendon viscosity coefficient, we only have the multi- 

value solutions, while for the highest tendon viscosity coefficient 

the multi-value solutions disappear. This confirms the results ob- 

tained and displays in Fig. 4 . It is also found that for a value 

frequency ω = ω 0 = 1 , when the tendon viscosity coefficient in- 

creases, the amplitude of vibration of TLP continuously decreases 

Fig. 5 a, which is not the case in Fig. 5 b–d, where the increase in 

the tendon viscosity coefficient leads first to increase the ampli- 

tude of vibration of the TLP, and then decrease it. 

Fig. 6 shows the variation of the amplitude of vibration of the 

TLP as function of the tendon viscous coefficient η for different val- 

ues of the fractional-order α. From the analysis of this figure, we 

note that the hysteresis and the amplitude jump phenomena are 

confirmed and can be controlled by the fractional-order parame- 

ter. 

Fig. 7 shows the behavior of the amplitude of vibration A 0 in 

function of excitation frequency ω for the different values of num- 

ber of tendons. One can observe that, when the number of the ten- 

dons increases, the vibration amplitude is relevantly reduced and 

the domain of the unstable solutions also decreases. 

4. Effect of tendon on the appearance of horseshoes chaos on 

TLP: Melnikov analysis 

In this section, it comes to evaluating the Melnikov’s function 

which measures the distance between the border of regular oscil- 

lations and that of chaotic movements. Indeed, the aim is to clearly 

determine the effect of the fractional order parameter, the tendon 

viscosity coefficient and the number of tendons on the fractality of 

the basins of attraction and, so to speak, Smale horseshoe chaos 

through the analysis of the Melnikov’s function. The configuration 

considers here is that of a catastrophic monostable potential. 

The mathematical model Eq. (17) can be rewritten as a per- 

turbed Hamiltonian system as 

dχ

dτ
= F [ χ ] + εG [ χ, τ ] (32) 

where the vector fields χ , F and G are given by 

χ = 

[
y 

z = 

˙ y 

]
, F = 

[
z 

−y − γ1 y 
3 + 

3 
4 
γ1 y 

5 

]
, 

G = 

[
0 

−λz − ηD 

α
τ y + F 0 sin ωτ

]
(33) 

with ε being a perturbation parameter. 

In the unperturbed case ( ε = 0 ), the system of Eq. (32) is the 

Hamiltonian system with Hamiltonian function 

H ( y, z ) = 

1 

2 

z 2 + 

1 

4 

γ1 y 
4 − 3 

24 

γ1 y 
6 (34) 

and the corresponding potential function is given as 

U ( y ) = 

1 

4 

γ1 y 
4 − 3 

24 

γ1 y 
6 (35) 

5 
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Fig. 4. Steady-state amplitude A 0 of the TLP as function of wave frequency ω for different values of tendon viscosity coefficient with (a) η = 0 . 03 , (b) η = 0 . 08 , (c) η = 0 . 2 , 

(d) η = 0 . 4 for n = 8 , α = 0 . 5 . 

Fig. 5. Steady-state amplitude A 0 of the TLP as function of tendon viscosity coefficient η for different values of wave frequency with (a) ω = 1 , (b) ω = 1 . 09 , (c) ω = 1 . 15 , 

(d) ω = 1 . 2 for n = 8 , α = 0 . 5 . 

6 



A.M. Ngounou, S.C. Mba Feulefack, L.M. Anague Tabejieu et al. Chaos, Solitons and Fractals 157 (2022) 111952 

Fig. 6. Steady-state amplitude A 0 of the TLP as function of tendon viscosity coefficient η for different values of fractional-order with (a) α = 0 . 1 , (b) α = 0 . 5 , (c) α = 0 . 8 , (d) 

α = 0 . 95 for n = 8 , ω = 1 . 09 . 

Fig. 7. Steady-state amplitude A 0 of the TLP as function of wave frequency ω for 

different values of the number of tendons n , with α = 0 . 5 . 

Fig. 8 a shows the potential energy of our system ( γ1 > 0) . The 

system has three equilibrium points: a center point y 0 = ( 0 , 0 ) and 

two saddle points y 1 , 2 = ( ±
√ 

2( γ1 + 
√ 

γ 2 
1 

+3 γ1 

3 γ1 
, 0 ) , as shows in Fig. 8 b. 

The saddle points are connected by heteroclinic orbit that sat- 

isfy the following equation: 

y het = ±
y 1 

√ 

2 sinh 

(
θ
2 
τ
)

[ −β + cosh ( θτ ) ] 
1 
2 

, z het = ±
y 1 

√ 
2 

2 ( 1 − β) θ cosh 

(
θ
2 
τ
)

[ −β + cosh ( θτ ) ] 
3 
2 

(36) 

where β = 

5 −3 G 2 

3 G 2 −1 
, θ = y 2 

1 

√ 

γ1 ( 1 −G 2 ) 
2 , G 

2 = 

y 2 
2 

y 2 
1 

. 

Unfortunately, mechanical and civil structures are subject to ex- 

ternal stresses. That said, we consider the perturbed case ( ε � = 0 ). 

The Melnikov’s theorem is used to detect transverse intersection 

points between perturbed and unperturbed orbits or the appear- 

ance of the fractality on the basin of attraction, which leads to the 

occurrence of chaos. Melnikov’s theorem which gives the condition 

of transversality (of the existence of a fractal basin) can be formu- 

lated as follows [13,20–23] . Let the Melnikov function be defined 

in the case of Eq. (32) as 

M D ( τ0 ) = 

∫ + ∞ 

−∞ 

F [ χhet ( τ ) ] ∧ G [ χhet ( τ ) , τ + τ0 ] 

= −λ

∫ + ∞ 

−∞ 

z 2 het ( τ ) d τ − η

∫ + ∞ 

−∞ 

z het ( τ ) D 

α
τ [ y het ( τ ) ] d τ ) 

+ F 0 

∫ + ∞ 

−∞ 

z het ( τ ) sin ( τ + τ0 ) dτ (37) 

When the Melnikov function has simple point, the stable man- 

ifold and unstable manifold intersect transversally, chaos in the 

sense of Smale horseshoe transform occurs. So let M D ( τ0 ) = 0 , one 

concludes that horseshoe chaos appears when 

F 0 ≥ F 0 cr = y 1 

(
2 ηI 1 + λ(1 − β) θ I 2 √ 

2 × I 3 

)
(38) 

where 

I 1 = 

∫ + ∞ 

−∞ 

cosh 
(

θ
2 
τ
)

[ −β + cosh ( θτ ) ] 
3 
2 

D 

α
τ

[ 

sinh 
(

θ
2 
τ
)

[ −β + cosh ( θτ ) ] 
1 
2 

] 

dτ

I 2 = 

(β + 1) 

2 θ (1 − β2 ) 
2 

[ 

β + 2 + 

( 4 β + 2 ) (1 − β2 ) √ 

β2 − 1 
ln 

( 

−β + 1 + 

√ 

β2 − 1 

−β + 1 −
√ 

β2 − 1 

) ] 

, 

I 3 = 

2 
√ 

2 πω 

( 1 − β) θ2 sinh 
(

πω 
θ

)
7 
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Fig. 8. Potential (a), separatrix (closed curve) and Phase space trajectories (open line) (b) of the system Eq. (17) . 

Fig. 9. Critical external force for the appearance of horsheshoes chaos as function of: (a) wave frequency ω, (b) fractional order parameter α for n = 8 . 

Fig. 10. Critical external force for the appearance of horsheshoes chaos for different 

values of tendon viscosity coefficient η for n = 8 , α = 0 . 5 . Fig. 11. Critical external force for the appearance of horsheshoes chaos for different 

values of the number of tendons n for α = 0 . 5 . 

8 
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Fig. 12. Effect of fractional parameter α on basin of attraction with (a) α = 0 . 15 , (b) α = 0 . 35 , (c) α = 0 . 4 , (d) α = 0 . 5 for n = 8 , η = 0 . 3 , ω = 1 , F 0 cr = 0 . 05 . 

Fig. 13. Effect of tendon viscosity coefficient η on basin of attraction with (a) η = 0 . 2 , (b) η = 0 . 24 , (c) η = 0 . 26 , (d) = 0 . 28 for n = 8 , α = 0 . 5 , ω = 1 , F 0 cr = 0 . 05 . 

9 
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Figs. 9–11 show the threshold conditions as function of wave fre- 

quency for different values of the main parameters of the system. 

Fig. 9 a shows the critical external force for different values of frac- 

tional order parameter. One can observe that, when the value of 

the fractional order parameter increases, the thresholds of the crit- 

ical values F 0 cr decrease. Fig. 9 b confirms the fact that as fractional 

order parameter increases the amplitude of critical force decreases. 

We can conclude that, by making the good choice of fractional 

derivative relating to reduce the amplitude of vibration of the sys- 

tem. Fig. 10 presents the threshold conditions as a function of wave 

frequency for different values of tendon viscosity coefficient. For 

each frequency, it is shown that the limit value predicted by the 

Melnikov theory is much larger when the tendon viscosity coeffi- 

cient increases. On the other hand, the effect of the number of the 

tendons on the threshold amplitude versus the wave frequency is 

shown in Fig. 11 . It is clear that the increase of the number of ten- 

dons first increases the threshold. One can conclude that the high- 

est value of the number of tendons contributed to increase the de- 

gree of stability of the TLP. 

To confirm our analytical predictions obtained in Figs. 9–11 , we 

study the effect tendon viscosity coefficient and fractional order 

parameters on a basin of attraction of the system. For this pur- 

pose, we numerically solve Eq. (17) using Newton-Leipnik method 

[17,18] . From Fig. 12 , we notice that, when decreasing the order of 

derivative, one an erosion of the basin of attraction. This result al- 

lows to conclude that, the lowest value of fractional order has a 

detrimental effect on the stability of the system. Fig. 13 presents 

the effect of the tendon viscosity coefficient on the basin of at- 

traction. It should be noted that, when the tendon viscosity coeffi- 

cient η greater than 0.27, the basin of attraction has a regular form 

Fig. 13 b. Those results have already been predicted analytically. We 

can conclude that, the analytical and numerical predictions are in 

good agreement. 

5. Conclusion 

This work has analyzed the surge movement of tension leg plat- 

form under regular sea wave excitation. We have supposed that, 

the tendons exhibit a nonlinear viscoelastic behavior and frac- 

tional properties. We firstly modeled the TLP by the nonlinear or- 

dinary differential equation. Secondly, the averaging method has 

been used to evaluate the effect of different parameters, namely: 

fractional order, tendon viscosity coefficient, number of tendons on 

the vibration amplitude of the tendon leg platform and on its sta- 

bility. It was observed that as the order of the fractional deriva- 

tive increases the amplitude response of the TLP decreases. The 

increase of the fractional order derivative also contributes to de- 

crease the unstable range of amplitude. Nevertheless, beyond a 

certain value of the fractional parameter ( α ∈ ( 0 . 65 , 1 ) ), we have 

rather observed an increase in amplitude. It was also observed 

that, the amplitude response of tension leg platform is relevantly 

reduced and the domain of the unstable solutions also decreases 

when the number of tendons increases. Thus, it can be concluded 

that the surge amplitude is affected by the number of tendons, 

the fractional order derivative and the tendon viscosity coefficient. 

The Melnikov perturbation method is used to derive the analytical 

criterion for the appearance of chaos in the system. A convenient 

demonstration of the use and accuracy of the method is obtained 

from the basin of attraction. The effect of the number of tendons, 

the tendon viscosity coefficient and fractional derivative are inves- 

tigated. It is found that, the horseshoes chaos decreases and disap- 

pears as these parameters increase. The basin of attraction is de- 

stroyed and the fractal behavior becomes more and more visible 

as the fractional derivative and the tendon viscosity coefficient de- 

crease. 
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