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Professor, University of Yaoundé I (Cameroon)
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Abstract

In this thesis, the understanding of the importance of memory in biological systems in
close correlation with the transport of nerve impulse in neurons is our focal point. With
this in mind, we first inventoried the different manifestations of memory, as well as all
the biological systems involved in this transport process. It turns out that chromatin
is one of them, with a type of memory very little known in biology, namely transport
memory. Next, we test the stability of this memory in the presence of certain phenom-
ena frequently encountered in the process of neuronal transport such as toxins and fluc-
tuations. Starting from the generalization of the Brownian motion well-known as the
reaction random walk, we studied the impact of fluctuations of external origin which
enter the transport process on the neuronal scale. We have shown that these fluctua-
tions increase the nonlinearity, thus inducing biological chaos in the environment. The
complexity and control inherent in chaotic systems are very important for the dynam-
ics of gene expression and translation. Finally, by considering subdiffusive regime, we
studied a diffusion reaction model describing the spread of toxins in an ecosystem. The
cases studied allowed us to better understand the memory effect in prey-predator com-
petition. It clearly shows that memory can cancel the so-called Turing structures already
formed, just as it can create new ones. However, no case studied has led to the extinction
of the present species.

Keywords: Memory effects; Transport memory; Reaction random walk; External fluc-
tuations; Toxicity; Subdiffusion; Turing instability.
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Résumé

Dans cette thèse, la compréhension de l’importance de la mémoire dans les systèmes
biologiques en étroite correlation avec le transport de l’influx nerveux dans les neurones
est notre point focal. Dans cette optique, nous avons inventori dans un premier temps
les différentes manifestations de la mémoire, ainsi que certains systèmes biologiques
impliqués dans ce processus de transport. Il en ressort que la chromatine en fait partie,
avec un type de mémoire très peu connu en biologie, à savoir la mémoire de trans-
port. Ensuite, nous avons test la stabilité de cette mémoire face à certains phénomènes
fréquemment rencontrés dans le processus du transport neuronal tels que les toxines
et les fluctuations. Partant de la généralisation du mouvement Brownien plus connue
sous le nom de réaction de marche aléatoire, nous avons étudié l’impact des fluctuations
d’origine externe qui entrent dans le processus de transport à l’ échelle neuronale. Nous
avons montré que ces fluctuations augmentent la nonlinéarité, induisant ainsi un chaos
biologique dans le milieu. La complexité et le contrôle inhérent aux systèmes chaotiques
sont très importants pour la dynamique de l’expression et de la translation génétique.
Enfin, en considérant le régime sous diffusif, nous avons étudié un modèle de réaction
diffusion décrivant la propagation des toxines dans un écosystème. Les cas étudiés nous
ont permis de mieux appréhender l’effet mémoire dans la compétition proie-prédateur.
Il en ressort clairement que la mémoire peut annuler les structures dites de Turing déjà
formées, tout comme elle peut en créer de nouvelles. Cependant, aucun cas étudié n’a
conduit à l’extinction des espèces présentes.

Mots clés: Effets de mémoire; Mémoire de transport ; Réaction Random Walk; Fluc-
tuations externes; Toxicité; sous diffusion; instabilit de Turing.
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General Introduction

An electrical signal that travels along neurons, nerve impulses transmit motor com-

mands from the brain to motor nerves, and sensory messages from sensory organs (skin,

ears, nose, eyes, taste receptors) to the brain. This transmission from neurons to neu-

rons is ensured by neurotransmitters. Neurotransmitters are often referred to as body’s

chemical messengers [1, 2]. They are the molecules used by the nervous system to trans-

mit messages between neurons, or from neurons to muscles. Communication between

two neurons takes place in the synaptic cleft (the small gap between the synapses of

neurons) [3, 4, 5, 6, 7]. Here, electrical signals that have travelled along the axon are

briefly converted into chemical signals through the release of neurotransmitters, caus-

ing a specific response in the receiving neuron. A neurotransmitter influences a neuron

in one of the three ways: excitatory, inhibitory or modulatory. An excitatory transmitter

promotes the generation of an electrical signal called an action potential in the receiv-

ing neuron, while an inhibitory transmitter prevents it. Whether a neurotransmitter is

excitatory or inhibitory depends on the receptor it binds to. Neuromodulators are a bit

different, as they are not restricted to the synaptic cleft between two neurons, and so

can affect large numbers of neurons at once. Neuromodulators therefore regulate pop-

ulations of neurons, while also operating over a slower time course than excitatory and

inhibitory transmitters. These chemical messengers can affect a wide variety of physical

and psychological functions, including heart rate, sleep, appetite, mood, fear and lead

to dynamic changes in gene expression via modifying chromatin accessibility.

The mammalian brain works appropriately only when there is a proper balance be-

tween excitation and inhibition. An imbalance in the ratio of excitatory−to−inhibitory

neurons (referred to as the E/I ratio) is associated with numerous neurological abnor-

1



General Introduction 2

malities and deficits [8]. Increased E/I ratios, that is higher excitability, leads to pro-

longed neocortical circuit activity, stimulus hypersensitivity, cognitive impairments, and

epilepsy [9, 10, 11]. Of equal interest and importance, decrease in the E/I ratio, or a

stronger inhibitory drive, have been linked to impaired social interactions, autistic be-

haviors, and mental retardation [12, 13]. It is well accepted that the E/I ratio changes

during neuronal development, with excitation decreasing and inhibition increasing, and

that deviations in this process give rise to neurological disorders. Most notably, in-

hibitory and excitatory neurons compose two distinct groups on the basis of several

features. They release different neurotransmitters and their synapses therefore have dif-

ferent functional influences (-aminobutyric acid, inhibitory vs. glutamate, excitatory).

Inhibitory neurons also have aspinous dendrites and are fastspiking compared to exci-

tatory neurons which have spiny dendrites and are regular−spiking or bursting.

With the consolidation of nonlinear science and neuroscience, more and more atten-

tion has been paid to the intricate spiking rhythms in neuronal models. Previous works

have revealed the mechanism for different modes of neuronal bursting or spiking from

the point of view of dynamics [14, 15, 16, 17, 18, 19, 20, 21, 22]. Among these works, one

of the most striking was that of Brian et al. who analyzed the dynamics of firing rate

with a range of stimulus dynamics in their neurophysiology experiment [23]. Their re-

sults showed that single rat neocortical pyramidal neurons can adapt along a time−scale

that depends on the change in stimulus statistics. This multiple time−scale adaptation

is consistent with fractional−order differetiation, such that the neuron’s firing rate is a

fractional−order derivative of slowly varying stimulus [23]. Moreover, The vestibulo-

ocular reflex and other oculomotor subsystems such as pursuit and saccades are ulti-

mately mediated in the brainstem by premotor neurons in the vestibular and prepositus

nuclei that relay eye movement commands to extraocular motoneurons. The premotor

neurons receive vestibular signals from canal afferents. Canal afferent frequency re-

sponses have a component that can be characterized as a fractional order differentiation

[24].

In recent years, fractional calculus has allowed describing several complex problems

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



General Introduction 3

in the fields of mathematics, physics, biology, and engineering [26, 25]. The complexity

of these problems has led researchers to develop mathematical theories to model the

complexities of nature taking into account the fractional calculus. The mathematical

models are powerful tools used for describing real-world problems; to develop math-

ematical models, differential equations and differential operators are required, which

can be local or non-local. The non-local can further be divided into three types: dif-

ferential operators with a power-law kernel, differential operators with exponential de-

cay law, and finally, differential operators with Mittag-Leffler law. The operators with

non-singular kernel have the following features: They do not impose artificial singular-

ities on any model, they have at the same time Markovian and non-Markovian prop-

erties, they are at the same time power law, stretched exponential and Brownian mo-

tion, the mean square displacement is a crossover from usual diffusion to sub-diffusion,

the derivative probability distribution is at the same time Gaussian and non-Gaussian,

and it can cross over from Gaussian to non-Gaussian even without passing through the

steady state. It means that the fractional derivatives with non-singular kernel are at the

same time deterministic and stochastic.

Fractional−order differentiation/integration is a fundamental and general compu-

tation that can contribute to efficient information processing, stimulus anticipation, and

assessment of frequency−independent phase shifts of oscillatory neuronal firing. It has

a long history from 30 September 1965, when the derivative of oder α = 1/2 was men-

tioned by Leibniz. New possibilities in mathematics and theoretical physics appear,

when the order of the differential operator Dα
x or the integral operator Iαx becomes an ar-

bitrary parameter. The fractional calculus is a powerful tool to describe physical systems

that have long−term memory and long range spatial interactions. Most of the processes

associated with complex systems have nonlocal dynamics and it can be characterized

by long−term memory in time. Recently, a new type of memory was observed in the

transport process. It arises if the linear part of the evolution represents a process which

is in part ballistic and in part diffusive, and was termed transport memory [27, 28]. In

this case, the memory function or correlation function which describes the transport is,

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



General Introduction 4

in such cases not a δ function as in the purely diffusive case, but has a finite decay time

[29]. In the last decades, fractional calculus [30, 31, 26, 32, 25] has become very useful

and provides an excellent instrument for modeling the biophysical phenomena [33]. It

includes the properties of tissue−electrode interface [34], viscoelastic properties of tis-

sue [35], kinetic properties of drug delivery and absorption [36, 37], diffusion process

[38, 39], computational neuron models [40, 41, 42], analysis of different neural networks

[43, 44, 45] and so on. The fractional−order neuron models produce diverse firing pat-

terns [46, 47, 48]. Although the single neurons respond to applied current stimulus on

very short time period, the mean firing activities and firing rates can be considered un-

der the dynamics of fractional differentiation. It provides a general model system for the

firing−rate response to time−varying statistics. It has been observed in a wide range of

neural systems, from ion channels of neuronal membrane to cognitive behavior [49]. It is

also possible to have a power−law response without the frequency−independent phase

property of the fractional derivative. Fractional-order dynamics has been observed in

the vestibular-oculomotor system [24, 50, 51] and the fly motion of sensitive neuron H1

[52]. It may contribute to the mechanisms including neural circuit theory [50], synaptic

activities between the neurons [52], geometrical properties of neural cells [24, 50].

In this thesis, the investigation of the role played by the memory on different aspects

linked to the transport of nerve impulses in neurons is our main focus. Enlightened

by the fact that Billions of neurotransmitter molecules which ensure transmission from

between neurons work constantly to keep our brains functioning, managing everything

from our breathing, heartbeat to our learning and concentration levels, We decided to

focus on the role that the memory effect would actually play in all the underlying pro-

cesses that would result from this transport. The thesis is structured as follows: in the

first chapter, we conducted a review of the scientific literature around the theme of this

thesis. It presents different ways of approaching memory effects in biology. The second

chapter, is developed to present analytical tools and numerical methods used. The last

chapter is devoted to the results and discussions. The thesis ends with a summary of

the main results and some perspectives for future investigations.
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CHAPTER I

LITERATURE REVIEW

I.1 Introduction

Neurotransmitters are endogenous substances that act as chemical messengers by

transmitting signals from a neuron to a target cell across a synapse. Prior to their re-

lease into the synaptic cleft, neurotransmitters are stored in secretory vesicles (called

synaptic vesicles) near the plasma membrane of the axon terminal. The release of the

neurotransmitter occurs most often in response to the arrival of an action potential at

the synapse. When released, the neurotransmitter crosses the synaptic gap and binds to

specific receptors in the membrane of the post-synaptic neuron or cell.

Figure 1: Chemical transmission between nerve cells

Neurotransmitters are generally classified into two main categories related to their

overall activity, excitatory or inhibitory. Excitatory neurotransmitters exert excitatory ef-

fects on the neuron, thereby, increasing the likelihood that the neuron will fire an action

potential. Major excitatory neurotransmitters include glutamate, epinephrine and nore-

5
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pinephrine. Inhibitory neurotransmitters exert inhibitory effects on the neuron, thereby,

decreasing the probability that the neuron will fire an action potential. Major inhibitory

neurotransmitters include GABA, glycine, and serotonin. Some neurotransmitters, can

exert both excitatory and inhibitory effects depending on the type of receptors that are

present. In addition to excitation or inhibition, neurotransmitters can be broadly cate-

gorized into two groups defined as small molecule neurotransmitters or peptide neu-

rotransmitters. Many peptides that exhibit neurotransmitter activity also possess hor-

monal activity since some cells that produce the peptide secrete it into the blood where it

then can act on distant cells. Small molecule neurotransmitters include (but are not lim-

ited to) acetylcholine, GABA, amino acid neurotransmitters, ATP and nitric oxide (NO).

The peptide neurotransmitters include more than 50 different peptides. As mentioned

above, the transmission orchestrated by neurotransmitters affects a lot of physical and

physiological function of our body. Furthermore, the discovery of memory effects in this

process has facilitated the understanding of some previously unknown mechanisms, as

well as the advancement of medicine. However, although the memory effect has made

it possible to better understand the transport of nerve impulses in neurons, few studies

have examined the influence of the memory effect on the various processes in close cor-

relation with this transport. in this chapter, we will review the advances made in this

field thanks to memory effects, after which, a presentation of the processes triggered by

said transport will be made. In the next section, we will present the different manifesta-

tions of memory effects. We will end this chapter with the problematic of this thesis, the

possible solutions of which will be presented in the next chapter.
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I.2 Literature review on some interrelationships of the nerve

impulses and some biological systems exhibiting mem-

ory effects

I.2.1 The interrelationship of nerve impulses and blood cells

Blood racing through a brain region’s web of vessels is a sign that nerve cells in that

locale have kicked into action. The blood rushes to active areas to supply firing neurons

with the oxygen and glucose they need for energy. It is this blood flow, which can last

up to a minute, that scientists track in functional magnetic resonance imaging (fMRI)

to determine which brain areas are responding to different stimuli. But a new theory

could pave the way for a reinterpretation of fMRI images, elevating their measurements

to the evaluation of actual neuronal processing rather than the subsequent blood flow

that indirectly indicates it, and thereby enhancing the fMRI’s usefulness in diagnosing

neurological problems.

C. Moore, an assistant neuroscience professor at the Massachusetts Institute of Tech-

nology’s McGovern Institute for Brain Research, detailed his hypothesis in an article

[53]. In essence, it suggests blood’s role in the cortex (a key brain processing center),

specifically, is more than just bringing nutrients to the cell, it can also alter the activ-

ity of local neuronal circuits. For instance, in experiments in his lab, Moore has seen

that there is more blood flow can arrive in an area that processes information from a

presented stimulus to a certain sense (e.g. touch, visual, auditory) prior to the appear-

ance of the stimulus, implying that the flow can prime a circuit for activity, as well.

Moore concluded that, blood should be factored into any model of neuronal process-

ing, how nerve cells in the brain are activated, how impulses are transmitted between

them, how long activity lasts, and how it is terminated. In addition to changing what

fMRI is actually measuring, such models could potentially provide new clues to causes

of enigmatic disorders such as Alzheimer’s disease, multiple sclerosis and schizophre-
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nia, potentially paving the way for treatments that involve correcting blood flow as well

as (or rather than) chemical deficiencies. According to Moore, the vasculature thus di-

rectly or indirectly (via astrocytes) influences neurons. He notes that substances in blood

may modulate neuron activity. The most likely candidate, he says, is nitric oxide (NO),

which easily crosses the bloodbrain barrier and has been shown both in brain slices and

in animal models to excite (and in some cases dampen) neuronal action. Blood vessels

also affect neurons via thermal and mechanical stress. Increased blood flow can alter

the local temperature in a brain region. For instance, a decrease of just one degree Cel-

sius can lead to suppressed firing rates, in some circumstances. As a rule, blood flow

changes increase the temperature in outer brain areas, while decreasing the tempera-

ture of more central regions. Pressure and volume, meanwhile, within the blood vessels

can change the amount that the vessels physically impact the membranes of brain cells.

If pressure or volume were to increase, a vessel could bulge, blocking receptors or ion

channels and thereby causing a decrease in a neuron’s electrical activity. A change in

blood flow could also trigger astrocytes to release certain hormones or neurotransmit-

ters. ”If anything is going on in the blood vessel,” Moore says, ”the glia (astrocytes and

other non-neuronal nerve cells) is in a great position to sense it.” For instance, astrocytes

might secrete the excitatory neurotransmitter glutamate, which binds to neurons and

allows ion exchanges that cause cells to fire.

As we can see, the link between blood cells and nerve impulses is therefore clearly

established. however, the human red blood cells can be deformed by external forces

but returns to the biconcave resting shape after removal of the forces [54]. The shape

memory was probed by an experiment called go-and-stop. In this experiment, the cells

were first sheared to induce a tank-tread motion. Then the flow was stopped, and a

subsequent motion of the red cell was taken as an evidence of a shape memory. It was

found that virtually all cells tested showed a shape memory and that this memory was

not eliminated even by continuous shearing of the red cells for four hours. Preliminary

results of the go-and-stop experiment were presented as an abstract [55].

This paragraph briefly shows the close relationship that exists between nerve im-
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pulses and blood vessels on the one hand, and between blood vessels and memory ef-

fects on the other. However, it should be noted that apart from blood vessels, other

biological systems with similar interconnections exist.

I.2.2 The interrelationship of nerve impulses and DNA

DNA is the fundamental molecule by which information is stored and utilized to

produce life. DNA is a high-density storage medium [56, 57, 58] that can be quickly

copied by exponential PCR amplification and stably preserved for decades to millen-

nia [59]. Biological information encoded in DNA can be directly converted into action-

able cellular responses through gene regulation and expression. Although DNA is of-

ten thought of as a long-term information-bearing molecule, there are many examples

of biological information storage and access through DNA within a single life cycle of

an organism. Examples include phase variation [60], CRISPR-mediated immunity [61],

mammalian adaptive immune systems [62], diversity-generating retroelements [63] and

programmed genome rearrangements [64, 65]. Advances in next-generation sequencing

(NGS) [66] and nucleic acid synthesis [67] have ushered in a new era of rapid and in-

expensive DNA reading and writing, which has further elevated the relevance of DNA

as a meaningful information storage medium. Recently, a simple molecular memory,

named the ”hairpin-DNA memory”, has been developed (see Fig. 2) [68]. The memory

employs the temperature-controlled conformational transition of hairpin-DNA strands

in memory writing and erasing and allows parallel addressing of a very large memory

space without physical wiring. Experiments on repetitive memory writing and erasing

demonstrated that the molecular addressing was highly selective and parallel.

It is now ubiquitous that DNA is the memory storage molecule of all living things.

It is two chains of nucleotides that coil around each other to form a double helix. The

interactions between the nucleotides of each chain are so strong that scientists can fold

DNA in very specific ways at a nanoscale. Like blood cells, DNA has a strong influence

on nerve impulses. Indeed, Johns Hopkins scientists led by Hongjun Song, Ph.D., a pro-
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Figure 2: Mechanism of the writing and erasing of the hairpin-DNA memory.

fessor of neurology and neuroscience in that university, have discovered that neurons

are risk takers: They use minor ”DNA surgeries” to toggle their activity levels all day,

every day. The main job of neurons is to communicate with other neurons through con-

nections called synapses. At each synapse, an initiating neuron releases chemical mes-

sengers, which are intercepted by receptor proteins on the receiving neuron. Neurons

can toggle the ”volume” of this communication by adjusting the activity level of their

genes to change the number of their messengers or receptors on the surface of the neu-

ron. When Song’s team added various drugs to neurons taken from mouse brains, their

synaptic activity, the volume of their communication went up and down accordingly.

When it was up, so was the activity of the Tet3 gene, which kicks off DNA demethyla-

tion. When it was down, Tet3 was down too [69]. Then, they flipped the experiment

around and manipulated the levels of Tet3 in the cells. Surprisingly, when Tet3 levels

were up, synaptic activity was down; when Tet3 levels were down, synaptic activity was

up. So do Tet3 levels depend on synaptic activity, or is it the other way around? An-

other series of experiments showed them that one of the changes occurring in neurons

in response to low levels of Tet3 was an increase in the protein GluR1 at their synapses.

Since GluR1 is a receptor for chemical messengers, its abundance at synapses is one of

the ways neurons can toggle their synaptic activity. The scientists say they have dis-
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covered another mechanism used by neurons to maintain relatively consistent levels of

synaptic activity so that neurons can remain responsive to the signaling around them. If

synaptic activity increases, Tet3 activity and base excision of tagged cytosines increases.

This causes the levels of GluR1 at synapses to decrease, in turn, which decreases their

overall strength, bringing the synapses back to their previous activity level. The oppo-

site can also happen, resulting in increasing synaptic activity in response to an initial

decrease. So Tet3 levels respond to synaptic activity levels, and synaptic activity levels

respond to Tet3 levels. This result enlighted the close correlation between the DNA and

nerve impulses.

I.2.3 The interrelationship of nerve impulses and chromatin

How transient activation of mature neuronal circuits leads to changes in gene expres-

sion and properties in neurons over the short- and long- term is a fundamental question

in neurobiology and has significant implications for understanding neuronal plasticity,

learning and memory, and brain disorders [70]. Epigenetic mechanisms play a crucial

role in regulating neuronal gene expression, and neuronal activity is known to alter epi-

genetic landmarks, such as DNA methylation and histone modifications [71, 72, 73, 74].

These epigenetic changes not only regulate gene activation and suppression, but also

modify the dynamics of gene expression [75]. Regulation of chromatin opening is an

important regulatory mechanism for the precise control of gene expression patterns.

Global changes in chromatin accessibility occur during cell differentiation when cells

with the same genome establish their identities through distinct gene expression pat-

terns. Previous genome-wide studies of different tissues and cell types, including those

in the nervous system, have revealed tissue-and cell-type-specific landscapes of chro-

matin accessibility [76]. It results that widespread chromatin accessibility changes in-

duced by neuronal activation[77]. Moreover, It has recently been shown [78] that chro-

matin moves coherently across micronscale regions [79], and incoherently until segrega-

tion ends [80]. This passage of the character of the motion from coherent to incoherent
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is a general feature of all physical systems with memory effects [28, 29]

I.2.4 The interrelationship of nerve impulses and RNA

Chromatin structure is influenced by multiples factors, such as pH, temperature, na-

ture and concentration of counterions, post-translational modifications of histones and

binding of structural non-histone proteins. RNA is also known to contribute to the regu-

lation of chromatin structure as chromatin-induced gene silencing was shown to depend

on the RNAi machinery in S. pombe, plants and Drosophila [81]. Moreover, in the uni-

verse of science, two worlds have recently collided those of RNA and chromatin. The

intersection of these two fields has been impending, but evidence for such a meaningful

collision has only recently become apparent [82]. Since chromatin is highly influenced

by neuronal activation, it is, therefore, reasonable to expect that RNA also is influenced

by neuronal activation. Regarding memory effects, they were highlighted for the very

first time by Katchalsky et al. [83] who found that RNA in solution exhibits hysteresis

phenomena with respect to changes in pH. Hysteresis cycles are independent of time but

dependent on the history of the system. Indeed, RNA folding potential energy surfaces

are rugged and full of kinetic traps, which can prevent the formation of the native struc-

ture and result in persistent differences in behavior between molecules, termed fold-

ing memory effects. The study of memory effects is closely linked to the development

and application of single-molecule fluorescence methods, which were instrumental in

the dissection of RNAs into discrete subpopulations with different dynamic properties.

The ability to interconvert subpopulations confirms that memory effects are an intrinsic

property of RNA folding and enables their thermodynamic and kinetic characterization

[84].

In this section, it has been shown that memory effects are not limited only to the neu-

ron, but that they are present in many processes in close correlation with the transport

of nerve impulses. This tends to confirm the hypothesis that the mechanism of mem-

ory coding in the brain is similar to that in the immune system so that the permanence
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of memories in the nervous system is ensured at the genomic level by a somatic re-

combination mechanism [85]. However, we have noticed that memory effects manifest

themselves differently, depending on whether one is in a biological system or another.

in the next section, we will review the different modeling of memory effects existing in

the literature.

I.3 Review studies on memory effects

Memory, in a more strict sense, can be defined as the capacity to store information

that can be recalled again with high distinction to steer the function correlated with the

new information. It is not visible, however, depending on the environment and circum-

stances, its effects are identifiable, and can be modeled mathematically. The different

approaches most used in the physical literature are the following:

I.3.1 Delayed differential equation approach

A retarded functional differential equation (RFDE) describes a system where the rate of

change of state is determined by the present and the past states of the system. If the

rate of change of the state depends on its own values as well, the system is called a

neutral functional differential equations (NFDEs). When only discrete values of the past

have influence on the present rate of change of state, the corresponding mathematical

model is either delay differential equation (DDE) or neutral delay differential equation

(NDDE). The theory of RFDEs is of both theoretical and practical interest, as they pro-

vide a powerful model of many phenomena in applied sciences such as physics, biology,

economics, control theory and so on. They play an important role in explaining many

different behaviors. The works reported in [86, 87, 88, 89, 90, 91, 92, 93, 94, 95] indicate

the scope for applications of RFDEs in bioscience. The authors remark, therein, how de-

lay differential equations have, prospectively, more interesting dynamics than equations

that lack memory effects; in consequence they provide potentially more flexible tools for

modelling.
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In many applications in the life sciences a delay is introduced when there are some

hidden variables and processes, which are not well understood but are known to cause a

time-lag [96]. Thus, a delay may in fact represent a reaction chain or a transport process.

A well-known example is Cheyne-Stokes respiration (or periodic breathing), discovered

in the 19th century: some people show, under constant conditions, periodic oscillations

of breathing frequency [97]. This strange phenomenon is apparently due to a delay

caused by cardiac insufficiency in the physiological circuit controlling the carbon diox-

ide level in the blood. Delays also occur naturally in the chemostat (a laboratory device

for controlling the supply of nutrient to a growing population). The use of ODEs to

model the chemostat carries the implication that changes occur instantaneously. This is

a potential deficiency of the ODE model. There are two sources of delays in the chemo-

stat model: delays due to the possibility that the organizm stores the nutrient (so that

the free nutrient concentration does not reflect the nutrient available for growth); and

delays due to the cell cycle; see [90, 92, 98].

In immunology, the response of an immune system cannot be represented correctly

without the hereditary phenomena being taken into account: cell division, differenti-

ation, etc. (the time needed for immune cells to divide, mature, or die). The simple

mathematical model of immune response employed by Marchuk [99] describes the in-

teraction of viruses, V (t); antibodies, F (t); plasma cells, C(t); and the relative character-

istic of the affected organ, m(t), of a person infected by a viral disease. This model is

formulated as a system of four nonlinear DDEs:

V ′(t) = (p1 − p2F (t))V (t),

C ′(t) = ξ(m)p3F (t− τ)V (t− τ)− p5(C(t)− C∗),

F ′(t) = p4(C(t)− F (t))− p8F (t)V (t),

m′(t) = p6V (t)− p7m(t),

(1)
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with t ≥ 0, and ξ(m) is defined by

ξ(m) =

 1 if m ≤ 0.1

10
9

(1−m) if 0.1 ≤ m ≤ 1
(2)

The first equation describes the change in the number of antigen in an organizm (it is a

Volterra-Lotka like predator-prey equation). The second equation describes the creation

of new plasma cells with time-lag due to infection (in the absence of infection, the second

term creates an equilibrium at C(t) = C∗). The third equation models the balance of the

number of antibody reacting with antigens: the generation of antibodies from plasma

cells is described by p4C(t) and their decrease due to aging are described by (p4F (t))

and binding with antigens by (p8F (t)V (t)). The relative characteristic m(t) of damaging

organizm is given by the fourth equation of which the first term expresses the degree of

damage to an organ and the second term describes the recuperation due to the recovery

activity of the organizm. Finally, the definition of (m) expresses the fact that the creation

of plasma cells slows down when the organizm is damaged by the viral infection.

The great potential of simple DDEs for capturing complex dynamics observed in

physiological systems, was shown in a series of related works [97, 100]. Delay differen-

tial equations were used to model unstable patterns of (i) the human respiratory system

and regulation of blood concentration of CO2 (periodic breathing and prediction of low-

and large-amplitude oscillations), (ii) the production of blood cells (periodic and chaotic

regimes), and (iii) hormone regulation in the endocrine system (period doubling bifur-

cations and chaotic solutions). The following model is concerned with the regulation

of hematopoiesis, the formation of blood cell elements in the body. For example white

and red blood cells, platelets and so on are produced in the bone marrow from where

they enter the blood stream. When the level of oxygen in the blood decreases this leads

to a release of a substance which in turn cause an increase in the release of the blood

elements from the marrow. There is thus a feedback from the blood to the bone marrow.

As an illustrative example, let c(t) be the concentration of cells (the population species)
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in the circulating blood. We assume that the cells are lost (die) at a rate proportional

to their concentration, that is like γc(t), where the parameter γ has dimensions (day)−1.

After the reduction in cells in the blood stream there is about a 6 day delay before the

marrow release further cells to replenish the deficiency [97]. We thus assume that the

flux λ of cells into the blood stream depends on the cell concentration at an earlier time,

namely, c(t − τ), where τ is the delay. Such assumptions suggest a model equation of

the form
dc(t)

dt
= λc(t− τ)− γc(t). (3)

a possible replacement in the form of the non-linear delay differential equation of (3)

was proposed in [101]

dc(t)

dt
=

λamc(t− τ)

am + cm(t− τ)
− γc(t), t ≥ 0,

c(t) = α, t ≤ 0,

(4)

where λ, a, m, g, τ , and α are positive constants.

I.3.2 Electromagnetic induction approach

Complex electrophysiological activities can induce time-varying electromagnetic

field and thus the effect of electromagnetic induction on the membrane potential should

be considered. Terefore, magnetic flux is proposed to model the effect of electromag-

netic induction on cell, and multiple modes of electrical activities can be detected to be

consistent with the biological results. In fact, the electric activity of neurons in neuronal

system is too complex and many factors should be considered as well. According to the

Faraday’s law of induction, the fluctuations or changes in action potentials in neurons

can generate magnetic field in the media; thus, the electrical activities of neurons will

be adjusted under feedback effect. That is to say, the fluctuation of membrane poten-

tials of neurons can change the distribution of electromagnetic field inner and external

of neurons; thus, the magnetic flux across membrane and electromagnetic effect should
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be considered. More often, it is claimed that neuronal system can be in good memory

to keep normal activities and the memory effect is often described by using time delay

term in the model. Indeed, magnetic field or magnet flux storage could be associated

with the memory effect. It is found that the electromagnetic radiation can excite quies-

cent neuron but also can suppress the electrical activities in neuron as well. Particularly,

it is. important to note that multiple modes of electrical activities can emerge alterna-

tively, and these results are consistent with biological experiments [102]. For this end,

several approaches have been presented. Aggarwal et al. [103] presented an optimal de-

sign of two dimensional finite impulse response (2D FIR) filter with quadrantally even

symmetric impulse response, and the presented scheme did show improved design ac-

curacy and flexibility with varying values of FDCs. Kumar and Rawat [104] proposed

the use of power function and least squares method for designing of a fractional-order

digital differentiator. The input signal can be transformed into a power function by us-

ing Taylor series expansion, and the fractional-order digital differentiator was described

by a finite impulse response (FIR) system that yields fractional-order derivative of the G-

L type for a power function. Wang et al. [105] investigated the propagation of the firing

rate and synchronous firings in a 10−layer feedforward neuronal network and found

that these abilities in information processing due to synchrony can be modulated by

noise and the operating mode of neurons. Suffczynski et al. [106] developed a compu-

tational model of thalamo-cortical circuits based on relevant (patho) physiological data,

and these results can provide more insight into the dynamics of the neuronal networks

leading to seizure generation in a rat experimental model of absence epilepsy. Cull-

heim and Thams [107] investigated the role for microglia in interplay with synapses,

and the development of various disorders of the central nervous system (CNS) was also

discussed. To discern the complex functional role of brain, the dynamic brain network

was constructed from human functional magnetic resonance imaging data based on the

sliding window method, and then the eigenvalues corresponding to the network were

calculated. Wang et al. [108] analyzed the global properties of eigenvalues by using

eigenvalue analysis, and the local properties were measured based on the random ma-

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



Literature review 18

trix theory (RMT). As an example, we will present a new four-variable Hindmarsh-Rose

neuron model introduced in [109]. The dynamical equations for this improved HR neu-

ron model are described by

dx
dt

= y − ax3 + bx2 − z + Iext − k1ρ(φ)x,

dy
dt

= c− dx2 − y,

dz
dt

= r [s(x+ 1.6)− z] ,

dφ
dt

= x− k2φ,

(5)

where the variables x, y, z represent the membrane potential, slow current for recovery

variable, and adaption current, respectively. Iext denotes the external forcing current,

and the fourth variable φ describes the magnetic flux across membrane. The ρ(φ) is the

memory conductance of a magnetic flux-controlled memristor and here used to describe

the coupling between magnetic flux and membrane potential of neuron. The memory

conductance of memristor is often described by ρ(φ) = α + 3βφ2, and α, β are fixed

parameters, k1 and k2 are parameters that describe the interaction between membrane

potential and magnetic flux. The term k1ρ(φ)x describes the suppression modulation on

membrane potential, and it is dependent on the variation in magnetic flux by generating

additive faradic current. According to the Faraday law of electromagnetic induction and

description about memristor, the term k1ρ(φ)x could be regarded as additive induction

current on the membrane as follows

i′ =
dq(φ)

dt
=
dq(φ)

dφ

dφ

dt
= ρ(φ)V = k1ρ(φ)x (6)

In fact, a specific synapse called as autapse which the synapse connects to its body via a

close loop is found in some intermediate neurons, and the effect of autapse [110, 111] on

membrane potential of neuron is often described by applying a time-delayed feedback
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current along the close loop. That is to say, autapse connection provides evidence for

intrinsic time delay or response delay, and it is also believed that another time delay

(propagation time delay) exists when signals are propagated among nodes or neurons.

I.3.3 Fractional dynamics approach

It is well known that the fractional calculus is a classical mathematical notion and

a generalization of ordinary differentiation and integration to arbitrary (non-integer)

order.

However, the fractional calculus did not attract much attention for a long time due to

the lack of application background and its complexity. Until only very recently, the frac-

tional calculus has gained importance in both theoretical and applied aspects of several

branches of science and engineering [26, 25]. Researchers pointed out that the fractional

calculus plays an important role in modeling and many systems in interdisciplinary

fields, and can be elegantly described with the help of fractional derivatives, such as

viscoelastic systems, dielectric polarization, electromagnetic waves, heat conduction,

robotics, biological systems, finance and so on. Nowadays, studyies on fractional-order

calculus has become an active research field.

Why should we border at all?

The universality: The detailed structure of the propagator W (r, t), i.e., the probability

density function (pdf) for the initial condition lim
t→0+

W (r, t) = δ(r), depends, in general,

on the special shape of the underlying geometry. However, the interesting part of the

propagator has the asymptotic behaviour logW (r, t) ∼ cξu where ξ ≡ r
/
t
α/2 � 1 which

is expected to be universal. Here, u = 1/(1 − α/2) with the anomalous diffusion expo-

nent α defined below. The fractional equations we consider in the following are uni-

versal in this respect as we do not consider any form of quenched disorder. Our results

for anomalous diffusion are equivalent to findings from random walk models on an

isotropic and homogeneous support [112].
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Figure 3: From integer to non-integer [26].
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The non-universality: In contrast to Gaussian diffusion, fractional diffusion is non-

universal in that it involves a parameter α which is the order of the fractional deriva-

tive. Obviously, nature often violates the Gaussian universality mirrored in experimen-

tal results which do not follow the Gaussian predictions. Fractional diffusion equations

account for the typical “anomalous ”features which are observed in many systems.

The advantage to random walk models: Within the fractional approach it is possible to

include external fields in a straightforward manner. Also the consideration of transport

in the phase space spanned by both position and velocity coordinate is possible within

the same approach. Moreover, the calculation of boundary value problems is analogous

to the procedure for the corresponding standard equations.

The comparison to other approaches: The fractional approach is in some sense equiva-

lent to the generalised master equation approach. The advantage of the fractional model

again lies in the straightforward way of including external force terms and of calculating

boundary value problems. Conversely, generalised Langevin equations lead to a differ-

ent description as they correspond to Fokker-Planck equations which are local in time

and which contain time-dependent coefficients. In most cases of Brownian transport,

the deterministic Fokker-Planck equation is employed for the description of stochastic

dynamics in external fields. In analogy, the use of the fractional Fokker-Planck equation

is promoted for situations where anomalous diffusion underlies the system [112].

The mathematical advantage: A very convenient issue is that standard techniques for

solving partial di!erential equations or for calculating related transport moments also

apply to fractional equations which is demonstrated in [112].

The relation between the fractional solution and its Brownian counterpart: There exists

a transformation which maps the Brownian solution onto the corresponding fractional

solution, an interesting relation which is useful for both analytic and numerical analysis.

It is a simple approach: The appearance of fractional equations is very appealing due to

their proximity to the analogous standard equations. It has been demonstrated recently

that the fractional Fokker-Planck equation can be derived from a Langevin equation

with Gaussian white noise for systems where trapping occurs. This offers some insight
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into the physical mechanisms leading to fractional kinetics.

The mathematical definition of the differintegral operator of fractional order has been

the subject of different approaches, the most used are the Riemann-Liouville (RL), the

Grünwald-Letnikov (GL), the Caputo (C) and the Atangana-Baleanu’s definitions. Al-

though they are different in form, one can be transferred from each other under some

conditions.

i- The Riemann-Liouville’s approach of fractional-order derivative

As previously mentioned, The concept of non-integral order of integration can be traced

back to the genesis of differential calculus itself: the philosopher and creator of modern

calculus G.W. Leibniz made some remarks on the meaning and possibility of fractional

derivative of order 1/2 in the late 17th century. However a rigorous investigation was

first carried out by Liouville in a series of papers from 1832 − 1837, where he defined

the first outcast of an operator of fractional integration. Later investigations and further

developments by among others Riemann led to the construction of the integral-based

Riemann-Liouville fractional integral operator, which has been a valuable cornerstone

in fractional calculus ever since. Prior to Liouville and Riemann, Euler took the first

step in the study of fractional integration when he studied the simple case of fractional

integrals of monomials of arbitrary real order in the heuristic fashion of the time; it

has been said to have lead him to construct the Gamma function for fractional powers

of the factorial [113]. An early attempt by Liouville was later purified by the Swedish

mathematician Holmgren, who in 1865 made important contributions to the growing

study of fractional calculus. But it was Riemann [114] who reconstructed it to fit Abel’s

integral equation, and thus made it vastly more useful. Today there exist many different

forms of fractional integral operators, ranging from divided-difference types to infinite-

sum types [115], but the Riemann-Liouville Operator is still the most frequently used

when fractional integration is performed.

The classical form of fractional calculus is given by the Riemann-Liouville integral,

which is essentially what has been described above. The theory for periodic functions
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(therefore including the ”boundary condition” of repeating after a period) is the Weyl

integral. It is defined on Fourier series, and requires the constant Fourier coefficient to

vanish (thus, it applies to functions on the unit circle whose integrals evaluate to 0).

The Riemann-Liouville integral exists in two forms, upper and lower. Considering the

interval [a, b], the integrals are defined as

aD
−α
t f(t) = aI

α
t f(t) =

1

Γ(α)

∫ t
a

(t− τ)α−1f(τ)dτ ,

tD
−α
b f(t) = tI

α
b f(t) =

1

Γ(α)

∫ b
t

(τ − t)α−1f(τ)dτ .

(7)

The corresponding derivative is calculated using Lagrange’s rule for differential oper-

ators. Computing nth order derivative over the integral of order (n − α), the α order

derivative is obtained. It is important to remark that n is the smallest integer greater

than α ( that is, n = dαe). Similar to the definitions for the Riemann-Liouville integral,

the derivative has upper and lower variants.

aD
−α
t f(t) =

dn

dtn
aD
−(n−α)
t f(t) =

dn

dtn
aI

n−α
t f(t),

tD
−α
b f(t) =

dn

dtn
tD
−(n−α)
b f(t) =

dn

dtn
tI
n−α
b f(t)

(8)

By contrast, the Grünwald-Letnikov derivative starts with the derivative instead of the

integral.

2i- The Grünwald-Letnikov’s approach of fractional-order derivative

In mathematics, the Grünwald-Letnikov derivative is a basic extension of the derivative

in fractional calculus that allows one to take the derivative a non-interger number of

times. It was introduced by Anton Karl Grünwald (1838 − 1920) from Prague, in 1867,

and by Aleksey Vasilievich Letnikov (1837 − 1888) in Moscow in 1868. To constuct this
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derivative, they first considered the formula

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (9)

for the derivative that can be applied recursively to get higher-order derivatives. For

example, the second-order derivative would be:

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h
,

= lim
h1→0

lim
h2→0

f(x+ h1 + h2)− f(x+ h2)

h2

− lim
h2→0

f(x+ h1)− f(x)

h2

h1

,

(10)

Assuming that the h′s converge synchronously, this simplifies to:

f ′′(x) = lim
h→0

f(x+ 2h)− 2f(x+ h) + f(x)

h2
, (11)

which can be justified rigorously by the mean value theorem. In general, we have:

f (n)(x) = lim
h→0

∑
0≤m≤n

(−1)m

 n

m

 f(x+ (n−m)h)

hn.
(12)

Removing the restriction that n be a positive integer, it is reasonable to define:

Dqf(x) = lim
h→0

1

hq

∑
0≤m≤n

(−1)m

 q

m

 f(x+ (q −m)h). (13)

This defines the Grünwald-Letnikov derivative.
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To simplify notation, one can set:

∆q
hf(x) =

∑
0≤m≤n

(−1)m

 q

m

 f(x+ (q −m)h). (14)

So the Grünwald-Letnikov derivative may be succintly written as:

Dqf(x) = lim
h→0

∆q
hf(x)

hq.
(15)

3i- The Caputo’s approach of fractional-order derivative

Another option for computing fractional derivatives is the Caputo fractional derivative.

It was introduced by Michele Caputo in his 1967 paper [32]. In contrast to the Riemann-

Liouville fractional derivative, when solving differential equations using Caputo’s defi-

nition, it is not necessary to define the fractional order initial conditions. Caputo’s defi-

nition is illustrated as follows:

cDα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(τ)dτ

(t− τ)α+1−n . (16)

There is the Caputo fractional derivative defined as:

Dνf(t) =
1

Γ(n− ν)

t∫
0

(t− u)(n−ν−1)f (n)(u)du, (n− 1) < ν < n, (17)

which has the advantage that is zero when f(t) is constant and its Laplace Transform

is expressed by means of the initial values of the function and its derivative. Moreover,

there is the Caputo fractional derivative of distributed order defined as:

b
aD

νf(t) =

b∫
a

φ(ν) [Dνf(t)] dν =

b∫
a

 φ(ν)

Γ(1− ν)

t∫
0

(t− u)−νf ′(u)du

, (18)
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where φ(ν) is a weight function and which is used to represent mathematically the pres-

ence of multiple memory formalisms.

iv- The Atangana-Baleanu’s approach of fractional-order derivative

Like the integral, there is also a fractional derivative using the general Mittag-Leffler

function as a kernel [116]. The authors introduced two versions, the Atangana-Baleanu

in Caputo sense (ABC) derivative, which is the convolution of a local derivative of a

given function with the generalized Mittag-Leffler function, and the Atangana-Baleanu

in Riemann-Liouville sense (ABR) derivative, which is the derivative of a convolution

of a given function that is not differentiable with the generalized Mittag-Leffler function

[117]. The Atangana-Baleanu fractional derivative in Caputo sense is defined as:

ABC
a Dα

t f(t) =
AB(α)

1− α

t∫
a

f ′(τ)Eα

(
−α(t− τ)α

1− α

)
dτ, (19)

and the Atangana-Baleanu fractional derivative in Riemann-Liouville is defined as:

ABR
a Dα

t f(t) =
AB(α)

1− α
d

dt

t∫
a

f(τ)Eα

(
−α(t− τ)α

1− α

)
dτ. (20)

In addition to the above-mentioned approaches, there are many others such as the

Riesz derivative, the Hadamard derivative, the Marchaud derivative, the MillerRoss

derivative, the Weyl derivative and so one.

I.4 Motivations

The transport of nerve impulses is of paramount importance in the majority of biological

phenomena that govern human daily life, because neurons use this means of transport

to communicate with each other. This transport triggers numerous genetic modifica-

tions which are still little /poorly known, and constitute the basis of the diversity of the

genome in living beings. Moreover, all the informations stored during this transport,
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source of various modifications is carefully saved over decades and centuries, which

suggests that neurons have phenomenal dynamic memory that can store great amount

of information.

The storage of information is ubiquitous in our technological society: paper, film,

semiconductor memories, audio/video-tapes, magnetic/optical disks, etc., collectively

contain many petabytes of information. In contrast, Nature has been frugal in its use

of information storage techniques. Blueprints of life, both of plant and of animal, are

stored in the DNA molecules [118, 119, 120]. Instinctive as well as learned information

reside in the nervous systems of higher animals [121, 122]. The human immune system

stores information about past pathogens in the form of primed lymphocytes (e.g., T-cells

and B-cells), using this information to mass-produce and rapidly deploy antibodies and

specialized immune cells when an old pathogen reappears [123, 124]. These instances

aside, it is hard to find purposeful employment of data storage in Nature.

Despite their rarity, the natural mechanisms of information storage are extremely

powerful and versatile. A complement of chromosomes not only contains the entire

description of a plant or an animal, but it also carries the step-by-step instructions

for building the individual from a single initial cell. The human brain can store vast

amounts of information embodied in images, sounds, scents, event sequences, and ab-

stract concepts to which an individual may be exposed through a lifetime. The brain

forms automatic links among the stored data, recalls by association, and responds to

external events by exploiting its reservoir of pre-programmed and learned databases.

Inspired by sophisticated tools and techniques employed by Nature for purposeful

storage of information which stand in stark contrast to the primitive and relatively in-

efficient means used by man, efforts have been made so far to build a huge memory

using DNA molecules. These efforts are targeted at increasing the size of the address

space of a molecular memory and making operations on a specified word in the address

space more efficient and reliable. The former issue should be solved by careful design

of the base sequences of the address portions. The latter issue depends on the architec-

ture of a molecular memory and the available memory operations. Indeed, Soon after
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Adleman published his seminal work on DNA computing [125] and Lipton [126] gave a

more general framework for solving nondeterministic polynomial time (NP)-complete

problems using DNA, Baum wrote a technical comment in Science on building a huge

memory using DNA molecules [127]. He claimed that it was possible to build an asso-

ciative memory vastly larger than the brain. More concretely, he wrote that it was not

completely implausible to imagine vessels storing 1020 words, which is comparable to

standard estimates of brain capacity as 1014 synapses each storing a few bits. Among

various proposals for constructing a molecular memory, he considered a scheme that

stores DNA molecules consisting of an address portion and a data portion. In order

for the scheme to work as an ordinary random access memory, each address portion

should be accessible only by the sequence that is complementary to the sequence of

the address portion. He even mentioned the use of an error correcting code to avoid

accidental bonding due to approximate match. Through enzymatic reactions, DNA is

Figure 4: DNA Memory Chips proposed by Hihath.

read, written, and erased, and can store massive amounts of data. Researchers are now

using the electrical properties of DNA to develop memory technologies for computa-

tional data. The main problem encountered with this promising media (DNA) which

provides numerous advantages, which includes the ability to store dense information

while achieving long-term stability is how the data can be retrieved from a DNA-based
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archive.

Moreover, fractional dynamics are not just another way of presenting old stories.

We believe that they are a powerful framework which is of use for many systems. In-

deed, fractional dynamics has experienced a firm upswing during the last years, having

been forged into a mature framework in the theory of stochastic processes. the occur-

rence of anomalous dynamics in various fields ranging from nanoscale over biological

to geophysical and environmental systems is well understood by applying the frac-

tional dynamics. The notions and concepts of anomalous dynamical properties, such

as long-range spatial or temporal correlations manifested in power-laws, stretched ex-

ponentials, 1/fα−noises, or non-Gaussian probability density functions (PDFs), have

been predicted and observed in numerous systems from various disciplines including

physics, chemistry, engineering, geology, biology, economy, meteorology, astrophysics

and others. Apart from other standard tools to describe anomalous dynamics such as

continuous time random walks [128, 129, 130, 131, 132], fractional dynamical equations

have become increasingly popular to model anomalous transport [133, 112, 134, 135]. In

the presence of an external force field, in particular, the fractional Fokker-Planck equa-

tion provides a direct extension of the classical Fokker-Planck equation, being amenable

to well-known methods of solution. Moreover, fractional calculus makes it possible to

clearly distinguish between super-diffusion, normal diffusion and sub-diffusion. Many

studies point out the fact that nervous conduction and transmission, the main target of

toxic substances are overwhelmingly dominated by subdiffusion. Subdiffusion has ac-

quired relevance in the past decades since it has been experimentally detected in several

systems such as porous media, glasses, transport through cell membranes, and other

biological systems.

Now that we have a broader view of what fractional dynamics really is, and taking

into account the above considerations, our motivation in this thesis comes down to:

F Highlight the various manifestations hitherto observed of memory effects,

F Study the biological systems linked to the transport of nerve impulses in order to

see which ones can be used as palliators in the view to circumvent the problem related
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to the reading of DNA memory,

F Study the stability of memory under the influence of phenomena frequently en-

countered during the transport of nerve impulses such as fluctuations and toxicity.

I.5 Conclusion

In this chapter, we have briefly explained the concept of the transport of nerve impulses

in neurons. We have evoked some biological processes in close correlation with this one.

We have shown that memory is ubiquitous in all these processes, even if it manifests

itself differently from one process to another. The different mathematical approaches

to memory were presented; therefore, it became clear that the fractional derivative is

more indicated for the case of neurons in general, and in particular for the transport

of nerve impulses in neurons, since this can be used not only to model the memory

effects, the effects of nonlocality very often created by toxins, but also to describe the

anomalous diffusion phenomena encountered in the biological processes linked to the

transport of nerve impulses in neurons. with regard to toxins, their presence in neurons

can come from several origins (drugs, food, etc.). Their influence on memory, as well

as the transport memory effects observed in chromatin dynamics will be studied in the

next chapter.

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



CHAPTER II

MODEL AND METHODOLOGY

II.1 Introduction

In the previous chapter, we reviewed different manifestations of memory effects

that come into play during the transport of nerve impulses. We have also made a de-

scription of the various techniques hitherto used to analyze these effects. We did not

fail to emphasize the interest aroused by memory effects, especially for technological

applications, which led us to focus our attention on the stability of said memory in the

presence of phenomena frequently encountered in neurons such as fluctuations and tox-

ins for example, and which are of paramount importance for example in the cellular

dynamics, or in the dynamics of genetic populations. In this chapter, we will present

analytical tools and numerical methods allowing to provide an element of response to

the above-mentioned problems.

II.2 Mathematical modeling

In this section, we mathematically describe the effect of transport memory that we

have used and presented in the previous chapter, as well as the influence of fluctuations

and toxins on some biological systems linked to the transport of nerve impulses.

II.2.1 Mathematical description of the effect of transport memory

The model under consideration consists of a chain of particles of identical masses

M, interacting with its two nearest neighbors through harmonic coupling, where A is

31
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the harmonic coupling coefficient. The particles are under the influence of an on−site,

double−well potential [136, 137] given by:

V (un) =
1

4
un −

1 + a

3
u3
n +

a

2
u2
n, (21)

where un is the position of the particle n and a ∈ (0, 1) is a so−called “detuning”parameter

[138].

Since we are dealing with a dissipative chain, we need a Lagrangian description

which involves dissipation. This is achieved by extending the Lagrangian formalism to

include the Rayleigh dissipative function, where ξ is the dissipative coefficient. We get

the equation governing the motion of the nth particle

0 0.5 1

u
n

V
(u

n
)

Figure 5: Double well potential with a = 0.5.

M
d2un
dt2

+ ξ
dun
dt

= A(un+1 − 2un + un−1)− u3
n + (1 + a)u2

n − aun. (22)

In the continuum limit, i.e., when the lattice spacing is much less than the wavelength of

the excitations propagating along the chain (this is also referred to as displacive regime

[139] and [140]), the dynamics of the model can be described in dimensionless units, by

the following partial differential equation:

∂2u

∂t2
+ µ

∂u

∂t
= D

∂2u

∂x2
+

1

M
f(u), (23)

where µ =
ξ

M
is the rescaled dissipation coefficient, D =

A

M
is the diffusion coefficient
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and f(u) = −u3 + (1 + a)u2 − au, is the well known Nagumo reaction term. Now, let

us reduce the number of parameters by introducing the change of variables t → Mµt,

x→
√
MDx. Our initial model, Eq. (23) then reduces to

ε
∂2u

∂t2
+
∂u

∂t
=
∂2u

∂x2
+ f(u), (24)

with the appearance of a new parameter (the “mass”), ε = (Mµ2)−1 [141]. The parabolic

or overdamped limit is obtained by letting ε→ 0, which leads to

∂u

∂t
=
∂2u

∂x2
+ f(u). (25)

It is straightforward to show that the steady states of our function are u1 = 0, u2 = a

and u3 = 1. We are interested in those solutions which are front-like (kinks) connecting

the (unstable) state u1 = 0, with the globally (stable) state u3 = 1. Consequently, we

supplement equations (24) and (25) with boundary conditions u(−∞, t) = u1 , u(∞, t) =

u3 (see Fig. 5).

Now, consider the replacement of the diffusion equation (25) by its nonlocal (in time)

counterpart

∂u

∂t
=

∫ t

0

Φ(t− τ)
∂2u

∂x2
dτ + kf(u), (26)

where u(x, t) is the dynamics of the field, k is the quadratic growth rate, Φ(t) = αe−αt is

the memory function which describes the finiteness of the correlation or scattering time
1

α
.

Following the general rules of the calculus, we transform (26) into a differential equa-

tion that can easily be used to look for traveling wave solutions

∂2u

∂t2
+
[
α− kf ′(u)

] ∂u
∂t

= v2∂
2u

∂x2
+ αkf(u), (27)

where, just like in [28], v2 = α, the physical meaning of v being the speed dictated by

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



Model and methodology 34

the medium in the absence of scattering.

The Nagumo reaction term here represents neuronal activation, but it can also be

used to model population genetics [142]. In this case, the evolution equation (25) must

possess certain properties to be an acceptable description of reacting and dispersing

systems. A density u cannot be negative, and evolution equations for densities must

preserve positivity, i.e., u(r, 0) ≥ 0 for all r, at time t = 0 implies u(r, t) > 0 for all r for

all times t > 0. It is well−known that the diffusion equation

∂u

∂t
= D∆u, (28)

possesses this required feature. The rate equation

∂u

∂t
= f(u) = b(u)− d(u)u, (29)

and the reaction-diffusion equation

∂u

∂t
= D∆u+ f(u), (30)

will preserve positivity if f(0) ≥ 0.

The diffusion equation has, however, the unrealistic feature of infinitely fast propa-

gation. The fundamental solution of Eq. (28) with a point source at r = 0 and t = 0 is

given by

u(r, t) =
1√

4πDt
exp

[
− r2

4Dt

]
, t > 0. (31)

No matter how small t and how large r, the density u will be nonzero, though expo-

nentially small. This pathology can be traced back to the lack of inertia of Brownian

particles; their direction of motion in successive time intervals is uncorrelated. This

lack of correlation has two consequences: (i) The particles move with infinite velocity.

There is some probability, though exponentially small, that a dispersing individual will

travel an infinite distance from its current position in a small but nonzero period of time.

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



Model and methodology 35

Clearly, this cannot be true for molecules or organisms. (ii) The motion of the dispers-

ing individuals is unpredictable even on the smallest time scales. Again, this cannot be

true, either for molecules or organisms. It is therefore desirable to adopt a model for

dispersion that leads to more predictable motion with finite speed at smaller time scales

and approaches diffusive motion on larger time scales. The natural choice is a persistent

random walk, also known as a correlated random walk [143].

At the scales where particles have a well-defined finite velocity, persistent random

walk (PRW) or correlated random walk provides a better description for spatial spread

in population dynamics than Brownian motion, or the diffusion equation [144, 145]. In

fact, PRW has several advantages from a theoretical viewpoint: (i) PRW is a general-

ization of Brownian motion; it contains the latter as limiting case [143]. (ii) The PRW

fulfills the physical requirement of bounded velocity. (iii) The PRW provides a unified

treatment that covers the whole range of transport from diffusive limit to the ballistic

limit.

When the particles move according to a PRW, interact or react with each other, the

evolution equations for the densities read [143]:

∂u+

∂t
+ γ

∂u+

∂r
= µ(u− − u+) +

1

2
b(u)− d(u)u+,

∂u−

∂t
− γ ∂u

−

∂r
= µ(u+ − u−) +

1

2
b(u)− d(u)u−,

(32)

where b(u) is the production or birth term and captures the processes that increase the

chemical concentration or population density, and d(u) is the loss or death term and

captures the processes that decrease the concentration or density. u+(r, t) and u−(r, t)

are the densities of particles going to the right and to the left, respectively, and u(r, t) =

u+(r, t) + u−(r, t) is the total density of the dispersing individuals. With these kinetics,

PRW is called direction−independent reaction walk (DIRW). The particles travel with

speed γ > 0 and turn with frequency µ > 0.

Considering the advantages of PRW, we adopted it as an approach to study the effect
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of fluctuations on the dynamics of genetic populations.

II.2.2 External fluctuations in front propagation in reaction random

walks with direction−independent kinetics

We now consider the common case that the rate terms is of the form f(u, v) =

f1(u, v) + r1h1(u, v) and g(u, v) = g1(u, v) + r2h2(u, v), where the external control pa-

rameters r1 and r2 describe the influence of the surroundings on the system. We limit

ourselves to the case where r1 and r2 are scalar, which is true for all systems considered

here. Fluctuations in the environment result in fluctuations of ri, i = 1, 2, and we write

ri = ri + ε1/2η(x, t), i = 1, 2. (33)

with η(x, t) being a Gaussian white noise of zero mean and correlation given by

〈η(x, t)η(x′, t′)〉 = 2C(
|x− x′|

ξ
)δ(t− t′), (34)

where the parameter ξ is the characteristic length of the spatial correlation of the noise,

ε measures the strength of the noise and C(x) is a correlation function which is a well-

behaved, short-ranged and even function of space. The function C(x) verifies that in the

limit ξ → 0, the spatial white noise case is recovered [146], and δ is the Dirac delta func-

tion. Since these fluctuations are external, they do not verify a fluctuation−dissipation

relation, and the system is no longer at equilibrium.

Following the normalization procedure of C( |x|
ξ

) given in Ref. [147], Eq. (34) can be

approximated by the noise correlation of the Gaussian white spectrum

〈η(x, t)η(x′, t′)〉 = 2δ(x− x′)δ(t− t′). (35)

Incorporating the fluctuations in this way, system (32) transforms into a stochastic par-
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tial differential equation (SPDE)

∂u+

∂t
+ γ

∂u+

∂r
= µ(u− − u+) +

1

2
b(u−, u+)− d(u)u++

ε
1
2h1(u+, u−)η(x, t),

∂u−

∂t
− γ ∂u

−

∂r
= µ(u+ − u−) +

1

2
b(u)− d(u−, u+)u−+

ε
1
2h2(u+, u−)η(x, t),

(36)

where, for simplicity we have written

f(u−, u+, r1) = f1(u−, u+) + r1h1(u−, u+) =
1

2
b(u−, u+)− d(u−, u+)u+,

g(u−, u+, r2) = g1(u−, u+) + r2h2(u−, u+) =
1

2
b(u−, u+)− d(u−, u+)u−,

(37)

f1(u−, u+) = µ(u− − u+) +
1

2
b(u−, u+)− d(u−, u+)u+,

g1(u−, u+) = µ(u+ − u−) +
1

2
b(u−, u+)− d(u−, u+)u−.

(38)

Since the coupling functions, h1 and h2 are non constant, we have a nonvanishing mean

value. This means that systematic contributions to the field dynamics will appear.

Let us begin by evaluating the mean value of the noisy terms with the help of the

spatially extended version of Furutsu−Novikov−Donsker’s theorem

〈
h1(u−, u+)η(x, t)

〉
=

t∫
0

dt′
∫
dx 〈η(x, t)η(x′, t′)〉

〈
δh1(u−, u+)

δη(x′, t′)

〉
, (39)

with
δh1(u−, u+)

δη(x′, t′)
=
δh1(u−, u+)

δu−
δu−

δη(x′, t′)
+
δh1(u−, u+)

δu+

δu+

δη(x′, t′)
. (40)

Formal time integration of
δu−

δη(x′, t′)
and

δu+

δη(x′, t′)
in Eq. (36) allows the evaluation of
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the response function.

u+(t) = u+(0) +
t∫

0

dt′f(u−, u+) +
t∫

0

dt′h1(u−, u+)η(x, t),

u−(t) = u−(0) +
t∫

0

dt′g(u−, u+) +
t∫

0

dt′h2(u−, u+)η(x, t),

(41)

so that the response function at equal time is

δu+

δη(x′, t′)
= ε

1
2h1(u−, u+)δ(x− x′),

δu−

δη(x′, t′)
= ε

1
2h2(u−, u+)δ(x− x′).

(42)

And one finally obtains

〈
h1(u−, u+)η(x, t)

〉
= ε1/2C(0)

〈
h2(u−, u+)

δh1(u−, u+)

δu−
+ h1(u−, u+)

δh1(u−, u+)

δu+

〉
(43)

By following a similar reasoning, we obtain the mean value of the second noisy term

which is given as follows:

〈
h2(u−, u+)η(x, t)

〉
= ε1/2C(0)

〈
h1(u−, u+)

δh2(u−, u+)

δu+
+ h2(u−, u+)

δh2(u−, u+)

δu−

〉
(44)

According to this result, Eq. (36) can be rewritten in a more useful form,

∂u+

∂t
+ γ

∂u+

∂r
= v1(u+, u−) + ε1/2R1(u+, u−, r, t)

∂u−

∂t
− γ ∂u

−

∂r
= v2(u+, u−) + ε1/2R2(u+, u−, r, t),

(45)

where the systematic reaction terms are now given by
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v1(u+, u−) = f(u+, u−) + εC(0)

[
h2(u−, u+)

δh1(u−, u+)

δu−
+ h1(u−, u+)

δh1(u−, u+)

δu+

]
,

v2(u+, u−) = g(u+, u−) + εC(0)

[
h1(u−, u+)

δh2(u−, u+)

δu+
+ h2(u−, u+)

δh2(u−, u+)

δu−

]
,

(46)

and a new noise terms of zero mean have been defined,

R1(u+, u−, r, t) = h1(u−, u+)η(x, t)

−ε1/2C(0)

[
h2(u−, u+)

δh1(u−, u+)

δu−
+ h1(u−, u+)

δh1(u−, u+)

δu+

]
,

R2(u+, u−, r, t) = h2(u−, u+)η(x, t)

−ε1/2C(0)

[
h1(u−, u+)

δh2(u−, u+)

δu+
+ h2(u−, u+)

δh2(u−, u+)

δu−

]
.

(47)

Now that we have been able to separate the systematic contribution from the stochastic

one, the standard small-noise-expansion can be applied. The lowest order of the field

obeys the equations

∂u+
0

∂t
+ γ

∂u+
0

∂r
= v1(u+

0 , u
−
0 ),

∂u−0
∂t
− γ ∂u

−
0

∂r
= v2(u+

0 , u
−
0 ).

(48)

This way of rearranging the noise term has allowed us to separate the systematic con-

tributions of the noise (those with nonzero mean value) from the fluctuating ones (those

with zero mean value). This distinction, and its consequences, will appear more clearly

in the application of this procedure to the study of front propagation dynamics under

multiplicative noise. For this end, the point of departure of the present analysis is Eq.

(48).
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II.2.3 Dynamics and pattern formation of a diffusive predator−prey

model in the subdiffusive regime in the presence of toxicity

Recently, Biologists have discovered that bacteria, often viewed as lowly, solitary crea-

tures are actually quite sophisticated in their social interactions and communicate with

one another through similar electrical signaling mechanisms as neurons in the human

brain. Indeed, In a study recently published in this week’s advance online publication of

Nature, the scientists detail the manner by which bacteria living in communities com-

municate with one another electrically through proteins called ”ion channels”. ”Our

discovery not only changes the way we think about bacteria, but also how we think

about our brain,” said Gürol Süel, an associate professor of molecular biology at UC San

Diego who headed the research project [149]. ”All of our senses, behavior and intel-

ligence emerge from electrical communications among neurons in the brain mediated

by ion channels. Now we find that bacteria use similar ion channels to communicate

and resolve metabolic stress. Our discovery suggests that neurological disorders that

are triggered by metabolic stress may have ancient bacterial origins, and could thus pro-

vide a new perspective on how to treat such conditions.”

”Much of our understanding of electrical signaling in our brains is based on struc-

tural studies of bacterial ion channels” said Süel. But how bacteria use those ion chan-

nels remained a mystery until Süel and his colleagues embarked on an effort to examine

long-range communication within biofilms organized communities containing millions

of densely packed bacterial cells. These communities of bacteria can form thin struc-

tures on surfaces such as the tartar that develops on teeth that are highly resistant to

chemicals and antibiotics.

The scientists’ interest in studying long-range signals grew out of a previous study,

published recently [149], which found that biofilms are able to resolve social conflicts

within their community of bacterial cells just like human societies. When a biofilm com-

posed of hundreds of thousands of Bacillus subtilis bacterial cells grows to a certain

size, the researchers discovered, the protective outer edge of cells, with unrestricted ac-
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cess to nutrients, periodically stopped growing to allow nutrients specifically glutamate,

to flow to the sheltered center of the biofilm. In this way, the protected bacteria in the

colony center were kept alive and could survive attacks by chemicals and antibiotics.

Mostly, those chemicals are considered as toxins.

During evolution, venomous animals have produced a panoply of peptide toxins,

formidable defense’s weapons against predators or for the captures of prey. The targets

of these toxins are proteins involved in conduction and nervous transmission, mainly

ion channels. These venoms constitute an invaluable source of very specific pharmaco-

logical agents for characterization of ion channel and receptor subtypes membranes. By

their efficiency and selectivity of action, they offer significant therapeutic potential as

evidenced by toxins whose effectiveness in neurological disorders is now being tested

in therapeutic trials.

Based on the above discussions, we consider a prey-predator model to investigate

the influence of toxicity in the neuronal communication in subdiffusive regime. It is as-

sumed that prey produces a substance that is toxic to predators. For such an ecosystem,

the model is as follows:

c∂αu

∂tα
= d1∆u+ ru(1− u

K
)− muv

a+ u
,

c∂αv

∂tα
= d2∆v + sv(1− hv

u
)− βuv2.

(49)

The reaction terms in Eq. (49) were first proposed by Zhang and Zhao to describe an

ecosystem where prey produces substances that are toxic to predators [150]. The term

βuv2 denotes the effect of toxic substances and β represents the efficiency of toxicity. u

and v denote the sizes of the prey population and predator population, respectively. r,

K, m, a, s, h, and β are all positive constants, α ≤ 1. Note that in this form, the evolution

of the uniform state is controlled by subdiffusion, even if the spatial term is not present.
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II.3 Nonlinear analysis

In this section, we will make a summary presentation of all the analytical steps

which allowed the resolution of our different models.

II.3.1 Case of the transport memory effects

The method that will be employed to solve Eq. (27) is known as the factorization

method. It is a method that seeks traveling wave solutions for a particular class of partial

differential equations (PDE) that are associated with having a polynomial nonlinearity.

For this purpose, we introduce a traveling wave ansatz of the form

u(x, t) = U(z), (50)

where z = x − ct, c ≥ 0 is the velocity of the wave. Substituting this transformation

into Eq. (27) and rearranging yields,

d2U

dz2
+

c

(v2 − c2)
[α− kf ′(U)]

dU

dz
+

αk

(v2 − c2)
f(U) = 0. (51)

By replacing f ′(U) and f(U) by their expressions in Eq. (51), we obtain

d2U

dz2
+

c

(v2 − c2)

[
α + 3kU2 − 2k(1 + a)U + ka

] dU
dz

+
αk

(v2 − c2)
U(U − a)(1−U) = 0. (52)

Let

G(U) =
c

(v2 − c2)
[α + 3kU2 − 2k(1 + a)U + ka], (53)

and

F (U) =
αk

(v2 − c2)
U(U − a)(1− U). (54)

Thus, rearranging Eq. (52) yields

d2U

dz2
+G(U)

dU

dz
+ F (U) = 0. (55)
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We aim to factorize Eq. (55) into a form given by

[Dz − f2(U)] [Dz − f1(U)]U = 0, (56)

where Dz =
d

dz
, and the functions f1 and f2 relate to F (U) implicitly.

We start by expanding Eq. (56) to get

Dz
2U −Dzf1U − f2DzU + f1f2U = 0, (57)

which leads to
d2U

dz2
− f1

dU

dz
− df1

dU

dU

dz
U − f2

dU

dz
+ f1f2U = 0. (58)

At this level, it is required that we factorize the expression in Eq. (58) by grouping

terms. We will use the Rosu and Cornejo−Perez grouping technique [151], which is

given by

d2U

dz2
−
(
df1

dU
U + f1 + f2

)
dU

dz
+ f1f2U = 0. (59)

Comparing Eq. (59) and Eq. (55), we obtain

df1

dU
U + f1 + f2 = −G(U), (60)

and,

f1f2 =
F (U)

U
, (61)

where f1 and f2 are set to be

f1 = α(1− U), (62)

and

f2 =
k

v2 − c2
(U − a). (63)

We now substitute the expressions of f1, f2 and G(U) into Eq. (60), it yields
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−αU + α(1− U) +
k

v2 − c2
(U − a) = −G(U). (64)

After grouping terms according to the power of U , we obtain

3cU2 + η(c, a)U + β(c, a) = 0, (65)

where η(c, a) = (1 + 2(1 + a)c)k + 2(c2 − v2)v2, and

β(c, a) = −a(1 + c)k + v2(−c− c2 + v2).

It has been shown that for a>1/2, the only traveling solution is U = 0 [152], which

corresponds to the extinction option. For 0<a ≤ 1/2, and for each set of parameters of

Eq. (27), there are two possibles front velocities for which there are continuous solutions

that represent a transition between the stationary states.

We now implement the Rosu and Cornejo−Perez grouping technique defined in Eq.

(59) to obtain

d2U

dz2
− (−αU + α(1− U) +

k

v2 − c2
(U − a))

dU

dz
+ f1f2U = 0. (66)

As stated previously, this structure allows us to get

[
Dz −

k

v2 − c2
(U − a)

]
[Dz − α(1− U)]U = 0. (67)

Eq. (67) will be related to one of the following ordinary differential equation (ODE)

dU

dz
− α(1− U)U = 0. (68)

or
dU

dz
− k

v2 − c2
(U − a)U = 0. (69)

If we consider Eq. (68), we have
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∫
dU

(1− U)U
=

∫
αdz. (70)

By integrating Eq. (70), we get

−ln(|1− U |) + ln(|U |) = αz + cr, (71)

where cr is the constant of integration. After small algebra, Eq. (71) gives

U =
exp(αz + cr)

1 + exp(αz + cr)
. (72)

The constant cr relates to an initial shift of the wave, if desired. Eq. (72) can be reduced

to

U = 1− 1

1 + exp(αz + cr)
. (73)

We can now use the inverse transformation of U(z) = u(x− ct), with z = x− ct to get

U = 1− 1

1 + exp(α(x− ct) + cr)
. (74)

Let us now consider Eq. (69), we have

∫
dU

(a− U)U
=

∫
−bdz. (75)

By integrating (75), we get

−ln(|a− U |) + ln(|U |) = −bz + cl, (76)

where cl is the constant of integration. In order to avoid discontinuity, we have to

make sure that 0<U<a. Using the exponential function, and rearranging for U , Eq. (75)

gives,
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U =
aexp(−bz + cl)

1 + exp(−bz + cl)
. (77)

After reduction for clarity purposes, Eq. (77) can be written in a simpler form given

by

U = a

[
1− 1

1 + exp(−bz + cl)

]
. (78)

We now implement the inverse transformation of U(z) = u(x − ct), with z = x − ct,

to get

U = a

[
1− 1

1 + exp(−b(x− ct) + cl)

]
, (79)

where b =
k

v2 − c2
, and the constant cl relates to an initial shift of the wave, if desired.

II.3.2 Case of the front dynamics with external fluctuations in reaction

random walk with direction-independent kinetics

The mean front shape of Eq. (36) is now given by the ensemble average u+
0 (x, t) =

〈u+(x, t)〉, and u−0 (x, t) = 〈u−(x, t)〉. Taking the ensemble average of system (36), and

using the Furutsu−Novikov−Donsker theorem [153, 154, 155, 156] for the noise term,

we can get an equation of the motion for 〈u+(x, t)〉 and 〈u−(x, t)〉 as

∂u+
0

∂t
+ γ

∂u+
0

∂r
= v1(u−0 , u

+
0 ) + ε

1
2R1(u−0 , u

+
0 ),

∂u−0
∂t
− γ ∂u

−
0

∂r
= v2(u−0 , u

+
0 ) + ε

1
2R2(u−0 , u

+
0 ),

(80)
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where
v1(u+

0 , u
−
0 ) = µ(u−0 − u+

0 ) +
1

2
b(u0)− d(u0)u+

0

+εC(0)
[
h1(u0

+, u0
−)
δh1(u0

+, u0
−)

δu0
+

+h2(u0
+, u0

−)
δh1(u0

+, u0
−)

δu0
−

]
,

v2(u+
0 , u

−
0 ) = µ(u+

0 − u−0 ) +
1

2
b(u0)− d(u0)u−0

+εC(0)
[
h1(u0

+, u0
−)
δh2(u0

+, u0
−)

δu0
+

+h2(u0
+, u0

−)
δh2(u0

+, u0
−)

δu0
−

]
,

(81)

R1(u0
+, u0

−) = h1(u0
+, u0

−)ξ(x, t)

−ε 1
2C(0)

[
h1(u0

+, u0
−)
δh1(u0

+, u0
−)

δu0
+

+h2(u0
+, u0

−)
δh1(u0

+, u0
−)

δu0
−

]
,

R2(u0
+, u0

−) = h1(u0
+, u0

−)ξ(x, t)

−ε 1
2C(0)

[
h1(u0

+, u0
−)
δh2(u0

+, u0
−)

δu0
+

+h2(u0
+, u0

−)
δh2(u0

+, u0
−)

δu0
−

]
.

(82)

This rearrangement allows us to separate a systematic contribution from the noise term

and a residual stochastic one.

Higher order moments can be decoupled considering that the profile functions u+(x, t)
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and u−(x, t) can be written as

u+(x, t) = u+
0 (x, t) + δu+(x, t),

u−(x, t) = u−0 (x, t) + δu−(x, t).

(83)

The quantities δu+(x, t) and δu−(x, t) are small and fast [148] and are responsible for the

systematic change of both the mean front shape and the mean front velocity, respectively.

The lowest order of the density of the particle going to the right δu+(x, t) and to the left

δu−(x, t), respectively, obey the equations

∂u+
0

∂t
+ γ

∂u+
0

∂r
= µ(u−0 − u+

0 ) +
1

2
b
′
(u0)− d′(u0)u+

0 ,

∂u−0
∂t
− γ ∂u

−
0

∂r
= µ(u+

0 − u−0 ) +
1

2
b
′
(u0)− d′(u0)u−0 ,

(84)

where b′(u0) and d′(u0) are two functions to be determined according to the model used.

II.3.3 Case of the system with toxic substances in a subdiffusive regime

i- Effect of toxic substances on the dynamics properties of the fractional−order ODE

system

In this work, we investigate the following parabolic activator-inhibitor model with sub-

diffusion consisting of two variables:

c∂ηu

∂tη
= d1∆u+ ru(1− u

K
)− muv

a+ u
,

c∂ηv

∂tη
= d2∆v + sv(1− hv

u
)− βuv2.

(85)

The reaction terms in Eq. (85) were first proposed by Zhang and Zhao to describe an

ecosystem where prey produces substances that are toxic to predators [150]. The term

βuv2 denotes the effect of toxic substances and β represents the efficiency of toxicity. u
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and v denote the sizes of the prey population and predator population, respectively. r,

K, m, a, s, h, and β are all positive constants, η ≤ 1. Note that in this form, the evolution

of the uniform state is controlled by subdiffusion, even if the spatial term is not present.

We first examine the stability and Hopf bifurcation of the ODE version of the system

(85). Omitting the diffusion terms in the system (85), the following ODE system arises

cdηu

dtη
= ru(1− u

K
)− muv

a+ u
,

cdηv

dtη
= sv(1− hv

u
)− βuv2.

(86)

An obvious steady state of the system (86) isE1 = (K, 0), the predator−free equilibrium.

Assuming that the other equilibrium E∗ = (u∗, v∗) of the system (86) satisfies


r(1− u∗

K
)− mv∗

a+ u∗
= 0,

s(1− hv∗

u∗
)− βu∗v∗ = 0.

(87)

Eliminating v yields

βru∗4 + βr(a−K)u∗3 + r(hs−Kaβ)u∗2

+s(Km+ ahr −Khr)u∗ −Kahrs = 0.

(88)

The number and the signs of the roots can easy be predicted from Eq. (88), according to

Descartes’ rule of signs. So to say, system (88) admits one or three positive roots u = u∗

if one of the following inequalities hold

a < K, hs < Kaβ, Km+ ahr < Khr. (89)

a < K, hs > Kaβ, Km+ ahr < Khr, (90)
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According to inequality (89), if β >
hs

Ka
, Eq. (88) has exactly one positive root. While

inequality (90) states that if
h2rs

K2(hr −m)
< β <

hs

Ka
, Eq. (88) has at least one positive

root, and can go up to three positive roots. this result is in perfect agreement with the

numerical result found by Zhang et al. [150]. Substituting u∗, we obtain

v∗ =
su∗

sh+ βu∗2
. (91)

Once we know already the number of equilibria, a word should be said about their sta-

bility. The stability of the steady states is determined by the eigenvalues of the Jacobian

matrix

J =


r(1− 2u∗

K
)− mav∗

(a+ u∗)2 − mu∗

a+ u∗

(
sh

u∗2
− β)v∗2 s(1− 2hv∗

u∗
)− 2u∗v∗β

 . (92)

And the associated characteistic equation is

λ2 − Tλ+ ∆ = 0, (93)

where

T = a11 + a22, (94)

and

∆ = a11a22 − a12a21, (95)
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a11 = r − 2ru∗

K
− mav∗

(a+ u∗)2
,

a12 = − mu∗

a+ u∗
,

a21 =
shv∗2

u∗2
− βv∗2,

a22 = s− 2shv∗

u∗
− 2βu∗v∗.

(96)

If the trace T of the Jacobian matrix is negative, and ∆, its determinant being positive,

then the steady state is stable. While looking at the sign of T and ∆, respectively, we

should not forget to distinguish the case of a single positive root from the one of three

positive roots.

Then, taking into account conditions (89), for η = 1, the steady state E∗ will be stable if

β > max{α1, α2, α3}, (97)

where
α1 =

hs

Ka
,

α2 =
1

2u∗v∗

[
a11 + s

(
1− 2hv∗

u∗

)]
,

α3 =
s

2u∗v∗ (a12 − a11)

[
hv∗

u∗

(
2a11 − a12

v∗

u∗

)
− a11

]
,

(98)

With βH = α2 being a Hopf bifurcation for the system (86). If, on the other hand we

consider conditions (90), steady states will be stable if β is bounded as follows:

max{α2, α3} < β < α1. (99)

However, for η ∈ (0, 1), the stability of E∗ is more complex and depends on the inequal-
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ity

|arg λ| > ηπ

2
, (100)

for the roots λ in the Eq. (93).

In order to really appreciate the validity of our predictions, it would be wise to assign

some values to the constitutive parameters of the Eq. (88). Indeed, we choose parame-

ters as follows: K = 4, r = 0.7,m = 1 a = 0.4, s = 0.25, h = 1. With this set of parameters,

α1 = 0.15625, α2 = −0.059731 and α3 = −0.0117744, yielding max{α1, α2, α3} = α1.

Let us first consider the inequality (89). We choose β = 0.17, which is in agreement with

(97). With this value of β, we have one positive and stable root for η = 1, as well as for

η ∈ (0, 1).

If we consider instead the inequality (90), and we choose β = 0.09 as in [150], we will

have three positive equilibrium points E∗1 , E∗2 and E∗3 . The first equilibrium point is sta-

ble for η = 1, and for η ∈ (0, 1).

For the second equilibrium point, if η = 1, ∆ < 0, the discriminant is always positive,

T 2 − 4∆ > 0, and both eigenvalues are real. However, one is positive and the other

is negative. Trajectories approach the steady state along the eigenvector corresponding

to the negative eigenvalue, but move away along the eigenvector corresponding to the

positive eigenvalue. The steady state has one stable and one unstable direction. It is

therefore unstable and called a saddle [157]. When η ∈ (0, 1), this equilibrium point is

stable, according to inequality (100). Regarding the third equilibrium point, its stability

is guaranteed for both η = 1 and η ∈ (0, 1). While remaining in inequality (90), accord-

ing to Descartes’ rule of signs, it is possible to have a unique positive root. So, taking

β = 0.03, for η = 1, the equlibrium point E∗4 has complex conjugate eigenvalues with

a positive real part, λ = T/2. The steady state is unstable. Due to the presence of a

nonzero imaginary part, perturbations grow in an oscillatory manner and spiral away

from the steady state. The steady state is an unstable focus. If η ∈ (0, 1), E∗4 is found to

be unstable, according to Eq. (100). These results confirm the paramount role that the

toxic coefficient plays on the stability of the system. In addition, it would be interesting
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to note that this stability, depending on the system parameters, can either be modified

or maintained.

ii- Analysis of a system with toxic substances in a subdiffusive regime

We now proceed to analyze the case we are interested in, namely the modifications of

Turing pattern induced by toxic substances in the presence of strong memory effects in

the transport process. In order to appreciate these modifications, it is convenient to use

the approach developped by Hernández et al. [158] because it can help us to see every

new results that will emerge. For this purpose, we start by linearizing around the fixed

points, writting Eq. (85) as follows:

c∂ηu

∂tη
= d1∆u+ a11u+ a12v,

c∂ηv

∂tη
= d2∆v + a21u+ a22v,

(101)

where aij are the elements of the Jacobian matrix given by Eq. (96). Applying Fourier

and Laplace transforms to Eq.(101) yields

sηU − sη−1U(k, 0) = −d1k
2U + a11U + a12V,

sηV − sη−1V (k, 0) = −d2k
2V + a21U + a22V,

(102)

where U and V are given by

U =
∫∞
−∞

∫∞
−∞ e

ikxe−stu(x, t)dtdx = F(L(u)),

V =
∫∞
−∞

∫∞
−∞ e

ikxe−stv(x, t)dtdx = F(L(v)).

(103)
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Resolution of the sytem of Eqs. (102) yields

U(k, s) =
(sη + d1k

2 − a22)sη−1U(k, 0) + sη−1a12V (k, 0)

S(k, s)
,

V (k, s) =
(sη + d2k

2 − a11)sη−1V (k, 0) + sη−1a21U(k, 0)

S(k, s)
.

(104)

The time evolution of u(k, t) = L−1(U(k, s)) is given by the singularities of Eq. (104)

which is the zeros of the function

S(k, s) = sη+α + sη(d2k
2 − a22) + sα(d1k

2 − a11)

+d1d2k
4 + (a11a22 − a12a21)− k2(a22d1 + a11d2).

(105)

Solving the equation

S(k, s0) = 0, (106)

we can analyze the instability of the system near the fixed points. s0(k) will be studied

numerically for different values of the toxic coefficient to determine when instabilities

should appear in the system of Eq. (101), and if it is influenced by toxicity. In particular,

the conditions for a Turing instability are

Re[s0(k = 0)] < 0, (107)

and

Re[s0(k)] > 0. (108)

Now, let us use the approach proposed by Hernández et al. [158] to have a Turing insta-

bility in the case where α = η < 1. For this purpose, we start with the Fourier transform
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of Eq. (101),

c∂η

∂tη


ũ

ṽ

 =


−d1k

2 + a11 a21

a12 −d2k
2 + a22



ũ

ṽ



= A(k)


ũ

ṽ


The eigenvalues of the stability matrix [A(k)] are given by

λ1 =
TrA(k)

2
+

([TrA(k)]2 − 4h(k))1/2

2
,

λ2 =
TrA(k)

2
− ([TrA(k)]2 − 4h(k))1/2

2
,

(109)

where
TrA(k) = −(d1 + d2)k2 + (a11 + a22),

h(k) = d1d2k
4 − (a11d2 + a22d1)k2 + a11a22 − a12a21

(110)

The stability of the system is completely determined by the nature of the eigenvalues.

Real and negative eigenvalues yield a stable system, meaning that no Turing instabilities

are possible. Meanwhile if both are real and one of them is positive (the other being

negative), then the system will no longer be stable, and the condition for this are exactly

the sames as for the case η = 1. However, complex roots goes with a critical value of η.

This critical value ηc only exists if TrA(k) > 0, and it is given by

ηc(k) =
2

π
arctan

(√
4h(k)

[TrA(k)]2
− 1

)
. (111)

ηc is a critical value of the anomalous exponent or bifurcation parameter that separates

a regime of stationary Turing patterns from an oscillatory cellular instability, commonly

known as a Hopf−Turing bifurcation [159]. The Turing conditions are fullfiled when
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the stationary homogeneous state (k = 0) is stable, and the system becomes unstable

under perturbations with finite wavelength. So to say, when reactions take place in the

presence of subdiffusion, the condition (107) can be satisfied in two ways, either

β > max{α2, α3}, (112)

or
β < α2,

4u∗2v∗2β2 + α4β + α5 < 0,

ηc(0) > η,

(113)

where

α4 = 4v∗
(
−a11u

∗ − a12v
∗ + su∗

(
1− 2hv∗

u∗

))
,

α5 = a2
11 − 2a11s

(
1− 2hv∗

u∗

)
+

4a12shv
∗2

u∗2
+

s2

(
1− 2hv∗

u∗

)2

.

(114)

Condition (113) cannot be fullfiled for the classical diffusion.

To fulfill the condition in Eq. (108), it is necessary that

β >
1

2Du∗v∗

[
a11 +Ds

(
1− 2hv∗

u∗

)]
, (115)

where D 6= 1 is the ratio of diffusion coefficients, and either

a11 > 0, β >
s

2u∗v∗
(1− 2hv∗

u∗
), (116)
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or

a11 < 0, β <
s

2u∗v∗
(1− 2hv∗

u∗
), (117)

II.4 Numerical methods and iterative schemes for compu-

tational analysis

In this section, we present some numerical methods in order to solve different equa-

tions we have used in this thesis. It should be noted that several numerical approaches

were used in the context of this thesis. However, we will dwell on only two, because

not only do these two approaches encompass all the others, but also they deal with the

fundamental problems raised by this thesis, namely the influence of spatio-temporal ex-

ternal multiplicative fluctuations frequently encountered in the neuronal processes, and

the incorporation of strong memory effects in the neuronal transport process through

fractional dynamics.

II.4.1 Numerical algorithm for spatio-temporal external multiplicative

noise

Consider the following model equation for the one-dimensional infinite case, with

x being real:
∂n

∂t
= f(n) +

∂2n

∂x2
+
√

2Hg(n)ε(x, t),

〈ε(x, t)〉 = 0,

〈
ε(x

′
, t
′
)ε(x, t)

〉
= R(x

′ − x)T (t
′ − t).

(118)

for more details on this model, one can refer to [160]. This model contains two essentials:

multiplicative fluctuations and the possibility of kink propagation. The nonlinear reac-

tion term f(n) is assumed to be bistable, with two stable stationary states n1 and n3, and

one unstable stae n2, with the boundary conditions n(−∞) = n1; n(∞) = n3. To obtain
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an algorithm for the space-time discrete system, we have to integrate Eq. (118) first, over

the time interval [0,∆t], and to average after that over the box length [−∆x/2,∆x/2].

That leads

n(0,∆t)− n(0, 0) =

∆x/2∫
−∆x/2

dx′

∆x

∆t∫
0

[
f(x′, t′) +

∂2n

∂x2
(x′, t′) +

√
2Hg(x′, t′)ε(x, t)

]
(119)

For the calculation of the stochastic integral, we make use of the Stratonovich calculus,

which is

S −
∆t∫

0

dt′φ(n(t′))ε(t′) =

∫
dt′ [φ(0) + φ′(0)(n(t′)− n(0))]ε(t′). (120)

The expansion in ∆n(x′, t′) = n(x′, t′)− n(0, 0) of Eq. (119) leads to

n(0,∆t)− n(0, 0) = f(0, 0)∆t+
∆t

∆x2
(n(∆x, 0) + n(−∆x, 0)− 2n(0, 0))+

[
2H∆t

∆x

]1/2

g(0, 0)E(0, 0) + o(∆n2).

(121)

Inserting ∆n into the expanded integrands again and collecting all terms of o(κ) =

{∆t,∆t/δx2, H∆t/δx}, (κ � 1), we obtain only one relevant term from the corrections.

This is

√
2Hg(0, 0)

∆x/2∫
−∆x/2

dx′

∆x

∆t∫
0

dt′

[
x′+∆x/2∫
x′−∆x/2

dx′′

∆x

t′∫
0

dt′′ ∗
(√

2Hg(x′, 0)ε(x′′, t′′) + n(x′, 0)− n(0, 0)
)]

ε(x′, t′),

= 2Hg(0, 0)g′(0, 0) ∗ 1
2

[
∆x/2∫
−∆x/2

dx′
∆t∫
0

dt′ε(x′, t′)

]2

,

= H∆t
∆x

g(0, 0)g′(0, 0)E2(0, 0).

(122)

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



Model and methodology 59

The final result reads

n(i, τ + 1) = n(i, τ) + ∆tf(i, τ) +
∆t

∆x2
(n(i+ 1, τ) + n(i− 1, τ)− 2n(i, τ)) +

H∆t

∆x
g′(i, τ)g(i, τ)E2(i, τ) +

[
2H∆t

∆x

]1/2

g(i, τ)E(i, τ),

(123)

with E(i, τ) being the Gaussian white noise.

II.4.2 Numerical algorithm for subdiffusive transport processes

We used the discretization of the Caputo fractional derivatives proposed by Gorenflo

and Abdel-Rehim [161], namely

c∂αyij
∂tα

∣∣
tn+1 =

n+1∑
m=0

(−1)k

 α

m

 yi,j(tn+1−m)− yi,j(t0)

(∆t)α
, (124)

where yi,j(tn+1−m) is the function evaluated at the point (i, j) in a two-dimensional grid,

and at a discrete time tn. The quantity ∆t represents the time step, which was chosen to

be 0.01. Observe that the system has a memory of n + 2 time steps, and there is a need

to store all this information in the computer memory. There is a numerical difficulty

with the combinatory factors, and much attention should be put in order to avoid losing

significant figures with big numbers. This problem was solved by using the recurrence

relation

 α

m

 =

[
1− 1 + α

m

] α

m− 1

 . (125)

Observe that for m = 1, the combinatory factor is α, and the coefficient for m = 0 is 1 in

Eq. (124). In principle, the number of terms in the summation grows with time, and the

calculation becomes rapidly unmanageable. Therefore, in practice, we only retain terms

whose coefficients are larger than 107. In the worse of cases, the number of terms needed
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in the memory was 800. It was found that more terms are needed when the anomalous

exponents are smaller.

II.5 Conclusion

In this chapter, we have presented the different analytical approaches allowing

to provide answers to the content of this thesis. On the basis of these analytical ap-

proaches, we have presented two numerical approaches for the two phenomena which

encompass the main part of our results, namely the fluctuations resulting from multi-

plicative spatio-temporal noise of external origin, as well as the transport processes in

the subdiffusive regime. These methods will be used to obtain the results presented in

Chapter III.
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CHAPTER III

RESULTS AND DISCUSSION

III.1 Introduction

In this chapter, we present and discuss the results of our thesis using both analytical

and numerical methods presented in chapter II. This chapter is organized as follows:

In the second section, the importance of the transport memory effects in the bistable

systems is presented. Furthermore, we highlight the effects of noise through the reaction

random walk in population genetics. Finally, we present the effects of strong memory in

the neuronal transport process in presence of toxicity, considering a subdiffusive regime.

III.2 Importance of the transport memory effects in the

bistable systems

In the previous chapter, we derived the analytical expression for the front solution con-

necting two equilibrium states U = 0 to the state U = 1, and the state U = 1 to the state

U = 0 in Eqs. (74) and (79), respectively. In order to observe the behavior of these solu-

tions under the influence of memory effects, we plot the traces for several values of the

memory function. Figure 6 (a) represents a solution connecting the equilibrium U = 0

to the equilibrium U = 1. These trajectories correspond to fronts of state 0 invading

the state 1, for different values of the memory function at very short times. When α in-

creases, the width of the front wave decreases, it means that the memory effects increase

the speed of the front wave. Figure 6 (b) corresponds to the left propagating front that

connects the front state U = 1 with the front state (U = 0). We have an overdamped

trajectory, since negative solutions are not allowed [28]. In this case, when the memory

61



Results and discussions 62

(a) (b)

Figure 6: (a): Right propagating front. (b): left propagating front..

effects increase, the width of the front wave decreases, it means that the memory acts

like a damping coefficient.

In order to really appreciate the effect of transport memory, we carry out a piecewise

linearization of Eq. (51). Indeed, explicit solutions corresponding to the front waves

described above cannot be found in the fully nonlinear situation.

III.2.1 Piecewise linearization

Another way to treat the Nagumo’s reaction term is to replace the nonlinear function

by its piecewise linear approximation. Following Elmer [162], we rewrite the reaction

function as

f(U) =


−U U <

a

2
,

U − a a

2
≤ U ≤ a+ 1

2
,

1− U a+ 1

2
< U.

(126)

Denoting differentiation with respect to z by primes and by using Eq. (50), we reduce

the PDE (27) to an ODE, which describes a damped harmonic oscillator:
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Figure 7: The Nagumo’s function with a = 0.5.
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Figure 8: The piecewise linear approximation.

mU
′′

+ 2γ1U
′ − ω2U = 0, U ≤ a

2
,

mU
′′

+ 2γ2U
′
+ ω2(U − a) = 0,

a

2
≤ U ≤ a+ 1

2
,

mU
′′

+ 2γ3U
′
+ ω2(1− U) = 0, U>

a+ 1

2
.

(127)

Here, we used the notation of Manne et al. [28], m = v2 − c2 to emphasize the formal

similarity between Eq. (27), where we have inserted Eq. (50) and the equation of motion

of a damped oscillator of mass m subject to a nonlinear force −αkU(U − a)(1 − U).

Parameters are as follows:

γ1 = γ3 =
c

2
(α + k), γ2 =

c

2
(α− k), ω =

√
αk. (128)

It is clear that eq. (127) is the equation of motion of three damped harmonic oscil-

lators, which is in agreement with the results obtained by Zhao et al. [163] showing

that chromatin behaves like a set of synchronized oscillators either by the coupling of
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an electromagnetic field generated by a longitudinal oscillation of the nucleosomes, or

by the physical interactions of the DNA-protein complexes. These results are in agree-

ment with [164] showing that the telegraph−type equations do not take into account the

mechanical and thermodynamic effects. Solutions for wave amplitude as a coordinate

function x− ct can be obtained for each region U<
a

2
,
a

2
<U<

a+ 1

2
and U>

a+ 1

2
.

In the region U<
a

2
, depending on the values of m, solutions are given as follows:

If m = 0, we have

U(z) = Be

ω2

2γ1

z

. (129)

and,

If m 6= 0, we obtain

U(z) = B+e
r+z +B−e

r−z, (130)

with

r± =
−γ1 ±

√
γ2

1 +mω2

m
. (131)

In the region
a

2
≤ U ≤ a+ 1

2
, depending again on the values of m, we obtain the

following solutions:

if m = 0, we get

U(z) = a+ Ce
−
ω2

2γ2

z

(132)

and,

if m 6= 0, we have

U(z) =

 a+ C+e
R+z + C−e

R−z R+ 6= R−,

a+ C0e
Rz + C1ze

Rz, R+ = R− = R,
(133)

with

R± =
−γ2 ±

√
γ2

2 −mω2

m
. (134)
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In the region U>
a+ 1

2
,

if m = 0, it leads

U(z) = 1−De
ω2

2γ3

z

, (135)

and,

if m 6= 0, we obtain

U(z) =

 1−D+e
µ+z −D−eµ−z µ+ 6= µ−,

1−D0e
µz +D1ze

µz, µ+ = µ− = µ,
(136)

where

µ± =
−γ3 ±

√
γ2

3 −mω2

m
. (137)

We define the following variables UL, UR1 and UR2 following Ref. [28]

UL(−z) = U(z), z ≥ 0,

UR1(z) = a+ U(z), z ≥ 0,

UR2(z) = 1− U(z), z ≥ 0,

(138)

and we have

mU
′′
L + 2γ1U

′
L − ω2UL = 0, z<0,

mU
′′
R1 + 2γ2U

′
R1 + ω2UR1 = 0, 0<z<z1,

mU
′′
R2 + 2γ3U

′
R2 + ω2UR2 = 0, z>z1.

(139)

We obtain a system of differential equations describing the three damped har-

monic oscillators, one of which has a negative mass, and the other two having positive

masses. The negative mass of the first oscillator is biologically explained by the fact that

many biological systems are very repressive. They trigger a response that tends to op-

pose the solicitation. The first oscillator thus appears clearly as a low−pass filter, since

it allows only signals whose wave velocity is lower than that imposed on it, and the rest

is rejected.
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We are interested in non−negative solutions, because U is assumed to be a concen-

tration or density [29]. It follows that the damped oscillator UL representing the shape

of the front of the wave must be critically damped to prevent this concentration from

oscillating and ending up with negative values. The role of the first oscillator is thus to

avoid that one finds itself in a situation where the speed imposed by the stress is supe-

rior to that dictated by the medium. Therefore, the condition that this oscillator should

be critically damped is verified.

Let us consider the case of the oscillatorsUR1 andUR2. They can be slightly damped,

since there is no problem if the concentration oscillates around a positive value. The con-

dition for UR1 to be critically damped is: γ2 =
√
mω, and the corresponding velocity is

given by

cthr1 = v
1√

1 +
1

4
(y − 1

y
)2

, (140)

where y =

√
α

k
. If c<cthr1, the wave front shape exhibits spatial oscillations.

The condition for UR2 to be critically damped is γ3 =
√
mω, and the corresponding

velocity is given by

cthr2 = v
1√

1 +
1

4
(y +

1

y
)2

. (141)

Fig 9 shows a comparative study between v, c, cthr1 and cthr2, and we see that cthr2 ≤

cthr1 ≤ v. Using this graph, we can determine explicit solutions of the following regions

c ≤ cthr2, cthr2 ≤ c ≤ cthr1 and c ≤ v.

In the first region, c ≤ cthr2, depending on each of the three regions z<0, 0<z<z1

and z>z1, solutions are given by
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Figure 9: The dependence of the respective ratios of cthr1 and cthr2 to the speed v dictated
by medium on the damping−nonlinearity parameter ratio α/k.

U(z) =



a

2
er+z z<0,

a(1−D1cos(
2π

λ1

z − δ1)) 0 ≤ z ≤ z1,

1−D2e
µzcos(

2π

λ2

z − δ2) z>z1,

(142)

where

D1 =
1

2cosδ1

eRz, (143)

D2 =
1− a+

a

2cosδ1

cos(
2π

λ1

z1 − δ1)

eµz1cos(
2π

λ2

z1 − δ2)
, (144)

δ1 = −tan−1

(
λ1

2π
(r+ +R)

)
, (145)

λ1 =
2πm√
mω2 − γ2

2

, (146)

λ2 =
2πm√
mω2 − γ2

1

, (147)
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R± = R± i λ
2π
, (148)

δ2 =
2π

λ2

− tan−1

[
λ1

2π

(
µ+

δN
δD

)]
, (149)

δN = a(−R
2
cos(

2π

λ1

z1 − δ1)+

π

λ
sin(

2π

λ1

z1 − δ1))eRz1 ,
(150)

δD = (1− a[1− 1

2cosδ1

cos(
2π

λ1

z1 − δ1)])cosδ1. (151)

Figure 10: Wave front shape with oscillations (142), using α = 3, a = 0.5, k = 1, c = 5,

v = 10 and z1 =
a+ 1

2
.

We have an oscillating wave front in space, which proves that there is a supply

of energy from the outside environment in this region. If we consider this region as

a sink, biophysically, this energy may come from locally ingested nutrients, drugs, or

information transmitted into the region considered. This energy can be considered as

a source [165]. The sink in this case can be mechanical coupling imposing a coherent
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motion to the biological system as, for instance, chromatin. With this coherent motion,

chromatin cannot undergo a segregation which is essential before any cell division. The

source will therefore break this mechanical coupling, so that the motion of the chromatin

becomes incoherent, and therefore, it can be subjected to free diffusion that will allow it

to undergo segregation, and give rise to cell division (see Fig. 10).

In the second region , cthr2 ≤ c ≤ cthr1, m is positive, and we obtain

U(z) =


a

2
er+z, z<0,

a(1− 1

2cosδ
eRzcos(

2π

λ
z − δ)), 0 ≤ z ≤ z1,

1−D−eµ−z z>z1,

(152)

where

λ =
2πm√
mω2 − γ2

2

, (153)

δ = −tan−1(
λ(rp +Rp)

2π
), (154)

C = − a

2cosδ
, (155)

D− = (1− a− CeRz1cos(2πz1

λ
− δ))e−µ−z1 . (156)

The second region corresponds to a transition zone towards a state of no oscil-

lations, which means that the mechanical coupling has been removed, and the energy

used to break this coupling will initiate free diffusion processes in the second region (see

Fig. 11).

In the third region, c ≤ v, m is still positive, the solution is given by:

U(z) =


a

2
er+z z<0,

a+ C+e
R+z + C−e

R−z 0 ≤ z ≤ z1,

1−D−eµ−z z>z1,

(157)
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Figure 11: Wave front shape with transition to no oscillations regime (152), with α = 3,

a = 0.5, k = 1, c = 7, v = 10 and z1 =
a+ 1

2
.

where

C+ =
a(r+ +R+)

2(R− −R+)
, (158)

C− =
a(r+ +R−)

2(R+ −R−)
, (159)

D− =
1− a− C+e

R+z1 − C−eR−z1
eµ−z1

. (160)

Figure 12: Wave front shape without oscillations (157), for α = 3, a = 0.5, k = 1, c = 9.5,

v = 10 and z1 =
a+ 1

2
.
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Here, we realize that all oscillations have disappeared completely. It means that

the process was successfully completed, and another cycle is on his way to start (see

Fig. 12).

III.3 Effects of noise through the reaction random walk in

population genetics

As mentioned in the previous chapter, b′(u0) and d′(u0) are closely related to the model.

In this part, we will use the Nagumo equation which is a simple nonlinear reaction-

diffusion equation, which has important applications in neuroscience, biological elec-

tricity as well as population genetics. The choice made on this model was prompted

by these applications, all of which are closely correlated with the transport of nerve

impulses. Mathematically, it is given by

f(u) = u(u− a)(1− u), (161)

where a is the detuning or control parameter. In other words, if a > 0, the state (0, 0) is

stable, and

b(u) = (1 + a)u2,

d(u) = u2 + a.

(162)

In this case, the front connects two stable states and is said to be propagating into a

metastable state. On the other hand, if a < 0, the state (0, 0) is unstable, and

b(u) = (1 + a)u2 − au,

d(u) = u2,

(163)

the front is said to be propagating into the unstable state.
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i-Propagating front into a metastable state

Considering Eq. (162), we can easily determine b′(u0) and d′(u0), which are given by

b′(u0) = εC(0)u0
3 + (1 + a− εC(0))u0

2,

d′(u0) = u0
2 − 2εC(0)u0 − 1 + a.

(164)

In this situation, Eq. (84) becomes

∂u+
0

∂t
+ γ

∂u+
0

∂r
= µ(u−0 − u+

0 ) +
1

2
(εC(0)u0

3 + (1 + a− εC(0))u0
2)−

(u0
2 − 2εC(0)u0 − 1 + a)u+

0 ,

∂u−0
∂t
− γ ∂u

−
0

∂r
= µ(u+

0 − u−0 ) +
1

2
(εC(0)u0

3 + (1 + a− εC(0))u0
2)−

(u0
2 − 2εC(0)u0 − 1 + a)u−0 ,

(165)

Before moving forward, it will be wise to look at the behaviour of the parameters of

Eq. (36) in the moving frame. This could help us to choose the appropriate parameters

while looking at the solutions which are acceptable physically.

Figure Fig. 13 depicts the solution of Eq. (36). It clearly appears that for certain value

of parameter a, convergent solutions can be found. In order to see more clearly, we made

other plots, in particular that of the speed, the densities as well as the location of a front

defined by

z+ =
1

u+
st

∞∫
r0

dru+(r, t),

z− =
1

u−st

∞∫
r0

dru−(r, t),

(166)

from which the instantaneous velocity for a particular realization were obtained accord-
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Figure 13: Front solutions obtained for differents values of the detuning parameter a in
differents regimes, with 0 ≤ a ≤ 0.5. (a) µ = 0.35, (b) µ = 0.56, (c) µ = 1.7, (d) µ = 4.0

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



Results and discussions 74

ing to the relations

v+ =
du+

dt
= ż+,

v− =
du−

dt
= ż−.

(167)
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Figure 14: Stables and unstables front profile for left moving particles a in differents
regimes, with 0 ≤ a ≤ 0.5. (a) µ = 0.35, (b) µ = 0.56, (c) µ = 1.7, (d) µ = 4

These results allow us to illustrate the influence of the parameter a on the dynam-

ics of our system. Indeed, the stability and the convergence of this system are strongly

linked to this parameter, because when a = 0.35 (ballistic regime), we observe that the

wave fronts obtained are very divergent, and oscillate around the fixed points u± = 0.5

(see Fig. 13). When µ = 0.56, one is already in diffusive mode, but taking into account
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Figure 15: Stables and unstables front profile for right moving particles a in differents
regimes, with 0 ≤ a ≤ 0.5. (a) µ = 0.35, (b) µ = 0.56, (c) µ = 1.7, (d) µ = 4
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Figure 16: Front speeds for left and right moving particles for different regimes, with
0 ≤ a ≤ 0.5. (a) µ = 0.35, (b) µ = 0.56, (c) µ = 1.7, (d) µ = 4
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Figure 17: Instantaneous velocity of left moving particles a in differents regimes, with
0 ≤ a ≤ 0.5. (a) µ = 0.35, (b) µ = 0.56, (c) µ = 1.7, (d) µ = 4
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Figure 18: Instantaneous velocity of right moving particles a in differents regimes, with
0 ≤ a ≤ 0.5. (a) µ = 0.35, (b) µ = 0.56, (c) µ = 1.7, (d) µ = 4
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the proximity with the ballistic mode, one observes a kind of transition, because the

fronts seem more unstable (see Fig. 13-b). As one moves away in the diffusive regime,

these instabilities move towards the large values of a as illustrated by Figs. 14 and

15,respectively. It would nevertheless be judicious to notice that the particles moving

towards the right converge faster than those moving to the left. These results are cor-

roborated by the plot of the instantaneous speeds (see Figs. 17, 18 and 16)

ii- Propagating front into a unstable state

Within the propagation into the unstable state, Eq. (84) becomes

∂u+
0

∂t
+ γ

∂u+
0

∂r
= µ(u−0 − u+

0 ) +
1

2
(8εC(0)u0

3 + (1 + a− 12εC(0))u0
2 + 4εC(0)u0)− d(u0)u+

0 ,

∂u−0
∂t
− γ ∂u

−
0

∂r
= µ(u+

0 − u−0 ) +
1

2
(8εC(0)u0

3 + (1 + a− 12εC(0))u0
2 + 4εC(0)u0)− d(u0)u−0 ,

(168)

whith d′(u0) = d(u0).

It is then clear that in the presence of noise, nonlinearity increases both in the front

propagating in the unstable and metastable states, respectively. Indeed, it has become

fashionable to emphasis the importance of nonlinearity in ecological model, as well as

in population dynamics, and there are situations notably those involving competitions

in fluctuating environments, where fundamentally nonlinear phenomena are critical

to critical ecological understanding. Moreover, it has been found that insect popula-

tion trends were highly nonlinear (74%), followed by mamals (58%), bony fish and

birds (35%). Faster reproducing animals are more likely to have nonlinear and high-

dimensional dynamics [166]. Recently, it has been shown that elevated nonlinearity

could be used as an additional indicator to infer changes in the dynamics of populations

under stress.

In the fully nonlinear situation, the analysis of the front velocity could not be per-

formed. However, a piecewise linearization of Eq. (32) can be made. As in Refs.

Ph.D. Thesis of D.C. Bitang A Ziem Laboratory of Mechanics, Materials and Structures



Results and discussions 80

[162, 78], we take the reaction function (126):

f(U) =


−U U <

a

2
,

U − a a

2
≤ U ≤ a+ 1

2
,

1− U a+ 1

2
< U.

(169)

Whith this reaction term, the evolution Eq.(32) in the traveling wave ansatz then reduces

0 0.5 1

u

-0.2

0

0.2

f(
u

)

Figure 19: Piecewise linearization of the reaction term.

our nonlinear problem to a set of three regions. Each region can be reduced to a classical

two−state Markovian model for the density of cells moving right, U+, and the density

of cells moving left, U−.

The first region corresponds to a region where U± < z1, with z1 =
a

2
. Within

this region, death rate is constant, and there is no birth, then, extinction should be the

final outcome. The density should go to zero for large times; this is referred to as the

pure death process. Phase plane analysis of this region shows that in the ballistic regime

(µ << 1), the nullcline is a zero slope line; whereas, in the diffusive regime (µ > 1),

it divides the plane into two regions, the first region being the region where the vector

field is going to the left and the second one, corresponding to the right motion of the

vector field, for c < γ. For c > γ, the vector field points toward the nullcline. The

resulting equations read
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U+′ =
1

γ − c [µ(U− − U+)− 1

2
U+], γ 6= c,

0 = µ(U− − U+)− 1

2
U+, γ = c,

U−
′
= − 1

γ + c
[µ(U+ − U−)− 1

2
U−].

(170)

The second region is delimited by z1 ≤ U± ≤ z2, with z2 = a+1
2

. Within this region,

only birth process takes place. Phase plane analysis of this region shows that in the

ballistic regime, for c > γ, the vector field is going to the left, the nullcline is a zero slope

line. For c < γ, the vector field is going to the right. In the diffusive regime(µ >> 1), the

traveling wave corresponds to a non−negative heteroclinic orbit connecting the point z1

to the point z2. For c < γ, the vector field points away from the nullcline, and a stable

heteroclinic orbit does not exist. For c > γ, the vector field points towards the nullcline.

The resulting equations are

U+′ =
1

γ − c [µ(U− − U+) +
1

2
(U+ + U− − a)], γ 6= c,

0 = µ(U− − U+) +
1

2
(U+ + U− − a), γ = c,

U−
′
= − 1

γ + c
[µ(U+ − U−) +

1

2
(U+ + U− − a)].

(171)

The third region is the one where U± > z2. Within this region, both birth and

death rates are constants, but the death rate is higher than the birth one. So, as in the

first region, the final outcome should be extinction and the density should go to zero

for large times. For c < γ, the nullcline separates the plane into two parts. The left

part is caracterized by the fact that both reaction terms are negative, and the right one

is caracterized by the fact that all the reaction terms are positive, for c < γ. For c > γ,

the left part is caracterized by the fact that the first reaction term is positive, and the

second one is null. In the second part, the field vector points towards nullcline, and all
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the reaction terms are positive. The resulting equations are

U+′ =
1

γ − c [µ(U− − U+) +
1

2
− U+], γ 6= c,

0 = µ(U− − U+) +
1

2
− U+, γ = c,

U−
′
= − 1

γ + c
[µ(U+ − U−) +

1

2
− U−].

(172)

The dynamics of the whole system can be viewed as the movement of a particle in a

potential which has one stable point, and the other one is unstable.

Now, as in the previous section, we assume that the control parameter a fluctuates

locally around its mean value according to

a→ a(x, t) = a+ ε
1
2 ξ(x, t). (173)

In this way, the noise is added to the reaction term in the second region, and the resulting

equation has the general form

U+′ =
1

γ − c [µ(U− − U+)− 1

2
U+],

U−
′
= − 1

γ + c
[µ(U+ − U−)− 1

2
U−],

(174)

U+′ =
1

γ − c [µ(U− − U+) +
1

2
(U+ + U− − a)]− 1

2
ε

1
2 ξ,

U−
′
= − 1

γ + c
[µ(U+ − U−) +

1

2
(U+ + U− − a)]− 1

2
ε

1
2 ξ,

(175)

U+′ =
1

γ − c [µ(U− − U+) +
1

2
− U+],

U−
′
= − 1

γ + c
[µ(U+ − U−) +

1

2
− U−].

(176)

As discussed previously in the deterministic case, phase plane analysis revealed that the

system has now two fixed points: one located at zst = z1, and the other at zst = z2.

Now, consider that the initial state of the system at t = 0 is z = z2. Despite being
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unstable because this is a fixed point, the system will remain at z = z2, forever. In this

situation, fluctuations play a critical role because, they will force the system to move out

of the unstable fixed point and decay to the stable fixed point. As the decay is an event

triggered by noise, the time is stochastic. Characterization of its statistical properties

reveals that the left moving particles spread out quickly than the right moving one. This

result shows that the left moving particle has less dissimilarities than the right moving

one up to a certain time. After this time, left moving particles have more dissimilarities

than the right moving ones (see Fig. 20 ).

Figure 20: Variance of the stochastic time.

III.4 Effects of strong memory in the neuronal transport

process in presence of toxicity

In this section, a numerical study on the formation of patterns with subdiffusion on a

reaction-diffusion system (85) put forward by Zhang [150] is proposed. This system

describes an ecosystem where prey produces a substance that is toxic to predators.

In Fig. 21, we depict the influence of the toxic substances on the parameter that con-

stitute the anomalous exponent. It is clear that the slight variation of the efficiency of

the toxicity modifies this parameter, yielding a modification of the anomalous exponent
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itself. However, it would be premature to assert, based solely on Fig. 21, that this modifi-

cation would systematically lead to a modification in the Turing instabilities. In order to

decide on this, it would be necessary that one of the two relations (107), or (108) should

be satisfied. If at least one of the two is verified, then the relationship between the de-

gree of toxicity and the Turing instabilities will be clearly established, as depicted in

Fig. 22 which displays clearly the efficiency of toxicity on the Turing instabilities. These

results are a direct consequence of Hernandez’s work [158] on subdiffusion, where the

existence of Turing structures has been demonstrated. In this work, we will take a few

cases to study the phenomenon of subdiffusion under the influence of toxicity.

We provide now some simulations as evidence of the analytical predictions derived

in the previous sections.

Example1. Consider system (85) with the parameter values r = 0.7, K = 2, s =

0.25, m = 1.5, h = 1, d1 = 0.008, d2 = 1, a = 0.1 and β = 0.1. For this set of parameters,

we first have to make sure that all the above mentioned conditions are met. This can

trivially be done numerically by checking if Eq. (108) is fullfiled. Upon this, the Turing

patterns obtained for this set of parameters are depicted in Fig. 23.

In this case, we observe that before taking into account the memory effect (η = 1),

there are oscillations both in predators and in preys, which means that predators indis-

criminately consume toxic preys. However, if the memory effect is triggered (η < 1), we

observe that after a certain time, there is stabilization both in preys and predators. This

stabilization can be explained in two ways. Either the predators have known how to

recognize the less toxic preys, and therefore consume only those preys whose toxicity is

reduced, or the predators completely abstain from ingesting the toxic preys. This behav-

ior has been observed in European starlings which, when their body masses have been

experimentally reduced become more willing to eat prey items that have been injected

with quinine, which is toxic to birds in high doses [167, 168]. It is now clear that mem-

ory effects play a key role in ways in which naive predators learn to associate warningly

preys with their defenses and remember to avoid them in future encounters. This field

underpins an extensive body of evolutionary theory [169, 170, 171, 172, 173]. Moreover,
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Figure 21: (a): Effect of toxicity on the real part of the eigenvalue. (b): Effect of toxicity
on TrA(k). (c): Effect of toxicity on h(k). Efficiency of the toxic substances on system’s
variables. Simulations were performed with K = 2, s = 0.25 and h = 1, m = 1.5, r = 0.7.
Continuous blue line corresponds to a = 0.1, β = 0.1; continuous red line corresponds
to a = 0.05, β = 0.3 dashed blue line corresponds to a = 0.1, β = 0.5, d1 = 0.008 and
d2 = 0.3 and dashed red line corresponds to a = 0.05, β = 0.1
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Figure 22: Conditions for the Turing instabilities mentioned in (108) for different value
of the derivative order index. Simulations were performed with K = 2, s = 0.25 and
h = 1, m = 1.5, r = 0.7, d1 = 0.008. In (a), (b) and (c), a = 0.05, β = 0.1, with u(x, 0) =
0.4221 + 0.01cos(x) and v(x, 0) = 0.3654 + 0.01cos(x). While in (d), (e) and (f), a = 0.1,
β = 0.5, d2 = 0.03, with u(x, 0) = 0.0830 + 0.01cos(x), and v(x, 0) = 0.0818 + 0.01cos(x).
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Figure 23: Efficiency of the toxic substances on prey’s density. Simulations were per-
formed with K = 2, s = 0.25 and h = 1, m = 1.5, r = 0.7. a = 0.05, β = 0.1, d1 = 0.008,
d2 = 1. The initial values are u(x, 0) = 0.0814+0.01cos(4x), v(x, 0) = 0.0812+0.01cos(4x)
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it is obvious that memory effects regulate the effect of toxic substances on predators.

In other word, predators are affected by toxic substances for a certain time, then, they

become used to it, and the ecosystem becomes locally stable as shown in Figs. 23 (e)-(f)

and (h)-(i).

Example2. Let a = 0.05, d1 = 0.1, and the other parameters remain as in the first

exemple. As previously, we make sure that condition (108) is satisfied. For this set of

parameters, we have the structures of Fig. 24

Despite the toxicity of preys, the cohabitation between predator and prey takes place

without any problems, even if the number of predators remains relatively low. How-

ever, when we take into account the memory effect, we realize that the number of preys

decreases considerably, while that of predators remains relatively constant. By further

reducing the fractional order of the derivative, we observe a complete stabilization of the

two entities (predators and preys). Albeit the drastic fall in their respective population,

no species will disappear due to the effect of fractional - order parameter or memory

effect. This scenario is similar to the one described in Ref. [174] where predators delib-

erately choose to swallow toxic preys, choice which is a trade-off between the benefits

of obtaining nutrients and the costs of ingesting toxins. This trade-off is affected by the

fact that: animals will consume more toxic preys if they are food-deprived. Indeed, an-

imals face constant decisions about what to eat and what not to eat. While some items

are never worth eating, there are many cases where the decision to eat or not should

depend on the environment and the individual’s current state [175, 176, 177]. For ex-

ample, many potential preys available to wild birds are chemically defended, and so

contain toxins that will be harmful in the long term or if eaten in excess [178, 179]. How-

ever, such preys also contain valuable nutrients. In such cases, having lower energy

reserves or poorer foraging prospects shifts the balance of costs and benefits in favour

of consumption [177].

Example3. Once more, we consider system (85) with the parameter values β = 0.3,

a = 0.05, the others ramain unchanged. In this case also, the validity of Eq. (108) is

checked. The resulting structures are shown in Fig. 25. This case presents some sim-
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Figure 24: Efficiency of the toxic substances on prey’s density. Simulations were per-
formed with K = 2, s = 0.25 and h = 1, m = 1.5, r = 0.7. a = 0.05, β = 0.1,
d1 = 0.008, d2 = 1, with the initial values being u(x, 0) = 0.4221 + 0.01cos(x),
v(x, 0) = 0.3654 + 0.01cos(x)
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Figure 25: Efficiency of the toxic substances on prey’s density. Simulations were per-
formed with K = 2, s = 0.25 and h = 1, m = 1.5, r = 0.7. a = 0.05, β = 0.3, d1 = 0.08,
d2 = 1, and u(x, 0) = 0.0422 + 0.01cos(4x), v(x, 0) = 0.0421 + 0.01cos(4x)
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Figure 26: Efficiency of the toxic substances on prey’s density. Simulations were per-
formed with K = 2, s = 0.25 and h = 1, m = 1.5, r = 0.7. a = 0.1, β = 0.5, d2 = 0.03,
d1 = 0.1, u(x, 0) = 0.0830 + 0.01cos(x), v(x, 0) = 0.0818 + 0.01cos(x)
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ilarities with the one depicted in example 2. The preys are not really affected by the

predators, which is similar to the case discussed in Ref. [180] Here, the first conspicu-

ous mutants would have to survive greater levels of predation than previously thought,

because even when the learning process is complete, educated predators may still be

prepared to eat aposematic prey. There may be another reason for this phenomenon.

Indeed, a predator’s ability to moderate and process toxins would be a key factor in

limiting attack rates on chemically defended preys, and one that could have significant

implications for the survival advantage of being aposematic [180].

Example4. The set of parameters used here is almost the same as in the previous

cases, except for a = 0.1, β = 0.5, d1 = 0.1 and d2 = 0.03. For these parameter values,

condition (108) is also met. The resulting structures of Fig. 26. reveal that predators and

prey may be simultaneously exposed to toxins. Since the natural dispersive force of the

movement of each species is weak (
d2

d1

< 1), we can conclude that this configuration

corresponds to environmental toxins exposure. Indeed, if toxin came from either preys

or predators, it could not be affected as much. This means that toxin comes from the en-

vironment. The impact of environmental toxins on predator-prey dynamics has recently

been investigated [181]. Since mobility is reduced, we are in a situation of confinement

in a toxic environment. The direct effects of toxins typically reduce organism abundance

by increasing mortality or reducing fecundity. Such direct effects, therefore, alter both

bottom-up food availability and top-down predatory ability. However, the indirect ef-

fects, when mediated through predator-prey interactions, may lead to counterintuitive

effects. Environmental toxins also reduce population variability by preventing popula-

tions from fluctuating around a coexistence equilibrium [181] as depicted in Figs. 26 (f)

and (i).

III.5 Conclusion

In this chapter, we have numerically presented the results obtained from the ana-

lytical predictions made in the previous chapter. First, we have presented the effect of
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transport memory and its importance in certain phenomena observed on biological sys-

tems. Then, starting from the generalization of the Brownian movement better known

under the name of reaction random walk, we studied the importance of the fluctuations

in the movements of genetic population. We realized that these increase nonlinearity

in the environment. Finally, the effect of toxins under the influence of memory was

presented by taking a few cases. We realized that memory plays a major role in the

phenomena observed in ecology. Indeed, memory can stabilize structures just as it can

create new ones.
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Main results

The aim of this thesis was the understanding of the importance of memory in biolog-

ical systems linked to the transport of nerve impulses and to test their stability under

the influence of certain factors frequently encountered in the process of said transport

such as toxicity and fluctuations. To this end, the work was divided into three. First

of all, it has been shown that the transport memory exists in biological phenomena like

chromatin. Then, starting from a generalization of the Brownian motion, we studied the

effects of fluctuations on the dynamics of genetic populations. Finally, we examined the

effect of toxicity on the dynamics of genetic populations, taking into account the strong

memory effects. From these analyzes, it follows that:

♣ The effects of transport memory of the wave fronts in the bistable reaction-diffusion

which arises in biological system were analyzed considering two hypotheses. Firstly, we

assumed that these systems can be modeled as a chain of particles of identical masses,

each one of them interacting with its two nearest neighbors through harmonic coupling,

and secondly, we have considered that these systems can lead to a bistable regime. A

model was proposed and nonlinear analysis was carried out. From this analysis, trav-

eling front solution were obtained, connecting the hyperbolic points located at the two

maxima of the potential, at U = 0 and U = 1, representing the invasion of one of the

states by the other. We found that memory effects play an important role. When mov-

ing from the state U = 0 to the state U = 1, memory effects accelerate the speed of the

traveling wave (see Fig. 6 (a)), and when moving from the state U = 1 to the state U = 0,

memory effects play the role of a damping (see Fig. 6 (b)). The piecewise linear approx-
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imation was carried out, and results gotten agreed with the behavior of the chromatin

since it can be seen as clustered oscillators. The first oscillator behaving as a resistor,

thus protecting against high wave-speeds. The other oscillators working together and

which can be classified into three regions. The first one is where the mechanical cou-

pling is located. This mechanical coupling is there to impose coherent motion to the

system, the problem is that this mechanical coupling prevents segregation (in the case

of chromatin). Hence, the memory effects transported by the wave fronts in the bistable

reaction-diffusion play a key role as it help break down this mechanical coupling for

segregation to take place. The second region corresponds to a transition zone between

the wave-like behavior and the diffusive behavior. In the third region, another cycle is

yet to start.

♣With regard to fluctuations, they clearly appear to be the main source of nonlinear-

ity in the environment. Indeed, our analytical approach clearly shows that in the pres-

ence of fluctuations, nonlinearity increases in the system. This nonlinearity can, when

high, be used as an additional factor inducing changes in the dynamics of stressed bi-

ological populations. In addition, the strong nonlinearity induces chaos which can be

described as ”biological chaos”. The importance of this biological chaos is that the vari-

ables which govern the spatial and temporal geometries of the system are reduced in

a number of fractional dimension, thus allowing a control of low energy with complex

deterministic consequences. The complexity of control inherent in chaotic systems is

very important for the dynamics of gene expression and translation.

♣With regard to toxins, depending on the parameters, the memory can stabilize any

so-called Turing instabilities, or else generate new instabilities, creating new patterns. In

this work, we considered four examples, and each time we varied the parameters, which

allowed us to switch from one system configuration to another. The results obtained

were in perfect agreement with the experiments carried out in ecology. This suggests

that many of the phenomena that govern ecology have memories.
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Perspectives

♣ Studying the effects of memory on the dynamics of genetic populations in the

presence of fluctuations, according to the generalist approach of Brownian motion, is

one of our future projects, because it would allow us to better understand the effects of

memory in an environment close to the neuron.

♣ Study the effect of superdiffusion associated with memory according to the so-

called random walk reaction approach, because superdiffusion is just as present in many

transport processes occurring at the neuron level

♣ Deepen the study on a 3D model of chromatin in order to better understand the

effects of transport memory

♣ Cooperative and non cooperative studies of the memory effects and fractional

Brownian motion on the dynamics of genetic populations

♣ Considering bifurcations and dynamics of a predator-prey model with double-

Allee effects and time delay
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a b s t r a c t

In this paper, we analyze transport memory effects in bistable reaction−diffusion systems.
Traveling wave fronts are obtained for two interesting cases: (i)The nonlinear reaction
term is treatedwithout any approximation by factorizationmethod.We find that transport
memory effects appear to play a key role as it prevents the concentration or the amplitude
from taking negative values. These memory effects enter the dynamics of the reaction
diffusion systems through their influence on the speed of the traveling wave fronts. (ii) The
nonlinear reaction term is replaced by a piecewise linear approximate form. We obtain a
system of differential equations describing the three damped harmonic oscillators, one of
which has a negative mass and the others positive masses.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Memory effects are transported when the linear part of the evolution represents a process which is in part ballistic and in
part diffusive. The memory function or correlation function which describes the transport is, in such cases, not a δ function
as in the purely diffusive case, but has a finite decay time [1]. The dynamics of physical systems which behave as such
has been the subject of a great amount of work during past decades [1–3]. A choice of wide applicability is the logistic
reaction termwhose interest resides in its relevance to chemical and population dynamics, where the reaction termmodels
an autocatalytical ‘‘Malthusian’’ growth of the one−dimensional field, with a saturation due to intraspecies competition [4].

Recent progress in biology showed that biological systems like chromatin whose accessibility is modified dynamically
by transient neuronal activation [5], moves coherently across micron−scale regions [6], and incoherently until segregation
ends [7]. This passage of the character of the motion from coherent to incoherent is a general feature of all physical systems
with memory effects [1,2]. Neuronal activation here can be represented by the well known Nagumo reaction term, which is
a cubic polynomial and derive from a bistable potential.

Among reaction diffusion models, bistable biological systems with Nagumo reaction term have been extensively studied
in connection with pattern formation [8,9]. The focal theme lies in the interesting traveling wavefront solutions and related
issues which have been studied extensively by several authors in various recent contexts.

In this paper, we address the analysis ofwave front dynamics in one component bistable reaction−diffusionmodelwhere
we incorporate an exponential memory in the linear part. Traveling wave solutions obtained by analytical means is first
treated by the factorization method, then a piecewise approximation of the reaction term is considered.

∗ Corresponding author.
E-mail addresses: danielcassidi7@gmail.com (D.C.B.A. Ziem), tckofane@yahoo.com (T.C. Kofané).

https://doi.org/10.1016/j.physa.2018.10.049
0378-4371/© 2018 Elsevier B.V. All rights reserved.
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Fig. 1. Double well potential.

2. Model and nonlinear analysis

2.1. Model description

The model under consideration consists of a chain of particles of identical masses M, each one of them interacting with
its two nearest neighbors through harmonic coupling, where A is the harmonic coupling coefficient. The particles are under
the influence of an on−site, double well potential [10,11] given by:

V (un) =
1
4
un −

1 + a
3

u3
n +

a
2
u2
n, (1)

where un is the position of the particle n and a ∈ (0, 1) is a so−called ‘‘detuning’’ parameter [12].
Since we are dealing with a dissipative chain, we need a Lagrangian description which involves dissipation. This is

achieved by extending the Lagrangian formalism to include the Rayleigh dissipative function, where ξ is the dissipative
coefficient. We get the equation governing the motion of the nth particle.

M
d2un

dt2
+ ξ

dun

dt
= A(un+1 − 2un + un−1) − u3

n + (1 + a)u2
n − aun. (2)

In the continuum limit, i.e, when the lattice spacing is much less than the wavelength of the excitations propagating along
the chain (this is also referred to as displacive regime [13,14]), the dynamics of the model can be described in dimensionless
units, by the following partial differential equation:

∂2u
∂t2

+ µ
∂u
∂t

= D
∂2u
∂x2

+
1
M

f (u), (3)

where µ =
ξ

M
is the rescaled dissipation coefficient, D =

A
M

is the diffusion coefficient and f (u) = −u3
+ (1+ a)u2

− au, is
the well known Nagumo reaction term. Now, let us reduce the number of parameters by introducing the change of variables
t → Mµt , x →

√
MDx. Our initial model, Eq. (3) then reduces to

ϵ
∂2u
∂t2

+
∂u
∂t

=
∂2u
∂x2

+ f (u), (4)

with the appearance of a new parameter (the ‘‘mass’’), ϵ = (Mµ2)−1 [15]. The parabolic or overdamped limit is obtained by
letting ϵ → 0, which leads to

∂u
∂t

=
∂2u
∂x2

+ f (u), (5)

It is straightforward to show that the steady states of our function are u1 = 0, u2 = a and u3 = 1. We are interested in
those solutions which are front-like (kinks) connecting the (unstable) state u1 = 0 with the globally (stable) state u3 = 1.
Consequently, we supplement Eqs. (4) and (5) with boundary conditions u(−∞, t) = u1 , u(∞, t) = u3 (see Fig. 1).

Now, consider the replacement of the diffusion equation Eq. (5) by its nonlocal (in time) counterpart

∂u
∂t

=

∫ t

0
Φ(t − τ )

∂2u
∂x2

dτ + kf (u), (6)

where u(x, t) is the dynamics of the field, k is the quadratic growth rate,φ(t) = αe−αt is thememory functionwhich describes

the finiteness of the correlation or scattering time
1
α
.
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Following the general rules of the calculus, we transform Eq. (6) into a differential equation that can easily be used to
look for traveling wave solutions

∂2u
∂t2

+
[
α − kf ′(u)

] ∂u
∂t

= v2 ∂2u
∂x2

+ αkf (u), (7)

where, just like in [1], v2
= α, the physicalmeaning of v being the speed dictated by themedium in the absence of scattering.

In the following section, we will analyze the nonlinear model by the factorization method.

2.2. Nonlinear analysis

Themethod thatwill be employed to solve Eq. (7) is known as the factorizationmethod. It is amethod that seeks traveling
wave solutions for a particular class of partial differential equations (PDE) that are associated with having a polynomial
nonlinearity. For this purpose, we introduce a traveling wave ansatz of the form

u(x, t) = U(z), (8)

where z = x − ct , c ≥ 0 is the velocity of the wave. Substituting this transformation into Eq. (7) and rearranging yields,

d2U
dz2

+
c

(v2 − c2)
[α − kf ′(U)]

dU
dz

+
αk

(v2 − c2)
f (U) = 0. (9)

By replacing f ′(U) and f (U) by their expressions in Eq. (9), we obtain

d2U
dz2

+
c

(v2 − c2)

[
α + 3kU2

− 2k(1 + a)U + ka
] dU
dz

+
αk

(v2 − c2)
U(U − a)(1 − U) = 0. (10)

Let

G(U) =
c

(v2 − c2)
[α + 3kU2

− 2k(1 + a)U + ka], (11)

and

F (U) =
αk

(v2 − c2)
U(U − a)(1 − U). (12)

Thus, rearranging Eq. (10) yields

d2U
dz2

+ G(U)
dU
dz

+ F (U) = 0. (13)

We aim to factorize Eq. (13) into a form given by

[Dz − f2(U)] [Dz − f1(U)]U = 0, (14)

where Dz =
d
dz

, and the functions f1 and f2 relate to F (U) implicitly.
We start by expanding Eq. (14) to get

Dz
2U − Dz f1U − f2DzU + f1f2U = 0, (15)

which leads to
d2U
dz2

− f1
dU
dz

−
df1
dU

dU
dz

U − f2
dU
dz

+ f1f2U = 0. (16)

At this level, it is required that we factorize the expression in Eq. (16) by grouping terms. We will use the Rosu and
Cornejo−Perez grouping technique [16], which is given by

d2U
dz2

−

(
df1
dU

U + f1 + f2

)
dU
dz

+ f1f2U = 0. (17)

Comparing Eqs. (17) and (13), we obtain
df1
dU

U + f1 + f2 = −G(U), (18)

and,

f1f2 =
F (U)
U

, (19)

where f1 and f2 are set to be

f1 = α(1 − U), (20)
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and

f2 =
k

v2 − c2
(U − a). (21)

We now substitute the expressions of f1, f2 and G(U) into Eq. (18), it yields

− αU + α(1 − U) +
k

v2 − c2
(U − a) = −G(U). (22)

After grouping terms according to the power of U , we obtain

3cU2
+ η(c, a)U + β(c, a) = 0, (23)

where η(c, a) = (1 + 2(1 + a)c)k + 2(c2 − v2)v2, and
β(c, a) = −a(1 + c)k + v2(−c − c2 + v2).
It has been shown that for a > 1/2, the only traveling solution is U = 0 [17], which corresponds to the extinction option.

For 0 < a ≤ 1/2, and for each set of parameters of Eq. (7), there are two possibles front velocities for which there are
continuous solutions that represent a transition between the stationary states.

We now implement the Rosu and Cornejo−Perez grouping technique defined in Eq. (17) to obtain

d2U
dz2

− (−αU + α(1 − U) +
k

v2 − c2
(U − a))

dU
dz

+ f1f2U = 0. (24)

As stated previously, this structure allows us to get[
Dz −

k
v2 − c2

(U − a)
]
[Dz − α(1 − U)]U = 0. (25)

Eq. (25) will be related to one of the following ordinary differential equation (ODE)

dU
dz

− α(1 − U)U = 0. (26)

or
dU
dz

−
k

v2 − c2
(U − a)U = 0. (27)

If we consider Eq. (26), we have∫
dU

(1 − U)U
=

∫
αdz. (28)

By integrating Eq. (28), we get

− ln(|1 − U |) + ln(|U |) = αz + cr , (29)

where cr is the constant of integration. After small modifications, Eq. (29) gives

U =
exp(αz + cr )

1 + exp(αz + cr )
. (30)

The constant cr relates to an initial shift of the wave, if desired. Eq. (30) can be reduced to

U = 1 −
1

1 + exp(αz + cr )
. (31)

We can now use the inverse transformation of U(z) = u(x − ct), with z = x − ct to get

U = 1 −
1

1 + exp(α(x − ct) + cr )
. (32)

This is a solution connecting the equilibrium U = 0 to the equilibrium U = 1. These trajectories correspond to fronts of
state 0 invading the state 1, for different values of the memory function at very short times (see Fig. 2). When α increases,
the width of the front wave decreases, it means that the memory effects increase the speed of the front wave.

Let us now consider Eq. (27), we have∫
dU

(a − U)U
=

∫
−bdz. (33)

By integrating Eq. (33), we get

− ln(|a − U |) + ln(|U |) = −bz + cl, (34)
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Fig. 2. Right propagating front.

Fig. 3. Left propagating front for k = 1, a = 0.5 and c = 2.

where cl is the constant of integration. In order to avoid discontinuity, we have to make sure that 0 < U < a. Using the
exponential function, and rearranging for U , Eq. (33) gives,

U =
aexp(−bz + cl)

1 + exp(−bz + cl)
. (35)

After reduction for clarity purposes, Eq. (35) can be written in a simpler form given by

U = a
[
1 −

1
1 + exp(−bz + cl)

]
. (36)

We now implement the inverse transformation of U(z) = u(x − ct), with z = x − ct , to get

U = a
[
1 −

1
1 + exp(−b(x − ct) + cl)

]
, (37)

where b =
k

v2 − c2
, and the constant cl relates to an initial shift of the wave, if desired.

This solution corresponds to the left propagating front that connects the front state U = 1 with the front state (U = 0).
We have an overdamped trajectory, since negative solutions are not allowed [1] (see Fig. 3). In this case, when the memory
effects increase, the width of the front wave decreases, it means that the memory acts like a damping coefficient.

3. Piecewise linearization

Another way to treat the Nagumo’s reaction term is to replace the nonlinear function (see Fig. 4) by its piecewise linear
approximation (see Fig. 5). Following Elmer [18], we rewrite the reaction function as

f (U) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−U U <

a
2
,

U − a
a
2

≤ U ≤
a + 1
2

,

1 − U
a + 1
2

< U .

(38)
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Fig. 4. The Nagumo’s function with a = 0.5.

Fig. 5. The piecewise linear approximation.

Denoting differentiation with respect to z by primes and by using Eq. (8), we reduce the PDE Eq. (7) to an ODE which
describes a damped harmonic oscillator

mU ′′
+ 2γ1U ′

− ω2U = 0, U ≤
a
2
,

mU ′′
+ 2γ2U ′

+ ω2(U − a) = 0,
a
2

≤ U ≤
a + 1
2

,

mU ′′
+ 2γ3U ′

+ ω2(1 − U) = 0, U >
a + 1
2

.

(39)

Here, we used the notation of Manne et al. [1], m = v2
− c2 to emphasize the formal similarity between Eq. (7),

where we have inserted Eq. (8) and the equation of motion of a damped oscillator of mass m subject to a nonlinear force
−αkU(U − a)(1 − U). Parameters are as follows

γ1 = γ3 =
c
2
(α + k), γ2 =

c
2
(α − k), ω =

√
αk. (40)

It is clear that Eq. (39) is the equation of motion of three damped harmonic oscillators, which is in agreement with
the results obtained by Zhao et al. [19] showing that chromatin behaves like a set of synchronized oscillators either by
the coupling of an electromagnetic field generated by a longitudinal oscillation of the nucleosomes, or by the physical
interactions of the DNA–protein complexes. These results are in agreement with [20] showing that the telegraph−type
equations do not take into account themechanical and thermodynamic effects. Solutions for wave amplitude as a coordinate
function x − ct can be obtained for each region U < a

2 ,
a
2 < U < a+1

2 and U > a+1
2 .

In the region U < a
2 , depending on the values ofm, solutions are given as follows:

ifm = 0, we have

U(z) = Be

ω2

2γ1
z
. (41)

and,
ifm ̸= 0, we obtain

U(z) = B+er+z
+ B−er−z, (42)

with

r± =

−γ1 ±

√
γ 2
1 + mω2

m
. (43)
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In the region
a
2

≤ U ≤
a + 1
2

, depending again on the values ofm, we obtain the following solutions:
ifm = 0, we get

U(z) = a + Ce
−

ω2

2γ2
z

(44)

and,
ifm ̸= 0, we have

U(z) =

{
a + C+eR+z

+ C−eR−z R+ ̸= R−,

a + C0eRz + C1zeRz, R+ = R− = R, (45)

with

R± =

−γ2 ±

√
γ 2
2 − mω2

m
. (46)

In the region U >
a + 1
2

,
ifm = 0, it leads

U(z) = 1 − De

ω2

2γ3
z
, (47)

and,
ifm ̸= 0, we obtain

U(z) =

{
1 − D+eµ+z

− D−eµ−z µ+ ̸= µ−,

1 − D0eµz
+ D1zeµz, µ+ = µ− = µ,

(48)

where

µ± =

−γ3 ±

√
γ 2
3 − mω2

m
. (49)

We define the following variables UL, UR1 and UR2 via [1]

UL(−z) = U(z), z ≥ 0,
UR1(z) = a + U(z), z ≥ 0,
UR2(z) = 1 − U(z), z ≥ 0,

(50)

and we have
mU ′′

L + 2γ1U ′

L − ω2UL = 0, z < 0,
mU ′′

R1 + 2γ2U ′

R1 + ω2UR1 = 0, 0 < z < z1,
mU ′′

R2 + 2γ3U ′

R2 + ω2UR2 = 0, z > z1.
(51)

We obtain a system of differential equations describing the three damped harmonic oscillators, one of which has a
negative mass, and the other two having positive masses. The negative mass of the first oscillator is biologically explained
by the fact that many biological systems are very repressive. They trigger a response that tends to oppose the solicitation.
The first oscillator thus appears clearly as a low−pass filter, since it allows only signals whose wave velocity is lower than
that imposed on it, and the rest is rejected.

Since we are interested in non−negative solutions, because U is assumed to be a concentration or density [2], it follows
that the damped oscillator UL representing the shape of the front of the wave must be critically damped to prevent this
concentration from oscillating and ending up with negative values. The role of the first oscillator is thus to avoid that one
finds oneself in a situation where the speed imposed by the stress is superior to that dictated by the medium. Therefore, the
condition that this oscillator should be critically damped is verified.

Let us consider the case of the oscillators UR1 and UR2. They can be slightly damped, since there is no problem if the
concentration oscillates around a positive value. The condition for UR1 to be critically damped is: γ2 =

√
mω, and the

corresponding velocity is given by

cthr1 = v
1√

1 +
1
4
(y −

1
y
)2

, (52)

where y =

√
α

k
. If c < cthr1, the wave front shape exhibits spatial oscillations.
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Fig. 6. The dependence of the respective ratios of cthr1 and cthr2 to the speed v dictated by medium on the damping−nonlinearity parameter ratio α/k.

The condition for UR2 to be critically damped is γ3 =
√
mω, and the corresponding velocity is given by

cthr2 = v
1√

1 +
1
4
(y +

1
y
)2

. (53)

Fig. 6 shows a comparative study between v, c , cthr1 and cthr2, and we see that cthr2 ≤ cthr1 ≤ v. Using this graph, we can
determine explicit solutions of the following regions c ≤ cthr2, cthr2 ≤ c ≤ cthr1 and c ≤ v.

In the first region, c ≤ cthr2, depending on each of the three regions z < 0, 0 < z < z1 and z > z1, solutions are given by

U(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a
2
er+z z < 0,

a(1 − D1 cos(
2π
λ1

z − δ1)) 0 ≤ z ≤ z1,

1 − D2eµz cos(
2π
λ2

z − δ2) z > z1,

(54)

where

D1 =
1

2 cos δ1
eRz, (55)

D2 =

1 − a +
a

2 cos δ1
cos(

2π
λ1

z1 − δ1)

eµz1 cos(
2π
λ2

z1 − δ2)
, (56)

δ1 = − tan−1
(

λ1

2π
(r+ + R)

)
, (57)

λ1 =
2πm√

mω2 − γ 2
2

, (58)

λ2 =
2πm√

mω2 − γ 2
1

, (59)

R± = R ± i
λ

2π
, (60)

δ2 =
2π
λ2

− tan−1

[
λ1

2π

(
µ +

δN

δD

)]
, (61)

δN = a(−
R
2
cos(

2π
λ1

z1 − δ1)+

π

λ
sin(

2π
λ1

z1 − δ1))eRz1 ,
(62)

δD = (1 − a[1 −
1

2 cos δ1
cos(

2π
λ1

z1 − δ1)]) cos δ1. (63)

We have an oscillatingwave front in space, which proves that there is a supply of energy from the outside environment in
this region. If we consider this region as a sink, biophysically, this energymay come from locally ingested nutrients, drugs, or
information transmitted into the region considered. This energy can be considered as a source [21]. The sink in this case can
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Fig. 7. Wave front shape with oscillations Eq. (54), using α = 3, a = 0.5, k = 1, c = 5, v = 10 and z1 =
a + 1
2

.

Fig. 8. Wave front shape with transition to no oscillations regime Eq. (64), with α = 3, a = 0.5, k = 1, c = 7, v = 10 and z1 =
a + 1
2

.

be mechanical coupling imposing a coherent motion to the biological system as, for instance, chromatin. With this coherent
motion, chromatin cannot undergo a segregation which is essential before any cell division. The source will therefore break
this mechanical coupling, so that the motion of the chromatin becomes incoherent, and therefore, it can be subjected to free
diffusion that will allow it to undergo segregation, and give rise to cell division. (See Fig. 7)

In the second region , cthr2 ≤ c ≤ cthr1, m is positive, and we obtain

U(z) =

⎧⎪⎪⎨⎪⎪⎩
a
2
er+z, z < 0

a(1 −
1

2 cos δ
eRz cos(

2π
λ

z − δ)), 0 ≤ z ≤ z1,

1 − D−eµ−z z > z1,

(64)

where

λ =
2πm√

mω2 − γ 2
2

, (65)

δ = − tan−1(
λ(rp + Rp)

2π
), (66)

C = −
a

2 cos δ
, (67)

D− = (1 − a − CeRz1 cos(
2πz1

λ
− δ))e−µ−z1 . (68)

The second region corresponds to a transition zone towards a state of no oscillations, which means that the mechanical
coupling has been removed, and the energy used to break this coupling will initiate free diffusion processes in the second
region. (See Fig. 8)

In the third region, c ≤ v, m is still positive, the solution is given by:

U(z) =

⎧⎪⎨⎪⎩
a
2
er+z z < 0,

a + C+eR+z
+ C−eR−z 0 ≤ z ≤ z1,

1 − D−eµ−z z > z1,
(69)
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Fig. 9. Wave front shape without oscillations Eq. (69), for α = 3, a = 0.5, k = 1, c = 9.5, v = 10 and z1 =
a + 1
2

.

where

C+ =
a(r+ + R+)
2(R− − R+)

, (70)

C− =
a(r+ + R−)
2(R+ − R−)

, (71)

D− =
1 − a − C+eR+z1 − C−eR−z1

eµ−z1
. (72)

Here, we realize that all oscillations have disappeared completely. It means that the process was successfully completed,
and another cycle is on his way to start. (See Fig. 9)

4. Conclusion

We investigated the effects of transport memory of the wave fronts in the bistable reaction−diffusion which arises in
biological system. We considered two hypotheses. Firstly, we assumed that these systems can be modeled as a chain of
particles of identical masses, each one of them interacting with its two nearest neighbors through harmonic coupling, and
secondly, we have considered that these systems can be found in a bistable regime. A model was proposed and nonlinear
analysis was carried out. From this analysis, traveling front solutionwere obtained, connecting the hyperbolic points located
at the two maxima of the potential, at U = 0 and U = 1, representing the invasion of one of the states by the other. We
found that memory effects play an important role. When moving from the state U = 0 to the state U = 1, memory effects
accelerate the speed of the traveling wave (see Fig. 2), and when moving from the state U = 1 to the state U = 0, memory
effects play the role of a damping (see Fig. 3).

The piecewise linear approximationwas carried out, and results gotten agreedwith the behavior of the chromatin since it
can be seen as clustered oscillators. The first oscillator behaving as a resistor, thus protecting against high wave-speeds. The
other oscillators working together and can be classified into three regions. The first one is where the mechanical coupling
is located. This mechanical coupling is there to impose coherent motion to the system, the problem is that this mechanical
coupling prevents segregation (in the case of chromatin). Hence, the memory effects transported by the wave fronts in the
bistable reaction−diffusion play a key role as it help break down this mechanical coupling for segregation to take place.
The second region corresponds to a transition zone between the wave-like behavior and the diffusive behavior. In the third
region, another cycle is yet to start.

Further work is in progress to investigate the memory effects combined with the stochastic version of the model that we
have proposed.
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a b s t r a c t 

Motivated by the fact that the restrictive conditions for a Turing instability are relaxed in subdiffusive 

regime, we investigate the effects of subdiffusion in the predator - prey model with toxins under the 

homogeneous Neumann boundary condition. First, the stability analysis of the corresponding ordinary 

differential equation is carried out. From this analysis, it follows that stability is closely related to the co- 

efficient of toxicity. In addition, the temporal fractional derivative does not systematically widen the range 

of parameters to maintain a point in the stability domain. Furthermore, we derive the condition which 

links the Turing instability to the coefficient of toxicity in the subdiffusive regime. System parameters 

are varied in order to test our mathematical predictions while comparing them to ecological literature. 

It turns out that the memory effects, linked to the transport process can, depending on the parameters, 

either stabilize an ecosystem or make a completely different configuration. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

During evolution, venomous animals have produced a panoply 

of peptide toxins, formidable weapons for the capture of prey. 

These venoms, considered as simple to complex mixtures of toxic 

components, are an invaluable source of very specific pharmaco- 

logicals agents for characterization of ion channel and receptor 

subtypes membranes [1] . The targets of these toxins are proteins 

involved in nervous conduction as well as nervous transmission, 

mainly ion channels. By their efficiency and selectivity of action, 

they offer significant therapeutic potential as evidenced by toxins 

whose effectiveness in neurological disorders is now being tested 

in therapeutic trials [1] . Toxins have also been developed by a 

range of prey as a defense against predation. Those species that 

advertise their toxicity to would-be predators with conspicuous 

warning signals are known as “aposematic”. Many aposematic prey 

species arm themselves with toxins that are harmful or unpleasant 

to predators, and advertise those defenses using a variety of 

conspicuous warning signals [2–4] . Although warning signals can 

be costly in terms of increased detection, they are also particularly 
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salient to predators, allowing them to quickly learn about and 

identify toxic prey and reduce their attack rates on them [5–7] . 

Therefore, aposematic signals appear to have been selected to 

take advantage of the cognitive processes of predators, and in 

particular, how they learn about prey and make dietary decisions 

in a complex world [3,8] . Several researches have been carried out 

to investigate the role of toxins in prey-predator interactions using 

mathematical models. Some of the leading studies are the work of 

Chattopadhyay [9] which emphasised on the effects of toxic sub- 

stances on two-species competitive system, considering that each 

species produces a substance toxic to the other only when the 

other is present. Further work on the presence of toxic substances 

was done by Kar and Chaudhuri [10] , where they investigated the 

possibility of the existence of a bionic equilibrium and optimal har- 

vesting policy on a model with two competiting fish species that 

are commercially exploited. In [11] , Samanta investigated the effets 

of environmental toxins exposure. In this situation, predator are in- 

fected not only by the environmental exposure, but also indirectly 

during the feeding process. Other studies regarding the diffusion 

population model in the presence of toxic substance have been 

carried out by Aly [12] . He considered a Lokta-Volterra competitive 

system affected by toxic substances in two patches in which the 

per capita migration rate of each species is influenced not only 

by its own but also by the other one’s density. Thus far, few re- 

searchers have studied the combined effects of delay and toxicity 

in prey-predator interactions. Jana et al. [13] analyzed the stability 

https://doi.org/10.1016/j.chaos.2021.111238 
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and Hopf-bifurcation behaviors of a multi-delayed two-species 

competitive system affected by toxic substances with imprecise 

biological parameters. The asymptotic behavior of the reaction- 

diffusion model of plankton allelopathy with non-local delays was 

investigated by Li et al. [14] . It is worth pointing out that delay is 

used in mathematical modeling to describe memory effects [15–

17] . Memory effects are important because they reflect the fact 

that the past is considered to explain the present [18] . Another ap- 

proach to better describe these memory effects is fractional calcu- 

lus which makes it possible to clearly distinguishes super diffusion, 

normal diffusion and subdiffusion. Recent studies point out the fact 

that nervous conduction and transmission, the main target of toxic 

substances are overwhelmingly dominated by subdiffusion [19–21] . 

Subdiffusion has acquired relevance in the past decades since 

it has been experimentally detected in several systems such as 

porous media [22] , glasses [23] , transport through cell membranes 

[19,20] , and other biological systems [21] . Studies of subdiffu- 

sion in reaction-diffusion systems, using time fractional derivatives, 

have shown that the conditions for a Turing instability are not dif- 

ferent from the normal conditions for special cases of subdiffusion 

[24,25] . However, Hernández et al. [26] came out with a new way 

of obtaining Turing patterns with subdiffusion. 

Since the well - known Turing reaction - diffusion model was 

discovered [27] , enormous efforts have been made to investigate 

nonlinear self - organization phenomena in nature. Recently, in- 

terest was given to the link between toxic substances and Turing 

bifurcation, Hopf bifurcation and Steady - State bifurcation [28] . 

This lead to the conclusion that the toxic coefficient is important 

for the occurrence of the complex spatial dynamics. Additionally, 

Zhang and Zhao [28] considered a typical reaction - diffusion sys- 

tem, which implies that the effects of reaction and diffusion are 

separable and combine additively to influence the total spatiotem- 

poral evolution of the concentration field of a given species [29,30] . 

When it comes to subdiffusive entities undergoing reactions, re- 

action and diffusion processes are no longer separable because of 

the strong memory effects in the transport mechanism [29] , which 

means that the non-Markovian nature of subdiffusion results in a 

nontrivial combination of reactions and spatial dispersal. In this 

situation, can toxicity still be considered as an important param- 

eter responsible for complex spatial dynamics? 

The answer to this question requires to investigate how strong 

memory effects in the transport process influence Turing pattern 

induced by toxic substances, which is the purpose of this paper. 

The scheme of this paper is as follows. In Section 2 , we start by 

examining the influence of toxic substances on the dynamics prop- 

erties of the fractional - order ODE system. Section 3 is devoted to 

the analysis of a model describing an ecosystem where the preys 

produce substance that is toxic for the predators, and give gen- 

eral conditions for toxicity coefficient allowing Turing instability to 

appear. We verify the predictions of the analysis via numerical cal- 

culations in Section 4 . In Section 5 , we summarize our results and 

draw some conclusions. 

2. Effect of toxic substances on the dynamics properties of the 

fractional - order ODE system 

In this work, the following parabolic activator- inhibitor model 

with subdiffusion consisting of two variables is investigated: 

c ∂ ηu 
∂ t η

= d 1 �u + ru 

(
1 − u 

K 

)
− mu v 

a + u , 

c ∂ ηv 
∂ t η

= d 2 �v + s v 
(

1 − h v 
u 

)
− βu v 2 . 

(1) 

The reaction terms in (1) were first proposed by Zhang and Zhao 

[28] to describe an ecosystem where the prey produces substances 

that are toxic to the predators. The term βu v 2 denotes the effect of 

toxic substances and β represents the efficiency of toxicity. u and 

v denote the sizes of the prey population and predator population, 

respectively. r, K, m , a , s , h , and β are all positive constants, and 

η ≤ 1 . Note that in this form, the evolution of the uniform state is 

controlled by subdiffusion, even if the spatial term is not present. 

In here the time operator is the Caputo fractional derivative of or- 

der η [31] . The explicit form of this operator in one-dimensional 

systems reads 

c ∂ ηP (X, t) 

∂ t η
= 

1 

�(1 − η) 

∫ t 

0 

(t − τ ) 
−η ∂P (X, t) 

∂τ
dτ , (2) 

where t and τ represent the integration time and the delay, re- 

spectively. In other words, the derivative in the Caputo’s sense 

takes into account the past to determine the present, which, ac- 

cording to Barros et al. [18] is the defintion of memory effects. 

We first study the manner in which toxic substances affect the 

stability and Hopf bifurcation of the ODE version of system (1) . 

Omitting the diffusion terms, the following ODE is obtained from 

(1) 

c d ηu 
d t η

= ru 

(
1 − u 

K 

)
− mu v 

a + u , 

c d ηv 
d t η

= s v 
(

1 − h v 
u 

)
− βu v 2 . 

(3) 

An obvious steady state of system (3) is E 1 = (K, 0) , the predator - 

free equilibrium. Assuming that the other equilibrium E ∗ = (u ∗, v ∗) 
of system (3) satisfies ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

r 

(
1 − u ∗

K 

)
− m v ∗

a + u ∗ = 0 , 

s 

(
1 − h v ∗

u ∗

)
− βu 

∗v ∗ = 0 . 

(4) 

Eliminating v yields 

βr u 

∗4 + βr 

(
a − K 

)
u 

∗3 + r 

(
hs − Kaβ

)
u 

∗2 

+ s 

(
Km + ahr − Khr 

)
u 

∗ − Kahrs = 0 . 
(5) 

The number and the signs of the roots can easily be predicted 

from (5) , according to Descartes’ rule of signs. In doing so, system 

(5) admits one or three positive roots u = u ∗ if one of the following 

inequalities holds 

a < K, hs < Kaβ, Km + ahr < Khr, (6) 

a < K, hs > Kaβ, Km + ahr < Khr. (7) 

That is to say, according to inequality (6) , if β > 

hs 
Ka , (5) has exactly 

one positive root. While inequality (7) states that if h 2 rs 

K 2 

(
hr−m 

) < 

β < 

hs 
Ka , (5) has eiter one positive root, or three positive roots. This 

result is in perfect agreement with the numerical result obtained 

by Zhang and Zhao [28] . Once we have determined u ∗, v ∗ can eas- 

ily be obtained from the second line of (4) , yielding 

v ∗ = 

s u 

∗

sh + βu 

∗2 
. (8) 

Once we know the number of equilibria, a word should be said 

about their stability. The stability of the steady states is determined 

by the eigenvalues of the Jacobian matrix 

J = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

r 

(
1 − 2 u ∗

K 

)
− ma v ∗(

a + u ∗
)2 − m u ∗

a + u ∗

(
sh 
u ∗2 − β

)
v ∗2 s 

(
1 − 2 h v ∗

u ∗

)
− 2 u 

∗v ∗β

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (9) 
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and the associated characteristic equation is 

λ2 − T λ + � = 0 , (10) 

where 

T = a 11 + a 22 , � = a 11 a 22 − a 12 a 21 , (11) 

with 

a 11 = r − 2 ru ∗
K 

− ma v ∗(
a + u ∗

)2 , 

a 12 = − mu ∗
a + u ∗ , 

a 21 = 

sh v ∗2 

u ∗2 − βv ∗2 , 

a 22 = s − 2 sh v ∗
u ∗ − 2 βu 

∗v ∗. 

(12) 

If the trace T of the Jacobian matrix is negative, with �, its 

determinant, being positive, the steady state is stable. Since we are 

interested in the influence of the toxic coefficient on stability, we 

will therefore have. 

T < 0 ⇒ β > α2 , 

� > 0 ⇒ β < α3 . 
(13) 

Moreover, (6) states that β > α1 . By combining these three con- 

straints on the toxicity, and considering conditions (6) , for η = 1 , 

the steady state E ∗ will therefore be stable if 

max { α1 , α2 } < β < α3 , (14) 

where 

α1 = 

hs 
Ka 

, α2 = 

1 
2 u ∗v ∗

[
a 11 + s 

(
1 − 2 h v ∗

u ∗

)]
, 

α3 = 

1 
2 v ∗( a 12 u ∗−a 11 v ∗) 

[
−a 12 

sh v ∗2 

u ∗2 + a 11 s (1 − 2 

h v ∗
u ∗ ) 

]
, 

(15) 

the Hopf bifurcation typically occurs at βH = α2 for system (3) . If, 

on the other hand, we consider conditions (7) , steady states will 

be stable if β is bounded as follows 

α2 < β < max { α1 , α3 } . (16) 

However, for η ∈ [0 , 1] , the steady state E ∗ is stable when 

| arg λ| > 

ηπ

2 

, (17) 

while it becomes asymptotically unstable for 

| arg λ| < 

ηπ

2 

, (18) 

for the roots λ in the Eq. (10) . 

Let us first consider the inequality (6) . We choose β = 0 . 17 , 

which is in agreement with (14) . With this value of β , we have 

one positive and stable root for η = 1 , as well as for η ∈ [0 , 1] . 

If we consider instead the inequality (7) , and we choose β = 

0 . 09 as in [28] , we will have three positive equilibrium points E ∗
1 

, 

E ∗
2 

and E ∗
3 

. The first equilibrium point is stable for η = 1 , and for 

η ∈ [0 , 1] . 

For the second equilibrium point, if η = 1 , � < 0 , the discrimi- 

nant is always positive, i.e., T 2 − 4� > 0 , and both eigenvalues are 

real. However, one is positive and the other is negative. Trajectories 

approach the steady state along the eigenvector corresponding to 

the negative eigenvalue, but move away along the eigenvector cor- 

responding to the positive eigenvalue. The steady state has one sta- 

ble and one unstable direction. It is therefore unstable and called 

a saddle [32,33] . When η ∈ [0 , 1] , this equilibrium point is stable, 

according to inequality (17) . Regarding the third equilibrium point, 

its stability is guaranteed for both η = 1 and η ∈ [0 , 1] . While re- 

maining in inequality (7) , according to Descartes’ rule of signs, it is 

possible to have a unique positive root, yielding a positive equilib- 

rium point that we call E ∗4 . So, taking β = 0 . 03 , for η = 1 , the equi- 

librium point E ∗
4 

has complex conjugate eigenvalues with a positive 

real part, λ = T / 2 . The steady state is unstable. Due to the presence 

of a nonzero imaginary part, perturbations grow in an oscillatory 

manner and spiral away from the steady state. The steady state is 

an unstable focus. If η ∈ [0 , 1] , E ∗
4 

is found to be unstable, according 

to (17) . These results confirm the paramount role that the toxic co- 

efficient plays on the stability of the system. In addition, it would 

be interesting to note that this stability, depending on the system 

parameters, can either be modified or maintained. 

In this section, we conducted a study on the stability of fixed 

points in relation with toxicity. This work was already carried out 

in [28] , but within the framework of a normal diffusion. The inter- 

est of carrying out this study again lies in the fact that the frac- 

tional derivative can modify the stability of a point. 

3. Analysis of a system with toxic substances in a subdiffusive 

regime 

We now proceed to analyze the case we are interested in, 

namely the modifications of Turing pattern induced by toxic sub- 

stances in presence of strong memory effects in the transport pro- 

cess. In order to appreciate these modifications, it is convenient 

to use the approach developped by Hernández et al. [26] , because 

it can help us to see every new results that will emerge. For this 

purpose, we start by linearizing around the fixed points. (1) is first 

written as follows 
c ∂ ηu 
∂ t η

= d 1 �u + a 11 u + a 12 v , 
c ∂ ηv 
∂ t η

= d 2 �v + a 21 u + a 22 v , 
(19) 

where a i j are the elements of the Jacobian matrix given by (12) . 

Applying Fourier and Laplace transforms to (19) yields 

s ηU − s η−1 U(k, 0) = −d 1 k 
2 U + a 11 U + a 12 V, 

s ηV − s η−1 V (k, 0) = −d 2 k 
2 V + a 21 U + a 22 V, 

(20) 

where U and V are given by 

U = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

e ikx e −st u (x, t ) dt dx = F(L (u )) , 

V = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

e ikx e −st v (x, t ) dt dx = F(L (v )) . 
(21) 

where F and L represent the Fourier and Laplace transforms, re- 

spectively. Solving (20) yields 

U(k, s ) = 

(
s η+ d 1 k 2 −a 22 

)
s η−1 U(k, 0)+ s η−1 a 12 V (k, 0) 

S(k,s ) 
, 

V (k, s ) = 

(
s η+ d 2 k 2 −a 11 

)
s η−1 V (k, 0)+ s η−1 a 21 U(k, 0) 

S(k,s ) 
. 

(22) 

The time evolution of u (k, t) = L 

−1 (U(k, s )) is given by the singu- 

larities of (22) which is the zeros of the function 

S(k, s ) = s η+ α + s η
(

d 2 k 
2 − a 22 

)
+ s α

(
d 1 k 

2 − a 11 

)
+ d 1 d 2 k 

4 + (a 11 a 22 − a 12 a 21 ) − k 2 (a 22 d 1 + a 11 d 2 ) . 
(23) 

In order to analyze the stability of the system near the equilibrium 

point, we solve the equation 

S(k, s 0 ) = 0 , (24) 

where s 0 (k ) will be studied numerically for different values of the 

toxic coefficient to determine when instabilities should appear in 

the system of (19) , and if it is influenced by toxicity. In particular, 

the conditions for a Turing instability are 

Re [ s 0 (k = 0)] < 0 , (25) 

and 

Re [ s 0 (k )] > 0 . (26) 
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Fig. 1. Efficiency of the toxic substances on system’s variables. Simulations were performed with K = 2 , s = 0 . 25 and h = 1 , m = 1 . 5 , r = 0 . 7 . Continuous blue line corresponds 

to a = 0 . 1 , β = 0 . 1 ; continuous red line corresponds to a = 0 . 05 , β = 0 . 3 dashed blue line corresponds to a = 0 . 1 , β = 0 . 5 , d 1 = 0 . 008 and d 2 = 0 . 3 and dashed red line 

corresponds to a = 0 . 05 , β = 0 . 1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Conditions for the Turing instabilities mentioned in (26) for different value of the derivative order index. Simulations were performed with K = 2 , s = 0 . 25 and h = 1 , 

m = 1 . 5 , r = 0 . 7 , d 1 = 0 . 008 . In (a), (b) and (c), a = 0 . 05 , β = 0 . 1 , with u (x, 0) = 0 . 4221 + 0 . 01 cos (x ) and v (x, 0) = 0 . 3654 + 0 . 01 cos (x ) . While in (d), (e) and (f), a = 0 . 1 , 

β = 0 . 5 , d 2 = 0 . 03 , with u (x, 0) = 0 . 0830 + 0 . 01 cos (x ) , and v (x, 0) = 0 . 0818 + 0 . 01 cos (x ) . 
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Now, let us use the approach proposed by Hernández et al. [26] to 

have a Turing instability in the case where α = η < 1 . For this pur- 

pose, we start with the Fourier transform of (19) , i.e., 

c ∂ η

∂ t η

(˜ u ˜ v 

)
= 

(
−d 1 k 

2 + a 11 a 21 

a 12 −d 2 k 
2 + a 22 

)(˜ u ˜ v 

)
= A (k ) 

(˜ u ˜ v 

)
. 

The eigenvalues of the stability matrix [ A (k )] are given by 

λ1 = 

T rA (k ) 
2 

+ 

(
[ T rA (k ) ] 

2 −4 h (k ) 

)1 / 2 

2 
, 

λ2 = 

T rA (k ) 
2 

−

(
[ T rA (k ) ] 

2 −4 h (k ) 

)1 / 2 

2 
, 

(27) 

where 

T rA (k ) = −(d 1 + d 2 ) k 
2 + (a 11 + a 22 ) , 

h (k ) = d 1 d 2 k 
4 −

(
a 11 d 2 + a 22 d 1 

)
k 2 + a 11 a 22 − a 12 a 21 . 

(28) 

The stability of the system is completely determined by the nature 

of the eigenvalues. Real and negative eigenvalues yield a stable sys- 

tem, meaning that no Turing instabilities are possible. Meanwhile 

if both are real and one of them is positive (the other being neg- 

ative), the system will no longer be stable, and the condition for 

this are exactly similar to the case η = 1 . However, complex roots 

go with a critical value of η. This critical value ηc only exists if 

T rA (k ) > 0 , which is given by 

ηc (k ) = 

2 

π
arctan 

(√ 

4 h (k ) 

[ T rA (k ) ] 
2 

− 1 

)
. (29) 

ηc is a critical value of the of the anomalous exponent or bifur- 

cation parameter that separates a regime of stationary Turing pat- 

terns from an oscillatory cellular instability, commonly known as a 

Hopf - Turing bifurcation [24] . The Turing conditions are fullfiled 

when the stationary homogeneous state (k = 0) is stable, and the 

system becomes unstable under perturbations with finite wave- 

length. In other words, when reactions take place in the presence 

of subdiffusion, the condition (25) can be satisfied in two ways, 

either 

β > max { α2 , α3 } (30) 

or 

β < α2 , 

4 u 

∗2 v ∗2 β2 + α4 β + α5 < 0 , 

ηc (0) > η, 

(31) 

where 

α4 = 4 v ∗
(

−a 11 u 

∗ − a 12 v ∗ + su 

∗
(

1 − 2 h v ∗
u ∗

))
, 

α5 = a 2 11 − 2 a 11 s 

(
1 − 2 h v ∗

u ∗

)
+ 

4 a 12 sh v ∗2 

u ∗2 + s 2 

(
1 − 2 h v ∗

u ∗

)2 

. 

(32) 

Fig. 3. Efficiency of the toxic substances on prey’s density. Simulations were performed with K = 2 , s = 0 . 25 and h = 1 , m = 1 . 5 , r = 0 . 7 . a = 0 . 05 , β = 0 . 1 , d 1 = 0 . 008 , d 2 = 1 . 

The initial values are u (x, 0) = 0 . 0814 + 0 . 01 cos (4 x ) , v (x, 0) = 0 . 0812 + 0 . 01 cos (4 x ) . 
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Condition (31) cannot be fullfiled for the classical diffusion. 

To fulfill the condition in (26) it is necessary that 

β > 

1 

2 D u 

∗v ∗

[
a 11 + Ds 

(
1 − 2 h v ∗

u 

∗

)]
, (33) 

where D � = 1 is the ratio of diffusion coefficients, and either 

a 11 > 0 , β > 

s 

2 u 

∗v ∗

(
1 − 2 h v ∗

u 

∗

)
, (34) 

or 

a 11 < 0 , β < 

s 

2 u 

∗v ∗

(
1 − 2 h v ∗

u 

∗

)
, (35) 

In Fig. 1 , we depict the influence of the toxic substances on 

the parameter that constitute the anomalous exponent. It is clear 

that the slight variation of the efficiency of the toxicity modi- 

fies this parameter, yielding a modification of the anomalous ex- 

ponent itself. However, it would be premature to assert, based 

solely on Fig. 1 , that this modification would systematically lead 

to a modification in the Turing instabilities. In order to decide on 

this, it would be necessary that one of the two relations (25) , or 

(26) should be satisfied. If at least one of the two is verified, then 

the relationship between the degree of toxicity and the Turing in- 

stabilities will be clearly established, as depicted in Fig. 2 which 

displays clearly the efficiency of toxicity on the Turing instabili- 

ties. These results are a direct consequence of Hernandez’s work 

[26] on subdiffusion, where the existence of Turing structures has 

been demonstrated. In this work, we will take a few cases to study 

the phenomenon of subdiffusion under the influence of toxicity. 

In the next section, we will try to numerically analyze the dif- 

ferent possible scenarios by varying a few parameters, with the 

aim being to see how memory affects different ecosystems. 

4. Numerical results and discussions 

In this section, our numerical predictions are verified via di- 

rect numerical simulations of system (1) . This system describes an 

ecosystem where preys produce a substance that is toxic to preda- 

tors. In the process, suitable initial and boundary conditions have 

been use along with explicit and implicit schemes for time and 

centered difference for space derivatives. The fractional derivatives 

were approximated using a scheme base on the Grunwald-Letnikov 

definition [26,34] . 

We provide now some simulations as evidence of the analytical 

predictions derived in the previous sections. 

Example 1. Consider system (1) with the parameter values r = 

0 . 7 , K = 2 , s = 0 . 25 , m = 1 . 5 , h = 1 , d 1 = 0 . 008 , d 2 = 1 , a = 0 . 1 and 

β = 0 . 1 . For this set of parameters, we first have to make sure that 

all the above mentioned conditions are met. This can trivially be 

done numerically by checking if (26) is fullfiled. Upon this, the 

Turing patterns obtained for this set of parameters are depicted 

in Fig. 3 . 

In this case, we observe that before taking into account the 

memory effect ( η = 1 ), there are oscillations both in predators and 

in preys, which means that predators indiscriminately consume 

Fig. 4. Efficiency of the toxic substances on prey’s density. Simulations were performed with K = 2 , s = 0 . 25 and h = 1 , m = 1 . 5 , r = 0 . 7 . a = 0 . 05 , β = 0 . 1 , d 1 = 0 . 008 , d 2 = 1 , 

with the initial values being u (x, 0) = 0 . 4221 + 0 . 01 cos (x ) , v (x, 0) = 0 . 3654 + 0 . 01 cos (x ) . Here we changed the initial values. 
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toxic preys. However, if the memory effect is triggered ( η < 1 ), 

we observe that after a certain time, there is stabilization both 

in preys and predators. This stabilization can be explained in two 

ways. Either the predators have known how to recognize the less 

toxic preys, and therefore consume only those preys whose toxi- 

city is reduced, or the predators completely abstain from ingest- 

ing the toxic preys. This behavior has been observed in European 

starlings which, when their body masses have been experimen- 

tally reduced become more willing to eat prey items that have 

been injected with quinine, which is toxic to birds in high doses 

[35,36] . It is now clear that memory effects play a key role in ways 

in which naive predators learn to associate warningly preys with 

their defenses and remember to avoid them in future encounters. 

This field underpins an extensive body of evolutionary theory [37–

41] . Moreover, it is obvious that memory effects regulate the effect 

of toxic substances on predators. In other word, predators are af- 

fected by toxic substances for a certain time, then, they become 

used to it, and the ecosystem becomes locally stable as shown in 

Fig. 3 (e ) − ( f ) and (h ) − (i ) . 

Example 2. Let a = 0 . 05 , d 1 = 0 . 1 , and the other parameters re- 

main as in the first example. As previously, we make sure that 

condition (26) is satisfied. For this set of parameters, we have the 

structures of Fig. 4 . 

Despite the toxicity of preys, the cohabitation between preda- 

tor and prey takes place without any problems, even if the num- 

ber of predators remains relatively low. However, when we take 

into account the memory effect, we realize that the number of 

preys decreases considerably, while that of predators remains rel- 

atively constant. By further reducing the fractional order of the 

derivative, we observe a complete stabilization of the two enti- 

ties (predators and preys). Albeit the drastic fall in their respec- 

tive population, no species will disappear due to the effect of frac- 

tional - order parameter or memory effect. This scenario is sim- 

ilar to the one described in Ref [42] . where predators deliberately 

choose to swallow toxic preys, choice which is a trade-off between 

the benefits of obtaining nutrients and the costs of ingesting tox- 

ins. This trade-off is affected by the fact that: animals will consume 

more toxic preys if they are food-deprived. Indeed, animals face 

constant decisions about what to eat and what not to eat. While 

some items are never worth eating, there are many cases where 

the decision to eat or not should depend on the environment and 

the individual’s current state [43–45] . For example, many poten- 

tial preys available to wild birds are chemically defended, and so 

contain toxins that will be harmful in the long term or if eaten 

in excess [46,47] . However, such preys also contain valuable nutri- 

ents. In such cases, having lower energy reserves or poorer forag- 

ing prospects shifts the balance of costs and benefits in favour of 

consumption [45] . 

Example 3. Once more, we consider system (1) with the param- 

eter values β = 0 . 3 , a = 0 . 05 , the others remain unchanged. In this 

case also, the validity of (26) is checked. The resulting structures 

are shown in Fig. 5 . This case presents some similarities with the 

one depicted in example 2. The preys are not really affected by the 

predators, which is similar to the case discussed in Ref. [48] . Here, 

Fig. 5. Efficiency of the toxic substances on prey’s density. Simulations were performed by changing the values of initial conditions and the toxic coefficient, yielding K = 2 , 

s = 0 . 25 and h = 1 , m = 1 . 5 , r = 0 . 7 . a = 0 . 05 , β = 0 . 3 , d 1 = 0 . 08 , d 2 = 1 , and u (x, 0) = 0 . 0422 + 0 . 01 cos (4 x ) , v (x, 0) = 0 . 0421 + 0 . 01 cos (4 x ) . 
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Fig. 6. Efficiency of the toxic substances on prey’s density. Simulations were performed by changing the values of a, the coefficient of diffusion, the coefficient of toxicity, 

and initial conditions yields K = 2 , s = 0 . 25 and h = 1 , m = 1 . 5 , r = 0 . 7 . a = 0 . 1 , β = 0 . 5 , d 2 = 0 . 03 , d 1 = 0 . 1 , u (x, 0) = 0 . 0830 + 0 . 01 cos (x ) , v (x, 0) = 0 . 0818 + 0 . 01 cos (x ) . 

the first conspicuous mutants would have to survive greater lev- 

els of predation than previously thought, because even when the 

learning process is complete, educated predators may still be pre- 

pared to eat aposematic prey. There may be another reason for this 

phenomenon. Indeed, a predator’s ability to moderate and process 

toxins would be a key factor in limiting attack rates on chemically 

defended preys, and one that could have significant implications 

for the survival advantage of being aposematic [48] . 

Example 4. The set of parameters used here is almost the same 

as in the previous cases, except for a = 0 . 1 , β = 0 . 5 , d 1 = 0 . 1 and 

d 2 = 0 . 03 . For these parameter values, condition (26) is also met. 

The resulting structures of Fig. 6 . reveal that predators and prey 

may be simultaneously exposed to toxins. Since the natural dis- 

persive force of the movement of each species is weak ( 
d 2 
d 1 

< 1 ), 

we can conclude that this configuration corresponds to environ- 

mental toxins exposure. Indeed, if toxin came from either preys or 

predators, it could not be affected as much. This means that toxin 

comes from the environment. The impact of environmental tox- 

ins on predator-prey dynamics has recently been investigated [49] . 

Since mobility is reduced, we are in a situation of confinement in 

a toxic environment. The direct effects of toxins typically reduce 

organism abundance by increasing mortality or reducing fecundity. 

Such direct effects, therefore, alter both bottom-up food availabil- 

ity and top-down predatory ability. However, the indirect effects, 

when mediated through predator-prey interactions, may lead to 

counterintuitive effects. Environmental toxins also reduce popula- 

tion variability by preventing populations from fluctuating around 

a coexistence equilibrium [49] as depicted in Fig. 6 ( f ) and (i ) . 

5. Conclusion 

The main objective of this work, was to answer the question 

whether toxic coefficient β , in the presence of memory can still be 

considered as an important parameter that can give rise to com- 

plex spatial dynamics. To this end, we have examined the influence 

of toxic substances on the dynamics properties of the fractional- 

order ODE system (3) , then we have analyzed the system describ- 

ing an ecosystem where preys produce substance that is toxic for 

predators in the subdiffusive regime, and give general conditions 

for toxicity coefficient allowing Turing instability to appear. We 

have numerically studied in the generic model Eq. (1) . Particularly, 

investigation have been conducted with emphasis on the effect of 

subdiffusion on pattern formation in a context where preys release 

toxin to prevent attacks from predators. Insisting on the formation 

of Turing patterns, it appears clearly that the effect of toxic coef- 

ficient can either be altered by the memory effects by canceling 

existing Turing structures or by creating new ones. 

This study allows us to understand the behavior of toxins in a 

subdiffusive environment such as neuron. In fact, nervous trans- 

mission and conduction, the targets of toxins being overwhelm- 

ingly dominated by subdiffusion where strong memory effects play 

a crucial role in transport mechanism [29] can be modeled by 

bacterial dynamics [50] whose mathematical description is mainly 

done by prey-predator models. 

We could not finished this work whitout mentioning the impor- 

tance of the parameter in the ecosystem. Each scenario is reallistic, 

one has to adequately choose the parameter values. As an illustra- 
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tion, we have proposed four examples. In each of them, by chang- 

ing the value of certain key parameters, the system configuration 

changed. In each configuration obtained, memory plays more of a 

stabilizing role while preserving the ecosystem, regardless of the 

value of the toxic coefficient. This findings suggest that the mem- 

ory plays a key role in conservation. 
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