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Abstract
These recent years, countless chaos-based image encryption algorithms have been proposed to
meet security needs in real time multimedia communication. However, many of these have
exhibited flaws due to the chaotic map inadequacy. In this paper, we proposed a fast and secure
image encryption algorithm by using new 1D chaotic systems, with better chaotic properties in
the range of their control parameters. These new chaotic systems were obtained from well-
known 1D chaotic maps (Logistic, May, Gaussian, Gompertz) with flaws in their chaotic
properties. From the chaotic systems designed, we extracted a pseudo random number
sequence (PRNS) and generated S-boxes. Then a novel technique of plain image substitution
was used to enhance the sensitivity of the original image pixels, followed by a scrambling-
masking technique using the generated S-box. Security tests and evaluation metrics confirmed
that the proposed cryptosystem was efficient, practicable, and reliable, with high potential to be
adopted for network security and secure communications because of its high encryption speed.

Keywords Chaos . Image encryption . Scrambling-masking

1 Introduction

In everyday application, cryptography serves at various levels and scopes of human activities in
relation to secured data transfer with the guarantee of privacy [27, 30, 38].With the rapid expansion
of multimedia and internet, the urgent need for appropriate encryption algorithm for image and
video online communication have favoured the up-rise of cryptography using chaotic maps.

Chaotic maps were found to be good candidates for cryptography because of the close
relationship between chaos properties like ergodicity, sensitivity to initial conditions and
control parameters, random-like behaviour, unpredictability, and properties of a good cipher
such as sensitivity to key and plaintext, randomness in confusion and diffusion processes [22,
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32]. Furthermore chaos-based cryptography was also found suitable for image and video
encryption as traditional cryptography (DES, IDEA, AES...) failed [10, 16, 38]. Many
techniques and architectures involving different chaotic systems have therefore been published
[1–26, 28, 29, 31–37, 39, 41, 43–57].

Permutation–diffusion is the most common architecture used in chaos-based cryptography.
It consists of many rounds of crafty association between pixel values relocation (shuffling) and
pixel values alteration (diffusion) using chaotic maps [1, 5–7]. Chen et al. [12] proposed a
scheme of permutation-diffusion in which the diffusion key stream was extracted from the
permutation matrix generated with Baker’s map, and used for shuffling. In [7] Belazi et al.
used four chaos-based cryptographic phases to design a substitution-permutation network. The
author in [50] designed a scheme using a key hash function to generate a hash value from both
plain image and a secret hash key, then he used logistic and standard maps and the hash value
to perform permutation-diffusion and authentication of the encrypted/decrypted image, to
prevent chosen plaintext and middle attack. Paper [35] proposed a secure and lightweight
image encryption scheme based on 2D Baker’s map, which scheme uses two sets of secret
keys, one for permutation and another for diffusion.

In 2011, Zhu et al. [57] proposed a new scheme using a bit-level permutation in which
separation of pixels into groups of bits depends on the percentage of pixel information.
Afterward they used Cat and Logistic maps to permute and alter the abovementioned bits in
pixel values. The scheme was cryptanalyzed and improved in [53]. Zhang et al. [54] proposed
a new approach in which he considered an image of M×N size with 28 grayscale values as a
3D bit matrix M×N×8, and designed a new bit-level permutation architecture. Another bit-
level permutation technique associated with pixel-level substitution and discrete cat map
proposed in [17], was quickly cryptanalyzed and improved in [55]. Surprisingly, the improved
scheme was broken and proved to have equivalent permutation Keys by Chen et al. in [11].

With the introduction of DNA computing, some researchers proposed image encryption algo-
rithm based on DNA. Pixels in an image are DNA encoded and each nucleotide in the DNA
encoded image is transformed to its base pair for DNA addition, complementary rules or replication
with the help of chaotic maps and diffusion-confusion technique. However, the DNA image
encryption algorithm using the Logistic map proposed in [51] was found non-invertible and prone
to known-plaintext attack by authors in [19]. An enhanced version in [31] was cryptanalyzed in [8,
28]. Finally,more suitable versions for colour images usingmultiple improved 1D chaoticmaps [23]
and 2D logistic chaotic maps were proposed [21], but with high time consumption.

In 2015, Liu et al. [25] proposed a colour image encryption scheme based on three S-boxes
generated in one-time by the complex Chen system. Each S-box randomly took turns to
encrypt one of the colour components in each pixel adhering to the switching sequence. The S-
box technique is an inheritance of traditional cryptography. The principle is to generate a
random number of perfectly distributed 2D or 3D matrices and proceed to substitution, which
is a nonlinear transformation, replacing each pixel value with another. In [44], Wang et al.
proposed an image encryption based on dynamic S-boxes constructed by chaotic systems but
with high time consumption. The encryption algorithm proposed by Belazi et al. [6] applied a
lifting wavelet transform (LWT) to the original image in order to encrypt the latter by block
permutation based on a chaotic Tent map. Then, a new S-box method based on chaotic system
and linear fractional transform (LFT) was used to substitute the permuted image. Wang et al.
[46] proposed an encryption algorithm using a discrete wavelet transform (DWT) to split up a
digital image into different frequency coefficients before scrambling. Afterwards, the image
sequences were encrypted with a multiple chaos encryption matrix.
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Earlier in 2014, Eyebe et al. [14] proposed a scrambling-masking technique using a piece
wise linear chaotic map (PWLCM) and the Leophantine equation (LDE) for generation of a
large pseudo-random key stream. The algorithm achieved fast encryption since the pixel
position and value were modified in a single process, but the encryption process was
independent of the plain image characteristics. Another scrambling-masking scheme proposed
by Huang et al. [20] using a 2D chaotic Chebychev function to scramble and mask pixel
images was later proven to have security flaws [43].

Some schemes further analysed, were declared vulnerable to attacks as they were less
sensitive to plaintext [5, 13, 15, 26, 29, 33, 34, 41, 47, 52]. The related algorithm suffered from
inefficient chaining mode which prevents from different attacks, by creating an Bavalanche
effect^ when a single pixel in the plain image is modified. Wang et al. [47] demonstrated that
the sub-image encryption method based on hyperchaos presented by Mirzaei et al. [33] had
some security weaknesses to chosen plaintext attack and improved on the scheme. Liu et al.
[26] found some security defects in the scheme proposed by El-Latif et al. [13], designing an
image cryptosystem based on a hybrid logistic map and a cyclic elliptic curve. Song et al. [41]
presented a new spatiotemporal chaos and combined it to Nonlinear Chaotic Algorithm (NCA)
to permute and diffuse image pixels. Bechikh et al. [5] analysed the scheme and concluded that
the substitution key stream was the same for every cipher image/plain image pair. Murillo-
Escobar [34] designed a colour image encryption algorithm using a 1D logistic map, and to
avoid chosen/known plain image attack, the scheme relies on the plain image characteristics.
Recently these encryption algorithms were successfully cryptanalyzed by Fan et al. [15]. The
recent image encryption algorithm based on hyper-chaotic system and dynamic S-box pro-
posed by Liu et al. [29] was proven to be insecure and not suitable for image secure
communication by [52].

Other algorithms were prone to attack because their schemes contained chaotic maps
(Logistic, Tent…) which had weaknesses like non-uniform data output, small key space,
periodic data output, poor ergodic properties for some ranges of control parameter [3, 4, 23,
24]. To overcome these setbacks, some researchers suggested that they should not be used
alone [2, 36], others proposed modified or new chaotic systems with better properties [1, 37,
39, 45, 49, 56]. In [56] for example, the author used two existing 1D chaotic maps to generate
a number of new chaos with good chaotic properties, and designed an encryption algorithm
capable of generating a completely different encrypted image each time it is applied to the
same original image. The weakness of this cipher is its high decryption error. Sheela et al. [39]
modified the Henon map in order to increase the chaotic region - which in turn improved the
range of system parameters - and generated sequences for column and row shift transforma-
tion, then carried out diffusion using XOR operator. Yang et al. [49] generalized the chaotic
Logistic map to the finite field, and designed a coloured image encryption scheme. Abanda
et al. [1] combined outputs of Duffing and Colpitts chaotic systems to encrypt grey and colour
images. In [45], Logistic and Kent chaotic mappings were used to produce two sub-matrices of
pseudo random number, then a combined matrix was generated from both to perform XOR
operation with the original data for encryption.

As can be seen, the common major weaknesses are the use of chaotic map with poor
randomness properties outcome, lack of sensitivity to the plaintext in the method, and high
computational load. With the purpose to overcome these difficulties, this paper introduces a
fast image encryption algorithm built with new chaotic maps (obtained by mixing known 1D
seed maps) and using a new encryption technique depending on the plain image. The new
chaotic maps constructed proved to have better properties and were used to generate S-boxes
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by their PRNS. The encryption technique first applies a substitution of the plain image by
moving and BXORing^ pixels in between themselves, such that the sensitivity to plain image
is enhanced. The confusion-diffusion is obtained in one time, exploiting the S-box for the
substituted-pixel relocation and masking in a scrambling-masking process. Security tests
carried out and evaluation metrics applied to assess the cryptosystem confirm that the
aforementioned setbacks were solved.

The rest of this paper is organized as follows. An overview of seed chaotic maps is given in
Section 2 while in Section 3, the new chaotic maps are designed and proven to be chaotic. The
encryption algorithm proposed, is detailed in Section 4. Section 5 focuses on common security
tests like key space, key sensitivity, differential attack, while Section 6 concludes the paper.

2 Presentation of 1D seed chaotic maps

2.1 Logistic map

The Logistic map is one of the most studied chaotic systems and is mathematically translated
by the equation:

xnþ1 ¼ rxn 1−xnð Þ ð1Þ
Where xn ∈ [0, 1] is the discrete state of the output chaotic sequence, r is the control parameter
with values in the range [0, 4]. The chaotic behaviour of the Logistic map is observed in the
range [3.5, 4]. However, its chaotic properties are not so good, as shown in Fig. 1a.

2.2 May map

Published by Robert May [40], the May map has behaviour and properties similar to that of the
Logistic map and is expressed by the following equation:

xnþ1 ¼ xnexp a 1−xnð Þð Þ ð2Þ
Where xn ∈ [0, 10.9] and the control parameter a belongs to the range [0, 5].

Fig. 1 The bifurcation diagrams of the a Logistic map and the b May map
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Figure 1b illustrates the bifurcation diagram of May map in which, we can observe a non-
uniform data output distribution and periodicity (expressed by blank space) in the range of
[2.6, 5].

2.3 Gompertz map

First proposed by Gompertz [40], the Gompertz map has a very low level of chaotic behaviour
and properties. Its equation is:

xnþ1 ¼ −bxnlnxn ð3Þ
Where the control parameter b ∈[0,e], e=2.71829… and is the exponential function.

In Fig. 2a, one can see how low the chaocity the Gompertz map exhibits through its
bifurcation diagram.

2.4 Gaussian map

The Gaussian map’s equation is:

xnþ1 ¼ exp −αx2n
� �þ c ð4Þ

α ∈ [4.7, 17], c∈[−1, 1].
Also known as mouse map, this map is a consequence of some mathematical assumptions

and approximations over the Gaussian noise function [40]. The bifurcation diagram of the
Gaussian map in Fig. 2b shows how their chaotic behaviour and properties are different from
the ones of the Logistic, May and Gompertz, and appears in various small intervals of their
control parameter c.

3 The proposed chaotic map

The chaotic properties of the above seed maps are not suitable to build a secure cryptosystem
[3, 4]. In this section we design new maps with better levels of chaocity and that can therefore
be integrated in a good cipher.

Fig. 2 The bifurcation diagrams of the a Gompertz map and the b Gaussian map
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3.1 Scheme of the designed map

The method proposed by Zhou et al. [56] was adopted to combine the different seed maps.
Depicted in Fig. 3, the scheme shows how a new map is obtained from a nonlinear combi-
nation of two different 1D chaotic maps.

3.2 The new chaotic maps

From the four 1D chaotic maps (Logistic, May, Gompertz and Gaussian) used as seed, six new
chaos will be constructed and analysed, each using two different seeds with unified control
parameter r. The criterion for the level of chaocity here will be the maximum Lyapunov
exponent.

3.2.1 The Logistic-May system

The first system is made of the Logistic and May maps and is called the Logistic-May System
(LOMAS). Its equation is written:

xnþ1 ¼ xnexp r þ 9ð Þ 1−xnð Þð Þ− r þ 5ð Þxn 1−xnð Þð Þmod1 ð5Þ
Where xn ∈ [0, 1] and r ∈ [0, 5].

The bifurcation diagram and Lyapunov exponent are shown in Fig. 4 a and d. We then can
therefore see that chaotic properties are excellent within [0, 5], with a maximum Lyapunov
exponent equal to 8.3.

3.2.2 The Logistic-Gompertz system

Logistic and Gompertz maps are the seeds of the second system called the Logistic-Gompertz
system (LOGOS). It is mathematically given by Eq. (6).

xnþ1 ¼ − r−31ð Þxn 1−xnð Þ− r þ 35ð Þxnlogxnð Þmod1 ð6Þ
Where xn ∈ [0, 1] and r ∈ [0, 5].

Even though the Gompertz map has poor chaotic properties (Fig. 4), the bifurcation
diagram of its combination with Logistic exhibits a rather good level of chaocity (Fig. 4b).
The Lyapunov exponent of LOGOS has a mean value of 2.5 (Fig. 4e).

3.2.3 The Logistic-Gaussian system

Constructed with the Logistic and Gaussian maps, the third system is called the Logistic-
Gaussian system (LOGAS) and is defined by:

xn xn+1

1D CHAOTIC MAP 1

1D CHAOTIC MAP 2

mod

Fig. 3 The new chaotic map scheme
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xnþ1 ¼ − r−33ð Þxn 1−xnð Þ þ r þ 37ð Þ
4

þ exp −αx2n
� �� �

mod1 ð7Þ

Where xn ∈ [0, 1], r ∈ [0, 5], α ∈ [4.7, 17].
LOGAS’s bifurcation diagram depicted by Fig. 4c proves its good chaotic behaviour in the

range [0, 5]. Its maximum Lyapunov exponent is equal to 2.5 (Fig. 4f).

3.2.4 The May-Gompertz system

The fourth system derives from the May and Gompertz maps and is named the May-Gompertz
system (MAGOS). Its equation is:

xnþ1 ¼ xnexp r þ 10ð Þ 1−xnð Þð Þ− r þ 10ð Þxnlogxnð Þmod1 ð8Þ
Where xn ∈ [0, 1] and r ∈ [0, 5].

Figure 5a and c show how its properties in terms of the bifurcation diagram and Lyapunov
exponents (with a maximum value equivalent to 8.7) are excellent in the range of [0, 5].

3.2.5 The May-Gaussian system

The May combined to the Gaussian map form the fifth system called the May-Gaussian
system (MAGAS) which is built up by the following equation:

xnþ1 ¼ xnexp r þ 10ð Þ 1−xnð Þð Þ þ r þ 5ð Þ
4

þ exp −αx2n
� �� �

mod1 ð9Þ

Where xn ∈ [0, 1], r ∈ [0, 5], α ∈ [4.7, 17].
Through the bifurcation diagram of MAGAS in Fig. 5b, one can see an output sequence

uniformly distributed within [0,1]. Figure 5e shows its positive Lyapunov exponents and
belonging to the range [2.5, 5.6].

Fig. 4 The bifurcation diagrams and the Lyapunov exponent graphics of the new chaotic maps, a-d LOMAS, b-e
LOGOS, c-f LOGAS
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3.2.6 The Gaussian-Gompertz system

The last system designed is the Gaussian-Gompertz system (GAGOS). It uses the Gaussian
and Gompertz maps and is expressed by the following formula:

xnþ1 ¼ r=5þ 26ð Þ
4

þ exp −αx2n
� �

− r=5þ 26ð Þxnlogxn
� �

mod1 ð10Þ

Where xn ∈ [0, 1], r ∈ [0, 5], α ∈ [4.7, 17].
The GAGOS bifurcation diagram (Fig. 5c) shows a uniform distribution of sequences like

the previous new chaos designed. It also has a mean Lyapunov exponent value around 2.5
(Fig. 5f).

3.3 Advantages of the new maps

All the combined chaotic systems designed above exhibit better chaotic behaviour than those
obtained from a single seed. Although the mathematical theory behind chaocity improvement
by combining seed maps is not yet established, one easily notices that the bifurcation diagrams
of the combined maps have a wider chaotic range and a more uniform distribution of their
density functions (Figs. 4a, b and c, 5a, b and c) than their seeds (Figs. 1 and 2.). Furthermore,
the maximum Lyapunov exponent values of the Logistic, May, Gompertz and Gaussian maps
are respectively equal to 0.6, 0.4, 0.5 and 0.7 [40]. The ones obtained with the LOMAS,
LOGOS, LOGAS, MAGOS, MAGAS, GAGOS maps have values of 8.1, 2.6, 2.5, 8.7, 5.6
and 2.5 respectively (Figs. 4d, e and f and 5d, e and f). A high Lyapunov exponent means less
iterations and less transient effects to have two totally different PRNS from two very close
initial conditions with the same control parameter. It is therefore obvious that the new chaotic
maps are better pseudo random number generators (PRNG) than their seeds. We can conclude
that these will be more suitable for secure and high speed encryption provided the encryption
algorithm is built around a good algebraic structure.

Fig. 5 The bifurcation diagrams and the Lyapunov exponent graphics of the new chaotic maps, a-dMAGOS, b-
e MAGAS, c-f GAGOS
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4 Proposed image encryption algorithm

This section presents the new chaotic encryption algorithm based on two main procedures
which are a novel plain image substitution technique and a scrambling-masking technique
using S-boxes.

4.1 Plain image substitution technique

The plain image substitution technique (PIST) is applied to the plain image for the enhance-
ment of sensitivity such that any change in any pixel in the plain image will cause a substantial
change in the corresponding cipher image. It does not depend on a key, and can be applied to
any type of images. The steps to apply the PIST to an image are:

& From bottom to top, in each column in an image I of size M X N, replace the value of the
pixel in process with the one obtained by bit-wise XOR operation between that value and
the value of the previous pixel. The process starts on the second to the last pixel (Eq. (11)).

I M−i; jð Þ ¼ I M−i; jð Þ⊕I M þ 1−i; jð Þ
i ¼ 1; :::M−1; j ¼ 1; :::N

�
ð11Þ

Where (i, j) are indices of an image I of size M×N, and the symbol ⊕is the bit-wise XOR
operation.

& Repeat the same process in each row (Eq. (12)).

I i;N− jð Þ ¼ I i;N− jð Þ⊕I i;N þ 1− jð Þ
i ¼ 1; :::M ; j ¼ 1; :::N−1

�
ð12Þ

As a consequence of applying the PIST on a plain image, any tiny change in a pixel will spread
and affect many pixels in the vertical and horizontal directions and finally the pixels in the first
row and the first column (Fig. 6). In the Chaining Block Cipher (CBC) mode or Propagating
Chaining Block Cipher (PCBC) mode, a modification of the first pixels in the plain image
easily affects the rest when encryption occurs [38]. This technique can be used as a response to
the insensitivity to plain images of many cryptosystems as shown in [5, 13, 15, 17, 26, 29, 31,
33, 34, 38, 41, 47, 52, 57]. Figure 6 shows how a grey image Lena is confused when it
undergoes the PIST.

4.2 Confusion technique using S-boxes

This sectiondescribes theencryptionprocessusingaskey the initial conditionw0 = 0.4,x0 = 0.3,y0 =
0.2, z0 = 0.1 and control parameter r1 = 1, r2 = 2, r3 = 3, r4 = 4, α = 6, of the new chaos maps
(LOMAS, LOGOS, LOGAS, MAGOS). The Plain image I of sizeM×Nwhich has undergone the
PISTwill yield theencrypted imageCafter a scrambling-maskingprocessusingS-boxes, and finally
an encrypted imageC′ after the shuffling process. Below are the steps of the confusion technique.
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Step 1: After 500 iterations to avoid transient effects, iterated LOMAS, LOGOS, LOGAS
and MAGOS M×N times. Build four 1D array vectors W, X, Y, and Z of size M×N,
and two 2D vectors Sx (S-box obtained from 1D array X) and Sy (S-box obtained
from 1D array Y) of sizes M×N respectively with the PRNS obtained from the
chaotic systems above.

Step 2: Encrypt the first row and the first column of the image using the PRNS of the 1D
vectors X and Y as expressed by Eq. (13).

j ¼ 2; 3; :::N and i ¼ 1; 2; :::M
C 1; jð Þ ¼ I 1; jð Þ⊕ X jþ 100ð Þ � 1015

� �
mod256

� �
⊕ Y jþ 100ð Þ � 1015
� �

mod256
� �

C i; 1ð Þ ¼ I i; 1ð Þ⊕ X iþ 200ð Þ � 1015
� �

mod256
� �

⊕ Y iþ 200ð Þ � 1015
� �

mod256
� �

8<
: ð13Þ

Where i and j are the indices of an image I of size M×N, the symbol ⌊t⌋ is to round up the
element of t to the nearest integer less than or equal to t, mod is the modulus operator and the
symbol ⊕ denotes bit-wise XOR operation. (Fig. 7)

Step 3: For each encrypted value C(i,1) and C(1, j) of the first column and the first row,
calculate the number l(i) and k(j) (Eq. (14)), and use each of them as an index to
definitively extract a number respectively in the sets of values {2, 3…M} for rows,
and {2, 3…N} for columns.

i ¼ 2; 3:::N and j ¼ 2; 3:::M
l ið Þ ¼ 1þ C i; 1ð Þ⊕ Z iþ 200ð Þ � 1015

� �
mod256

� �� W iþ 200ð Þ � 1015
� �� �� �

mod M þ 1−ið Þ
k jð Þ ¼ 1þ C 1; jð Þ⊕ Z jþ 100ð Þ � 1015

� �
mod256

� �� W jþ 100ð Þ � 1015
� �� �� �

mod N þ 1− jð Þ

(
ð14Þ

Where l, k are 1D arrays respectively of sizes M and N.

Step 4: Substitute the pixels of indices i = {2, 3…M} and j = {2, 3…N} in a scrambling-
masking process with the indices a and b extracted respectively from l(i) and k(j)
following Eq. (15).

i ¼ 2; 3:::M and j ¼ 2; 3:::N
C a; bð Þ ¼ I i; jð Þ⊕Sx i; bð Þ⊕Sy a; jð Þ

�
ð15Þ

Where each element of the S-boxes (Sx and Sy) are grey values obtained calculating (x (n)
×1015) mod 256 and (y (n) ×1015) mod 256 respectively, with n = {1, 2...M ×N}.

Fig. 6 Effect of PIST process on grey image Lena
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Step 5: Determine 1D arrays u(i) and v(j) using the four systems and the five encrypted
values of pixels C(1,1), C(1,2), C(1,3), C(2,1),C(3,1) as expressed by Eq. (16). And
substitute the indices (i, j) of each encrypted pixel with the indices (c, d), where c
and d are the values extracted from the sets {1, 2…M} and {1, 2…N} using u(i) and
v(j) as indices respectively.

i ¼ 1; 2; :::M and j ¼ 1; 2; :::N
u ið Þ ¼ 1þ C 1; 1ð Þ⊕ W iþ C 1; 2ð Þð Þ � 1015

� �
mod256

� �� X iþ C 1; 3ð Þð Þ � 1015
� �� �� �

mod M þ 1− jð Þ
v jð Þ ¼ 1þ

	
C 1; 1ð Þ⊕ Y jþ C 2; 1ð Þð Þ � 1015

� �
mod256

� �� ⌊ Z jþ C 2; 3ð Þ � 1015
� �

⌋
	 


mod N þ 1−ið Þ

8<
: ð16Þ

Where u, v are 1D arrays respectively of sizes M and N.

Step 1: Send a copy of C(1,1), C(1,2), C(1,3), C(2,1), C(2,3) values as a part of the key.

4.3 Colour image encryption

The encryption process remains unchanged for coloured images containing R G B compo-
nents. However, with the purpose of attaining high sensitivity, they will be joined together to
form a unique matrix image before encryption, and restored as R G B components at the end.

Plain Image I

PIST operation

Encryption of the first row I
(1, j) and first column I (i, 1).

(Step 2)

Scrambling-masking 

process for pixel positions 

i=2,..N and j=2,..M,

(Step 3-4)

Copy of grey values C(1,1) ; 

C(1,2) ; C(1,3); C(2,1); C(3,1).

(Step 5)

Generation of PRNS by 

iterating new chaos

(Step 1)

KEY

Design the 1D arrays W, 

X, Y, Z.

(Step 1)

Design the

S-boxes Sx, Sy

(Step 1) 

Shuffling of the encrypted image 

using grey values and 1D arrays

(Step 5)

Cipher image C’

Adds to KEY

(Step 6)

Fig. 7 Flowchart of encryption algoritm
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4.4 Plain image recovering process

Recovering the plain image is done in two steps. Firstly, undo the substitution of indices of all
pixels of the encrypted image by using the initial condition and control parameter of the four
systems, and also the C(1,1), C(1,2), C(1,3), C(2,1), C(2,3) values (step 6 of Section 4.2).
Afterwards, recover confused pixels of indices i = {2,3,...M} and j = {2,3,...N} using the PRNS
of the four systems, the first row and the first column of the confused image. Then decrypt the
first row and the first column and apply the PIST to recover the original plain image.

5 Security analysis

The security tests in this section are conducted with a Core(TM) i5-2430 M processor, on a
Matlab 2012b platform. The visual results of the encrypted images (Cameraman 256 ×256
image size, Colour Lena 512 ×512, Airport 1024 ×1024) of Fig. 8 are further analysed in terms
of statistical attack, brute force attack, differential attack, Chosen plain and cipher image
attack, and Speed.

5.1 Statistical analyses

Histogram, correlation analysis, and information entropy of the cipher image are the three main
statistical tests (metrics) needed to assess robustness against statistical attack.

5.1.1 Histogram and variance of histogram

The histogram of a noise-like-image must be uniform. In Fig. 8, the histogram of the encrypted
images (cameraman, Lena, airport) seem to be uniform. However, the best evaluation is done
by calculating the variance of the histogram given by Eq. (18).

Var zð Þ ¼ 1

n2
∑
n

i¼1
∑
n

j¼1

1

2
zi−z j
� �2 ð18Þ

Where Z is the vector of the histogram values and Z = {z1, z2, ..., z256}, zi and zj are the numbers
of pixels for which the grey values are equal to i and j respectively.

In Table 1, the values of the variance of the histogram of the proposed encryption algorithm
are shown with the ones of some recent cryptosystems. It appears that the mean value of the
histogram of the proposed cryptosystem is around 5465 which is very close to that of the good
cryptosystem proposed in [48], and not far away from the ideal value of 5000 [36]. Histogram
analysis proves that the proposed cryptosystem is safe as far as statistical attacks are
concerned.

5.1.2 Correlation analysis

In a good encrypted image, there must be no or a very low correlation between neighbouring
pixels in every direction. The usual method to assess this is to compute the correlation
coefficient Cr of 5000 pairs of randomly chosen pixels in the horizontal (HC), vertical
(VC), and diagonal (DC) directions using Eq. (19).

Multimedia Tools and Applications

Author's personal copy



Cr ¼
K � ∑

K

i¼1
X iY i− ∑

K

i¼1
X 2

i � ∑
K

i¼1
Y i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � ∑

K

i¼1
X ið Þ2− ∑

K

i¼1
X i

� �2
 !vuut � N � ∑

K

i¼1
Y ið Þ2− ∑

K

i¼1
Y i

� �2
 ! ð19Þ

Where X and Y are grey scale values of two adjacent pixels in the image, K is the number of
pairs of pixels and Cr is the value of correlation belonging to the [−1,1] range.

Cr tends to be 1 or − 1 for high correlations and tends to be 0 for very low correlations.
Table 2 shows the calculated correlation coefficient of a 512×512 Lena image in every

Fig. 8 The grey and colour images encrypted and their histograms. (a) Cameraman, (b) Colour Lena, (c) airport
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direction. A mean value of the proposed encryption algorithm is about 0.007, which tends
towards zero. Moreover, Fig. 9 shows how grey values of the cameraman correlated in the
horizontal direction in Fig. 9a, are spread in Fig. 9b. From these results, one can conclude that
a statistical attack through correlation analysis between adjacent pixels cannot help to break the
proposed encryption algorithm.

5.1.3 Information entropy analysis

The information entropy gives an account of the quantum of randomness present in a message
(m) as follows.

H mð Þ ¼ ∑
2K−1

i¼0
p mið Þlog2 1=p mið Þð Þ ð20Þ

Where p(mi) represents the probability of symbolmi, K is the number of bits of the message and
2K all possible values. For a 256 grayscale image, the pixel data has 28 possible values and the
ideal entropy of a true random image must be 8.

Table 3 shows entropy values of some images of the proposed encryption algorithm very
close to 8 as expected, and slightly better than common ones in literature [48, 38].

5.2 Key analysis

5.2.1 Key space

The key space for an encryption algorithm must be large enough to avoid brute force attack.
According to ref. [17], a key size of 1030 is sufficient. The secret key of the proposed algorithm
consists of 4 initial conditions (w0, x0, y0, z0), 5 control parameters (r1, r2, r3, r4, α), and five 8-
bit values (C(1,1), C(1,2), C(1,3), C(2,1), C(3,1)), giving a total key space of (1015)4× (1015)5×

Table 1 Variance of histograms of some cipher images

Grey image Proposed algorithm Ref. [48] Ref. [36]

Cameraman (256 ×256) 5482.61 – –
Lena (512 ×512) 5450.87 5468.38 5335.83
Airport (1024 ×1024) 5471.65 – –

Table 2 Correlation coefficient of two adjacent pixels

Image Size Test Plain image Encrypted image

Cameraman (256 ×256) HC
VC
DC

0.9377
0.9535
0.9043

−0.009
0.010
−0.006

Lena (512 ×512) HC
VC
DC

0.9679
0.9845
0.9580

0.001
−0.014
−0.006

5.3.02 (1024 ×1024) HC
VC
DC

0.9090
0.8989
0.8610

0.002
−0.014
0.018
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(28) 5 = 10142≈2475, if the decimal precision is set at 15. This key space is large enough to make
brute force attack inefficient.

5.2.2 Key sensitivity

An encryption algorithm must be sensitive to the less significant decimal value of its key
to resist chosen plain image or chosen cipher image attack due to an insensitive, weak or
equivalent key. Therefore, an original key K1 = r1, r2, r3, r4, α, w0, x0, y0, z0, and the
modified versions K2 (r2 = r2 + 10−15 for K2, the rest unchanged) and K3 (z0 = z0 + 10−15

for K3, the rest unchanged) on the 15th decimal are used to encrypt the same image.
Then, the percentage of difference between pixels of encrypted images is calculated.
Table 4 reports that the encrypted images obtained with the K1, K2 and K3 keys differ
from one another by at least 99.62%. Such results are not surprising, considering the fact
that the Lyapunov exponent of the new chaos is very high (Section 3). Furthermore, the
airport image (Fig. 8c) encrypted with K1 is decrypted with K2 and K3 and shown in
Fig. 10. The decrypted image with K2, K3, has a noise-like appearance.

5.3 Differential attack analysis

A cryptosystem must be sensitive with respect to plain text or plain images, if not, it can
undergo a successful differential attack. The sensitivity of a cryptosystem is evaluated through
NCPR (Number of Pixel Change Rate) (Eq. (21)) and UACI (Unified Average Change

Fig. 9 The horizontal direction correlation graphics. (a) Original cameraman image, (b) encrypted cameraman
image

Table 3 Information entropy of some plain images and their cipher image

Grey image Proposed algorithm Ref. [9] Ref. [34]

Cameraman (256 ×256) 7.9971 7.956 7.9953
Lena (512 ×512) 7.9994 – 7.9975
Baboon (512 ×512) 7.9993 – –
Airport (1024 ×1024) 7.9998 – 7.9978
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Intensity) (Eq. (22)) metrics [53], which consist of testing the influence of one pixel change on
a plain image on the resulting cipher image.

NPCR ¼ ∑i; jD i; jð Þ
W � H

� 100% ð21Þ

UACI ¼ 1

W � H
∑
i; j

jC1 i; jð Þ−C2 i; jð Þj
255

" #
� 100% ð22Þ

Where C1 and C2 are two images with same size W ×H. If C1(i, j) ≠C2(i, j) then D(i, j) = 1,
otherwise, D(i, j) = 0.

Table 5 gives the measurement of NCPR and UACI between two cipher images of the
cameraman, Lena and the airport when a less significant bit (LSB) changed on the grey value in
the first, middle, or last pixel’s position. The values obtained are around the average of 99.62 for
NCPRand33.51forUACI.Thesevaluesarea littlebetter thantheonesproposedinliterature[18,34,
44].Suchgoodvaluesresult fromthePIST,because the latteraccumulatesallpixel informationinthe
first row and the first column of the image, which are then used in the confusion step (Section 4).
Table 6 shows the effect of one pixel change on component RGB of Lena coloured image.

5.4 Cryptanalysis

Some recent encryption algorithms failed the chosen plain image or/and chosen cipher image
attack with all-zero or all-one images [5, 13, 15, 26, 29, 33, 34, 41, 47, 52]. Both attacks are
applied to the proposed cryptosystem.

Table 4 Proof of key sensitivity

Key Proposed algorithm Ref. [42] Ref. [44]

Key1 Vs Key2 99.61 99.58 99.65
Key2 Vs Key3 99.62 99.59 99.60
Key1Vs Key3 99.65 99.57 99.59

Fig. 10 Decrypted airport image with slightly different keys, (a) K2, (b) K3
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5.4.1 Chosen plain image attack

The opener has an encrypted image C but does not know the key. However, he possesses a
plain image P0 of all-zero (or all-one), and its encrypted version C0 obtained with the same
unknown key. He extracts the sub-key used for pixel encryption as follows:

Sk0i; j ¼ C0
i; j⊕P0

i; j ð23Þ
Where P0

i, j =0, 0, 0... is a null-image in terms of grey values, and C0
i, j, its corresponding

cipher image, and (i, j) denotes the 2D-position of the pixels. The operation (C0
i, j⊕ P0

i,

j)extracts the key streamSk0i, j.
Then, the sub-key extracted is used to recover the plain image P of the encrypted one C

with Eq. (24).

Pi; j ¼ Ci; j⊕Sk0i; j ð24Þ
Where Pi, jis an image with the same size as C0

i, j and Ci, j is its encrypted version.
In Fig. 11a, the chosen plain image attack on the airport encrypted image using a null-image

has failed because, the scrambling-masking process and the shuffling process rely on the PIST
which is highly sensitive to insignificant changes of a grey value. Therefore each encrypted
image is specific to its plain image pixel characteristics.

5.4.2 Chosen cipher image attack

This time, the opener possesses an encrypted image C0 made of all-zero (or all-one) and its
corresponding decrypted version P0. He still wants to determine the key-stream (according to
Eq. (23)) necessary to recover the plain image P (colour Lena) from its encrypted image C

Table 5 NCPR and UACI measure after a LSB change

LSB change on the

Image Test First pixel Middle pixel Last pixel
Cameraman (256×256) NCPR 99.63 99.64 99.62

UACI 33.55 33.55 33.52
Lena (512×512) NCPR 99.62 99.62 99.61

UACI 33.46 33.47 33.46
Airport (1024×1024) NCPR 99.62 99.60 99.62

UACI 33.47 33.50 33.47

Table 6 NCPR and UACI measures On Lena RGB image

Image component Test Proposed algorithm Ref. [18] Ref. [34]

R NCPR 99.63 99.59 99.63
UACI 33.52 33.33 33.31

G NCPR 99.61 99.62 99.60
UACI 33.55 33.35 33.34

B NCPR 99.64 99.63 99.61
UACI 33.45 33.12 33.43
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using Eq. (24). For the same reasons mentioned above (Section 5.4.1), and as shown by
Fig. 11b, this type of attack does not work.

5.5 Encryption/decryption time analysis

Table 7 reports a comparison of encryption time by the proposed algorithm with some in
literature for different images. The algorithm written under Matlab platform was not optimize.

The computer time consumption is smaller than those of [6, 9], while the proposed
algorithm is faster than those in literature.

Fig. 11 Cryptanalysis. a Chosen plain image attack on grey Airport and its histogram, b chosen cipher image
attack on colour Lena and its histograms

Table 7 Encryption time in seconds under Matlab 2012b

Image Size Type Proposed algorithm Ref. [9] Ref. [6] Ref. [56]

Cameraman (256×256) Grey 0.195 1.673 0.223 0.178
Lena (512×512) Grey 0.650 – – 0.663
Airport (1024×1024) Grey 2.897 – – 3.142
Lena (512×512) Colour 2.100 – – –
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5.6 Overall comparison with other encryption algorithms

The performances of the proposed algorithm is here compared (Table 8) to those of
some recent and good standing papers of the literature. Test are done using the colour
Lena of size 512×512, and the time encryption is evaluated under visual C++ 2010
platform in accordance with real time multimedia application.

The metrics of the proposed cryptosystem reported in Table 8 suggests that, the key
space, the NCPR, the encryption time, and the entropy wise are the best values. As far as
key sensitivity, correlation and UACI are concerned, the values are in the order of the
best values in literature.

6 Conclusion

In this paper, the proposed image encryption algorithm is based on many new 1D chaotic
maps, and a substitution technique based plain image and S-boxes. The new chaoticmaps are
a combination of Logistic, May, Gompertz, and Gaussian maps, and have better maximum
Lyapunov exponents, and therefore better chaotic properties than the originals. The encryp-
tion uses firstly, the PIST for image sensitiveness enhancement, secondly, S-boxes construct-
ed with PRNS of the new chaos (LOMA, LOGOS, LOGAS, MAGOS, MAGAS, GAGOS,
MAGOS); and thirdly, a scrambling-masking technique which permutes and diffuses image
pixels in a single process with the help of S-boxes. The evaluation metrics of the proposed
cryptosystem NCPR, UACI, correlation coefficient, entropy, key space and key sensitivity
are amongst the best values in literature.More interestingly, a LSB change in any pixel value
results in a totally different encrypted image, and chosen plaintext attack or chosen cipher
image conducted is inefficient, proving the robustness of the cryptosystem. The encryption
speed obtained with the non-optimized algorithm is fast enough in his current version for
onlinemultimedia communication. This proposed encryption algorithmcan surely guarantee
security and speed of all types of digital data transfer in a digital network.

Acknowledgement The authors wish to thank Professor Barbara ATOGHO-TIEDEU for proof reading the
manuscript.
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Table 8 Comparison of the proposed algorithm with others

Tests Proposed cryptosystem Ref. [42] Ref. [2] Ref. [57]

Key space 10142 1096 10143 1042

Key Sensitivity 99.66 – – 99,61
Average Correlation 0.004 −0.005 0.003 0.004
Entropy 7.9994 7.999 7.9994 7.9993
NCPR 99.62 99.58 99.60 99.59
UACI 33.53 33.25 33.50 33.47
Encryption time in (s) 0.099 0.174 (4 round) 0.105 (4 round) 0.101
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Abstract
The need for secure communications has triggered research in cryptography in 
general and image encryption in particular. Papers have been published and many 
approaches used. One of them is chaos-based image encryption which uses a chaotic 
map as an essential part of the cryptosystem. For the cryptosystem to be efficient, 
the chaotic map must exhibit a good chaocity. Hence the need to propose a good 
chaos generator. In this paper, we set forth a general approach to design a chaotic 
generator with good properties, using the existing ones. This method was applied 
and a chaotic map generator obtained. Then an encryption algorithm into which the 
above chaotic map was combined to the image characteristics, to generate both the 
encryption keys and the random numbers needed for the encryption process. The 
encryption procedure consisted in a diffusion process in cipher-block-chaining mode 
of block image synchronized for parallel computing, followed by a confusion pro-
cess implemented by means of pixel permutation. The security and robustness tests 
carried out on the algorithm yielded a high sensitivity to any pixel change or key 
change and robustness in face of statistical, differential, Chosen known plain /cipher 
test attacks combined to a fast encryption speed allowing real-time operations.
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1  Introduction

Multimedia numerical data exchange has experienced a rapid expansion this last 
years due to the increasing number of users. This expansion is mainly character-
ized by a growing variety of data transfer environment and applications: virtual plat-
forms, web sites or android applications. The most significant part of data exchanged 
are images and videos. They span to domains as diverse as medicine, diplomacy and 
military, just to name a few. In these domains, the need of secrecy and confidential-
ity cannot be overemphasized. This encouraged the development of encryption algo-
rithms. Chaotic maps were introduced in cryptography as their intrinsic mathemati-
cal characteristics as pseudo-random numbers generators (PRNG) suited the need 
of reaching a good level of randomness desirable for cryptosystems. Many chaotic 
map-based cipher systems were designed and published [1–20].

Chaotic image encryption algorithms generally consist of a confusion process fol-
lowed by (or mixed with) a diffusion process [8]. The confusion process randomly 
modifies the position (location) of the pixels while the diffusion process alters their 
grey values. Both processes are achieved with the help of a chaotic equation. Many 
schemes designed for chaos-based image cryptography simply apply different tech-
niques of one or many rounds of sequential confusion and diffusion process, initial-
ized by a secret key and driven by a chaotic map [9–32, 34].

Ye et  al. [9] designed a diffusion function for image encryption using logistic 
map and an hyperchaotic system, adding an error concept in the initial condition 
in every round as for self-adaptive modelling. The authors of Ref [10]. proposed 
another diffusion-permutation architecture in which the Piece Wise Linear Chaotic 
Map (PWLCM) parameter was pertubed by the output of the Chebyshev map, and 
the initial conditions were obtained from the message digest 5 (MD5) algorithm of 
the input image. Abanda et al. [11] mixed the outputs of Colpitt and Duffing chaotic 
systems for better PRNS, then applied an image encryption based on diffusion-per-
mutation. Bit level permutation applying encryption decision taking on the percent-
age of contribution of a bit in a grey value, and using 2D (two dimensional) logistic 
map was proposed by Zhu et al. [12]. Zhang et al. [13] proposed a new approach of 
that architecture that considers an image of M × N size with 28 greyscale values, 
as a 3D (three dimensional) bit matrix M × N × 8 for decisional level of encryp-
tion, involving Chen system and 3D cat map. Liu et al. [14] lightened the method 
and proposed a spatial bit-level permutation algorithm for image encryption imple-
mented by scrambling the binary matrix obtained from the input image, and using 
PWLCM. In 2018, Wu et al. [15] proposed another image encryption architecture 
based on DNA and a novel 2D Hénon-sine map. He applies random DNA addition, 
complementary rules, and replication to DNA encoded pairs of bits of the image 
pixels. Jain et  al. [16], on their side, used DNA encoded bits of pixels and PRN 
(pseudorandom number) generated by logistic map, mixed both, and then applied 
DNA addition, complementary rules and permutation to obtain cipher image.

A simple but efficient DNA architecture was proposed in Ref. [17]. It randomly 
applies complementary rules on DNA encoded image pixel by the means of Che-
byshev map.
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Often, when a system exhibits a suitable enough chaotic behaviour, researchers 
use it to design S-boxes or P-boxes for image encryption. In this vein, Nkandeu 
et  al. [18] generated many new 1D chaotic structures that were used to encrypt 
an input image with a combination of S-box and scrambling-masking architec-
ture. Belazi et al. [19] proposed an S-box image encryption with a dynamic key 
constructed using chebyshev, logistic, tent map and lifting-wavelet transform. 
Recently, Wang et al. [20]. implemented a fast and robust encryption algorithm 
taking advantage of parallel diffusion method ( instead of streaming diffusion 
method) and an efficient permutation method, both based on CML (coupled map 
logistic lattice) system. They also proposed another innovative method in Ref 
[21]. in which they used a PRNS of a 2D logistic-adjusted-sine-map and a matrix 
semi-tensor product technique to design an algorithm capable to generate from 
original ones, an encrypted image or an encrypted Boolean network coded as a 
Boolean matrix. Very recently, they published an encryption algorithm based on 
the matrix semi-tensor product where the secret key was generated by a Boolean 
network [22]. Many other chaotic maps or systems like spatiotemporal chaos 
[24], improper fractional-order chaotic system [25], chaotic nonlinear adaptive 
filter [26], Van der Pol-Duffing [27], quantum chaotic map [28], have been used 
to propose algorithm in image cryptography not only for spatial domain, but also 
for architecture like neural-network [31], cellular-automata [33] and watermark-
ing [34].

Despite this cloud of cryptosystems designed with care, many have however 
displayed a low encryption speed [12–17], while others were found with security 
defects due either to the techniques that were used [35–42], or to setbacks inher-
ent to inadequacy of chaotic maps involved (like logistic map and some other 
1D maps) [40–43]. To solve the abovementioned inadequacy, researchers have 
proposed suitable methods to improve on the chaocity of different chaotic maps 
for image cryptography. A few of these methods are: generation of new chaotic 
sequences by mixing output chaotic sequences of two chaotic maps [11]; cou-
pling two chaotic maps sequentially or analytically [15, 20, 21, 33, 44]; modula-
tion combination of two or more chaotic maps for generation of new ones [18, 
45]; extension or improvement of an existing chaotic map [23, 46].

From the shortcomings above, in this paper, a new chaos-based cryptosystem 
has been proposed. Here are some advantages of our scheme:

1.	 Fast encryption: 1D chaotic maps are generally used because they have a simple 
structure, are easy to implement, their computation take less time and they gener-
ate very quick PRNS [47, 48]. In this paper, we proposed three groups of new 1D 
chaotic maps based on new combination principles, constructed using Logistic, 
Gompertz, and sine maps as 1D seeds. Metrics like Lyapunov exponents and 
bifurcation diagrams proved that the combined maps performed better than the 
seed maps.

2.	 Reinforced security: Generally, the encryption key is used to secure the crypto-
system. In order to improve on the security of our system, image parameters were 
each time included in the encryption key.
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3.	 Development of a new combination theorem for seed chaotic maps: Some 
researchers have proposed methods to combine chaotic maps such as coupling 
or cascading two chaotic maps,.switching between multiple chaotic maps, and 
perturbation of chaotic maps by means of a pseudorandom process. In this work, 
we developed a new theorem to combine in order to improve on seed maps.

The rest of this paper is organized as follows. Section  2 briefly reports on  the 
chaotic behaviour of some discrete maps. In Sect. 3, new chaotic maps are designed 
and their chaotic properties are analysed. The image encryption/decryption scheme 
is described in detail in Sect. 4. Then, in Sect. 5, thorough security analysis of the 
cryptosystem is carried out. Finally, concluding remarks are presented in Sect. 6.

2 � Presentation of 1D Chaotic Maps Used as Seeds

This section reviews the 1D chaotic maps with setbacks since they are seeds or par-
ents for generating new maps.

2.1 � Logistic Map

The logistic map is one of the most used chaotic systems, it is analytically written as 
follows.

where xn ∈ [0, 1] is the discrete state of the output chaotic sequence, � is the control 
parameter with values in the range [0, 4], and EL(xn) = xn

(
1 − xn

)
 , the variable part 

of the logistic when � is fixed. The chaotic behaviour of the logistic starts for � = 3.5, 
but output data sequences tend to be really chaotic when � is near the value of 4 
[18].

2.2 � Sine Map

The sine map is given by Eq. (2).

where xn ∈ [0, 1] is the interval of the discrete state of the output chaotic sequence, � 
is the control parameter with values in the range [0, 1], and ES(xn) = sin(�xn) is the 
equation of sine when � is known. Sine chaotic behaviour stands for � = 0.75, and 
fulfilled chaotic properties in the range [0.8, 1] [47 45].

2.3 � Gompertz Map

The Gompertz map is another 1D chaotic with great potential for cryptography, but 
with a low level of chaotic behaviour and properties. Its equation is as follows.

(1)xn+1 = L(�, xn) = �EL(xn) = �xn
(
1 − xn

)

(2)xn+1 = S(�, xn) = �ES(xn) = � sin(�xn)
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where xn ∈ [0, 1] is the range of discrete state of the output chaotic sequence, 
the control parameter �∈[0, e ], where e = 2.71829, and EG(xn) = −xn ln xn is the 
Gompertz equation. Chaotic properties appears when � = 2.56 and are optimum in 
the range of [2.67, e] [18].

3 � New Chaotic Maps Combination Theorem and Examples

In this section, a new combination theorem for 1D chaotic maps is proposed with 
the objective to establish an explicit mathematical basis of combination principle. 
Some examples of combined chaotic maps based on this theorem are constructed 
and analysed.

3.1 � Unimodal Chaotic Maps Combination Theorem

Let’s consider here only one dimensional chaotic maps with structure similar to 
xn+1 = C(�, xn) = �EC(xn) , where � is the control parameter and EC(xn) the part of 
the chaotic map depending only of xn . The chaotic maps described in Sect.  2 are 
examples of that structure.

Axiom 3.1.  Let C(�, xn) be a unimodal chaotic map defined in an interval I, with its 
control parameter � belonging to the interval P, there exists a sub-interval Q ⊂ P for 
which this map presents good chaotic dynamical behaviour (Table 1)

Theorem  3.2.  Let’s C1(�1, xn) and C2(�2, xn) be  two unimodal chaotic maps, each 
sending the same interval I to itself. And J,K intervals or sub-intervals containing 
the control parameters �1 and �2 respectively, for which C1 and C2 present a good 
chaotic dynamical behaviour. There exists real numbers a, b, d, e, such that:

If 
(
a + b ⋅ C2(�2, xn)

)
∈ J , Then 

(
a + b ⋅ C2(�2, xn)

)
⋅ C1(�1, xn) ⋅

1

�1
 is a unimodal 

map presenting a good dynamical behaviour in the wide range of �2 , its unique con-
trol parameter;

If 
(
e + d ⋅ C1(�1, xn)

)
∈ K , Then 

(
e + d ⋅ C1(�1, xn)

)
⋅ C2(�2, xn) ⋅

1

�2
 is a unimodal 

map presenting a good dynamical behaviour in the wide range of �1 , its unique con-
trol parameter.

Proof  3.3.  The map 
(
a + b ⋅ C2(�2, xn)

)
⋅ C1(�1, xn) ⋅

1

�1
 can be written as (

a + b ⋅ �2 ⋅ E2(xn)
)
⋅ �1 ⋅ E1(xn) ⋅

1

�1
 , which is finally expressed as 

xn+1 =
(
a + b ⋅ �2 ⋅ E2(xn)

)
⋅ E1(xn) , with a and b constant values, and �2 the unique 

control parameter. For a and b well-chosen, 
(
a + b ⋅ C2(�2, xn)

)
∈ J the sub-interval 

of values of �1 for which the map �1 ⋅ E1(xn) = C1(�1, xn) has a good chaotic 

(3)xn+1 = G(�, xn) = �EG(xn) = −�xn ln xn
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properties. Consequently,xn+1 =
(
a + b ⋅ �2 ⋅ E2(xn)

)
⋅ E1(xn) will tend to have good 

(Fig. 1)chaotic properties for all values of �2 in its defined interval.

3.2 � Example of Designed System Structures

Given that many chaotic maps can be generated from the combination theorem 
according to the well-chosen values of a and b (proof 3.3), we will define three 
types of combination where the illustration of possible maps could result  in: 
(i) Simple chaotic map (SC map) where a, b are constant values; (ii) iteration 
depending chaotic map (IDC map), where a is constant, b is proportional to 
(−1)n and n is the number of iteration. (iii) Computer depending chaotic map 
(CDC map) with a a constant value and b proportional to a computer random 
value. Tables 2, 3 and 4 depict a number of new combined map equations. The 
evaluation of the chaotic behaviour of the new chaos is determined by the Lya-
punov exponents (LE) and the bifurcation diagrams indicator.  

The Lyapunov exponent (LE) is defined by LE = lim
x→∞

1

n

∑n

i=1
ln
���
df (x)

dx

��� : a posi-
tive LE of a dynamical system means that the two system trajectories exponen-
tially diverge in each unit time for a small difference of initialization, identifying 
chaotic behaviour [49].

Table 1   Minimum and maximum Lyapunov exponent (LE) values, and bifurcation diagram of logistic, 
sine and Gompertz maps.

Chaotic map Min and Max LE of the combined 
map

Bifurcation diagram Uniformity 
(outcome iteration versus control 
parameter)

Logistic −44.456 and +0,6724

  
Sine −34.623 and +0.6610

  
Gompertz −55.453 and +0.6346
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3.3 � Comparison Between The New Maps and Their Parents

The LE of each of the combined maps shown in Tables 2, 3 , 4 and (Fig. 2) has a 
steady positive values around 0.63 which is nearly constant in the wide range of 
their parameters [0, 4]. They have better mean values than their seed maps: logis-
tic, sine, and Gompertz (Table 1; Fig. 2) for which LE means are only positive in 
the lower part of the control parameter set ([3.56, 4], [0.8, 1] and [2.67, e]). The 

Fig. 1   Lyapunov Exponents graph of the new chaotic maps (For the interpretation of the references to 
colour in this figure, the reader is referred to the web version of this article)
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positive and nearly constant Lyapunov exponent values of the proposed maps, 
predicts no periodic windows or drawbacks of any type in their generated PRNS.

Bifurcation diagram draws the asymptotic temporal evolution (or orbit) for a 
certain set of initial condition, when the control parameter of the discrete-time 
dynamical system is varied. If the considered dynamical system is a chaotic map, 
then the derived orbits obtained under any initial condition cover the whole phase 
space. All the bifurcation diagrams plotted and inserted in Tables 2, 3, 4 for dif-
ferent combined maps are in accordance with the criterion stated above since 
their diagrams are flat in the wide range of their control parameters [0, 4]. At the 
opposite, Table 1 presents those of their parents partially filled of blank spaces 
which materialize thereby weaknesses in their chaotic properties. It can be clearly 
observed that Logistic, Sine and Gompertz exhibit a weak chaotic state in the 
partial range of [3.56, 4], [0.8, 1], [2.67, e] respectively. They have a very small 
range of chaotic properties while the new chaotic maps have good chaotic behav-
iour for all control parameter values in theirs defined intervals.

Moreover, (Fig.  1) displays many graphics plotting dependency test between 
SC, IDC, CDC modes; they depict PRNS trajectories superposition of the 

Fig. 2   Plotted of dependency test between different PRNS trajectories of combined chaotic maps for 
SC(red), IC(green) and CDC(blue) modes, obtained under the same initial condition x0 = 0.28 and con-
trol parameter λ = β = µ = 3.5. (For the interpretation of the references to colour in this figure, the reader 
is referred to the web version of this article)
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combined maps, generated under the same control parameter and initial condition 
for different modes. It is clearly observed that beyond the transient effect (ending 
at approximately 30 iterations), the trajectories of the different PRNS are not cor-
related proving by then their independency in spite of the light (Fig. 3)difference 
between their structures.

3.4 � Advantages of The New Maps

There exists a great number of couple (a, b) for which new combinations can be 
made giving the possibility of unlimited PRNG (Proof 3.3).

The combined maps have their structures relatively simple and easy to imple-
ment as their seed maps, but they have the advantage of a wide range of control 
parameters ([0, 4] and only positive LE values (a mean of 0.63) in their chaotic 
properties. They can’t therefore exhibit periodic windows or drawbacks like their 
parents. Furthermore they are appropriate for cryptography application as PRNG 
because they all succeeded to the (Fig. 4)standard NIST random test ( SP 800-22 
rev1a test) [44] as reported in Tables 5, 6, 7.

Fig. 3    Block diagram of the encryption scheme
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4 � The New Encryption/Decryption Procedure

This section presents the new encryption technique built using synchronized par-
allel-diffusion technique and six combined maps (Logistic-sine, Logistic-gompertz, 
Sine-gompertz, Sine-logistic, Gompertz-logistic, Gompertz-sine). The synchronized 
parallel-diffusion is equivalent to parallel processing or computing of operations 
sequentially independent in the algorithm. During implementation, all PRNS used 
are considered over the transient effect (over 500 iterations).

4.1 � Encryption

Step 1: Transform 2D plain image P of size W × H to 1D array p1p2, ..., pi of length 
W ⋅ H with i = {1, 2, 3, ...,W ⋅ H}.

Step 2:
(a) Split the 1D array p1p2, ..., pi into six arrays of equal size, if mod(W ⋅ H, 6) = 0 

or five arrays of equal size and one added of mod(W ⋅ H, 6) , if mod(W ⋅ H, 6) ≠ 0 . 
Each block-array obtained will be affected to one of the six combined maps in SC 
and CDC mode (Table 2 and 4).

Fig. 4   Block diagram of the decryption scheme
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(b) From each of the combined CDC maps of Table 4 (and any chosen initial condi-
tion and control parameter) generate PRNS with a size equivalent to its affected block-
array, then calculate the initial condition (IC0) and control parameter (CP) values for 
each block encryption by computing the following equations.

where RNi stands for a generated floating-point random number of rank i in an 
array of size W ⋅ H∕6 from a CDC map; n is the rank of one of the six blocks, then 
n = {1, 2, 3, 4, 5, 6} ; kn is a real value in the interval [0, 1] for a block array of rank 
n; ICn

0
 is the initial condition, and CPn the control parameter both used to trigger 

iteration of the new 1D map in SC mode, and affected to the block-array n;CP
max

 is 
worth 4 for all the combined maps; the symbol ⌊x⌋ is to round the element of x to the 
nearest integer less than or equal to x ; mod is the modulus operator.

Step 3: From the six combined maps in SC mode (Table 2) and with the couples 
( ICn

0
,CPn ) having the same value of n, generate six arrays of PRNS for each of the six 

block-arrays above, and synchronize their encryption by simultaneously encrypt them 
in a single process using the following equation.

where Cn
i
,Pn

i
 , RNn

i
 , are the encrypted data, the plain data and the random number of 

rank i respectively, they all belong to the block-array n; the symbol ⌊x⌋ is to round 
the element of x to the nearest integer less than or equal to x ; mod is the modulus 
operator and the symbol ⊕ denotes bitwise exclusive or operation..

Step 4: After having set the 2D image matrix by combining the six block-arrays, use 
the equations:

(4)kn =

W⋅H∕6∑
i=1

(
RNn

i
+ pn

i

/
28
)
−

⌊
W⋅N∕6∑
i=1

(
RNn

i
+ pn

i

/
28
)⌋

(5)ICn
0
=

(
6∑

n=1

kn − kn

)
mod 1

(6)CPn = ICn
0
×
(
CP

max
+ 1

)
− ICn

0

(7)Cn
i
=
((
Pn
i
+
(⌊
RNn

i
× 1015

⌋)
mod 256

)
mod 256

)
⊕ Cn

i−1

(8)ICH =

(
3∑

n=1

kn

)
mod 1

(9)ICV =

(
6∑

n=4

kn

)
mod 1

(10)CPH = ICV ×
(
CPmax + 1

)
− ICV
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And determine the initial condition and control parameter in the horizontal (
ICH ,CPH

)
 and vertical 

(
ICV ,CPV

)
 direction associated to their corresponding ran-

domly chosen maps (RCM(1),RCM(2)) among the six.
Step 5: Generate PRNS in each direction and sort them in ascending order, then 

for each couple row-column of pixel position, find the previous position of the cor-
responding row-column of the PRNS sorted value and transpose them.

4.2 � Decryption Procedure

Step 1: Use the values of ICH,CPH , ICV,CPV , and the identifier RCM(1) and RCM(2) 
of the selected maps to invert the shuffling process.

Step 2: Divide the matrix in block arrays as in the encryption process, and use 
the couples ( ICn

0
,CPn ) and their corresponding combined maps in SC mode, then 

invert the decryption in a single synchronized operation according to the following 
equation.

Step 3: Recombine the block-arrays to form 2D decrypted image.

4.3 � Colour Image Encryption/Decryption

Colour image component R, G, B are combined to form a single grey image which 
is encrypted or/and decrypted according to the steps above, afterward it is split and 
ordered to  obtain  the ciphered or deciphered image.

5 � Cryptosystem Performance Analysis

An ideal cryptosystem should be able to stand inviolable facing all known attacks 
such as: statistical attacks of histogram analysis, correlation of adjacent pixels, and 
information entropy; brute force attack on key space; differential attack;(Fig.  5) 
cryptanalysis of chosen plain-image and chosen cipher-image attacks.

5.1 � Histograms and Variance of Histograms

Histograms of selected original images: x_ray_chest.jpg (253 × 199); Lena.tiff (512 
× 512); fingerprint.jpg (220 × 229); x_ray_Skull.jpg (231 × 218), and their ciphered 
images are presented in Fig. 6 Colour images are also tested and shown in Fig. 5 
From both figures, it is observed that the histogram of ciphered image is fairly dis-
tributed, suggesting that attacks based on histogram analysis seem impractical.

(11)CPV = ICH ×
(
CPmax + 1

)
− ICH

(12)RCM(j) =
(⌊(

CPH ⊕ CPV

)
× 1015

⌋)
mod (7 − j); j = {1, 2}

(13)Pn
i
=
(
Cn
i
⊕ Cn

i−1
−
(⌊
RNn

i
× 1015

⌋)
mod 256

)
mod 256
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However, the variance of the histogram given by Eq. (14)., is a better criterion to 
evaluate the uniformity of frequencies plotted by a histogram [28].

where Z is the vector of the histogram values and Z =
{
z1, z2, ..., z256

}
 , zi and zj are 

the numbers of pixels which grey values are equal to i and j respectively.

(14)Var(z) =
1

n2

n∑
i=1

n∑
j=1

1

2
(zi − zj)

2

Fig. 5   Encrypted and decrypted grey images and their histograms from the first to the fourth column are: 
x_ray_chest.jpg (253 × 199); Lena.tiff (512 × 512); fingerprint.jpg (220 × 229); x_ray_Skull.jpg (231 × 
218)
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Fig. 6   Encrypted and decrypted colour images and their histograms from the first to the third column 
are: Lena (512 × 512); peppers (512 × 512); baboon (512 × 512) (For the interpretation of the references 
to colour in this figure, the reader is referred to the web version of this article)
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According to [28], variance of histogram values less than 5000 are good enough 
to characterise a ciphered image presenting a flat histogram. Results recorded in 
Table  8 from obtained ciphered images are around the values of 1000 and stand 
nearby good values in literature.

5.2 � Correlation Analysis

Breaking down the strong correlation between adjacent pixels of the plain image 
is necessary to prevent statistical attack. Correlation tests of the proposed encryp-
tion algorithm is performed by randomly selecting 5000 pairs of adjacent pixel in 
horizontal (HC), vertical (VC) and diagonal (DC) direction, then, their correlation 
coefficients Cr is calculated using the formula.

where X and Y  are grey scale values of two adjacent pixels in the image, K is the 
number of pair of pixels. Cr is the value of correlation belonging to the range [-1,1].

Neighbouring image pixels are lowly correlated when values of Cr are close 
to 0, and highly correlated for values of Cr close to 1 or –1. Table  9 presents 
the results of correlation tests of x_ray_chest, lena, baboon, and their ciphered 
counterparts. It is observed in these results that, in contrast with the plain images 
which correlation coefficients is about 0.9001, the ciphered images are almost 
free of any correlation as their correlation coefficients is around a mean of 0.003. 
This values are proximate to ones yielded by author in [18] and [15]. Further-
more, Fig. 7 shows through the graphics of the first row, how the high correlation 
in the plain image (Lena) displayed as concentrated dots drawing a thick line, are 
scattered uniformly on the graphics of the second row as a materialization of low 
correlation. Any correlation attack on the proposed algorithm could surely not 
succeed.

(15)
Cr =

K ×
K∑
i=1

XiYi −
K∑
i=1

X2
i
×

K∑
i=1

Y2
i

�����
⎛⎜⎜⎝
K ×

K∑
i=1

(Xi)
2−

�
K∑
i=1

Xi

�2⎞⎟⎟⎠
×

⎛⎜⎜⎝
N ×

K∑
i=1

(Yi)
2−

�
K∑
i=1

Yi

�2⎞⎟⎟⎠

Table 8   Variance of histograms of some ciphered images

Grey image Plain image value Ciphered image 
value

[15] [11]

X_ray_chest (256 × 256) 5,129,873.32 982.61 – –
Lena (512 × 512) 6,255,716.49 1050.87 1027.59 1077.23
Baboon (512 × 512) 6,193,837.23 1002.01 1058.12 971.24
Airport (1024 × 1024) 7,469,849.57 1271.65 – –
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5.3 � Entropy Analysis

5.3.1 � Information Entropy

Information entropy H (m) is the criterion commonly used to measure the level of 
randomness in a given message m. It is expressed by the formula,

where p
(
mi

)
 stands for the probability of symbol mi , L is the number of bits of the 

message and 2L all possible values. For a 256 grayscale image the pixel data has 28 
possible values, then the ideal entropy of a true random image H(m) = 8.

(16)H(m) =

2L−1∑
i=0

p
(
mi

)
log2

(
1
/
p
(
mi

))

Table 9    Correlation coefficient of two adjacent pixels

Image Size Test Plain image ciphered image [16] [13]

X_ray_chest (256 × 256) HC 0.9377 – 0.002 – –
VC 0.9535 0.010 – –
DC 0.9043 – 0.004 – –

Lena (512 × 512) HC 0.9679 0.001 – 0.010 0.003
VC 0.9845 0.003 0.001 0.001
DC 0.9580 – 0.006 0.006 0.002

Baboon (512 × 512) HC 0.9090 0.002 – 0.029 0.006
VC 0.8989 – 0.004 – 0.022 0.003
DC 0.8610 0.008 0.007 0.001

Fig. 7   Pixel values distribution of plain and ciphered Lena
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Table 10 reports the entropy values of some images encrypted by the proposed 
encryption algorithm. They are very close to 8 as expected, and slightly better 
than the ones in literature [15, 18, 30].

5.3.2 � Local Information Entropy

According to author [50], the local information entropy is more accurate to evaluate 
the uniformity of pixel distribution. The equation implemented for that purpose is 
define as follow:

where Si are image block with TB number of pixels, randomly selected k-times from 
the image, and H

(
mi

)
 is the information entropy as defined in Eq. 16. Author in [50] 

states that the ideal value of this metric is worth 7.902469317, and acceptable values 
are within the range [7.901722822, 7.903215812]. In Table 11 we reported values 
obtained after simulations. These values are within the good range, and are similar 
to the ones obtained by [20, 33] as result of a good randomness of pixel value distri-
butions in a cipher image.

5.4 � Key Space

The key space must be large enough to resist brute force attack. The encryption key 
is made of eight couples of initial conditions and control parameters ((IC1

0
,CP1 ), ( IC2

0

(17)H(k,TB)(m) =
∑k

i=1

H
(
mi

)
k

Table 10   Information entropy of some plain images and their ciphered images

Gray image Plain image Ciphered image [30] [18] [15]

X_ray_chest (256 × 256) 7.0097 7.9981 – – –
Lena (512 × 512) 7.4455 7.9994 7.9993 7.9994 7.9974
Baboon (512 × 512) 7.5714 7.9993 – 7.9993 7.9992
Peppers (512 × 512) 7.3013 7.9994 7.9993 7.9993 7.9993
Airport (1024 × 1024) 7.5235 7.9998 – 7.9998 –

Table 11   Localized information entropy of some plain images and their ciphered images

Gray image Plain image Ciphered image [22] [35]

Lena (512 × 512) 7.36894 7.90225 7.90273 –
Baboon (512 × 512) 7.07223 7.90183 7.90185 7.902278
Goldhill (512 × 512) 6.69691 7.90250 7.90205 –
Airport (1024 × 1024) 5.689569 7.902274 – –7.902184
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,CP2 ), ( IC3
0
,CP3 ), ( IC4

0
,CP4 ), ( IC5

0
,CP5 ), ( IC6

0
,CP6 ), ( ICH,CPH ), ( ICV,CPV )) set in 

the range of [0, 1] and [0, 4] respectively. With a decimal precision set at 10−15 the 
key space tend to 10120 ≈ 2400 which is largely superior to 1040 ≈ 2128 considered as 
large enough to resist brute force attack [23, 31, 32].

5.5 � Key Sensitivity

A low key sensitivity has the consequence of possibility of weak and equivalent 
keys for a cryptosystem. In the opposite side, a high key sensitivity results of high 
sensitive characteristics of the chaotic map is being used. The key of the crypto-
system is designed by mixing computer dependent chaotic maps PRNS and plain 
image pixels. Tables 12 , 13 prove that diffusion keys IC (initial condition) and 
CP (control parameter) are highly fluctuating at each new execution of the algo-
rithm for the same input image, or to the less significant bit (LSB) change of a 
pixel. Given that the decryption starts by the reverse of permutation, we modified 
one bit of its decryption keys and obtained k1 = ICv + 10−15  for the first modifi-
cation; k2 = ICH + 10−15 for the second; and k3 = CPv + 10−15 for the third, then 
the encrypted image Lena is decrypted with the modified versions 

(
k1, k2, k3

)
 . 

The decrypted images still confuse as shown in Fig. 8 It is therefore certain that 
encryption keys are highly sensitive to prevent weak and equivalent keys.

5.6 � Differential Attack

The differential attack principle is used to find out the difference between two 
ciphered images encrypted using two images differentiated by one bit or one pixel 
change. The criterions of number of pixels change rate (NPCR) and unified aver-
age changing intensity (UACI) [14] are usually applied to examine the perfor-
mance of resistance against differential attack.

where C1 and C2 are two images with same size W × H . If C1(i, j) ≠ C2(i, j) then 
D(i, j) = 1 , otherwise, D(i, j) = 0.

Table 14 displays the measurement of NCPR and UACI between two ciphered 
images of some images, when a less significant bit (LSB) changes on grey value 
in the first, middle, or last pixel position. It can be noticed that values obtained are 
around the mean of 99.62 for NCPR, and 33.51 for UACI. These values are very 
close to the good ones proposed in literature [15, 18] and reported in Table 15. A 
significant result of NCPR and UACI is obtained for unchanged image encrypted 

(18)NPCR =

∑
i,j D(i, j)

W × H
× 100%

(19)UACI =
1

W × H

[∑
i,j

||C1(i, j) − C2(i, j)
||

255

]
× 100%
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Fig. 8   Confuse image Lena deciphered with 
(
k
1

, k
2

, k
3

)
 : a deciphered Lena with k

1

 , b deciphered Lena 
with k

2

 , c deciphered Lena image with k
3

Table 14   Proof of image sensitivity to a LSB change

Image Test Original image 
after new run

LSB change on 
the first pixel

LSB change onthe 
middle pixel

LSB change 
on the last 
pixel

Cameraman.tif NCPR 99.60 99.59 99.63 99.62
UACI 33.45 33.33 33.51 33.42

X_ray_chest.jpg NCPR 99.61 99.62 99.60 99.61
UACI 33.39 33.35 33.44 33.50

X_ray_skull.jpg NCPR 99.59 99.63 99.61 99.61
UACI 33.56 33.52 33.43 33.48

Airport.tiff NCPR 99.62 99.59 99.63 99.62
UACI 33.50 33.43 33.38 33.45

Finger_print.jpg NCPR 99.62 99.62 99.60 99.63
UACI 33.45 33.35 33.47 33.39

Fruit.bmp NCPR 99.59 99.60 99.61 99.61
UACI 33.36 33.52 33.39 33.40

Table 15   Comparison of NCPR 
and UACI measures with 
proposed values in literature

Image component Test Proposed 
algorithm

[15] [18]

Lena NCPR 99.63 99.63 99.59
UACI 33.52 33.31 33.50

Mandrill NCPR 99.61 99.60 99.60
UACI 33.55 33.34 33.52

Peppers NCPR 99.64 99.61 99.61
UACI 33.45 33.43 33.52
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after a new execution of the algorithm (Table 14), this result is a proof that the 
cryptosystem gives out a totally different encrypted image, from the same origi-
nal after each new run. Differential attacks on the proposed cryptosystem is com-
pletely impossible with regards to the previous consideration.

5.7 � Chosen Plain‑Text Attack (CPA)/Chosen Cipher‑Text Attack (CCA) 
Cryptanalysis

It is shown in refs. [43, 49] that the CPA is the most powerful attack among classical 
ones. In its procedure, the attacker has obtained temporary access to the encryption 
machinery. Hence he can choose a plain-text string, and construct the corresponding 
cipher-text string. He can try for example to extract a subkey sequence using a plain 
and cipher version counterpart of a null-image (or all-one image). Then the subkey 
is used to recover a target plain image Pi,j from its ciphered image Ci,j (Eq. 20).

where Mi,j =
⋃
n

m
i,j
n = 000 … is a null-image (or all one-image), and 

Di,j =
⋃
n

d
i,j
n = d1d2d3... its corresponding ciphered image with the same size as Pi,j , 

(i, j) denotes the 2D positions of the pixel.
On the other hand, the chosen cipher-attack is possible when an attacker, in the 

same condition as for CPA attack, possesses a ciphered image made of null-image 
(or all one-image Di,j ), and constructs its corresponding plain image Mi,j =

⋃
n

m
i,j
n

[51]. He uses both to determine the key-stream necessary to recover a plain image 
Pi,j from its ciphered version image Ci,j according to Eq. 20.

(20)Pi,j = Ci,j ⊕
(
Mi,j ⊕ Di,j

)

Fig. 9   Chosen plain-image and chosen cipher-image attacks: a result of chosen plain-image attack on 
Baboon, b result of chosen plain-image attack on colour Lena, c result of chosen cipher-image attack on 
Baboon, d result of chosen cipher-image attack on colour Lena
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Figure 9a, b, c and d are results of CPA (Fig. 9a, b) and CCA (Fig. 9c, d) carried-
out on grey Baboon and colour image Lena. In both cases, recovering images are 
still confused.

CPA and CCA attacks can’t succeed, because each execution of the encryption 
algorithm produces a totally different sequence of the diffusion sub-key values, same 
as shuffling keys. Moreover an encryption algorithm which can resist CPA attack 
can also resist to the rest of attacks as demonstrated in [51].

5.8 � Encryption Time Analysis

5.8.1 � Computational Complexity of the Proposed Scheme

The analysis of the computational complexity of the proposed cryptosystem is 
founded on encryption process complexity. First of all, the initial conditions and 
control parameters are calculated using six arrays of length (W ⋅ H∕6) , then the dif-
fusion in the next step operates on the six arrays in the same time, while the permu-
tation process doesn’t require any calculation apart from iteration. From this estima-
tion, we can set the total time complexity of the proposed scheme to Θ(W ⋅ H∕6) 
for a computer using multiple-core processor platform, and in the worst case to 
Θ(W ⋅ H) if the algorithm is run on a single-core processor platform. These times 
complexity are both better that those of [28, 30, 45] claimed to be Θ(4 ⋅W ⋅ H) , 
Θ(24 ⋅W ⋅ H) , Θ(100 ⋅W ⋅ H) respectively.

5.8.2 � Encryption Speed

Time consumption was carried under windows 8 operating system, Intel (R) Core 
(TM) i5–2430 M CPU @ 2.40 GHz and 8 GB RAM. Parallelizing tasks architecture 
was part of implementation through the use of parfor-loops for assignment reduc-
tions in Matlab 2012 (a) platform [52].

Traditionally, encryption algorithm are written for serial computation (Fig. 10a) 
which doesn’t take advantages of multi-core processors. In that configuration, only 
one instruction may be executed at a time. Parallel computing on the other hand, 

Fig. 10   Types of computation architecture. From left to right; serial computation and parallel computa-
tion. Every blue rectangle represents a single and independent computation process. (For the interpreta-
tion of the references to colour in this figure, the reader is referred to the web version of this article)
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offers the possibility to use multiple processing elements simultaneously, to solve a 
problem by breaking it into independent parts. Therefore, each processing core ele-
ment can execute its part of the algorithm synchronously with the others (Fig. 10b), 
and consequently speed-up the encryption.

Table 16 reports the time in milliseconds (ms) spent by the proposed cryptosys-
tem to encrypt some images, and its comparison to some fast cryptosystem in litera-
ture. The encryption time is better for [18] and [51] but smaller than [21], except for 
cameraman.

5.9 � Advantages of the Proposed Scheme and Comparison with Other 
Cryptosystem

The algorithm proposes a simple and efficient method for key generation thoroughly 
dependent on plain image characteristics. Since the chaotic maps used have excel-
lent chaotic properties, the key space is large enough (Sect. 5.2) to prevent the usage 
of equivalent keys due to the cross-combination of initial conditions and control 
parameters.

The designed encryption algorithm yields a totally different ciphered image each 
time it encrypts the same original image with the same initialisation keys of the new 
maps in CDC mode (Table  14). This trick makes all types of differential, chosen 
plain and cipher-image attacks impossible (Sect. 5.6, 5.7).

Pixel block arrays are independent during the diffusion step in CBC mode, thus 
the propagation error which is an error in a pixel spreading from one pixel to another 
is thereby limited in a block or in each block.

Our proposed method is based on a diffusion-permutation architecture as the pro-
posed method in Ref.[11, 20, 33], while the author in Ref [18]. have proposed a 
scrambling-masking combined S-box method and the one in Ref [20]. a DNA archi-
tecture. Their algorithms were designed with enhanced chaotic maps as PRNG. 
Results obtained from our evaluation metrics of variance of histogram, correlation, 
entropy, NCPR, UACI, and depicted in Tables 8, 9, 10, 11, 15 respectively. They 
have similar or better values compared to those of the authors above. Furthermore 
our method generated a larger key space than ones in Ref [21, 29, 30]. (see Sect. 5.4), 
and a better time complexity than those of ref [29, 31, 48]. (see Sect. 5.8.1). The 
encryption/decryption time, implemented taking advantage of independency of dif-
ferent blocks, have better values (see Table 16) than those in Ref. [18, 53].

Table 16   Encryption time in milliseconds (ms)

Image Size Type Proposed 
algorithm

[22] [18] [53]

Cameraman (256×256) Grey 112 117 195 223 ms
Lena (512×512) Grey 402 274 650 –
Airport (1024×1024) Grey 1200 789 2897 –
Lena (512×512) Colour 983 – 2100 –



	 Sensing and Imaging           (2020) 21:55 

1 3

   55   Page 34 of 36

6 � Conclusion

In this paper, a new  combination theorem of 1D chaotic maps was proposed  and 
used as a tool for generation of new multiple 1D chaotic maps of different modes 
(SC, IDC, CDC). They exhibit a very good chaotic properties certified by Lyapu-
nov exponents and bifurcation diagram, and were generated from logistic, sine and 
Gompertz maps proven to have some defects. The example of maps designed are 
used in a new encryption algorithm built in a diffusion-permutation architecture. 
The key encryption for diffusion and permutation are all extracted from both PRNS 
of the chaotic maps and image. The diffusion process occurs in many independent 
block arrays of image pixels as many chaotic maps are concerned, and in a syn-
chronized way in CBC mode followed by a pixel shuffling. Security tests of brute 
force attack, differential attack, CPA and CCA, are demonstrated to be inefficient as 
the algorithm employs a large number of maps of different types, some depending 
on a random state of the computer. Other tests like variance of histogram, correla-
tion analysis, and entropy gave out results which attest that statistical attacks will 
fail since the algorithm inherits excellent statistical properties of the designed maps. 
Finally, the time consumption is very low because of parallel computing implemen-
tation, and really suggests the possibility of a true multimedia application.
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