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_________ 
Abstract 

 

The nonlinear dynamic research in laser physics, especially in semiconductor lasers 

(SCLs) is still growing rapidly since the emergence of first laser diodes (LD). These SCLs are of 

paramount importance in optical data processing and optical communications. This Thesis studies 

the nonlinear dynamics of optical injection semiconductor lasers (OISCLs) by focusing on noise 

effects, its control and suppression using modified SCLs rate equations. Lasers exhibit 

spontaneous emission phenomenon, which is stochastic and, then a noise induced-effect. We 

treated noise influence in laser by adding the Langevin noises in laser rate equations. As results, 

we showed the method of avoiding and eliminating the 1/f noise, which requires a master laser 

(ML) with lower phase fluctuations. We optimized the relative intensity noise (RIN) in the low-

frequency region (up to relaxation frequency around 1GHz) and reduced the level of intensity 

noise and the frequency noise (FN) when the OISCL is controlled by a new control parameter so-

called effective gain coefficient (EGC) among many other parameters. We also developed a 

modified formula of laser full-width-half-maximum (FWHM) leading to an ideal laser linewidth 

modulated by the EGC in addition to the Henry factor. Next, we integrated it in an electrical 

oscillator based on resonant tunneling diode (RTD) in order to study the induced-nonlinear 

dynamics. We showed that either stabilities or instabilities of SCLs are enhanced by optoelectronic 

integration with an RTD. The EGC allows the restriction of locked optical phase leading to the 

stability control. The DC voltage, the parameter 𝑟(the resistance of the DC biasing circuit) and the 

EGC were control parameters in the central of these works: We observed that stable points are 

achieved, when the RTD is biased in the NDR either by smoothly increasing the DC voltage or 

by increasing 𝑟 while the EGC is decreasing. Nevertheless, the system has widely generated 

unstable oscillations. Various rich forms of dynamical behaviors have been observed including 

generation of chaos, hyperchaos and multistability with coexistence of N-scrolls and M-scrolls 

attractors due to cooperative dynamics between electrical excitation and optical injection in SCL. 

We achieved the route to chaos via cascade period doubling sequences termed Feigenbaum 

scenario in addition to the reversal period doubling cascade named antimonotonicity and, the 

OISCL exhibited furthermore strange attractors such as chaotic multiscroll attractors and an 

infinite scroll attractor. We used the parameter r and DC voltage to control multistability and 

chaos. Lastly, in optical domain, the system has revealed bursting oscillations (BOs), mixed mode 
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oscillations (MMOs), square-wave BOs modulated by the EGC, and mixed mode incrementing 

bifurcation (MMOIBs) relevant in the description of brain neuron activity.  

 

Keywords: Semiconductor laser, optical injection, effective gain coefficient, optoelectronic 

oscillators, resonant tunneling diode, multistability, chaos, mixed mode oscillations. 
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___________ 
Résumé 

La recherche en dynamique non linéaire en physique des lasers, en particulier dans les lasers à 

semi-conducteurs continue de croître sans cesse depuis l'avènement des premières diodes laser. 

Ces lasers à semi-conducteur sont d’une importance primordiale dans les traitements optiques de 

données et les communications optiques. Cette thèse étudie la dynamique non linéaire des lasers 

à semi-conducteur à injection optique en se concentrant sur les effets du bruit, son contrôle et sa 

suppression à partir des équations modifiées des lasers à semi-conducteur. Comme résultats, nous 

avons montré une méthode d’élimination du bruit 1/f qui exige un laser maître avec de faibles 

fluctuations de phase optique. Nous proposé de méthodes d’amélioration du spectre du bruit 

d’intensité en basses fréquences (jusqu'à la fréquence de relaxation autour de 1 GHz) et de 

réduction des bruits d’intensité et de fréquence lorsque le laser est contrôlé par un nouveau 

paramètre de contrôle appelé coefficient de gain effectif parmi tant d'autres paramètres. Nous 

avons également développé une nouvelle formulation de la longueur à mi-hauteur donnant une 

largeur de raie laser idéale modulée par le coefficient de gain effectif en plus du facteur Henry. 

Dans la suite, nous avons intégré ce laser dans un oscillateur électrique à base de diode à 

résonnance tunnel dans le but d’étudier sa dynamique nonlinéaire. Les résultats ont montré que la 

stabilité du laser à semiconducteur est améliorée par l'intégration optoélectronique avec une diode 

à résonnance tunnel et que le coefficient de gain effectif permet la restriction de la phase optique 

de verrouillage et donc le contrôle de stabilité. La tension continue, le paramètre 𝑟 (la résistance 

globale du circuit) et le coefficient de gain effectif étaient des paramètres de contrôle au centre de 

ces travaux : nous avons découvert que des points d’équilibre stables sont atteints dans la zone de 

résistance négative soit en augmentant progressivement la tension de polarisation, soit en 

augmentant la résistance 𝑟 pendant que le coefficient de gain effectif diminue. Il est à noter que 

le système a généré de multiples oscillations instables. Diverses riches dynamiques nonlinéaires 

ont été observées, notamment la génération du chaos, de l’hyperchaos et la multistabilité avec la 

coexistence des attracteurs N-scrolls et M-scrolls en raison de la dynamique coopérative 

(interférence) entre l'excitation électrique et l’injection optique du laser à semi-conducteur. La 

route vers le chaos était observée via des séquences de doublement de période en cascade (scenario 

de Feigenbaum) en plus de la cascade de doublement de période inverse appelé antomonotonicité 

et, le laser a révélé en outre des attracteurs étranges tels que des attracteurs chaotiques multiscroll 

et un attracteur infinite-scroll. Nous avons utilisé le paramètre 𝑟 (la résistance globale du circuit) 
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et la tension de polarisation pour contrôler la multistabilité et le chaos. Enfin, dans le domaine 

optique, le système a révélé une dynamique éclatante à partir d’un point de bifurcation, des 

oscillations en mode mixte, des oscillations éclatantes à ondes carrées modulées par le coefficient 

de gain effectif et une bifurcation incrémentielle en mode mixte pertinentes dans la description de 

l'activité neurale du cerveau. 

Mots clés : Laser à semi-conducteur, injection optique, coefficient de gain effectif, oscillateurs 

optoélectroniques, circuit, diode tunnel résonante, multiscroll, oscillations en mode mixte. 
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______________________________________________________                

General Introduction 

 

Lasers communications systems utilize optical waves as carriers to transport signals through 

optical fibers to remote locations, taking the advantages of optical fibers low loss, light weight, 

high capacity, high security and immunity to electromagnetic interferences [1]. This technology 

is beginning to be used in local access networks (LAN) to provide private users ultra-wideband 

digital communications. Nowadays, major communications in cities and metro areas are evolving 

in the replacement of copper-wire based networks with fiber-optic networks. Moreover, the 

worldwide matrix optic-fibers network that connects continents and communities enables sharing 

information quicker than ever due to the electrical-to-optical (E/O) conversion enabled by 

semiconductor lasers (SCLs). This way of higher-speed information transmission at ultrahigh-

speed rates through optical fibers should not be possible without the advent revolution of the laser 

diodes (LDs) as well as the use of pump Erbium Doped Fiber Amplifiers (EDFAs). In addition, 

standard and long distance communication networks use the second (1.33nm of wavelength) and 

the third (1.55µm of wavelength) windows silica optical fiber respectively (see Figure 1). As the 

second window is without dispersion, the interest of the third is the low absorption. The no 

dispersion and low absorption windows of silica optical fiber correspond to the LDs wavelength 

spectrum. 

 

Figure 1. Low-loss transmission windows of silica fibres in the wavelength regions near 1.3 and 1.55μm 

[2] 

Today, offering improvement to light-wave, more reliable, small size and most cheaply 

manufactured transmitter equipment with information transmission securely is likely the more 

severe trend in communications and information technologies. Since optoelectronic oscillators 
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(OEOs) can significantly simplify and increase the capacity of photonic systems, they have 

attracted great attention in recent years. Generating pure high frequency signals using simple, low-

phase noise, efficient, and low cost oscillators are being considered as major requirements for next 

generation photonic communication systems. In a special way, OEOs based on resonant tunneling 

diode (RTD) integrated with a laser diode (LD) can operate at ultrahigh frequency systems. The 

RTD feature in addition enhances the optoelectronic characteristics. It reduces power consumption 

and offers significant improvements in the modulation/detection performance and functionality 

due to it wide bandwidth negative differential resistance (NDR) region, capable of producing 

electrical oscillations up to 831 GHz [3] or above 1 THz [4 - 6]; this allows the RTD to be the 

fastest purely electronic devices operating at room temperature. 

Emergence of Semiconductor Lasers 

Much notable scientific accomplishments related to the emergence of laser magnify the 

demonstration of the first laser built by T.H. Maiman in ruby crystal in 1960 at Hughes Research 

Labs. This ruby crystal laser leads to much exaltation each celebration of laser’s birthday. 

However, in many ways, laser technological impact had been quick really ignited by the 

successive and almost simultaneous demonstrations of SCL in 1962 by four independent groups 

of researchers. Today almost six decades – the year 2022 will be the 60th birthday of SCL – are 

passed that the first demonstrations of laser emission in homostructure GaAs semiconductor p-n 

junction had been reported [7, 8]. The first semiconductor laser diode worked in cryogenic 

temperature, releases pulsed wave and claims high-pulsed working current. The introduction of 

the heterostructure SCL leaded great advancement and raised an important field named 

optoelectronics. The emergence of heterostructure LD gave promise in the production of 

continuous wave (CW) lasers, low threshold lasers operating at room temperature. Therefore, the 

race to obtain different type of lasers then started. Today, LDs are more reliable means, more 

rugged constructions (completely solid state), and very convenient means, cost-effective of 

developing lasers coherent light. SCLs are massively produced in very compact and small size 

similar to electronic components such as transistors (see Figure 2). 

Even though material processing, cutting material and welding require high-power lasers, 

nowadays, SCLs are the most spread used lasers. For example in printers, bare-code reader, for 

motion and smoke sensing, lighting for projectors, to measure distance for road or between cars, 

write/read ability of compact and digital video disks (CDs and DVDs) players. So, 

communications and plenty applications make LDs necessary for today’s electronic technology. 
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Figure 2. Semiconductor laser diodes modules [9, 10] 

 

Chaos in Semiconductor Lasers Systems 

In the beginning of the early 1900s, many researchers were awarded of the existence of complex 

dynamics in well-defined systems [11]. In 1913, a prominent French mathematician Poincaré 

noted for the first time the sensitivity to initial conditions (ICs) in some former nonlinear complex 

systems and defined the unpredictability concept. First, irregular pulsations and dynamical 

instabilities have been observed in the early stage of the development of the first laser.  When 

lasers with erratic output have been firstly reported, the lack of knowledge of what would later be 

termed ‘‘chaos’’ made it be unexplained either wrongly be attributed to noise. Since chaotic 

dynamical systems are described by, a set of determinist equations and irregularity induced by 

chaos is different from that from random fluctuations due to stochastic process. In 1960-1963s, 

this situation changed when Lorenz discovered irregular pulsing with a remarkable feature in a 

nonlinear system with only three variables [12]: the Lorenz Eqs. (1). Lorenz equations for fluid 

convection is a description model for the atmospheric flow. The observation of the sensitivity to 

ICs in this system according to Poincaré prediction leaded Lorenz to provide the existence of 

chaos and to introduce the interesting Butterfly effect in the theory of chaos.  
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                                                                   (1) 

In Eqs. (1), 𝑥 represents the intensity of the convection, 𝑦 represents the difference of temperature 

between the ascending and descending currents, and 𝑧 is proportional to the distortion of the 

vertical temperature profile from linearity. Lorenz was led to choose 𝜌 = 28, 𝜎 = 10 and 𝛽 =

8/3. It has been shown that at least three independent variables (i.e. three degrees of freedom) are 

necessary to observe deterministic chaos [13].  
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In 1975 the field of laser physics and chaos theory emerged due to the discovery of a striking 

analogy [14] between the Lorenz equations and Maxwell-Bloch equation as formulated by Haken 

modelling the dynamics of light-matter interactions assuming  a unidirectional ring laser 

containing a homogeneously broadened medium [11, 15]. These equations of motion are derived 

using a semi-classical approach, considering the resonant field inside the laser cavity as a 

macroscopic variable interacting with a two-level system [14]. Assuming exact resonance between 

the atomic line and the cavity mode, three coupled non-linear differential equations for the field, 

polarization, and population inversion of the medium for the so-called Lorenz-Haken [15] model 

given in Eqs. (2).  
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   
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,                                             (2) 

where 𝐸(𝑡) represents the electric field in the laser cavity having a decay constant 𝑘; 𝑃(𝑡) is the 

polarization of this field; 𝐷(𝑡) is the population difference having a decay constant. Both   𝜅 and 

℘ are scaled with respect to the polarization relaxation rate, and 2𝐶 is the pump rate required for 

obtaining the lasing effect. The model of Lorenz-Haken equations for a laser model is equivalent 

to Lorenz equation [11].   

Later, chaos theory had revealed that, nonlinear systems with high dimension enough might 

bifurcate to more complex dynamical behaviors and chaos. Since optical material and device such 

as lasers are nonlinear systems due to the nature of electromagnetic field, nonlinear theory applies 

to SCLs and, laser equations can be in general, classified as the Lorenz system [11]. 

Semiconductor laser is one of the first working lasers. However, this semiconductor laser and 

others semiconductor devices are still very important for developing nowadays equipment. LDs 

uniquely possess property that makes them sensitive to electrical and optical perturbations (such 

as optical injection and optical feedback), direct modulating current. Sensitivity of SCL makes it 

easily be integrated with other optical device or with electrical component in optoelectronic 

integrated circuits (OEICs) with great potential applications. This unique property of LDs enables 

them also a high potential such as frequencies up to several GHz or THz achieving high-speed 

techniques and more sophisticated and chaotic systems in a less space. Chaos is one of the most 

used tools for today's encryption research problems. In the first view, semiconductor LD is a 



 

5 

damped nonlinear oscillator and is therefore limited to a spiralling flow toward a steady-state so-

called relaxation oscillation as depicted in Figure 3. 

 

Figure 3. Simulated dynamics the photon number and carrier inversion showing damped oscillations 

toward a steady state (relaxation oscillations). Dynamics is limited to spiralling relaxation flows in the 

phase plane (right) [16]. 

Lorenz explanations of chaos opened many configurations to perform the feature of nonlinear 

systems. For instance, in optoelectronics, optical feedback [Figure 4(a)], optical injection [Figure 

4(b)], current modulation [Figure 4(c)] and optoelectronic feedback [Figure 4(d)] are usually used 

in LD chaotic-based systems in order to achieve chaos.  

 

Figure 4. Chaos in laser diode: (a) Optical feedback from an external mirror, (b) Optical injection from a 

master to a slave laser diode. (c) External current modulation applied to a laser diode. (d) Optoelectronic 

feedback by reinjecting a delayed and amplified signal from a photodiode that measures the laser output 

[16]. 

Motivation and Objective of the Thesis 

The radio frequency (RF) resonator-based oscillator technology cannot match all advantages of 

photonic systems. Therefore, a great search has been achieved in OEO configurations capable to 

generate complex and ultra-pure RF carriers in both electrical and optical domains. Several OEO 
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systems have been proposed over last few years, including photonic oscillators based on InP 

monolithic oscillators [17], using either direct modulated semiconductor lasers and 

optical/optoelectronic injection schemes [18] or electrical oscillators to drive the SCLs [19 - 21]. 

However, these configurations either are too complex with several components or do not meet all 

the photonic RF systems OEO requirements [22]. 

An ideal OEO should  involve the generation of ultra-pure RF signals in both electrical and optical 

domains with its operation being controlled by both electrical and optical injected signals. In 1996, 

Yao et al. proposed an OEO configuration that close match these requirements, capable to produce 

ultra-pure microwave signals [23]. However, such configuration is quite complex, containing an 

optical fiber delay line several kilometers long, a wide-band Mach-Zehnder modulator to 

modulate non-linearly a semiconductor laser continuous-wave coherent light beam, a preamplified 

photodiode, a narrow microwave RF filter and a microwave amplifier. 

The fastest purely electronic device operating at room temperature is the RTD. Resonant tunneling 

diodes are nanoelectronic semiconductor structures with wide bandwidth NDR region capable of 

producing electrical oscillations up to several hundred of GHz [3] or some THz. When RTD is 

integrated within optoelectronic devices such as optical waveguides and LDs, they can enhance 

optoelectronic characteristics [24, 25]. Recently demonstrated optoelectronic voltage controlled 

oscillators (OEVCOs) and optical controlled RF oscillators based on the hybrid integration of an 

RTD with a laser diode (RTD-LD) and a RTD with a photoconductive have shown especial 

interest in OEOs [26]. 

The main investigation of this thesis to the technology innovation is the proposal of a novel OEO 

based on the integration of RTDs with optical injection semiconductor lasers. An alternative 

option to mainstream in innovative devices to integration of optical injection semiconductor lasers 

dynamics. Extending of the system dimension and bringing high dimension chaos complexity in 

RTD-LD integrated circuit systems is our main goal. In our study, mostly in concordance with 

recent works of Figueiredo and al. [27, 28], we use the model of semiconductor laser developed 

in 2011 by Mengue and Essimbi to be integrated with RTD oscillator. This model of 

semiconductor laser’s rate equations inspired from Lang and Kobayashi model is mainly described 

by a novel control parameter named the effective gain coefficient (EGC). In addition, as most of 

tunneling devices, RTDs are nanoelectronic semiconductor structures exhibiting a negative 

differential resistance (NDR) region. Nevertheless, Schuman and other models giving 

mathematical description of its I-V characteristics are usually complex and difficult to be used for 

theoretical analysis of RTD-based systems. A simplified model of the RTD was proposed as a 

polynomial function of the third order with interesting results [29 - 31]. 
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In this thesis, the investigation of noise-induced effects in optical injection semiconductor laser is 

achieved by using the Langevin approach. The first aim of this work is thus to estimate several 

means to reduce, eliminate and control noise that penalizes the performance of optical injection 

systems. A comparison with previously published results is also presented. 

On the other hand, we initiate an optoelectronic oscillator by integrating this semiconductor laser 

in resonant tunneling diode electrical oscillator. We introduce the polynomial model for current-

voltage characteristic of RTD and analyze the stability and nonlinear dynamics of the novel RTD-

LD optoelectronic oscillator.  

Outline of Thesis 

There are three chapters in this thesis altogether, starting by the General Introduction dedicated to 

semiconductor lasers and chaos in laser systems. The rest of the thesis is organized as follows: 

The Chapter I presents the Literature Review of Semiconductor Lasers, Resonant Tunneling 

Diode and Optoelectronic Integrated Circuits. The Chapter II is dedicated to the material and tools 

such as analytical and main numerical approaches used throughout. This chapter also includes 

laser equations and the class of optoelectronic hybrid oscillator (OEHO) that guided us through 

this work. Chapter III provides the obtained results and of the proposed models and their 

corresponding discussion by using tool provided in Chapter II. Finally, this thesis ends with a 

General Conclusion and gives outlooks of future works in RTD-Optical Injected SCL. 
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Chapter ____I ____ 

 __________________________________________________ 

LITERATURE REVIEW OF SCLS, RTD DEVICES AND 

OPTOELECTRONIC OSCILLATORS 

 

I.1. Introduction 
 

SCLs and RTDs are semiconductor optoelectronic devices and, semiconductor operation depends 

on the one hand on its structure and in the other hand on the external stimuli to which it is 

subjected. This Chapter is divided into four sections. The first Section presents the basic working 

principle of laser by considering the interaction between electromagnetic (EM) radiation and 

material in a two-level energy atomic system. An overview of accomplishments in SCLs, 

particularly, OISCL with the effective gain coefficient as new control parameter and, origins of 

noise in SCLs are given in the second Section. The third Section is devoted to the general 

background on heterostructure semiconductor devices. This Section also provides description of 

RTD and some current-voltage characteristic models. The last section addresses a brief overview 

of OEOs based on RTD-LD integrated circuits. 

I.2. Lasers 
 

The L.A.S.E.R. would not been made without an understanding that “light is a form of 

electromagnetic radiation” as discovered by Max Planck, and described by quanta theory. The 

quanta theory marked the revolutionary point in physics that it inspired up-and-coming physicists 

such as Albert Einstein. In 1917, Albert Einstein postulated the key phenomenon that makes laser 

working: the stimulated emission. That is, the word laser is an acronym, which stands for Light 

Amplification by Stimulated Emission of Radiation. Does the word “light” includes all EM 

radiations of any frequency?  We answer to this question in the next subsection I.2.1. 

I.2.1. Electromagnetic spectrum 

The EM spectrum goes from radio wave to gamma-wave; through microwaves (MW), IR-waves, 

visible-light, UV-waves, gamma rays and X-rays successively. All these radiations are similar that 

they all move at 299792458 – approximately 
83 10 – meters per second: the speed of light in the 

vacuum commonly denoted by c ( 
83 10  /c m s   ). However, their frequencies (their 

wavelengths or their energies) are all different. Therefore, there is a fullness of lasers, working at 
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any frequency: IR-lasers, Visible-lasers, UV-laser, X-lasers, and Gamma-lasers. A “laser” 

emitting radio wave or MW is a MASER (microwave amplification by stimulated emission of 

radiation) instead of as shown in Figure I.1. Nevertheless, there are four great categories of lasers: 

solids state lasers, gas lasers, dye lasers and semiconductor lasers due to the nature of gain 

medium. 

 

Figure I.1. The EM spectrum is divided for maser and laser depending upon the wavelengths of the 

radiation. Visible light refers to optical rang that occupies the smaller window ranging from 400nm to 

700nm wavelength [32]. 
 

Early in 1953, in an unpublished manuscript, John von Neumann firstly suggested that, a sufficient 

injection of carriers in the p-n junction of semiconductor could generate stimulated emission of 

incident radiation [8]. For our better knowledge, this suggestion should be the first concept of the 

laser.  One year later i.e. in 1954, C.H. Townes, J. Zeiger and graduate student J. P. Gordon 

demonstrated the first maser based on the prediction of A. Einstein. This device is called maser 

because it was a coherent source of MW. In 1958, they analyzed the possibility of the maser to 

generate and amplify EM radiation over the optical (visible) rang and near optical rang by 

stimulated emission. When that maser operating in optical rang was imagined, Gordon G. (in 

1957) coined the acronym of laser rather than optical maser, which is now obsolete [33, 34]. In 

1960, inspired by Schawlow and Town, T. H. Maiman built the first laser using ruby crystal (

2 3 :Al O Cr ) as gain medium and pumped by a lamp flash at Hughes Research Laboratories [35, 

36]. This laser produced a red beam of light at 694nm [35]. In 1964 C. H. Town, N. G. Basov and 

A. M. Prokhorov were awarded the Nobel Prize in Physics for their fundamental works in the field 

of quantum electronics, which leaded to the construction of oscillator and amplifier based in maser 

and laser principle.  

The laser can be regarded as one of the most invention of the twentieth century that made live new 

technology fields such as optical storage information, optical communications, and medical 

applications, among many others [35]. 
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I.2.2. Basic Elements of Lasers 

 

A laser medium, a laser resonant cavity and a pumping mechanism are three keys components in 

a laser [35], as shown in Figure I.2.  The laser medium, which can be a gas, a fiber, a solid-state 

material or a semiconductor, is inserted into the laser cavity that consists of a pair of mirrors. The 

laser medium provides light amplification. The pumping energy is applied to the laser medium 

via a flash lamp (as in this first ruby laser), a laser light (for example in optically pumped lasers), 

or an electric current (in semiconductor laser for instance). The plane-parallel mirrors form the 

resonant cavity. The reflectivity of one mirror is 100% (the total reflector mirror), while that of 

the one other (the partial reflector mirror) is purposely made lower so amplified light inside the 

cavity will come out of the lower reflective mirror.  

 

Figure I.2. Basic elements of a laser system 

I.2.3. Two-atomic-level Laser System 

 

The laser working principle is best understood by considering a hypothetical two-level atomic 

system and interaction between EM radiation and material. In this subsection, we consider the 

two-level atomic system to describe the laser working. 

Absorption, spontaneous emission, and stimulated emission are the three basis process through 

which EM radiation can interact with the matter. Under normal conditions, all material absorbs 

light. Let us consider the two-level atomic system with E1 and E2 the lower level and the upper 

level energies respectively. Through the absorption process, a photon of energy 2 1 E E E    

is absorbed, while an electron is transferring from lower level to upper level. In a general, when 

an electron is in an excited energy level (the upper level in two-level system), it must eventually 

decay to the lower level, emitting a photon of energy   . This process is called spontaneous 

emission, and, the radiation is emitted in arbitrary direction of propagation and phase 

(polarization). The average time of electron is called constant of spontaneous emission or 

spontaneous emission lifetime denoted by  𝜏. On the other hand, if an incident photon happens to 
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pass by whose energy is approximately   , there is a probability that the incident photon induces 

the electron to make a downward transition. Therefore, a photon is emitted at exactly the same 

wavelength, in exactly the same direction, and exactly the same phase as the incident photon. This 

even is called stimulated emission. Absorption, spontaneous emission and stimulated emission are 

illustrated in Figure I.3 for a two level energy system.

 

 

Figure I.3. Interactions light material: (a) Absorption, (b) Spontaneous emission and (c) Stimulated 

emission. 

I.3. Semiconductor Lasers 

 

Early the maser manufacturing, in 1953, John von Neumann sketched out an idea for producing 

stimulated emission in semiconductors, his proposal was not published until 30 years after his 

death [8, 37, 38]. In 1962, four groups of persons working independently announced almost at the 

same time the invention of the first semiconductor LD in the homostructure GaAs semiconductor. 

The race for the production of semiconductor lasers was then launched. Nevertheless, all those 

first LDs were wide-area homostructure devices, which operated only at cryogenic temperature 

and driven above the threshold by powerful current pulses [38]. 

A SCL can be considered as a system containing two energy levels populated by electrons 

(carriers). This optoelectronic device consists of a p-n junction (a diode) with an active region 

where electrons and holes recombine. When this diode is forward biased by electric source such 

as a battery, electrons from n-region and holes from p-region cross the junction and it can result 

absorption, spontaneous emission and/or stimulated emission (see Figure I.4). 

LD is the more efficiency and reliable lasers that exist and find multiple applications in science 

and technology due to unique properties that make them be different to other lasers [40 - 42]: 

 High conversion efficiency; 

 Low power consumption; 

 Small size (the typical length of a semiconductor laser is 0.25 mm); 

 Low cost; 
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 High frequency modulation (more than 10 GHz); 

 Long service life; 

 Wide range of emission wavelengths. 

 

Figure I.4 . The basic working principles of semiconductor laser diode. The absorption (a) of a photon 

results in the generation of an electron-hole pair. The recombination of an electron-hole pair results in the 

spontaneous emission (b) of a photon. Electron-hole recombination can generate the stimulated emission 

(c) of an identical photon [39]. 

Nowadays, the LDs cover a wide range of application in different areas. From industry to military 

applications and scientific fields, the role and the use of SCLs is clearly highlighted [43]. One of 

the most outstanding uses of semiconductor lasers are for light sources for optical fiber 

communication systems, designed to transmit a huge amount of information at long distances. 

They are also widely used for optical data storage in CDs, DVDs and Blu-ray systems. Other 

domains in which SCLs have found important great potential applications are optical medicine, 

material processing, metrology, spectroscopy, air pollution, etc. Nowadays, SCLs they are become 

ubiquitous granted application devices such as portable pointers [44]. 

In addition, the two summarized main physics properties differences between SCLs and other 

lasers are the low reflectivity of the internal mirrors in the laser cavity [11]. 

I.3.1. Rate Equations of SCLs 

 

All dynamical systems evolve in time. The temporal dynamics of SCLs can be described by using 

a set of coupled ordinary differential equations (ODEs), where the main three physical variables 

are the laser photon density, the carrier density and the laser optical phase in the medium. When 
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the laser injection pumping current I is below the laser threshold thI  the spontaneous emission 

predominates and the LD emits as simple light emitting diode (LED) and it outputs incoherent 

light emission (see Figure I.4(b)). Above the threshold, the transparency condition is satisfied and 

the p-n junction to become active and, the population inversion is established. Then if the injection 

carrier is higher enough, the stimulated recombination exceeds the absorption and the active 

region become the gain medium. Then the p-n diode junction emits coherent light emission. The 

carrier density in laser cavity is commonly denoted by ( )N t  while photon density is denoted by

 ( )S t . The Eq. (I.1) gives the linear gain 𝑔(𝑁) of  SCL. 

0( ) ( )g N Gn N N                                                                          (I.1)             

with 0N The carriers at the transparency. 

Eqs. (I.2) give the classical coupled nonlinear ODEs of LD for photon density and carriers 

explicitly in the form: 
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                                                (I.2) 

Furthermore, the variables ( )N t , ( )S t  and ( )t  are carrier density, photon density and optical 

phase respectively. The pumping current density /iJ I q  ; I is pump current; 𝑞 is electron 

charge; i  is efficiency;   is active region; / sN   is the recombination of carriers; ( )g N S  takes 

into account the stimulated emission and absorption; / phS    represents the cavity losses and spR  

is the spontaneous emission term. Here, ph  is the photon lifetime and s  the carrier lifetime. In 

Eqs. (I.2), the phase is not coupled with the other equations. Therefore, even though the system 

(I.2) is described by three variables, it behaves stably. In general, according to laser rate equations, 

one has three class of laser: the Class A lasers governed by only one rate equation and 

characterized by no oscillations dynamics. The Class B lasers described by two rate equations 

generating transient relaxation oscillations. Finally, the Class C lasers governed by three rate 

equations for carrier density, photon density and the macroscopic atomic polarization [11]. 
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In first point of view, SCLs are class B lasers. However, a SCL with an external perturbation such 

as optical feedback and optical injection current modulation can display chaotic output. 

I.3.2. Semiconductor Laser with Optical Injection 

 

Optical injection consists to subject a laser call slave laser (SL) to external optical beam from the 

other laser named master laser (ML) as depicted in Figure I.5. Optical injection introduces an extra 

degree of freedom in laser the perturbed laser is a candidate to chaos [11]. 

 

 

Figure I.5. Scheme of optical injection. The SL is subjected to optical injection by the ML. Unidirectional 

coupling is ensured by an optical isolator 

Before 2012s’, it have been known to the scientific community that,  the important control 

parameters of OISCL’s dynamics were the frequency detuning between the master and slave 

lasers, the LEF (the α-parameter) and the injection strength from the master to the slave [11]. Lang 

and Kobayashi are pioneers to adopt in 1980 the differential equations of field to describe the 

OISCL. In 2011s’ and the beginning of 2012s’, Mengue and Essimbi developed and proposed a 

novel model equations of OISCLs described by (I.3) and (I.4) and resulting from the modification 

of Lang and Kobayashi equations [45]. 
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                                                 (I.4) 

here, the parameter γ called the EGC had been defined as it appears in the effective time of fight 

in the laser cavity where the round-trip time inside the laser cavity is τin. E(t) = E0(t)e
−jϕ(t); with 

E0(t) the amplitude of the complex field relates to the photon density S by the relation S(t)=|E0(t)|
2. 

( ) ( )t t     is the phase difference between the internal and the injected fields; τp is the 

photon lifetime; τr is electron-hole recombination time; GN the modal gain; Einj is the injected field 

amplitude. The model of Eqs. (I.3-I.4) reveals the existence of a fourth control parameter of LDs 

dynamics – the EGC – [45 - 48]. 

I.3.3. Noise-induced effects in Semiconductor Lasers 
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The noise term is important to describe lasers operating in optical communication links and 

sensing applications. In contrast to deterministic chaos, which obeys to temporal deterministic 

mathematical equations, noise is defined as an irregular temporal waveform from stochastic 

process. Noise cannot be described by a set of nonlinear equations. Instead, the behavior of noise 

can sometimes be described by a set of differential equations driven by a sequence of random 

numbers as stochastic terms (see Chapter III). 

LDs systems are intrinsically nonlinear and operate in real world, which are naturally noisy 

environments. LDs include themselves intrinsic fluctuations and stochastic variations in optical 

beam. Under certain circumstances, an extra dose of noise can in fact help rather than hinder the 

performance of some devices [35]. In a single-frequency laser, there are intensity noise – 

amplitude noise – and phase noise. The phase noise is strongly assimilated to frequency noise 

(FN) which refers to the enhancement of laser linewidth due the Henry factor involved in SCLs. 

In SCLs, origins of noise in lasers can be separated into two main groups:  the quantum noise 

(QN) and technical noise, which is particularly induced by the quantum effects of spontaneous 

emission. Technical noises are resulting from excess noise. For example from pumping current 

fluctuation (due to random carrier generation and recombination), optical injected light from 

pumping laser, vibrations of laser resonator, or from temperature fluctuations (thermal noise). 

Since noise cannot be eliminated, techniques of noise reduction consist to minimize noise level 

until the signal to noise ratio (SNR) given by Eq. (I.5) admitted. For this purpose, the performance 

of the system may then be judged from the SNR that shall be as large as possible. 

 

 

Signal Power
SNR

Noise Power
                                                                        (I.5) 

In practices, the laser output is detected by a high-speed photo receiver, which plays the role of 

E/O converter signal over time and sets into frequency domain for a certain angular frequency ω 

with a fast Fourier transformation (FFT). From this analysis, the relative noise level to the average 

direct current (DC) signal power called relative intensity noise (RIN) is measured to describe the 

instability level of systems. Alternatively, the RIN is the ratio of spectral density for photons noise 

component ( ( )S  ) and the average power of the laser output as expressed by equation (I.6). The 

derivation of RIN of OISCLs will be better explained in Chapter III. 

2

2

| ( ) |S
RIN

S

 
                                                                           (I.6) 

For this purpose, one of famous ways for effective reduction of RIN level is that the laser 

parameters involved in RIN affecting its level should be known and adjusted [49]. 
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I.4. RTDs, Electronic and Optical Properties of Semiconductors 

In this section, we present certain creative advancements that had improved optical transitions in 

semiconductor devices. 

I.4.1. Heterostructure SC material 

Homostructure materials limited the performance of early LD and semiconductor devices. The 

advent of heterostructure material provided an opportunity to manufacture efficient electronic and 

optoelectronic devices from very sufficiently thin-films. Most heterostructures have an active 

region with a few nanometers thick. The two famous current methods of growth for nanometer 

heterostructure devices are metal-organic chemical vapor deposition (MOCVD) and Molecular-

beam epitaxy (MBE) [50, 27]. Nowadays, semiconductor with layered heterostructures can be 

tailored to the present-day electronic and optoelectronic devices’ needs. In 2000, Kroemer and 

Alferov were awarded and shared the Nobel Prize in Physics for the creative proposal of double 

heterostructure (DH) semiconductor that improves homostructure laser (and so on) and used in 

high-speed and optoelectronics. 

I.4.1.1. Potential Barrier and Tunneling Effect 

Classical theory of physics predicts that, a particle of energy E, travelling towards a potential 

barrier of height U0, will not be able to overcome the barrier, been reflected, unless it has a kinetic 

energy, sufficiently enough to pass through the top of the barrier. In contrast to Classical Physics, 

the development of Quantum Mechanics in the first few decade of the 20th century predicted that 

the particle has a finite probability to be transmitted or to tunnel through the barrier: one talks to 

tunneling effect. Considering the potential barriers illustrated in Figure I.6, the wavefunction 

( )x  of the particle moving through the 𝑥-axis direction is required to be continuous at the 

barrier, while satisfying the Schrödinger equation in the form of Eq. (I.7).  

2 2

0

( )
( ) ( )

2

x
E U x

m x

 
   


                                                      (I.7) 

Heterostructure junction namely Esaki’s original TD was made out of a high impurity level 

germanium p-n junction with a very thin depletion region where the valence band of the p-type 

material and the conduction band of the n-type material nearly overlapped. 

In 1958, Leo Esaki, working at Tokyo Tsushin Kogyo (now known as Sony Corporation) reported 

at the International Conference of Solid State Physics in Brussels on a new diode which exhibited 

“negative resistance”.  The diode that he invented was named the Esaki or TD due to the quantum 
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mechanical effect called tunneling effect that the device exhibits. This tunneling effect in TD gives 

rise to the NDR region in the V-I characteristic. 

 

Figure I. 6. Rectangular potential barrier and particle wave function 

Tunneling diodes provide the same functionality as Complementary Metal Oxide Semiconductor 

(CMOS) transistors. Nevertheless, from a practical perspective, these early TDs suffered from 

being used in control circuits, and did not offer any advantages as price was concerned, compared 

to the transistor [35]. When the reverse bias voltage is applied, this causes unfortunately a large 

reverse-bias tunneling current [Figure I.7]. This makes TDs difficult to be controlled. 

 

Figure I.7. Tunneling Diode I-V characteristic. When a reverse bias voltage, the current becomes 

extremely large 

I.4.2. DBQW and the Resonant Tunneling Diode 
 

This section presents a description of a particular form of TDs, which is the RTD. We explain the 

theory of RTDs’ operation starting by tunneling effect in potential barrier. The N-shape current-

voltage (I–V) characteristic models of RTD resulting from the nonlinear transport of charge across 

the double barrier quantum well (DBQW) are discussed for the purpose of nonlinear dynamics 

study of the RTD–based systems. 
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Figure I.8. (a) Diagram of a DBQW band profile formed by InGaAs/AlAs semiconductor compounds 

(bottom). (b) Resonance tunneling process. (c) Typical DBQW-RTD room-temperature current-voltage 

characteristic exhibiting NDR [28]. 

A typical RTD consists of DBQW as predicted by Bohm, and latter Iogansen discussed the 

possibility of resonant transmission of an electron through double barriers formed in 

semiconductor crystals [28]. From Figure I.8 (a), it can be seen that, the RTD structure is formed 

with a symmetric series of …wide/narrow/wide/narrow/wide/… band gaps semiconductor 

materials. For the DBQW the structure to become a RTD, the emitter and the collector contact 

(two terminals) must be highly doped semiconductor for electrical connections.  The electron in 

the well can cross or tunnel through barriers. When the well is of an appropriate thickness, the 

energies transmission in the structure approaches 100% – theoretically, a probability transmission 

equal to 1 is possible – [27].  This corresponds to the resonant tunneling. Chan, Esaki and Tsu 

predicted the unique tunneling phenomenon in RTD in 1974 for an AlGaAs/GaAs DBQW diode 

– the RTD –. Fundamentally, tunneling through QW is a very fast process and RTD devices have 

emerged as one of the most important testing grounds for modern theories of transports in physics. 

In addition, RTDs are central to the development of new types of semiconductor nanostructures. 

Recent advances in the technologies of heterostructure semiconductor alloys have stimulated a 

great deal of interest in theoretical essential to design and fabricate modern high-speed electronic 

and optoelectronic nanometric devices semiconductor superlattices, SCLs and DBQW-RTDs. It 

then seems obvious that the RTD is an improving of the TD functions. Indeed, the symmetric 

structure of RTDs induces equal magnitudes in I-V characteristic for the forward and reverse bias 

as depicted in Fig. I.8 (b) and (c). When a high reverse bias is applied to TDs, there is a very high 
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leakage current. The symmetrical structure of RTDs makes way that when reverse and forward 

bias voltages are applied, the very high leakage current presented in TDs I-V characteristic be 

eliminated (see Fig. I.8 (c)) and then, the RTDs appear as the rectifier of TDs. 

Figure I.9 (a) and (b) illustrate how the applied bias affects the band structure and tunneling 

current. With zero bias (ii), the bands are flat, the conduction band electrons to the left of the 

barrier do not have an available bound state in the well to make electrons tunnel into, and no 

current will flow. (ii), the conduction band electrons have lined up with the lowest bound state 

inside the well, tunneling will start and a current will flow. The peak current (Ip) with its 

corresponding peak voltage (Vp) appear, (iii) the incident electrons are now above the bound state 

and the current will reduce to the valley current (Iv) with corresponding valley voltage (Vv). The 

current will then increase rapidly above Vv. The nonlinear process of charges’ transport across the 

DBQW substructure of RTD give rise to the NDR across the DBQW substructure. In practical 

applications, the RTD is wonderful quantum electronic device because it is one of the few 

quantum transport devices that operate at room temperature [28]. In addition, the N-shape NDR 

of RTDs is used to make apparently to be adapted as a switching devices and high frequency 

oscillators. The RTDs’ capability to operate as an oscillator has great interest in many topics of 

nonlinear dynamics. Furthermore, RTD is widely study for transport in quantum devices. Low 

ohmic contact reported in RTDs and short transit times lead RTDs to operate at higher frequencies. 

 

Figure I.9. (a) Evolution diagram of a DBQW RTD band profile formed at bias. (b) Typical DBQW-RTD 

room-temperature current-voltage characteristic exhibiting negative differential conductance. 

 

I.4.3. Original Models of RTD current-voltage 
 

The resonance state in RTD gives rise to the NDR resulting via quantum tunneling effect. The N-

shape feature of the RTD I-V curve is attracting for modeling, designing and studying dynamics 

of RTD systems. Many approaches have been proposed for numerical and analytical simulations 

of RTDs in order to model the N-shape characteristic of RTD with best concordance with 

experiment measures. The more famous mathematics models can be found in Refs [51] and [52]. 

Among these methods, many of them calculates the first transmission probability function 

(coefficient) and deduce the I-V characteristic of the RTD. The others methods do not calculate 
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the transmission coefficient explicitly [52]. In addition, these models include continuous functions 

such as, trigonometric, exponential and logarithmic function or polynomial. In this section, we 

present the model from Yan et al. group, the model of Brown et al. group and that of Schuman et 

al. In addition, we focus on the one most quasi-physical relevant model of Schulman et al. From 

this model, we deduce resulting ninth order, six order and simple cubic polynomial fitting models. 

These polynomial models fit well with the N-shape of RTD I-V and then, will be the central of 

our investigations throughout Chapter III. 

I.4.3.1.  Model of Yan et al 

This model is totally empirical and biased on the observations of most I-V measures. Yan et al. 

divided the experimental I-V characteristic of RTD in three parts: the positive differential 

resistance (PDR) from 0 V to VP, the NDR region from VV of Vp and the diode like exponential 

behavior. The total current from Yan et al. model is given by the sum of tunnel and diode like 

exponential currents ( )TpI V  and ( )DI V  respectively (Eq. I.8). In addition, Gaussian or exponential 

function can be used to model ( )TpI V  in PDR and NDR (see ref. [52] for explanations). The 

model of Yan et al. is widely used on SPICE software [53, 54]. 

 

( ) ( ) ( )RDT Tp DI V I V I V                                                                           (I.8) 

Brown and Schulman models derived from Lorentzian approximation of transparency. These 

models are physical basic. 

I.4.3.2.  Brown et al. Model 

The group of Brown developed their model biased on fitting parameters to be used in SPICE for 

the simulations of integrated circuits. This model is described by equation (I.9) [51]. The 

coefficients ( 1: 6)iC i  are fitting parameters which are functions of  peakV  and  peakI  ( ( 1: 4)ic i 

) and  valleyV  and  valleyI  ( ( 4 : 6)ic i  ). 

 1 1

1 2 3 2 4 5 6( ) [tan ( ) tan ( ) ]m m

RDTI V f cV c V c c V c c V c V              (I.9) 

I.4.3.3. Schulman et al. model 

An exact expression for the tunneling current in a RTD is given by from the Tsu-Esaki formula 

[equation (I.10)]: 
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                                                                                       (I.10) 

here, ( , )v zT E V is the transmission probability (transmission coefficient) and ( )zS E is the electron 

supply functions, and zE is the electron energy component due to electron momentum in the 

direction perpendicular to the RTD barriers. In the Schulman et al. I-V model the resonant 

tunneling current derived from equation (I.8) is expressed within the nonzero temperature, Fermi-

Dirac statistics and the transmission coefficient ( , )v zT E V  approximated by a Lorentzian function 

[27] as in Eq. (I.10)  
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                                       (I.11) 

the m* is the effective mass approximation, k the Boltzmann constant, T the temperature, EF the 

Fermi energy level, TV  the transmission, E the energy of electron. This current is reduced to the 

formula [equation (I.12)]: 

( )/
1

( )/2 3

* 1 2ln tan
4 1 2

2

F r

F r

E E E kT r

E E eV kT

eV
E

em kT e
J

e





 


 

  
    

         
   

                    (I.12) 

where / 2Er E eV  . 

The formulation (I.12) is usually generalized in the parametric for to reproduce the peak and the 

NDR part.  The Eq. (I.13) gives the fitting parameters and therefore Eq. (I.12) is transformed as 

presented in (I.14) [27]: 
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Like in the empirical model of Yan group, the valley current is included by using the diode-like 

exponential model which corresponds to the no-resonant term – ( )NRI V  – equation (I.15). 

Finally, the total current in the RTD given by Shulman et al. model is in the form of equation 

(I.16) [27]: 

 2 /
( ) 1

n eV kT

NRJ V H e                                                                                              (I.15) 
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here, the parameter f  is a scale factor used to take into account for the RTD area. Figure I.10 

presents the RTD experimental I-V curves and numerical fitting InGaAs/AlAs semiconductor 

compounds using Schuman et al. model [28]. The fitting parameters are given as follows: 

A=3800A.cm2, B=068V, C =1035 V, C=0088 V, H=4515cm2, n1=0862, n2 =0.12; assuming a 

temperature of operation T = 300 K and a multiplying factor 6 22 10f cm  [28]. We can see a 

very good agreement between the experiment and Schuman model in Figure I.10. 

 

Figure I.10. RTD experimental I-V curves and numerical fitting InGaAs/AlAs semiconductor compounds 

using Schuman et al. model [28]. 

I.4.3.4. Polynomial approximations of the N-shape 

The formalism of the numerical fitting presented here is special useful for circuit design due to 

the flexibility and small effort necessary to fit experimental data and to incorporate additional 

effects when desired. Taking advantage of the relative good description of the RTD DC I-V 

characteristic presented here, the Schulman et al. I-V model has been included together with an 

RTD equivalent circuit by Romeira et al. to model alternating current (AC) exited RTD systems. 

The complexity of Yan et al, Brown et al. and Schuman et al. models makes them difficult for 

certain analytical and numerical simulations [53]. This leads to many researchers to use empirical 

fits. For N-shape, several fits have been used such as multiple discrete devices (diodes, switches, 

current sources, resistors, and capacitors) [53, 55]. Trigonometric functions and Polynomial fits 

are very easy of working even though high order polynomials are need for good fits. However, it 

is easy to fit the N-shape of RTD by a simple polynomial order. In Figure I.11, we plot the 

derivative ninth, sixth and finally cubic polynomial fitting parameters from the Schulman et al. 

model. We can see a very good agreement between the experiment and Schuman model. So 
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polynomial approximation of the resonant tunneling diode NDR I-V characteristics will be used 

in the following chapters. 

 

 

Figure I.11. I-V characteristic of NDR device provided by: (a) a nine-order polynomial, (b) a six-order 

polynomial and (c) a cubic polynomial resulting from the Schulman et al. model of Eq. (I.16). 

 

I.5. Optoelectronic Oscillators 

As the demand for high-speed signal transmission is increasing, optoelectronic oscillator OEO 

grows in popularity. An OEO is a system that combines optical device such as a laser and 

electronic devices.  LD is an excellent convertor of electrical pumping current to optical signal. 

Revolutions of SCL has leaded an important sub-photonic field named optoelectronic. OEOs are 

photonic systems commonly used in optical fiber communications and in wide variety of lasers 

application areas. Optoectronic is a sub-photonics field based on the quantum mechanical effect 

of light on electronic materials. In this subsection, we review optoelectronic oscillators. We focus 

on OEOs based on RTD-LD coupling. 

I.5.1. Optoelectronic devices 

Optoelectronic devices are E/O or O/E transducers, or instruments that use such devices in their 

operation. These devices consist of different predominantly direct band gap semiconductors alloys 

lying on substrates with barriers and well regions that release quantum mechanical effects. Today, 

there exist plethora of optoelectronic devices include sources such as LEDs, LDs, photodetectors 

(PDs), optical amplifiers and optical modulators. With optoelectronic devices, one can emit while 

other can detect or control light. Optoelectronic devices have high efficiency, high speed, and low 

dispersion (in microwave frequency regime). 

I.5.2. RTD based optoelectronic oscillators 

The nonlinear characteristic of RTD has been intensively used for analogue nonlinear systems 

such as the VdP oscillator, Liénard Systems, Bonhoeffer– VdP oscillators, and RTD has great 
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promise as an oscillator and high frequency threshold (trigger) device. An overview of recent 

investigations related to the dynamics of optoelectronic systems consisting by RTD coupled with 

optical devices such as EAM, PD and LD is reported in this section. First, we start presenting the 

RTD electrical system as a Liénard oscillator [28, 56, 62, 65, 130]. 

I.5.2.1. NDR Oscillator 

Figure I.13 shows the typical topology of an NDR device oscillator such as TD or RTD based 

circuit. The parameter bR  is the resistance of the DC biasing circuit. It is used to represent the 

contact resistance and some other losses that appear during the manufacturing process; bL  is the 

bias line inductance and nC  is the capacitance of the NDR device when biasing in the NDR region. 

The NDR device itself can be modeled as a voltage-controlled current source ( ) ( )I V f V , which 

represents the DC I-V characteristic of the RTD. It has been already mentioned that different 

mathematical models provide generic representation of the N-shape so that those models have 

been intensively used in nonlinear analysis of circuits containing NDR such as VdP and Duffing 

oscillators. NDR equations have applications in many areas of sciences and engineering. 

 

 

Figure I.12. NDR oscillator (a) and electrical equivalent circuit of the RTD b(i) with its I-V characteristic 

providing the NDR region b(ii) [28] 
 

The dynamics of the DC biased NDR device (RTD) circuit [Figure I.12] is given by the set of 

equations (I.17).  
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   


                                        (I.17) 

here, ( )I t is the temporal entering current in the NDR active region device while ( )V t is the voltage 

across the RTD. Algebraic transformations of Eq. (I.17) reveals that this NDR oscillator can be 
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regarded as a most generalized Liénard’s oscillator described by the second-order differential 

equation (I.18) bellows:  

 
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b RTD b RTD b

b RTD b RTD
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      

 
   (I.18) 

If we set two voltage-controlled functions ( )h V and ( )g V as follows [Eqs. (I.19) and (I.20) 

respectively]. 

1
( ) ( )b

b RTD

b RTD

L d
h V R I V

L C dV

 
  

 
                                                    (I.19) 

 
1

( ) ( ) ( )b RTD b

b RTD

g V V t R I V V
L C

                                                     (I.20) 

where ( ) ( ) /h V dV t dt  is the damping factor and ( )g V  the nonlinear force, the second order 

equation (I.18) can be given in the form of normalized Liénard equation (I.21). 

2

2

( ) ( )
( ) ( ) 0

d x t dx t
h x g x

dt dt
                                                                 (I.21) 

Obviously, the rescale parameter 𝑥 denotes the normalized voltage across the RTD. Moreover, so, 

equation (I.21) is the equal to the normalized VdP equation if 2( ) ( 1)h x x   and 2

0( )g x x ; 

where 0  is the natural frequency of the VdP oscillator [56].  The equation (I.21) lets us 

understand that, the NDR devices-based circuit belongs to the general class of VdP oscillator well 

known as Liénard’s oscillation [62-65]. 

In RTD-LD oscillator, the RTD is series connected with the LD.  So, the numerical calculation of 

the current from solving Liénard’s oscillator is used to drive the laser dynamics. 

I.5.2.2. RTD-OEO oscillators innovations 

The mid-1980’s has known by the popularization of nanoelectronics. The continuing 

miniaturization of the conventional CMOS technology faces increasing technological difficulties 

such as quantum effect. Due to the pioneering work on resonant tunneling effect and improvement 

of semiconductor material properties by artificial heterostructure semiconductor, semiconductor 

QWs and superlattices grew using MBE or MOCVD technique, RTD is placed to overcome 

difficulties that faced conventional nanoscale transistors. Since then, nanoelectronics was 

championed by several groups for the exploration of new opportunities for circumventing the limit 

on the downscaling of conventional transistors and integrated circuits.  The RTD has become a 
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research focus in nanoelectronics for its promise as a primary nanoelectronic device for both 

analog and digital applications [57]. Significant accomplishments have been achieved in terms of 

RTD integration with optical device, dynamics, modeling, fabrication technology, and circuit 

design and applications. The RTD-based OEOs have been widely studied, and plenty of research 

papers have been written on various aspects of this seemingly simple device. 

In 2001, J M L Figueiredo, C.N. Ironside et al [58] proposed the resonant tunneling diode 

electroabsorbtion modulator (RTD-EAM) by on their previous works from Refs.[59, 60]. This 

RTD-EAM uses the NDR of RTD to switch an electric field in an optical waveguide modulating 

light transmission via the Franz-Kelydsh effect [61]. Few years after, the resonant tunneling diode-

laser diode (RTD-LD) OEO consisting by a DBQW-RTD integrated in the same chip as the 

semiconductor LD has been reported intensively [28]. This RTD-LD hybrid integrated circuit 

(HIC) is an OEO described by a Liénard oscillator where the NDR of RTD acts as an electronic 

amplifier that drives the LD [62]. The RTD-LD HIC have is a cornerstone of many works in RTD-

LD OEOs nowadays [63]. On other side, RTD optical-waveguide (OW) has been used as voltage 

controlled oscillator (VCO). In addition, RTD-OEOs functions include generation, amplification, 

and distributions of RF carriers, clocks recovery, carrier recovery, modulation and demodulation 

and frequency synthesis among many others. The RTD integrated with a PD, connected in series 

with a LD and an optical fiber delay line operates in the time-delayed dynamical systems (RTD-

PD-LD delayed systems) leads to improving RTD system furthermore. In addition to the self-

sustained current and optical oscillations, chaos [64], self-synchronizations [65], ultrahigh spectral 

purity microwave generation for sensing and telecommunication networks and noise induced 

neuron-like pulsing behavior, close-to-noise reduction and so one [66] among others. 

RTD-LD HICs offer many advantages not due to the introduction of an external modulating 

additional degree of freedom in SCLs, in addition, it demonstrates possible performance 

enhancement of nonlinear dynamics of the laser. In such a situation, the LD is modulated directly 

by the current output from the RTD electrical oscillator and the LD becomes “a driven nonlinear 

system” with interesting richness in various dynamics. The RTD provides a nonmonotonic 

current-voltage (I-V) characteristic with NDR. This nonmonotonic curve allows RTDs systems 

operating in either a pulsing regime (when biased in PRDs regions) or a self-oscillatory regime 

(when biased in NDR region). In addition, the single-mode OISCL rate equations (I.3) and (I.4) 

are driven by modulating current from Liénard equation (I.18). In such a situation we shall ensure 

that the laser threshold current lies between the RTD peak and valley currents (Ipeak> Ith >Ivalley), 

then the optical output of the laser will switch off (on) as the RTD voltage is increased (decreased). 
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I.6. Conclusion 
 

This Chapter aimed to give general background in semiconductor laser, resonant tunneling diode 

devices and optoelectronic oscillator based on RTD-LD integrations. In this matter, the chapter 

has been drawn up into four main parts. Firstly, the working principle of laser was given by 

assuming a two-level atomic system this was followed by the general background and advances 

in semiconductor lasers technologies. In addition, general rate equation describing the dynamics 

of classical laser diode was emphasized. Moreover, in this section, a novel model of OISCL that 

the dynamics includes the EGC as a new control parameter is pointed up as well as an overview 

of noise-induced effects in semiconductor laser was also provided. At the end, breakthroughs in 

semiconductor are highlighted mainly the emergence of heterostructure semiconductor, RTDs 

features, optical properties of semiconductor material, and optoelectronic oscillator based on 

RTD-LD hybrid integrations. 
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Chapter ___ II ___ 

_______________________________________________________ 
MATERIALS AND NUMERICAL METHODS 

 
 

II.1 Introduction 
 

After the general review on SCLs, RTDs models and RTD-LD optoelectronic oscillators in outline 

and in Chapter I, we proceed to describe here, sometimes from a mathematical point of view and 

in simple terms, numerical methods and analytical models of optical injection SCLs, RTDs 

materials and initiate a novel RTD-LD optoelectronic integrated circuit. These numerical and 

analytical methods shall be applied to these systems in the next Chapter III to the study the 

Langevin noise induced effects in the OISCLs model, the analysis of the linear stability of the 

novel RTD-LD optoelectronic integrated system and its chaotic dynamics. 

II.2. Fourier Transformations 
 

In analysis, the Fourier transformation (FT) is an extension, for non-periodic functions. All signal 

𝑥(𝑡) can be represented as a set of superposition of periodic components, which are always 

expressed in terms of elementary functions (cosine or sine). The determination of the relative 

amplitudes of these components constitutes the goal of the Fourier analysis. Whatever the kind of 

the signal, we study the power spectrum, which represents the distribution of the power throughout 

the frequencies components, and the power spectrum is simply the Fourier transform. 
 

II.2.1. Noise in Frequency domain 

 

In signal processing, noise is a general term for unwanted modifications that a signal may suffer 

during capture, storage, transmission, processing, or conversion. Let us for instance call 𝑥(𝑡) the 

dependent time variable that can be either 𝑆(𝑡), 𝑁(𝑡) or 𝜓(𝑡) be equal to (II.1) 

𝑥(𝑡) = 𝑥0 + 𝑥1𝑠𝑖𝑛(𝜔𝑡) + 𝛿𝑝(𝑡)                                                  (II.1) 

From this relation, we have a signal with free-noise and that with noise induced effects in Fig. II.1 

(a) and (b) respectively. The evaluation of the square root of the autocorrelation 2( )x t  

enables the information about noise fluctuations from the variable ( )x t .
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Figure II.1. Free-noise signal (a) and noisy signal (b) 

 

However, this autocorrelation is not easy to be carried out in time domain. In addition, the best 

interpretation of noise requires frequency analysis i.e. the FT. The Fourier transformation of the 

fluctuation quantity ( )x t is : 

( ) ( )e j tx x t dt  





         .                                                              (II.2) 

The inverse transform is  

( ) ( )e j tx t x d   



    i.e.  ( ) ( )e j tx t dt  





      .                (II.3) 

The Eq. (II.4) defines the power spectral density of the fluctuation ( )x t in term of the FT. 

2
*( ) ( ) ( ) ( )xxS x x x                                                         (II.4) 

Here, the term *( )x   is the complex conjugate of the fluctuation ( )x  .  

The total energy of the fluctuation signal ( )x t  can be infinite. Therefore, it is better to works 

with signal power and not with signal energy. The power spectral density of the fluctuation signal

( )S  is related to the autocovariance function by the Wiener Khinchin theorem.  It is the FT of 

the autocorrelation. Noise amplitude is better evaluated in the frequency; this is the useful of the 

power spectral density.  As aforementioned, the best explanation of noise requires its frequency 

domain investigation. In the frequency domain, the fluctuation (the small perturbation) spectrum 

( )x  is defined in a manner similar to the variance in the time domain. It describes the power in 

a frequency range of 1 Hz. So, frequency components of ( )x t  are defined by the FT as followed 

in equation (II.2). 

II.2.3. Langevin Equation and Langevin Noise 

 

In Physics, a Langevin equation (II.5) is a stochastic differential equation describing the Brownian 

motion of small particle in a fluid due to collision with surrounding molecules in thermal motion. 
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( )
( ) ( )v

dv t
m m v t F t

dt
                                                                   (II.5) 

( )vF t  is the Langevin noise source. It originates from the random effects [11] . Statistical methods 

are needed to characterize and investigate the effects of these noises. As stochastic and random 

nature, Langevinian noise sources have zero means value given by equation (II.6). In addition, its 

time correlation being short enough, the equation (II.7) defines the correlation between two 

Langevinian noises sources. 

( ) 0vF t                                                                                           (II.6) 

( ) ( ) 2 ( ')
i j i jv v v vF t F t D t t                                                              (II.7) 

i jv vD  is the coefficient of diffusion which is not easy to derivate [11]. The Langevin method for 

the evaluation of noise down to evaluating the spectral density of noise correlation strengths 

( ) ( )
i jv vF t F t between the various Langevin noise sources. These correlation strengths depend on the 

parameter of the system [67]. 

Applying the FT in Eq. (II.8), we can find that 

( ) ( ) ( ) /vj v F m                                                                      (II.8) 

From this equation, it is clear that the spectral density of the variable v  from the Langevin 

equation depends to the correlations strength of Langevinian noise sources as set in Eq. (II.9).  

*

2 2 2 2 2 2

( ) ( )
( )

( ) ( )

v v vv
vv

F F D
S

m m

 


   
 

 
                                                  (II.9) 

The term vvD  is a constant which depends to the system parameters. For instance, for Brownian 

motion of particles: 2vv BD mK T  ; with BK the Boltzmann constant and T the absolute 

temperature. 

The Fourier transformation method of analysis shall be used in Chapter III to derivate the spectral 

density of RIN and FN of optical injection semiconductor lasers for the autocorrelations of photon 

density and optical phase respectively. 
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II.3. Analysis and Characteristic Descriptions for Nonlinear Systems 

II.3.1. Reduction methods 

 

From the theoretical point of view, the study of complex nonlinear systems requires the analytical 

or, in general, numerical solutions of a differential equation for many different ICs and 

experimental conditions [68, 69]. In many cases, this can be an excessively large quantity of 

information to handle or understand. Therefore, methods or techniques for reducing the amount 

of information or the number of degrees of freedom, in such a way that the basic features of the 

dynamical evolution be retained, are very useful in these cases. The most often-used reduction 

methods are the low-dimension projections, the adiabatic elimination of variable, and the 

expansion of Taylor, the representations of the reduced nonlinear functions such as polynomial 

approximation in the ways that the values and derivatives can be computed efficiently. 

II.3.2. Low-dimension projections 

 

In laser experiments, only the temporal evolution of some of the dynamic variables can be 

detected. This corresponds to observe only a projection of the orbit in the phase space on the 

subspace defined by these variables. The dynamic features of the system characterizing the time 

evolution can be observed on any one of these variables. For instance, it is sufficient to look at 

only one variable to obtain evidence for a stationary, periodic or chaotic time evolution. 

Based on this fact, in the next part a way of characterizing a dynamic behavior from a time series 

on any variable of the system is presented. 

II.3.3. Polynomial Approximation 

 

The approximation of a given function by a polynomial is an efficient tool in many problems 

arising in applied mathematics. In this section, 𝐹(𝑉) in Eq. (I.16) is the function to be 

approximated by a polynomial function. For this purpose, we use the cftool command of Matrix 

Laboratory (MATLAB). Here, we approximate the function in Eq. (I.16) with simpler functions 

by starting by a polynomial of high degree (degree nine) to a low-degree polynomial (cubic 

polynomial function). The objective is to make an accuracy of the N-shape of the RTD current-

voltage characteristic. Mainly to reproduce the NDR region of the RTD. The MATLAB cftool 

command often performs these operations in a simple way such that the result is as close to the 

actual function as possible. We have displayed in Fig. I.11, a nine-degree, a five degree and a 

cubic polynomial functions that approximates the function in Eq. (I.16). Mathematical expressions 

and values of parameters that are extracted from numerical calculations are in Table. II.1. Indeed, 

it has already been shown that the last relation 𝐹(𝑉) = 𝐵𝑉(𝑉 − 𝑎)(𝑉 − 𝑏) contains the basic 
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passive and active phenomena and threshold behaviors of the RTD although there are different 

model to describe the RTD as we showed in Chapter I (Sect. I.4.3). Therefore, the RTD should 

well also be described by polynomial function with interesting results for these purposes [29 - 31]. 

Table II.1. Polynomial approximation functions of the RTD current-voltage model 
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Five degree 

polynomial 
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0 1 2 3 4 5( ) (100 ) (100 ) (100 ) (100 ) (100 )F V k k V k V k V k V k V        

Cubic function ( ) ( )( )F V BV V a V b    
 

II.3.4. Time series 
 

In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. 

Most commonly, a time series is a sequence taken at successive equally spaced points in time. 

Thus, it is a sequence of discrete-time data. Time series are used in statistics, signal 

processing, chemistry, econometrics, finances engineering astronomy, communications 

engineering and largely in any domain of applied science and engineering which involves 

temporal measurements such as physics. For example the Fig. II.2 showing numerical simulations 

of an artificial neural model [70] presents changes of dynamics of the system in time. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Data_point
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
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Figure II.2. Time series of an artificial neural system showing chaotic behavior [70]. 

II.3.5. Power spectrum 
 

Before beginning the nonlinear properties analysis of time series, it is important to know if the 

phenomenon to study is periodic, quasi-periodic or chaotic. Proving the existence of periodic or 

chaotic solutions by bifurcations theory is not easy (sometimes expensive) when the phase space 

is of the high dimension. We can use the indirect ways, often additional among them, which are 

time series and power spectra. We mention in addition that, for dynamics analysis, it has not been 

necessary for us to write the fast Fourier transform (FFT) program, it already exists MATLAB 

package in the packages. This MATLAB function computes the discrete Fourier transform (DFT) 

of 𝑥 using a FFT algorithm. 

II.3.6. Phase portrait 

 

Sometimes, it is not always possible to observe difference between different responses of a 

variable of system (or for different systems) with slight change using time series. For this purpose, 

the phase portraits analysis is an efficient tool to distingue nonlinear systems dynamical behaviors. 

The phase space of a dynamical system is a mathematical space with orthogonal coordinate 

directions representing each of the variables needed to specify the instantaneous state of the 

system. A phase map may be constructed in several ways. For the Lorenz system, for example, 

the state of the system can be described by three variables x, y, and z and parameters σ, r, and b as 

in [11, 12]. The Lorenz system gives an excellent instance of what named strange attractors [71 - 

73]. As in Fig. II.3, we can see a beautiful butterfly-shaped attractor on which a trajectory starting 

from any initial point will come back to the near neighbourhood of the initial point but never 

precisely repeat it. An important feature of the phase portrait is that two trajectories will never 
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cross each other. This non-crossing property derives from the fact that both past and future states 

of a deterministic system are uniquely determined by the system state at a given time. A crossing 

of trajectories inevitably introduces ambiguity into past and future states and contradicts the 

assumed uniqueness of the trajectory. However, a projection of a higher dimensional space onto 

a plane might show apparent crossings which do not represent actual interactions. The phase 

portraits for the periodic, quasi-periodic, and chaotic time variations in general can appear to be a 

limit cycle, a torus, and a strange attractor, respectively, as shown in [11].  

 

Figure II.3. Lorenz attractor [74]. 

II.3.7. Poincaré section 

 

The Poincaré map or Poincaré section is a classical technique for analyzing a dynamical system. 

It is also a useful tool for understanding the characteristics of nonlinear systems. The trajectory, 

or orbit, of an object X is sampled periodically, as indicated by Fig. II.4. For an n-dimensional 

trajectory Γ, take an (n−1)-dimensional hyperplane Σ transverse to the trajectory at X0. The rate 

of change for the object emanating from X0 is determined for each intersection of its orbit with the 

hyperplane Σ, as shown by X1, X2 , . . . at the following transversings. The Eq. (II.10) defines the 

Poincaré map P. 

2

1 1 1( ) ( ) ( )k k kX P Xk PP X P X                                        (II.10) 

In the Eq. (II.10), k is an integer. The Poincaré map replaces the continuous dynamical system 

into a discrete map, which is much easier to deal with mathematically. This set of discrete values 

can then be used to analyze the long-term stability of the system.  With the Poincaré map, one can 

dramatically reduce the data number that is especially necessary in the experiments. As 

demonstrated in [11, 68], one can easily distinguish among the periodic, quasi-periodic, and 

chaotic variations from the appropriate Poincaré maps. In particular, the Poincaré map for chaotic 

systems exhibits remarkable features. The map does not result in a simple geometrical structure 
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and, when it is magnified, the fine structure resembles the gross one. Namely, the system trajectory 

has a fractal structure. 

 

Figure II.4. Poincaré map of an n-th order autonomous system. Γ: n-dimensional trajectory, Σ: (n − 1) -

dimensional hyperplane [11] 

II.3.8. Stability Analysis Methods: Bifurcation and Lyapunov Calculations 

 

Both in Bifurcation analysis and in Lyapunov spectrum, one observes the dynamics evolution of 

the system for the change of a certain parameter. 

II.3.8.1. Bifurcation Diagrams 

 

Continuous dynamical systems that involve differential equations mostly contain parameters. It 

can happen that a slight variation in a parameter can have significant impact on their solution. The 

main questions are that how to continue equilibria and periodic orbits of dynamical systems with 

respect to a parameter? How to predict qualitative changes in system’s behavior (bifurcations) 

occurring at these equilibrium points [75, 76] ? This is why of the use of bifurcation analysis. 

Bifurcation analysis is a powerful method for studying the steady-state nonlinear dynamics of 

systems as it allows one to identify in a systematic way where dynamics of interest exist in 

parameter space. This tool makes possible to generate ‘maps of solutions’ in an efficient way that 

provide valuable insight into the overall dynamic behavior of a system and potentially to influence 

the design process [77] as functions of the relevant system parameters. In particular, regions of 

multistability can be identified in this way (as it will be shown in Chapter III Section III.4). In 

many ways, at a bifurcation, the local stability properties of equilibria, periodic orbits or other 

invariant sets changes. It is useful to divide bifurcations into two principal classes: Local 

bifurcations and Global bifurcations. 

Local bifurcations– can be analyzed entirely through changes in the local stability properties of 

equilibria, periodic orbits or other invariant sets as parameters cross through critical thresholds. 

For instance, as shown in Fig. II.5, local bifurcations include: 

https://en.m.wikipedia.org/wiki/Equilibrium_point
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— Pitchfork bifurcation (see Fig. II.5 (a)). In the supercritical version of this bifurcation, a 

fixed point loses its stability as it produces two new stable fixed points when a control 

parameter is varied (see Fig. II.5 a(i)). In its subcritical form, (see Fig. II.5 b(i)), the 

bifurcation occurs as a fixed point collides with the unstable branches of two previously 

existent fixed points. It is important to mention that this and other types of bifurcation only 

appear in dynamical systems with an appropriate symmetry (reflection invariance in this 

case). 

— A saddle node bifurcation or tangent bifurcation (see Fig. II.5 (b)) is a collision and 

disappearance of two equilibria in dynamical systems. In autonomous systems, this occurs 

when the critical equilibrium has one zero eigenvalue. This phenomenon is also called fold 

or limit point bifurcation [75]. 

— A Transcritical bifurcation (see Fig. II.5 (c)) occurs when one stable and one unstable 

steady states collide at the bifurcation point and exchange their stability. 

— A  Hopf bifurcation, also called a Hopf or Poincare-Andronov-Hopf bifurcation (see Fig. 

II.5 (d)) is a local bifurcation in which a fixed point of a dynamical system loses stability 

as a pair of complex conjugate eigenvalues of linearization around the fixed point cross 

the imaginary axis of the complex plane. 

— At a period-doubling bifurcation (see Fig. II.5 (e)), a periodic orbit loses its stability and 

a periodic orbit with twice the period emerges; a single Floquet multiplier −1 characterizes 

this [77]. 

Global bifurcations – occur when 'larger' invariant sets, such as periodic orbits, collide with 

equilibria. This causes changes in the topology of the trajectories in the phase space, which cannot 

be confined, to a small neighbourhood, as is the case with local bifurcations. In fact, the changes 

in topology extend out to an arbitrarily large distance (hence 'global'). Examples of global 

bifurcations include: 

— Homoclinic bifurcation in which a limit cycle collides with a saddle point [78] (see Figure 

II.6 (a)). Homoclinic bifurcations can occur supercritically or subcritically. The variant 

above is the "small" or "type I" homoclinic bifurcation. In 2D, there is also the "big" or 

"type II" homoclinic bifurcation in which the homoclinic orbit "traps" the other ends of 

the unstable and stable manifolds of the saddle. In three or more dimensions, higher 

codimension bifurcations can occur, producing complicated, possibly chaotic dynamics. 
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Figure II.5. Local bifurcations. Pitchfork bifurcation diagrams; (i) Pitchfork supercritical, (ii) Pitchfork 

subcritical and (iii) Bifurcation condition for flows. (b) Saddle-node bifurcation diagrams; (i) Saddle-node 

supercritical, (ii) Saddle-node subcritical and (iii) Bifurcation condition for flows. (c) Transcritical 

bifurcation diagrams; (i) Supercritical, (ii) Subcritical and (iii) Bifurcation condition for flows. (d) Hopf 

bifurcation diagrams; (i) Hopf Supercritical, (ii) Hopf Subcritical and (iii) Bifurcation condition for flows. 

(e) Period-Doubling bifurcations. In the bifurcation diagrams, solid (dashed) lines indicate stable (unstable) 

structures. 

— Heteroclinic bifurcation in which a limit cycle collides with two or more saddle points; 

they involve a heteroclinic cycle [79] (see Figure II.6 (b)). Heteroclinic bifurcations are of 

two types: resonance bifurcations and transverse bifurcations. Both types of bifurcation 

will result in the change of stability of the heteroclinic cycle. At a resonance bifurcation, 

the stability of the cycle changes when an algebraic condition on the eigenvalues of the 

equilibria in the cycle is satisfied. This is usually accompanied by the birth or death of a 

periodic orbit. A transverse bifurcation of a heteroclinic cycle is caused when the real part 

of a transverse eigenvalue of one of the equilibria in the cycle passes through zero. This 

will also cause a change in stability of the heteroclinic cycle. 

— Infinite-period bifurcation in which a stable node and saddle point simultaneously occur 

on a limit cycle [80]. As the limit of a parameter approaches a certain critical value, the 

speed of the oscillation slows down and the period approaches infinity. The infinite-period 

bifurcation occurs at this critical value. Beyond the critical value, the two fixed points 
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emerge continuously from each other on the limit cycle to disrupt the oscillation and form 

two-saddle points. 

— Blue-sky catastrophe in which a limit cycle collides with a nonhyperbolic cycle. 

Global bifurcations can also involve complicated sets such as chaotic attractors. 

 

Figure II.6. (a) A homoclinic orbit (continuous line) connecting a saddle point P to itself. (b) Two 

heteroclinic orbits (continuous line) defining a homoclinic cycle connecting saddle points P1 and P2. 

Dashed line: other close trajectories [68]. 

 

In general, the plot of a bifurcation diagram is obtained by sampling and plotting local extrema of 

a variable for a parameter change. From the plot of the maxima and minima of a variable, we 

obtain a map for the parameter. The map is called a bifurcation diagram or a chaotic bifurcation 

diagram. From this plot, we can see for instance stable fixed point, periodic oscillations (P-n), 

period doubling or chaotic oscillations occur for the change of a control parameter in Fig. II.5 (e). 

Period-doubling bifurcation also called Feigenbaum scenarios [68] is not the only chaotic route, 

but other routes for chaotic evolutions exist depending on the configuration of systems and chaos 

parameters, for example, quasi-period doubling bifurcations and intermittent chaotic bifurcations. 

A bifurcation diagram is important to know how the dynamics of a system change for the 

parameters. We can make similar plots of bifurcation diagrams for the change of the parameters 

for any chaotic systems and know the chaotic evolution route of the system output [11] or a mean 

of chaos control as shown in Fig. II.8 (a). 

 

II.3.8.2. Lyapunov Methods 

 

The Lyapunov methods are the most useful and general approaches for stability analysis of 

nonlinear systems [81-84]. The Linearization method around equilibrium point and the analysis 

of eigenvalues of the Jacobian matrix only draws conclusion about the stability of the system in 

the boundary equilibrium points or equilibrium manifolds. For the point of view of nonlinear 

dynamics, the Lyapunov method based on Lyapunov exponent is the main tool. 
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Equilibria, Eigen value and Routh Criteria 

 

Let us consider a nonlinear system whose differential equations are in vector notation (II.11)  

 

                                                                     (II.11) 

where 1 2 3( ( ), ( ), ( ),..., ( ))T

nx x t x t x t x t is the state space vector, 
1 2 3( , , ,..., )T

nf f f f f , 𝑀 is the 

set of parameters, (...)T  indicates transpose. 

To analyze the stability of the system around equilibria, we apply a small signal analysis. Using 

small perturbation  ( )x t , the variable ( )x t  is written as follows 0( ) ( )x t x x t  . Therefore, the 

equations for small derivations x  from the trajectory ( )x t  are (II.12) 

 

( ) ( ( ); ) ( ),        1, 2,...,kix t J x t M x t k i n                            (II.12) 

 

where kiJ  is the Jacobian matrix of the system of the form (II.13) 

 

1 1 1

1

/ . . . /

. . .

/ . . .

. . .

/ . . . /

n

ki j i

n n n

f x f x

J f x

f x f x
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 
 
    
 
 
     

                                  (II.13) 

The equilibria 0x of the system can be tracking by solving the equation (II.14) 

( ( ); ) 0f x t M                                                                                   (II.14) 

To study the stability analysis of the system (II.11), the Jacobian matrix (II.13) is used in such a 

way that one analyse the eigenvalue i  resulting from the characteristic polynomial Eq. (II.15) 

( ) det( ) 0ki nE J I    ,                                                              (II.15) 

where nI  is the matrix identity. According to the Routh-Hurwitz theorem, the necessary and 

sufficient conditions for fixed point to be stable is that all eigenvalues have negative real parts. 

This is interpreted according to the systematic illustrations [85] in Figure II.7. The Routh-Hurwitz 

criterion leads the characteristic polynomial (II.15) to be in the form of Eq. (II.16). 

 

( ) ( ( ); )x t f x t M
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Figure II.7. Schematic illustrations of several different types of equilibrium points and their nearby 

trajectories in 2-D continuous-time dynamical systems. The real part of the dominant eigenvalue 

determines the overall stability of the equilibrium point (top) [85] 

 
1 2 2

0 1 2 2 1( ) ...n n n

n n nE a a a a a a      

                                  (II.16) 

In addition, the Hurwitz matrix from (II.17) is given by the following equation. 
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                               (II.17) 

In the same way, according to the Routh-Hurwitz theorem, the necessary and sufficient conditions 

for all roots to have negative real parts is if and only if all the principal minors of the Equation 

(II.17) are positive; with 0 0a  . These tools will be used for the study of the stability of the novel 

RTD-LD system in the middle part of the Chapter III. 

Lyapunov Exponents 

 

Lyapunov exponents (LEs) estimate the rate of divergence of nearby trajectories, a key component 

of chaotic dynamics. The computation of LE is a keys component of chaotic dynamics [86]. The 

basic idea of the Lyapunov exponent is to measure the average rate [87] of the divergence for the 

neighboring trajectories on the attractor. The direction of the maximum divergence or 

convergence locally changes on the attractor. The motion must be monitored at each point along 
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the trajectory. Therefore, a small sphere is defined, whose center is a given point on the attractor 

and whose surface consists of phase points from nearby trajectories. As the center of the sphere 

and its surface points evolve in time, the sphere becomes an ellipsoid with the principal axes in 

the directions of the contraction and the expansion [11]. The average rates of the expansion or the 

contraction along the principal axes are the Lyapunov exponents.  The exponent is positive for a 

chaotic state, zero or negative for periodic state. Chaotic state generates sensitivity to ICs [88] i.e. 

trajectories initially very close together will, on the average, diverge, such that after a time 

dependent on the size of the exponent, there will be no relationship between them [89].  

Usually, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a 

quantity that characterizes the rate of separation of infinitesimally close trajectories ( )x t and 0 ( )x t  

in phase space. The general idea is to evaluate the average of their separation with close initial 

conditions. Let ( )x t  be the time series variable of system and 0( ) ( ) ( )x t x t x t    a smallest 

separation vector such that ( )x t  and ( ) ( )x t x t  be close trajectories. The Eq. (II.18) defines the 

quantity that measures this separation so-called LEs. 

( ) (0) tx t x e                                                                        (II.18) 

with (0)x  the tiny initial separation condition. From that relation, if the LE is negative, the 

system exhibits convergence otherwise saying, it is insensitive to initial condition and therefore 

nonchaotic. On the other hand, if the LE is positive, the separation between close trajectories is 

growing exponentially rapid and, the system lead sensitivity to ICs i.e. the system is chaotic. In 

mathematical strict sense, the dynamical system of vectors ( )ix t should be written with that small 

derivation in terms of Jacobian matrix and the simplest relation defining the LEs is as follows [90, 

91]. 

( )1
lim log

(0)

i

i
t

i

x t

t x




 
  

 
                                                                (II.19) 

There are some important points related to the Lyapunov exponents as discussed follows. Fourth-

order Runge-Kutta method shall be used in Chapter III to compute these LEs. 

(1) For a chaotic system, at least one of the Lyapunov exponents must be positive to allow the 

sensitive dependence on the ICs. For instance, according to bifurcation diagram, LEs 

spectrum of the Belousov-Zhabotinsky oscillator depicted in Fig. II.8 (b) (form [89]) 

shows periodic and chaotic state of the variable x . 
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Figure II.8. Superimposition of the bifurcation diagram and the LE spectrum. This shows the coincidence 

of the accumulation point with the switch in the LE from negative to positive. The strong 3-period in the 

chaotic region is also echoed by the negative LE in the chaotic region [89]. 
 

(2) According to the definition of the LEs, a small volume 𝑉 in the phase space will change 

in time such that a dissipative chaotic system, the sum of all the LEs must be negative, i.e.

0i

i

  . 

(3) If we order ( 1, 2,..., )j i n   as 1 2 ... n     , then the Lyapunov dimension LD is 

computed according to Kaplan-Yorke conjecture as follows 
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... j
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D j
  
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                                                       (II.20) 

 

In Eq. (II.20), 𝑗, is the number of LEs which gives a positive sum, but adding 1j   would 

make the sum negative, i.e. 
1

0
j

i

i




  and 

1

1

0
j

i

i






 . 

II.3.9. Simulink Analysis Method and Numerical Simulations 

 

II.3.8.2. Simulink Analysis 

 

Simulink is a graphical front end to MATLAB.  Simulink tool offers a visual approach to the 

differential equation setup. The Simulink library browser contains a plethora of components. We 
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will restrict ourselves to the Integrator block (highlighted in Fig. II.9) under the Continuous 

Library and various blocks in the Math Operations, User-Defined Functions, Sinks and 

Sources library. 

 

Figure II.9: Simulink library browser 

II.3.8.2. Fourth-order Runge-Kutta Method 

Runge-Kutta (RK) formula are among the oldest and the best understood schemes in numerical 

analysis. RK method continues to be a source of active research [92-94]. Runge-Kutta methods 

have been one of the robust methods for numerical integration of first order ODEs. Consider the 

general form of equation (II.11) in the form an initial value problem be specified as follows: 

 

0 0( , ),     ( )
dx

f t x x t x
dt

  .                                                  (II.21) 

Here, 𝑥 is an unknown function (scalar and vector) of time 𝑡. The function 𝑓and initial conditions 

𝑡0 and 𝑥0 are given. The vectors 𝑓 and 𝑥 are given by Eqs. (II.22) and (II.23) respectively. 

 1 2( ) ( ), ( ),... ( )nx t x t x t x t                                                    (II.22) 

 1 2( , ) ( , ), ( , ),... ( , )nf t x f t x f t x f t x                                    (II.23) 
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Consider a step-size ℎ > 0. With RK methods, we numerically solve (II.22) at 𝑡 = 𝑡0 + ℎ. The 

general of RK methods given by Eq. (II.25) [95, 94]. 
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Each value 𝑘𝑖 can then be calculated in sequence for order of RK method, for the fourth-order 

explicit Runge-Kutta (RK4). A similar but classical RK4 is often known as: 
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     .                                                 (II.26) 

This RK4 method is what we use in our numerical integration in this thesis. 

II.4. Model of Optical Injection SCL 
 

In this Section, we review the model of the OISCL developed by Mengue and Essimbi and set it 

in term of photon density S(t), carrier density N(t) and the optical phase ψ(t). The system is 

schematically depicted in the configuration of Figure I.5; Chap I; which consists of two LDs where 

one receives an optical beam from another. To analyze noise contribution, in addition to 

Langevinian noise source for each variable, we also take into account spontaneous emission 

contribution. Eqs. (II.27) and (II.28) give the model equations OISCLs developed by Mengue 

[68]. 
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here, the parameters are better explained in [68]. By using the notation of the complex field inside 

the cavity of the SL as E(t) =E0(t)e
−jϕ(t), the amplitude E0(t) and the phase ϕ(t) of the field, one 

obtains the set of rate Eqs. (II.27-28) which is also deterministic. Nevertheless, we assume the 

master phase to be variable. On one hand, we have ( ) / ( ) /d t dt d t dt     .  By using the 

relation ( )

0( ) ( ) j tE t E t e  , we have the relation 0 0( ) / ( ). ( /dE t dt jE t d t dt . In addition, when 

the real terms and complex term are kept separated, the equation (II.27) can be rewritten in the 

form Eqs. (II.29) and (II.30). 
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  (II.30) 

Using the relationship between the amplitude E0(t) of the complex field inside the cavity and the 

photon density as i.e. 2

0 ( ) ( )E t S t , one has equation (II.31) [96]. These rate equations of SCL will 

be a main folder of the central of our study in the first section of the Chapter III. 
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                (II.31) 

here, parameters are already  well defined in Section I.3.2. 
 

II.5. Model of RTD-OISCL Integrated Circuit 
 

LDs are very sensitive to external perturbations such as optical injection, optical feedback, 

optoelectronic feedback or electrical current modulation. Such perturbations induce instabilities 

in laser operations. In recent years, RTD electrical circuits have been intensively used as driving 
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circuit for SCLs. This is due to the wide range of RTD’s NDR region.  The incorporations of RTD 

with a LD leads additional degree of freedom in laser dynamics as well as it induce instabilities 

in laser.  

In this Section, we initiate and we report on a novel hybrid integrated RTD-LD circuit consisting 

of separated RTD and optical injection LD two Chips. The LD is the model of optical injection 

SCL described in Section II.4. Therefore, this optoelectronic system consists of two main parts: 

the electrical subsystem and the optical subsystem that converts the electrical energy into optical 

energy. The equivalent lumped circuit of the system used here is shown in Figure II.10. The output 

voltage 𝑉(𝑡) across the capacitance 𝐶 and the electrical current 𝐼(𝑡) flowing in the inductor 𝐿  

describe the electrical dynamics of this system. The resistor R is the overall resistance due to 

ohmic contacts. The circuit a forced Liénard oscillator. Since the series connection of the RTD 

with the SCL preserves the shape of RTD’s current-voltage I-V characteristic [65], we use the 

function 𝐹(𝑉) in cubic presented in Table II.1 to model a mathematical representation of current-

voltage characteristic of RTD-OISCL whose graphic is given in Fig. I.11(c). 𝐵, 𝑎 and 𝑏 being 

positive constants (see Table II.1). 

Using Kirchhoff’s roles to the circuit presented in Fig. II.10, we obtain the set of first order 

ordinary differential equations (II.32) giving the current modulation of the LD;  𝐼(𝑡) and the 

voltage 𝑉(𝑡) across RTD-OISCL series connected (for simplicity, we could also admit RTD-LD 

instead of RTD-ILD). 

 

Figure II.10. Equivalent circuit of the optoelectronic novel RTD-OISCL optoelectronic oscillator 
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                                  (II.32) 

The electrical current flowing in the active region is used to drive the laser Eq. (II.31). For this 

purpose, the relation 𝐽(𝑡) = 𝜂𝑖𝐼(𝑡)/𝑞𝜗 relates the relationship between the pumping parameter 
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𝐽(𝑡) and the driving current 𝐼(𝑡). Here, 𝜂𝑖  is the optical efficiency, the 𝜗 the volume of laser active 

region and 𝑞 the electric charge of an electron. 

II.5.1.Dimensionless Equations of RTD-OISCL Model 

 

For simplification purposes, we normalize Eqs. (II.33) - (II.37) as follows:  

0( ) ( ) /x t V t V                                                                                (II.33) 

0( ) ( ) /y t I t I                                                                                       (II.34) 

( ) 2 inz t f t                                                                                          (II.35) 

( ) ( ) / thn t N t N                                                                                   (II.36) 

0( ) ( ) /s t S t S                                                                                      (II.37) 

where variables are rescaled by the mean of constant values of optoelectronic system as: 𝑉0 =

1 𝑉, 𝐼0 = 1 𝐴, 𝑁𝑡ℎ = 𝑁0 + 1/(𝐺𝑁𝜏𝑝), 𝑆0 = 𝑁𝑡ℎ𝜏𝑝/(𝐺𝑁𝜏𝑠). The coupled rate equations 

corresponding to dimensionless quantities (𝑥, 𝑦, 𝑧, 𝑛 , 𝑠, 𝜓 )𝑇  for the dimensionless rescaling time 

variable 𝜏 = 𝜔0𝑡 are given as follows after resetting 𝜏 = 𝑡 by equation (II.38) [97]. 
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                          (II.38) 

In the last folders of Chapter III, we shall use the normalized Eq. (II.38), whose the equivalent 

diagram is as follows in Fig. II.11 to carry out its dynamics analysis. 

 
Figure II.11. Equivalent Diagram of the normalized RTD-OISCL integrated circuit 
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The normalized parameters are defined by  𝑚 = √𝐿/𝐶, 𝛾0 = 1/𝜔0𝜏𝑟 and Ω𝑖𝑛 = 2𝜋𝑓𝑖𝑛/𝜔0 is the 

normalized frequency of external AC perturbation, 𝐺0 = 𝜔0𝐺  with G the normalized differential 

gain [45], 𝜔0 = 1/√𝐿𝐶 is the dimensionless natural angular-frequency of forced RTD 

circuit, 𝛥𝛺 =
Δ𝜔

𝜔0
 and 𝑘 =

𝑘𝑖𝑛𝑗

𝜔0𝜏𝑖𝑛
√

𝑆𝑖𝑛𝑗

𝑆0
   refer to normalized frequency detuning and injection 

strength respectively. Without lack to generality and for simplification, we choose 𝑆𝑖𝑛𝑗 = 𝑆0. 

Analytical and numerical calculations are performed throughout the above dimensionless 

normalized rate coupled equations describing an OHEO oscillator.  The Table II.2 gives the 

parameters values of the system (II.38). 

Table II.2. Description of standard RTD-OISCL OEO equations parameters and values used in 

numerical simulations 

Symbol Description Value 

L  Inductance 8.0 nH  

C  Capacitance 5.6 pF  

R  Overall resistance of due to connections 6.65   

acV  Alternating voltage Variable 

dcV  Direct voltage bias Variable  

  Laser active region volume 16 310  m 
 

r  Carrier lifetime 2.0 ns  

p  Photon lifetime 2.0 ps  

NG  Differential gain coefficient 138.1 10 /m s  

thN  Carrier density at threshold 24 31.7173 10 m  

  Effective gain coefficient Variable  

injk  Optical injection  strength Variable  

  Linewidth enlargement factor 6  

  Frequency detuning  Variable  

 

II.6. Conclusion 
 

In this chapter, we have firstly presented FT as the method that allows the interpretation of signal 

in frequency domain. In addition, the Langevin approach for analysis of noise effects in dynamical 

systems was given. Moreover, the method of reduction consisting of polynomial approximation 

of the RTD current-voltage characteristic was also provided. For stability and chaos studies, 

bifurcation analysis and Lyapunov methods (eigenvalues, Lyapunov spectrum and Routh-Hurwitz 

criterion) were presented as efficient tools. On the other hand, we have presented Simulink 

environment for visual approach to the differential equation setup and Runge-Kutta methods for 
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numerical simulations of ODEs. In the last folder, we modified the OISCL rate equations in terms 

of photon density, carrier density and developed a novel model of OEOs based on this laser model 

and RTD integration. 

The Chapter III shall therefore give and discuss the main results from those models using each of 

these methods and models. 
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Chapter ___ III ___ 

______________________________________________________ 

RESULTS AND DISCUSSION 

 

III.1 Introduction 
 

After the presentation of different materials, numerical and analytical methods and models of rate 

equations in Chapter II, we will present in this chapter the main collected results. This chapter 

proceeds as follows: In Section III.2, we consider the novel SCL rate equations (II.31). These 

equations are treat using the Langevin approach and FT in order to investigate the noise induce 

effect, and the influence of parameters in noise level especially the EGC. In Section III.3, we study 

the stability analysis of the OEO described by equations (II.38) according to Routh-Hurwitz 

criterion and Lyapunov methods, with the help of the polynomial approximation of RTD. The Section 

III.4 studies the nonlinear dynamics of the novel RTD-LD OEO. We use the fourth-order Runge-

Kutta method to solve numerically the normalized system (II.38). In addition, we analyze the 

system through time series, phase portraits and bifurcation diagrams. The Lyapunov exponent 

calculation is performed by using a program of Wolf et al. [98].  

III.2. Noise Induced Effects in Optical Injection SCLs 

 

Noise induced effects have an important role in the performance of SCLs. It are capable of exciting 

intriguing behaviors modifying laser dynamical. Optical injection technique opens a rich variety 

of dynamical behavior in SCL optics. This technique significantly improves the performance of 

slave lasers, leading to several benefits for many applications including optical communications, 

microwave signal generation and all-optical signal processing. However, these SCLs systems are 

likely to generate noise due to intrinsic and extrinsic mechanisms, such as spontaneous emission, 

carrier recombination, etc., which tend to decrease the performance of optical emission, 

manifesting themselves in the form of RIN, FN and widening of laser linewidth [2, 99, 100]. 

Several investigations have proposed the possibility of reducing the noise level in classical model 

of SCLs [11, 101-106]. In the first folder of this chapter, we consider the novel SCL rate equations 

(II.31). These equations are treat using the Langevin approach. For this purpose, we shall use 

small-signal analysis and the FT to examine laser noise in frequencies domain and propose the 

methods of noise reduction that consist on an appropriate variation of lasers parameters especially 

the EGC. 
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By including Langevinian noise sources for each variable in addition to the temporal spontaneous 

emission term ( ) ( ) /sp sp rR t N t   , the Eqs. (II.31) become (III.1). 
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(III.1) 

In these equations, ( ) ( )injt t t    is the phase difference between the internal and the 

injected fields; t  is the frequency detuning ; 
injS  is the injected photon number from the ML;

sp is the factor of spontaneous emission coupled to the laser mode;    is the confinement factor; 

the functions  ( ) ,   xF t x S N or  are the Langevin noises sources. The rest of parameters are 

already defined in Sect. (II.4). 

Let us redefine the variable ( )x t  be equal to ,    or S N  with the mean value 0x  as described with 

the following equation (III.2) while the spontaneous emission contribution is given by equation 

(III.3): 

0( ) ( ) x t x x t                                                                                    (III.2) 

 
0

0

( ) ( )
sp

sp sp

R
R t R N t

N


 
   

 
                                       (III.3) 

The Langevin terms 𝐹𝑆(𝑡) and 𝐹𝜓(𝑡) are random noise due to the quantum effects of spontaneous 

emission of light while the term 𝐹𝑁(𝑡) is the noise source induced by random generation and 

recombination of carriers. They all originate from the random or shot noise effects [11] and noise 

effects need to be analyzed using statistical methods. We assume the correlation time of noise less 

than the photon and the carrier lifetime 𝜏𝑝 and 𝜏𝑟 respectively. As stochastic and random nature, 

Langevinian noise sources have zero means value and Eqs. (II.6-II.7) summarize their properties. 

The Eqs. (III.4) and (III.5) give the Fourier Transformation of Eqs. (III.2) and (III.3) respectively 

while Eqs. (III.6) relate the frequency components of Langevin noises by taking into account their 

properties from (II.6). 
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III.2.1. Noise Characteristics and Discussions 

 

The inspection of the above equations (III.1) shows that, these equations explicitly involve the 

ML parameters: the emitted power related to photons density ( )injS t  and the optical field related 

to optical phase ( )inj t .Therefore, the slave will be directly affected by noise emission from the 

master. Thus, the determination of the spectra characteristics of the slave will be possible unless 

those of the ML are known firstly. 

III.2.1.1. Master Laser noises 
 

The ML is described by the same equations as slave but without optical injection parameters, we 

set  0injS  in (III.1) for this purpose. For much understanding, we adopt the notation 𝑖𝑛𝑗 to 

designate the master and assume that master and slaver lasers are identical. Taking into account 

Eqs. (III.4), (III.5) and (III.6), and according to the fact that the Langevin noise sources have zero 

means values, we treat the problem by linearization and we neglect second-order fluctuations. In 

addition, we separate continuous and fluctuating terms. In addition, applying FTs, we obtain the 

following equations (III.7), (III.8) and (III.9): 
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where the matrix elements  ( , 1;2)ijm i j  ’s are depending on the parameters of the ML and on 

continuous terms expressed in Eqs. (III.8) and given by 
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The parameter  
0injS and  

0injN  are the steady state average values inside the ML given in (III.7). 

Here, ( )injS  , ( )injN  , ( )inj  , ( )
injSF   , ( )

injNF   and ( )
inj

F   are the FTs of time functions 

corresponding to the fluctuation terms ( )injS t , ( )injN t , ( )inj t , ( )
injSF t  , ( )

injNF t  and ( )
inj

F t

respectively. Using Cramer’s rule, we find the spectral densities for photon density, carrier density 

and phase density given by Eq. (III.10)-(III.13). 
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Equations (III.10)-(III.13) reveal that the spectral characteristics of the ML can be determined 

unless the spectral densities of Langevin noise sources are known. Following the formulas given 

in [101] and according to some change mentioned, diffusion coefficient associated with each noise 
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sources can be expressed by taking their correlation as in Eq.(II.10) and in Ref. [107]. Among 

these, Langevin terms are given such as: 
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Equations (III.9), (III.10), (III.14), (III.15) and (I.6) lead to the Eq. (III.16) giving the RIN of 

master laser: 
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,                  (III.16) 

 

where 12 21,  m m and 22m are already defined. 

We assume the following numerical values for the laser parameters as in Table II.2. In addition, 

32 3 18.5865 10  thJ m s    , 0.2   and other parameters used are found on figure captions. The 

Fig. III.1(a) shows the variation of RIN variation  of  the ML (free-running laser) for some values 

of bias current , and figure III.1(b) presents the RIN when EGC changes. The RIN exhibits a 

resonance phenomenon at the resonance frequency. This will be easier to see by the presence of 

peaks on illustrative curves, when increasing the injection current from 1.5 to 12 times the 

threshold current (figure III.1 (a)). This RIN spectrum shows the characteristic of flat white noise 

in the low-frequency regime due to the small amplitude of the intensity fluctuation. In the high-

frequency regime, the spectra exhibit the well-known carrier-photon resonance peak around the 

resonance frequency. The peaks show that the laser is affected by the natural resonance of electron 

and photon populations [108]. The increase in current is associated with an increase in the 

relaxation oscillation peaks. The fact that the photon number and carrier number in the laser cavity 

are random variables makes that noise intensity different from that of a white noise spectrum. 

Similar results have been obtained by numerical simulations or observed in experiments [106]. 
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Moreover, when the laser is operating above the threshold (see figure III.1 (b)), varying the EGC 

values reveals a significant diminution of RIN spectra at low frequency from −110dB.Hz−1 to 

−175dB.Hz−1 when EGC changes from 0.99 to 0.1.  According to Ref. [11], this noise level is 

allowed in communication systems for EGC values less than or equal to 0.75 for a bias current of 

twice the threshold. If we need to reduce the RIN level we must increase the current. Particularly 

around the resonance frequencies whose values depend also on the EGC values, the RIN spectra 

are the same. However, with the same current bias, it is also possible to reduce the RIN level 

through EGC values (see figure III.1 (b) curves (1), (2) and (3)). Over the resonance frequency 

oscillation (RFO), the convergence of all RIN spectra observed when EGC changes is very quick, 

unlike the values when the current changes. The peak of intensity noise is reduced by around 

25dB.Hz−1 with the frequency oscillation, which shifts by about 0.65 GHz when the EGC value 

is fixed in figure III.1 (a) (see curves (1)–(5)). In addition, in figure III.1 (b) this decrease is only 

pronounced at the lower frequency (lower than the RFO). 

The frequency noise in time domain is given from the relationship between the frequency and 

angular frequency (the phase) i.e.  2 ( ) ( ) /f t d t dt  . Therefore, in accordance with equation 

(III.12)-(III.15), the Eq. (III.17) gives the ML frequency noise 2| ( ) |inj injFN f   as: 
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                                 (III.17) 

 

Figure III.1. RIN of ML as function of frequency; (a) when 0.5
inj
   for several bias current conditions 

(1) 2
inj thinj

J J  , (2) 2.5
inj thinj

J J , (3) 4
inj thinj

J J  and (4) 12
inj thinj

J J  ; (b) when 2
inj thinj

J J , for 

several value of EGC (1) 0.00
inj
  , (2) 0.25

inj
   (3),(4) 0.5

inj
  .(4) 0.65

inj
  ,(5) 0.99

inj
  . 
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The simulated results of the FN are illustrated in figure III.2 with the same intrinsic parameters’ 

values as those used for RIN in Fig. III.1. Figure III.2 (a) shows that, for an injection-current-ratio 

just above unity, the FN spectra are flat. Above and far above unity, the spectra reveal the RFO 

around 1 GHz and 10 GHz when the EGC is fixed. If we keep the current constant and change, 

the EGC the variation becomes the same as with the RIN (see Fig. III.2 (b)). 

 

Figure III.2. FN of the master laser as a function of frequency: (a) when 𝜸𝐢𝐧𝐣 = 𝟎. 𝟒𝟓 for several bias 

current conditions; (b) when 𝐉𝐢𝐧𝐣 = 𝟐𝐉𝐭𝐡𝐢𝐧𝐣
 for several values of EGC. 

The FWHM is derived from the FN. Because of the Lorentzian shape of electrical field, the 

spectral linewidth is evaluated from the low frequency from the FN as 2 ( 0)f FN     [11, 

99]. Using (III.12) and (III.17) the FWHM becomes:  
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                                        (III.18) 

It is well known that the linewidth of SCL is larger than that ordinary laser that has an almost LEF

 , which value is few units [101]. Due to the EGC range values, equation (III.18) shows and 

induced modulation of the FWHM by the means of EGC (see [45 - 48] for the mean EGC), which 

leads to a more significant reduction of the laser linewidth. Indeed, the relationship

 
2

2 2/ (1 )
inj injinj inj      remains valid as long as 0 0.5inj  . The formula (III.18), known as a 

Schawlow–Townes formula is one of the main points of in this Chapter. This formula is designated 

as the modified Schawlow–Townes formula due to the fact that, the EGC parameter leads to a 
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narrower laser linewidth by decreasing EGC values. Figure III.3 plots the corresponding result for 

the FWHM. Figure III.3 (a) depicts the variation of the linewidth with bias current ratio ( / )
injinj thJ J

for some value of SEF, and figure III.3 (b) shows the variations of linewidth with EGC. In recent 

years, the main way to reduce the FWHM was to reduce the LEF or SEF (Figure III.3 (a) and (c)). 

Now, we show that the FWHM can also be controlled with the help of the EGC (Figure III.3 (b)). 

Therefore, the ECG plays a similar role to the SEF, avoiding an abrupt increase in FWHM near 

the threshold [107]. Thus, figure III. 3(b) shows that the decrease in EGC leads to a route to the 

ideal laser linewidth.  

 

Figure III.3. Variation of linewidth with injection current ratio. Curves show the rapid narrowing of 

linewidth with increasing current ratio that is obtained by decreasing (a) SEF, (b) EGC and (c) LEF. 

We mention addition that, according to figures III.1 (b) and III.3, we should pay more attention to 

the conditions of getting a narrow linewidth by ensuring to maintain the RIN and FN levels lower. 

Thus, to avoid an increase in FN and RIN spectra while keeping a narrow linewidth, this requires 

to the EGC to stay at a level lower than 0.8. 

 

III.2.2. Relative Intensity and Frequency Noises of OISCL 

 

In this section we derivate mathematical expression for RIN and FN of the optical injection 

semiconductor lasers implying small-signal analysis around the steady state 0 0( , , )TS N  , 

linearization and FT of equation (II.1) successively.  Similar to the section II.2.1, after 

linearization, FT and arrangement, the steady state points are given by the implicit expressions 

(III.19) while the fluctuations terms are obtained as solutions of the equation (III.20). 
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here, the parameters  ( , 1;2)ijb i j   are depending on the parameters of both master and slave  lasers 

and expressed as follows: 
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The parameter is 0S  the steady-state average values inside the SL given in (III.19) while 0( )injS  is 

that of the ML. In the other hand, the functions
Sf , 

Nf and f  expressed in Eqs. (III.21)- (III.23) 

are equivalent to the total fluctuations of photon density, carrier density and optical phase 

respectively inside the slave laser cavity: 
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where 0S ,
0N  and 0  are average values for photon density, carrier density and optical phase of 

SL respectively. The fluctuations components ( )S  , ( )   and ( )N   are obtained as 

solution of equation (III.20). After arrangement we get Eqs. (III.24)-(III.27): 
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We need to know the cross-correlations and correlations of functions
Sf , 

Nf  and f  function in 

order to express the RIN and the FN of slave. For simplification, Yabre et al. [109] assumed that 

the Langevin noise sources ,  and S NF F F  are not to be correlated with photon density ( )injS   

and optical phase ( )inj   fluctuations of the ML, which are given as the solution of equation 

(III.10) and (III.12). From the equation (III.24), the power sprectal densitie for intensity and phase 

noise can be obtained as follows: 
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Using the expressions of
Sf , f , 

Nf  and according to ( )injS  , ( )injN  and ( )inj  , we 

obtained spectral density of slave fluctuation as 
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Using the definition of the RIN and substituting we find the following relation: 
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From the previous definition giving the expression of frequency noise following Eq. (III.17), the 

Eq. (III.37) gives the FN for optical injection SCLs. 
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Both Eq. (III.36) and Eq. (III.37) reveal that the RIN and FN depend to the master laser noise (the 

functions 
injRIN and 

injFN  derived from the equations (III.16) and (III.17) respectively). This 

evidences the optical injection noise induced-effects. 

III.2.2.1. Influence of Optical Injection in RIN Spectra 

As aforementioned, ML noises affect the SL emission (see for instance Eqs. (III.36) and (III.37)). 

Owing to the large number of parameters involved in these expressions, in addition, for reducing 

the level of frequency noise and intensity noise, only parameters that can significantly affect noise 
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levels shall be considered. The choice of these parameters and especially of the EGC can be best 

understood through RIN and FN spectra by turning to the next figures for SL relative intensity 

and frequency noises. Figures III.4 (a) and (b) show the abrupt decrease of intensity noise with 

the appearance of two relaxation peaks. That decreasing is similar to the shot noise limit in ref. 

[107] or to the famous ‘‘1/f noise’’. The first peak corresponds to the free-running laser relaxation 

frequency (dotted lines). We can observe that all these peaks are at exactly the same relaxation 

frequency as those of the optically injected laser (solid lines). However, for an injection rate of -

20dB (figures III.4 (a) and (c)), at all frequencies both RIN spectra are higher than the free-running 

noise level. Near the RFO and above it, these levels are reduced to more than 5dB/Hz, compared 

to the master levels. At RFO, the reduction is more than 10dB. Nevertheless, we can establish 

from figure III.4 (d) that for an injection rate of 40 dB the slave RIN level is above that of the ML 

for all frequencies. In those conditions, the intensity fluctuation from the SL is greatly enhanced 

by the optical injection from the ML.  Finally, a second peak has appeared as in Ref. [109]. That 

peak can be understood regarding Eq. (III.36) and in connection with the fact that the noise 

characteristics of the ML are included in the determination of the SL noise in the stable-locking 

condition. 

 

Figure III.4. Eliminating 1/f noise.  RIN variation for injection rates of (a) −20 dB and (b) 40 dB when 

phase fluctuations of the ML are considered, and (c) −20 dB and (d) 40 dB when phase fluctuations are 

neglected. 

 

Eliminating 1/f noise in RIN spectrum 

1/f noise is low frequency noise for which the noise power is inversely proportional to the 

frequency. The sources of 1/f noise are still widely debated and much research is still being done 

in this area. 1/f noise can be a limit to achieving the best performance in precision measurement 

applications since this type of noise cannot be filtered out. To avoid the 1/f noise observed in RIN 
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spectrum, we may need here more careful choice of parameters involved and also supposed for 

simplicity that, the ML phase fluctuations are small enough to be taking into account. The term 

( )inj   from equation (III.21) could be neglected.  Figs. III.4 (c) and (a) show the effects of 

neglecting the contribution of optical phase noise from the ML in SL. The frequency spectra show 

an almost flat profile at lower frequencies whatever the injections rate 0 0( ) /injS S . Figure III.4 (a) 

is the main important case of intensity noise reduction. Indeed, we have a little more than 40dB 

reduction in the RIN spectrum compared to the free-running slave. Nevertheless, we pay attention 

to the choice of the physical parameter values by supposing that slave and master lasers can be 

almost identical and keeping the SCL linewidth narrow. Then, we restrict ourselves to work on 

these conditions: injection parameters are to be  0 0/ 4   45dBinjS S dB  , and EGC in the ranges

 0  0.88  and  0.4  0.99  for the ML and SL respectively. In these conditions, the bias current of 

the SL is greater than or equal to twice its threshold current. Exact values of the main parameters 

are given in the captions. When the master bias current is increasing, the RIN decreases. However, 

when that current reaches five times the threshold current (for a 40dB injection parameter) and 

ten times (for a −20 dB injection parameter) (see figures III.5 (a) and (b) respectively) or above, 

the stochastic dynamics of the slave change. The RIN and FN spectra become very interesting. 

We can observe clearly the gradual disappearance of the first relaxation peak. The intensity 

spectrum of the slave behaves almost identically to that of the ML (see figure (III.5)). That fact is 

supported by the SL frequency noise in figure III.6(a) where we also have the gradual 

disappearance of the first relaxation peak corresponding to the SL when 12
thinj injJ J  and in 

figure III.6 (b) for 0.45  . These observations indicate that the ML parameters and noise could 

lead to a drastic change in the characteristic of the SL noise spectrum. 

 

Figure III.5. Effects of increasing ML current on the slave RIN spectrum for the injection rates of (a) 40 

dB and (b) -20 dB. 
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Figure III.6. Slave laser FN for (a) some values of current and (b) some values of EGC. 

 

Figures III.7 and III.8 show the effect of ECG on the FN and RIN spectra when the ML and SL 

bias currents and other injection parameters are fixed. By increasing the EGC of the slave, the FN 

is reduced. Sometimes, if the master laser EGC becomes near unity, the master laser FN takes the 

lead and noise also becomes more intense in RFO (figure III.7 (a) for 0.3  ; 0.99inj  ). Figure 

III.7 (b) presents the effect of the master laser EGC on FN when the slave laser EGC is fixed; it 

causes a reduction in FN when the master laser EGC is decreasing. When  0.55inj  , whatever 

0.3  , we have dual pronounced peaks in noise spectra (figure III.8 (a)). However, the level 

easily decreases at low frequencies and displays convergence after RFO by increasing EGC of the 

slave laser when EGC of the master laser is fixed (see figure III.8 (b)). 

 

Figure III.7. Frequency variation of FN of the slave laser, with the following injection parameters: ∆𝛚 =
−𝟐𝟎𝐆𝐇𝐳, 𝐤𝐢𝐧𝐣 =  𝟏 × 𝟏𝟎−𝟏, 𝐒𝟎 = 𝟏𝟎−𝟐(𝐒𝐢𝐧𝐣)𝟎 , 𝐉𝐢𝐧𝐣 = 𝟐. 𝟓 (𝐉𝐢𝐧𝐣)𝐭𝐡 (a) when the master laser and slave 

laser EGCs change; (b) when the slave laser EGC is fixed. 
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The RIN and FN profiles show that stochastic behavior of the SL can be identical to that of a free-

running laser or injected laser by the adapted choice of EGC values. Indeed for small variations 

of EGC, the RIN spectrum presents a very new particular stochastic dynamics: for 0.65 0.69 

, the profiles present dips at points A and B (see figure III.8 (b)) at low frequencies (before 

resonance), which are connected with the change of RIN sign observed in [12]. 

 

 

Figure III.8: Influence of EGC and other parameters on RIN. (a) When EGC of the master laser is fixed 

to 0.55; (b) when the EGCs of both ML and SL change 

 

III.3. Stability Analysis of RTD-LD Integrated Systems 
 

In previous Section III.2, we have reported a noise characterization in new modified rate equations 

of optical injection SCLs. Through EGC and other laser control parameters, it was proved that 

this model of lasers could be placed as a candidate for optoelectronic applications due to induced 

noise level modulation by the EGC and injection parameters. In this section, we use this OISCL 

monolithically integrated with a RTD in a setup a novel class of OEIC described in Section II.5 

by Eqs. (II.38), for stability’s analysis purposes and investigate the role of the EGC. In several 

investigations related to the RTD-LD integration, the nonlinearity of RTD have been widely 

modeled by mathematical representations of Brown or that of Schulman. In addition, polynomial 

models have also shown their great usefulness in NDR oscillators. The purpose of this section is 

to analysis of this innovate OEHO. We shall therefore provide a brief investigation of the stability 

analysis of this OEHO using Routh-Hurwitz criterion through eigenvalues and Lyapunov 

exponents’ calculations. 

III.3.1. Linear stability and Routh-Hurwitz criteria 
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This section uses Routh-Hurwitz criteria and the first Lyapunov method of eigenvalues for the 

purpose of stability analysis of the novel optoelectronic oscillator (II.38). 

III.3.1.1. Steady states and phase locking regions 
 

Steady states are starting points for the determination of stabilities properties of nonlinear 

dynamical system. In steady states solutions, this OEO operates with constant electrical and 

optical outputs. The steady-state solutions 
0 0 0 0 0 0( , , , , , )Tx y z n s   are obtained by setting the 

differential terms of equation (II.38) to zero as follows 

 1

0 0( ) 0m y f x                                                              (III.38) 

 
 

 0 0 0sin 0dc acm v ry x v z                                           (III.39) 

 

0in                                                                                (III.40) 

 

0
0 0 0 0 0

1

n
y n s


 



 
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 
                                            (III.41) 

 

   0 0 0 0 02 1 2 cos 0G n s k s                                  (III.42) 

 

   0 0 0

0

1
1 sin 0G n k

s
                               (III.43) 

Solving (III.38)-(III.43), we obtained steady state for electrical voltage and current given by two 

implicit relations. Obviously Eq. (III.40) shows that the system (II.38) must be free to external 

AC excitation during the determination of steady-state solutions; 0 0z  . 

0 0( ) 0dcf x x v                                                            (III.44) 

 

0 0( )y f x                                                                         (III.45) 

So, knowing 0x and 0y , and solving equations (III.41)-(III.43), we obtain a cubic equation enabling 

the determination of LD carrier steady state 0n  in equation (III.46). 

3 2

3 0 2 0 1 0 0( ) ( ) ( ) 0A n A n A n A                           (III.46) 

The coefficients 0A , 1A  , 2A and 3A  are defined by  
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3 0 0( ) ( ) .A G G    

with 1/ thI   and 1    is the mean of EGC [45]. 

The steady state for the photon density photon density are then given by the following equations 

0 0 0 0( )(1 ) / ( ) s y n n                                                    (III.47) 

 

 1 2

0 0arctan( / ) sin / 1 ( / )s k                    (III.48) 

Since the stability of an OISCL is considered theoretically with an emphasis on the understanding 

of the locked phase [110],  photon and carrier number curves for regions within and outside stable 

locking are presented on the EGC limits. From the relation  
2

0 ( ) ( )S t E t , it is obvious that 0s  

must always be a positive value i.e. 0 0y n  . Numerical calculation of shows that this condition 

are satisfied if and only if the frequency detuning is less or equal to 2GHz i.e. 0.41952  . In 

addition, according to the boundary of sine function, the necessary condition for optical locking 

requires the following relation    
2

0 / 1 /k s      . For constant biased laser, is has 

been found in ref [46] that all the points situated in space  0,  /k s   inside two curves are 

in locking region.  

 

Figure III.9. (a) Unlocked and locked regions for  γ=0.65 , γ=0.8  and γ=0.9  ; (b) Range of fixed optical 

phase 0  for  situated in locked region. 
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However, for the described driven OISCL, the condition  0.41952   is added to insure that 

the photon number 0s  should be positive. Then possible locking regions can be found as presented 

in Figure III.9 (a), it is shown that the locking region extends when the EGC increases from a 

certain value. 

 

Figure III.10. The range of stable phases given by (III.47)-(III.48): (a) Under weak injection, stable phases 

regions are limited by pairs of curves inside 0/ 2 / 2     and 0 0     for the limits of EGC,

0   and 1   respectively. (b) Under strong injection, the boundary of stable phase is limited only by 

0/ 2 / 2     blue and red lines correspond to 0   and 1   respectively. 

From the figure III.9 (b), almost all possible values of 0  are negative. That number should be 

larger as  decreasing. In other hand, under weak injection strength

max,min0 / 2 arctan( / )      . In addition, under strong injection
max,min0 / 2   . These 

results are similar to that in [111]. As 1 1    , the stable phase condition at the boundaries of 

EGC  will be such that, when 1   and 
min,max0 ( 1)   0or     . In figure III.10, different 

regions of stable phase for the limited cases of EGC values are plotted with accuracy by 

numerically solving of (III.47)-(III.48) under weak injection strength figure III.10 (a) and strong 

injection strength in figure III.10 (b). 

III.3.1.1. Linear stability Analysis 

We have already introduced the steady states points in the subsection II.3.1.1. Here, we consider 

the dynamics of the optoelectronic hybrid system governed by the set of normalized differential 

equations (II.38) in the form of equation (II.11).We treat the problem around the steady point by 

using the small signal analysis method. According to the Eq. (II.13), the relation (III.49) gives the 

Jacobian matrix of the system (II.33) at the equilibrium point. The function

 2

0 0 0 0 '( ) 3 2( )f x B x a b x ab    . 
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(III.49) 

The Routh-Hurwitz criterion leads the characteristic polynomial of the Eq. (III.49) to be in the 

form of Eq. (III.50). 

 5 4 3 2

0 1 2 3 4 5( )E a a a a a a                                            (III.50) 

In the following, we calculate the eigenvalues   of J  and interpret according to the systematic 

illustrations [85] in Figure II.7. Different results to determine the stability of the equilibrium point

0X  for given control parameters’ values are gathered in Table III.1. Each equilibrium point has 

at least two complex-conjugate eigenvalues. For appropriate pick of control parameters, there exist 

stable fixed points. For instance, when the RTD is biased in PDR2, the whole system should be 

positive so that stable fixed points   and on the Table III.1 have  and  values which 

effectively belong to the shrunk stable region too close to the line A on in Fig. III.11 (f). Therefore, 

it is obviously to point out that stable fixed points  and belong to stable phase locking regions 

from Fig. III.9. In addition, for complex dynamical analysis study, three main control parameters 

have been used to control the whole stability of the system namely the DC voltage, the parameter 

𝑟 and the ECG. So, stable points are achieved when the RTD is biased in the NDR. In the other 

hand, the Eq. (III.51) gives the Hurwitz matrix associated to Eq. (III.50). In the same way, from 

the Routh-Hurwitz criterion, the equilibrium point 0X  is stable if and only if all the principal 

minors of (III.51) are positive. Since the coefficient 0 1a  , (with the respect of notes in Chap. II, 

Eq. (II.17)), this implies the following Routh-Hurwitz criterion stable locked solutions condition 

Eqs. (III.51). 

The implementation results of Eq. (III.52) in Maple software is given in Figure III.11. Note that, 

according to (III.52) the stable region corresponding to the frequency detuning in locking region 

1A 2A 0x 0n

1A 2A
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shall be given from voltage-carrier steady states ( 0 0x n ) as all states can be connected [Eqs. 

(III.43) - (III.48) and (III.50) - (III.52)]. 
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3 2 1 0
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From Fig. III.11 (a) to III.11 (e) we illustrate the Routh condition for the first minor, the second 

minor, the third minor, the forth-minor and the fifth minor from the Hurwitz matrix (III.51) 

respectively. The figure III.11 (f) illustrates the superposition of aforementioned figures 

corresponding to all combined parts of Eq. (III.52). It is obvious to observe that, Fig. III.11 (f) 

does not display a wide intersecting region that satisfies Eq. (III.52). Nevertheless, it exists a 

shrunk region where the system has stable fixe points; this tiny region is circumscribed by a 

stability boundary denoted by the line A in figure III.11 (f). Thereby, the study reveals a shrunk 

area of the system from which nonlinear dynamics can be undertaken as attraction basin and a sea 

of points in which the system drops to instability. 

 

Figure III.11. Stability boundaries calculated from the  Routh-Hurwitz  stability critrion given by Eq.(III.52) for the 

first minor (a), the second minor (b), the third minor (c), the forth minor (d) and the fifth minor (e) of the Hurwitz 

matrix. The intersecting figure (f) shows that there exits a shrunk region which satisfies Routh conditions. 
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Table III.1. The equilibrium point and their stability evaluated from system typical control parameters values 

Current-voltage region Values of 
( , )r   

Equilibrium point 

 0 0 0 0 0 0, , , , ,x y z n s 
 

Type of  equilibrium point  

( 1,2,3,4,5  6)i i or    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NDR 

 

 

𝑣𝑑𝑐 =1.2 

 

 

 

𝑣𝑑𝑐 = 2.37 
 

(9,  0.97) (0.8489, 0.039011, 0 , 7.647,
0.00024732, 1.5708) 

𝜆1,2 = 0.0641886±0.98513𝑖 ;   𝜆3 =  0 ;   

𝜆4,5 = 6.2539 ± 0.11939𝑖;  
𝜆6 =  −0.10458  

Unstable 

focus  

(9, 0.97) (1.2648 , 0.031829 , 0,
6.24 , 0.00014793    1.5708) 

 

𝜆1,2 = 0.4276 ±  0.7481𝑖;  ;   𝜆3 =  0 ;   
𝜆4,5 = 4.9301 ±  0.157903𝑖;  

𝜆6 =  −0.10446 

Unstable 

focus  

𝑣𝑑𝑐 = 2.38 
 

(9,  0.97) (2.3781, 0.00021143, 0, 0.0083898 ,
0.19646    − 1.5708) 

𝜆1,2 = −0.0050058 ± 0.97296𝑖 ;   𝜆3 =  0 ;   
𝜆4,5 = −0.94053 ±  0.08050596𝑖;  
𝜆6 =  −0.06555 

Stable focus 

𝑣𝑑𝑐 = 2.359 

 

(11.5,  0.95) (2.3558 , 0.00036306  , 0 , 0.037318 , 
0.25232  , −1.5708) 

𝜆1,2 =  −0.00023928 ± 0.95598𝑖 ;   𝜆3 =  0 ;   
𝜆4,5 = −1.5402 ± 0.18637𝑖;  

𝜆6 =  −0.043516 

Stable focus 

 

 

 

 

 

 

𝑣𝑑𝑐 = 2.37 
 

 

 

(9,  0.976) 
(2.3781 , 0.00021143, 

0  , 0.008407, 0.19638, −1.5708) 
 

𝜆1,2 = −0.0050058 ± 0.97296𝑖 ;   𝜆3 =  0 ;   

𝜆4,5 = −0.79592 ± 0.27131𝑖;  

𝜆6 = 0.022979 

Unstable 

Focus 
 

(9,  0.9) 
(2.3781 , 0.00021143, 

0  , 0.008407, 0.19638, −1.5708) 

𝜆1,2 = −0.0050058 ± 0.97296𝑖 ;   𝜆3 =  0 ;   

𝜆4,5 = −0.96952 + 0.24848𝑖;  

𝜆6 = −0.0075571 

Stable focus
 

(9,  0.8) 
(2.3781 , 0.00021143, 

0  , 0.008407, 0.19638, −1.5708)
 

𝜆1,2 = −0.0050058 + 0.97296𝑖 ;   𝜆3 =  0 ;   

𝜆4,5 = −6.8153 + 0.087472𝑖;  
𝜆6 = −0.072172

 

Stable focus
 

(9,  0.65) 
(2.3781 , 0.00021143, 

0  , 0.0074539, 0.20071, −1.5708) 

𝜆1,2 = −0.0050058 ± 0.97296𝑖 ;   𝜆3 =  0 ;   
𝜆4,5 = −13.015 + 0.057095𝑖 ; 

𝜆6 = −0.07251 

Stable focus 
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III.4. Dynamics of RTD-OISCL Systems 
 

This section is devoted to the study of dynamical behavior of the novel RTD-LD integrated circuit 

(II.38). The normalized system is numerically solved using MATLAB and RK4 method. Phase 

portraits shall be sets of projections of the space variables ( ,  ,  ,  ,  )Tx y n s  in the 2D and/or 3D. 

The LE calculation is performed by using a program of Wolf et al. [98]. We will achieve the route 

to chaos and chaos control for specific control parameters using a collection of bifurcation 

diagrams. Phase portraits will show the occurrence of strange attractors. Moreover, we shall use 

bifurcation diagrams to control chaos. In addition, we shall treat the system (II.38) in term of fast-

slow system and investigate the rate of timescale system in order to discuss the ratio of slow and 

fast timescales parameter. 

III.4.1. Bifurcation Diagrams and Route to Chaos 

 

The SCL in Eq. (II.38) being perturbed by an external periodic AC voltage with frequency 𝑓𝑖𝑛  

and an optical injection signal characterized by the injection strength parameters 𝑘𝑖𝑛𝑗,  γ or 𝑆𝑖𝑛𝑗  

according to semiconductor LD here used model, we propose to use an RTD driver oscillator 

parameter 𝑓𝑖𝑛 and the laser EGC parameter γ as control parameters the OEO (II.38). The Fig. III.12 

plots bifurcation diagrams of LD driving current corresponding to normalized current; y(t) 

parameter (Fig. III.12 (a)) and photon density in Fig. III.12 (b) with the variation of 𝑓𝑖𝑛 

respectively. It is found that these bifurcation diagrams present chaotic regions separated by 

quiescent regions when 𝑓𝑖𝑛 is moving from around 0GHz to 2.35GHz maintaining the EGC 

constant at 0.5, 𝑉𝑑𝑐 =  1.145 𝑉 and 𝑉𝑎𝑐 =  150𝑚𝑉. Chaotic regions are known as unsynchronized 

windows and quiescent regions describe a possible synchronization between driving current and 

laser emission corresponding to period-n oscillations [112]. It is also found that the nature of 

driving current is emulated by laser photon number through accurate replications of different 

windows corresponding to bifurcation diagrams in frequency domain. Therefore, we also 

highlight this fact using series evolutions stood for Figure III.16. The bifurcation diagram of laser 

output with increasing EGC is presented in Figure III.13 for 𝑓𝑖𝑛 =  1.3𝐺𝐻𝑧. According to certain 

values of EGC as depicted in Figure III.13,  it is clearly shown that the laser evolves from chaotic 

dynamical behavior for γ ≤ 0.37 to periodic orbits. For instance, when γ equal to 0.4, 0.6 or near 

0.8 as presented by zooming in Figure III.13 and far near to 0.97 EGC values. However, there are 

narrower chaotic regions between periodic windows. According to bifurcation diagrams in Fig. 

III.12 and Fig. III.13, the parameters 𝑓𝑖𝑛 and the EGC γ can be used as to control chaotic dynamics. 
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Figure III.12. Bifurcation diagrams of laser driving current (a) and photons density (b) versus external 

frequency 𝐟𝐢𝐧 showing the replication of chaotic and nonchaotic regions when  ECG 𝛄 is fixed to 𝟎. 𝟓, 

 𝐕𝐝𝐜 = 𝟏. 𝟏𝟒𝟓 𝐕 and  𝐕𝐚𝐜 = 𝟏𝟑𝟎 𝐦𝐕. 

 

 

Figure III.13. Bifurcation diagram of photons density s(t) when effective gain coefficient γ is varying γ ∈
[0.1, 0.99], for kinj = 2 × 10−3,  Vdc = 1.145 V and Vac = 180 mV, fin = 1.3 GHz  and ∆ω = 2 GHz. 
 

In addition, bifurcation diagrams depicted in Figure III.14 show that the amplitude of the periodic 

perturbation 𝑉𝑎𝑐 also allows the control of chaos. Therefore, various dynamics that bifurcation 

diagrams reveal leads to choose  𝑓𝑖𝑛, γ and 𝑉𝑎𝑐 like control parameters whose numerical values are 

given on different captions. 

When the parameter 𝑟 is used as bifurcation parameter varying from 5 to 7, the bifurcation diagram 

of the electronic output ( )x t and optical output ( )s t  in Figure III.15 (a) and (b) display the 

Feigenbaum scenario namely: period-2, period-4, period-8 oscillations to chaos. By increasing the 
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parameter  r , system (II.38) undergoes a cascade four-period-doubling bifurcation to chaos for

 5.6 5.82r  . By further increasing the parameter r from 6 to 6.3, the system evolves from a 

reverse cascade four-periods doubling bifurcation to period-2 oscillations. In 6.3 6.45r   

window, we observe chaos and at least eight-periods doubling to chaos and reversely.  A period-

1 oscillation occurs beyond  6.7r  . 

 

 

Figure III.14. The bifurcation diagram of the driving current (a) and the laser normalized photon number 

(b) when the parameter 𝐕𝐚𝐜 is varying from 0 to 2V both at bias of 1.145V, with  𝐟𝐢𝐧 = 𝟏. 𝟓𝐆𝐇𝐳 , when the 

laser diode operating without frequency detuning and with 𝛄 = 𝟎. 𝟕𝟓 and 𝐤𝐢𝐧𝐣 = 𝟎. 𝟎𝟎𝟏. 

 

Figure III.15. Bifurcation diagram of photons density 𝒔(𝒕) when effective gain coefficient 𝜸 is varying 𝜸 ∈
[𝟎. 𝟏, 𝟎. 𝟗𝟗], for 𝒌𝒊𝒏𝒋 = 𝟐 × 𝟏𝟎−𝟑, 𝑽𝒅𝒄 = 𝟏. 𝟏𝟒𝟓 𝑽 and 𝑽𝒂𝒄 = 𝟏𝟖𝟎 𝒎𝑽, 𝒇𝒊𝒏 = 𝟏. 𝟑 𝑮𝑯𝒛  and ∆𝝎 =

𝟐 𝑮𝑯𝒛. 
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The corresponding LEs spectrum is plotted in Figure III.15 (c) and one can observe two major 

windows of resistor values (  5.8 6r   and  6.1  6.6r  ) corresponding to the generation of 

hyperchaos with at least two positive LEs. 

Electro-Optical Conversion and Limit Cycles 

 

In OEOs, the driving oscillatory current I(t) information is converted into optical output via the 

laser in order to be coupled to conventional channel such as optical fiber until its extraction at the 

receiver.  

 

Figure III.16. Time series analysis for electrical driving current (top panels) laser carrier density (middle 

panels) and optical output (lower panels) when RF perturbed (𝑽𝒂𝒄 = 𝟏𝟎𝟎 𝒎𝑽). The laser exhibits 

relaxation oscillations without AC perturbation (a) and chaotic signals adding AC voltage (b) and (c). 

Nevertheless, it always attempts to emulate driving current time repetitions. 

In Figure III.16, time series evolutions of driving current and optical outputs are presented when 

EGC is fixed to 0.65, without frequency detuning, for 𝑘𝑖𝑛𝑗 =  0.0078, 𝑉𝑑𝑐 =  1.145 𝑉and 𝑉𝑎𝑐 =

 120𝑚𝑉  , in addition for certain values of fin mainly 𝑓𝑖𝑛 =  0𝐺𝐻𝑧 (Fig. III.16 (a)), 𝑓𝑖𝑛 =  0.42𝐺𝐻𝑧 

(Fig. III.16 (b)), and 𝑓𝑖𝑛 =  1.9𝐺𝐻𝑧 (Fig. III.16 (c)). It appears conspicuous to observe for laser 

emissions, carriers and photons evolutions emulate the driving current (y variable), confirming the 

earlier mentioned fact that the RTD current waveforms directly modulate the OISCL even when 

laser outputs are chaotic (Fig. III.16 (b) and (c)). The emulation phenomenon means that LD 

rationally converts electrical signal into optical signal. 

With particular values of injection and AC voltage excitation, corresponding to injection strength 

𝑘𝑖𝑛𝑗  =  2 × 10−3 for frequency 𝑓𝑖𝑛 =  1.3𝐺𝐻𝑧, at 𝑉𝑑𝑐 = 1.145 𝑉 bias, we reproduce some 

dynamical behaviors of the LD through phase portraits limit cycles in Figure III.17 for certain 
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values of EGC, namely γ= 0.99, γ= 0.9, γ= 0.75, γ= 0.4, γ= 0.3 and γ= 0.25. We notice that a 

period-1 oscillation occurs when γ= 0.99 and a period 2 close γ= 0.9. When EGC γ= 0.75 and γ= 

0.4, the laser displays a period 3 and a period-6 attractors respectively. The dynamics becomes 

chaotic as long as γ is decreasing from 0.41 to 0.1. According to the bifurcation diagram depicted 

in Fig. III.13, we clearly observe the chaos control in laser oscillations in Fig. III.17. In these 

conditions, γ-variations carry away a route to chaos like those displayed in certain optical feedback 

systems. 

 

Figure III.17. Limit cycles of the driven semiconductor laser in photon-carrier (s-n) for different values 

of EGC γ when ∆ω = 2 GHz, kinj = 2 × 10−3 at the amplitude voltage equal to 180 𝑚𝑉. The laser 

behaves like semiconductor laser with optical feedback. 

III.4.2. Chaotic multiscroll, infinite scroll and Simulink implementation 
 

There is not, nonchaotic systems that can exhibit multiple scrolls or infinite scroll attractors. 

Multiscroll attractors can be found either the system is chaotic or hyperchaotic. Especially, the 

multiple scroll chaotic/hyperchaotic systems with more than single-scroll or double-scroll 

attractors present more complex dynamical behavior with potential applications in engineering 

[113], [114] and fields such as encryption chaos, secure communication, neural network and laser 

design [113]. Higher numbers of scroll or infinite-scroll systems have infinitely many saddle 

equilibrium due to trigonometric functions implied onto their equations. If the number of scroll 

depends to calculating time, the system is classified as infinite-scroll system. Nowadays, very few 

works are devoted to study infinite-scroll system. For example, Sachin Bhalekar has proposed a 

complex pendulum equation [115] that exhibits infinite-scroll attractor and F. Li and C. Yao use 

jerks system circuits to generated hyperchaotic attractors with very higher number of scroll or 

infinite-scroll [116].  
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III.4.2.1. Generation of multiscroll chaotic attractors 
 

Here, the frequency detuning shifts from 2GHz to 30GHz, while other parameter values are 

constant as from Fig. III.17.   The LD outputs strange attractors values of EGC as presented in 

Figure III.18. A paramount result of this coupled system the emergence of novel multiscroll 

chaotic attractors rarely observed in semiconductor lasers dynamics which appear through a 

scenario of 2-period attractor, 3-period attractor and multiscroll chaotic attractor in the photon-

carrier phase plane by decreasing the EGC. In Fig. III.18 (b), we stand for the 3D projection (s, n, 

ψ) of a multiscroll attractor near to the upper limit value of EGC (γ= 0.099). 

 

 

Figure III.18. (a) Birth of multiscroll chaotic attractors in s-n phase plane of LD from period-2 attractor (𝛄 = 𝟎. 𝟗𝟗), 

period-3 attractor (𝛄 = 𝟎. 𝟗) period-4 attractor (𝛄 = 𝟎. 𝟖), period-5 chaotic attractor (𝛄 = 𝟎. 𝟔) to multiscroll chaotic 

attractors (𝛄 = 𝟎. 𝟏 and 𝛄 = 𝟎. 𝟎𝟗𝟗) and (b) 3D phase portrait of multiscroll chaotic attractors for 𝛄 = 𝟎. 𝟎𝟗𝟗, 

when ∆𝛚 = 𝟑𝟎 𝐆𝐇𝐳. 

 

Figure III.18 (End). (b) 3D phase portrait of multiscroll chaotic attractors for 𝛄 = 𝟎. 𝟎𝟗𝟗, when ∆𝛚 = 𝟑𝟎 𝐆𝐇𝐳. 

III.4.2.2. Infinite scroll and Simulink implementation of RTD-LD oscillator 

In this section, we furthermore use the RK4 method in the system (II.38) to generate the infinite 

scroll attractor and verify its effectiveness using MatLab/Simulink implementation. We set the 
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parameters as 𝑚 = 0.0264, 𝑟 = 6.65, 𝛾 = 0.68, 𝜎 ≈ 196, 𝛿 = 0.1512, 𝑣𝑑𝑐 = 1.145 and 𝑣𝑑𝑐 =

0.1441 ; the system (II.38) being under relative strong external optical injection . 

We choose the normalized time varying. After an initial transient, the solution settles into irregular 

a non-periodic oscillation that never repeats exactly in time. The trajectories in phase diagram 

when the optical phase  is plotted against the carrier density in Fig. III.19 show that, an 

attractor which the number of scroll that increases while the calculating time increasing. The 

optical phase values upgrade and the number of attractor scrolls infinitely grows. With this 

framework, the system depicts two-scroll attractor in Fig. III.19 (a) for (t=1,000), five-scroll 

attractor Fig. III.19 (b) for (t=3,000) and forty one-scroll attractor in Fig. III.19 (c) for (t=20,000). 

We notice that scrolls are interspersed to laminar phases that firstly appear after the fifteen scroll, 

as the time evolves they erratically appear and after a relative long time their appearance becomes 

flat before falling again. This aforementioned study proves that it refers to a so-called an infinite-

scroll chaotic attractor therein the number of generated scrolls depend to time calculation and the 

non-periodic reproduction of infinite-scroll as the time evolves in regard to laminar phases. 

Therefore, the system (II.38) generates an infinite-scroll attractor. Indeed, the transformation

0 0 0 0 0 0( , , , , , )M x y z n s   0 0 0 0 0 0( , , , , , 2 )M x y z n s k   is an invariant in this system since 

trigonometric functions involved in optical phase give rise to infinitely many equilibrium points 

that provide infinite-scroll attractor. Here, where 0,  1,  2,  3,  ...k     ). Nowadays, infinite-

scroll attractor is not mostly reported in nonlinear dynamical systems for the best knowledge of 

the authors. 

 

Figure III.19. The formation of infinite-scroll attractor: (a) Two-scroll attractor (t = 1,000), (b) Five-scroll 

attractor (t = 3,000) and (c) Forty one-scroll attractor with eight laminar phases (t = 20,000). 

We recall in addition that, according to refs. [117] and [118], the number of scroll increases the 

complexity of the systems; it is useful that this number be stabilized to a fixed number. This fact 

is possible to be carried out by choosing  when others parameters are fixed as indicated 

0.020637k 

( )t ( )n t

0.68 
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above or by decreasing the optical injection parameter . Let us mention in addition that, the 

chaotic behavior of the infinite-scroll attractor is confirmed in respect to the frame of Lyapunov 

exponent dynamics. As depicted in Fig. III.20, we have at least one positive LE; so, the infinite-

scroll attractor generated by the system (II.38) is chaotic. 

 

Figure III.20. Lyapunov exponents’ dynamics of infinite-scroll of system (4.9) with the same fixed 

parameters as in Fig. III.17 

The Simulink implementation is used in addition in normalized system (II.38). A complex scheme, 

resulting from this system is designed in a chip simply by selecting essentially small building 

blocks of Simulink such as multipliers, gains, summations, constants, functions and  integrators 

is depicted in Fig. III.21. The behavior of (II.38) through Simulink scheme is investigated for 

same parameter values as in Fig. III.19 approves the formation and the effectivity of the infinite 

scroll chaotic attractor in the plane from XY Graph3 is depicted in Fig. III.22 (a) showing a three 

scroll attractor for t=2,226, a four scroll for t=2,410, a five scroll attractor for t=3,000 and a six 

scroll attractor for t=3,360 in Fig. III.22 (ii) to (iv) respectively. In addition, the number of scrolls 

generated increases by the time of implementation. The Simulink observations confirm the RK4 

numerical simulation results and the effectivity of generating the infinite scroll attractor. In 

addition, Fig. III.22 (b), (c) and (d) depict the current-voltage, the light-voltage (optoelectronic) 

and the carried-photon projection of the chaotic attractors respectively. 

 

k
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Figure III.21. Simulink implementation scheme of RTD-LD hybrid optoelectronic oscillator. 

 

 

Figure III.22. (a) Simulink observations referring to formation of Infinite-scroll attractor:  the projection 

on n   plane from XY Graph3 given for the simulating time show three-scroll a(i)  t= 2,226, four-scroll 
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a(ii)  t = 2,410, five-scroll  a(iii)  t = 3,000 and six-scroll a(iv)  t = 3,360 attractors.  Projections of chaotic 

attractor from Simulink simulation in (b) current-voltage,(c) light-voltage and (d) carrier-photons plane 

from XY Graph1, XY Graph2 and XY Graph4 respectively when 6.65r  , γ=0.7 , dcv =1.145 , 

acv =0.1441  and 0.020637k  . 

 

Influence of the RTD I-V areas in the dynamics 
 

Throughout the previous section, areas between the RTD current-voltage characteristic and the V-

axis i.e. 𝑆1 and that above i.e. 𝑆2 were chosen to be almost equal.  Here, we shall compare the 

dynamical behaviour of the system for three different cases; when 𝑆1 ≈ 𝑆2 , 𝑆1 < 𝑆2 and 𝑆1 > 𝑆2. 

It is important to show the function 𝐹(𝑉) = 𝐵𝑉(𝑉 − 𝑎)(𝑉 − 𝑏) has an invariance by changing a-

parameter to b-parameter. The Figure III.23 depicts different shape of RTD V-I 𝑆1 ≈ 𝑆2in Fig. 

III.23 (a), 𝑆1 < 𝑆2in Fig. III.23 (b) and finally when  𝑆1 > 𝑆2in Fig. III.23 (c). We use in addition 

the EGC  as bifurcation parameter in order to magnify the influence of the areas 𝑆1 and 𝑆2 in the 

system (II.38). When  𝑆1 ≈ 𝑆2, the Fig. III.24 (a) shows that the complexity of (II.38) decreases 

while  is increasing. For instance, the laser exhibits a three-scroll chaotic attractors for 

in Fig. III.24 a(i), two-scroll attractor for  in Fig. III.24 a(ii), and fails down unto one-

scroll attractor for  in Fig. III.24 a(iii). However, in the case 𝑆1 < 𝑆2 we can observe 

relaxation dynamics for in Fig. III.24 b(i), a non-oscillatory dynamics for in Fig. 

III.24 b(ii),  and crisis when  in Fig. III.24 b(iii),. When𝑆1 > 𝑆2, the system generates 

merely periodic limit cycles whatever the value of the EGC  as depicted in Fig.III.24 c(i), Fig. 

III.24 c(ii) and Fig. III.24 c(iii). 

 

Figure III.23. Current-voltage (I-V) characteristics of RTD corresponding to 𝑆1 ≈ 𝑆2 (a), 𝑆1 < 𝑆2 (b) 

and  𝑆1 > 𝑆2 (c). 

 

We have found important to highlight that as one of the area 𝑆1 gradually increasing the system 

evolves from chaos to periodic dynamics as depicted from Fig. III.24 (a) and Fig. III.24 (d). 

Nevertheless a more careful observation of Fig. III.23 reveals that the overall shape of RTD 



 0.6 

0.75 

0.9 

0.6  0.75 

0.9 


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current-voltage characteristics is not changed but everything suggests that a shift in the axes has 

occurred. 
 

 

Figure III.24. Influence of areas of RTD current-voltage (I-V) characteristics on driven laser dynamics values of the 

EGC. a-When 𝑺𝟏 ≈ 𝑺𝟐: a(i) Three-scroll chaotic attractor, a(ii) Two-scroll attractor and a(iii) One-scroll attractor. b-

When 𝑺𝟏 < 𝑺𝟐: b(i) relaxation dynamics, b(ii) non-oscillatory dynamics and b(iii) crisis. c- When 𝑺𝟏 > 𝑺𝟐, the 

system generates periodic limit cycles whatever the value of : c(i), c(ii), and c(iii). 

Therefore, interestingly the voltage biased and other system parameters could be adjusted to get a 

desired dynamics such as chaos, hyperchaos or periodic oscillations resulting from each of the 

investigated cases namely 𝑆1 ≈ 𝑆2 , 𝑆1 < 𝑆2 and 𝑆1 > 𝑆2  according to the threshold 

characteristics of the semiconductor laser. For instance, the  bifurcation diagram shows that 

periodic and aperiodic oscillations occur in electriccal current in Fig. III.25 (a), and in optical 

output given by Fig. III.25 (b) if the system is biased in the NDR of the RTD. 

 

 

Figure III.25. DC bias control of system dynamics (1): (a) and (b) bifurcation diagrams of electrical 

driving current and optical output, respectively 





Chap. III.  Results and Discussions                                              III.4. Dynamics of RTD-OISCL Systems 

83 

When the DC bias is beyong the NRD region i.e. onto one of the PDR1 or PDR2, the dynamical 

behavior becomes periodic. However, the system could exhibite either slight chaotic or periodic 

windows in NDR region. This sticks out the relevance of DC polarisation on the chaos control in 

optoelectronic systems [119]. 

Antimonotonicity and Chaos Control 

One of the most common chaos scenario have been shown to be period-doubling cascades. In 

most chaotic systems, this phenomenon appears without its destruction [120]. This phenomenon has 

been reported in many literatures, such as VdP oscillator, Duffing oscillator, Chua circuit, a fourth-order 

nonlinear autonomous hyperchaotic RLC circuit, Jerk systems [121, 122]. In this section, we will 

demonstrate that the system (II.38) generates the creation of period doubling cascade to chaos 

followed by their annihilation via period-doubling bifurcation. This property is an interesting 

phenomenon in nonlinear dynamics termed by antimonotonicity and no observed in most 

nonlinear systems. Fig. III.26 pictures magnified views of bifurcation diagrams in a tin region of 

the NDR region of the RTD the smooth variations of two control parameters in the 𝑣𝑑𝑐 − 𝑟 space. 

As the DC voltage bias is increased in approximatively, 2.30 < 𝑣𝑑𝑐 < 2.36 the phenomenon of 

antimonotonicity is created. For specific parameters 𝑣𝑑𝑐 and 𝑟, sample results are provided as 

follows. A period two (P-2) exists in the in the NDR for  𝑣𝑑𝑐 = 2.33 . In particular, as the DC 

voltage is further increased, P-4 bubbles is created for 𝑟 = 9 [see Fig. III.26 (a)], P-8 bubbles is 

obtained for 𝑟 = 8 [see Fig. III.26 (b)], P-16 bubbles is obtained for 𝑟 = 7.5 and P-32 bubbles is 

created for 𝑟 = 7.4 [see Fig. III.26 (c) and (d)], respectively]. For 2.335 < 𝑣𝑑𝑐 < 2.3425, this 

period doubling can be destroyed via reverse period-doubling bifurcation sequence as the 

bifurcation parameter and the system fails in P-2 dynamics for 𝑣𝑑𝑐 = 2.36 for example. In 

addition, as the parameter 𝑟 is decreased smoothly, the dynamics of the system becomes more and 

more complex so that P-32 bubbles inters in chaos and each bubble increases until it connects with 

others [see Fig. III.26 (e), (f) and (g)]. By further increasing the 𝑣𝑑𝑐 the system can enter in chaos 

in undoubling period manner for example for 𝑣𝑑𝑐 = 2.365 and then produced P-1 stable state for 

example for 2.39 ≤ 𝑣𝑑𝑐 < 2.4 i.e. this voltage being always in the NDR [see Fig. III.26 (i)-4(j)] 

according to the Table III.1. The Fig. III.26 illustrates the bifurcation diagrams of 𝑥𝑚𝑎𝑥 and 𝑠𝑚𝑎𝑥 

versus control parameter 𝑣𝑑𝑐 with perfect indication of chaos scenario. Resulting graphs of LEs 

are in accordance with these observations. Bier and Bountis [123] demonstrated that the 

phenomenon of reverse period-doubling cascades could occur when a minimum number of 

conditions is fulfilled. The main result of the latter was that the system of differential equations 

must remain invariant to the transformation x x , y y  , z z , etc., where x , y , z are 

state variable of the system. However, Eqs. (II.38) do not remain invariant to the above 
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transformation. Nevertheless, the phenomenon of antimonotonicity and reverse period-doublings 

is generated and present as shown in Figs. III.26 showing that the above criterion by Bier and 

Bountis is not a necessity as in Ref. [124].  Chlouverakis and Adams firstly demonstrated this fact 

for the best knowledge of the authors in two-section semiconductor lasers subject to optical 

injection [124]. 

 

Figure III.26. Bifurcation diagrams’ of windows of NDR region with the indication of antimonotonicity 

and reverse period-doubling scenario created with the smooth variation of 𝑣𝑑𝑐 for some specific value of 

the parameter 𝑟. (a) period-4 bubbles 𝑟 = 9, (b) period-8 bubbles 𝑟 = 8, (c) period-16 bubbles 𝑟 = 7.5, (d) 

period-32 bubbles 𝑟 = 7.4. 
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Figure III.26 (End). (e), (f) and (g) chaotic bubbles  𝑟 = 7.35 and  𝑟 = 6.68  in (f) and (g) respectively 

and stable states occur for 𝑣𝑑𝑐 ∈ [2.39, 2.4] when the EGC 𝛾 = 0.976. (h) Bifurcation diagrams extension 

in NDR for 2.32 ≤  𝑣𝑑𝑐 ≤ 2.4 showing chaos control. 
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Multistability and coexisting attractors 

 

The coexistence of two or more attractors in nonlinear system for different initial conditions and 

fixed other system parameters or for fixed initial condition and different control parameters is 

known as multistability phenomenon [125, 126].  This means the system is sensitive to initial 

conditions and can experience different outputs simultaneously. In Figure III.27, the LD’s optical 

phase time series generated from two very close initial conditions 0 0 0 0( ,0.0300,0, , , )x s n   and 

0 0 0 0( ,0.0305,0, , , )x s n   are presented. At the beginning, these time series are almost the same, but 

the difference is increasing after a certain number of iterations  75 t ns . Therefore, the system 

(II.38) has sensitive dependence on ICs caused by coexisting attractors’ phenomenon, and then its 

future behavior cannot be predicted. 

 
Figure III.27. Sensitivity to initial conditions as the coexistence of two different outputs in laser phase 

oscillations where red line correspond to ICs 0 0 0 0( ,0.0300,0, , , )x s n   and blue line for

0 0 0 0( ,0.0305,0, , , )x s n  . 

 

In addition, by fixing system parameters as follows: 0.0264m  ; 6.65r  ; 0.1058r  ;

1/ 196thi   ; 0.1512  ; 0.020637k  , the coexisting of  N-scroll and M-scroll attractors can 

be found. To display this phenomenon, we arbitrary choose some ICs. In Figure III.28, there 

appears coexisting 4-scroll with 2-scroll hyperchaotic attractors for [1,0.02,0, , , ]T   and 

[1,0.025,0, , , ]T   in Fig. III.28 (a),   coexisting 3-scroll with 1-scroll hyperchaotic attractors for 

[1.23,0.028,0, , , ]T    and [1.25,0.028,0, , , ]T    in Fig. III.28 (b), coexisting 5-scroll with 3-

scroll hyperchaotic attractors for [1.01,0.028,0, , , ]T   and [1.02,0.03,0, , , ]T    in Fig. III.28 

(c), coexisting two 1-scroll attractors for [1.23,0.029,0, , , ]T   and [1.01,0.028,0, , , ]T    in Fig. 

III.28 (d),   coexisting 5-scroll with 1-scroll attractors for [1.01,0.03,0, , , ]T   and 

[1.05,0.03,0, , , ]T    in Fig. III.28 (e) and it is found coexisting 5-scroll with 1-scroll 

disconnected hyperchaotic attractors for 1.01,0.03,0, , , ]T   and [1.01,0.04,0, , , ]T   Fig. III.28 

(f). 
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Figure III.28. Phase portraits of coexisting of N-scroll with M-scroll hyperchaotic attractors by adjusting 

the initial conditions. (a) Coexisting 4-scroll with 2-scroll attractors, (b) coexisting 3-scroll with 1-scroll 

attractors, (c) coexisting 5-scroll with 3-scroll attractors, (d) coexisting two 1-scroll attractors, (e) 

coexisting 5-scroll with 1-scroll attractors, (f) coexisting 5-scroll with 1-scroll disconnected attractors. 

 

Multistability Control and Controllable Number of Scroll 

 

Moreover, we use bifurcation diagrams to control and eliminate multistability phenomenon 

because in many cases of application, this phenomenon is not desirable and need to be controlled. 

Multistability and generating multiscroll attractors increase grammatically the complexity of the 

system. Despite high flexibility provided, these phenomenon need to be avoided. For this purpose 

we firstly, we considered the setting two different initial conditions i.e. [1, 0.028,0, - , - , -] and 

[1, 0.029,0, - , - , -] whereby the trajectories started and we explore the bifurcation diagram and 

LEs spectrum. When the parameter r is adjusted from 6.6 to 8, the bifurcation diagram presents 

the maxima of optical output is plotted in Figure III. 29. The trajectories colored in black 

correspond to the initial conditions [1, 0.028, 0, - , - , - ] and those colored in purple correspond 

to [1, 0.029, 0, - , - , - ]. Furthermore, this bifurcation demonstrates the emergence of multistability 

with coexisting multiscroll attractors for selected parameter windows. For instance, the system 

(II.38) exhibits dynamical behaviors with coexisting multiscroll attractors. Moreover, the system 

trajectory evolves from coexisting multi scroll attractors toward two scrolls. In addition, the two 

disconnected single-scrolls evolve toward a single-scroll attractor and finally fall into a single 

scroll attractor, torus and periodic limit cycle.  
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Figure III.29. Bifurcation diagram of coexisting multiscroll attractors of a variable   with increasing the 

resistance r showing a controllable number of scroll in the system (III.38) 

 

In the other hand, the dynamics evolution of the system if plotted in Figure III.30. The system 

evolves from coexisting multiscroll attractors to one single-scroll and/or periodic limit cycle. The 

LEs are calculated for 1,600 observations normalized time and step size of 0.01 for the same 

parameters as in Fig. III.29. When 6.645r  , the LEs for the previous ICs are LE1 = 

0.0019(0.0032), LE2 = 0.0021(0.001), LE3 = 0.0000(0.0000), LE4 = -0.0764(-0.0689), LE5 =-

0.3417(-0.3359), LE6 = -0.4546(-0.4683). In addition, according to Kaplan-York conjecture, the 

Lyapunov dimensions of this system are 6.9111(6.8554)LD   ; which means that the system 

(II.38) is really defined to by hyperchaotic since at least, two positive LEs are found and the 

dimension is fractional number. Furthermore, the divergences of the system given onto these 

conditions are ( , , )V x n s  
6

1

0.8687( 0.8687) 0i

i

LE


      ; which evidences attractors. 

From III.30 (a), we can observe the coexistence of corresponding 6-scroll with 9-scroll 

hyperchaotic attractors for instance. When 6.651r  , the system exhibits coexisting 2-scroll with 

5-scroll hyperchaotic attractors in Fig. III.30 (b) with corresponding Lyapunov exponents LE1 = 

0.0028(0.0021), LE2 = 0.002(0.0004), LE3 = 0.000(0.000), LE4 = -0.0834(-0.0725), LE5 =-

0.3419(-0.3465), LE6 = -0.4490(-0.4530) and the Lyapunov dimension of this system is

6.9495LD   which implies fractional feature.  When 6.66r  , the system produces coexisting 

2-scroll with 4-scroll attractors as depicted III.30 (c) with corresponding Lyapunov exponents LE1 

= 0.0016(0.0007), LE2 = 0.0008(0.002), LE3 = 0.000(0.000), LE4 = -0.1470(-0.1252), LE5 =-

0.3319(-0.3442), LE6 = -0.3943(-0.4041), the Kaplan-Yorke dimension being 6.9495LD  . From 



Chap. III.  Results and Discussions                                              III.4. Dynamics of RTD-OISCL Systems 

89 

III.30 (d) the system generates coexisting 1-scroll with 2-scroll attractors when 6.66r  . For

6.71r  , the system produces coexisting two disconnected coexisting single-scroll as presented 

in III.30 (e). If we furthermore increase 𝑟 to 6.73, the two single scroll attractors connect to each 

other and form a single scroll attractor in III.30 (f). The system produces quasi-periodic torus in 

Fig. III.30 (g) when 7.2r   and finally the RTD-OISCL system enters into periodic state 

producing periodic limit cycle in III.30 (h) when 9r   with corresponding Lyapunov exponents 

LE1=-0.0038(-0.1647), LE2= -0.0007(-0.1638), LE3= 0.0000(0.0000)   LE4= -0.1784(-0.1675 ), 

LE5= -0.3283(-0.1569 ) and LE6= -0.3629(-0.5646). 

 

Figure III.30. Control of dynamic evolution from the coexisting N-scroll with M-scroll hyperchaotic attractors to 

a single one-scroll and to periodic limit cycle. (a) Coexisting 6-scroll with 9-scroll hyperchaotic attractors. (b) 

Coexisting 2-scroll with 5-scroll hyperchaotic attractors, (c) coexisting 2-scroll with 4-scroll hyperchaotic attractors, 

(d) coexisting 1-scroll with 2-scroll hyperchaotic attractors, (e) coexisting two disconnected single scroll attractors 

(f) coexisting two connected single scroll into one scroll, (g) coexisting two connected quasi-periodic torus, (h) 

periodic limit cycle 

Therefore, the parameter 𝑟 together with 𝑣𝑑𝑐 lead to the controllable number of scroll and the 

multistability phenomenon observed in the system (II.38). Obviously, the parameter 𝑟 refers to 

the overall resistance of the circuit. Interestingly, this method also applies to 𝑣𝑑𝑐 parameter. 

Therefore, it could be promising in hardware experimental realization of these kind of 

optoelectronic systems because it does not need necessary modifications of system intrinsic 

parameters values. 
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A Fast-Slow MMO system 

 

Mixed-mode oscillations (MMOs) describe trajectories of dynamical system that combine a 

rhythmic alternation of large amplitudes oscillations (LAOs) and small amplitude oscillations 

(SAOs) [127], [63]. MMOs can be found in different scientific fields, such as physics, chemistry 

and biology. MMO have been extensively in the hearth of most interdisciplinary research these 

recent years due to its potential of describing processing information nervous systems for example. 

Nonlinear systems with MMOs behavior have received too much attention and considerations for 

instance; mimicking neurological brain dynamics based on low consumption electronic circuit is 

one of the hot attempts in brain-inspired systems. For example in brain’s dynamics, the neuron is 

quiescent if its membrane potential is at rest or exhibits LAOs (sub-threshold) [128]. Quiescent 

states of neurons correspond to the closer an equilibrium states while SAOs refer to a small 

amplitude limit attractor. As more generalized VdP oscillator, RTD-LD Liénard’s (optoelectronic 

hybrid) oscillators are placed to be best candidates to MMO generation. The proposed a 

neuromorphic photonic circuit of Romeira et al. in [63] and some other examples have been 

studied previously. Here, we use the  and  L s  numbers denoted in 
sL  notation to describe the 

number of local maximum of the LAOs and SAOs. In most existing works relating MMOIBs, L=1 

and simplest sequences such as 2 1[1 ,1 ]n  occur commonly [129]. In electronics, Bonhoeffer-Van 

der Pol oscillators [130-132] is a most system used to generate MMOIB and Poincaré return map 

is used to clarify the occurrence of MMOIB [129]. The generalized resulting fast-slow system 

from a two times scale periodically forced coupled RTD-LD fast-slow system is in the form of 

Eq. (III.53). 
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                                   (III.53) 

 with 10 / 1C L L        .  

This system (II.38) is therefore equivalent to a two-time scale system (III.53) obtained by rescaling 

T  to be equal to  t . The variable x  refers to the fast variable. Variables y and   are the slow 
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variables from electrical subsystem. The parameters  ,  n s   and  are slow-driven variables from 

optical subsystem. 
 

Bursting and mixed-mode oscillations 

 

When the system dynamics alternates a quiescent state and a spiking or firing states, its dynamics 

is said to be bursting. The Figure III.31 depicts the bursting phenomenon in optical and electrical 

outputs. The LD emulates BOs arising from electrical output voltage. In Fig. III.31 (a) and (b), 

the sequence of firing and resting states refers to periodic BOs. As longer as we further increase 

the EGC, the system fails into the spiking train with continuous firing exhibition in Figure III.31 

(c). The occurrence of BOs and firing in optical output is caused by a smaller external frequency 

that modulated laser and electrical oscillations.  

 

 

Figure III.31. Square – wave bursting. (i) Time series of optical output ( )s t  and its corresponding (ii) 

phase portraits in the light-voltage ( )s x planes.  (a) Periodic BOs for 0.11  , (b) Periodic BOs for 

0.5   and (c) spiking trains for 0.9   

Chaotic Bursting and Mixed-mode oscillations 

A class of BOs, which appears as an alternate sequence of small amplitude and large amplitude 

oscillations, refers to mixed-mode oscillations. In Figure III.32, the time series seem to be periodic 

and with oscillations within each period. Within each period, this series shows pairs of LAOs 

combined alternations of SAOs. This means the MMOs behavior. However, corresponding phase 

portraits in voltage-light ( )x s plane reveal the existence of periodic chaotic attractors. The large 

and smaller orbits of this attractor refer to large amplitude and small amplitude oscillations from 

time series. Its 3D projection is a Rossler-like chaotic attractor. 
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Figure III.32. (a)Time series of chaotic oscillations for voltage ( )x t current ( )y t , carrier density ( )n t  and 

optical output ( )s t  and corresponding phase portraits in the (a) voltage-current ( )x y and (b) carrier-

photon ( )n s  planes. The solid red line in (b) corresponds to cubic nonlinear of RTD-LD I V  curve. 

 

In Fig. III.33, we observe simple and complex MMOs achieved in electrical and optical domains 

for different values of driving sinusoidal force. Phase portraits show magnified views of large and 

small amplitude oscillations:  small oscillations refer to close fix point limit cycles a(ii) and b(ii). 

 

Figure III.33. a(i)-b(i) Time series of simple periodic MMO in voltage and  optical output respectively  

and its corresponding phase portraits in the a(ii) current-voltage and b(ii) 3D  carrier-voltage-photon 

projection. 

Mixed-mode oscillation incrementing bifurcation 

MMOIBs occur in the manner of the sequence of period doubling generated by the MMO 

sequence 
1( )s s nL L 

for successive naturel number n .  For instance, the Figure III.34 shows the 
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optical wave form of an MMO after two MMOIBs. This MMO sequence 3 4 215 (15 )  represents the 

MMOIB 
3 4 415 15 15  or 3 4[15 ,15 2] . MMOIBs are well known to occur in non-autonomous and 

autonomous systems. In this section, for MMOIBs to occur, the constant parameters are fixed here 

as 5r  , 100acv  , 
81.2566 10    , 0.00035  and 0.97  . We recall that, the system (III.53) 

has four main bifurcating parameters: , r , acv and  . 

 

Figure III.34. Optical time series for the sequence of  
3 4[15 ,15 2]  MMO after two MMOIBs for 5r 

, 100acv  , 
81.2566 10    , 0.00035  and 0.97  . 

The EGC modulates  -parameter and both merely can be used to modulate the laser output. In 

the other hand, the bifurcation diagram versus the ration of slow and fast timescales 𝜀 as 

bifurcation parameter is presented in Figure III.35 reveals the resulting a successive generation of 

period-adding sequences alternated with chaos.  

 

Figure III.35. Bifurcation diagram for 6r  , 0.110vac  , 
90.01 10    , 0.0000 0.0008  and 

0.97   with successive
0 0 1 01 2 2 3    1 2 33 3 3   2 34 4 44  5 64 4 74

84 sequence intervals of MMOs. 

Each period-adding window has LAOs with SAOs. As the parameter is varied, LAOs and SAOs 

increase incrementally as 
0 0 11 2 2    0 13 3 2 3 23 3 4   3 4 54 4 4    64  

7 84 4  . This refers to MMOIBs generation [129]. 
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Influence of r in MMOs evolution 

We investigate the influence the parameter r in the dynamics of MMOs generation. As r in 

increasing, by maintaining other parameters as follows, 0.98   ; 0.93inf GHz  ; 0.0035  , 

the system generate MMOIBs 3 4[15 ,15 2]  when 5r   [III.36 (a)]. With slight variation of r i.e. 

5.1r   in Fig. III.36 (b), the system produces a 
415  MMO. 

 

Figure III.36. Evolution of MMOs with variations of overall resistance when 0.98   ; 0.93inf GHz  ; 

0.0035  . (a) MMOIBs 
3 4[15 ,15 2] , (b) 

415  MMOs, (c) 1011  MMOs , (d) 
07  MMOs , (e) 01  MMOs 

and (f) steady state similar to period-1 oscillations . 

As the resistance is increasing, LAOs is decreasing while SAOs increase up to a certain range of 

r  for which the system exhibits a class of on-off states. Therefore, we have a class of 
1011  MMOs 

for 6r   in Fig. III.36 (c), on-off oscillations in the manner of 
07  MMOs for 7r   in Fig. III.36 



Chap. III.  Results and Discussions                                              III.4. Dynamics of RTD-OISCL Systems 

95 

(d), on-off oscillations in the form of 
01  MMOs for 7.5r   in Fig. III.36 (f) and the system fails 

down in steady state similar to period-1 oscillations. 

Transient Chaos 

Transient chaos occurs in this situation if we 7.4r  and 0.1acv  . In this case, chaos appears for 

the first 525 time iterations as depicted in Figs. III.37 (a) and (b) for electrical and electrical time 

series respectively. Noise-like appearance in power spectra in Fig. III.37 (c) and as well as 

attractor in bleu trace from III.37 (d) evidence the occurrence of chaos transient.  In addition, the 

system goes toward period-1 limit for time up to 512 iterations as presented by enlargements from 

III.37 (a) and III.37 (b), confirmed by one harmonic in power spectra [Fig. III.37 (c)] and period-

1 limit cycle traced in red in Fig. III.37 (d). 

 

Figure III.37. Transient chaos in (a) electrical and (b) optical outputs. Corresponding power spectrum (c) 

and (d) projection of chaotic transient attractor (bleu trace) and period-1 limit cycle (red trace) in voltage-

light plane.

 

III.5. Conclusion 

In this chapter, noise induced effects in optical injection SCLs that the dynamics incudes the EGC 

as a new control parameter was studied. In addition, we proposed the integration process of this 

model of lasers with resonant tunnelling diode devices and investigated the dynamical properties 

the proposal OEHO. 
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Firstly, theoretical and numerical studies of the transmitted noise in optical injection SCLs was 

carried out by treating the laser rate equations according to the Langevin approach. We unveiled 

that the EGC acts as a modulating and control parameter allowing significant reductions of RIN 

spectra at low frequency from −110dB.Hz−1 to −175dB.Hz−1, in addition to the diminution 

achieved by classic decisive parameters. Moreover, a suitable choice a ML with of small phase 

fluctuations leads to avoiding and eliminating the 1/f noise observed in the RIN at low frequencies 

up to by the 1GHz. Next, we proposed a novel formula given the FWHM of SCL by the mean 

EGC that we called a modified Schawlow–Townes formula. 
 

Next, the stability analysis of the proposed novel RTD-LD Liénard oscillator has been investigated 

in the frame of strong and weak optical injection. It has been demonstrated that the system may 

provide some stable equilibrium points as demonstrated by the calculation of eigenvalues of the 

Jacobian matrix and confirmed by the occurrence of a shrunk stable region inside the sea of 

unstable points through the implementation of the Routh-Hurwitz conditions.  

Furthermore, we studied the dynamics properties of the novel OEIC and we found that the driven 

laser diode could exhibit complex dynamics including chaos and hyperchaos. A collection of 

bifurcation diagrams revealed chaotic and nonchaotic windows including quasi-periodic and non-

periodic dynamics for restricted ranges of control parameters. We have shown that the route to 

chaos can be achieved via cascade period doubling sequences. It has also been observed the 

phenomenon of antimonotonicity when the resistance 𝑟 and direct voltage bias 𝑣𝑑𝑐 are varying. In 

addition, the LD could exhibit strange attractors such as chaotic multiscroll and infinite scroll 

chaotic attractors. The evidence of the infinite-scroll attractor has been furthermore performed by 

Simulink implementation with very good accuracy. Moreover, we have observed the multistability 

phenomenon with coexisting N-scrolls and M-scrolls attractors whose natural numbers M and N 

are controlled by the resistance 𝑟. Furthermore, the present OEO has an ability of fast-slow systems 

generating a class of dynamics memory i.e. bursting on-off sequence oscillations with BOs, 

MMOs, square waves and simple MMOIBs. Altogether, these results are very promising for the 

implementation of novel optoelectronic systems free of 1/f noise, with low intensity and frequency 

noises and requiring low modulation voltage/or current and generating complex and utmost 

nonlinear dynamics
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______________________________________________

 GENERAL CONCLUSION 

 

A. Research Summary  

This thesis aimed to study the nonlinear dynamics of optical injection SCLs by focusing on noise 

effects, its control and suppression using modified rate equations and on non-linear dynamics 

induced by the integration of novel class of SCLs with RTD devices. We have investigated 

separately noises and irregular chaotic oscillations as it are of different origins. For this purpose, 

three chapters have made up this thesis after a general introduction which introduced the general 

background, motivations and objectives of the study. 

First, the Chapter I presented the emergence of laser diodes and laser diode technologies 

with a focus on optical injection semiconductor lasers and the origins of noise in laser diodes. This 

chapter has also provided a brief overview of the arguably touted advantages of semiconductor 

lasers in the global laser market in particular in optical communications and telecommunications. 

Secondly, tunnel diode devices and mainly resonant tunnel diode, its structures and principles of 

operation were presented. In addition, we have recalled physical principles that describe the 

operation of heterostructures based on semiconductors with particular attention in the selection of 

wavelengths thanks in particular to semiconductor lasers. Finally, we have presented rate 

equations of optical injection semiconductor lasers model developed by Mengue and Essimbi 

resulting from the modification of the Lang and Kobayashi equations, an overview of 

optoelectronic oscillator constituted with negative differential resistance elements. 

In Chapter II, we firstly presented theoretical and numerical methods known for their 

capacity to analyze noise in frequency domain, to represent of the reduced nonlinear functions 

such as polynomial approximation and the methods to analyses and descriptions for nonlinear 

systems. Secondly, we have analytically modified the SCL rate equations in terms of photon 

density 𝑆(𝑡), carrier density 𝑁(𝑡)and optical phase𝜓(𝑡). In this model of equations, the EGC 

is a new control parameter absent in conventional SCLs rate equations. In addition, we have 

initiated and proposed the integration process of this model of lasers with a resonant tunnelling 

diode’s optoelectronic oscillator and we have analytically developed deterministic ODEs 

describing the dynamics evolution of the novel optoelectronic integrated circuit. 

The Chapter III was devoted to the presentation and discussion of main results of this 

thesis. This chapter has been divided in three folders. 
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The first has treated the effects of noise in optical injection laser systems using Langevin 

approach and has propose effective and simple means in practice to avoid and eliminate 1/f 

noise, to reduce intensity and frequency noises in optical injection lasers systems. We have also 

offered a new formula for the ideal linewidth of semiconductor lasers. This makes it possible 

to meet the need for low noise lasers without, however, modifying the intrinsic parameters of 

the laser. Analytical transformations have shown that the master laser noise drastically affects 

the slave laser. Then, in agreement with the simulations, we have shown a way to avoid and 

eliminate noise-induced effects. Furthermore, we also shown that FN and RIN depend on the 

bias current and the effective gain coefficient. It appeared that an increasing in the pumping 

current leads to a decreasing of intensity and frequency noise. On the other hand, the noise 

decreases by smoothly decreasing the effective gain coefficient. 

The last two parts of this chapter aimed to understand the influence of the RTD current 

on the stability and dynamics of the optical injection laser diode; by means of different tools 

combining analytical calculations and simulations presented in chapter II. In our approach, an 

analytical polynomial model from three models already reported in the literature, was proposed 

at the beginning of chapter II. It polynomial approximation allowed describing with good 

precision the N shape of the current-voltage characteristic of the RTD over a wide range of bias 

current, particularly over the active area of NDR. Despite the great interest of this analytical 

model, simulations can only understand some local effects outside the active zone. 

Nevertheless, the study of the complex dynamics of this system being mostly beneficial in NDR 

region of RTD since outside this zone, the whole system would have a positive resistance and 

could therefore generate a stable or periodic dynamic, we justified the choice of this model by 

collected results. 

The  stability analysis has shown that for laser mode locking to occur, the frequency 

detuning between the slave and the master should be less than -2GHz and so that the fixe phase 

should be located between the boundary curves of the gain coefficient effective or injection 

strength. From Lyapunov methods, it appeared that in the NDR of the RTD, stable equilibrium 

points are achieved by slightly increasing resistance, polarization and the effective gain 

coefficient. We used both electrical and optical parameters to control the systems stability and 

placed this optoelectronic oscillator to belong to next generation optoelectronic systems. 

In nonlinear dynamics point of views, we have shown that seven involved parameters 

can be used as control parameters: 𝑚, 𝑣𝑑𝑐, 𝑟, 𝑣𝑎𝑐, 𝛾, 𝑘 and Ω𝑖𝑛 using  collections of bifurcation 



_________________________________General Conclusion________________________________ 

99 

diagrams. However, four of these parameters have been assigned constants all over numerical 

calculations: 𝑚 = 0.0265, 𝑣𝑎𝑐 = 0.145(𝑉𝐴𝐶 = 145 𝑚𝐴), 𝑘 = 0.0206 and Ω𝑖𝑛 =

1.1836(𝑓𝑖𝑛 = 0.9𝐺𝐻𝑧) while the rest of parameters 𝑣𝑑𝑐, 𝑟 and 𝛾 had served as main bifurcation 

parameters throughout thesis (𝑉𝐷𝐶, 𝑅 and the EGC 𝛾). By varying the EGC, the system was 

capable of generating a scenario of frequency division to chaos with dynamics similar to that 

displayed in SCLs with optical feedback. Furthermore, the system exhibited complex dynamics 

such as of chaotic multiscroll attractors. By setting the EGC at 0.68, the resistance at 6.68 and 

the detuning at -0.32GHz, the system generated an attractor with an infinite number of scrolls 

whose Lyapunov spectrum has evidenced to be a chaotic attractor because at least one exponent 

always remained positive. We have verified the effectivity of this attractor by implementing the 

system under Simulink. Subsequently, we have obseved the phenomenon of antimonotonicity 

created via forward and reverse period-doubling cascades in the parameter space of DC 

voltgage 𝑣𝑑𝑐  and overall resistance 𝑟. Subsequenly, coexistence of multiple scroll attractors 

with contrallable number of scrolls had been achieved by smoothly adjusting of r parameter. 

We also transformed this oscillator into a fast-slow system, generating MOs, bursting 

oscillations, square wave and MMOIBs among others relevant in the description of brain neuron 

activity. 

B. Perspectives of Future Works  

As outlooks in short terms, we will explore the following research lines: 

1. Use this RTD-LD configuration to investigate the influence of feedback time-delayed 

looped from a PD by mapping the time delay and optoelectronic feedback strength as 

control parameters 

2. Use this model of RTD-OISCL for two mutually coupled RTD-LD optoelectronic 

oscillators and investigate synchronization of chaotic laser systems. 

3. Extend this study in the point of view of fractional system and investigate experiment 

results to corroborate fractional analysis by numerical results and experiment results. 

4. Make a numerical study of the system including pumping current noise effects in 

addition two Langevin noise induced by laser working process 
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The elements𝑎1, 𝑎2, 𝑎3, 𝑎4 and 𝑎5of (4) and (5) are given by  
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where 𝑥0 and 𝑛0 denote the steady states of the normalized electrical voltage and carrier density 

respectively. 
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ABSTRACT  

In this paper stochastic dynamics of an optically injected semiconductor laser (SCL) 

operating in the single mode are theoretically and numerically investigated in the framework 

of the Langevin approach. The modified novel analytical expressions of relative intensity 

noise (RIN) and frequency noise (FN), both for master laser and slave one have been 

developed. The effective gain coefficient (EGC) parameter of this rate equation model allows 

achieving noise suppression of 65dB in addition to the diminution of RIN spectra carried out 

by classic decisive parameters. The modified Schawlow-Townes formula is also proposed for 

laser linewidth. Moreover the induced modulation of a full width half maximum (FWHM) by 

the mean EGC allows to more significantly reduce laser linewidth unlike to those of classic 

SCL when the EGC in lower than 0.5 opening the route to the ideal laser linewidth which is 

discussed. The impact of linewidth enhancement factor (LEF), spontaneous emission factor 

(SEF) and EGC is investigated in noise spectra around the threshold current. 

Keywords: Semiconductor laser, Langevin noise, effective gain coefficient, relative intensity noise, 

frequency noise, linewidth, small signal analysis. 

PACS codes: 42.55.Px, 42.60.Mi 
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It is well known that laser optical injection consists in seeding a free running slave laser 

(SL)with a master laser (ML) beam [1], in a frame of the unidirectional coupling between two 

lasers. The light from a first laser so-called ML is injected into the cavity of another laser 

known as slave which represents the transmitting source. Unidirectional coupling is ensured 

by an optical isolator. Over the past decade, the study of optical injection has attracted many 

researchers [2] and, single-mode semiconductor laser (SCL) subjected to an external optical 

injection has shown their great interest leading to the laser injected-locking to be regarded as a 

high-speed photonic microwave source [3]. This seeding opens a rich variety of dynamical 

behavior in laser optical wave. In other terms injection-locking improves significantly the 

performances of slave lasers leading to several benefits for many applications including 

optical communications, microwave signal generation, all-optical signal processing[1, 4]. 

However some laser systems are likely of generating noise due to intrinsic and extrinsic 

mechanism such as spontaneous emission, carrier recombination and so on which tend to 

decrease the performance of optical emission, manifesting in the form of relative intensity 

noise, frequency noise and widening of laser linewidth [5-7]. Several investigations have 

proposed the possibilities to reduce noise level in SCLs by carrying out classic decisive 

parameters. Among which the increasing of laser power or injection biased current [8, 9] the 

suppression of high frequency current [10],  the control of optical feedback[11], noise 

reduction by the method of amplitude-phase decorrelation based on the variation of the 

linewidth enhancement factor [12], the control of cavity volume and gain compressor 

temperature [13] and so on [14]. All of these investigationshave been explored using classic 

rate equations models [1-12]. 

In 2011, Mengue and Essimbi have developed modified rate equations model of SCLs 

subject to optical injection [15]. In addition, their recent works have shown that SCLs exhibit 

the interesting dynamics by the means of effective gain coefficient (EGC) control [16, 17] that 

classic rate equations models could not display. In other hand it has been shown that the 

variations of the EGC-parameter control the dynamics generated by classic decisive 

parameters such as linewidth enhancement factor (LEF) and optical injection rate: which has 

shown interesting improvement in optics[16, 17]. It has also been shown that, the EGC leads 

to the generation of hypersensitivity, useful for secure communication systems including 

chaotic synchronization by coupling two SCLs [18], in addition to the quasi perfect recovery 

of the encrypted digital message. Knowing that this SCL model has been designated to be 

connected with optical devices and owing intrinsic random mechanisms, it is obvious that, 
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this SCL model is affected by noises. Thus, in this paper we develop modified novel 

analytical expressions of relative intensity noise (RIN) and frequency noise (FN) for master 

and slave lasers. The impacts of the EGC-parameter are carried out for noise suppression 

investigations in addition to the diminution of RIN spectra achieved by classic decisive 

parameters. Moreover we explore from the mean EGC, the reduction of laser linewidth 

through the proposed modified Schawlow-Townes formula. This allows envisaging a route to 

the narrower ideal laser linewidth. 

The paper is organized as follows. The next section describes the injected SCL rate-equations 

model for the slave including Langevin noise sources that account the generation of the 

fluctuations. Section 3 outlines the linearization of the rate equations following the small-

signal analysis, with the help of Fourier transformations. Here, mathematical novel 

expressions of RIN, FN and FWHM both for ML and SL are derived and analyzed. Section 4 

concludes the paper. 

2. The injected SCL rate equations 

We introduce the stochastic single mode rate-equations including few changes on 

original equations. Based upon Fig.1, the dynamics of the SCL (slave laser) is described from 

the rate equations for the photon density	ܵ(ݐ), the electron density ܰ(ݐ) and optical phase 

 Note that, the rate equations model from Refs.[15-18] is a predictive description of .[15] (ݐ)߰

laser electrical field and optical phase derived from the model depicted in Fig. 1. However, 

laser output exhibits intensity as well as phase fluctuations. Then, in a strict sense, the 

stochastic description of rate equations requires to take into account the spontaneous emission 

noise (SEN) as well as those of Langevin noise. Therefore, one has 

  *

(1 )
( ) ( ( ) ) ( ) 2 ( ) cos ( ) ( ) ( ) ( )

(1 )

inj
N th inj inj sp S

in

kd S t G N t N S t S S t t t R t F t
dt

  
 

        
,   (1) 

  *

1
( ) ( ( ) ) sin ( ) ( ) ( ) 

2 (1 ) ( )

inj inj
N th inj

in

k Sd t G N t N t t F t
dt S t 

    
 

        
,          (2) 

 ( ) 1
( ) ( ( ) ) ( ) ( ) N th N

r p

d N tN t J G N t N S t F t
dt  

        
  

,                                (3) 

( ) ( )injt t t    ,                                (4) 
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( )
( )

sp
sp

r

N t
R t

 


 .                                          (5) 

In contrast of the model equations in Ref. [16], here we consider photon densiy  ( )S t , which 

is related to the amplitude of electrical field inside the cavity  ( )E t , by
2 ( ) | ( ) |S t E t . The 

spontaneous emission noise source is given by spR  ; ( ) ( )t t tinj     is the phase 

difference between the internal and the injected fields;   is the frequency detuning ; Sinj

is the injected photons number from ML;  sp
 
is the spontaneous emission factor (SEF) 

representing the fraction of spontaneous emission light coupled to the laser mode;    is the 

confinement factor; the functions ( )xF t with , ,x S N  are the Langevin noises sources;  J  

is the pumping parameter corresponding to current density, ௧ܰ௛ is the carrier density at the 

threshold, ߬௥the carrier lifetime, ߬௣ the photon lifetime,  is the effective gain coefficient 

(EGC), injk   the injection parameter, 
* /  in in   is the effective time of light in the laser 

cavity where the round-trip time inside the laser cavity is in . 

3. Noise characteristics and discussions 

   3.1. Master laser noises  

Equations (1-5) explicitly show that, slave rate equations include photons density 

( )S tinj  and optical phase ( )inj t  from ML. It can seem so clear that, to understand stochastic 

dynamics of slave, we have to study ML noise contribution [2]. Thus, we do not take into 

account the injection parameters. The ML is described by the same equations as SL but 

without optical injection parameters. For better understanding, we refer to ML by the 

subscript ‘‘inj’’ and assume that ML and SL are identical. Then ML rate equations are 

linearized taking small-signal analysis around their steady states values for ( )injS t , ( )inj t  and 

( )injN t  as follows: 

                                                           
 

0
( ) ( ) inj inj injx t x x t                                                      (6) 

where injx
 is either injS , inj or injN . 
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The spontaneous emission contribution is:  

                      

 
0

0

( ) ( )
inj

inj inj

sp
sp sp inj

inj

R
R t R N t

N


 
     

.                                            (7) 

Next, the photons number, optical phase, carrier density and spontaneous emission rate are 

separated into steady states and fluctuations terms, 

                                         
 

0
( ) ( ) j t

inj inj injx t x x e d  




     ;                                                                (8) 

                                      
 

0

0

( ) ( )
inj

inj inj

sp j t
sp sp inj

inj

R
R t R N e d

N
  





 
    

 
                                          

 (9). 

Because of their zero means values (due to the stochastic nature of all noises sources), 

frequency components of Langevin noises for ML are defined by, 

                                          

( ) ( )
inj inj

j t
x xF t F e d 





                                                          (10) 

where injx
 is either injS , inj or injN . 

We treat the problem by linearization and we neglect second order fluctuations. Also, we 

separate continuous and fluctuated terms. Applying Fourier transformations, we get, 

                        

   
0

 
inj

in j in j inj

inj

th
inj in j p in j th p

r

N
S J J J 



 
    
 
 

,                                      (11a) 

                                 
 

0
0inj  ,                                                                                   (11b) 

                                
 

0 injinj thN N ,                                                                                (11c) 

                               
   

0

0

inj

in j

in j

sp in j in j
sp

r

N
R

 


                                                               (11d) 

                       

1

11 12

21 22

( )( )

( ) ( ) 

inj

inj

Sinj

inj N

Fj m mS
m j mN F

 
  

     
            



 
 ,                                  (12) 
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 32

1
( ) ( )  ( )  

injinj injm N F
j     


   ,                                                (13) 

where 

11 0m  ,                                                           (14a)  

 
 

0

12 0

(1 )

(1 )

inj

inj

inj

spinj
N inj

inj inj N

R
m G S

N



             

,                                       (14b)  

21

1

injp

m


 ,                                                                     (14c) 

 22 0

1
inj

inj

N inj
r

m G S


  ,                                                  (14d)  

32

1

2 (1 ) inj

inj
inj N

inj

m G








.                                                                  (14e)  

Here, ( )injS  , ( )injN  , ( )inj  , ( )
injSF   , ( )

injNF   and ( )
inj

F   are the Fourier transforms 

of time functions corresponding to the fluctuation terms ( )injS t , ( )injN t , ( )inj t , ( )
injSF t  , 

( )
injNF t  and ( )

inj
F t , respectively.  

Using Cramer’s rule, we find the spectral densities for photon density, carrier density and 

phase density given by the following Eqs. respectively, 

  2 2 2 2 2 2 *

22 12 22 122

1
| ( ) | | ( ) | | ( ) | 2 ( ) ( )

| ( ) | inj inj inj injinj S N S NS m F m F m m F F      


   


    

(15) 

 2 2 2 2 2

212

1
| ( ) | | ( ) | | ( ) |

| ( ) | inj injinj S NN m F F    


 


                                              (16) 

 2 2 2 2 2

32 212 2

1 1
| ( ) | | ( ) |  | ( ) |  

| ( ) | inj injinj Sm m F F   
 

 
   

                                (17) 

 2
2 2 2 2

12 21 22| ( ) | m m m      .                                                                                  (18) 
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Equations (15)-(18) reveal that the spectral characteristics of the ML cannot be determined 

unless the spectral densities of Langevin noise sources are known. Following the formulas 

given in Ref. [8] and according to some improvements mentioned in section 2, diffusion 

coefficient associated with each noise sources can be expressed by taking their correlations 

[19]. Among these, Langevin terms are given such as, 

   2

00
| ( ) | 2

inj injS sp injF R S  ,
 
 

2 0

0

| ( ) |  
 2

inj

inj

sp

inj

R
F

S   , *( ) ( ) 0
inj injSF F                    (19) 

   2

00
| ( ) | 2  

inj

inj inj

inj

th
N sp inj

S

N
F R S



 
  

  

 ,    *

00
( ) ( ) 2

inj inj injS N sp injF F R S      ,

*( ) ( ) 0
inj injNF F    .                                                                                                          (20) 

A more general expression of the RIN is given by 

                                            
 

2

2

0

| ( ) |inj
inj

inj

S
RIN

S




 
 


                                                       (21) 

From Eqs. (14), (15) and (19), (21) leads to master laser RIN expression, 

        

 
 

   
 

2 2 2

22 12 12 22

000

2
2 2 2

12 21 220

1 2
2

inj

inj injinj

th

S sp injsp

inj
inj

N
m m m m

R SR
RIN

S m m m




 

 
    
 
  

 
                     

(22) 

where 12 21 22, , m m m
 
and 32m  are defined in Eqs.(14). 

We assume the  following  numerical values of laser parameters: 6inj  , 

13 3 18.1 10 .
injNG m s   , 2

injp ps  , 2
injr ns  , 

24 3

0
1.1 10

inj
N m  , 

24 31.7173 10
injthN m  ,  

32 3 18.5865 10 .
injthJ m s   , 8in ps  , 0 .2in j   . Other parameters used are found on figure 

captions. 

Figure 2(a) shows the spectra of RIN variation curve of ML (free-running laser) for some 

values of bias current and Fig. 2(b) presents the RIN when EGC changes. The RIN exhibits a 

resonance phenomenon at the resonance frequency. This will be easier to see by the presence 

of peaks on illustrative curves, by increasing the injection current, from 1.5 to 12 times the 
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threshold current (Fig. 2(a)). The RIN spectral is a flat white noise characteristic in low-

frequency regime due to the small amplitude of the intensity fluctuation. In the high-

frequency regime, the spectra exhibit the well-known carrier photon resonance peak around 

the resonance frequency. The peaks show that, the stochastic behavior of the laser is affected 

by the natural resonance of electron and photon populations [20]. The increase of current is 

associated with an increase in the relaxation oscillation peaks. The fact that the photon 

number and carrier number in the laser cavity are random variable makes that noise intensity 

be different from a white noise spectrum. Similar results have been obtained by numerical 

simulations or observed in experiments [14]. 

Moreover, when the laser operating above the threshold (see Fig. 2(b)), varying the EGC 

values reveals a significant diminution of RIN spectra in the low frequency form -110dB/Hz 

to -175dB/Hz when EGC moving from 0.99 to 0.1. This noise level is allowed to 

communication systems [8] for EGC values less than or equal to 0.75 for a bias current two 

times the threshold. If we need to reduce RIN level we must then increase current. Especially, 

around the resonance frequencies whose values depend also to the EGC values, the RIN 

spectra is the same. However, with the same current bias, it is also possible to reduce RIN 

level through EGC values (see Fig.2 (a) curves (1), (2) and (3)).  Over the resonance 

frequency oscillation (RFO), the convergence of all RIN spectra observed when EGC changes 

is very quick unlike to the current change values. The peak of intensity noise is reduced down 

around -25dB/Hz, with the frequency oscillation which is shifted around 0.65GHz when the 

EGC value is fixed in Fig. 2(a) (see curves from (1) to (5)). Also, in Fig. 2(b) this decrease is 

only pronounced at the lower frequency (lower than the RFO). 

The frequency noise (FN) is given by the relation 
1

2

df
dt



 which is also expressed as 

                                         
( ) ( ) 

4
inj injf   


                                                              (23) 

Thus the frequency noise is given from Eq. (20) as, 

                            

2
2 2

2
| ( ) | | ( ) |   

4
inj inj injFN f   


                                           (24) 

In accordance to Eqs. (13)-(16) and (19) we get,  

Page 8 of 30AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-107527.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



                            

 
 

 
 

2
2 2

32 21 00

22 2 2 2

12 21 220

4
1

8

injsp inj

inj
inj

R m m S
FN

S m m m  

      
  

 

                             (25)  

where 12 21 22, , m m m
 
and 32m  are defined in Eqs. (14). 

The simulated results of the FN is illustrated in Fig. 3 with the same intrinsic parameters 

values as those used for RIN in Fig. 2.  Figure 3(a) shows that, for the injection current rate 

near above the unit, the FN spectra are flat. Above and far above the unit, the spectra reveal 

the resonance oscillation frequency around 1GHz and 10GHz when EGC is fixed. If we 

maintain constant the current and change EGC the repartition becomes the same as with the 

RIN (see Fig. 3(b)).  

The FWHM is derived from the FN. Because of the Lorentzian shape of electrical field, the 

spectral linewidth is evaluated from the low frequency to the frequency noise as 

2 ( 0)f FN    [6, 8]. Using  Eqs. (25) and (8), the FWHM is given as,  

 
 

 
 

2 2

2 20 0

2 2

0

1+ 1+
1 18 8

inj inj

inj inj

inj inj

sp spinj inj
inj

inj injinj inj th p

R R
FWHM

S J J

 
 

   

      
                            

(26). 

It is well-known that linewidth of SCL is larger than that of ordinary laser that has an almost 

negligible linewidth enhancement factor (LEF)   which value is few units [8]. Because of 

the EGC values range, it is shown from Eq. (26), the induced modulation of the FWHM by 

the mean EGC (see refs. [15-18] for the mean EGC) which leads to more significantly reduce 

the laser linewidth. Indeed, the relationship  2
2 2

/ (1 )
inj injinj inj     is maintained valid as 

long as 0 0.5inj  . Therefore, the formula (26) known as a Schawlow-Townes formula 

becomes one of the main point of this paper. We call it the modified Schawlow-Townes 

formula due to the fact that the EGC-parameter leads to narrower laser linewidth by 

decreasing EGC values. The Figure 4 plots the corresponding result of the FWHM. Figure 

4(a) depicts the variation of the linewidth with bias current ratio  /
injinj thJ J  for some value of 

spontaneous emission factor (SEF), and Fig. 4(b) shows the variations of linewidth with EGC. 

Recent years, the mains way to reduce the FWHM was to reduce LEF or SEF (Fig. 4(a) and 

Fig. 4(c)). Up to that day, we show that the FWHM can also be controlled with the help of 

EGC (Fig. 4(b)). The ECG plays a similar role as spontaneous emission factor avoiding an 
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abrupt increase of FWHM near the threshold [19]. Thus, Fig. 4(b)  shows that the decrease of 

EGC leads to a route to ideal laser linewidth. 

We mention that, according with Fig. (2b) and Fig. (4), we may paid more attention to the 

conditions to get narrow linewidth, keeping the RIN and FN levels always low. Thus, to avoid 

the increase of FN and RIN spectra keeping narrow linewidth, EGC must stay in the level 

lower than 0 .8 . 

    3.2 Expression of RIN and FN of slave laser 

In this section, to derive the RIN and FN mathematical expressions, we apply 

successively small-signal analysis around the steady states points  0 0 0, ,S N , linearization 

and Fourier transformation of Eqs.(1), (2) and (3). Similar to section 3.1, ( 0( ) ( )x t x x t  ), 

the steady state points are given by the following implicit expressions 

    
   

1/2
*

1 1 0
0
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1
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1 1 / (1- )

in
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 
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r
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





 
,
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S
 
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  .                        (27) 

The fluctuation terms are obtained as solutions following system,  

1

11 12 13

0 12 22 23

31 33

( )( )

2 ( ) ( )

( ) 0 ( )

S

N

fS j b b b
S b j b b f
N b j b f

  
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   

                  
         
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 

 ,                      (28) 
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, 
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(29) 

The functions Sf , Nf  and f expressed in Eqs. (30), (31) and (32) are equivalent to the total 

fluctuations of photons density, carriers density and optical phase respectively inside the slave 

laser cavity whose expressions are,   
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( ) ( )  N Nf F   ,                                   (31) 
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where 0S , 0N  and 0  are average values for photons density, carriers density and optical 

phase of SL,  respectively. The fluctuations components ( )S  , ( )    and ( )N   are 

obtained as solution of Eq.(28).  After arrangements we get  
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  

2

12 33 23 31 12 11 33 31 13 33 11

11 23 13 12 23

1
( ) ( ) ( ) ( )

2

              ( ) ( ) 

S

N

b b b b j b f b b b b j b b f
S
b b b b j b f Y

      

  

          

   

 

 
, (34) 

   


22 31 31 31 12

2 2

11 22 12 22 11

( ) ( ) ( )

               ( ) ( ) ( )

S

N

N b b j b f b b f

b b b j b b f Y

    

   

   

       

 

 
 .                                          (35) 
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with     
  

  
2 2

31 12 23 31 13 22 12 33 11 22 33 11 22 33

3 2

31 13 12 11 33 11 22 22 33

( )

            

Y b b b b b b b b b b b b b b

j b b b b b b b b b

 

 

        

     



                    (36)       

We need to know the cross-correlations and correlations of Sf , Nf  and f  functions in order 

to express RIN and FN of slave. For simplification, Yabre et al. [2] assumed that the 

Langevin noise sources of ,  an d  S NF F F    are not to be correlated with photon density

( )Sinj   and optical phase ( )in j   fluctuations of the ML is given as solutions of  Eqs.(12) 

and (13). From Eq. (33), the power spectral densities for intensity and phase noise can be 

obtained as follows,respectively 

   
    

 

2 22 2 2 2 2 2 2 2 2

22 33 22 33 12 33 33

2 2 2 2 2 *

13 22 12 23 13 22 33 13 22 12 23

2

12 33 22 33

| ( ) | | ( ) | | ( ) |

               | ( ) | +2 ( ) ( )

              2

S

N S N

S

S b b b b f b b b f

b b b b b f b b b b b b f f

b b b b e f

      

    



            

       

  

 

  



  

*

2
*

12 23 13 22 12 23

( ) ( )

             2 ( ) ( ) ( )  N

f

b b b b b b f f Y





 

  

   

  



  

,                                                                                                                                     (37) 

 
 

   

 

22 2 2 2

12 33 23 31 1222

0

2 22 2 2

11 33 31 13 11 33

2 2 2 2

11 23 13 12 23

1
| ( ) | | ( ) |

4 ( )

                         | ( ) |

                       | ( ) |

               

S

N

b b b b b f
S Y

b b b b b b f

b b b b b f



   


  

 

     

        
     








  
   

2 *

12 33 23 31 11 33 31 13

*

12 33 23 31 11 23 13 12

        2 ( ) ( )

                       2 ( ) ( )

S

S N

b b b b b b b b e f f

b b b b b b b b f f

  

 

       

  

 

 

       .             (38) 

Using Sf , f  and  Nf  expressions according with ( )injS  , ( )injN   and ( )inj  , we 

obtained spectral density of slave fluctuations as 

     
 

 
 

2
2

0 21 32 12 22 2 22 2 2 20
0 0 22 0 122 20

0

4 | ( ) |
| ( ) | 2 4 | ( ) |

( )

injsp inj
S sp inj

inj

R S m m b b S
f R S S b S b

S

 
  


   

  
 


 

   (39) 

Page 12 of 30AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-107527.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 
   

 

2
21 32 12 2222 2 2 20 0

0 12 222 2

0
0

2 | ( ) |1
| ( ) | 4 | ( ) |

2 4( )

injspsp inj
inj

inj

R m m b bR S
f S b b

S S


 
  



 
          


  , 

(40) 

 2 0
00

| | 2    N sp
r

NF R S


 
  

 
   ,                                                                                       (41) 

 *

00
( ) ( ) 2  S N spF F R S     ,                                                                                         (42) 

*( ) ( ) 0NF F       ,                                                                                                      (43) 

where 

   
   

 

21 322* 2 20
0 22 122

2

2

12 22 22 122
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2
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| ( ) |1
                                    2 | ( ) |      

2

injsp
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inj
inj
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R m m
e f f S b b

S
b b b b

S

 


 
 


    
 



      

 




  ,                  (44) 

Using the definition of RIN and substituting Eqs. (39) - (44) in Eq. (37), the RIN of slave 

laser can be written as 

   
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.(45) 
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From the previous definition giving the expression of FN in Eq. (24) and Eq.(37), we derived 

the slave laser FN expression as follows 

 
   

     
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inj inj

b b b bb RIN FN


      
(46) 

The functions injRIN and injFN  derived from Eq.(22) and Eq. (25) are intensity noise and 

phase noise from the ML respectively. 

3.3 Illustrative Curves and Discussion  

 a) The RIN 

We recall that noises of the SL are influenced by noises from ML, and therefore Eq. (45) 

and Eq. (46) agree with fact, because RIN and FN  of the slave are expressed as dependent 

functions of intensity noise injRIN and frequency noise injFN from ML. Owing to the large 

number of parameters involved in these expressions, in order to reduce the level of frequency 

noise and intensity noise, those parameters that can significantly affect noise levels will only 

be examined. The choice brought to these parameters and especially to the EGC can be best 

understood through RIN and FN spectra by turning to the next figures for SL relative intensity 

and frequency noise.  

Indeed Fig.5 (a) and Fig. 5(b) show the abrupt decrease of intensity noise with appearance of 

two relaxation peaks. That decrease is similar to the shot noise limit in Ref.[19] or to the 

famous 1/ f  noise. The first peak corresponds to free-running laser relaxation frequency 

(drop representations). Thus, all these peaks are perfectly at the same relaxation frequency as 
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those of optically injected laser (fat representations). However for 20dB   injection rate (Fig. 

5(a) and Fig 5(c)), at all frequencies the both spectra level RIN are highest to free-running 

level noise. Near the RFO and above RFO these levels become reduced of more than 5 /dB Hz  

compared to the master levels. At RFO the reduction is more than 10dB. But, we can establish 

in Fig. 5(d) that for 40dB   injection rate, slave RIN level leaves above that of master laser on 

all frequencies repartition: on that conditions, intensity fluctuation from the SL is greatly 

enhanced by the optical injection from the ML.  

It remains that, the appearance on second peak has also been reached as in Ref. [2]. That peak 

can be understood with accordance to Eq. (45) and in connection with the fact that the noise 

characteristics of ML are included in the determination of the SL noise in the stable-locking 

condition. 

    b) The effect of ignoring master laser optical phase noise contribution on RIN 

To avoid the abrupt decrease of RIN observed in low frequencies reducing RIN levels, 

we may need here more careful choice of parameters involved and we must suppose for 

simplicity that, the ML phase fluctuations are small enough to be taking into account. The 

term ( )in j  in Eq. (30) could be neglected.  Figure 5(c) and Fig. 5(d) show the effect of 

neglecting ML optical phase noise contribution. The frequency spectra show an almost flat 

profile at lower frequencies whatever the injections rate inj 00
S /S . Figure 5(d) is the main 

important case of intensity noise reduction. Indeed, we have a little more 40dB  reduction in 

the RIN spectrum comparatively to the free-running slave. We pay attention to the choice of 

the physical parameter values by supposing that slave and master lasers are to be almost 

identical and keeping SCL linewidth narrow. Then, we have restricted to work on these 

conditions: injection parameters are to be    inj 00
4   45dBS /S dB  , EGC in ranges  0  0.88  and  

 0.4  0.99 for ML and SL respectively. On these conditions, the SL bias current is more or 

equal to two times his threshold current. Exact values of main parameters are given in the 

captions. When the master bias current is increased, the RIN decreases.  However when that 

current becomes at five times the threshold current (for 40dB injection parameter) and at ten 

times (for -20dB injection parameter) (see Fig. 6(a) and Fig. 6(b) respectively) or above, the 

stochastic dynamics of slave change. RIN and FN spectra become very interesting. We can 

observe clearly the gradual disappearance of the first relaxation peak. Intensity spectrum of 

slave behaves almost identically as those of ML (see Fig. (6)). That fact is supported by the 
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slave laser frequency noise Fig.7(a) to which we also have the gradual disappearance of first 

pic relaxation corresponding to the SL when 12
thinj injJ J  and in Fig. 7(b) for 0.45  . These 

observations indicate that the ML parameters and noise could provide drastic change on 

characteristic of SL noise spectrum. Figures 8 and 9 show the effect ECG on the FN and RIN 

spectra when the ML and SL bias currents and other injections parameters are fixed. By 

increasing the EGC of the slave, the FN is reduced. Sometime, if master laser EGC becomes 

near the unit, master laser FN takes the lead and noise becomes also more intense in RFO 

(Fig. 8(a) for 0.3 ; 0.99inj   ). Figure 8(b) presents the effect of master laser EGC in FN 

when slave laser EGC is fixed, it provides FN reduction when master laser EGC is decreasing. 

When 0.55inj  , whatever 0.3  , we have dual pronounced peaks in noise spectra Fig. 9(a). 

However, the level easily decreases on low frequencies domain and display convergence after 

RFO by increasing EGC of slave laser when EGC of master laser is fixed (see Fig. 9 (b)). The 

RIN and FN profiles show that stochastic behavior of the SL can be identical to that of free-

running laser or injected laser by the adapted choice of EGC values. Figure 9(b) reveals the 

sensitivity of the nonlinear dynamics of the SCL used in this paper. Indeed for small 

variations of  EGC, the RIN spectrum presents a very new particular stochastic dynamics, for 

0.65 0.69  , the profiles present hollows in points A and B (see Fig. 9(b)) at low 

frequencies (before resonance) which are connected with the change of RIN sign observed in 

Ref. [12]. When 0.578  , the variation of the RIN becomes almost flat. In Fig. 10(a), it is 

clearly observed that, when the injection rate is positive (dB unit) the slave RIN to master 

RIN ratio ( / injRIN RIN ) is smaller than the unit (see Fig.10 (a)). This confirms, in agreement 

with the Fig 5(a) and Fig. 5(c) that the RIN of slave is higher than those of master. However 

in Fig.10 (b), the phenomenon is reversed. For better understanding, we have to note that, 

RIN  and injRIN
 
have negative values and the interpretation of Fig. 10(a) and Fig. 10(b) 

requires the consideration of these negative signs. 

 

4. Conclusion 

In this paper, we analytically and numerically presented the stochastic behavior of a 

single-mode SCL under external optical injection. Using the small signals analysis, we 

derived the novel expressions for the RIN and the FN from the master and the slave lasers. 

The effective gain coefficient (EGC) parameter of this rate equations model allows a drastic 
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diminution of RIN spectra in the low frequency from -110dB/Hz to -175dB/Hz in addition to 

the diminution of RIN spectra carried out by classic decisive parameters. Moreover the 

induced modulation of FWHM by the mean EGC leads to more significantly reduce laser 

linewidth which has opened the route to the ideal laser linewidth by reducing EGC-values 

through the proposed modified Schawlow-Townes formula. In addition, we have envisioned 

as a solution to avoid abrupt decrease of slave RIN on low frequency regime, a suitable choice 

of small phase fluctuations from the master laser. Numerical analysis of intensity, phase noise 

and linewidth of this SCL rate equations model is under way and will achieve the full study of 

this system under in consideration. 
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Figure captions 

Fig.1. Scheme of optical injection. The slave laser is submitted to optical injection by the 

master laser. Unidirectional coupling is ensured by and optical isolator. 

 

Fig.2. RIN of the master laser as function of frequency; (2a) when 0.5inj  for several bias 

current conditions (1) 2J Jinj thinj
   , (2) 2.5J Jinj thinj

  , (3) 4J Jinj thinj
   and (4)

12J Jinj thinj
   ; (2b) when 2J Jinj inj th

  , for several value of EGC (1) 0.00inj  , (2) 0.25inj 

,(3), 0.5inj  .(4) 0.65inj  . (5) 0.99inj  . 

 

Fig.3. FN of the master laser as function of frequency; (a) when 0.45inj  for several bias 

current conditions; (b) when 2J Jinj inj th
  for several values of EGC. 

 

Fig.4. Variation of linewidth with injection current ratio. Curves show the rapid narrowing of 

linewidth with increasing current ration. By decreasing the following parameters: (a) SEF, (b) 

EGC, (c) LEF. 

 

Fig.5. RIN variation for the following rate injection. (a) -20dB and (b) 40dB when phase 

fluctuations of master laser are considered. (c) -20dB and (d) 40dB when phase fluctuations 

are neglected. 

 

Fig.6. Effects of ML increasing current in the slave RIN spectrum for the following rate 

injections. (a)for 40dB , (b) 20dB . 

 

Fig.7. Slave laser FN. (a) for some values of current, (b) for some values of EGC. 
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Fig.8. Frequency-variation of FN of the slave laser, with the following injection parameters

9
20 10 Hz   , 1

1 10kinj
  ,  2

10
0 0

S Sinj
 ; 2.5J Jinj inj th

  . (a) When the master laser and 

slave laser EGCs change, (b) when slave laser EGC is fixed. 

 

Fig.9. Influence of EGC and other injection parameters on RIN.(a) When EGC of master laser 

is fixed to 0.55, (b) when both EGC of ML and SL change. 

 

Fig.10. Slave RIN to master RIN ratio. (a) When EGC of master laser is fixed, (b) when EGC 

of master laser changes and 0.8  . 
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Fig. 1. David Essebe E. Noise. 
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Fig. 2. David Essebe E. et al.  Noise. 
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Fig. 3. David Essebe E. et al.  Noise. 
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Fig. 4. David Essebe E. et al.  Noise. 

 

 

 

 

 

 

 

 

 

 

Page 24 of 30AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-107527.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 

 

 

 

Fig. 5. David Essebe E. et al.  Noise. 
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Fig. 6. David Essebe E. et al.  Noise. 
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Fig. 7. David Essebe E. et al.  Noise. 
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Fig. 8. David Essebe E. et al.  Noise. 
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Fig. 9. David Essebe E. et al.  Noise. 
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Fig. 10. David Essebe E. et al.  Noise. 
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A B S T R A C T

This paper shows a complex nonlinear dynamics of an optically injected laser diode (LD) directly
modulated by electrical current from a resonant tunneling diode (RTD) circuit. The LD model
evolves a new control parameter called effective gain coefficient (EGC) and can switch between a
free-running laser and a perturbed laser. A bifurcation diagram analysis sustained Lyapunov
exponents’ spectra reveals chaotic and quasi-periodic dynamics for restricted ranges of the fre-
quency fin and by EGC variations, including the generation of the hyperchaotic regime and
multiscroll chaotic attractors through a cascade of periodic oscillations to the chaos. Moreover,
an implementation of this new coupled system also shows that when an AC signal V sin πf t(2 )ac in is
added to the DC voltage bias, the LD outputs show several optical signals such as periodic, co-
herence collapse and chaotic regimes with different strange complex attractors which are de-
voted to more improve secure optical telecommunications.

1. Introduction

Since the discovery of chaos in 1963 by Lorenz, several attempts are made in many research fields in order to improve the
complexity of dynamical system behaviors, leading to the chaos control. Nowadays, the study of chaotic systems is one of the main
topics in nonlinear dynamics. Particular interest of chaos in optoelectronic circuits is to increase of specific performances of secure
communication systems [1]. Semiconductor lasers are well-known as three-dimensional nonlinear systems for electrical field E t( ),
carrier densities N t( ) and optical phase ψ t( ) mainly used in electronic/optical communications. However, these lasers are very
sensitive to external perturbations such as optical feedback, optoelectronic feedback or optical injection[2,3]which can induce
various instabilities such as extreme events, unforeseen effects complex nonlinear dynamical behaviors including chaos generation
and so on in laser optical emission[4,5]. Therefore optically injected laser diodes (ILDs) are classified as complex nonlinear dynamics
systems.

In addition, it has been proved that when driven by nonlinear current, the laser can operated with complicated dynamics[6].
Numerous driving nonlinear circuits are built by negative differential resistance elements for example Van der Pol oscillator, RTD
circuits [7,8]and so on. In these last recent years, RTD circuits have received considerable attention due the broad-bandwidth
negative differential resistance (NDR) region up to hundreds of GHz that RTDs provide[9]. Due to their narrow depletion region,
RTDs can generate quantum effects such as phenomenon of tunneling effect; indeed the flow of electron (current) can easily tunnel
through the quantum-well structure (QWS), manifesting itself by giving rise to the NDR. Major breakthroughs in RTD optoelectronic
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hybrid circuits’ (OEHCs) research have presented the possibility to easily integrate a RTD with others optoelectronic or optical
devices such as photo-detector (RTD-PD) [9,10], electroabsorption modulator (RTD-EAM), laser diode (RTD-LD) or photodiode-laser
diode (RTD-PD-LD) [7,10]. In these integrated circuits, RTD-LD modules act as hybrid optoelectronic devices which preserve the
high-nonlinearity of RTD’s current voltage (I-V) [4,8]. That is the starting reaping benefit of this coupling.

In recent works on RTDs-based circuits, the voltage-dependence current of RTD is modelled by the physics-based representation of
Schulman et al.[7,8]or those of Brown et al[11]. Most of these works are focused on the single mode free-running laser whose rate
equations describe the photon S and carrier N densities motions on the laser cavity[7,8]. Nevertheless, it is very interesting to know
how the RTD-LD optoelectronic circuit acts by using an optically injected laser especially controlled by a novel chaotic parameter; the
so-called effective gain coefficient (EGC) which is acknowledged to improve the secure communications and optical stability with or
without noise and renders more complex the fractal dimension of relevant chaotic attractors[5,12]. Therefore, this paper describes for
the first time the RTD and optically injected semiconductor laser coupling, using new rate equations model given by Mengue et al [2]
and several interesting investigations carried out by the means of new decisive parameter-EGC and by the integration of the RTD
driving. It is proven here that this approach leads to a novel sort of nonlinear complex laser systems whose dynamical behaviors
seems richer than those of free-running laser diodes and the laser is capable of switching between a free-running laser and a perturbed
laser. Therein, when an external AC driving voltage is added to de DC-bias, the injected laser diode (ILD) outputs a rich variety of
dynamics including period adding to chaos, coherence collapse and different strange chaotic attractors for low modulating DC-biased
voltage around 1.1V. This investigation carries interest in optical communication systems requiring low modulation current, fre-
quency synthesizer and encryption information using controlled chaos generators.The article is organized as follows. In the tracking
section, we present the equivalent electrical circuit of RTD-ILD optoelectronic oscillator and ILD rate equations. Section III presents
numerical results and discusses about laser emissions by exploring series time evolutions and bifurcation diagrams of carrier and
photon densities. It also discusses about, strange attractor shape obtained in carrier-photon space, Poincaré maps and evolutions of
Lyapunov exponents. Finally, we conclude our paper in section IV.

2. Equivalent RTD-ILD lumped circuit description and laser model

The equivalent lumped circuit of the system is shown in Fig. 1(a) consisting of an RTD connected in series with a semiconductor
laser subjected to the optical injection. The dynamics of RTD-based oscillator is described by the output voltage V t( ) across the
capacitance C and electrical current I t( ) flowing in the inductor L.The resistor R is the overall resistance due to ohmic contacts and
the circuit is well known as a forced Liénard oscillator [8,10]. Since the series connection of RTD with LD preserves the RTD shape
current-voltage I-V characteristic [4],we use the cubic nonlinear term F V( ) (Eq. (1)) modeling a mathematical representation of
current-voltage characteristic of RTD-ILD whose graphic is given in Fig. 1(b). The factor B, a and b are positive constants.

Throughout numerical calculations, we have used the following parameter values: = × −B A V0.01796 10 /3 3, = × −a V2.451 10 3

and = × −b V2.446 10 3 , and therefore

= − −F V BV V a V b( ) ( )( ) (1)

Using Kirchhoff’s rules to the circuit presented in Fig. 1(b),we obtain the set of first order ordinary differential Eq. (2) giving the
current modulation of the LD; I t( ) and the voltage V t( ) across RTD-ILD series connected. For the sake of simplicity, we could also
admit RTD-LD instead of RTD-ILD.

= −

= − − +

dV t
dt C

I t F V

dI t
dt L

V RI t V t V πf t

( ) 1 [ ( ) ( )],

( ) 1 [ ( ) ( ) sin(2 )].dc ac in (2)

In order to study the dynamical behavior of the driven ILD, we use the single mode semiconductor laser rate equations for the
photon density S t( ), the electron density N t( ) and the optical phase ψ t( ) as given in Ref.[12] without stochastic terms,

Fig. 1. XXX.
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I t( ) is the modulating current given by numerical calculations of Eq. (2), ηi is the optical efficiency, q the electronic charge, ϑ the laser
diode active region volume, τr the carrier life time, τp the photon lifetime, the constant GN is the modal gain, Nth the carrier density at
the threshold, γ the effective gain coefficient (EGC), kinj the injection parameter, =τ τ γ/in in

* is the effective time of light in the laser
cavity where the round-trip time inside the laser cavity is τin, = −ψ t φ t ωt( ) ( ) Δ represents the phase difference between the internal
and the injected fields where ωΔ is the frequency detuning.

For the purpose of algebraic transformations and numerical simulations, Eqs. (1)–(3) are normalized in order to work with small
quantity values.

Thus, the variables are rescaled by the mean of constant values of optoelectronic system V I N S( , , )th
T

0 0 0 , with =V V10 , =I A10 ,
= +N N G τ1/( )th N p0 , =S N τ G τ/( )th p N p0 .The subscript …( )T indicates the transpose.Thus the dimensionless voltage x t( ), current y t( ),

photon s t( ) and carried n t( ) densities are defined by =x t V t V( ) ( )/ 0,y =t I t I( ) ( )/ 0, =n t N t N( ) ( )/ th and =S t s t S( ) ( )/ 0 respectively.
The rate coupled equations corresponding to dimensionless quantities x y z n s ψ( , , , , , )T for the dimensionless rescaling time

variable =τ ω t0 are given as follows:
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The normalized parameters are defined by =m C L/ , =τ ω τr0 0 , γ0=1/τ0 and = πf ωΩ 2 /in in 0 is the normalized frequency of
external AC perturbation, =G G ω/0 0 with G the normalized differential gain[2], =ω LC1/0 is the dimensionless natural angular-

frequency of forced RTD circuit, =ΔΩ ω
ω
Δ

0
and =k k

ω τ
S
S

inj

in
inj

0 0
refer to normalized frequency detuning and injection strength, re-

spectively. Without lack the generality and for simplification, we choose =S Sinj 0. For numerical calculation we assume that the laser
threshold current is around =I mA5.1th ( =i 5.1th ), R-parameter around 6.6 Ω, =C pF5.6 and =F nH8.0 .

3. Numerical Results and Discussion

3.1. Bifurcation diagrams and proposed control parameters

Since the semiconductor laser is perturbed by an external periodic AC voltage with frequency fin and an optical injection signal
characterized by kinj parameter or γ from Sinj according to semiconductor LD here used model, we propose to use an RTD driver
oscillator parameter fin andlaser EGC parameter γ as control parameters of laser dynamics.

Fig. 2 plots bifurcation diagrams of LD driving current corresponding to normalized y t( ) parameter (Fig. 2(a)) and photon density
in Fig. 2(b) with the variation of fin respectively. It is found that these bifurcation diagrams present chaotic regions separated by
quiescent regions when fin is moving from around GHz0 to GHz2.35 maintaining EGC constant at 0.5, =V V1.145dc and

=V mV150ac . Chaotic regions are known as unsynchronized windows and quiescent regions describe the possible synchronization
between driving current and laser emission corresponding to period-n oscillations[7]. It is also found that the nature of driving
current is emulated by laser photon number through the perfect replications of different windows corresponding to bifurcation
diagrams infrequency domain. So we also highlight this fact through the times series evolutions stood for in Fig. 5.

The bifurcation diagram of laser output with increasing EGC is presented in Fig. 3 for =f GHz1.3in .According to certain values of
EGC as depicted in Fig. 6. It is clearly shown that the laser evolves from chaotic dynamical behavior for ≤γ 0.37 to periodic orbits for
γ equal to 0.4, 0.6 or near 0.8 as presented by zooming in Fig. 6 and far near to 0.97 EGC values. However there are narrower chaotic
regions between periodic windows.

According to bifurcation diagrams in Figs. 3 and 4 fin and EGC, γ can be used as to control chaotic dynamics. In addition,
bifurcation diagrams depicted in Fig. 4 show that the amplitude of the periodic perturbation Vac also allows the control of chaos.
Therefore, various dynamics that bifurcation diagrams reveal leads to choose fin, γ and Vac like control parameters whose numerical
values are given on different captions.
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3.2. Time series and phase portraits

In optical communications, the driving oscillatory current I t( ) information is converted into optical output via the laser in order
to be coupled to conventional channel such as optical fiber until its extraction at the receiver. We present through Fig. 4, series time
evolutions of driving current and optical outputs, when EGC is fixed to 0.65, without frequency detuning, with =k 0.0078inj ,

=V V1.145dc and =V mV120ac , for different values of fin mainly =f GHz0in (Fig. 4(a)), =f GHz0.42in (Fig. 4(b)) and =f GHz1.9in
(Fig. 4(c)). It appears conspicuous to observe for laser emissions, carriers and photons evolutions emulate the driving current (y
variable), confirming the earlier mentioned fact that the RTD current waveforms directly modulate the optically ILD even when laser
outputs are chaotic (Fig. 4(b) and (c)). The emulation phenomenon means that laser diode rationally converts electrical signal into
optical signal.

Fig. 2. XXX.

Fig. 3. XXX.
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In addition, with particular values of both optical and electrical perturbation (optical injection and AC voltage excitation, re-
spectively), corresponding to injection strength = × −k 2 10inj

3 for frequency =f GHz1.3in , at V1.145 DC bias, we reproduce some
dynamical behaviors of the LD through phase portraits limit cycles in Fig. 6 for certain values of EGC, namely =γ 0.99, =γ 0.9,

=γ 0.75, =γ 0.4, =γ 0.3 and =γ 0.25. We notice that a period-1 oscillation occurs when =γ 0.99 and a period-2 close =γ 0.9.
When EGC =γ 0.75 and =γ 0.4, the laser displays a period-3 and a period-6 attractors respectively. The dynamics becomes chaotic as
long as γ is decreasing from 0.41 to 0.1. According to the bifurcation diagram depicted in Fig. 3, we clearly observe the γ -control
chaos in laser oscillations in Fig. 6. In these conditions, γ -variations carry away a route to chaos like those displayed in certain optical
feedback systems [13].

We notice in addition that, the frequency detuning shift from GHz2 to GHz30 , while other parameter values are constant as in the
previous figure, the LD outputs various different shapes of attractors for certain values of EGC and these attractors are strange at

Fig. 4. XXX.

Fig. 5. XXX.
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lower γ -values at 0.4 as presented in Fig. 7.
A paramount result of this coupled system is also exhibited in Fig. 7(a) with the emergence of novel multiscroll chaotic attractors

rarely observed in semiconductor lasers dynamics which appear through a scenario of 2-period attractor, 3-period attractor and
multiscroll chaotic attractor in the photon-carrier phase plane by decreasing the EGC. In addition in Fig. 7(b), we stand for the 3D-
projection s n ψ( , , ) of a multiscroll attractor near to the upper limit value of EGC ( =γ 0.099).

Fig. 6. XXX.

Fig. 7. XXX.
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3.3. Poincaré maps and Lyapunov exponent spectra

In this subsection we study the rich dynamics of the coupled system by successively showing Poincaré maps and Lyapunov
exponent evolutions for different values of control parameters.The Poincaré section is obtained from the topological behavior of
phase space portrait. Its simplest idea is to suppose a particular proper surface (plan (P)) on phase space. One observes the set of
intersection points between the plane(P) and states of the trajectories of variables. The Poincaré map is then created with this set of
crossing points[14–16]. Fig. 8 depicts the 3D behavior of carrier-light-phase attractors and the corresponding Poincaré maps by
sampling the phase space portrait stroboscopic following the plane(s-n) when the RTD-RLC-LD circuit is biased at high voltage around

=V V2.38dc (but always in the RTD-LD negative differential resistance region), for the amplitude of AC voltage =V mV2ac and
=f MHz910in . The displayed 3D strange shapes in n s ψ( , , ) plan (left panel) and corresponding Poincaré map (right panel) indicate

that laser operations are highly affected by variations of EGC.When =γ 0.22, the laser exhibits a quasi-periodic oscillation due the
corresponding closed curve shown by Poincaré map. It appears a strange attractor for =γ 0.25 in Fig. 8(a). However, in Fig. 8(b) we
show a coherence collapse regime for γ -values higher than 0.25 in particular increasing of γ from 0.33 to 0.36 and corresponding
Poincaré maps.

We finally examine the sensitivity of laser with control parameters fin and γ by evaluating the predicted quantity (number) that
measures the exponential rate of separation or attraction of two close trajectories in the phase space. In Fig. 9, we compute the
evolutions of Lyapunov exponents. It is found that at least one of the Lyapunov exponents evolutions corresponding for the photon
density λs, the carrier density λn or the optical phase λψ is positive when ∈f GHz GHz]0 , 2.6 ]in (Fig. 9(a)) or for ∈γ ]0 , 0.85[
(Fig. 9(b)): It is a strong hallmark of chaotic signals generated by the laser. Furthermore, by looking into Fig. 9(a), we note two
positive Lyapunov exponents for fin lower than 1.2 GHz and a narrower frequency region with two positive Lyapunov exponents for
f ε GHz GHz]0.5 , 0.7 [in . It points up of the hyperchaotic regime in the complex dynamics the semiconductor laser-tunnel diode
coupling.These kind of systems are primordial in secure optical communications due to fractal dimension of aforementioned at-
tractors in the complete chaotic synchronization[5,17].

4. Conclusion

In this study, we have analyzed dynamics of semiconductor lasers driven by a current from an RTD oscillator. Owing to the large
number of parameters involved, we have explored the evolution of the laser rate equations through bifurcation analysis of proposed
control parameters i.e. the frequency fin, the effective gain coefficient γ or the external periodic voltage amplitude Vac. We de-
monstrated that the laser exhibits a rich variety of complex dynamics including chaos which was firstly proved by displayed shapes of
strange attractors on photon-carrier space. One of main results of the study is the multi-switching of lasers which behave as electro/

Fig. 8. XXX.
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optical converter under peculiar conditions. We have investigated the route of the multiscroll chaotic attractors and proving the
existence of the hyperchaotic regime in laser dynamics at a limited frequency interval. Altogether, these results are very promising for
the implementation of novel optoelectronic systems requiring low modulation current with an utmost nonlinear dynamics.
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Abstract
In this paper a 6-D optoelectronic system consisting of an optical injected semiconductor 
laser driven by a resonant tunneling diode is reported. A stability analysis of the hybrid 
system is analytically and numerically performed and paramount role of the effective gain 
coefficient is stuck out in the framework of new stability control. As a result, this param-
eter allows improving the accuracy of the stability study by circumscribing locked and 
unlocked regions. Besides, a narrow area of stability is pointed up within the sea of unsta-
ble points from which a complex fractal attractor so-called infinite-scroll attractor is high-
ligted. Thereby, Simulink shows generation effectiveness of infinite-scroll attractor errati-
cally interpersed by laminar phases. Also dynamics of Lyapunov exponents has confirmed 
that it refers to a strange fractal attractor. Moreover chaos control is structurally carried out 
by direct current polarisation.

Keywords  Infinite-scroll attractor · Stability · Chaos control · Simulink implementation · 
Tunneling diode · Laser

1  Introduction

Chaos is a rich nonlinear phenomenon characterized by interesting properties such as 
unpredictability, ergodicity, mixing property, complicated structure dynamics, deter-
ministic dynamics, high sensitivity to initial condition (Abdullah et al. 2018) to name 
a few. Many natural and non-natural systems are commonly modeled by nonlinear dif-
ferential equations exhibiting chaos. So, nonlinear process plays as a cornerstone in 
developing and understanding novel complex systems as well it has received significant 
attentions in various fields. Chaotic systems have been also attracted in several scientist 
fields and usually play a relevant role improving their performances. There are many 
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reasons why the nonlinear dynamics have been intensively studied in recent years. For 
example in physics to mention merely a few, nonlinear dynamics offers a great opportu-
nity to improve memristive systems (Wang et al. 2017; Ma et al. 2018), circuit-systems 
(Li and Yao 2016; Ma 2014; Sun et al. 2011) lasers (Mengue and Essimbi 2012a; Daly 
et al. 2013) RTD optoelectronic based-systems (Figueiredo 2008), etc.

In recent years, several studies have been reported in the field of optoelectronic 
related to resonant tunneling diode-laser diodes (RTD-LD) systems with very interest-
ing potential in improving laser features (Romeira 2008, 2013; Romeira et  al. 2017; 
Ironside et al. 2019). However, the two-rate equations have been used to model the LD 
dynamics. Recently, Essebe et al. (Essebe et al. 2020) have taken into account the modi-
fied RTD-LD systems including a semiconductor laser with optical injection modeled 
by Mengue and Essimbi (Mengue and Essimbi 2011). This has lead to a 6-D optoelec-
tronic system with furthermore complex dynamical behavior such as the generation of 
multiscroll chaotic attractors, coherent collapse, as well as hyperchaotic dynamics con-
trolled by the effective gain coefficient and other parameters (Essebe et al. 2020).

As well-known, in nonlinear chaotic systems, a slight variation of parameters or ini-
tial conditions can give rise to different outputs dynamics due to instabilities for exam-
ple (Abdullah, et  al. 2018). In addition in lasers’ dynamics, optical injection, optical 
feedback, electrical current modulation or other external excitation provides additional 
degree of freedom (Ohtsubo 2006; Mengue and Essimbi 2012b). Hence, despite inter-
esting behavior which occurs in laser output due to additional degree of freedom, the 
system may be subject to undesired phenomena such as relaxation oscillations, coher-
ence collapse, instabilities, bursting oscillation (Mengue and Essimbi 2012a), etc. that 
can deteriorate the laser outputs (Ohtsubo 2006). Stability analysis may provide suit-
able conditions improving the features of those systems. Understanding instabilities of 
nonlinear systems is important to access their performance or to control their dynam-
ics. Stability analysis deals better with nonlinear systems (Daly et  al. 2013; Ohtsubo 
2006; Mengue and Essimbi 2012b). The stability analysis control includes the phase 
portrait analysis, Lyapunov stability theory using eigenvalues or Lyapunov exponents 
and Routh-Hurwitz criterion to name a few.

In this paper, the Routh-Hurwitz stability criterion, Simulink implementation and 
Lyapunov exponents’ dynamics are applied to various control parameters to investigate 
the oscillatory behavior of this system. Using theoretical and numerical calculations, 
we investigate the effects of main parameters such as DC bias, optical injection strength 
and the effective gain coefficient (EGC) on dynamical behavior. The purpose of this 
paper is to study the stability analysis and infinite-scroll attractor behavior of this novel 
model. The control of the system is provided through bifurcation diagram to further-
more improve functionalities of RTD-LD oscillators. In recent years, Matlab-Simulink 
environment has taken growing consideration in the simulation and implementation of 
chaotic systems (Abdullah et  al. 2018) and in designing new chaotic maps for secure 
communication/transmission (Hamsa 2018) with accuracy. So, in this paper, Matlab/
Simulink implementation will be built to understand well the formation of infinite scroll 
attractors.

The paper proceeds as follows: in Sect.  2 we present the optoelectronic model equa-
tions and the stability analysis according to Routh-Hurwitz criterion. Section 3 provides 
its infinite-scroll attractor and Simulink implementation. Section  4 discusses the results 
and the effect of main parameters of dynamical behavior and the last section is devoted to 
conclusion.
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2 � Optoelectronic model

Recently starting from the classical RTD-LD Liénard oscillator (Figueiredo 2008; Romeira 
2008,2013; Romeira et al. 2017), we have derived the time dependent equations of a novel 
6-D optoelectronic hybrid oscillator by replacing the 2-D LD by 3-D LD from Essebe et al. 
(2019). The model’s circuit is presented in Fig. 1. From Ref. (Essebe et al. 2020), the nor-
malized dimensionless differential equations of the system are given by Eqs. (1)

Let us note that, the triplet (n, s,�) represents the optical output subsystem where n, s 
and � are normalized carrier density, photon density and optical phase respectively. Equa-
tion  (1) is obtained rescaling parameters as follows:x(t) = V(t)∕V0,y(t) = I(t)∕I0 , 
N(t) = N(t)∕Nth and s(t) = S(t)∕S0,� = 1∕ith . The normalized parameter m is equal to 
m =

√
C∕L ; �0 = �0�r

(
�0 = 1∕�0

)
 and Ωin = 2�fin∕�0 is the normalized frequency of 

external AC perturbation. G0 = G∕�0 , with G the normalized differential gain, 
�0 = 1∕

√
LC is the normalized natural angular-frequency of forced RTD circuit, 

ΔΩ = ΔΩ∕�0 and  k = kinj

�0�in

√
Sinj

S0
  refer to normalized frequency detuning and injection 

strength respectively. The parameter � is the mean EGC (Essebe et  al. 2020). The RTD 
consists of 2 AlAs barriers each 2 nm thick and 6 nm InGaAs quantum with measured val-
ues of valley-to-peak voltage difference of around 0.8 V and peak current densities up to 18 
kAcm−2. The device emitted in the 1550  nm optical communications window and can 
achieve up to 28 dB optical modulation in a 200 μm active length device area InGaAlAs 
RTD, with 500 nm as the width of the low doped layer on the collector side of the RTD 
(Figueiredo et al. 2001). The tunable semiconductor diode Laser with external cavity from 
635 to 2450 nm, output power up to 1mW and high fiber coupling efficiency (Mengue and 
Essimbi 2011).

(1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = m−1
�
y(t) − f (x)

�

ẏ(t) = m
�
vdc − ry(t) − x(t) + vac sin (z(t))

�

ż(t) = Ωin

ṅ(t) = 𝛾0

�
𝜎y(t) − n(t) −

n(t) − 𝛿

1 − 𝛿
s(t)

�

ṡ(t) = 2G0𝛽(n(t) − 1)s(t) + 2𝛾k
√
s(t) cos (𝜓(t))

𝜓̇(t) = 𝛼G0(n(t) − 1) − 𝛾k
1√
s(t)

sin (𝜓(t)) − ΔΩ

Fig. 1   Equivalent circuit of the optoelectronic RTD-LD oscillator



	 D. E. Essebe et al.

1 3

  388   Page 4 of 16

3 � Theory

3.1 � Analytical study of stability

The N-shape of the RTD is approximated by a current–voltage cubic law which presents 
a negative differential resistance region (Essebe et al. 2020), as depicted in Fig. 2. Here, 
we denote the first positive differential resistance PDR1, the negative differential resist-
ance NDR and the second positive differential resistance PDR2. Also, the area (between 
the curve and V-axis) under the RTD current–voltage characteristic is S1 and that above 
is S2 . Later we shall discuss the dynamic of the system when S1 ≈ S2 (Fig.  2a), S1 < S2 
(Fig. 2b) S1 > S2 (Fig. 2c). The number of equilibria points will be analyzed as follows. Let 
ẋ = ẏ = ż = ṡ = ṅ = 𝜓̇ = 0 , so we get the non-trivial steady states. This leads to numerical 
calculation of equilibria points solving the Eqs. (2) giving the relationships between fixed 
points successively

with y
0
= B

0
x
0
(x

0
− a)(x

0
− b) , Δn0 = n0 − 1 , � = 1 − � , A0 = −(ΔΩ)2

(
�y0 − 1

)
+ �2k2,

A1 =
�2k2

1−�
+ (ΔΩ)2 + 2�G0ΔΩ

(
�y0 − 1

)
, A2 = −�2(G0)

2
(
�y0 − 1

)
− �2(G0)

2
(
�y0 − 1

)
2�G0ΔΩ and 

A3 = �2(G0)
2 + �2(G0)

2.

(2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

rf (x0) + x0 − vdc = 0

y0 = f (x0)

z0 = 0

A3(Δn0)
3 + A2(Δn0)

2 + A(Δn0) + A0 = 0

s0 = (�y0 − n0)(1 − �)∕(n0 − �)

�0 = − arctan(�∕�) + sin
−1

�
−ΔΩ

√
s0∕�k

√
1 + (�∕�)2

�

Fig. 2   Current–voltage (I-V) characteristics of RTD corresponding to S
1
≈ S

2
 (a), S

1
< S

2
 (b) and S

1
> S

2
 

(c) 
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From the relation S(t) = (E0(t))
2 (where E0(t) is the magnitude of the complex opti-

cal field),s0 must always be a positive value i.e. 𝜎y0 > n0 . Numerical calculation 
of Eqs. (2) shows that this conditions is satisfied if and only if the frequency detuning 
obeys ΔΩ ≤ 2GHz i.e.ΔΩ ≤ 0.41952 . In addition, according to the boundary of sine 
function, the necessary condition for optical locking requires the following relation  
ΔΩ = ±(�k∕

√
s
0
)

�
1 + (�∕�)2 . For constant biased laser, we found in Ref. (Mengue and Essimbi 

2012b) that all the points situated in space (ΔΩ = ±�k∕
√
s0) inside two curves are in lock-

ing region. However for the described driven laser, the condition ΔΩ ≤ 0.41952 is added to 
insure that the photon number s0 should be positive. Then possible locking regions can be 
found as presented in Fig. 3. From Eqs. (2), z0 is always equal to zero due to the t-compo-
nent from non-autonomous system. The steady state solutions x0 and y0 can be numerically 
calculated, and therefore we can obtain the corresponding n0 , s0  and �0 by solving numeri-
cally Eqs. (2) for each other variable.

The Jacobian matrix of the system around the equilibrium set of point 
M0

(
x0, y0, z0, n0, s0, 0,�0

)
 is defined by

where f �(x0) = B0

(
3x2

0
− 2(a + b)x0 + ab

)
.

The corresponding characteristic equation of the system (3) can be written as

(3)

JM0
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m−1f �(x0) m−1 0 0 0 0

−m −mr mvac 0 0 0

0 0 0 0 0 0

0 �0� 0 −�0

�
1 +

s0

1−�

�
−�0

�
n0−�

1−�

�
0

0 0 0 2�G0s0 2G0�(n0 − 1) +
�k√
s0
cos(�0) −2�k

√
s0 sin(�0)

0 0 0 �G0

�k

2(s0)
3∕2

sin(�0) −
�k√
s0
cos(�0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3   a Unlocking and locking regions. The blue, red and black solid lines are plotted for � = 0.65 , � = 0.8 
and � = 0.9 respectively; b Range of fixed optical phase �

0
 for ΔΩ situated in locking region between the 

bleu solid line and dote black line from (a)
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The coefficients a1 , a2 , a3 , a4 and a5 are given in Appendix.
The Hurwitz matrix associated to Eq. (4) is given by the Eq. (5).

Equation (4) can then be solved in order to capture the type of fixed point stability. In 
the same way, from the Routh-Hurwitz criterion, the equilibria M0

(
x0, y0, 0, n0, s0,�0

)
 are 

stable if all roots of Eq. (4) have negative real parts; otherwise they are unstable fix points. 
The necessary condition for stability is satisfied if and only if all the principal minors of (5) 
are positive. Since the coefficient a0 = 1 , this implies the following Routh-Hurwitz crite-
rion stable locked solutions condition:

(4)E(�) = �
(
a0�

5 + a1�
4 + a2�

3 + a3�
2 + a4� + a5

)

(5)H =

⎡
⎢⎢⎢⎢⎣

a1 a0 0 0 0

a3 a2 a1 a0 0

a5 a4 a3 a2 a1
0 0 a5 a4 a3
0 0 0 0 a5

⎤⎥⎥⎥⎥⎦

Fig. 4   Stability boundaries calculated from the Routh-Hurwitz stability critrion given by Eq. (6) for the first 
minor (a), the second minor (b), the third minor (c), the forth minor (d) and the fifth minor (e) of the Hur-
witz matrix. The intersecting figure (f) shows that there exits a shrunk stable locking regionwhich satisfies 
Routh conditions
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In this stage, we can solve Eqs. (6) graphically using Maple software and the result is 
depicted in Fig. 4.

3.2 � Dissipativity

The divergence of the system (1) is

It is hard to directly determine this dissipativity because of its dependence to the system 
variables (x, n, s) . However, as a , b , B0 , m , �r , 𝛿(with 𝛿 < 1) , r , � and G0 are positive, the 
variables (x, n, s) have always positive values and n  is nearly equal to one. Hence, it clearly 
appears that the divergence ∇V = −�(x, n, s) is less than zero for convenient values of 
(x, n, s) such as −�

(
x0 = 1, n0 = 0.99, s0 = 6.4751

)
= −0.78516 wherein s0 is determined 

by using Eq. (2).
In this respect, the system (1) could be dissipative (as we have shown in tracking section 

that � ≈ 0.87 ) and the element volume of the system is contracted at time t by the flow in 
the volume V0e

−�t . This means that the asymptotic solution settles into an attractor in the 
6-D phase space. We denote that the selected maps will not be the 6-D, 5-D or 4-D but the 
projection of the attractor of the system in 2-D or 3-D spaces generated by adjusting selec-
tive control parameters such the EGC, frequency detuning and r-parameter.

(6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

a1 > 0

a1a2 − a3 > 0

a1a2a3 − (a1)
2a4 − (a3)

2 + a5a1 > 0

a1a2a3a4 − a1(a2)
2a5 + 2a1a4a5 − (a1a4)

2 − (a3)
2a4 + a2a3a5 − (a5)

2 > 0

a5 > 0

(7)

ΔV = 𝜕ẋ∕𝜕x + 𝜕ẏ∕𝜕y + 𝜕ż∕𝜕z + 𝜕ṅ∕𝜕n + 𝜕ṡ∕𝜕s + 𝜕𝜓̇∕𝜕𝜓

= −mr − m−1abB0 − 𝛾r − 2𝛽G0 +
(
−m−1B0x(3x − 2a − 2b) − 𝛾rs∕(1 − 𝛿) + 2𝛽G0n

)

Fig. 5   The formation of infinite-scroll attractor: a Two-scroll attractor (t = 1,000), b Five-scroll attractor 
(t = 3,000) and c Forty one-scroll attractor with eight laminar phases (t = 20,000)
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3.3 � The Infinite‑scroll attractor and Matlab/Simulink implementation

In this section, we use the fourth order Runge–Kutta (RK4) in the rate equation system 
(1) to generate the infinite scroll attractor and verify its effectiveness using MATLAB/
Simulink implementation.

Let us recall that there is not non-chaotic system that exhibits multiple scrolls. 
Multiscroll attractors can be found either the system is chaotic or hyperchaotic (Ma 
et  al. 2018). In this section, we set the parameters as = 0.0264 , r = 6.65,� = 0.68 , 
� = 1∕ith ≈ 196,� = 0.1512 , vdc = 1.145 v and vac = 0.1441 and the system (1) being 
under relative strong external optical injection k = 0.020637 . We choose the normalized 
time varying and numerical implementations are implemented using the RK4 algorithm 
in Matlab. After an initial transient, the solution settles into irregular and non-periodic 
oscillation that never repeats exactly in time. The trajectories in phase diagram when 
the optical phase �(t) is plotted against the carrier density n(t) in Fig. 5 show that, an 
attractor which the number of scroll that increases while the calculating time increasing. 
The system generates: two-scroll, five-scroll, and forty one-scroll attractors as the time 
is increasing, respectively in Fig. 5a–c.This stands for the infinity-attractor. We recall in 
addition that, according to refs. (Ma 2014) and (Ma et al. 2018), the number of scroll 
increases the complexity of the systems; it is useful that this number be stabilized to a 
fixed number. This fact is possible to be carried out by choosing 𝛾 > 0.68 when others 
parameters are fixed as indicated above or by decreasing the optical injection parameter 
k.

The MATLAB/Simulink implementation is used in addition in normalized system (1). 
A complex scheme is designed in a chip simply by choosing essentially small building 
blocks of Simulink such as multipliers, gains, summations, constants, functions, integra-
tors, etc. as shown in Fig. 6. The behavior of (1) through Simulink scheme is investigated 
for same parameter values as in Fig. 5.

The first step is to verify the generation of infinite-scroll attractor. Simulink observations 
referring to the formation of infinite-scroll attractor, in the � − n plane from XY Graph3 
is depicted in Fig. 7a. Figure 7a (i) shows a three scroll attractor for t = 2,226, Fig. 7a (ii) 
presents a four scroll for t = 2,410, a five scroll attractor in Fig. 7a (iii) for t = 3,000 and a 
six scroll attractor in Fig. 7a (iv) for t = 3,360. It is shown that, the number of scrolls gener-
ated increases by the time of implementation. The Simulink observations confirm the RK4 
numerical simulation results and the effectiveness of the infinite scroll attractor.

Second step consists to present optoelectronic attractors for other different param-
eters. It is interesting to discuss the optoelectronic phase portrait using the triplet (x, n, s) 
which is implied in the divergence in Sect.  3.2. Figure 7b–d depict the current–voltage, 
the light-voltage (optoelectronic) and the carried-photon projection of the chaotic attractors 
respectively.

Let us mention in addition that, the chaotic behavior of the infinite-scroll attractor is 
confirmed in respect to the frame of Lyapunov exponent dynamics. As depicted in Fig. 8, 
we have at least one positive Lyapunov exponent so; the system (1) the generated infinite-
scroll is chaotic.
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4 � Results and discussions

4.1 � Improved linear stability and dynamics of infinite‑scroll

In this section, the stability properties of the optically injected semiconductor laser (LD) 
driven by a resonant tunneling diode (RTD) current is numerically investigated and 

Fig. 6   Simulink implementation scheme of RTD-LD hybrid optoelectronic oscillator
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Fig. 7   a Simulink observations referring to formation of Infinite-scroll attractor: the projection on  � − n 
plane from XY Graph3 given for the simulating time show three-scroll a(i) t = 2,226, four-scroll a(ii) 
t = 2,410, five-scroll a(iii) t = 3,000 and six-scroll a(iv) t = 3,360 attractors. Projections of chaotic attractor 
from Simulink simulation in (b) current–voltage,(c) light-voltage and (d) carrier-photons plane from XY 
Graph1, XY Graph2 and XY Graph4 respectively when r = 6.65 , � = 0.7 , v

dc
= 1.145 , v

ac
= 0.1441 and 

k = 0.020637

Fig. 8   Lyapunov exponents’ dynamics of infinite-scroll of system (1) with the same fixed parameters as in 
Fig. 5
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dynamic implementation of these stability properties is performed.
In Fig.  3a it is shown that the locking regions extend when EGC increases from a 

certain value. EGC acts as a control stability parameter and enables to improve the 
accuracy of the stability study further. From Fig.  3b almost all possible values of �0 
are negative. Their number should be larger as � decreasing. Additionally, under weak 
injection strength and according to Eq. (2), �0min,max

= ±�∕2 − arctan(�∕�) and under 
strong injection, �0min,max

= ±�∕2  similar to the Ref. (Daly et al. 2013). As � = �−1 − 1 , 
the stable phase condition at the boundaries of EGC � will be such that, when  
𝜓0min,max

(𝛾 < 0) = ±𝜋∕2 and 𝜓0min,max
(𝛾 < 1) = −𝜋 or 0.

Note that, according to Eq. (6) the stable region corresponding to the frequency detun-
ing in locking region shall be given from voltage-carrier steady states 

(
x0n n0

)
 as all states 

can be connected from Eq. 2. In Fig. 4 we illustrate the Routh condition for the first minor 
Fig. 4a, the second minor Fig. 4b, the third minor Fig. 4c, the forth minor Fig. 4d and the 
fifth minor Fig. 4e from the Hurwitz matrix (5). Figure 4f illustrates the superposition of 
aforementioned figures corresponding to all combined parts of Eq. (6). It is obvious to 
observe that, Fig.  4f does not display a wide intersecting region which satisfies Eq. (6). 
Nevertheless, it exists a shrunk region where the system has stable fixe points; this tiny 
region is circumscribed by a stability boundary denoted by the line A in Fig. 4f. Thereby, 
the study reveals a shrunk area of the system from which nonlinear dynamics can be under-
taken as attraction basin and a sea of points in which the system drops to instability.

Let us in addition mentioned that, the local stability of all steady-state points for a given 
set of decisive parameters values 

(
vdc, r, �

)
  can be evaluated from Eq.  (4) directly. For 

the simplicity we set ΔΩ ≈ 0 according to the limit of locking region for low frequency 
detuning as depicted in Fig.  3.The pick of the control parameter for stability response 
through eigenvalues of the Jacobian matrix  JM0

 for different equilibria points are illus-
trated in Table 1. Each equilibrium point has at least two complex-conjugate eigenvalues. 
Then Routh criterion applied to different control parameters indicates that all fixed points 
are almost unstable, and the system (1) may exhibit either chaotic or hyperchaotic dynam-
ics. However for appropriate pick of control parameters, there exist stable fixed points. For 
instance when the RTD is biased in NDR, stable fixed points A1 and A2 the Table 1 have x0 
and n0 values which effectively belong to the shrunk stable region too close to the line A on 
in Fig. 4f. So, it is obviously to point out that stable fixed points A1 and A2 also belong to 
stable phase locking regions from Fig. 3.

Moreover, in Fig.  5, when the time increases, optical phase values upgrade and the 
number of attractor scrolls infinitely grows. With this framework, the system depicts 
two-scroll attractor in Fig. 5a for (t = 1,000), five-scroll attractor in Fig. 5b for (t = 3000) 
and forty one-scroll attractor in Fig.  5c for (t = 20,000). We notice that scrolls are inter-
spersed to laminar phases which firstly appear after the fifteen scroll, as the time 
evolves they erratically appear and after a relative longtime their appearance becomes 
flat before falling again. This aforementioned study proves that it refers to a so-called 
an infinite-scroll chaotic attractor therein the number of generated scrolls depend to 
time calculation and non-periodic reproduction of infinite-scroll as the time evolves in 
regard to laminar phases. So the system (1) generates an infinite-scroll attractor. Indeed 
the transformation M0

(
x0, y0, z0, n0, s0,�0

)
→ M0

(
x0, y0, z0, n0, s0,�0 + 2k�

)
,where 

k = 0, ± 1, ± 2, ± 3, … is an invariant since trigonometric functions involved in opti-
cal phase give rise to infinitely many equilibrium points that provide infinite-scroll attrac-
tor. Nowadays, infinite-scroll attractor is not mostly reported in nonlinear dynamical sys-
tems for the best knowledge of the authors.
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4.2 � Influence of the areas of RTD current–voltage curve and chaos control 
bifurcation

In this section, we investigate the dynamical behavior of the system for three different 
cases; when S1 ≈ S2 , S1 < S2 and S1 > S2 . For the comparison purposes, we investigate the 
phase portrait diagrams in (n − s) plane when others parameters are set as in Ref. (Essebe 
et al. 2020). Throughout all above sections, the case S1 ≈ S2 has been used. It is important 
to show by the current–voltage characteristic of the RTD; F(V) = BV(V − a)(V − b) that, 
there is invariance by changing a-parameter to b-parameter. In Fig. 9, we give prediction of 
the driven laser dynamics firstly when S1 ≈ S2 in Fig. 9a, secondarily for S1 < S2 in Fig. 9b 
and finally when  S1 > S2 in Fig. 9c. We use in addition the EGC �  as bifurcation param-
eter in order to magnify the influence of the areas S1 and S2 in the system (1). It is shown 
in Fig.  9a that the complexity of (1) decreases while �  is increasing. For example, the 
laser exhibits three-scroll chaotic attractor for � = 0.6  in Fig. 9a(i), two-scroll attractor for 
� = 0.75   in Fig. 9a(ii) and fails down unto one-scroll attractor for  � = 0.9 in Fig. 9a(iii). 
However in the case S1 < S2 we can observe relaxation dynamics for � = 0.6 in Fig. 9b(i), a 
non-oscillatory dynamics for � = 0.75 in Fig. 9b(ii) and crisis when � = 0.9 in Fig. 9b(iii). 
When S1 > S2 , the system generates merely periodic limit cycles whatever the value of 
the EGC � as depicted in Fig.  9c(i), 9c(ii), and 9c(iii). We find very important to high-
light that as one of the area S1 gradually increasing the system evolves from chaos to peri-
odic dynamics as depicted from Fig. 9a and c. Nevertheless a more careful observation of 
Fig. 2 reveals that the overall shape of RTD current–voltage characteristics is not changed 
but everything suggests that a shift in the axes has occurred. Therefore, interestingly the 

Fig. 9   Influence of RTD current–voltage (I-V) characteristics with EGC � . a-When S
1
≈ S

2
 : a(i) Three-

scroll chaotic attractor, a(ii) Two-scroll attractor and a(iii) One-scroll attractor. b- When S
1
< S

2
 : b(i) relax-

ation dynamics, b(ii) non-oscillatory dynamics and b(iii) crisis. c- When S
1
> S

2
 , the system generates peri-

odic limit cycles whatever the value of � . c(i), c(ii), and c(iii)
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stabilization resistor and voltage biased could be adjusted to get a desired dynamics such 
as chaos, hyperchaos or periodic oscillations resulting from each of the investigated cases 
namely S1 ≈ S2 , S1 < S2 and S1 > S2  according to the threshold characteristics of the sem-
iconductor laser.

Since chaos has a strong dependence on the initial conditions, its time-future oscilla-
tions being unforeseen, chaos control becomes a very useful tool in nonlinear dynamics. 
In this section we also apply an external control using the polarization control technique to 
stabilize electrical and optical outputs so as to control chaos. We investigate to the bifur-
cation diagram of y-state variable with the variation of DC polarisation vdc  and fixed AC 
excitation vac . From Fig. 10 we can notice that periodic and aperiodic oscillations occur 
in electriccal current Fig.  10a and in optical output Fig.  10b if the system is biased in 
the NDR of the RTD. When the DC biasing is beyong the NDR region (PDR1 or PDR2 
region), the dynamical behavior becomes periodic. However, the system could exhibite 
either slight chaotic or periodic windows in NDR region. This sticks out the relevance of 
DC polarisation on the chaos control in optoelectronic systems.

5 � Conclusion

We have investigated stability analysis of a novel OEIC in the framework of weak and 
strong optical injection. An analytical study has been performed from Hurwitz matrix and 
by using Routh-Hurwitz criterion to highlight some stable fixed points within the shrunk 
stable region inside the sea of unstable points. Besides, dissipativity of the system has been 
analytically examplified to firm divergence of Lyapunov exponents and nonlinear dynamics 
characteristic of the system. Numerical implementation has allowed to show that the laser 
locking regions are drastically affected by slight variations of EGC-parameter and DC bias. 
Moreover, from numerical calculations, the system displays stable and unstable equilibria 
points for negative or low frequency detuning values. Later on, generation and complexity 
of an infinite-scroll chaotic attractor has been discussed and stick out by using Lyapunov 

Fig. 10   DC bias control of 
system dynamics (1): (a) and (b) 
bifurcation diagrams of electri-
cal driving current and optical 
output, respectively
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exponents’ dynamics and Simulink implementation. At last, RTD current–voltage charac-
teristics is studied under slight variations of control parameters namely the areas under and 
above the curve, further bifurcation diagrams and phase portraits are used to control DC 
polarization of the system. The momentous role played by EGC ( a new decisive parameter 
for this kind of OEIC) so as to improve the accuracy of stability analysis and the chaos 
control outlined prove that this study can be relevant for experimental implementations of 
optoelectronic devices.

Appendix

The elements a1 , a2 , a3 , a4 and a5 of (4) and (5) are given by.

where x0 and n0 denote the steady states of the normalized electrical voltage and carrier 
density respectively.
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