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36 NOMO NEGUE Emmanuel Chargé de Cours En poste
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Répartition chiffrée des Enseignants de la Faculté des Sciences de l’Université de Yaoundé I
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NOMBRE D’ENSEIGNANTS
DÉPARTEMENT Professeur

s
Maîtres de

Conférences
Chargés de

Cours
Assistant
s

Total

BCH 9 (1) 13 (09) 14 (06) 3 (2) 39 (18)
BPA 13 (1) 09 (06) 19 (05) 05 (2) 46 (14)
BPV 06 (0) 11 (02) 9 (06) 07 (01) 33 (9)
CI 10 (1) 9 (02) 12 (02) 03 (0) 34 (5)
CO 7 (0) 17 (04) 09 (03) 02 (0) 35(7)
IN 2 (0) 1 (0) 13 (01) 09 (01) 25 (2)

MAT 1 (0) 5 (0) 19 (01) 05 (02) 30 (3)
MIB 1 (0) 5 (02) 06 (01) 06 (02) 18 (5)
PHY 12 (0) 15 (02) 10 (03) 03 (0) 40 (5)
ST 8 (1) 14 (01) 19  (05) 02 (0) 43(7)

Total 69 (4) 99 (28) 130 (33) 45 (10) 343 (75)
Soit un total de 344 (75) dont :

- Professeurs 68 (4)
- Maîtres de Conférences 99 (28)
- Chargés de Cours 130 (33)
- Assistants 46 (10)

( ) = Nombre de Femmes 75
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Abstract

One of the major developments in the electricity sector is the functional separation of the industry

into three main phases, namely: the generation, transmission and distribution phases. This reform

has leat to the openness of the electricity industry to competition, with the progressive replacement of

state monopoly in favour of independent producers, and recently to the opening of deregulated or free

electricity markets. Markets regulated by economic principles such as "price cap" or "revenue cap"

to cap the fluctuation of the electricity prices were also introduced . In this thesis, we propose a new

model for pricing electricity based on the price cap principle and derive some financial derivatives.

To achieve the goal we divided the work into three parts.

In the first part, we modelling the dynamics of spot electricity prices under price cap regulated

market.The particularity of the model is that the asset price is an exponential functional of a jump Lévy

process. This model can capture both mean reversion and jumps which are observed in electricity

market.

In the second part, we derive the forward contract and the European option using two approaches.

The first is based on the use of Fourier transforms, while the other uses the price of the option as a

solution of an integro-differential equation (PIDE). It is shown that the value of an European option

of this asset is the unique viscosity solution of a partial integro-differential equation. A numerical

approximation of this solution by the finite differences method is provided. The consistency, stabil-

ity and convergence results of the scheme are given. Numerical simulations are performed under a

smooth initial condition.

In the last part we propose a maximum likelihood approach for estimating the parameters of the

model via estimating the transition density by the saddlepoint method.

Keywords: Mean reverting, jump-diffusion, option pricing, price-cap, integro-differential equa-

tion, viscosity solution, parameters estimation, saddlepoint
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Résumé

L’une des principales évolutions dans le secteur de l’électricité est la séparation fonctionnelle de

l’industrie en trois phases principales, à savoir : la production, la transmission et la distribution. Cette

réforme a conduit à l’ouverture du secteur de l’électricité à la concurrence, avec le remplacement pro-

gressif du monopole d’État en faveur des producteurs indépendants, et récemment à l’ouverture de

marchés de l’électricité déréglementés ou libres. Des marchés régulés par des principes économiques

tels que le "price cap" ou le "revenue cap" pour limiter la fluctuation des prix de l’électricité ont

également été introduits. Dans cette thèse, nous proposons un nouveau modèle de tarification de

l’électricité basé sur le principe du price cap et en déduisons quelques dérivés financiers. Pour attein-

dre cet objectif, nous avons divisé le travail en trois parties.

Dans la première partie, nous modélisons la dynamique des prix spot de l’électricité dans le cadre

d’un marché réglementé par plafonnement des prix. La particularité du modèle est que le prix de

l’actif est une fonction exponentielle d’un processus de L’evy à saut. Ce modèle peut aussi capturer à

la fois la propriété de moyenne renversante et les sauts qui sont observés sur le marché de l’électricité.

Dans la deuxième partie, nous dérivons le contrat à terme et l’option européenne en utilisant deux

approches. La première est basée sur l’utilisation des transformées de Fourier, tandis que l’autre

utilise le prix de l’option comme solution d’une équation intégro-différentielle (PIDE). On montre

que la valeur d’une option européenne de cet actif est la solution unique de viscosité d’une équation

intégro-différentielle partielle. Une approximation numérique de cette solution par la méthode des

différences finies est fournie. Les résultats de cohérence, de stabilité et de convergence du schéma

sont donnés. Des simulations numériques sont effectuées avec une condition initiale lisse.

Dans la dernière partie, nous proposons une approche de maximum de vraisemblance pour estimer

les paramètres du modèle via l’estimation de la densité de transition par la méthode du point de selle.

Mots clés: Retour à la moyenne, saut de diffusion, prix des options, prix plafond, équation
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General introduction

Electricity pricing problem

Electricity is generated at power plants and moves through a complex system (sometimes called the

grid of electricity substations), involving transformers and power lines that connect electricity pro-

ducers and consumers. Most local grids are interconnected for reliability and commercial purposes,

forming larger and more dependable networks that enhance the coordination and planning of electric-

ity supply.

Cameroon is second in terms of hydro-electric potential in Sub-Saharan Africa, with an estimated

20 GW electricity power it can produce per year. Despite the institutional reforms of 1998, electricity

costs in Cameroon is increasing more and more. In Cameroon, the law and the regulatory framework

provide that it is Electricity Regulatory Agency that sets electricity tariffs on the proposal of the

operator.

Pricing remains a central issue in the energy production system because it is an important de-

terminant of justice, equity and economic viability. The demand for electricity, which is constantly

changing, is confronted by tariff measures which, depending on the country, are a concern for con-

sumer organizations. According to Piebalgs (2014), no economic development is possible without

the availability of electricity. Hence, the introduction of competitive prices through the opening of

the electricity market is one of the solution proposed. Electricity market has not only brought new

opportunities in electricity industries, but also, challenges in electricity pricing for companies which

are now exposed to price risks characterized by volatility, jumps and peaks. In addition, electricity

spot prices in emerging power markets are volatile, a consequence of the unstorable nature of elec-

tricity. Uncontrolled exposure to market price risks can lead to devastating consequences for market

participants in the restructured electricity industry. Lessons learned from the financial market suggest

1



General introduction

that financial derivatives, when well understood and properly utilized, are beneficial to the sharing

and controlling of undesired risks through hedging strategies. This pricing problem requires a new

solution when we are in the presence of a new spot price model, which is the case in this thesis.

Evolution of pricing reforms

For a long time, electricity, unlike other commodities, was characterized by a flat rate without obeying

the demand/supply rule. This pricing structure clearly distorts reality. In effect, electricity production

may vary considerably, depending on the time of day, the week of the month and even the seasons of

the year. Thereafter, electricity pricing was initially approached essentially from an economic point of

view, with one of the main objectives being to improve the conditions of access to electricity (coverage

and distribution of costs, investment incentives, etc.). The economic models used for this purpose

have evolved over time to include mathematical models. Two main mechanisms have governed the

evolution of electricity pricing, namely, regulation and deregulation, which lead to several pricing

modes such as tranche pricing, real time pricing, increasing-block pricing, price cap pricing and

dynamic pricing.

Objective of the thesis

The objective of our thesis is to propose a mathematical model for pricing electricity derivatives where

the underlying asset spot price is regulated by price cap regulation.

Mathematical option pricing models in electricity: A review

Modelling electricity price is the most crucial component in pricing electricity derivatives. Due to the

unique physical and operational characteristics of electricity production and transmission processes,

electricity price exhibits a behaviour different from other financial prices. The development of elec-

tricity financial and physical instruments evolve together with electricity spot price modelling. We

start by reviewing some existing electricity pricing models.

PhD Thesis: A jump-diffusion model for pricing
electricity under price cap regulation
and parameters estimation
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Diffusion model

Pilipovic model (Pilipovic (2007))

Merton (1976) was among the first to develop a diffusion model, but used it in the context of stock

markets. Pilipovic (2007) adapted the model to electricity market. His mathematical model took

into account the mean reversion property, an important electricity characteristic. He obtained the

following stochastic differential system of equations:

dSt = α(Lt − St)dt+ Stσdzt

dLt = µLtdt+ ξLtdwt,

where

• St represents spot price at time t,

• Lt is the equilibrium price,

• µ is rate of return or drift rate

• α represents the Mean reversion rate,

• σ is the volatility,

• ξ represents the volatility of equilibrium value a long run,

• w and z are independent Brownian motions.

Lucia and Schwartz model Lucía and Schwartz (2002)

Another classical model along these lines is the exponential Ornstein-Uhlenbeck process suggested

by Lucía and Schwartz (2002) in the electricity market, with inspiration from Schwartz (1997). They

considered spot price as a stochastic process with two components represented by

Pt = f(t) +Xt t ∈ [0,∞), (1)

where f is a deterministic differentiable function, and Xt is the stochastic component satisfying

dXt = −αXtdt+ σdWt, (2)

PhD Thesis: A jump-diffusion model for pricing
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General introduction

with α > 0 representing the speed of mean-reversion, X(0) = x0 is the initial condition and Wt is a

standard Brownian motion. Applying Itô’s formula on (2), they obtained the following Vasicek form

for spot price:

dPt = α(a(t)− Pt)dt+ σdWt, (3)

where

a(t) =
1

α
f ′(t) + f(t).

In the same paper, they also considered log of spot prices i.e. lnPt = f(t) + Yt where Yt follows

process (2). In this case they obtained

dPt = α(b(t)− lnPt)Ptdt+ σdWt, (4)

where lnPt = f(t) + Yt,

b(t) =
1

α

(
σ2

2
+ f ′(t)

)
+ f(t).

This model captures the mean-reverting feature which is one of the main characteristics of elec-

tricity, but does not take into account spikes which can occur in electricity markets.

Carlos Blanco-David Soronow model (Blanco and Soronow (2001))

Blanco and Soronow (2001), in their first model, took into account the mean reverting property by

modelling the spot price as follow:

St+1 − St︸ ︷︷ ︸
price change

= αSt∆t+ Stσε1t

√
∆t︸ ︷︷ ︸

geometric Brownian motion

,

where

• S∗ represents equilibrium length price,

• St is the spot price at time t,

• ε1t is a normally distributed random variable,

• σ represents price volatility,

PhD Thesis: A jump-diffusion model for pricing
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• α is the fluctuation rate.

This first model fails to take into account sharp increase in prices during periods of stress, translated

into electricity models by jumps or spikes. To account for that, they developed a jump diffusion model

(also called Lévy model) given by

St+1 − St︸ ︷︷ ︸
price change

= α(S∗ − St)∆t︸ ︷︷ ︸
drift component

+ Stσε1t

√
∆t︸ ︷︷ ︸

diffusion component

+ η[St(κ+ δε2t)]︸ ︷︷ ︸
jump component

,

where ε2t this is a normally distributed random jump. In the same line Clewlow et al. (2001) used

different technic to take into account spikes and jumps, by proposing the following jump diffusion

model:

dSt = α(b− lnSt)dt+ σStdzt + kStdq̂,

where q̂ is a Poisson process and k is random variable such that log(1 + k) standard normally dis-

tributed. This model captures the mean reverting property and jumps in electricity prices, but fails to

take into account seasonality.

Jump diffusion model

Cartea-Figueroa jump diffusion model Cartea and Figueroa (2007)

Cartea and Figueroa (2007) in the context of deregulation markets extended Schwartz (1997) model

by adding a jump term, giving a mean-reverting and jump-diffusion model. They also took into

account seasonality from lnSt = g(t) +Yt, where g is a seasonal deterministic function and that Yt is

a stochastic process given by

dYt = −αYtdt+ σdWt + ln Jdqt.

Their complete model then takes the form:

dSt = α(ρ(t)− lnSt)Stdt+ σ(t)StdWt + St(J − 1)dqt, (5)

where J is the proportional size of jump, qt is a Poisson process and

ρ(t) =
1

α

(
g′(t) +

1

2
σ2(t)

)
+ g(t).
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Barlow model (Barlow (2002))

From demand (or supply) model for electricity, Barlow (2002) obtained a jump diffusion model for

spot price that can exhibit price spikes. The demand model is

Dt = Dt +Xt

dXt = (µ+ λXt)dt+ σdwt,

where Dt is the seasonal demand component, Xt is the stationary stochastic process. Then Barlow

model takes the form

Pt =


(
a0−Dt
b0

)1/α

, Dt < a0 − b0ε

ε1/α, Dt ≤ a0 − b0ε,

where g(x) = a0 − b0x
α and Pt = g−1(Dt).

Multi-factor jump-diffusion model

Multi-factor model have recently been introduced in deregulated electricity spot markets. Benth et al.

(2011) was among the first.

Benth, Kiesel and Nazarova model (Benth et al. (2011))

Benth et al. (2011) used three different classes of models for electricity pricing in Germany. To start

with, they proposed the following model:

S(t) = eµ(t)X(t)

d ln(X(t) = −α lnX(t)dt+ σ(t)dW (t) + ln Jdq(t),

where

• X(t) models random fluctuation of price,

• α is the fluctuate parameter around average price,

• σ(t) is the time depending volatility,

• J is the proportional random jump size, ln J ∼ N (µJ , σ
2
J),
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• dq represents the increments of Poisson process define by

dq(t) =

 1,with probability Idt

0,with probability 1− Idt

• I represents intensity of peaks.

This proposed model captures the three most important electricity characteristics. But to take into

account the direction of jumps and spikes of the electricity spot price, they extended the preceding

model to:
S(t) = eµ(t)X(t)

d ln(X(t) = −θ1 lnX(t)dt+ σ(t)dW (t) + h(lnX(t−))dJ(t)

where J is a time-inhomogeneous compound Poisson process:

J =

N(t)∑
i=1

Ji

where h take two values that represents the direction of jump, . N(t) is a Poisson process with time-

dependent jump intensity and counts the spikes up to time t and J1,J2,... model the magnitudes of the

spikes and are assumed to be independent and identically distributed random variables.

After this precedent model to ensure positivity of the prices. they developed the following model

S(t) = eµ(t)X(t)

where

• X(t) is a stochastic process defined by equation
n∑
i=1

wiYi(t), where

• wi are weighted functions; λi are mean-reversion coefficients; Yi is a non-Gaussian Ornstein

Uhlenbeck process define by dYi = −λiYi(t)dt+ dLi(t), where

• Li is a additive process independent of cádlág pure jump.

This last model succeeded to capture well both the stylized facts of electricity spot prices and is

analytically tractable for derivatives pricing and risk management.
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Meyer and Tankov (Meyer-Brandis and Tankov (2008))

In order to model the intra-day hourly spot price series they built the following model:

Xh
t = Ytf(t, h) + εht ,

where

• Xh
t , h ∈ {1, , 24} represents price for day t and hour h,

• Yt is the common factor in the daily price,

• f(t, h) is a slowly varying daily pattern,

• εht is a white noise.

Their aim was to study the most salient statistical features of electricity prices with a particular

attention to the European energy ex-changes.

Based on this review, one can see that mathematical models for electricity pricing have evolved

in recent years. From diffusion models, we arrived at the sum of Orstein-Ulhenbeck processes also

called multi-factor jump-diffusion model, passing through the mean reversion jump diffusion model

and polynomial process introduce in the power market by (Ware, 2019; Kleisinger-Yu et al., 2020).

The review thus suggests mean reversion, jumps, spikes and seasonality as the main characteristics

for electricity pricing models. In the following section, we review pricing option models in electricity.

Option pricing in electricity

Option pricing uses variables (e.g. stock price, exercise price, volatility, interest rate, time to ex-

piration) to theoretically value an option. Essentially, it provides an estimation of an option’s fair

value which traders incorporate into their strategies to maximize profits. A large variety of electricity

derivatives are traded among market participants, including forward contracts, swaps, plain vanilla

options (European style and American style), exotic (i.e. non-standard) options like spark spread

options, and swing options. Pricing or valuating option is a mathematical problem that consists in

performing conditional expectation under risk neutral probability of the discounted payoff, translated

by the following equation:
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Definition 0.1. (Option value, see (Etheridge, 2002, p. 116) )

C(ST , T, t,K) = e−r(T−t)EQ [φ(ST )|Ft] (6)

where

• Q represents risk neutral probability,

• Ft represents the history of prices up to t,

• r represents the risk-free interest rate of the investment of the portfolio items,

• ST is the spot price at maturity,

• φ(ST ) represents the payoff or payoff function,

• K represents strikes.

If φ(ST ) = max(ST − K, 0) = (ST − K)+, option is called call option, that is, an option contract

giving the owner the right (but not the obligation) to buy a specified amount of the underlying at

a specified price within a specified time. If φ(ST ) = max(K − ST , 0) = (K − ST )+, option is

called put option that give owners the right (but not the obligation) to sell a specified amount of the

underlying at a specified price within a specified time. Electricity call and put options offer their

purchasers the right (but not the obligation) to buy or sell a fixed amount of electricity at a pre-

specified strike price up to the option expiration time. They have similar payoff structures as those

of regular call and put options in financial securities. Generally, the put option is determined by the

relation C(ST , t, T,K) − P (ST , t, T,K) = S −Ke−r(T−t), called the put-call parity. A close form

formula of option price differs from one model to another because of the expression of changes in the

expression of the spot price from one model to another. In what follows, we present our view of the

state of arts of forward and European options pricing models.

Forward option pricing model

Black and Scholes (1973) were the first to use diffusion models for pricing option in finance. From

the mathematical definition of option price, they obtained an explicit analytic closed form formula of

the European option defined as follows
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Black and Scholes pricing option model (Black and Scholes (1973))

The price at time t of the call option derived by Black and Scholes is given by the equation

C(XT , t, T,K) = e−r(T−t)EQ [φ(ST )|Ft] = Xtφ(d+)−Ke−r(T−t)φ(d−), (7)

where φ is the cumulative distribution function from a normal distribution, and

d± =
ln(Xt/Ke

−r(T−t))± σ2(T − t)/2
σ
√
T − t

.

The dynamic of the underlying asset is given by the Black and Scholes model

dXt = rXtdt+ σXtdWt.

It is important to note that this explicit form is computationally feasible, thanks to the fact that the

distribution of X is known. This pricing option assumes constant volatility, and does not take into

account the mean reverting property and price jumps. Lucía and Schwartz (2002) were the first to

propose an option pricing model for energy commodities.

Lucia and Schwartz forward pricing model Lucía and Schwartz (2002)

Electricity forward contracts represent the obligation to buy or sell a fixed amount of electricity at a

pre-specified contract price (known as the forward price) at a given time in the future (called maturity

or expiration time). In other words, electricity forwards are custom-tailored supply contracts between

a buyer and a seller, where the buyer is compelled to buy and the seller is compelled to supply. The

value of the forward contract is obtained by replacing φ(ST ) = ST in equation (6). The forward price

derived from the Black and Scholes (1973) model is given by the relation

F (t, T,Xt) = Xte
−r(T−t),

since it is martingale under neutral risk probability. This forward contract formula is less suitable in

energy commodities, particularly because it lacks the mean reverting property. Lucía and Schwartz

(2002) derived from equation (6), the following forward price model which incorporates that property:

F (t, T ) = f(T ) +Xte
−α(T−t) − σ

∫ T

t

e−α(T−s)λsds, (8)

where λt is the market price for diffusion risk. However, the model does not account for non-constant

volatility and the price jumps in electricity, situations handled in Cartea and Figueroa (2007).
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Cartea and Figueroa forward pricing model Cartea and Figueroa (2007)

Cartea and Figueroa (2007) proposed the following extension of the Lucía and Schwartz (2002) for-

ward price model to account for non-constant volatility and price jumps:

F (t, T ) = G(T )

(
S(t)

G(t)

)e−α(T−t)

e
∫ T
t

1
2
σ2(s)e−2α(T−s)−λσ(s)e−α(T−s)ds+

∫ T
t ξ(σJ ,α,T,s)`ds−`(T−t), (9)

where the parameters are described in their spot price model above. Their pricing model has captures

all the essential properties of the electricity as the underlying asset.

European option pricing model

In the literature the European option has been derived using two different approaches. The first

approach, which uses partial differential equations, is advantageous in that no knowledge of the dis-

tribution of the underlying process is required, while the second uses Fourier transform methods.

PDE for pricing European option

From Itô formula and some financial properties, Black and Scholes (1973) obtained the following

partial differential equation for pricing option:

∂f

∂t
+ rX

∂f

∂X
+

1

2
σ2X2 ∂

2f

∂X2
= rf. (10)

This PDE has many solutions, corresponding to all the different derivatives that can be defined with

X as the underlying variable. The particular derivative obtained when the equation is solved, depends

on the underlying boundary conditions. Equation (10) specifies the values of the derivative at the

boundaries of possible values of X at time t. In the case of a European call option, the key boundary

condition is f = max (X −K, 0), when t = T .

PIDE for pricing European option

Jump-diffusion models are a recent class of spot price models in electricity, involving PIDE for pric-

ing European option. One reason for the development of this class of model is their popularity in

electricity pricing. Cont and Ekaterina (2005b) derived the PIDE model associated to Lévy process
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in the case of infinite activity that generalize this class of models. The value of an option with ter-

minal payoff HT is obtained as a discounted conditional expectation under the (risk-neutral) pricing

measure Q and is given by: c(t) = EQ
[
e−r(T−t)φ(ST )|Ft.

]
From Markov property, they obtained

c(t, S) = EQ [e−r(T−t)φ(ST )|S = St
]
.

They also introduced the following change of variable τ = T − t, x = ln
(
S
S0

)
, and defined h(x) =

H(S0e
x), so that the latter equation becomes:

u(τ, x) = EQ [h(x+ Yτ )] .

They then showed that u is a solution to the Cauchy problem

∂u

∂τ
= LY u, on (0, T ]× R+, with u(0, x) = h(x) ∀x ∈ R,

where Yt = rt+Xt, Xt is a Lévy process under Q, and LY is the infinitesimal generator defined by:

LY f = LXf + r
∂f

∂x
,

with

LXf(x) =
σ2

2

[
∂2f

∂x2
− ∂f

∂x

]
+

∫ +∞

−∞
ν(dy)

[
f(x+ y)− f(x)− (ey − 1)

∂f

∂x

]
,

This finite difference method used to solve the PIDE obtained necessitates several approximations,

which do not facilitate de search for solutions in this approach. Fourier methods are generally faster

than finite difference ones.

Fourier Methods in Option Pricing

The Fourier transform has become a popular tool in option pricing when the coefficients of the equa-

tions are deterministic and constant. This popularity is partially due to the contributions of Carr and

Madan (1999). Consider the problem of valuing a European call with maturity T written on the ter-

minal spot price ST of some underlying asset. The characteristic function of sT = ln(ST ) is defined

by

ΦT (u) = E [exp(iusT )] .

Let k denote de log of the strike price K, and let CT (k) be the desired value of call option with strike

exp(k). Let the risk-neutral density of the log price sT be qT . Then characteristic function of this
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density is given by

ΦT (u) =

∫ +∞

−∞
eiusqT (s)ds. (11)

The initial call value CT (k) is related to the risk-neutral density qT by:

CT (k) =

∫ +∞

−∞
e−rT (es − sk)qT (s)ds. (12)

Note that CT (k) tends to S0 as k tends to −∞, and hence the call pricing function is not square

integrable. To obtain a square integrable function, we consider the modified call price cT (k) defined

by

cT (k) = exp(αk)CT (k). (13)

For α > 0, we expect that cT (k) be square integrable in k, over the entire real line. We comment later

on the choice of α. Consider now the Fourier transform of cT (k) defined by

ψT (v) =

∫ +∞

−∞
eivkcT (k)dk. (14)

Carr and Madan (1999) first develop an analytical expression for ψT (v) in terms of φT and then

obtained call prices numerically, using the inverse transform:

CT (k) =
exp(−αk)

2π

∫ +∞

−∞
eivkψT (v)dv =

exp(−αk)

π

∫ +∞

0

eivkψT (v)dv. (15)

The second equality holds because CT (k) is real, implying that the function ψT (v) is odd in its

imaginary part and even in its real part. The expression for ψT (v) is then written as follows

ψT =
e−rtφT (v − (α + 1)i)

α2 + α− v2 + i(2α + 1)v
(16)

Call values are determined by substituting (16) into (15) and performing the required integration.

In summary, the difficulty in pricing option lies in the fact that, for more complex models, the

distribution is unknown contrary to the case where the distribution is available and therefore the

option can be expressed using exact closed form. In the case where the distribution of the underlying

asset price is unavailable, two approaches are usually employed to valuing option, namely PDE or

PIDE and valuing option using Fourier transform. One important step in pricing consist to calibrating

the model with historical market data.
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Model calibration

In absence of jumps, calibrating a model consist in finding the log likelihood if there is an analytical

expression, or to approximate it with some numerical schemes. The log likelihood is then maximized

to obtained the model parameters. Calibrating the SDE in the absent of jumps when the transition

function is available has been explored by ? and Black and Scholes (1973). In cases where the tran-

sition function is unknown, it is obtained by calculating the conditional expectation of the discretized

process as in Jensen and Poulsen (2002) and Carr and Madan (1999). Non parametric calibration

based on option pricing is another approach for calibrating in jump diffusion models. We remark that

in general, non parametric calibration leads to an inverse problem which is solved via non-linear least

squares. Such problems are ill-posed because of non uniqueness of solution. Regularization method

based on relative entropy has therefore been proposed as one solution of this problem. One major con-

tribution in this field has recently been made by Cont and Tankov (2004). They used observed option

prices to calibrate parameters of one large class of finance models called exponential Lévy models,

characterized by the triplet (σ, ν, γ) (see, Sato (1999) for better explanation of Lévy processes). We

now review their approach. For that, the calibration problem for type of model leads, in general, to

solving the following equation:

(σ∗, ν∗) = arg inf
σ,ν

N∑
i=1

ωi | Cσ,ν (t = 0, S0, Ti, Ki)− C∗0 (Ti, Ki) |2, (17)

where C∗0 (Ti, Ki) is the market price of a call option observed at t = 0 and Cσ,ν (t = 0, S0, Ti, Ki) is

the price of this option computed in an exponential Lévy model with volatility σ and Lévy measure

ν. To obtain a unique solution in a stable manner, they introduced a regularization method by adding

to the least squares criterion (17), a convex penalization term:

(σ∗, ν∗) = arg inf
σ,ν

N∑
i=1

ωi | Cσ,ν (t = 0, S0, Ti, Ki)− C∗0 (Ti, Ki) |2 +αF (σ, ν), (18)

where F , a measure of closeness of the model Q to a prior model Q0, is chosen such that the problem

(18) becomes well-posed. The weights ωi, which are positive and sum to one, reflect the pricing error

tolerance for the option i. The choice of weights and prior model Q0 are addressed in more detail

in their work. Another recent approach called saddlepoint method was initiated by Daniels (1954),

and latter developed in Rogers and Zane (1999), Jensen (1995) and Aït-Sahalia and Yu (2006). This

approach consists in approximating the transition density by the saddlepoint. We first recall that
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density function and characteristic functions are linked by the Fourier inversion formula

p (∆, y | x) = (2π)−m
∫ +∞

−∞
exp (−iu.y)φ (∆, iu | x) du (19)

= (2πi)−m
∫ û+i∞

û−i∞
exp (K (∆, u | x)− u.y) du,

where φ (∆, . | x) represents the characteristic function, while K is the cumulant generating function

of the Markov processX . From Aït-Sahalia and Yu (2006), the key to the saddlepoint method consists

in choosing u in (19) such that Taylor expand of the integrand will be easily computed using normal

distributed density which integrates to 1. This amounts to solving the equation:

∂K (∆, u | x)

∂u
= y. (20)

Structure of the Thesis

In this dissertation, We will develop new mathematical models for pricing European option underlying

electricity market regulated by price cap principle. To achieve that, in chapter 1, we gain inspiration

from the modeling approach introduced by Merton (1976) to first of all built a new electricity spot

price model as simple stochastic differential equation using price cap formula. To complete our

model, we take into account spikes and jump of prices using the same approach as in Cartea and

Figueroa (2007). This first chapter constitutes the main step in deriving option price.

In chapter 2 we derive European option price using two approaches. The first approach consists

in performing European option based on Fourier methods as in Carr and Madan (1999). From the

Fayman-Kac representation theorem we develop a new Partial Integro-Differential Equation (PIDE)

as in Cont and Ekaterina (2005b), we analyse the numerical scheme used to approximate the viscosity

solution of the PIDE obtained, and end the chapter with some numerical results.

In chapter 3 we calibrate our spot price model by estimating the model parameters using maximum

likelihood and simulated data (as real data are rare in this this new market). The exact form of the

transition density of the obtained model is not available due to the sum of two processes in the model

(the Poisson process and Brownian motion) with two different distributions. Following Aït-Sahalia

(2010) we approximate the transition density using saddlepoint method.
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CHAPTER ONE

A JUMP-DIFFUSION MODEL FOR PRICING

ELECTRICITY UNDER PRICE CAP

REGULATION
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In this chapter, we derive a new jump-diffusion model for electricity spot price from the price

cap principle using stochastic calculus tools. Next, we show that the model has a non classical mean-

reverting linear drift and solve the latter model. Finally, we provide some simulations from the model.
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1.1. Introduction

1.1 Introduction

The limitations and shortcomings of the experimental method have given rise to the modelling and

simulation activities necessary for humans to understand the phenomena surrounding them and to

solve the problems they face. Geraud et al. (1974) define modelling as the operation by which the

model of a complex system is established, in order to more conveniently study and measure the effects

of variation on that system brought by its component elements.

The wind of liberalization and reforms in the electricity sector blowing across several countries

has left behind a complex field in the electricity industry in which an analysis of the interactions

and relationships between the components has given rise to several areas of research. One aspect of

electricity that remains at the heart of debates is pricing, and is therefore a focal point for researchers.

Several pricing methods have been developed, such as, unit-based pricing, real-time pricing (RTP),

increasing-Block Pricing, Profit cap constraints, dynamic pricing model, rate of return pricing and

price cap, each with specific economic objectives. In order to transfer this objectives to the electricity

market which is now open to competition, regulatory activity has been introduced for this purpose.

Price cap is the one of interest here.

Electricity prices generally reflect the costs associated with the construction, financing, mainte-

nance, management and operation of power plants and the electricity grid as a whole, i.e. the complex

system of transmission and distribution of power on the one hand and the operating and administrative

costs of the utilities that provide electricity to consumers on the other. However, there are a few key

factors that can cause the latter to fluctuate (Administration (2011)). In effect, fuel in the form of coal

is relatively less expensive compared to natural gas. Also, the construction and maintenance costs are

higher for some types of power plants than others. The transmission and distribution system also con-

tributes to electricity cost. Un favourable Weather periods, like over heating can increase electricity

demand for cooling and regulation, there by provoking an increase in price. For these reasons some

prices are fully regulated by public service commissions, while in others, there is a combination of

regulated prices (for generators) and regulated prices (for transmission and distribution).

In addition to that, electricity is not a classical financial asset and presents some particularities.

Firstly, it is non storable and can not be traded as any financial asset. Secondly, prices have a delivery

period, that is, the electricity is not delivered instantly but continuously during a period of 1 hour for

instance. All these particularities lead to the following features of electricity spot prices time series:
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1.2. Model Derivation

Seasonality: they exhibit daily, weekly and yearly seasonalities which are highly related to

electricity consumption due to its non-storability.

Spikes: prices jump upward or downward to high values before reverting quickly to their origi-

nal level. positive can appear when demand is abnormally high or temperature abnormally low

or high. In case of high temperature, air conditioning produces these spikes and in case of low

temperature, heating is responsible. Negative spikes may be a consequence of non-storability.

If the production is higher than expected, the cost of stopping a production plant may be high

and the producer may prefer to pay for consuming electricity. In Germany, unexpected produc-

tion is caused by the penetration of the renewable energies in the system. For instance, high

unexpected wind production may cause negative spikes.

Mean reversion: mean reversion is present even in the presence of spike.

In the rest of this chapter, we, in the light of the existing electricity price models largely reviewed in

Bodily and De Buono (2002), propose a new electricity pricing model when the market is regulated by

the Price Cap principle, and which takes into account the factors and characteristics of the electricity

price described above.

1.2 Model Derivation

Our model is inspired from the electricity price-cap regulation proposed by Littlechild (1983) and

adopted in several countries today.

1.2.1 Price Cap Market Regulation

Price cap regulation was implemented for the first time in the UK in the early 1980s to regulate the

newly privatized telecommunication market that emerged after the privatization of British Telecoms.

Steven Littlechild, who recommended this measure to the British government (Littlechild (1983)),

envisaged the price cap as a transitory measure that would eventually wither away as the market

became more competitive. The point of the price cap was to hold the fort until competition arrived.

However, it has taken longer than expected for utility industries to become competitive, and price cap
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1.2. Model Derivation

regulation has gained popularity in many countries as a permanent form of regulation in the utilities

industry as electricity.

In the electricity market the price cap regulation is an economical principle which aims to establish

an incentive scheme for the regulated market. A key objective is to enable companies to maximize

the well-being while seeking to maximize their own interests, see Acton and Vogelsang (1989). Its

principle is to cap the market price. The main components of the price cap include: the efficiency

factor (G), for transferring the gains to consumers through the reduction of costs; the inflation rate (I),

which drives the prices changes; the exogenous factors such as Customer portion of earnings sharing

(E), Service quality penalties (H) and Flow through and uncontrollable costs, if any (F). ENMAX

(2009) proposed price cap formula:

Pi − Pi−1

Pi−1

= Ii −Gi +

(
−Ei −Hi + Fi

Pi−1

)
, (1.1)

where Pi represents the current year’s price and Pi−1 preceding year price. Later we would be inspired

by the economic formula (1.1) to model the drift of the model.

1.2.2 Some Definitions of elements of stochastic calculus

The underlying set-up for stochastic processes consists 0f a complete probability space

Definition 1.1. (Filtered Probability Space)

The triple (Ω,F , (Ft)0≤t≤T ,P) consisting of the sample space Ω, the σ−algebra F of subset of Ω,

probability measure P defined on F and the non-decreasing family (Ft)0≤t≤T of sub-σ− fields of F

is called filtered probability space.

Here, Ft represents the information available at time t, and the filtration (Ft)0≤t≤∞ represents the

information flow evolving over time and accruing to all agents in the economy.

Definition 1.2. (Stochastic Process)

A scalar (n-vector) stochastic process denoted by {Xt}0≤t≤∞, is a family of random variables (n-

vectors) indexed by the parameter set [0,∞[, where the parameter t will refer to time in our ap-

plication. The process is defined on a filtered probability space (Ω,F , (Ft)0≤t≤∞,P) with value in

Rn. We say the process is adapted if Xt ∈ Ft for each time t, i.e. Xt is Ft−measurable; thus,

Xt is known when Ft is known. Further, if a filtration is generated by a stochastic process, i.e.
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Ft = σ(Xs; 0 ≤ s ≤ t), we call Ft the natural filtration of the process {Xt}0≤t≤∞. Thus a process is

always adapted to its natural filtration.

Definition 1.3. (Standard Brownian Motion)

A continuous parameter process {Wt}t≥0 is a Brownian motion under the probability measure P if

(i) every increment Wt+τ −Wt is normally distributed with N (µτ, σ2τ) under P, and

(ii) for every pair of disjoint time intervals [t1, t2], [t3, t4] (with t1 < t2 ≤ t3 < t4) the increments

Wt2 −Wt1 and Wt4 −Wt3 are independent random variables, and

(iii) P(W0 = 0) = 1 and Wt is continuous at t=0.

For {Wt}t≥0 to be a standard Brownian motion (or Wiener process), we need to fix the parameter at

µ = 0 and σ = 1.

Definition 1.4. The process (Nt)t∈R+
define by

Nt =
∑
k≥1

1[Tk,∞), t ∈ R+,

where

1[Tk,∞)(t) =

 1 if t ≥ Tk,

0 if 0 ≤ t < Tk,

k ≥ 1, (Tk)k≥1 is the increasing family of jump times of (Nt)t∈R+
such that

lim
k→∞

Tk = +∞

. is called standard Poisson process.

In addition, the Poisson process (Nt)t∈R+
is assumed to satisfy the following conditions:

1 Independence of increments: for all 0 ≤ t0 < t1 < ... < tn and n ≥ 1 the increments

Nt1 −Nt0 , ..., Ntn −Ntn−1 ,

are mutually independent random variables.

2 Stationarity of increments: Nt+h−Ns+h has the same distribution as Nt−Ns for all h > 0 and

0 ≤ s ≤ t.
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1.2. Model Derivation

Let (Zk)k≥1 denote an i.i.d. sequence of square-integrable random variables distributed as the com-

mon random variable Z with probability distribution ν(dy) on R, independent of the Poisson process

(Nt)t∈R+
.

Definition 1.5. The process (Yt)t∈R+
given by the random sum Yt := Z1 + Z2 + ... + ZNt is called

a compound Poisson process

Theorem 1.1. (Etheridge (2002))(Itô’s formula with jumps)

Suppose

dYt = µtdt+ σtdWt + νtdNt

where, under P, {Wt}t≥0 is a standard Brownian motion and {Nt}t≥0 is a Poisson process with

intensity λ. If f is a twice continuously differentiable function on R then

f(Yt) = f(Y0)+

∫ t

0

f ′(Y −s )dYs+

∫ t

0

f ′′(Y −s )σ2ds−
Nt∑
k=1

f ′(Yτ−k
)(Yτk)−Yτ−k ))+

Nt∑
k=1

(f ′(Yτk)−f ′(Yτ−k )),

where {τk} are the times of the jumps of the Poisson process.

1.2.3 Spot Price Modeling

The daily (resp. weekly and monthly) change in price is the difference between today’s price

(resp. this week’s price and this month’s price) and yesterday’s price (resp. last week’s price and

last month’s price). In general, one denotes a change over a given time period dt by dSt. For a daily

change, we therefore have dt = 1
365

, dt = 1
52

for weekly change and dt = 1
12

for a monthly change.

The change in price dSt over a given time period dt is given by de following theorem.

Before stating the following theorem let recall that a càdlàg stochastic process is the right continuous

with left limits stochastic process.

Theorem 1.2. Suppose that the spot prices St is a càdlàg process in a complete filtered probability

space (Ω,F , (Ft)0≤t≤T ,P) where (Ft)t is a natural filtration of St (we assume this to get closer to

practice since the jump process has irregularities ). Assume the following conditions:

i) the stock prices jumps from the previous value St− to a next value JSt− where J is the propor-

tional size of the random jump assumed log-normally distributed i.e. ln J ∼ N (mJ , σ
2
J) with

E[J ] = 1,
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1.2. Model Derivation

ii) the change before and after the jumps, is driven by increments dqt of a Poisson process qt

defined by

dqt =

 1, with probability `dt

0, with probability 1− `dt,

where ` is the intensity or frequency of the process.

Then the Price-cap principle (1.1) yields the Stochastic Differential Equation (SDE) also called a

jump diffusion model below

dSt = −α(t)(γ(t)− St)dt+ σ(t)StdWt + (J − 1)Stdqt, (1.2)

where Wt is the standard Brownian motion, and the coefficients involved are deterministic functions

of time denoted as such: σ(t) is the volatility, β(t) := E(t) + H(t) − F (t) defines the exogenous

factors, α(t) := I(t)−G(t), γ(t) := β(t)/α(t).

Proof. We will first model the prices dynamic without taking into account the jumps and then later

take into account the jumps.

Let S(t) denote electricity price and assume that the electricity market regulated by price cap verify

the 9 assumptions made in (Merton, 1976, pp.377-380.) such that market structure is hold. For each

quantity of energy supply in the opportunity set at each point in time t, the expected rate of return per

unit time, is defined by

r ≡ 1

h
Et
{
S(t+ h)− S(t)

S(t)

}
, (1.3)

which represents the right member of (1.1) and the variance of the return per unit time, is defined by

σ2 ≡ 1

h
Et

{(
S(t+ h)− S(t)

S(t)
− rh

)2
}
, (1.4)

where Et denote conditional expectation respect to Ft .

From (1.3) and (1.4) rate of return dynamic is give by

S(t+ h)− S(t)

S(t)
= rh+ σy(t)

√
h (1.5)

where: y(t) is purely the random process where, by construction

Et(y) = 0, Et(y
2) = 1, that is, y(t) and y(t + s), for s > 0, are identically distributed and mutually
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1.3. Mean-Reversion Condition

independent see Samulson and Merton (1974) for further discussion. Further, assumed that y(t) is

Gaussian distributed, it is defined the stochastic process, z(t), by z(t + h) = z(t) + y(t)
√
h, then for

h tends to zero z(t + h)-z(t) describes a Wiener process or Brownian motion. In the formalism of

stochastic differential equations, we have

dz ≡ y(t)
√

dt (1.6)

from (1.6), (1.5) is a stochastic differential equation, for the instantaneous return is giving by

dS(t)

S(t)
= rdt+ σdz (1.7)

Hence, we obtain the following the SDE

dSt = [St (I(t)−G(t))− β(t)] dt+ σ(t)StdWt. (1.8)

Next, to capture the market shocks we add the jump term in (1.8) using Cartea and Figueroa (2007)

idea as follows. We suppose that the stock prices jumps from the previous value St− to a next value

JSt− where J is the proportional size of the random jump assumed log-normally distributed such that

E(J) = 1 this assumption is motivated by the fact that under regulation we want that the risk of the

market shocks fluctuate around unit. Next, from assumption (i)

St = JSt−

by removing S−t in the two side of equality we obtain

St − St− = JSt− − St− = St−(J − 1),

which represents the price change after the jump. Then from assumption (ii) the equation (1.8), setting

α(t) := I(t)−G(t), γ(t) := β(t)/α(t), we finally obtain the SDE (1.2).

1.3 Mean-Reversion Condition

A means-reverting process has a drift term that brings the variable being pulled back to some equi-

librium. This feature is captured by one stochastic differential equation if the following definition is

verified.
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1.3. Mean-Reversion Condition

Definition 1.6. (Condition (A3) of Mbele and Miklós (2014)).

Consider a Jump diffusion process Yt with a differentiable drift function µ(.).

If

lim sup
|Yt|→∞

| Yt + µ(Yt) |
| Yt |

< 1,

then Yt is mean-reverting.

From this definition we have the following Proposition

Proposition 1.1. The jump-diffusion model (1.2) is mean-reverting.

Proof. It is straightforward and is based on the economic fact that β(t) is bounded on [0, T ] and we

have | 1 + α(t) |< 1 for all t ∈ [0, T ].

Proposition 1.2. The solution of equation (1.2) is the process (St, 0 ≤ t ≤ T ) define by

St = Zt

(
S0 −

∫ t

0

β(s)Z−1
s ds

)
,

where Zt = e(
∫ t
0 (α(s)− 1

2
σ(s)2)ds+∫ t0 σ(s)dWs+

∫ t
0 ln Jdqs).

Proof. To solve equation (1.2) we consider a process Z, solution of the following equation

dZt = Zt (α(t)dt+ σ(t)dWt + (J − 1)dqt) and Z0 = 1.

Applying Itô formula with jumps stated in 7.10 Etheridge (2002), we obtain

Zt = Z0e
(
∫ t
0 (α(s)− 1

2
σ(s)2)ds+∫ t0 σ(s)dWs+

∫ t
0 ln Jdqs).

Now, let us set f(St, Zt) = St
Zt

. By applying Itô formula with jumps one more, we obtain

St
Zt

=
S0

Z0

+

∫ t

0

1

Zs
[α(s)ds+ σ(s)dWs + (J − 1)dqs)Ss − β(s)ds]

−
∫ t

0

Ss
(Zs)2

Zs (α(s)ds+ σ(s)dWs + (J − 1)dqs)

+
1

2

(∫ t

0

2
Ss

(Zs)3
(σ(s)Zs)

2ds− 2

(Zs)2
σ(s)2SsZsds

)
. (1.9)

The development of (1.9) leads to

St
Zt

=
S0

Z0

+

∫ t

0

Ss
Zs
α(s)ds+ σ(s)dWs + (J − 1)dqs)−

∫ t

0

1

Zs
β(s)ds

−
∫ t

0

Ss
Zs
α(s)ds+ σ(s)dWs + (J − 1)dqs)

+

∫ t

0

Ss
Zs
σ(s)2ds− Ss

Zs
σ(s)2ds. (1.10)
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1.4. Some Illustrative Curves of Spot Price in Regulated
Electricity Market

By simplifying the second and the fourth terms, the last two terms together in (1.10) and since Z0 = 1

we obtain

St
Zt

= S0 −
∫ t

0

Z−1
s β(s)ds.

Finally, we obtain

St = ZtS0 − Zt
∫ t

0

Z−1
s β(s)ds.

This end the proof.

Furthermore the solution of (1.2) at T starting at t is given by

ST =
ZT
Zt
St − ZT

∫ T

t

β(s)Z−1
s ds, (1.11)

where ZT = Zte
(
∫ T
t α(s− 1

2
σ(s)2)ds+∫ Tt σ(s)dWs+

∫ T
t ln Jdqs). Thus, the solution of (1.2) is a functional of

Lévy process.

1.4 Some Illustrative Curves of Spot Price in Regulated

Electricity Market

This section deals with the numerical simulations of the Spot price in order to illustrate some mean-

ingful behaviors of the model and in comparison with the model develop in Cartea and Figueroa

(2007). The proposed simulations also aim at highlighting the fundamental role of some particular

parameters in the outcomes of the prices. For the numerical computation, we approximated the in-

tegrals using the trapezium and the Stratonovich integration methods. The parameters used in the

simulations are plausable relative to those used in the literature.
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1.4. Some Illustrative Curves of Spot Price in Regulated
Electricity Market
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Figure 1.1: These curves compare spot price propose in this work in color blue with the spot price

introduce by Cartea et al. in Cartea and Figueroa (2007) with the parameters, I=0.0314; G=0.01;

E=0.05; H=0.001; F=0.05; `= 2.85; σ = 0.75; σJ = 0.67; S(0)=50.

Figure 1.2 shows a simulated spot price of our propose model when increase the jumps intensity

parameter ` end one can observe that the number of the jumps increase too. Figure 1.1 shows a

simulated spot price of our propose model in color blue compared to the spot price develop by Cartea

and Figueroa (2007) without the seasonal part in color red. One can observe that the proposed model

captures some characteristics discussed in the regulated market such as mean-reversion, a property

also observed in figures 1.2 confirming the theoretical results. It is further relevant to discuss that

in our model, the frequency of jumps is less than in the deregulated market. In a nut shell, these

illustrations show that our model with the mean-reversion property captures the main objective of

regulation principle, which is to cap prices within a given range.
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1.5. Condition for the implementation of the theory developed in a specific case: the case of
Cameroon
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Figure 1.2: Spot prices for the parameters, I=0.0314; G=0.01; E=0.05; H=0.001; F=0.05; ` = 8.85;

σ = 0.75; σJ = 0.67; S(0)=50.

1.5 Condition for the implementation of the theory developed in

a specific case: the case of Cameroon

To implement the theory developed, it is essential to have data on the evolution of prices over time.

Indeed, this data will allow two things:

• Justify the randomness of the model (Brownian aspect and possible jumps);

• The calibration of the model using observed data to estimate model parameters.

Conclusion

In this chapter we have proposed a new model of spot price in the regulated electricity market. The

proposed model leads to non classical Ornstein-Uhlenbeck process due to the non constant speed of

the mean-reversion. This model is useful to better capture the dynamics of the electricity prices and

its behaviour in regulated electricity market. It also gives a better quantification of financial tools that

help to hedge against financial risks.
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CHAPTER TWO

OPTION PRICING FROM JUMP DIFFUSION

MODEL OF ELECTRICITY PRICES UNDER
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This chapter concerns the derivation of the closed-form formula of forward contract and European

call option, which are two financial tools used to hedge risk in the electricity market. To price Euro-

pean call option, two approaches were discussed: the approach based on Fourier transform and the

one based on Partial Integro-Differential Equations (PIDE). Some simulations were conducted after

analysing the stability of the explicit-implicit scheme used.

2.1 Introduction

Electricity spot prices in the emerging power markets are volatile, a consequence of the unique phys-

ical attributes of electricity production and distribution. Uncontrolled exposure to market price risks

can lead to devastating consequences for market participants in the restructured electricity industry.

Lessons learned from the financial markets suggest that financial derivatives are a major tool in risk

management. Options pricing is recent in electricity and constitutes an attractive new research pole

in financial mathematics.

Electricity forward contracts are the primary instruments used in electricity price risk manage-

ment. Other power marketers usually use forwards to hedge their positions in electricity options and

other complex electricity derivatives. Two standard approaches have often been used to derive it in

the literature. The first consists in modelling directly the forward curve dynamics and deduce forward

contract (Aid et al., 2013; Clewlow and Strickland, 2000). The second approach starts from a spot

price model to derive forward contract price as the conditional expectation of the spot price under a

risk-neutral probability (Lucía and Schwartz, 2002; Cartea and Figueroa, 2007).

In finance, options are tools that help to guard against risks. However, it is difficult to know the

value of an option before the maturity date since, one has to estimate the value of the underlying in the

future. In the early 1970’s, Black and Scholes (1973) brought a major contribution in the evaluation
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2.1. Introduction

of options. In the case where the underlying is a share that does not pay dividends, they construct a

risk-neutral portofolio that replicates the winning profile of an option, which allows to perform the

theoretical value of a European option under a closed formula. In the case of the Black and Scholes

model, this formula is derived from some classical results in discounting, statistics, stochastic and

differential calculus. On the contrary, the valuation of options remains an open topic in the case

of jump-diffusion processes due to the additional jump term that complicates calculation of option

prices. This has been investigated by several authors. One may distinguish two main approaches used

by these authors. The first one, which relies on Fourier transform-based methods, has been introduced

by Carr and Madan (1999) to price and analyses European option prices. Other authors like Chiarella

et al. (2009), Lewis (2001) and ? followed the same idea to evaluate option price. This approach

relies on its high computational efficiency when the characteristic function is available. The idea here

is to apply the direct discounted expectation method to evaluate the integral of the discounted payoff

and risk neutral density function of the underlying process. Continuous and discrete Fourier trans-

forms were successfully applied to price options of three models: the classical Black-Scoles model,

the Merton jump diffusion model (an exponential Lévy model with finite arrival rate of jumps), and

the variance Gamma model (an exponential Lévy model with infinite arrival rate of jumps). How-

ever, for many other jump diffusion processes, it is not possible even by applying the Lévy-Khinchin

representation to determine an analytical expression of the characteristic function. This may be due

to the complexity of diffusion processes or to the fact that two or more processes are combined in

the same model. Therefore one expects to evaluate option prices with rather an approximation of

the characteristic function. The debate is then on the choice of a good approximation. Indeed, when

the characteristic function can not be expressed explicitly, the Fourier transform method requires two

levels of approximation which increases the error level in option valuation. In order to reduce ap-

proximation errors, a second approach based on the Feynman-Kac formula was introduced by some

authors like Alvarez and Tourin (1996), Bales et al. (1991) and Cont and Ekaterina (2005b). This ap-

proach relates the risk-neutral valuation formula to either the solution of a partial differential equation

(PDE), when the model is a continuous exponential Lévy one, or to the solution of a partial integro-

differential equation (PIDE) in the case of continuous Lévy process. The PDE, respectively PIDE

obtained may be complex and its theoretical analysis requires new mathematical tools. However, af-

ter a numerical approximation step, the solution leads directly to the value of the option. So, we have
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one level of approximation. Nevertheless, theoretical analysis of the approximation (consistency, sta-

bility and convergence of the scheme) remains a challenge. Several finite difference schemes are used

in the literature (Alvarez and Tourin, 1996; Cont and Ekaterina, 2005a; Rama and Tankov, 2003).

Most of these works focus on pricing option when the underlying is driven by either a Lévy process

or an exponential Lévy process. Some of the main difficulties are related to the local integral term due

to the fact that, on the one hand, the approximation of the risk-neutral density can often involve an

infinite summation, and on the other hand, a local integral term requires a specific treatment at both

theoretical and numerical levels. We may have other difficulties as the smoothness of option prices

and even the degeneracy of the diffusion coefficient. To overcome such difficulties, the notion of

viscosity solution was introduced by Grandall et al. (1992) for PDEs and, more generally, for PIDEs

by Alvarez and Tourin (1996) and Bales et al. (1991). Precisely, one can split the integro-differential

operator into a non local and a local part, and then treat the non local term using an implicit step, and

the local term using an explicit step. This idea was applied by Cont and Ekaterina (2005a) to obtain a

better approximation of option prices than the previous ones.

In the rest of this chapter, and from the spot price model derived in the first chapter and the

second approach mentioned above we obtain a closed form formula of the forward contract. We

also calculated the European option using the Fourier transform and the Feynman-Kac approaches.

Indeed, in our case, the characteristic function of the jump diffusion process is unavailable, hence

was approximated. For the second approach, we took the advantage of the Markov property in the

electricity spot price to prove that the European option price solves a PIDE. We then apply an explicit-

implicit scheme to compute numerically the viscosity solution of the PIDE founded. We also studied

the consistency, the stability and the convergence of this scheme using a technique similar to that

in Cont and Ekaterina (2005a), with the exception that (i) the market price here is the sum of the

exponential Lévy process and Lévy process, (ii) the presence of this additional term (see equation 2.2

) has created an additional difficulty at all levels of the analysis since it still depends on the process,

(iii) the parameters used in numerical simulations are derived from the Cameroonian context, and

(iv) we worked in the case of time-dependent parameters. Finally, some numerical simulations are

provided under a smooth initial condition.
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2.2 Some Mathematical and Financial Definitions and Results

Definition 2.1. (Characteristic function)

The characteristic function of random variable X is function

ψX : R −→ C

define by

ψX(t) = E
[
eitX

]
, t ∈ R.

Definition 2.2. A probability measure P∗ on Ω is called a risk-neutral measure if under P∗ on average

the expected yield of the risky asset equals the risk-free interest rate obtained by investing on the

savings account with interest rate

Also known as the risk-neutral measure, P∗-measure is a way of measuring probability such that

the current value of a financial asset is the sum of the expected future payoffs discounted at the risk-

free rate. The risk-free rate is the return on investment on a riskless asset. Q-measure is used in the

pricing of financial derivatives under the assumption that the market is free of arbitrage.

Definition 2.3. (Equivalent Probability measure)

A probability measure P∗ on (Ω,F) is said to be equivalent to another probability measure P∗ when

P∗(A) = 0 if and only if P(A) = 0, for all A ∈ F

Theorem 2.1. (Delbaen and Schachermayer (1994))(Fundamental Theorem of Asset Pricing)

The no-arbitrage condition and the existence of an equivalent martingale measure are fundamentally

connected as follows:

(i) the market is arbitrage free, if and only if there exists at least one equivalent martingale measure

Q, and

(ii) the market is complete, if and only if there exists only one equivalent martingale measure Q

for a modeled capital market.

Definition 2.4. A (European) put option is a contract that gives its holder the right (but not the

obligation) to sell a quantity of assets at a predefined price K called the strike price (or exercise price)

and at a predefined date T called the maturity.
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Definition 2.5. A (European) call option is a contract that gives its holder the right (but not the

obligation) to buy a quantity of assets at a predefined price K called the strike and at a predefined date

T called the maturity.

We consider in this chapter that the underlying asset is electricity which the spot price dynamic is

given by a jump diffusion equation

dSt = (α(t)St − β(t)) dt+ σtStdWt + (J − 1)Stdqt, (2.1)

where St represents the electricity spot prices in regulated market and the rest of parameters remain

as define in chapter 1. In addition to the assumptions considered in chapter 1 we add the following

(iii) The random jump size J , dqt and dWt are independent.

We will further assume that the electricity parameters α(.), β(.) and σ(.) are bounded. We recall that

the exact solution to (2.1) is given, using Itô formula for jump diffusion process, by

St = S0e
Xt −

∫ t

0

β(s)eXt−Xsds, (2.2)

where Xt =
∫ t

0
α(s)− 1

2
σ(s)2ds+

∫ t
0
σ(s)dWs +

∫ t
0

ln Jdqs is a Lévy process.

2.2.1 Computation of Regulated Electricity Forward Price

The price at time t of the forward expiring at time T (i.e. F(t, T )) is obtained as the expected

value of the spot price under an equivalent Q-martingale measure, conditional on the information set

available up to time t, precisely

F(t, T ) = EQ
t [ST ] .

Where EQ
t represents the conditional expectation knowing a natural filtration of St under the risk-

neutral probability Q. To incorporate the non opportunity of arbitrage in the model, we use the same

approach as in Lucía and Schwartz (2002) and Cartea and Figueroa (2007), which consists of incor-

porating a market price of risk in the drift, to obtain

γ̂(t) = γ(t)− λσ(t)

α(t)
St, (2.3)

where λ denotes the market price of risk per unit risk linked to the state variable St. This market

price of risk to be calibrated from market information, pins down the choice of one particular mar-

tingale measure. Recall that when a market subjected to that measure, the opportunity of arbitrage
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is theoretically excluded in this market. Hence, under this equivalent martingale measure SDE (2.4)

becomes

dSt = −α(t) (γ̂(t)− St) dt+ σ(t)StdŴt + (J − 1)Stdqt, (2.4)

substituting (2.3) in (2.4), we obtain

dSt = −α(t)

(
γ(t)−

(
1 + λ

σ(t)

α(t)

)
St

)
dt+ σ(t)StdŴt + (J − 1)Stdqt, (2.5)

where dŴ is the increment of a Brownian motion in the Q-martingale measure specified by the choice

of λ.

The next addresses the forward price computations.

Proposition 2.1. Assume that J, the increments of qt andWt are independent. Under the risk-neutral

or martingale measure Q and Novikov hypothesis i.e. E
[
e

1
2

∫ t
0 σ(s)2ds

]
<∞, electricity forward price

under regulated market is given by

F(t, T ) = Ste
∫ T
t (α(s)+λσ(s))ds −

∫ T

t

β(s)e
∫ T
s (α(u)+λσ(u))duds. (2.6)

Before proving the Proposition 2.1 let us first prove the following lemmas.

Lemma 2.1. If J is a log-normal distributed process with E[J ] = 1 and q a Poisson process, then

EQ
t [e

∫ T
t ln Jsdqs ] = 1.

Proof. Firstly, we use differentiation method to compute EQ
t [e

∫ t
0 ln Jsdqs ].

Let us define Lt such that

Lt ≡ e
∫ t
0 ln Jsdqs ,

≡ emt (2.7)

where mt is

mt =

∫ t

0

ln Jsdqs,

or equivalently

dmt = ln Jtdqt. (2.8)
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In order to write the dynamic followed by Lt for process define in (2.8) we use the generalization

form of Itô’s lemma Etheridge (2002). The SDE verified by Lt is

Lt = L0 +

∫ t

0

Ls ln Jsdqs −
∫ t

0

Ls ln Jsdqs +

∫ t

0

Ls(e
ln Js − 1)dqs

= 1 +

∫ t

0

Ls(e
ln Js − 1)dqs. (2.9)

Then, from (2.9) we obtain

E[Lt] = 1 +

∫ t

0

E[Ls](E[eln Js ]− 1)`ds

= 1.

Alternatively we can remark that
∫ t

0
ln Jsdqs =

qt∑
i=0

ln Js which is the particular case of Lévy process

with the moment generating function. Using Lévy-Khintchine representation, we have

E
[
eiu

∫ t
0 ln Jsdqs

]
= E

[
E
[
eiu

∫ t
0 ln Jdqs |qt

]]
= E [E [ϕ(u)qt ]]

= et`(ϕ(u)−1). (2.10)

where ϕ is the moment generating function of the jump ln J . Evaluating (2.10) at u = −i leads to

desired result.

Proof. of Proposition 2.1 Before stating let recall that forward price formula is given by F(t, T ) =

EQ
t [ST ]. By substituting ST with (1.11) we obtain

F(t, T ) = EQ
t [ST ]

= StEQ
t

[
e(
∫ T
t (λσ(s)+α(s)− 1

2
σ(s)2)ds+

∫ T
t σ(s)dŴs+

∫ T
t ln Jsdqs)

]
−EQ

t

[
Zte

(
∫ T
t (λσ(s)+α(s)− 1

2
σ(s)2)ds+

∫ T
t σ(s)dŴs+

∫ T
t ln Jsdqs)

×
∫ T

t

α(s)µ(s)Z−1
s ds

]
. (2.11)

We first compute EQ
t

[
e(
∫ T
t (λσ(s)+α(s)− 1

2
σ(s)2)ds+

∫ T
t σ(s)dŴs+

∫ T
t ln Jsdqs)

]
≡ A.

From independence between J , dqt and dWt we obtain

A = EQ
t

[
e(
∫ T
t (λσ(s)+α(s)− 1

2
σ(s)2)ds+

∫ T
t σ(s)dŴs)

]
EQ
t [e

∫ T
t ln Jdqs ]

= e
∫ T
t (α(s)+λσ(s))dsEQ

t [e
∫ T
t ln Jdqs ].

(2.12)
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We now compute

EQ
t

[
Zte

(
∫ T
t (λσ(s)+α(s)− 1

2
σ(s)2)ds+

∫ T
t σ(s)dŴs+

∫ T
t ln Jdqs) ∫ T

t
α(s)γ(s)Z−1

s ds
]
≡ A1.

Replacing Z−1
s by its expression, using independence between J , dqt and dWt and Fubini theorem

Veraar (2011) we obtain

A1 = EQ
t

[∫ T

t

α(s)γ(s)e(
∫ T
s (λσ(u)+α(u)− 1

2
σ(u)2)du+

∫ T
s ln Jdqu+

∫ T
s σ(u)dŴu)ds

]
=

∫ T

t

EQ
t [e

∫ T
s ln Jdqu ]α(s)γ(s)EQ

t

[
e(
∫ T
s (λσ(u)+α(u)− 1

2
σ(u)2)du+

∫ T
s σ(u)dŴu)

]
ds

=

∫ T

t

α(s)γ(s)e
∫ T
s (α(u)+λσ(u))duds. (2.13)

By replacing finally (2.12) and (2.13) in (2.11) we obtain the forward price

F(t, T ) = Ste
∫ T
t (α(s)+λσ(s))ds −

∫ T

t

β(s)e
∫ T
s (α(u)+λσ(u))duds.

This completes the proof.

2.2.2 Analytical Comparison with Forward Price in Cartea et al. (2005)

Recall that forward price obtained in Cartea and Figueroa (2007) is given by

F (t, T ) = G(T )

(
S(t)

G(t)

)e−α(T−t)

e
∫ T
t

1
2
σ2(s)e−2α(T−s)−λσ(s)e−α(T−s)ds+

∫ T
t ξ(σJ ,α,T,s)`ds−`(T−t)

The forward price formula (2.6) derived in this work is an affine function of the spot price St, Unlike

in the works of Cartea and Figueroa (2007), where they have obtained a power function of the spot

price. This is what justifies the presence of fewer jumps in the forward prices. This is in line with the

fact that we are in a regulating context where prices are likely to undergo less variations.

2.3 Some Illustrative Curves of Forward in Regulated

Electricity Market
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Figure 2.1: forward price for the parameters, I=0.0314; G=0.01; E=0.05; H=0.001; F=0.05; σ = 0.75;

σJ = 0.67; S(0)=50.
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Figure 2.2: forward prices for the parameters, I=0.0314; G=0.01; E=0.05; H=0.001; F=0.05; ` = 8.5;

σ = 0.75; σJ = 0.67; S(0)=50.
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Figure 2.3: forward prices for the parameters, I=0.0314; G=0.01; E=0.05; H=0.001; F=0.05; σ =

exp(−0.01t); σJ = 0.67;S(0)=50.
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Figure 2.4: forward prices for the parameters, I=0.0314; G=0.01; E=0.05; H=0.001; F=0.05; ` = 8.5;

σ = exp(−0.01t); σJ = 0.67; S(0)=50.

Figures 2.1 and 2.3 present four different states of the evolution of the forward price process in the

absence of jumps in the spot price model. Here we observe that the forward price fluctuates around
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an average like the spot price. This could be justified by the fact that the forward formula obtained

here is a functional of the spot price. Figures 2.2 obtained by introducing small jumps into the model

show that despite the jump at the beginning, the forward price latter oscillates around an equilibrium a

situation which is not observed in figure 2.4 with bigger jumps. In a nut shell, these illustrations show

that our model with the mean-reversion property captures the main objective of regulation principle,

which is to cap prices within a given range.
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Figure 2.5: forward prices for each day for various maturity and parameter sigma, I=0.0314; G=0.01;

E=0.05; H=0.001; F=0.05; ` = 8.5; σ = exp(−0.01t); σJ = 0.67; S(0)=50.

Figures 2.5 shows that despite jumps in the prices, prices vary from a certain threshold for different

maturities. We observe in figure 2.6 that when the efficiency rate factor G is more than the inflation

rate factor I , forward price decrease over time. This is in accordance with the economic principle.

2.4 Option Valuation Using the Fast Fourier Transform

In this part we present an approach for determining the Fourier transform of the European call of

maturity T, written on the terminal electricity spot price ST as underlying. Let recall some definitions.
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Figure 2.6: forward prices for each day for various maturity and parameter sigma I=0.0314; G=0.1;

S(0)=50; σJ = 0.67; ` = 0.25.

Let f be a continuous real value function that satisfies the integrability condition i.e.∫ +∞

−∞
|f(x)|dx <∞.

The Fourier transform of f is defined by

Ff(u) =

∫ +∞

−∞
f(x)ei2πuxdx, u ∈ R (2.14)

Given (2.14) the inverse Fourier transform allows to obtain the function

f(x) =
1

2π

∫ +∞

−∞
Ff(u)e−i2πuxdu, x ∈ R (2.15)

2.4.1 Option Valuation Using Carr and Madan (1999) Approach

Under the following assumption
∫
Q(dx)e1+x <∞ the European call is calculated as follows

C(ω, θ) = eθω
∫

Q(dx) [ex − eω]+ ∈ L1. θ > 0 (2.16)
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The Fourier transform of (2.16) is given by

F [C(ω, θ)] = − i

2π

[
1

k − iθ/2π
− 1

k − i(1 + θ)/2π

]
×∫

Q(dx)ei2π[k−i(1+θ)/2π]x

then, apply Fourier inverse transform we obtain

F [C(ω, θ)] = − i

2π

[
1

k − iθ/2π
− 1

k − i(1 + θ)/2π

]
× ΦY (k − i(1 + θ)

2π
)

thus, the European call option is given by

C(ω) = −ie
−θω

2π

∫
dke−i2kπωΦY (k − i(1 + θ)

2π
)×[

1

k − iθ/2π
− 1

k − i(1 + θ)/2π

]
(2.17)

where Φ represent the characteristic function of the process that describe the underlying asset.

2.4.2 Option Valuation Using Lewis (1999) Approach

In this part we use the approach developed in Lewis (2001) to derive the European call option.

Since we have

e−θx [ex − eω] ∈ L1, θ > 1 (2.18)

Assume that there exists β such that

E[eλx] <∞, ∀λ < β.

Then we have

C(ω, λ) =

∫
[Qeλx][e−λx(ex − eω)+].

By owning in the same way as before the European call is derived as follow

C(ω) = e−(λ−1)ω

∫
dkei2πkωΦY (k − i λ

2π
)(
−i
2π

)×[
1

k + iλ/2π
− 1

k + i(λ− 1)/2π

]
. (2.19)

the two formulas depend on the characteristic function. The process that models electricity spot prices

does not have a characteristic function with an exact expression. Indeed, the process is the sum of

two laws. so, to evaluate the option an approximation of the characteristic function is necessary.
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2.4.3 Characteristic Function Approximation

The characteristic function is not available to give the approximation we first approximated (1.8) after

set Y = lnS to simplify the later.

Let ∆t = tn+1 − tn, ∆WM
n = WM

n+1 − WM
n , ∆qMn = qMn+1 − qMn , Y M

tn = Y M
n with f(Yt) =

−α(t)
(
γ(t)e−Yt − (1 + λσ(t)

α(t)
)
)

From tamed Euler scheme of (1.8) rewrote in Y is given by the

following relation

Y M
n+1 = Y M

n +
∆tf(Y M

n )

1 + ∆t|f(Y M
n )|

+ σMn ∆WM
n + ln J∆qMn . (2.20)

Thus, the characteristic function of Y = lnS is given by

E
[
eiuY

M
n+1|Y M

n

]
= e

iu

(
YMn +

∆tf(YMn )

1+∆t|f(YMn )|

)
×

e−
1
2
u2σMn ∆t × el∆t

(
e(−iu−u

2)σ2
J/2−1

)
(2.21)

2.4.4 An Illustrative example

using the approximation of the characteristic function and an approximation by the trapezoidal method

of the integrals we obtained for different approach a value of the European call option in the following

table.

method Carr Madan Alan Lewis

strike K=30 8.1437 3.0892

strike K=50 2.6675 2.5761

strike K=70 1.5784 2.3018

Table 2.1: European call option for the parameters r = 0.75, ST = 53, α = 0.5, γ = 1.5, σ = 0.5,

σJ = 0.1, l = 0.75, λ = 0.5, T = 1, N = 1000

Table 2.1 give the call option price for different strike using both precedent approach presented in

this part. The decreasing of call option when the strike increase is in accordance with reality.
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Figure 2.7: European call option in electricity market

Figure 2.7 represents the simulated call option value versus the strike in the case that the underly-

ing is the electricity where the prices are regulated by price-cap principle and modeled by (2.1). Both

curves where in the first call option formula in performed using Carr-Madan approach and where the

call option formula is calculated using Lewis approach show that when the strike increase, call option

value decrease which it is in accord with the practice in finance.

2.5 Partial Integro-Differential Equation for Call Option Prices

This part aims at evaluating the price of an option (Put or Call) in the regulated electricity market

under risk-neutral probability, Q, with the terminal payoff, HT , which is given by:

Ct = E[e−r(T−t)HT |Ft], (2.22)

where r represents a free risk discounting rate, T denotes the maturity, and K represents the strike

price. Let ST be the solution of (1.8) at T, which is the equation of the underlying. HT = H(ST ),

with H(S) = (S−K)+ for European Call or H(S) = (K−S)+ for European Put. From the Markov
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2.5. Partial Integro-Differential Equation for Call Option Prices

property, Ct becomes

C(t, S) = E[e−r(T−t)HT |St = S]. (2.23)

Proposition 2.2. Assume that the European option C given by

C : (0, T )× (0,∞) → R

(t, S) 7→ C(t, S) (2.24)

is C1,2, with ∂C/∂S and ∂2C/∂S2 bounded, then C satisfies the partial integro-differential equation:

∂C

∂t
(t, S) + (α(t)S − β(t))

∂C

∂S
(t, S) +

σ(t)2S2

2

∂2C

∂S2
(t, S)− rC(t, S)

+`

∫
R
ν(dx)[C(t, xS)− C(t, S)] = 0 (2.25)

on (0, T ) × (0,∞) with the terminal condition C(T, S) = H(S), ∀S > 0, where ` represents the

intensity of the Poisson process under risk-neutral measure, and the measure ν(dx) is the jump size

distribution.

Proof. The proof consists of applying Itô formula with jump to the martingale C̃(t, St) = e−rtC(t, St),

then identify the drift component and set it to zero. By construction C̃ is a martingale. Applying the

Itô formula to C̃ we obtain:

dC̃t = e−rt
[
−rC(t, St) +

∂C

∂t
(t, St) +

σ(t)2S2
t

2

∂2C

∂S2
(t, St)

]
dt

+e−rt
∂C

∂S
(t, St)dSt

+e−rt
[
C(t, JSt−)− C(t, St−) + (J − 1)St−

∂C

∂S
(t, St−)

]
dqt.

From (2.5) this equation is equivalent to

dC̃t = e−rt
[
−rC(t, St) +

∂C

∂t
(t, St) +

σ(t)2S2
t

2

∂2C

∂S2
t

(t, St)

]
dt

+e−rt
[
(α(t)St − β(t))

∂C

∂S
(t, St)dt+

∂C

∂S
(t, S)Stσ(t)dWt

]
+e−rt [C(t, JSt−)− C(t, St−)] dqt.

Adding and subtracting

`

∫
R
ν(dx)(C(t, Stx)− C(t, St))dt,
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one has

dC̃t = a(t)dt+ dMt,

where

a(t) = e−rt
[
∂C

∂t
(t, St) + (α(t)St − β(t))

∂C

∂S
(t, St) +

σ(t)2S2
t

2

∂2C

∂S2
(t, St)

−rC(t, St) + `

∫
R
ν(dx)(C(t, Stx)− C(t, St))

]
and

dMt = e−rt
[
∂C

∂S
(t, S)Stσ(t)dWt + (C(t, JSt−)− C(t, St−))dq̃t

]
,

with q̃t = qt − `t. We now show that Mt is a martingale. Since the payoff function H is Lipschitz.

Then, C is also Lipschitz with respect to the second variable S. Indeed:

|C(t, x)− C(t, y)| = e−(T−t)|E[H(Ste
XT−Xt −

∫ T

t

β(s)eXT−Xsds) | St = x]

−E[H(Ste
XT−Xt −

∫ T

t

β(s)eXT−Xsds) | St = y]|

≤ c1e
−r(T−t)E[e

∫ T
t α(s)−

1

2
σ(s)2ds+

∫ T
t σ(s)dWs+

∫ T
t ln Jdqs

]|x− y|, for every fixed t.

Since e
∫ T
t −

1

2
σ(s)2ds+

∫ T
t σ(s)dWs

is a martingale and we also have from assumption 1 that E[e
∫ T
t ln Jdqs ] =

1, then we get

|C(t, x)− C(t, y)| ≤ c|x− y|e
∫ T
t α(s)ds ≤ c1|x− y|,

with c1 = ce
∫ T
t α(s)ds.

Therefore the predictable random function ϕ(t, x) = C(t, xSt−)− C(t, St−) verifies:

E
[ ∫ T

0

∫
R
ν(dx)|ϕ(t, x)|2dt

]
≤ E[

∫ T

0

dt

∫
R
ν(dx)c1(x2 + 1)S2

t ]

≤
∫
R
c2

1(x2 + 1)ν(dx)E
[ ∫ T

0

S2
t dt
]
< ∞,

where the last inequality holds because the distribution ν(dx) of the jump sizes is assumed log-normal.

In effect, we have
∫
R x

2ν(dx) < ∞, hence E[
∫ T

0
S2
t dt] < ∞. Therefore, the compensated Poisson
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2.6. An Explicit-Implicit Difference scheme

integral
∫ T

0

∫
R e
−rt[C(t, xSt−)−C(t, St−)]dq̃t is a square integrable martingale. Since C is Lipschitz,

∂C

∂S
(t, .) ∈ L∞ and

∥∥∂C
∂S

(t, .)
∥∥
L∞
≤ c2. Thus, E

[ ∫ T
0
S2
t |
∂C

∂S
(t, St)|2dt

]
≤ c2

2E[
∫ T

0
S2
t dt] < ∞. Fur-

thermore, using the isometric relation and the preceding result, it follows that
∫ T

0

∂C

∂S
(t, St)Stσ(t)dWt

is a square integrable martingale. Therefore, Mt is also a square integrable martingale, implying

C̃t−Mt is a square integrable martingale. But C̃t−Mt =
∫ t

0
a(t)dt is also a continuous process with

finite variation, so, from Theorem 4.13-450 in Jacod and Shiryaev (2003), one must have a(t) = 0

Q-almost surely, leading to the PIDE (2.25).

Note that the smoothness (particularly the uniform boundedness of derivatives) assumption made

on the European call option is not generally verified as discussed in Cont and Ekaterina (2005b). In

this case, option prices should be considered as a viscosity solution of the PIDE obtained in Proposi-

tion 2.2. The following proposition gives the link between option prices and the viscosity solution of

the PIDE.

Proposition 2.3. (Option prices as viscosity solutions)

The European option defined by (2.23) is the (unique) viscosity solution of the Cauchy problem

(2.25).

Proof. Existence and uniqueness of viscosity solutions for such parabolic integro-differential equa-

tions are discussed in Alvarez and Tourin (1996) in the case (the one considered here) where ν is the

finite measure.

In what follows, we propose a numerical solution to the PIDE which converges to the viscosity solu-

tion as proven in Cont and Ekaterina (2005a).

2.6 An Explicit-Implicit Difference scheme

In this section we present a numerical procedure for solving the PIDE (2.25) obtained in Proposition

2.2. Introducing the change of variable x = ln
S

S0

and τ = T − t and defining: u(τ, x) =

erτC(T − τ, S0e
x), we obtain:

u(τ, x) = E
[
H(Ste

XT−XT−τ −
∫ T

T−τ
β(s)eXT−Xsds) | St = S0e

x

]
= E [H(Y x

τ )] , (2.26)
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2.6. An Explicit-Implicit Difference scheme

where Y x
τ = S0e

x+XT−XT−τ −
∫ T
T−τ β(s)eXT−Xsds. We then obtain a PIDE in terms of u, given by:

∂u

∂τ
= Lu, on (0, T ]×O

u(0, x) = H(S0e
x), x ∈ O, u(τ, x) = 0, x ∈ Oc,

(2.27)

where O ⊂ R is an open interval which is not necessarily bounded,

Lu(τ, x) =

(
α(T − τ)− 1

2
σ2(T − τ)− β(T − τ)

S0

)
∂u

∂x
(τ, x) +

1

2
σ2(T − τ)

∂2u

∂x2
(τ, x)

+`

∫
R

[u(τ, x+ y)− u(τ, x)] gln J(y)dy, (2.28)

with gln J denoting the density function of ln J .

The main idea in this method is to split the operator L into two parts as in Cont and Ekaterina

(2005b). We replace the differential part with a finite difference approximation, and the integral part

with a trapezoidal quadrature approximation. We treat the integral part with an explicit time stepping

in order to avoid the inversion problem of the dense matrix LJ associated to the discretization of the

integral term. We then rewrite the PIDE (2.27) as follow:
∂u

∂τ
= (LD + LJ)u, on (0, T ]×O

u(0, x) = H(S0e
x), x ∈ O, u(τ, x) = 0, x ∈ Oc,

(2.29)

where

LDu(τ, x) =

(
α(T − τ)− 1

2
σ2(T − τ)− β(T − τ)

S0

)
∂u

∂x
(τ, x)

+
1

2
σ2(T − τ)

∂2u

∂x2
(τ, x), (2.30)

LJu(τ, x) = `

∫
R

[u(τ, x+ y)− u(τ, x)] gln J(y)dy. (2.31)

In order to solve numerically the PIDE (2.29), we first localize the variables and the integral term to

bounded domains..

2.6.1 Localisation to a bounded domain

To numerically solve the Cauchy problem (2.29), we first truncate the space domain to a bounded

interval (−Al, Ar). Usually this leads to defining some boundary conditions at x = −Al and x = Ar.

But here, we are in an elliptic local PIDE due to the presence of an integral term. Thus, we need
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2.6. An Explicit-Implicit Difference scheme

to extend the function u(τ, .) to a subset {x+ y : x ∈ (−Al, Ar), y ∈ supp gln J}, where supp gln J =

R+, is the support of gln J . Let uA(τ, x) be the solution of the following localization problem:
∂ul,r
∂τ

= (LD + LJ)ul,r, on (0, T ]× (−Al, Ar)

ul,r(0, x) = H(S0e
x), x ∈ (−Al, Ar) ul,r(τ, x) = 0, x /∈ (−Al, Ar).

(2.32)

We will show in the following proposition that the localization error decays exponentially with the

domain size A.

Proposition 2.4. Assume ‖H‖∞ < ∞ and Cτ = E
[
e

sup
η∈[0,τ ]

|XT−XT−η |
]
< ∞. Let ul,r(τ, x) and

u(τ, x) be respectively the solutions of the Cauchy problems (2.29) and (2.32). Then

|u(τ, x)− ul,r(τ, x)| ≤ Cτ‖H‖∞e−max(Al,Ar)+|x|, ∀x ∈ (−Al, Ar) (2.33)

where the constant Cτ does not depend on Ar and Al.

Proof. Let Mx
τ = sup

η∈[0,τ ]

|x+XT −XT−η|. Then

ul,r(τ, x) = E
[
1{Mx

τ <max(Al,Ar)}H(Y x
τ )
]

and u(τ, x) = E [H(Y x
τ )] . (2.34)

Hence

|u− ul,r| =
∣∣∣E [H(Y x

τ )1{Mx
τ ≥max(Al,Ar)}

] ∣∣∣
≤ ‖H‖∞

∣∣E [1{Mx
τ ≥max(Al,Ar)}

]∣∣
≤ ‖H‖∞Q(Mx

τ > max(Al, Ar). (2.35)

Theorem 25.18 in Sato (1999) and the fact that
∫
R e
|x|ν(dx) <∞ imply

Cτ = E
[
e

sup
η∈[0,τ ]

|XT−XT−η |
]
<∞. (2.36)

But

Q(Mx
τ > max(Al, Ar)) = Q(eM

x
τ > emax(Al,Ar)) (2.37)

(2.38)

and, since sup
η∈[0,τ ]

|x+XT −XT−η| ≤ sup
η∈[0,τ ]

|XT −XT−η|+ |x|, then
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2.6. An Explicit-Implicit Difference scheme

{Mx
τ > max(Al, Ar)} ⊂

{
sup
η∈[0,τ ]

|XT −XT−η| ≥ max(Al, Ar)− |x|

}
. Hence

Q
(
eM

x
τ > emax(Al,Ar)

)
≤ Q

(
e

sup
η∈[0,τ ]

|XT−XT−η |
> emax(Al,Ar)−|x|

)
. (2.39)

Now, using Markov’s inequality we obtain

Q
(
e

sup
η∈[0,τ ]

|XT−XT−η |
> emax(Al,Ar)

)
≤

E
[
e

sup
η∈[0,τ ]

|XT−XT−η |
]

emax(Al,Ar)−|x|
. (2.40)

Inserting these last inequalities in (2.35) gives the desired result.

2.6.2 Truncation of the integral

To numerically compute the integral term of the PIDE (2.29), we need to reduce the region of inte-

gration to a bounded interval which leads to the truncation of large jumps. We then estimate the error

resulting from this approximation. In effect, suppose a new process, S̃t, is characterized by the fact

that logarithm of the jump size, ln J̃ , is bounded in [Bl, Br], with the associated measure 1{y∈[Bl,Br]}ν,

where Bl and Br are real. We further suppose, without loss generality, that Bl < 0 and Br > 0. In

this case the corresponding solution to the associated PIDE is denoted by ũ(τ, x). We analyse, in the

following proposition, the difference |u− ũ|.

Proposition 2.5. One has:

|u(τ, x)− ũ(τ, x)| ≤ Cτ
(
C1e

−|Bl| + C2e
−Br
)
, (2.41)

where Cτ = C
[
τ`S0 + `

∫ T
T−τ β(s)(T − s)ds

]
.

Proof. Firstly, let X̃t be a new Lévy process defined by:

X̃t =

∫ t

0

α(s)− 1

2
σ(s)2ds+

∫ t

0

σ(s)dWs +

∫ t

0

ln J̃dqs, (2.42)

and let:

ũ(τ, x) = E[H(Ỹ x
τ )], (2.43)
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2.6. An Explicit-Implicit Difference scheme

where Ỹ x
τ = S0e

x+X̃T−X̃T−τ −
∫ T
T−τ β(s)eX̃T−X̃sds. Setting Rτ = XT − X̃T − (Xτ − X̃τ ) and using

the Lipschitz property on H , we obtain:

|u(τ, x)− ũ(τ, x)| = |E[H(Y x
τ )]− E[H(Ỹ x

τ )]|

≤ c1E
[
|S0(ex+X̃T−X̃T−τ+RT−τ − ex+X̃T−X̃T−τ )

−
∫ T

T−τ
β(s)(e(X̃T−X̃s+Rs − eX̃T−X̃sds|

]
≤ c1

(
S0E[eX̃T−X̃T−τ |eRT−τ − 1|]

+

∫ T

T−τ
β(s)E[eX̃T−X̃s|eRs − 1|]ds

)
. (2.44)

Since Rτ and X̃T − X̃τ are independent, we have

|u(τ, x)− ũ(τ, x)| ≤ c1e
x(S0E[eX̃T−X̃T−τ ]E[|eRT−τ − 1|]

+

∫ T

T−τ
β(s)E[eX̃T−X̃s ]E[|eRs − 1|]ds). (2.45)

Moreover,
(
eX̃T−X̃T−u , u ∈ [0, T ]

)
being a martingale, E[eX̃T−X̃T−τ ] = 1 and E[eX̃T−X̃s ] = 1. As a

consequence,

|u(τ, x)− ũ(τ, x)| ≤ c1e
x(S0E[|eRT−τ − 1|] +

∫ T

T−τ
β(s)E[|eRs − 1|]ds). (2.46)

Since, for every a ∈ R, |ea − 1| = (ea − 1) + 2(ea − 1)+ and (ea − 1)+ ≤ |a|, then

|u(τ, x)− ũ(τ, x)| ≤ c1e
x(S0E[|RT−τ |] +

∫ T

T−τ
β(s)E[|Rs|]ds). (2.47)

But:

E[|RT−τ |] ≤ `

∫ T

T−τ

[
−
∫ Bl

−∞
ygln J(y)dy +

∫ +∞

Br

ygln J(y)dy

]
ds

≤ τ`

(
−e−|Bl|

∫ Bl

−∞
ye|y|gln J(y)dy + e−|Br|

∫ +∞

Br

ye|y|gln J(y)dy

)
≤ τ`S0

(
C1e

−|Bl| + C2e
−|Br|) , (2.48)

where C1 = −
∫ Bl
−∞ ye

|y|gln J(y)dy and C2 =
∫ +∞
Br

ye|y|gln J(y)dy. Replacing (2.48) into (2.44), we

get:

|u(τ, x)− ũ(τ, x)| ≤ C

[
τ`S0 + `

∫ T

T−τ
β(s)(T − s)ds

] (
C1e

−|Bl| + C2e
−|Br|) , (2.49)

where C = c1e
x

From Proposition2.4 and 2.5, ũ converges to u when |Bl| and |Br| grow to infinity.
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2.6. An Explicit-Implicit Difference scheme

2.6.3 Explicit-implicit scheme

Define a uniform grid on (0, T ]× (−Al, Ar) by τn = n∆t, n = 0,.....,M , xi = i∆x−Al, i = 0, .., N ,

with ∆t = T/M and ∆x =
Ar + Al
N

. Let (uni ) be the solution of the numerical scheme which we

define below: Firstly, to approximate the integral terms, we use the trapezoidal quadrature rule with

the same resolution ∆x. Let Kl and Kr be such that [Bl, Br] ⊂ [(Kl−1/2)∆x, (Kr +1/2)∆x], then:

∫ Br

Bl

(u(τ, xi + y)− u(τ, xi))gln J(y)dy '
Kr∑
j=Kl

νj(ui+j − ui), (2.50)

where νj =
∫ (j+1/2)∆x

(j−1/2)∆x
gln J(y)dy. Notice that to compute the integral term, we need to extend the

solution to [−Al +Bl, Ar+Br]. Hence, we assume that this solution is zero except in [−Al, Ar]. The

derivatives are discretized using the finite difference method thus:

(
∂2u

∂x2

)
i

' ui+1 − 2ui + ui−1

(∆x)2(
∂u

∂x

)
i

'


ui+1 − ui

∆x
if f(τ, x) ≥ 0

ui − ui−1

∆x
if f(τ, x) ≤ 0,

(2.51)

where f(τ, x) = α(T − τ)− 1

2
σ2(T − τ)− β(T − τ)

S0

ex.

Using (2.50) and (2.51), and supposing f(τ, x) < 0, we obtain the following relation:

un+1
i − uni

∆t
= (LDu)n+1

i + (LJu)ni , (2.52)

where 
(LDu)ni = f(τn, xi)

uni+1 − uni
∆x

+
1

2
σ2(T − τn)

uni+1 − 2uni + uni−1

(∆x)2

(LJu)ni =
Kr∑
j=Kl

νj(u
n
i+j − uni ).

(2.53)

Finally, we replace the problem (2.29) with the following time-stepping numerical scheme:

Initialisation u0
i = H(S0e

xi) if i ∈ {0, ...N − 1}

For n=0,...,M-1
un+1
i − uni

(∆t)
= (LDu)n+1

i + (LJu)ni if i ∈ {0, .., N − 1}

un+1
i = 0 if i /∈ {0, .., N − 1}.

(2.54)

After defining the numerical scheme, we study some of its important properties, particularly, consis-

tency, monotonicity, stability and convergence.
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2.6.4 Consistency

The follow proposition shows that (2.54) is consistent with (2.29).

Proposition 2.6. (Consistency)

The finite difference scheme (2.54) is locally consistent with equation (2.29): That is, ∀ v ∈ C∞0 ([0, T ]×

(Al, Ar)), and ∀ (τn, xi) ∈ [0, T ]× R, one has:∣∣∣∣vn+1
i − vni

(∆t)
− (LDv)n+1

i − (LJv)ni −
∂v

∂τ
(τn, xi)− (LD + LJ)v(τn, xi)

∣∣∣∣ = rni (∆t,∆x)→ 0

(2.55)

as (∆t,∆x)→ (0, 0). In other words, ∃c > 0 such that: |rni (∆t,∆x)| ≤ c(∆t+ ∆x).

Proof. Let 
a1 =

vn+1
i − vni

∆t
− ∂v

∂τ
(τn, xi)

a2 = (LDv)n+1
i − LDv(τn, xi)

a3 = (LJv)ni − LJv(τn, xi).

(2.56)

Using the second order Taylor expansion with respect to τ , we obtain

vn+1
i ≈ vni + ∆t

∂v

∂τ
(τn, xi) +

(∆t)2

2

∂2v

∂τ 2
(τn, xi).

Replacing this relation in the first equation in (2.56) we get:

|a1| =
∆t

2

∣∣∣∣∂2v

∂τ 2
(τn, xi)

∣∣∣∣ ≤ ∆t

2

∥∥∥∥∂2v

∂τ 2
(τn, xi)

∥∥∥∥
∞

=
∆t

2
M, (2.57)

where M =

∥∥∥∥∂2v

∂τ 2

∥∥∥∥
∞

. We now show that |a2| is bounded. In effect, using the mean-value theorem,

there exists θ ∈]τn, τn+1[ such that:

LDv(τn+1, xi)− LDv(τn, xi) ≈ ∆t∂τLDv(τn + ∆tθ, xi).

Replacing this relation in the second equation in (2.56), we obtain:

|a2| =
∣∣(LDv)n+1

i − LDv(τn+1, xi) + ∆t∂τLv(τn + ∆tθ, xi)
∣∣ . (2.58)

Next, taking Taylor expansion of v of order 4 gives:

vn+1
i+1 ≈ vni + ∆x

∂v

∂x
(τn+1, xi) +

(∆x)2

2

∂2v

∂x2
(τn+1, xi);

+
(∆x)3

6

∂3v

∂x3
(τn+1, xi) +

(∆x)4

24

∂4v

∂x4
(τn+1, xi)
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vn+1
i−1 ≈ vn+1

i −∆x
∂v

∂x
(τn+1, xi) +

(∆x)2

2

∂2v

∂x2
(τn+1, xi)

−(∆x)3

6

∂3v

∂x3
(τn+1, xi) +

(∆x)4

24

∂4v

∂x4
(τn+1, xi),

hence

vn+1
i+1 − 2vn+1

i + vn+1
i−1

(∆x)2
≈
(

(∆x)2 ∂
2v

∂x2
+

(∆x)3

12

∂4v

∂x4

)
.

Putting this last result in (2.58) gives:

|a2| ≤
(∆x)2

6
|f(τn+1, xi)|

∣∣∣∣∂3v

∂x3
+

(∆x)

4

∂4v

∂x4

∣∣∣∣+
(∆x)2

6

σ2(T − τn+1)

4

∣∣∣∣∂4v

∂x4

∣∣∣∣
+∆t|∂τLv(τn + ∆tθ, xi)|, (2.59)

since α, σ, β and f are bounded functions. Also, since the derivatives ∂m+nv
/
∂τn∂xm are all sup-

posed bounded, it implies:

|a2| ≤ (∆x)2M1 + ∆tM2. (2.60)

One also has:

|a3| =

∣∣∣∣∣
Kr∑
j=Kl

νj(v
n
i+j − vni )−

∫ Br

Bl

(v(τ, xi + y)− v(τ, xi))gln J(y)dy

∣∣∣∣∣
=

∣∣∣∣∣
Kr∑
j=Kl

∫ (j+1/2)∆x

(j−1/2)∆x

(vni+j − vni )gJ(y)dy −
∫ Br

Bl

(v(τ, xi + y)− v(τ, xi))gJ(y)dy

∣∣∣∣∣ .
Since [Bl, Br] ⊂ [(Kl − 1/2)∆x, (Kr + 1/2)∆x], then we have:

|a3| ≤

∣∣∣∣∣
Kr∑
j=Kl

∫ (j+1/2)∆x

(j−1/2)∆x

(v(τn, xi + yj)− v(τn, xi + y)gln J(y)dy

∣∣∣∣∣ ,
and using Taylor’s expansion of order one, we get:

|a3| ≤

∣∣∣∣∣
Kr∑
j=Kl

∫ (j+1/2)∆x

(j−1/2)∆x

(yj − y)
∂v

∂x
(τn, xi + ψ)gln J(y)dy

∣∣∣∣∣ , ψ ∈]xi + y, xi + yj[.

From the scheme, we have ∆x(j − 1/2) ≤ y ≤ ∆x(j + 1/2), which leads to −∆x

2
≤ yj − y ≤

∆x

2
.

Hence,

|a3| ≤
∆x

2

∣∣∣∣∣
Kr∑
j=Kl

∫ (j+1/2)∆x

(j−1/2)∆x

∂v

∂x
(τn, xi + ψ)gln J(y)dy

∣∣∣∣∣
≤ ∆x

2

∥∥∥∥∂v∂x
∥∥∥∥
∞

∣∣∣∣∣
Kr∑
j=Kl

∫ (j+1/2)∆x

(j−1/2)∆x

gln J(y)dy

∣∣∣∣∣ =
∆x

2
M3, (2.61)
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where M3 =

∥∥∥∥∂v∂x
∥∥∥∥
∞

∣∣∣∣∣ Kr∑j=Kl ∫ (j+1/2)∆x

(j−1/2)∆x
gln J(y)dy

∣∣∣∣∣. Finally, (2.57), (2.60) and (2.61) imply

|rni (∆t,∆x)| ≤ ∆t

(
M

2
+M1

)
+ ∆x

(
∆xM2 +

M3

2

)
→ 0

as (∆t,∆x)→ (0, 0).

2.6.5 Stability and monotonicity

Two properties are important to show convergence to viscosity solutions: stability and monotonicity

of scheme.

Definition 2.6. Stability

The scheme (2.54) is stable if, and only if, for some bounded initial conditions, its solution exists and

is bounded independently of ∆t and ∆x, and uniformly bounded on [0, T ]× R. That is to say,

∃C > 0, ∀∆t > 0, ∀∆x > 0, i ∈ Z, n ∈ {0, ...,M}, |uni | ≤ C.

We will say that a given vector v is positive if all its elements are positive. We write u ≥ v if

u−v ≥ 0. In this part we show the stability property of the scheme, which in turn implies the discrete

comparison principle, a property which has an important interpretation in finance. This property

makes possible the fact that the options values computed using our numerical scheme will check

arbitrage inequalities: Inequality between payoffs leading to inequality between options values.

Proposition 2.7. (Stability and the discrete comparison principle)

If ∆t ≤ 1
/∑Kr

j=Kl
νj , the scheme (2.54) is stable, and hence verifies the discrete comparison princi-

ple:

u0 ≥ v0 =⇒ ∀n ∈ N∗, un ≥ vn.

Proof. Firstly, consider (2.54) in the form:

− cun+1
i−1 + (1 + a∆t)un+1

i − b∆tun+1
i+1 =

(
1−∆t

Kr∑
j=Kl

νj

)
uni + ∆t

Kr∑
j=Kl

uni+jνj, (2.62)

where 
c =

1

2

1

(∆x)2
σ2(T − τn+1) ≥ 0

a =
1

∆x
f(τn+1, xi) +

1

(∆x)2
σ2(T − τn+1) ≥ 0

b =
1

∆x
f(τn+1, xi) +

1

2

1

(∆x)2
σ2(T − τn+1) ≥ 0.

(2.63)
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The positivity of a and b arises from g being positive. If g is not positive, we change the approximation

of the first-order derivatives in the scheme used. In either case, one has:

a = b+ c ⇒ a∆t = b∆t+ c∆t ⇒ 1 + a∆t > (b+ c)∆t.

It follows that |1+a∆t| > |−c∆t|+|−b∆t|, implying the matrix of linear system on (un+1
0 , ..., un+1

N )

has a strict dominant diagonal, hence invertible. Therefore, the solution of the linear system exists

and is unique. We now show by mathematical induction that this solution is bounded. That is, if

‖H‖∞ ≤ ∞ is the bounded initial condition, then, ∀n ∈ N,

‖un‖∞ ≤ ‖H‖∞. (2.64)

By definition of u0, we have ‖u0‖∞ ≤ ‖H‖∞. Assume (2.64) holds for n. To show that it holds for

n+1, we suppose on the contrary that ‖un+1‖∞ > ‖H‖∞. By the definition of ‖.‖∞, ∃i0 ∈ {0, ..., n}

such that |un+1
i0
| = ‖un+1‖∞, and ∀i ∈ Z, |un+1

i | < |un+1
i0
|.

Since a = b+ c, we can write,

‖un+1‖∞ = |un+1
i0
| = −c∆t|un+1

i0
|+ (1 + a∆t)|un+1

i0
| − b∆t|un+1

i0
|. (2.65)

Moreover, as |un+1
i0−1| < |un+1

i0
| and |un+1

i0+1| < |un+1
i0
| we have

‖un+1‖∞ 6 −c∆t|un+1
i0−1|+ (1 + a∆t)|un+1

i0
| − b∆t|un+1

i0+1|. (2.66)

Using (2.62) and (2.66), and the fact that ∆t ≤ 1
/∑Kr

j=Kl
νj , we obtain:

‖un+1‖∞ ≤

∣∣∣∣∣
(

1−∆t
Kr∑
j=Kl

νj

)
uni0 + ∆t

Kr∑
j=Kl

uni0+jνj

∣∣∣∣∣
≤

(
1−∆t

Kr∑
j=Kl

νj

)
|uni0|+ ∆t

Kr∑
j=Kl

|uni0+jνj|

≤

(
1−∆t

Kr∑
j=Kl

νj

)
‖un‖∞ + ∆t

Kr∑
j=Kl

νj‖un‖∞

= ‖un‖∞ ≤ ‖H‖∞,

which contradicts our assumption. Hence ‖un‖∞ ≤ ‖H‖∞.
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Proposition 2.8. (Monotonicity)

Let un and vn be two solutions to (2.54) corresponding to some initial conditions f and h respectively,

satisfying f(x) ≥ h(x) ∀x ∈ R. If ∆t ≤ 1
/∑Kr

j=Kl
νj , then un ≥ vn, ∀n ∈ N.

Proof. Define wn = un − vn. We show that wn ≥ 0 ∀n ∈ N. As in Proposition 2.7, we proceed

by induction. By construction, we have w0
i = f(xi) − b(xi) ≥ 0, ∀i ∈ Z. Let wn ≥ 0, and suppose

that: inf
i∈Z

wn+1
i < 0. Since ∀i ∈ Z\{0, ..., N}, wn+1

i = 0, this implies that ∃i0 ∈ {0, ..., N} such that

wn+1
i0

= inf
i∈Z

wn+1
i . Using (2.62) and ∆t ≤ 1∑Kr

j=Kl
νj

, we have that

inf
i∈Z

wn+1
i = wn+1

i0
= −c∆twn+1

i0
+ (1 + a∆t)wn+1

i0
− b∆twn+1

i0

≥ −c∆twn+1
i0−1 + (1 + a∆t)wn+1

i0
− b∆twn+1

i0+1

=

(
1−∆t

Kr∑
j=Kl

νj

)
wni0 + ∆t

Kr∑
j=Kl

wni0+jνj ≥ 0,

which is a contradiction. Therefore, inf
i∈Z

wn+1
i ≥ 0, and hence wn+1 ≥ 0.

2.6.6 Convergence

As proved above, our scheme (2.54) is locally consistent, stable, monotone and verifies the discrete

comparison principle. In the usual approach to the convergence of finite difference schemes for

PDE’s, consistency and stability ensure convergence under regularity assumptions on the solution.

These conditions are not sufficient here because the solution may not be smooth, and higher order

derivatives may not exist. This is where the notion of viscosity solutions are introduced. In the sec-

ond order parabolic/elliptic PDEs Barles and Souganidis (1991) showed that for elliptic (or parabolic)

PDEs, any locally consistent, stable and monotone finite difference scheme converge uniformly, on

each compact subset [0, T ] × R, to the unique continuous viscosity solution. Cont and Ekaterina

(2005b) showed that the solution of a numerical scheme converges uniformly on each compact subset

of [0, T ] × R to the unique viscosity solution even when the subsolution and the supersolution con-

structed using a numerical scheme may not have uniform continuity properties. The PIDE studied

relies on the same assumptions as in Cont and Ekaterina (2005b), except that here, we are in the case

of a finite activity measure since the sizes of the jumps is log-normal. Then we used the same technics

to showed the convergence of the explicit-implicit scheme (2.54) to the viscosity solution of problem

(2.29).
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Proposition 2.9. (Convergence of the explicit-implicit scheme)

Let H be a bounded piecewise continuous initial condition, then solution u(∆t,∆x) of the numerical

scheme converges uniformly on each compact subset of [0, T ] × R to the viscosity solution u of

continuous problem (2.29).

Proof. Define 
u(τ, x) = lim inf

(∆t,∆x)→(0,0)(t,y)→(τ,x)
u(∆t,∆x)(t, y) and

u(τ, x) = lim sup
(∆t,∆x)→(0,0)(t,y)→(τ,x)

u(∆t,∆x)(t, y).
(2.67)

The aim of this proof consists to show the following equalities u(τ, x) = u(τ, x) = u(τ, x). Before

showing this equalities some preparatory results are needed.

We start by rewriting (2.54) in the following form:

u(τn, xi) = F [u(τn −∆t, .)](xi), n = 1, ...,M, i ∈ 0, ..., N,

u(0, xi) = H(S0e
xi), i ∈ 0, ..., N, (2.68)

u(τn, xi)) = 0, n = 0, ...,M, /∈ 0, ..., N.

One can define super and subsolution of (2.68) by the following definition

Definition 2.7. A function w is a supersolution of (2.68) if

w(τn, xi) ≥ F [w(τn −∆t, .)](xi), n = 1, ...,M, i ∈ 0, ..., N,

w(0, xi) ≥ H(S0e
xi), i ∈ 0, ..., N, (2.69)

w(τn, xi)) ≥ 0, n = 0, ...,M, /∈ 0, ..., N.

A function z is a subsolution of (2.68) if

z(τn, xi) ≤ F [z(τn −∆t, .)](xi), n = 1, ...,M, i ∈ 0, ..., N,

z(0, xi) ≤ H(S0e
xi), i ∈ 0, ..., N, (2.70)

z(τn, xi)) ≤ 0, n = 0, ...,M, i /∈ 0, ..., N.

To Avoid the problem of uniform continuity and smoothness which may not hold for u and u

define in 2.67, it is convenient to consider smooth super and subsolutions of (2.29) and super and

subsolutions of 2.68 and derived the link with u and u. The following results extends the comparison

principle to the super and subsolutions.
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2.6. An Explicit-Implicit Difference scheme

Lemma 2.2. For any supersolution w and subsolution z of (2.68) we have z ≤ u ≤ w.

Proof. For (i /∈ 0, ..., N ) or (n = 0 and i ∈ 0, ..., N ) the above inequalities are satisfied by definition.

For n = 1, ...,M , i ∈ 0, ..., N from monotonicity of the scheme we have

z(τn, xi) ≤ F [z(τn −∆t, .)](xi) ≤ F [u(τn −∆t, .)](xi) = u(τn, xi)

= F [u(τn −∆t, .)](xi) ≤ F [w(τn −∆t, .)](xi) ≤ w(τn, xi).

Lemma 2.3. Let w and z be a smooth supersolution and subsolution of (2.29) respectively. Then

for all ε, there exists ∆ > 0 such that

∀∆t,∆x,≤ ∆, ∀n ≥ 0, ∀i ∈ Z, z(τn, xi)− ε < u(τn, xi) < w(τn, xi) + ε

Proof. Choose q such that 0 < q(T + 1) < ε and let w̃(τ, x) = w(τ, x) + q(1 + τ), notice that a

constant function is always a solution. In fact one can see from the definition that the scheme is linear.

If i /∈ 0, ..., N , we have

w̃(τn, xi) = w(τn, xi) + q(τ + 1) ≥ q ≥ 0. (2.71)

If n = 0 and i ∈ 0, ..., N ,

w̃(0, xi) = w(0, xi) + q ≥ H(S0e
xi). (2.72)

If n ≥ 1, i ∈ 0, ..., N from the consistency of the scheme we obtain

w̃(τn, xi)− w̃(τn −∆t, xi)

(∆t)
− LDw̃(τn −∆t, xi)

−LJw̃(τn −∆t, xi) =
w(τn, xi)− w(τn −∆t, xi)

(∆t)

−LDw(τn −∆t, xi)− LJw(τn −∆t, xi) + q > 0 (2.73)

−→ ∂w

∂τ
(τ, x) − (LD + LJ)w(τ, x) + q

as ∆t, ∆x −→ (0, 0), (τn, xi) −→ (τ, x), uniformly on (0, T [×O. Therefore for any sufficiently

small ∆ > 0, for all ∆t, ∆x ≤ ∆, we have

w̃(τn, xi) ≥ F [w̃(τn −∆t, .)](xi), ∀n ≤ 1, ∀i ∈ 0, ..., N). (2.74)

PhD Thesis: A jump-diffusion model for pricing
electricity under price cap regulation
and parameters estimation

58 kegnenlezom M. c© UY1 2021



2.6. An Explicit-Implicit Difference scheme

Combining (2.71), (2.73) and (2.74), show that function w̃ is supersolution of (2.68). Indeed, Lemma

2.2 implies that

u(τn, xi) ≤ w̃(τn, xi) + q(1 + T ) < w(τn, xi) + ε, ∀n ≥ 0, ∀i ∈ Z,

which is the desired property. The lower bound z(τn, xi) − ε can be proved in the same manner and

then completes the proof.

Following Lemma (2.71) and Lemma (2.73), we have the following main Lemma

Lemma 2.4. Let u and u be the function define by (2.67). For any smooth supersolution w(τ, x)

and any subsolution z(τ, x) of the problem (2.29), we have for (τ, x) ∈ [0, T ]×O,

z(τ, x) ≤ u(τ, x) ≤ u(τ, x) ≤ w(τ, x). (2.75)

Proof. By the definition of upper and lower limits, Lemma 2.3 implies desired property.

After giving some properties needed we can start the proof of convergence (i.e. showed that u =

u = u). If H, H are smoothness functions on R such that H ≤ H ≤ H , then w(τ, x) = E[H(Y x
τ )]

and z(τ, x) = E[H(Y x
τ )] are respectively a supersolution and a subsolution of the Cauchy problem

(2.29). From Lemma 2.4 we obtain (2.75). Notice that If w(τ, x) − u(τ, x), u(τ, x) − z(τ, x) could

be made small this would imply that lim
(∆t,∆x)→(0,0)(τn,xi)→(τ,x)

u(∆t,∆x)(τn, xi) = u(τ, x). Indeed, it

remains to construct appropriate smooth approximations H and H .

Let ζ1, ...., ζI be the discontinuity points of H . We suppose that the jumps of H are bounded by δ.

Given ε > 0 and H, H smooth functions that satisfied the following relations

H(x) ≤ H ≤ H(x) ∀x ∈ R,

| H(x)−H(x) | ≤ δ ∀x ∈
I⋃
j=1

(ζj − ε, ζj + ε),

| H(x)−H(x) | ≤ ε ∀x /∈
I⋃
j=1

(ζj − ε, ζj + ε).
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We have

w(τ, x)− z(τ, x) = E[H(Y x
τ )−H(Y x

τ )]

≤ δQ(Y x
τ ∈

I⋃
j=1

(ζj − ε, ζj + ε)) + εQ(Y x
τ /∈

I⋃
j=1

(ζj − ε, ζj + ε)) (2.76)

≤ δQ(Y x
τ ∈

I⋃
j=1

(ζj − ε, ζj + ε)) + ε. (2.77)

Noting that
⋂
ε>0

{Y x
τ ∈

I⋃
j=1

(ζj − ε, ζj + ε)} = {Y x
τ ∈ {ζ1, ...., ζI}}. Since Y x

τ has an absolutely

continuous distribution, so we have Q({Y x
τ ∈ {ζ1, ...., ζI}}) = 0. Consequently Q(Y x

τ ∈
I⋃
j=1

(ζj −

ε, ζj + ε)) −→ 0 as ε −→ 0.

Therefore w(τ, x) − z(τ, x) −→ 0 as ε −→ 0 and the inequalities z(τ, x) ≤ u(τ, x) ≤ w(τ, x)

together with Lemma 2.4 implies desired result which completes the proof.

Remark 2.1. For τ = 0 the scheme does not converge to the initial condition at the discontinuous

points of H . This is due to the fact that Q(Y x
τ ∈

I⋃
j=1

(ζj − ε, ζj + ε)) −→ Q(S0e
x ∈ {ζ1, ...., ζI}) =

1{x∈{ln(
ζ1
S0

),...,ln(
ζI
S0

)}}. However, this has no practical interest since it is not important to compute the

solution numerically at τ = 0.

2.7 Numerical Result

In this section we discuss to the details of the implementation of our scheme and present numerical

results and some interpretation.

Before started simulation parameters scheme are take as follow the parameters used to implement

Table 2.2: Scheme parameters

T M N Al Ar

1 100 175 −0.096 0.079

the following results are taking independent to time as follow.
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Table 2.3: Model parameters

figure model r Strike Product

2.8, 2.9, 2.10, 2.11 α = 0.015 β = 0.4 σJ = 0.5 ` = 1.5 σ = 0.5 S0 = 50 0.04 K = 45 Call
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Figure 2.8: Call price for four different values of spot price at maturity versus remaining time to

maturity
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Figure 2.9: Comparison of call values for four different values of spot price at maturity versus re-

maining time to maturity
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Figure 2.8 plots call option for different spot price of the underlying at maturity versus remain-

ing time. Note that, as remaining time increase the mean-reverting and price-cap effect in all four

case cause the call prices converge to zero under the set parameters gived above. Figure 2.9 give

comparison between illustrative curve of call for four different electricity spot price at maturity. This

two figures illustrate that for different initials conditions call option prices converge verse to the same

value. From this we can thus, say that different properties shown theoretically are effective under the

established conditions.
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Figure 2.10: Call price for four different remaining time to maturity versus spot price
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Figure 2.11: Comparison of call price for four different remaining time to maturity versus spot price

Figure 2.10 and 2.11 illustrate a reality enough close to those in the classical financial markets. In

the sens that in financial market the values of call option before the maturity evolved in the form of a

curve which towards to the payoff line progressively and as we approach maturity.
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Figure 2.12: Call price for three different values of strike versus spot price S, the other parameters is

unchanged as in table 2.3
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Figure 2.13: Call price versus strike price K, the other parameters is unchanged as in table 2.3
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Figure 2.14: Call price for three different values of spot price S versus strike price K, the other

parameters is unchanged as in table 2.3

From figures 2.12, 2.13 and 2.14 one can observed that the values of call decrease when strike

price increase. This behavior of the call values is from a risk management point of view what it is

wished.
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Figure 2.15: Call price versus remaining time and spot price σJ = 0.5, K = 45, the other parameters

is unchanged as in table 2.3
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Figure 2.16: Call price versus remaining time and spot price σJ = 2.5 and K = 40, the other

parameters is unchanged as in table 2.3

Analysis plots of figures 2.15 and 2.16 which illustrate call option price as a function of remaining

time and spot price one can said that for a large remaining time jumps effects are not perceptible and

then can effect call. Whereas a small remaining time to maturity call prices increase suddenly which

express the effect of jump. We must therefore say that the jump term which allows to take into account

certain reality of the electricity market is not inconsiderable since that it impact on the call prices are

quite noticeable.
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2.8 Discussion and Conclusion

In this chapter, we first use the jump-diffusion model derived in the preceding chapter to compute

a new exact formula for the forward contract price under an equivalent martingale measure, and we

compare it with the one in Cartea and Figueroa (2007). Secondly, we have calculated the European

call option in the regulated electricity market. Here the approaches used are the same as in Lewis

(2001) and Carr and Madan (1999). We made a double approximation to evaluate the call option in

the two approaches which may reduce precision. The characterization of options prices in terms of

the classical solution, or, in general, in the terms of the viscosity solution of a PIDE allows the use

of numerical methods to obtain efficient approximations of option values. This has been a center of

research in recent times in the case of exponential Lévy models with finite arrival or infinite arrival

rate of jumps. Some authors like Alvarez and Tourin (1996) use the finite difference method to

approximate the PIDE solution, while others like Cont and Ekaterina (2005a) approximate viscosity

solutions in the case of nonsmoothness of option prices. In both cases, success (in terms of efficient

approximation) has been obtained. In this paper we used their approach to evaluate European call

option when the underlying is electricity. The motivation behind our approach arose from the fact

that the electricity price model presented here, by hypothesis, possesses most of the properties (as in

their case) of an exponential Lévy model, and the Markov process property. We focus on the pricing

of call option because put option can be deduced from the put-call using the parity formula. In a

mathematical point of view, our numerical results confirm the established theoretical results. In the

finance point of view, the numerical results present an interpretation which was coherent with some

realities in the electricity market, when it is regulated under price cap.
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CHAPTER THREE

PARAMETER ESTIMATION IN A JUMP

DIFFUSION PROCESS OF ELECTRICITY

PRICES REGULATED BY PRICE-CAP

PRINCIPLE
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In this chapter, a parameter estimation approach is proposed for the new jump diffusion process

derived in chapter 1. The estimation method is based on maximum likelihood principle after ap-

proximating the transition density with the saddle point method. Standard errors of the estimated

parameters are also computed.
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3.1. Introduction

3.1 Introduction

Parameter estimation in stochastic differential models remains a challenge in model calibration. In

effect, parameters estimation in stochastic differential equations is based on the knowledge of the

conditional probability density of the process. Once this conditional density is known, the discretized

likelihood of the data is written as the product of individual transition densities and the parameters

are obtained by maximizing this likelihood. However, the transition density does not exist in closed-

form, except for a handful of cases. Hence, approximations are typically necessary. In the literature,

there are four types of approximations that are generally used: Closed-form Hermite expansions of

the transition density (Aït-Sahalia, 1999, 2008), Importance sampling (Pedersen, 1995; Santa, 1997;

Brandt and Santa-Clara, 2002), Methods based on the exact simulation of diffusion (Beskos et al.,

2006), and Approximations derived by numerically solving the Kolmogorov forward equation (Lo,

1988).

In our model, the presence of jump complicates parameters estimation. The main difficulty lies on

the fact that the process is written as the sum of two different distributions for the Brownian motion

and for the jump term, hence making it difficult to have an expression of the probability density. In the

literature, there are two ways to approach this problem. In one, the transition function is deduced by

calculating the conditional expectation of the discretized process (Jensen, 1995; Jensen and Poulsen,

2002). In the other, the one considered in this thesis, is based on the saddlepoint method introduced

by Daniels (1954) and developed in Rogers and Zane (1999) and Jensen (1995).

The chapter is therefore organized as follows: We recall the model in Section 2, then some ap-

proximate transition functions in Section 3. The last section illustrates an example.

3.2 The Model

Suppose that St is a càdlàg process in a complete filtered probability space (Ω,F , (Ft)0≤t≤T ,P)

where (Ft)t is a natural filtration of St. The Stochastic Differential Equation (SDE)

dSt = −α(t)(γ(t)− St)dt+ σ(t)StdWt + (J − 1)Stdqt, (3.1)

where Wt is the standard Brownian motion, and the coefficients involved are deterministic functions

of time denoted as such: σ(t) is the volatility, β(t) := E(t) + H(t) − F (t) defines the exogenous

PhD Thesis: A jump-diffusion model for pricing
electricity under price cap regulation
and parameters estimation

68 kegnenlezom M. c© UY1 2021



3.3. Parameter Estimation

factors, α(t) := I(t)−G(t) the endogenous factors;

with the following assumptions:

Assumption 1: The proportional random jump size J is log-Normally distributed, with E [J ] =

1. Hence, ln J ∼ N
(
−σ2

J

2
, σ2

J

)
.

Assumption 2: The random jump size J , dqt and dWt are independent.

denote the dynamic of electricity spot price in regulated context.

We will further assume that the unknown electricity parameters α(.), β(.), σ(.), ` and σJ are constant.

The exact solution of (3.1) is given, using Itô formula for jump diffusion process, by

St = S0e
Xt −

∫ t

0

β(s)eXt−Xsds, (3.2)

where Xt =
∫ t

0
α(s)− 1

2
σ(s)2ds+

∫ t
0
σ(s)dWs +

∫ t
0

ln Jdqs is a Lévy process.

3.3 Parameter Estimation

This part is devoted to the estimation of electricity price parameters denoting Θ = (α, β, σ, σJ , `)

using a sample discrete set of observations say {Xobs
t1
, Xobs

t2
, ..., Xobs

tn }, of log-price process. where,

Xobs
ti

represents the log of electricity price observe at ti where ti = i∆ and ∆ > 0 fixed. Let

p(∆, y | x; Θ) the conditional density of Xi∆ = y given X(i−1)∆ = x, also called the transition

function. Recalling that under Markovian hypothesis of (3.1) the log-likelihood has the form

ln(Θ) =
n∑
i=1

ln p(∆, yi | yi−1; Θ) (3.3)

and from this likelihood,

• Maximum Likelihood estimation (MLE) parameters Θ̂ are obtained by Θ̂ = argmax ln(Θ).

• V (Θ̂) is obtained asymptotically using the Central Theorem limit CTL that is
√
n(Θ̂ − Θ)

D−→

N (0, I−1(Θ)).

The variability of the estimation will be analyzed by using standard error (SE) which is it evaluated

by the following formula

• The SE is then given by
√
diag(V (Θ̂)).

In the following we give an approximating transition density p(∆, y | x; Θ).
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3.3. Parameter Estimation

3.3.1 Approximating the transition density function using saddlepoint method

The objective of this part consist to approximate the transition density function p(∆, y | x) of the pro-

cess ln(S) using saddlepoint method with non Gaussian leading term. In what follows, we will assume

that for each couple (∆, x) ∈ R+×R the probability measure Q(∆, ., | x) admits a probability density

p(∆, ., | x) with respect to Lebesgue measure and the conditional Laplace transform of the precess X

is defined for u ∈ [a, b] ⊂ R with a 6 0, b > 0. Therefore ϕ(∆, u | x) = E
[
euXi∆ | X(i−1)∆ = x

]
and the cumulant transform (cumulant generating function) of X is the function K(∆, u | x) =

lnϕ(∆, u | x).

Note that for given (∆, x), derivatives of all order of ϕ and K exist. The infinitesimal generator of

process (Xt) is given by:

L = LD + LJ , (3.4)

where

LDf(x) = (α− 1

2
σ2 − βe−x)∂f

∂x
(x) +

1

2
σ2∂

2f

∂x2
(x), (3.5)

LJf(x) = `

∫
R
f(x+ z)− f(x)ν(dz) (3.6)

To simplify the calculations we define the following functions: µ(x) = (α − 1

2
σ2 − βe−x). As we

are in the presence of jumps here we will take the leading term as in Aït-Sahalia and Yu (2006) in the

form: f0(y) = (1− `∆)φ(y;x+ µ(x)∆, σ2∆) + `∆ν(y − x) and the associated cumulant given by:

eK0(∆,u|x) = eux[(1− `∆)e
(µ(x)u+

1

2
σ2u2)∆

+ `∆θ(u)] (3.7)

where θ(u) =
∫
R e

uzν(dz) = e
1
2
σ2
J (u2−u). Considering all these assumptions approximated transition

density is given in the following Proposition:

Proposition 3.1. The saddlepoint approximation at the first order with a non-Gaussian base K0 and

it corresponding leanding f0 is

p(∆, y | x) = f0(y)
{

∆((1−∆`)(σ2 + ∆g′(ŵ)2)eg(ŵ)∆ + `θ′′(ŵ))((1−∆`)eg(ŵ)∆ + `θ(ŵ))

− ∆2((1−∆`)g′(ŵ)2eg(ŵ)∆ + `θ(ŵ))2
}1/2

(3.8)

× e∆[g(û)+`(θ(û)−1)]+(ŵ−û)(y−x)√
∆(σ2 + `θ′′(û))((1−∆`)eg(ŵ)∆ + `∆θ(ŵ))2

,
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3.3. Parameter Estimation

where û and ŵ are respectively solution of equation

y =
∂K(∆, û | x)

∂u
, (3.9)

and

y =
∂K0(∆, ŵ | x)

∂w
, (3.10)

and g(u) = µ(x)u+
1

2
σ2u2.

Proof. Since from Aït-Sahalia and Yu (2006) in continuous Markov process context as the one in

this work we have

p(∆, y | x) = f0(y)e(K(1)(∆,û|x)−ûy−{K0(ŵ)−ŵy})

×(K ′′0 (ŵ))1/2

(
∂2K(1)(∆, û | x)

∂u2

)−1/2

. (3.11)

Deriving K0 in first and second order we obtain

∂K0(∆, u | x)

∂u
= x+

[
(1− `∆)g′(u)e∆g(u) + `θ′(u)

]
∆

(1− `∆)e∆g(u) + `∆θ(u)
. (3.12)

and

∂2K0(∆, u | x)

∂u2
= {

[
(1− `∆)(σ2 + g′(u)2)e∆g(u) + `θ′′(u)

]
∆

×
[
(1− `∆)e∆g(u) + `∆θ(u)

]
−
[
(1− `∆)g′(u)e∆g(u) + `θ′(u)

]2
∆2}(3.13)

× 1

(1− `∆)e∆g(u) + `∆θ(u)
.

Expansion of cumulant fonction K is obtained as a Taylor series in ∆ around their continuous-time

limit of the expansion of Laplace transform ϕ. This expansion of Laplace transform in small time ∆

are obtained by iterations of the infinitesimal generator of process (see Aït-Sahalia and Yu (2006)).

Define as:

E
[
euXi∆ | X(i−1)∆ = x

]
=

N∑
n=0

∆n

n!
Ln.eux +O(∆n+1) (3.14)

Applying iteration formula 3.14 the expansion of Laplace transform in ∆ in order 1 is given by

ϕ(1)(∆, u | x) = eux
[
1 + µ(x)u+

1

2
σ2u2 + `(θ(u)− 1)

]
∆, (3.15)
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and associated cumulant is given by

K(1)(∆, u | x) = ux+

[
µ(x)u+

1

2
σ2u2 + `(θ(u)− 1)

]
∆. (3.16)

Deriving K1 in first and second order one as

∂K(1)(∆, u | x)

∂u
= x+

[
µ(x) + σ2u+ `θ(u)′

]
∆.

and

∂2K(1)(∆, u | x)

∂u2
=
[
σ2 + `θ(u)′′

]
∆. (3.17)

Putting together (3.7), (3.13), (3.16) and (3.17) into (3.11), leads to the result (3.8).

3.3.2 An Illustrative Example of Estimation

In this part, we estimated the vector of parameters Θ̂ using simulated process with the following

parameters α = 0.05, β = 0.5, σ = 1, we take 4 different values of σJ which is standard deviation

of jump size J suppose to be log-normal distributed in this work. This variation permit us to appreciate

the effect of jump to the estimation. Different results are given in the following Tables.

Table 3.1: Estimated parameters

σJ 1/8 1/4 1/2 1

Parameter Est SE Est SE Est SE Est SE

α 0.06 0.06 0.07 0.10 0.07 0.11 0.08 0.01

N=100 β 0.70 0.29 0.70 0.26 0.70 0.27 0.69 0.03

σ 1.01 0.07 0.99 0.01 0.99 0.01 1.06 0.01

α 0.05 0.29 0.05 1.56 0.05 0.95 0.07 0.02

N=250 β 0.45 0.33 0.45 0.80 0.43 0.54 0.11 0.04

σ 1.00 0.03 1.05 1.68 0.85 1.31 1.05 0.02

α 0.05 0.35 0.05 0.85 0.05 5.08 0.06 0.01

N=500 β 0.45 0.69 0.45 0.39 0.45 0.44 0.06 0.04

σ 1.01 0.03 1.05 0.9 1.05 4.95 1.25 0.16

From the results of the estimated parameters in table 3.1 one observe that the saddle point method

could be used to estimate the parameters α, β and σ of the equation (3.1). Overall, this approach gives
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better estimation of the volatility and mean reversion parameter than α which it is just a speed of the

return to the mean. We observe that the precision (SE) of the estimates increase when the number of

jump increase this can be justified by the fact that the presence of jumps in data makes estimation more

difficult as we recently showed in Takam Soh et al. (2020). We note that the refinement of the time

step improves the estimates. But the number of operations required for the estimates is quite heavy

and therefore to refine further you need a more efficient machine. Summary, large jumps increase the

standard deviation (SE).

3.3.3 Some Illustrative Curves

To illustrate the parameters estimation result we construct the following curves which represents one

trajectory of equation (3.1) with the different parameters obtained in table 3.1 and compared them

with the initials given parameters.
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Figure 3.1: Spot price with estimated parameters (dashed line) and Spot price with reals parameters

(continuous line) in case N=100
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Figure 3.2: Spot price with estimated parameters (dashed line) and Spot price with reals parameters

(continuous line) in case N=250
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Figure 3.3: Spot price with estimated parameters (dashed line) and Spot price with reals parameters

(continuous line) in case N=500
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we observe that when the data increases the estimation results are more accurate when there are

no jumps and less when they increase along with the jumps. This is justified by the fact that for

a larger data size we have more jumps which make estimation difficult. From Figures 3.1, 3.2 and

3.3 we observe that the approximate curve is less close to the real process as the size of the jumps

increases,figures 3.1c-3.1d, 3.2d and 3.3d illustrates this. The overall analysis that we can do from the

curves that we obtained is that the saddle point method used to approximate the transition density of

the introduce process leads to a good result. Despite the double approximation both at the process and

in the transition level, one of the trajectory of the estimated parameters when we have fewer jumps in

the process close to the trajectory of the process with the real parameters.

Conclusion

In this chapter, we approximated the transition density using the saddle point method. Variation

in jump sizes has made it possible to highlight the influence of this method on the quality of the

estimation. The method seems to be better adapted to the approximation of transition density of a

process like the one we presented in 1. The approximation can be improved at the expense cost in

terms of operations which could reduce the speed of convergence of the method.
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Conclusion and perspectives

In this thesis we propose some solutions to the problem of pricing electricity. To achieve that we

divided our work into three parts. In part one, we modeled electricity spot price regulated by the price

cap principle. The second part then consists in deriving two of the most useful financial derivative

which are forward contract and European option. In the last part, we calibrate the model obtained

using the likelihood approach, with the transition density approximated using the saddlepoint method.

Our proposed model was constructed following Merton (1976) and is a stochastic jump diffusion

equation with a new drift term which results from the fact that our model was constructed based on the

price cap principle, what makes our work original. The term led us to use recent stochastic analysis

tools and techniques to analyze our model and to compare it with existing models in electricity like

those proposed in Cartea and Figueroa (2007). Our model, in the context of regulation by the price

cap principle, takes into account some important electricity properties such as mean reversion and

jumps due to sudden variations which may occur in electricity spot prices.

The calculation of forward contract options in the second part led to a closed form formula which

can be handled using analysis tools like measure theory, and the Markov property in conditional

probability. On the contrary, calculation of the European option led us to a partial integro-differential

equation (PIDE). By drawing inspiration from the works of Cont and Ekaterina (2005b) and Alvarez

and Tourin (1996), we showed that the PIDE obtained admits a viscosity solution which, in this case,

is our call option. The PIDE obtained was solved using a non classical explicit-implicit numerical

scheme. The first step was to perform a numerical analysis (consistency, stability and convergence)

of the scheme. A mathematical difficulty encountered in the analysis is the fact that we obtained

rather a Lévy functional, contrary to Cont and Ekaterina (2005a).

The calibration of our constructed model was performed using the saddlepoint method rather
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than a classical estimation method. This choice resulted from the presence of jumps which induce a

difficulty in determining the transition density in the model. The scarcity of real data led us to test the

proposed method on simulated data. The results showed that our model succeeded in capturing the

price cap.

At the end of our work on the price-cap pricing modelling, we observe that the jumps of prices

disrupt the mean reverting trend in the dynamic of the prices, which, in general, is of interest to

consumers in the case of low value of this mean. It is clear that this reduces the action of the regulator

(government) who aims at keeping prices relatively low. It should be remembered that taking into

account jumps in price evolution makes it possible to take into account sudden price changes due to

failures in the production system. For example, a failure could be a breakdown or a rise in engine

speed caused by the drop in flow at the hydroelectric dam. As a recommendation, governments that

have adopted this pricing principle should anticipate failures in the electricity generation system. For

example, through the construction of water retention dams like in Cameroon.

A limitation in our model is in its non handling of seasonality that may occur in electricity prices,

like when regional markets are disappearing in favor of inter-regional markets. In our future work,

we intend to use time-series tools to account for seasonality that may occur in the given data. Also,

in electricity market restructuring, electricity derivatives play an important role in establishing price

signals, providing price discovery, facilitating effective risk management, and inducing capacity in-

vestments in generation and transmission. Thus, many exotic forms of electricity options can meet

specific needs for hedging and speculation. Future research should also focus on other options like

the Asian option in regulated electricity market. We will also, in future research, explore the path of

calibrating our model using data obtained from the observation of option values through the regular-

ization method. Adapting our model to the revenu cap principle is also envisaged in the future.
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Appendix

Let USC (respectively, LSC) denote the class of upper semicontinuous (respectively, lower semicon-

tinuous) function on [0, T ] × R. and by C+
p ([0, T ] × R) a set of measurable function on [0, T ] × R

with polynomial growth of degree p at plus infinity and bounded on [0, T ]× R−):

g ∈ C+
p ([0, T ]× R)⇐⇒ ∃C > 0, |g(t, x)| ≤ C(1 + |x|p1x>0). (3.18)

Definition 3.1. (Viscosity solution)

A function v ∈ USC is a viscosity subsolution of (2.29) if for any (test function) φ ∈ C2([0, T ] ×

R) ∩ C+
p ([0, T ] × R) and any global maximum point (τ, x) ∈ [0, T ] × R of v − φ, the following

properties are verified:

if (τ, x) ∈ [0, T ]×O, ∂φ

∂τ
(τ, x)− (LD + LJ)φ(τ, x) ≤ 0, (3.19)

if τ = 0, x ∈ Oc,min{∂φ
∂τ

(τ, x)− (LD + LJ)φ(τ, x), v(τ, x)−H(S0e
x)} ≤ 0,

if τ ∈ (0, T ], x ∈ ∂O,min{∂φ
∂τ

(τ, x)− (LD + LJ)φ(τ, x), v(τ, x)} ≤ 0,

if x /∈ Oc, v(τ, x) ≤ 0. (3.20)

A function v ∈ LSC is a viscosity supersolution of (2.29) if for any (test function) φ ∈ C2([0, T ] ×

R) ∩ C+
p ([0, T ] × R) and any global minimum point (τ, x) ∈ [0, T ] × R of v − φ the following

properties are verified:

if (τ, x) ∈ [0, T ]×O, ∂φ

∂τ
(τ, x)− (LD + LJ)φ(τ, x) ≥ 0, (3.21)

if τ = 0, x ∈ Oc,min{∂φ
∂τ

(τ, x)− (LD + LJ)φ(τ, x), v(τ, x)−H(S0e
x)} ≥ 0,

if τ ∈ (0, T ], x ∈ ∂O,min{∂φ
∂τ

(τ, x)− (LD + LJ)φ(τ, x), v(τ, x)} ≥ 0,

if x /∈ Oc, v(τ, x) ≥ 0. (3.22)

A function v is called a viscosity solution of (2.29) if it is both a subsolution and a supersolution.

In this case, v is continuous on (0, T ]× R
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Abstract
In this paper, we derive a new jump-diffusion model for electricity spot price from the “Price-Cap” principle. Next, we 
show that the model has a non-classical mean-reverting linear drift. Moreover, using this model, we compute a new exact 
formula for the price of forward contract under an equivalent martingale measure and we compare it to Cartea et al. (Appl 
Math Finance 12(4):313–335, 2005) formula.

Keywords Model · Electricity market · Price-cap regulation · Spot price · Forward price

Introduction

According to [26], no economical development is possible 
without the availability of energy. Accepting this reality, 
several governments consider electricity as one of their 
main priorities. For example in France, electricity is recog-
nized by the law as a basic necessity. Its price is determined 
by regulated tariffs made by the government [4]. Several 
changes have been operated in electricity sector. Regulation 
and deregulation are the main mechanisms which caused 
these changes observed in electricity sector. The aims were 
to create a competitive economical environment in which 
the producers, the investors and the large part of consumers 
would get their satisfaction.

The introduction of deregulation induced many conse-
quences. One main consequence was the high variation in 
price which encouraged the development of a new breed of 
financial products in electricity markets. These new prod-
ucts may help cover both physical and financial risks on the 

new market. Therefore, there has been an important research 
effort devoted to electricity price modeling for derivative 
pricing. Due to the non-storable nature of electricity, the 
challenge of the researchers was the development of a com-
pletely satisfying methodology that would help to obtain 
realistic and robust models. Two standard approaches have 
often been used to handle this problem in the literature. The 
first consists in modeling directly the forward curve dynam-
ics and deduces the spot price [2, 5]. The second approach 
starts from a spot price model to derive future prices as the 
expectation of the spot price under a risk-neutral probability. 
Relevant contributions have been made by [8, 20] in pricing 
energy derivatives and electricity. They took into account 
seasonality and mean reversion. However, their model did 
not take into account the huge and non-negligible observed 
spikes in the market. Further [3, 6] were among the first to 
consider price spikes using jump-diffusion models. Similar 
works were done in [10, 14, 15, 24, 25, 30]. Regular increase 
in electricity prices and crises observed in the unregulated 
market are a point of focus in the media and raised the ques-
tion of regulation. Moreover, direct link between the price 
of electricity and the national strategy of poverty reduction 
motivated governments to limit electricity prices, so that it 
can be more accessible. This leads to the reintroduction of 
price regulation by most governments. For instance, [19] 
was the first to propose the price-cap regulation to British 
government. Several works were done to study effect and 
impact of regulation in electricity network and the wholesale 
electricity market [12, 16].
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The main contribution of this paper is, using the rate of 
increase given by the price-cap, to construct a spot price model 
in regulated electricity market. In addition to well-known 
specific features of electricity such as mean-reverting and 
spikes, our proposed model captures important characteris-
tics of price-cap regulation: inflation rate and efficiency rate. 
Furthermore, we compute explicitly the forward price in this 
electricity model.

The rest of this paper is structured as follows: In sec-
tion two, we present a review of some recent electricity price 
models. Section three deals with the formulation of our model. 
Moreover, in section three, we discuss the mean-reversion fea-
ture of our model and further compare it with [3] model. In 
section five, we present some numerical simulations of our 
model to illustrate our theoretical results and support our 
discussion.

Review of some recent electricity models

Several models on electricity price dynamics have been pro-
posed in the literature, among which the jump-diffusion model. 
Merton [23] was among the first to work on this class of mod-
els. His first model was developed to describe the dynamic 
return on equity. This model was progressively extended by 
[3, 8, 20, 24].

Schwartz [8] considered spot prices as a stochastic process 
with two components represented by

where f is a deterministic differentiable function and Xt is 
the stochastic component satisfying

with 𝛼 > 0 representing the speed of mean reversion, 
X(0) = x0 being the initial condition and W being a stand-
ard Brownian motion. Applying Itô’s formula on (2), they 
obtained the following dynamic for spot price

where

In the same paper, they also considered log of spot prices, 
i.e., lnPt = f (t) + Yt where Yt follows process (2). In this 
case, they obtained

where

(1)Pt = f (t) + Xt; t ∈ [0,∞);

(2)dXt = −�Xtdt + �dWt,

(3)dPt = �(a(t) − Pt)dt + �dWt,

a(t) =
1

�
f �(t) + f (t).

(4)dPt = �(b(t) − lnPt)Ptdt + �dWt,

b(t) =
1

�

(
�2

2
+ f �(t)

)
+ f (t).

This model captures mean-reverting feature which is one 
of the main characteristics of electricity, but the model has 
failed to take into account the spikes which can occur in 
electricity markets. Cartea and Figueroa [3] in the same con-
text of deregulation markets extended (4) by adding a jump 
term and obtained a mean-reverting and jump-diffusion 
model. They supposed that the spot price process is in the 
form ln St = g(t) + Yt , where g is a seasonal deterministic 
function and that Yt follows a stochastic process given by

Using Itô’s formula and equation (5), [3] obtained the fol-
lowing model:

where

J is the proportional size of jump and qt is the Poisson pro-
cess. Hence, on contrary to [3, 8] in their model considered 
the non-constant volatility, jump and deterministic part of 
spot price as a seasonal function of time.

Model derivation and the main result

Our model is partly inspired from the electricity price-cap 
regulation proposed by Littlechild [19] that we recall as 
follow.

Price‑cap market regulation

The price-cap regulation is an economical principle which 
aims to establish an incentive scheme for the regulated mar-
ket. A key objective is to enable companies to maximize 
the well-being while seeking to maximize their own inter-
ests, see [1]. Its principle is to cap the market price. The 
main components of the price cap include the efficiency 
factor (G), for transferring the gains to consumers through 
the reduction of costs; the inflation rate (I), which drives 
the price changes; the exogenous factors such as customer 
portion of earnings’ sharing (E), service quality penalties 
(H) and flow-through and uncontrollable costs, if any (F). 
ENMAX [11] proposed price-cap formula:

where Pi represents the current year’s price and Pi−1 preced-
ing year price. Later, we would be inspired by the economic 
formula (7) to model the drift of the model.

(5)dYt = −�Ytdt + �dWt + ln Jdqt.

(6)dSt = �(�(t) − ln St)Stdt + �(t)StdWt + St(J − 1)dqt,

�(t) =
1

�

(
g�(t) +

1

2
�2(t)

)
+ g(t),

(7)
Pi − Pi−1

Pi−1

= Ii − Gi +

(
−Ei − HSi + Fi

Pi−1

)
,
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Spot price modeling procedure

The daily (resp. weekly and monthly) change in price is 
the difference between today’s price (resp. this week’s 
price and this month’s price) and yesterday’s price (resp. 
last week’s price and last month’s price). In general, one 
denotes a change over a given time period dt by dSt . For 
a daily change, we therefore have dt = 1

365
 , dt = 1

52
 for 

weekly change and dt = 1

12
 for a monthly change. The 

change in price dSt over a given time period dt is the sum 
of two components: the “drift” term and the stochastic (or 
“random”) term, that is,

The drift term represents the portion of the movement in 
the spot price S, which we expect to see with certainty. 
This term is proportional to the time period over which the 
change in the price is measured. That is,

The stochastic term represents the portion of the change that 
is random and cannot be predicted. This term is proportional 
to the increment dWt of standard Brownian motion, which 
is normally distributed with mean zero and variance dt (see 
[28, pp. 377–380]. That is,

The main result

Before stating the following theorem, let us recall that a 
càdlàg stochastic process is the right continuous with left-
limit stochastic process.

Theorem 1 Suppose that the spot price St is a càdlàg process 
in a complete filtered probability space 

(
�,F, (Ft)0≤t≤T ,ℙ

)
 

where (Ft)t is a natural filtration of St . Assume the following 
conditions:

 (i) for a small time interval Δt , the change in the elec-
tricity price is proportional to Δt,

 (ii) the inflation rate I always differs from the efficiency 
factor G,

 (iii) the stock prices jumps from the previous value St− to 
a next value JSt− where J is the proportional size of 
the random jump assumed log-normally distributed, 
i.e., ln J ∼ N(mJ , �

2
J
) with �[J] = 1,

 (iv) the change before and after the jumps is driven by 
increments dqt of a Poisson process qt defined by 

dS = drift term + stochastic term.

drift ∝ dt.

stochastic term ∝ dWt, dWt ∼ N (0, dt).

dqt =

{
1, with probability �dt

0, with probability 1 − �dt,

where � is the intensity or frequency of the process.
Then, the price-cap principle (7) yields the stochastic dif-
ferential equation (SDE) below

where Wt is the standard Brownian motion and the coef-
ficients involved are deterministic functions of time denoted 
as such: �(t) is the volatility, �(t) ∶= E(t) + H(t) − F(t) 
defines the exogenous factors, �(t) ∶= I(t) − G(t) , and 
�(t) ∶= �(t)∕�(t).

Proof For a small time interval Δt , the change in the elec-
tricity price is proportional to Δt and the expected change is 
by (7) therefore we have

where ΔSt = St+Δt − St . For Δt → 0, we obtain

To take into account market volatility in the model, the sto-
chastic, or random, contribution to the change in the spot 
price is represented by �(t)StdWt (see [28, pp. 103–104]). 
Hence, we obtain the following SDE

Next, to capture the market shocks we add the jump term 
in (11) using [3] idea as follows. We suppose that the stock 
prices jump from the previous value St− to a next value JSt− 
where J is the proportional size of the random jump assumed 
log-normally distributed such that �(J) = 1 this assump-
tion is motivated by the fact that under regulation we want 
that the risk of the market shocks fluctuates around unit. 
Next, we assume that the term (J − 1)St− , which give the 
change before and after the jumps, is driven by increments 
dqt of a Poisson process. Hence, from equation (11), setting 
�(t) ∶= I(t) − G(t) , �(t) ∶= �(t)∕�(t) , we finally obtain the 
SDE (8).   ◻

Mean‑reversion condition

A mean-reverting process has a drift term that brings the 
variable being pulled back to some equilibrium. This feature 
is captured by one stochastic differential equation if the fol-
lowing definition is verified.

Definition 1 (Condition (A3) of [22]) Consider a jump-
diffusion process Yt with a differentiable drift function �(.).

If

(8)dSt = −�(t)(�(t) − St)dt + �(t)StdWt + (J − 1)Stdqt,

(9)ΔS =
[
St(I(t) − G(t)) − E(t) − H(t) + F(t)

]
Δt,

(10)dSt =
[
St(I(t) − G(t)) − E(t) − H(t) + F(t)

]
dt.

(11)dSt =
[
St(I(t) − G(t)) − �(t)

]
dt + �(t)StdWt.
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then Yt is mean-reverting.

From this definition, we have the following proposition

Proposition 1 The jump-dif fusion model (8) is 
mean-reverting.

Proof It is straightforward and is based on the fact that from 
an economic point of view, �(t) is bounded on [0, T] and we 
have ∣ 1 + 𝛼(t) ∣< 1 for all t ∈ [0, T] .   ◻

Regulated electricity forward price

Computation of regulated electricity forward price

The price at time t of the forward expiring at time T (i.e., 
�(t, T) ) is obtained as the expected value of the spot price 
under an equivalent ℚ-martingale measure, conditional on 
the information set available up to time t, precisely

where 𝔼ℚ

t
 represents the conditional expectation knowing 

a natural filtration of St under the risk-neutral probability 
Q. To incorporate the non-opportunity of arbitrage in the 
model, we use the same approach as in [20] and [3], which 
consists of incorporating a market price of risk in the drift, 
to obtain

where � denotes the market price of risk per unit risk linked 
to the state variable St . This market price of risk to be cali-
brated from market information pins down the choice of one 
particular martingale measure. Recall that when a market 
subjected to that measure, the opportunity of arbitrage is 
theoretically excluded in this market. Hence, under this 
equivalent martingale measure SDE (8) becomes

substituting (12) in (13), we obtain

where dŴ  is the increment of a Brownian motion in the ℚ
-martingale measure specified by the choice of �.

lim sup
∣Yt ∣→∞

∣ Yt + 𝜇(Yt) ∣

∣ Yt ∣
< 1,

�(t, T) = 𝔼
ℚ

t

[
ST
]
.

(12)�̂(t) = �(t) − �
�(t)

�(t)
St,

(13)dSt = −�(t)
(
�̂(t) − St

)
dt + �(t)StdŴt + (J − 1)Stdqt;

(14)
dSt = −�(t)

(
�(t) −

(
1 + �

�(t)

�(t)

)
St

)
dt + �(t)StdŴt

+ (J − 1)Stdqt,

The next addresses the forward price computations.

Proposition 2 Assume that J, the increments of qt and Wt, 
are independent. Under the risk-neutral or martingale meas-
ure ℚ and Novikov hypothesis, i.e., �

[
e

1

2
∫ t

0
𝜎(s)2ds

]
< ∞ , elec-

tricity forward price under regulated market is given by

Before proving Proposition 2, let us first prove the follow-
ing lemmas.

Lemma 1 The solution of equation (14) is the process 
(St, 0 ≤ t ≤ T) defined by

where Zt = e

(∫ t

0
(��(s)+�(s)−

1

2
�(s)2)ds+∫ t

0
�(s)dŴs+∫ t

0
ln Jdqs

)

.

Proof To solve equation (14), we consider a process Z, solu-
tion of the following equation

Applying Itô formula with jumps stated in 7.10 [9], we 
obtain

Zt = Z0e

(∫ t

0
(��(s)+�(s)−

1

2
�(s)2)ds+∫ t

0
�(s)dŴs+∫ t

0
ln Jdqs

)

.
Now, let us set f (St, Zt) =

St

Zt
 . By applying Itô formula 

with jumps one more, we obtain

The development of (16) leads to

(15)
�(t, T) = Ste

∫ T

t
(�(s)+��(s))ds − �

T

t

�(s)e∫ T

s
(�(u)+��(u))duds.

St = Zt

(
S0 − ∫

t

0

�(s)Z−1
s
ds

)
,

dZt = Zt

(
�(t)

(
1 + �

�(t)

�(t)

)
dt + �(t)dŴt + (J − 1)dqt

)

and Z0 = 1.

(16)

St

Zt
=

S0

Z0
+ ∫

t

0

1

Zs

[
((�(s)�(s) + �(s))ds + �(s)dŴs

+(J − 1)dqs)Ss − �(s)ds
]

− ∫
t

0

Ss

(Zs)
2
Zs((�(s)�(s) + �(s))ds

+ �(s)dŴs + (J − 1)dqs)

+
1

2

(

∫
t

0

2
Ss

(Zs)
3
(�(s)Zs)

2ds −
2

(Zs)
2
�(s)2SsZsds

)
.
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By observing that the sum of the first and fourth term of 
equation (17) is equal to zero and since Z0 = 1 we obtain

Finally, we obtain

This ends the proof.   ◻

Furthermore, the solution of (14) at T starting at t is given 
by

where ZT = Zte

(∫ T

t
(��(s)+�(s)−

1

2
�(s)2)ds+∫ T

t
�(s)dŴs+∫ T

t
ln Jdqs

)

.

Lemma 2 If J is a log-normal distributed process with 
�[J] = 1 and q a Poisson process, then 𝔼ℚ

t
[e∫ T

t
ln Jsdqs] = 1.

Proof Firstly, we use differentiation method to compute 
𝔼ℚ

t
[e∫ t

0
ln Jsdqs].

Let us define Lt such that

where mt is

or equivalently

(17)

St

Zt
=

S0

Z0
+ ∫

t

0

Ss

Zs
((�(s)�(s) + �(s))ds + �(s)dŴs

+ (J − 1)dqs) − ∫
t

0

1

Zs
�(s)ds

− ∫
t

0

Ss

Zs
((�(s)�(s) + �(s))ds

+ �(s)dŴs + (J − 1)dqs)

+ ∫
t

0

Ss

Zs
�(s)2ds −

Ss

Zs
�(s)2ds.

St

Zt
= S0 − ∫

t

0

Z−1
s
�(s)ds.

St = ZtS0 − Zt ∫
t

0

Z−1
s
�(s)ds.

(18)ST =
ZT

Zt
St − ZT ∫

T

t

�(s)�(s)Z−1
s
ds,

(19)Lt ≡ e∫ t

0
ln Jsdqs ,

≡ emt

mt = ∫
t

0

ln Jsdqs,

In order to write the dynamic followed by Lt for process 
define in (20) we use the generalization form of Itô’s lemma 
[9]. The SDE verified by Lt is

Then, from (21) we obtain

Alternatively, we can remark that ∫ t

0
ln Jsdqs =

∑qt
i=0

ln Js 
which is the particular case of Lévy process with the 
moment-generating function. Using Lévy–Khintchine rep-
resentation, we have

where � is the moment-generating function of the jump ln J . 
Evaluating (22) at u = −i leads to desired result.   ◻

Proof of Proposition 2 Before stating let us recall that forward 
price formula is given by �(t, T) = 𝔼ℚ

t

[
ST
]
 . By substituting 

ST with (18), we obtain

We first compute 𝔼ℚ

t

[
e

(∫ T

t
(��(s)+�(s)−

1

2
�(s)2)ds+∫ T

t
�(s)dŴs+∫ T

t
ln Jsdqs

)]
≡ A.

(20)dmt = ln Jtdqt.

(21)

Lt = L0 + ∫
t

0

Ls ln Jsdqs

− ∫
t

0

Ls ln Jsdqs + ∫
t

0

Ls(e
ln Js − 1)dqs

= 1 + ∫
t

0

Ls(e
ln Js − 1)dqs.

�[Lt] = 1 + ∫
t

0

�[Ls](�[e
ln Js] − 1)�ds

= 1.

(22)

�

[
eiu ∫ t

0
ln Jsdqs

]
= �

[
�

[
eiu ∫ t

0
ln Jdqs |qt

]]

= �
[
�
[
�(u)qt

]]

= et�(�(u)−1).

(23)

�(t, T) = 𝔼
ℚ

t

[
ST
]

= St𝔼
ℚ

t

[
e

(∫ T

t
(��(s)+�(s)−

1

2
�(s)2)ds+∫ T

t
�(s)dŴs+∫ T

t
ln Jsdqs

)]

− 𝔼
ℚ

t

[
Zte

(∫ T

t
(��(s)+�(s)−

1

2
�(s)2)ds+∫ T

t
�(s)dŴs+∫ T

t
ln Jsdqs

)

× �
T

t

�(s)�(s)Z−1
s
ds

]
.
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From independence between J, dqt and dWt, we obtain

We now compute
𝔼
ℚ

t

[
Zte

(∫ T
t (��(s)+�(s)−

1

2
�(s)2)ds+∫ T

t �(s)dŴs+∫ T
t ln Jdqs

)

∫ T

t
�(s)�(s)Z−1

s
ds

]
≡ A1

.

Replacing Z−1
s

 by its expression, using independence 
between J, dqt and dWt and Fubini theorem [29], we obtain

By replacing finally (24) and (25) in (23), we obtain the 
forward price

This completes the proof.   ◻

Analytical comparison with forward price in Cartea 
et al. (2005)

Recall that forward price obtained in [3] is given by

(24)

A = 𝔼
ℚ

t

[
e

(∫ T

t
(��(s)+�(s)−

1

2
�(s)2)ds+∫ T

t
�(s)dŴs

)]
𝔼
ℚ

t
[e∫ T

t
ln Jdqs]

= e∫ T

t
(�(s)+��(s))ds

𝔼
ℚ

t
[e∫ T

t
ln Jdqs]

(25)

A1 = 𝔼
ℚ

t

[

�
T

t

�(s)�(s)e

(∫ T

s
(��(u)+�(u)−

1

2
�(u)2)du+∫ T

s
ln Jdqu+∫ T

s
�(u)dŴu

)

ds

]

= �
T

t

𝔼
ℚ

t
[e∫ T

s
ln Jdqu]�(s)�(s)𝔼ℚ

t

[
e

(∫ T

s
(��(u)+�(u)−

1

2
�(u)2)du+∫ T

s
�(u)dŴu

)]
ds

= �
T

t

�(s)�(s)e∫ T

s
(�(u)+��(u))duds.

�(t, T) = Ste
∫ T

t
(�(s)+��(s))ds − �

T

t

�(s)e∫ T

s
(�(u)+��(u))duds.

The forward price formula (15) derived in this work is an 
affine function of the spot price St , Unlike in the works of 
[3], where they have obtained a power function of the spot 
price. This is what justifies the presence of fewer jumps in 
the forward prices. This is in line with the fact that we are 
in a regulating context where prices are likely to undergo 
less variations.

Some illustrative curves of spot and forward 
price in regulated electricity market

This section deals with the numerical simulations of the for-
ward price in order to illustrate some meaningful behaviors 
of the model and in comparison with the model developed 
in [3]. The proposed simulations also aim at highlighting 
the fundamental role of some particular parameters in the 
outcomes of the prices. For the numerical computation of 
spot and forward prices, we approximated the integrals using 
the trapezium and the Stratonovich integration methods. The 
parameters used in the simulations are plausible relative to 
those used in the literature.

F(t, T) = G(T)

(
S(t)

G(t)

)e−�(T−t)

e
∫ T

t

1

2
�2(s)e−2�(T−s)−��(s)e−�(T−s)ds+∫ T

t
�(�

J
,�,T ,s)�ds−�(T−t)

Fig. 1  Spot prices for the 
parameters, I = 0.0314 ; 
G = 0.01 ; E = 0.05 ; H = 0.001 ; 
F = 0.05 ; � = 2.85 ; � = 0.75 ; 
�J = 0.67 ; S(0) = 50
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Figure 1 shows a simulated spot price compared to the 
spot price in [3] without the seasonal part. One can observe 
that the proposed model captures some characteristics dis-
cussed in the regulated market such as mean reversion, a 
property also observed in Figs. 2 and 3 confirming the theo-
retical results. It is further relevant to discuss that in our 
model, the frequency of jumps is less than in the deregu-
lated market. Figures 4 and 5 present four different states 
of the evolution of the forward price process in the absence 
of jumps in the spot price model. Here, we observe that 
the forward price fluctuates around an average like the spot 
price. This could be justified by the fact that the forward for-
mula obtained here is a functional of the spot price. Figure 6 
obtained by introducing small jumps into the model shows 
that despite the jump at the beginning, the forward price lat-
ter oscillates around an equilibrium a situation which is not 
observed in Fig. 7 with bigger jumps. In a nut shell, these 
illustrations show that our model with the mean-reversion 
property captures the main objective of regulation principle, 
which is to cap prices within a given range. 

Figure 8 shows that despite jumps in the prices, prices 
vary from a certain threshold for different maturities. We 
observe in Fig. 9 that when the efficiency rate factor G is 
more than the inflation rate factor I, forward price decreases 
over time. This is in accordance with the economic principle.

Conclusion

In this paper, we have proposed a new model of spot price in 
regulated electricity market. The principal aim was to pro-
pose the forward price in regulated electricity market using 
economic principle price cap. It is also motivated by the 
fact that incentives regulation in public utilities, especially 
in electricity field, becomes more prevalent. The proposed 
model leads to non-classical Ornstein–Uhlenbeck pro-
cess due to non-constant speed of the mean reversion. The 
determination of the exact solution permits us to derive the 
explicit expression of the forward price. An important topic 
for further research is to use historical data to calibrate the 
introduced model.

Fig. 2  Spot prices for the 
parameters, I = 0.0314 ; 
G = 0.01 ; E = 0.05 ; H = 0.001 ; 
F = 0.05 ; � = 8.85 ; � = 0.75 ; 
�J = 0.67 ; S(0) = 50
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Fig. 3  Spot prices 
for the parameters, 
I = 0.0314;G = 0.01 ; 
E = 0.05;H = 0.001;F = 0.05 ; 
� = 1.5 ; � = exp(−0.015t) ; 
�J = 0.67;S(0) = 50
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Fig. 4  Forward price for the parameters, I = 0.0314;G = 0.01 ; E = 0.05;H = 0.001 ; F = 0.05;� = 0.75 ; �J = 0.67;S(0) = 50
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Fig. 5  Forward prices for the parameters, I = 0.0314;G = 0.01 ; E = 0.05;H = 0.001 ; F = 0.05;� = exp(−0.01t) ; �J = 0.67;S(0) = 50
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